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Abstract

In this thesis we develop techniques of integrability in the study of dualities

between two-dimensional conformal field theories and theories of closed strings

on three-dimensional Anti-de Sitter background geometries. For several years

after integrability was first applied to the 3d/2d dualities, it was an unanswered

question how to incorporate the so-called “massless modes” of these theories

into the integrability machinery. Here we tackle this problem in several con-

texts. We show that in the classical integrable description of closed strings

the implementation of the string Virasoro constraints needs to be modified

for geometries with multiple factors where massless modes are present. We

show further that with the correct implementation of the Virasoro constraints,

massless modes can be included in integrability techniques for obtaining quan-

tum corrections to physical quantities such as the energies of string solutions.

Lastly, we consider the scattering of fundamental string excitations and derive

all-loop expressions for the scattering matrix that includes both massless and

massive excitations.
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Chapter 1

Introduction: gauge/gravity

dualities

1.1 Elements of String Theory

String theory is a unified theory of quantum gauge and gravity interactions.

The concept of a fundamental relativistic string can be understood by com-

parison with a point-particle. A single particle propagating in a spacetime

with coordinates Xm can be described by its worldline Xm(τ) giving its posi-

tion at each moment in proper time τ . A fundamental string extends along a

spacelike coordinate σ in addition to a timelike coordinate τ , and is described

by its worldsheet Xm(τ, σ). The coordinate σ may be identified periodically

in which case we call the string closed, otherwise it is an open string.

τ
τ
σ

τ
σ

Figure 1: The worldline for a particle (left) and worldsheets for a closed string
(centre) and open string (right).

There are two parameters that describe fundamental strings. One is the

dimensionless string coupling constant gs, which controls the strength of the

string splitting and joining interactions. In perturbative calculations an ex-

pansion in gs corresponds to a sum over different string topologies. The other

fundamental parameter is the string scale ls, or equivalently the string tension

T , which are related by

T =
1

2πα′
=

1

2πl2s
, (1.1)

where the parameter α′ is called the Regge slope. The string can be excited

along vibrational modes, and the tension determines the energy of these ex-

citations. The low energy limit is α′ → 0. The natural way to study string

theory perturbatively is to consider a dual expansion in the parameters α′ and

gs. If one first expands in gs then each term in this expansion corresponds to

a particular string topology as mentioned above. Next, given a fixed string

13



CHAPTER 1. INTRODUCTION: GAUGE/GRAVITY DUALITIES

Figure 2: String interactions: splitting of a closed string (left) and an open
string (right).

topology, there is an expansion in α′.

String theory places demands on the spacetime in which it is constructed in

order to maintain physical consistency. In particular, superconformal invari-

ance requires that the spacetime be ten-dimensional and obey the supergravity

generalised Einstein equations [3]. The simplest possible background is ten-

dimensional Minkowski spacetime. In the Green-Schwarz formalism [4] for

implementing supersymmetry, the theory is described by the evolution of a

string not just in spacetime, but in superspace. This means that in addition

to the bosonic fields Xm(τ, σ) there are spacetime fermionic fields θI(τ, σ). In

the theory of type IIB superstrings that we will focus on, there are two such

fermions, I = 1, 2, and each is a Majorana-Weyl spinor of the same chirality.

This means that each has 16 independent real components and in total there

are 32 supersymmetries.

In the spectrum of vibrational excitations of the closed superstring in the

critical dimension, the lowest energy states are massless. The bosonic states

transform as a spacetime tensor which can be decomposed into symmetric

traceless, antisymmetric and trace parts. The first of these is a graviton field

Gmn, the second Bmn is referred to as the B-field and the last Φ is called the

dilaton. The B-field acts as a potential for a Neveu-Schwarz-Neveu-Schwarz

(NS-NS) 3-form Hmnp. There are also Ramond-Ramond (R-R) fields arising

from odd and even rank potentials in the type IIA and type IIB theories

respectively. For the backgrounds of interest to us in this thesis the only

non-zero R-R field is the R-R 3-form Fmnp. Consistency of the theory implies

conditions on these fields which are identical to the equations of motion arising

from a particular ten-dimensional action. This action is that of type IIB

supergravity [5–8]. Since in the low energy limit α′ → 0 other states above

these massless states are suppressed, we conclude that type IIB supergravity

is the low energy limit of type IIB superstring theory.

Open strings have endpoints, and so variation of the string action places

boundary conditions at these endpoints in addition to equations of motion.

The two simplest boundary conditions are Neumann boundary conditions,

14



CHAPTER 1. INTRODUCTION: GAUGE/GRAVITY DUALITIES

where we set ∂σX
m = 0 at the endpoints, and Dirichlet boundary conditions,

where we fix Xm to be constant at the endpoints. If we choose Neumann

boundary conditions for endpoints in spatial dimensions m = 0 . . . p, then the

string endpoints are fixed along the remaining (10 − p − 1) dimensions, i.e.

they are constrained to lie in a (p+1)-dimensional hypersurface, which we call

a Dp-brane [9, 10].

D-branes have a dual identity in string theory. As well as their role as

endpoints for open strings, they also appear as particular solutions called p-

branes in supergravity, meaning that they are dynamical objects of superstring

theory in their own right [11]. As objects in string theory they couple to R-R

fields. For type IIB supergravity, stable Dp-branes exist for p odd. In addition

there are 5-branes that are also charged under the bosonic B-field, the so-called

NS5-branes.

The low energy spectrum of open type II strings again starts with massless

states. Consider the excitations of an open string ending on a Dp-brane from

the point of view of the (p + 1)-dimensional space in which the brane prop-

agates. From this perspective the bosonic massless excitations of the open

string divide into those perpendicular to the brane, which appear as massless

scalars, and those parallel to the brane, which appear as a gauge vector. In

this way the excitations on a single Dp-brane describe a U(1) gauge theory.

This gauge symmetry can be enhanced to a non-abelian one if we consider

open strings on not just a single Dp brane, but N branes coincident with one

another. In this case we can introduce labels called Chan-Patton factors [12]

which specify which of the N branes the endpoints of an open string are on.

Counting these labels for both ends of the string, each state now comes with

a multiplicity of N2. In particular the gauge group is enhanced to U(N) [13].

The explicit form of the resulting gauge theory is that of a Yang-Mills the-

ory [14].

1.2 The Maldacena Conjecture

The Maldacena conjecture [15] relates strings on a background involving a

factor of (d + 1)-dimensional Anti-de Sitter (AdS) space to a conformal field

theory (CFT) in d dimensions. The canonical example of this conjecture states

that the theory of type IIB strings propagating on a background of AdS5×S5

with constant R-R 5-form flux is dual to the gauge theory known as N = 4

Super-Yang-Mills [16,17]. This conjecture arises by considering first type IIB

strings in flat space with a stack of N coincident D3-branes which will then

backreact on the geometry. The system is examined in the low energy limit

from two perspectives corresponding to the two guises of D-branes as endpoints

for open strings and as p-brane supergravity solutions.

15



CHAPTER 1. INTRODUCTION: GAUGE/GRAVITY DUALITIES

The supergravity metric arising from the stack of D3-branes is [18]

ds2 =
1√
f(r)

(
−dt2 +

3∑
i=1

dx2
i

)
+
√
f(r)

(
dr2 + r2dΩ2

5

)
, (1.2)

where dΩ2
n is the usual round metric in n-dimensions, and r is the associated

radial coordinate. The function f(r) is given by

f(r) = 1 +
R4

r4
, (1.3)

so that this solution has a horizon at r = 0. Finally the parameter R is related

to the string parameters gs and α′ and the number N by

R4 = 4πgsα
′2N . (1.4)

The number N of D3-branes in the construction enters the low energy super-

gravity solution in the 5-form R-R flux F5, with∫
S5

F5 = N . (1.5)

The Maldacena conjecture arises by looking at the low energy limit of this

setup of D3-branes from two perspectives. In the first, we have a set of open

strings propagating on the branes and closed strings in the bulk (the rest of

spacetime away from the branes). In the low energy limit, the interaction

between closed and open strings is subleading and so we have two decoupled

systems. The dynamics of the open strings are described by a gauge theory

on the four-dimensional space spanned by the D3-branes, with gauge group

SU(N). This gauge theory is N = 4 Super-Yang-Mills (SYM). It has been

shown that its beta function is exactly zero [19–22], and so it is a CFT.

In the second perspective, we replace the open strings by the backreaction

of the D3-branes on the geometry, that is we have a system of closed strings

propagating in the spacetime (1.2). One part of the low energy limit of this

spacetime is again free supergravity coming from low energy excitations of

strings in the bulk away from the branes. Another comes from the near-

horizon geometry. The energy E of an excitation at distance r from the

horizon is related to the energy E∞ that an observer at infinity sees by the

redshift factor

E∞ = f(r)−
1
4E . (1.6)

Low energy excitations in the bulk are unable to be brought close to the

horizon. Therefore, in the low energy limit of the second perspective we again

have two decoupled systems, one of which is free supergravity. The other

is closed strings on AdS5 × S5, since in the near-horizon limit r � R, the

metric (1.2) approaches that of AdS5 × S5, with the metric for n-dimensional

16
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Anti-DeSitter space in the form

ds2
AdSn = −dt2 +

1

r2
dr2 +

n−2∑
i=1

dx2
i . (1.7)

By comparing the two perspectives, we are led to infer that this is an equivalent

system to N = 4 SYM.

In the SYM gauge theory describing the dynamics of the open strings,

the physical parameters are the Yang-Mills coupling gYM and the number of

colour charges N . The duality relates these to the string parameters gs and

α′ via the following identifications:

gs =
g2
YM

4π
,

R4

α′2
= g2

YMN . (1.8)

The supergravity description of the backreaction is appropriate when the

radius of curvature R of the spacetime is much larger than the string scale,

R� ls. On the CFT side of the duality this is the region g2
YMN � 1. Hence

the duality relates low energy strings to the strongly coupled sector of the

gauge theory, and vice versa. This is an example of a strong-weak duality.

It means that perturbative string quantization and perturbative field theory

expansions cannot be compared, making the duality harder to test. On the

other hand, it promises the possibility of solving problems of strong coupling

by solving in the dual weakly coupled regime.

1.2.1 The planar limit

The “large N” or ”planar” limit of the field theory corresponds to taking

gYM → 0, N →∞ but keeping the ’t Hooft coupling λ defined as

λ ≡ g2
YMN =

R4

α′2
(1.9)

fixed. It has been known for a long time [23] that in this limit of Yang-

Mills theories there is a simplification of perturbative calculations. The only

contributions that survive the limit come from Feynman diagrams that are

planar, meaning they can be drawn in two dimensions without crossing, see

figure 3. We can see from equation (1.8) relating the parameters that on the

string side this limit corresponds to gs → 0, i.e. to a limit of free strings with

no interactions. Therefore, the planar limit of the Maldacena conjecture is a

duality between planar N = 4 SYM and free superstrings on AdS5 × S5.

It is in the planar limit that integrability appears. On the gauge side,

integrability appears in terms of an integrable spin-chain [24]. We will discuss

the integrability of free strings on particular backgrounds in the next chapter.
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Figure 3: A planar (left) and non-planar (right) Feynman diagram.

1.3 AdS3/CFT2 dualities

1.3.1 AdS3 backgrounds from brane constructions

Alongside the AdS5/CFT4 correspondence outlined above, another duality

was posited [15] which related strings on a background containing AdS3 to a

two-dimensional CFT. The brane construction leading to this duality was a

system of N1 D1-branes together with N5 D5-branes.1 Four spatial dimensions

along which the D5-branes extend are compactified on a T 4. The D1-branes

then extend along the same remaining non-compact spatial dimensions which

the D5-branes span. The metric for this setup is

ds2 =
1√
f1f5

(−dt2 + dx2
1) +

√
f1f5

(
dr2 + r2dΩ2

3

)
+

√
f1

f5

9∑
i=6

dx2
i (1.10)

where

f1(r) = 1 +
gsα
′N1

vr2
, f5(r) = 1 +

gsα
′N5

r2
, v =

VT 4

(2π)4α′2
, (1.11)

and VT 4 is the volume of the T 4. The low energy limit involving α′ → 0 is taken

together with the T 4 compactification in such a way that v remains finite. Just

as in the D3-brane setup, there is a horizon at r = 0 and in the low energy

limit the near-horizon geometry decouples from that of the bulk. In this case

the near-horizon limit r → 0 produces the background AdS3 × S3 × T 4. The

radii of both AdS3 and S3 are equal and given by

R =
gsα
′√N1N5√
v

. (1.12)

In both the D3-brane stack and the D1-D5 system, the branes couple to R-

R fields, and a full description of the supergravity solution includes these fields.

In the case of the D1-D5 system, there is a 3-form R-R flux F (3) which in the

near-horizon limit is a constant, proportional to the volume forms on AdS3

1This D1-D5 system was already well-studied for its use in describing black-hole mi-
crostates in string theory [25].
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and S3. More generally, superstrings on this background can be supported

by a mix of R-R and NS-NS fluxes. Supergravity backgrounds supported

by these mixed fluxes are generated by NS5-branes and fundamental strings

in addition to D1-branes and D5-branes. There is a one-parameter family

of supersymmetric backgrounds involving this mix of branes, and so a one-

parameter family of dualities with mixed fluxes. Namely, when we set the

AdS3 radius to 1, the fluxes can be written as

F = q̃(Vol(AdS3) + Vol(S3)) , H = q(Vol(AdS3) + Vol(S3) (1.13)

where

q2 + q̃2 = 1 . (1.14)

Another set of AdS3/CFT2 dualities is found involving the background

AdS3 × S3 × S3 × S1. The radii R+ and R− of the two three-spheres in this

background are related to the radius R of AdS3 as follows:

1

R2
=

1

R2
+

+
1

R2
−
, (1.15)

which is required to make the background a consistent supergravity solution.

We introduce a parameter α defined by

1

R2
+

=
α

R2
,

1

R2
−

=
1− α
R2

, (1.16)

and again we have a one-parameter family of such backgrounds. This parame-

ter α appears in the symmetry superalgebra of these backgrounds as discussed

in section 1.3.2. When giving worldsheet expressions on this background in

this thesis we will generally use the alternative parameter φ defined by

α = sin2 φ . (1.17)

The brane construction used to construct this background [26–28] is that

of a D1-D5-D5’ system, which can be thought of as a D1-D5 system to which

is added a second set of D5-branes, compactified on the directions transverse

to the first set and vice versa. We denote this setup in the following diagram:

1 2 3 4 5 6 7 8 9

D1 ×
D5 × × × × ×
D5′ × × × ×

where ×’s mark spatial directions spanned by the various branes, see also fig-

ure 4. One subtlety is that this construction actually leads to the geometry of

AdS3×S3×S3×R in the near-horizon limit, and so it is believed that to obtain

a dual conformal theory there is some additional process of compactification

19
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D5

D1

D5

D5’

D1

Figure 4: Three-dimensional representation of a D1-D5 system (left) and D1-
D5-D5’ system (right).

from R to S1.

Early progress in studying strings on these AdS3 backgrounds was achieved

using worldsheet CFT techniques [29–36] to study the pure NS-NS back-

grounds, which are related to the pure R-R backgrounds by S-duality. The

use of integrability in AdS/CFT dualities, which we discuss in the following

chapter, avoids the need for applying an S-duality and also makes it possible

to study the mixed-flux backgrounds.

1.3.2 Dual CFT2

Identifying the dual conformal gauge theory to the AdS3 string background

is a harder problem than in the case of AdS5/CFT4. In particular, the gauge

theory describing the open string dynamics in the low energy limit is not con-

formally invariant. The dual CFT is instead conjectured to arise from the

renormalization group flow to the IR of this gauge theory. Another important

difference between this AdS3/CFT2 duality and the canonical AdS5/CFT4 du-

ality is the presence of a large moduli space [37]. N = 4 SYM is a theory with

only two tuneable parameters: λ and N . However, there are various scalars

which arise from the open string dynamics on the D1-D5 system which have

non-zero expectation values. The field content of the D1-D5 systems contains

vector multiplets and hypermultiplets. Both of these multiplets contain scalar

fields. The two branches of the moduli space are the Higgs branch, where

the hypermultiplet scalars have non-zero vacuum expectation values, and the

Coulomb branch where the vector multiplet scalars have non-zero vacuum

expectation values. The IR Higgs branch CFT is conjectured to be dual to

AdS3 strings [15], because it is this branch that corresponds to motion of

the D1-branes inside the D5-branes and so is consistent with the near-horizon

picture.

The CFT can also be understood by treating the D1-branes as an instanton

on the D5-branes [38], and it has been proposed [39] that it is at the point
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in the moduli space where this instanton shrinks to zero size that the spin-

chain picture which integrability relies on emerges. It has been believed for

some time that this moduli space can be obtained as a deformation of the

space SymN (T 4), the symmetric space of N copies of T 4, where N = N1N5 is

the product of the number N1 of D1-branes and N5 of D5-branes [40]. Early

work on the CFT side of the AdS3 dualities was undertaken by studying the

SymN (T 4) orbifold theories and their deformations in [41–44].

In identifying the CFT dual of AdS3×S3×S3×S1, there is the additional

problem that in studying the open string dynamics on the brane construction,

one has to deal with the difference between the factor of R in the near-horizon

limit and the factor of S1 in the final geometry. Partly owing to this, the

dual conformal theory to this background has proved among the most elu-

sive in all AdS/CFT dualities, with early work studying it in [45] and since

then in [46, 47]. One thing that is known is the necessary superconformal

symmetry algebra of the dual CFT. All the brane constructions discussed in

this section preserve 16 real supersymmetries. In two dimensions these can

be decomposed by chirality and we say that we have N = (4, 4) supersym-

metry in two dimensions. Unlike for example N = 4 supersymmetry in four

dimensions, we can distinguish further between different supersymmetry al-

gebras [48]. The CFT dual to AdS3 × S3 × T 4 preserves what is called the

small N = (4, 4) algebra, while the CFT dual to AdS3 × S3 × S3 × S1 pre-

serves the large N = (4, 4) algebra. These algebras are infinite-dimensional.

Their finite-dimensional subgroups which can be defined globally are the alge-

bras of the groups of superisometries of the dual string backgrounds, namely

PSU(1, 1|2)2 for AdS3×S3×T 4 and D(2, 1;α)2 for AdS3×S3×S3×S1. The

parameter α here is the same one appearing in the geometry that defines the

relative radii of the two three-spheres as in equation (1.16).

In this thesis we will focus on studying the string side of the AdS3/CFT2

dualities introduced in this chapter. In the next chapter we introduce the

ideas and techniques we will use to do so.
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Chapter 2

Strings and Integrability

In this chapter we will outline the basics of the ideas and techniques used in

this thesis. Full definitions of the ideas we introduce here will generally be

given in the main text.

2.1 Strings in Anti-de Sitter Space

2.1.1 The String Sigma Model and its symmetries

Our starting point is the standard bosonic string action on a curved back-

ground, the non-linear sigma model. For a background with spacetime metric

Gmn(X) and supported by a non-zero two-form gauge field Bmn(X), the action

is

Sbos = − 1

4πα′

∫
d2σ

(√
−γγαβGmn(X) + εαβBmn(X)

)
∂αX

m∂βX
n , (2.1)

where Xm are the spacetime coordinates, γαβ is the worldsheet metric, carry-

ing indices associated to the worldsheet coordinates σα = (τ, σ) and εαβ is the

alternating tensor. Since we will be interested in critical superstrings of type

IIB, the background spacetime will always be ten-dimensional. In particular

we will be interested in the AdS backgrounds discussed in the previous chapter

and in limits of these backgrounds.

As in flat space, this action possesses several symmetries at the classical

level, namely invariance under reparametrisation of the worldsheet coordi-

nates,

σα → fα(σ) (2.2)

and Weyl or scale invariance under transformation of the worldsheet metric

γαβ → Ω2(σ)γαβ . (2.3)

As well as the equations of motion coming from varying the action with

respect to the spacetime fields Xm, the action (2.1.1) also gives us the Virasoro

constraints [49],

Gmn(X)
(
Ẋm ±X ′m

)(
Ẋn ±X ′n

)
= 0 (2.4)

arising, as in flat space, from variations with respect to the worldsheet metric.

The full superstring action is given by the bosonic action above together

with a fermionic part. As in flat space, one convenient description of the
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latter is given by a Green-Schwarz action [4, 50], but this now requires us to

describe spinors on a curved background. We give the details of how this

Green-Schwarz action is described in chapter 5 and an alternative formulation

of the fermionic action in a group theoretic description in section 2.2.2. For

now we will note several important points about the Green-Schwarz action.

For type IIB strings the fermionic fields are two 10-dimensional spinors

θI , I = 1, 2. These are Majorana-Weyl spinors, meaning they satisfy first the

reality condition that they are equal to their Majorana conjugate,

θCI = θI , (2.5)

and second that they have definite chirality,1

Γ0123456789θI = θI . (2.6)

In appendix B we give an explicit basis of ten-dimensional gamma matrices

Γ which we use throughout this thesis whenever one is needed, and define

Majorana conjugation in terms of this explicit basis. Each of the two con-

ditions above reduces the number of independent components of the spinors

by half, so having started with 32 complex components they end up with 16

independent real components.

As discussed in chapter 1, the backgrounds of interest to us arise in the

near-horizon limit of particular brane constructions, and as such the resulting

backgrounds are supported by the p-forms which are the charges of these

branes. In particular, the AdS3 backgrounds of interest to us can in general

be supported by a combination of R-R and NS-NS 3-form fluxes. The fermionic

fields θI couple to themselves and to the bosonic fields through these 3-form

fluxes, just as the bosonic fields Xm couple amongst themselves through the

NS-NS B-field in the bosonic action (2.1.1).

In flat space, the fermionic kappa symmetry which we discuss below can

be fixed in such a way that the Green-Schwarz action becomes quadratic in

fermionic fields. For a generic curved background this is no longer possible.

However, the general type II action is known to quartic order in fermions [51]

and for the backgrounds of interest here, kappa symmetry can be fixed in such

a way that there are no higher order terms above this [52]. Regardless, for

our purposes in this thesis it will suffice to use the action to quadratic order

in fermions.

The full Green-Schwarz action is manifestly invariant under spacetime su-

persymmetry, which is a global fermionic symmetry. There is also another

fermionic off-shell symmetry of the theory, called kappa-symmetry, which is

a gauge symmetry. Fixing a particular gauge for this symmetry is neces-

1Since we are interested in type IIB strings, both spinors θ1 and θ2 have the same chirality,
which we have taken to be positive in equation (2.6).
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sary to show explicitly that the Green-Schwarz action is also invariant under

worldsheet supersymmetry. We will introduce it here by the simplest theory

in which such a symmetry shows up [53]: the worldline action of a massless

superparticle given by

S =

∫
dτ

1

e

(
Ẋm − iθ̄Γmθ̇

)2
. (2.7)

This action is invariant under the transformation

δθ = iΓmpmκ , δXm = iθ̄Γmδθ , δe = 4e ˙̄θκ , (2.8)

where pm is the conjugate momentum to Xm and κ = κ(τ) is any spinor

function of proper time.

Gauge-fixing this symmetry has the effect of reducing the number of in-

dependent fermionic components by half. This last fact can be observed as

follows. The equation of motion for θ is (Γmpm)θ̇ = 0. Meanwhile the analo-

gous statement of the Virasoro constraints for the superparticle action is the

vanishing of the total momentum

p2 = 0 , pm = Ẋm − iθ̄Γmθ̇ . (2.9)

which in turn implies (Γmpm)2 = 0. Hence the rank of the matrix Γmpm is

at most half of its size (as follows for example from the rank-nullity theo-

rem). Indeed as there are no other constraints on the momentum, it is exactly

half. We conclude that half of the components of θ do not actually enter the

equations of motion and cannot be physical. This ensures that the number

of independent real components of the fermions is equal to the number of

transverse bosons, as is required for consistent worldsheet supersymmetry.

This argument we have presented to show how kappa symmetry arises for

a superparticle in flat space in fact extends to the full superstring action in flat

space [4] and further to any supergravity background [54]. Kappa symmetry

is as such a symmetry of the full string action.

2.1.2 Gauge-fixing

In this section we discuss the various gauge choices that can be made to fix

the symmetries discussed in the previous section. In looking at these gauge

choices we draw attention to the issues that arise on curved backgrounds in

general, and on the AdS spaces of interest to us in particular.

One gauge choice that can be made is to use reparametrisation of the

worldsheet coordinates and Weyl invariance to fix conformal gauge, where the

worldsheet metric is fixed to be everywhere equal to the 2d Minkowski metric,

γαβ = ηαβ. In flat space this gauge choice leaves enough symmetry left in the

bosonic sector to also fix either lightcone gauge or static gauge, however this
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is no longer true for generic curved backgrounds as we discuss further below.

Lightcone gauge [55] is given by choosing lightcone spacetime coordinates

x± = ψ ± t , (2.10)

then fixing

x+ = p+τ (2.11)

and then using the Virasoro constraints to solve for x− in terms of the remain-

ing fields. On curved backgrounds, as in flat space, it is a convenient gauge to

quantize the theory in because the Virasoro constraints are solved at the clas-

sical level before quantizing. For supersymmetric theories, the use of lightcone

gauge is complicated by the need to combine it with a choice of kappa gauge,

and the resulting choice for the latter is often referred to as lightcone kappa

gauge.

As mentioned above, lightcone gauge cannot be consistently taken with

conformal gauge for a generic background spacetime. The question of when

these gauges are consistent was addressed in [56,57], where it was found that

these gauges can be simultaneously imposed for spacetimes which possess a

covariantly constant null Killing vector, in addition to satisfying the usual

conditions for Weyl invariance such as being in the critical dimension. The

origin of this additional requirement is that if (2.11) can be imposed, then the

vector

V =
∂

∂x−
(2.12)

is such a constant null Killing vector. Note that the AdS spacetimes of interest

to us do not satisfy this condition2, and as such the fixing of lightcone gauge

for these backgrounds [58, 59] does not use the conformal gauge. We will

discuss in section 2.1.3 examples of non-flat spacetimes where this condition

is satisfied.

Static gauge consists of the choice

t = κτ (2.13)

where t represents the usual time coordinate of AdS. In some sense, it rep-

resents a half-way choice between lightcone quantization and conformal quan-

tization, since the number of degrees of freedom is reduced by one below the

critical dimension, but is still one higher than the number of physical degrees

of freedom. However, at the classical level it is often a natural choice to study

particular string solutions where the Virasoro constraints can be checked ex-

plicitly. These solutions can then be studied semiclassically in the static gauge

by requiring the timelike bosonic field to not receive quantum corrections. Be-

2 Although they possess null Killing vectors, they are not covariantly constant ones. This
is necessary so that, for example, G−− = 0, and thus the Virasoro conditions have a linear
solution for x−.
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cause of its frequent use in classical and semiclassical string solutions, it is

generally encoded into the classical description of strings in the integrability

framework which we discuss below.

Different kappa gauges have been studied. One of these is known as the

coset gauge [60], which for example on AdS3 × S3 × T 4 is [61]

Γ6789θI = 0 , (2.14)

where 6789 are the T 4 directions. In this gauge the Green-Schwarz super-

string action reduces to a coset action. Any such action as this admits an

algebraic structure and is classically integrable [62]. However, the coset kappa

gauge does not lead to a conventional quadratic kinetic term for the massless

fermions, but rather a kinetic term which is higher order in fields. Such a

higher order kinetic term is not convenient for the introduction of canonical

Poisson brackets. As such we will find it convenient, following [63–65], to use

a different kappa gauge,

Γ+ηI = 0 , Γ+χI = 0 , (2.15)

where ηI and χI are suitable redefined fermions. We will discuss the exact

field redefinitions required in chapter 5. Here we will simply mention that η,

χ are defined so as to make them neutral under the U(1)’s associated with

shifts in t and ψ.

2.1.3 Strings on plane-waves

We turn now to strings on backgrounds which are not Anti-de Sitter, but a

class of spacetimes known as plane-wave spacetimes. These arise in particular

limiting process from other geometries. Studying strings on these backgrounds

is an interesting question in its own right because they provide a rare example

where it is understood how to exactly quantize the theory even in the presence

of curvature. We will be interested in them because of the guide they provide

to understanding strings on AdS spaces. Once we fix a particular lightcone

gauge, if we consider an expansion in transverse fields, the leading order terms

are the same as those in the plane-wave theory, and higher order terms can

be treated as corrections away from the plane-wave. In particular, considering

string theory on the plane-wave limit of the backgrounds of interest to us will

provide us with what we can think of as a set of elementary excitations of the

theory with a set of associated masses.

The general metric for a plane-wave spacetime is

ds2 = −4dx+dx− +
D−2∑
i=1

mix
2
i (dx

+)2 +
D−2∑
i=1

dx2
i . (2.16)
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where mi is in general allowed to be a function of x+. For our purposes as

will shortly become clear we will be interested solely in considering mi to be

constants, and of course we are also considering only the critical dimension

D = 10. Plane-wave metrics of the form (2.16) are defined within the larger

class of pp-wave spacetimes as those which possess a covariantly constant

null Killing vector, and hence as explained in section 2.1.2, strings on these

backgrounds can be quantized similarly to strings on flat space. When this is

done, the bosonic sigma model action reduces to that of 8 free bosons whose

masses are given by the constants mi [66,67]. This can be compared with the

action of free massless bosons which arises from string theory on flat space,

which is of course exactly what the metric (2.16) reduces to when all mi = 0.

It was observed in [66,68] that one particular plane-wave background rep-

resents another maximally supersymmetric solution of type IIB string theory

possessing 32 supercharges, alongside flat space and AdS5 × S5. This case is

when each of the masses mi is the same, mi = m, and the bosonic background

is supplemented by a 5-form R-R flux given by

F+1234 = F+5678 = 2m . (2.17)

This background is obtained by taking a Penrose limit of the AdS5×S5 back-

ground [69,70]. A Penrose limit involves selecting a particular null geodesic in

spacetime and considering a limit in the near-vicinity of the geodesic such that

the resulting metric remains non-singular. In the case of the possible Penrose

limits of AdS5×S5, the choice of null geodesic which preserves maximally su-

persymmetry in the IIB theory is a null geodesic whose spacelike part simply

moves around the equator of the sphere.

The theory of IIB superstrings on the plane-wave background obtained by

a Penrose limit of AdS5 × S5 can be quantized in the lightcone gauge. The

question of how this Penrose limit relates to the duality with N = 4 SYM

was first considered in [70]. As well as a geometric limit of the background

spacetime, the plane-wave IIB theory can also be thought of as a limit where

particular Noether charges are taken to be large. In particular, given the

energy E and an angular momentum J associated to motion around the S5

equator, we are considering a limit where

E →∞ , J →∞ (2.18)

This “large charge” limit can be carried over naturally to the gauge side of the

duality, where we will be taking the dimensions of the relevant operators to be

large. The limit is called the BMN limit (Berenstein, Maldecena, Nastau) [70]

in the context of AdS/CFT, and perturbative calculations have been made on

both sides of the duality in this limit.

An similar limit can be taken for the AdS3 backgrounds, choosing a Pen-
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rose limit which maximises supersymmetry, and consequently leading to a

theory which is most likely to be solvable. For the case of AdS3 × S3 [71–75]

the appropriate limit is one where again the spacelike component of the null

geodesic in the limit runs around the equator of the sphere, so the geodesic is

given by

t = ψ = τ . (2.19)

For AdS3×S3×S3 [76,77] we choose a null geodesic which runs around both

equators of the spheres. In this case there is an additional parameter involved

in choosing the limit according to which linear combination one choose the

geodesic to take over the two spheres. The choice which turns out to maximise

supersymmetry is [46,76]

t = τ , ψ1 = cos2 φ τ , ψ2 = sin2 φ τ . (2.20)

For these particular Penrose limits, the number of supersymmetries of the

two theories are not just preserved, but are in fact enhanced, to 20 supersym-

metries in the case of the AdS3×S3×S3 theory [76] and 24 in the case of the

AdS3 × S3 theory. [78] After these limits, the metrics of the two backgrounds

are given by equation (2.16) with masses

{mi} = {1, 0} (AdS3 × S3 × T 4)

{mi} = {1, cosφ, sinφ, 0} (AdS3 × S3 × S3 × S1) (2.21)

where each mass comes with a multiplicity of four bosons and four fermions

in the former case, and two in the latter.

As can be seen, both backgrounds have massless fundamental excitations

in their plane-wave limit. This is a new feature of the AdS3 backgrounds which

does not show up in higher dimensions. At the level of the Penrose limit of the

geometry, the factors of T 4 and S1 are essentially decoupled in the limiting

procedure and so remain flat subspaces in the plane-wave spacetime. These

flat subspaces give rise to four and one massless boson(s) respectively. The

S1 background has another massless boson coming from a transverse direction

around both S3 equators. Each of the massless bosons has a superpartner

massless fermion. Despite their simple origin from the Penrose limit perspec-

tive, the massless modes have proven difficult to implement in the integrability

descriptions of the full theories, as we will discuss further, and developments

on how to incorporate them will constitute a major recurring aspect of the

work in this thesis.

2.2 Integrability of classical strings

We now turn to the subject of integrability. We will begin by introducing the

ideas of classical integrable systems, in particular how the idea of Liouville
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integrability as defined for finite-dimensional systems can be extended to field

theories with infinitely many degrees of freedom, using the so-called Lax for-

mulation. Then we will discuss how these ideas apply to classical strings, and

discuss how, for particular backgrounds, the string sigma model can be cast

in an integrable form.

2.2.1 Classical Integrability

The original notion of integrability is that of a Liouville integrable classical

system. This concept applies to finite-dimensional dynamical systems, usually

Hamiltonian systems with 2n degrees of freedom given by positions qi and

momenta pi depending on a time parameter τ , with evolution in τ governed

by a Hamiltonian H. In particular, for any function f(qi, pi), its evolution in

time is given by

ḟ = {f,H} . (2.22)

where the Poisson bracket of two functions f, g, {f, g} is defined to be

{f, g} =
∑
i

(
∂f

∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi

)
. (2.23)

The system is defined to be Liouville integrable if there are n functions fi that

are in involution,

{fi, fj} = 0 , (2.24)

one of which is the Hamiltonian, and hence all are conserved. For such sys-

tems, the Arnold-Liouville theorem guarantees that there exists a coordinate

system in which all momenta are constant, and the dynamical evolution of the

positions is uniform motion around a torus.

The key idea in this original notion of integrability is that there be as many

conserved quantities as degrees of freedom in the theory. For the extension to

field theories with infinitely many degrees of freedom, it is natural to assume

integrability must mean there are infinitely many conserved quantities, but it

is unclear whether this should be a sufficient condition by itself. One way to

proceed is to use the ideas of the Lax formalism [79], which can be defined

for finite-dimensional integrable systems and which then generalise naturally

to field theories. This works as follows: suppose square matrices L and M of

size n can be built out of the variables of the theory such that the dynamical

equations of the theory can be written as

L̇ = [M,L] . (2.25)

Then it follows that
d

dτ
tr(Lk) = 0 (2.26)

for any integer k. Hence the n eigenvalues of L are all conserved quantities.
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The obvious generalisation of the Lax formalism to infinite-dimensional

systems is simply to take the Lax pair (L,M) to be infinite-dimensional matri-

ces. We achieve the same result however by introducing the so-called spectral

parameter z and considering a one-parameter family of matrices (L(z),M(z)).

The advantage of this approach is that we can deduce properties of a particular

solution, or obtain equations that characterise different solutions, by consid-

ering the analytic structure of the matrices on z.

The generalisation of equation (2.25) to field theories relies on something

which is unique to two-dimensional field theories, and hence these are the

only ones for which we can use integrability.3 When d = 2 we can regard

the Lax pair as being made up of the two components of a connection on a

vector bundle, (L(z),M(z))→ (Lτ (z), Lσ(z)) and then the condition that this

connection Lα be flat,

∂αLβ(z)− ∂βLα(z)− [Lα(z), Lβ(z)] = 0 , (2.27)

is the generalisation of equation (2.25).

In the finite-dimensional case we saw the conserved charges arising from

the Lax formulation as the eigenvalues of L. Now in the case of field theory, we

expect to have an infinite set of conserved charges arising in a similar way. We

need now to define the monodromy matrix as the path-ordered exponential of

the Lax connection,

M(z, τ) = Pexp

∫ 2π

0
dσLσ . (2.28)

From the flatness of Lα, this obeys the evolution equation

∂τM(z, τ) = [Lτ (2π, τ, z),M(z, τ)] (2.29)

and so

∂τ tr(Mk) = 0 , (2.30)

and now the eigenvalues of M are conserved quantities. By expanding in the

spectral parameter z, typically ub oiwers if 1
z around z = ∞, we obtain an

infinite set of conserved charges.

2.2.2 Classical strings

In this section we will give an overview of how classical integrability shows up

in particular string backgrounds. The key idea is that for these backgrounds,

3Two-dimensional field theories can be regarded as uniquely capable of admitting inte-
grability for a different reason. The theorem of Coleman and Mandula [80] restricts the
possible symmetries of a QFT whose S-matrix obeys certain general conditions. One of
these conditions is analyticity of the S-matrix in the scattering angle. This is generically
true of physically interesting QFT’s in d > 2 but in two dimensions the only possible “an-
gles” for scattering are forwards or backwards. As such two-dimensional field theories can
possess higher conserved charges, as is fundamental for integrability, even in the absence of
supersymmetry.
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the classical string action can be formulated as a coset action for a supergroup

whose bosonic subgroup represents the isometries of the relevant background.

An action of this form was first given for strings on AdS5×S5 in [81], following

the earlier use [82] of a coset action to describe strings on flat space. A key

feature of many examples of cosets describing strings on AdS spaces is that

they admit a Z4 automorphism [83].4 This allows a flat Lax connection to be

written down for the theory [62] and hence the theory is classically integrable

in the manner discussed in the previous section. Superspaces admitting a Z4

automorphism are called semisymmetric spaces [85]. Following [61, 86, 87],

we will find it convenient to describe the setup of strings on semisymmetric

spaces in a general group-theoretic form, and this can then be specialised to

the particular cases of interest to us by specifying the relevant supergroups.

We consider a coset G/H consisting of a supergroup G equipped with a

Z4 automorphism Ω : G → G, and where H ∈ G is the invariant subspace of

Ω. To form a string action on such a space, the elements in G are functions

over the worldsheet, g(τ, σ) ∈ G and we can relate these group elements to

the usual bosonic and fermionic fields of the Green-Schwarz action in some

(non-unique) way. We form the standard Maurer-Cartan one-forms jα in the

Lie algebra g of G,

jα = g−1∂αg , (2.31)

and then the automorphism Ω also acts on these one-form currents, giving a

decomposition of the algebra which we denote

jα =

3∑
n=0

j(n)
α , (2.32)

where the automorphism Ω acts as

Ω
(
j(n)
α

)
= inj(n)

α . (2.33)

In this decomposition j(0) and j(2) represent the bosonic parts of the algebra

and j(1) and j(3) the fermionic parts.

The string action is given by

S =

√
λ

8π

∫
d2σStr

(√
−γγαβj(2)

α j
(2)
β + εαβj(1)

α j
(3)
β

)
, (2.34)

where Str denotes the unique invariant bilinear form on g which all superspaces

of interest to us possess.56 It does not depend on j
(0)
α which is invariant under

4This was first shown for the case of AdS5 × S5 explicitly in [84].
5See e.g. [88]
6If G is realised as a group of supermatrices, this bilinear form is the supertrace:

Str

(
A B
C B

)
= tr(A)− tr(D)

.
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Ω, and as such is an action on the coset G/H. We should note that that in

general the coset action (2.34) does not describe a consistent string action.

It is necessary to check, given a particular group G, that the background

associated to it is a consistent string theory background (for example, that it

is a supergravity solution etc.).

A Lax connection for the action (2.34) is given by

Lα = j(0)
α +

z2 + 1

z2 − 1
j(2)
α −

2z

z2 − 1

1

−γ
γαβε

βγj(2)
γ

+

√
z + 1

z − 1
j(1)
α +

√
z − 1

z + 1
j(3)
α . (2.35)

The flatness condition for this Lax connection is equivalent to the equations of

motion arising from the action (2.34), together with the Maurer-Cartan equa-

tions for the flatness of the current (2.31). The Virasoro constraints are an

additional requirement which needs to be imposed in addition to the flatness

of the Lax connection. They arise, just as in the usual sigma model, from vari-

ations of the worldsheet metric. In conformal gauge they are given explicitly

by

Str

[(
j(2)
τ

)2
+
(
j(2)
σ

)2
]

= Str

[
j(2)
τ j(2)

σ

]
= 0 . (2.36)

As discussed in the previous section, given a monodromy matrix M aris-

ing from a flat Lax connection we know that the eigenvalues of M are time-

independent, so they are functions only of the spectral parameter z. We

diagonalise the monodromy matrix arising from the Lax connection (2.35) in

terms of a particular Cartan basis Hl for G as

M(z) = U−1(z)epl(z)HlU(z) . (2.37)

We refer to the functions pl(z) as the quasimomenta of the system. The infinite

set of conserved charges that characterise the theory as being integrable show

up in the quasimomenta in a convenient way. We find that expanding at large

z, the behaviour of any quasimomentum pl is

p(z) = −2

z
Ql + . . . (2.38)

where Ql is a conserved charge of the system, in fact it is a Noether charge

associated to a global symmetry. Higher terms in the expansion give an infinite

set of conserved charges.

The quasimomenta pl(z) have a more interesting analytic structure than

M(z). The Lax connection is defined as a z-dependent function of the currents

in such a way that its only singularities in z are at z = ±1, and for a solution

just in the bosonic sector these are simple poles. The monodromy matrix

inherits singularities at z = ±1, but like the Lax connection is elsewhere

analytic. On the other hand the quasimomenta can possess branch cuts, and

33



CHAPTER 2. STRINGS AND INTEGRABILITY

indeed we can use these branch cuts to characterise classical string solutions.

On each branch cut, the quasimomenta are required to satisfy the monodromy

condition

Alm/pm(z) = 2πnl , z ∈ Cl,i (2.39)

where Alm = Str(HlHm) is the Cartan matrix of the group, Cl,i denotes the

set of cuts on the sheet for the corresponding quasimomentum pl, and /pl is

the continuous part of the quasimomentum on the cut.

The monodromy condition (2.39) can be recast as a set of integral equa-

tions, called the finite-gap equations. We will see in detail in the following

chapter how this is done. Solutions to these equations are often called the

algebraic curve. Finite-gap equations have been written down for strings on

the AdS5 × S5 background, first in subsectors [89–91] and then for the full

background [92]. Following this, finite-gap equations were written down for

strings on AdS4×CP3 [93], for the pure R-R AdS3 backgrounds of interest to

us in this thesis [61], for backgrounds involving AdS2 [87] and most recently

for the mixed-flux AdS3 × S3 × T 4 background [94]. One important result

of the work in this thesis is to show how the finite-gap equations need to be

modified in the presence of massless excitations.

2.2.3 Coset model on R× S2 and a single-cut algebraic curve

We will now illustrate the ideas of coset models and classical string solutions

described as algebraic curves by considering a simple example: bosonic strings

on R×S2. We will take as the coset for this model SU(2)/U(1), so the timelike

coordinate is supplementary. We parametrise elements g ∈ G = SU(2) in

terms of C2 coordinates as

g =

(
Z1 −Z2

Z2 Z1

)
(2.40)

where Zi ≡ Z∗i and |Z1|2 + |Z2|2 = 1. In terms of this parametrisation the

currents (2.32) are given by

j =

(
Z1dZ1 + Z2dZ2 Z2dZ1 − Z1dZ1

Z1dZ2 − Z2dZ1 Z1dZ
1 + Z2dZ

2

)
. (2.41)

For a sigma model describing bosonic strings only, the Z4 automorphism of

a semisymmetric superspace is reduced to a Z2 automorphism, that is G is now

a symmetric space. We can define a particular choice of this automorphism Ω

acting on su(2) in terms of its action on the Pauli matrices. A useful choice is

Ω(σ1) = −σ1 , Ω(σ2) = −σ2 , Ω(σ3) = σ3 . (2.42)

This is clearly a Z2 automorphism, and the current j is split into j(0) and j(2)
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by its diagonal and off-diagonal parts respectively. The invariant subalgebra of

su(2) under this automorphism is clearly a U(1) subalgebra, so this is indeed

giving us the coset we want.

The other simplification of the general picture when considering bosonic

strings only is that we can replace the “supertrace” in the action by the usual

trace. The action is therefore

S =

√
λ

8π

∫
d2σ
√
−γγαβ

[
tr
(
j(2)
α j

(2)
β

)
− ∂αt∂βt

]
(2.43)

We can see that this action is indeed equivalent to the usual action for

bosonic strings on R × S2, and in this process see also how the action of the

coset works explicitly in this case, by changing from complex coordinates Zi

to angular coordinates on S3. If we take

Z1 = cos θeiϕ , Z2 = sin θeiψ (2.44)

then we find

− 1

2
tr

([
j(2)
]2
)

= dθ2 + sin2 θ cos2 θ (dϕ− dψ)2 . (2.45)

The automorphism Ω selecting only the off-diagonal parts of the current is

therefore giving us the S2 subsector of S3 given in these coordinates by ψ+ϕ =

0.

We will now look briefly at how particular solutions to the classical evo-

lution of strings on R × S2 can be readily seen to give rise to quasimomenta

possessing branch cuts. We will consider strings in conformal gauge, and so-

lutions of the form

t = κτ , ϕ = −ψ = nσ , θ = θ(τ) (2.46)

in the coordinates (2.44). The equation of motion for θ can be solved with

the Virasoro constraints to give a general elliptic integral solution, but we can

ignore the exact form of this solution. The resulting Lax connection for this

solution has a component Lσ given by

Lσ = in cos(2θ)σ3 − in sin(2θ)
z2 + 1

z2 − 1
σ1 − iθ̇

2z

z2 − 1
σ2 . (2.47)

Now we see that for this solution the Lax connection is independent of σ, so

the path-ordered exponential required to give us the monodromy matrix sim-

plifies greatly to an ordinary matrix exponential. When we then diagonalise

this we can see that for this simple case of su(2) we have just one quasimo-

mentum p(z) and the monodromy matrix diagonalises to ep(z)σ3 . p(z) is given
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by

p(z) =
2π

z2 − 1

√
n2(z2 − 1)2 cos2 θ + 4n2z2 sin2 θ + (z2 + 1)2θ̇2 . (2.48)

In this form it appears that p(z) depends on τ through θ, but the path-ordered

exponential is to be taken at any fixed τ , so given a particular solution θ(τ)

we could simply substitute its values at say τ = 0. We know that the flatness

of the Lax connection means that for any θ(τ) which obeys the equations of

motion, the expression in the square root here is indeed τ -independent. In

fact for this solution, once we make use of the Virasoro constraints we can

explicitly rewrite it as

p(z) =
2π

z2 − 1

√
κ2z2 + n2(z2 − 1)2 . (2.49)

We can see from the form of p(z) in (2.49) that it indeed has simple poles

at z = ±1 as we always expect, and in general has four branch points. Thus

we have shown that in general solutions of the form (2.46) are described by an

algebraic curve with two branch cuts. In fact these two branch cuts are related,

so that we regard this solution as having one physical branch cut. This arises

through the action of the Z4 automorphism on the quasimomenta.7 Given its

action on the currents, we can find that the action of the automorphism Ω on

the general Lax connection (2.35) is

Ω(Lα(z)) = Lα

(
1

z

)
. (2.50)

Also, given a particular Cartan basis, we can write the action of Ω on the

elements of this basis via a symmetry matrix S as

Ω(Hl) = HmSlm (2.51)

and then we have a symmetry in the quasimomenta of inversion in the spectral

parameter z,

pl

(
1

z

)
= Slmpm(z) . (2.52)

In our example above, we have a single Cartan element and S is the 1 × 1

identity matrix (see equation (2.42)) and so our single quasimomentum p(z)

must always have an even number of branch cuts. We can classify solutions

by the number of branch cuts possessed in the physical region |z| > 1. The

solution (2.49) has, for κ2 > 2n2, a single branch cut in the physical region

connecting two branch points on the imaginary axis, as we show in figure 5.

7Here with quasimomenta for the bosonic sector only, the Z4 automorphism in fact reduces
to a Z2 automorphism.
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Re(z)

Im(z)

1-1

Figure 5: The analytic structure of the quasimomentum (2.49). There is a
single branch cut in the physical region |z| > 1, which is reflected in the
region |z| < 1 by inversion symmetry. There are also the usual simple poles
at z = ±1.

2.3 Outline of following chapters

A common theme throughout the work of this thesis will be developing the

understanding of how the massless modes that are seen in the plane-wave lim-

its of the AdS3 backgrounds should be incorporated into the machinery of

integrability. It was demonstrated initially when the coset model describing

classical dynamics of strings on these backgrounds was written down [61] that

it did not include these massless modes. However, this did not prevent progress

in understanding these theories through integrability. In particular, there was

a successful programme of applying the techniques of quantum integrability

to the massive-only sector of the theories. The all-loop Bethe ansatz for the

massive sector of both the D(2, 1;α) and PSU(1, 1|2) theories (with pure R-R

flux) was calculated by directly reverse-engineering from the finite-gap equa-

tions and associated spin-chains [61,95]8, and also by means of first obtaining

the exact S-matrices from the symmetries of the theories [97–100]. In addition,

integrability played a role in direct worldsheet calculations [101–108], where

the problem of missing massless modes as in the coset model did not arise.

Chapter 3, which is based on [1], deals directly with the issue of the mass-

less modes in the coset model. It begins with a review of the Penrose limit

of AdS3 × S3 × S3 × S1 and the bosonic sector of the spectrum of strings on

the resulting plane-wave background. In this spectrum there are two massless

bosons. One arises on the factor of S1, and its absence in the coset model is

unsurprising based on the symmetries of the coset. The other, which we will

sometimes refer to as the “coset” massless boson, emerges on the transverse

8There was also progress in understanding the massless modes in the spin-chain by con-
sidering the limit in which extra massless modes appear [96].
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direction along the equators of the two three-spheres, and as such is within the

part of the geometry which the coset describes. The key result of chapter 3

is to show how, through a correction to the way the Virasoro constraints had

previously been implemented in the coset model, this mode can be incorpo-

rated. Once this correction is made, the remaining massless boson, and all

four in the T 4 background, can be incorporated through U(1) quasimomenta

which interact with the coset only through the corrected Virasoro constraints.

Chapter 4 applies the results of chapter 3 to the semiclassical methods

of quasimomenta fluctuations, again primarily in order to show how massless

modes can appear explicitly in calculations where they were previously absent.

Fluctuations of the algebraic curve had been studied previously for a variety

of solutions in the AdS3 backgrounds [104,109–111], where the massless modes

were absent and had to be put back in by hand. Progress in understanding the

massless fermions in this context was made in [112], where it was shown how to

include additional modes that appeared with non-zero mass in a class of back-

ground solutions containing the BMN vacuum, with energy corrections which

smoothly approached that of a massless mode in the limit to the BMN back-

ground. Chapter 4 contains work which has not been previously published. In

this chapter, we combine the prescriptions of [112] with the results of chap-

ter 3 to show how the semiclassical algebraic curve can produce a complete

spectrum of energy corrections for semiclassical fluctuations around classical

string solutions, including both massless and massive mode contributions.

Chapter 5 is based on work in [2] which combines the extension of inte-

grability techniques into the massless sector of the backgrounds with another

extension of integrability into the AdS3×S3×T 4 backgrounds with mixed R-

R and NS-NS flux. These mixed-flux backgrounds have been studied through

a generalisation of the coset model [94, 113], in particular the action (2.34)

requires an additional term to incorporate the Wess-Zumino (WZ) term of

the GS action. The S-matrix of the massive sector of the mixed-flux back-

grounds was studied in [114,115]. An important difference from the pure R-R

backgrounds arises in the exact dispersion relation of fundamental excitations

which was further studied in [116]. The work of chapter 5 follows on from

a project initiated in the pure R-R background in [64, 65] which constructs

the exact S-matrix using symmetry arguments but working from the Green-

Schwarz action rather than the coset action. In this way massless excitations

can be included and the resulting S-matrix consists of massive-massive scatter-

ing which matches results obtained from the coset action, together with sectors

for massless-massless and massive-massless scattering. Chapter 5 of this thesis

describes the application of this project to the mixed-flux background.
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Chapter 3

Finite-gap equations and

massless modes

In this chapter we will study the finite-gap equations describing classical

string solutions in AdS3 backgrounds. In particular our key result will be

a modification of the finite-gap equations written down for these backgrounds

in [61]. There it was already observed that the integrability methods used

were not capturing the full spectrum of the theories. The AdS3 backgrounds

contain “massless modes” which are a novel feature in relation to the higher-

dimensional AdS backgrounds. These massless modes are seen in the plane-

wave limit, as we saw already in section 2.1.3.

We will see that to incorporate massless modes into the classical integrabil-

ity machinery, we need to look carefully at how this machinery implements the

Virasoro conditions. It is shown in this chapter that the way the constraints

had been imposed previously in the literature (for example in [61]) is, in gen-

eral, too strict. We will identify the precise condition placed on the finite-gap

equations by the Virasoro constraints. This condition will be referred to as

the generalised residue condition (GRC).

Having identified the need to use a more general condition to correctly

implement the Virasoro conditions in the finite-gap equations, we will see

how this relates to the issue of including massless modes. We do this by

focusing our attention on one particular massless boson in the AdS3 × S3 ×
S3 × S1 spectrum, the “coset boson” not associated to the factor of S1 but

to a transverse direction along both S3 radii which we define precisely in

equation (3.2). We consider bosonic solutions in the R × S1 × S1 subsector

of the full theory where this massless boson is the only transverse mode, and

explicitly construct the quasimomenta associated to these solutions. We find

that their residues do not satisfy the old residue conditions, but do satisfy the

GRC, thereby showing that the GRC is necessary if this massless mode is to

be included.

3.1 The Penrose Limit of AdS3×S3×S3×S1 and the

spectrum of bosonic strings on plane-waves

As we will be studying solutions corresponding to excitations of a particu-

lar massless bosonic mode, we will begin by reviewing the Penrose limit of

AdS3×S3×S3×S1 to make clear the origin of this particular mode. We will
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also review the derivation of the spectrum of bosonic strings on plane-wave

backgrounds. In particular we will be interested in the dispersion relation

between the energy E and the angular momentum J associated to these back-

grounds. This has a characteristic dependence on the mass of the possible

excitations.

We use the following form of the metric for AdS3 × S3 × S3 × S1:

ds2 = R2

[
dρ2 − cosh2 ρdt2 + sinh2 ρdγ2

+
1

cos2 φ

(
dθ2

1 + cos2 θ1dψ
2
1 + sin2 θ1dϕ

2
1

)
+

1

sin2 φ

(
dθ2 + cos2 θ2dψ

2
2 + sin2 θ2dϕ

2
2

)
+ du2

9

]
, (3.1)

we change coordinates as follows (with ζ being any real constant for now):

t = x+ +
x−

R2
, ρ =

x̃2

R
, θ1 = cosφ

x̃4

R
, θ2 = sinφ

x̃6

R
, u9 =

x8

R
,

ψ1 = cos ζ cosφ

(
x+ − x−

R2

)
− sin ζ cosφ

x1

R
,

ψ2 = sin ζ sinφ

(
x+ − x−

R2

)
+ cos ζ sinφ

x1

R
(3.2)

and keep only the leading term in the limit R→∞. The metric reduces to

ds2 = −4dx+dx− +
8∑
i=1

m2
ix

2
i (dx

+)2 +
8∑
i=1

dx2
i , (3.3)

with

(x2, x3) = (x̃2 cos γ, x̃2 sin γ) , (x4, x5) = (x̃4 cosϕ1, x̃4 sinϕ1) ,

(x6, x7) = (x̃6 cosϕ2, x̃6 sinϕ2)
(3.4)

and masses mi, given by

m2 = m3 = 1 , m4 = m5 = cos ζ cosφ ,

m1 = m8 = 0 , m6 = m7 = sin ζ sinφ . (3.5)

The parameter ζ defines a 1-parameter family of metrics obtained from

AdS3 × S3 × S3 × S1 via Penrose limits. This freedom comes from the choice

of a relative angle between the geodesics in the two S3 factors. Type II string

theory on AdS3 × S3 × S3 × S1 preserves 16 supersymmetries. These remain

symmetries of the plane wave limit metric (3.3); in addition for special values

of ζ there are extra supersymmetries. If we choose ζ = φ, string theory on

(3.3) preserves 20 supersymmetries [76, 77]. From now on, it will be assumed
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that we are making this choice, and that the BMN limit has masses

m2 = m3 = 1 , m4 = m5 = cos2 φ ,

m1 = m8 = 0 , m6 = m7 = sin2 φ . (3.6)

To find the bosonic spectrum of string theory, we impose conformal gauge

gαβ = ηαβ and lightcone gauge x+ = κτ . The equation of motion for xi then

becomes

(−∂2
τ + ∂2

σ)xi = κ2m2
ixi (3.7)

and x− is determined uniquely from the Virasoro constraints, which in this

gauge are

∂τx
− =

1

4κ

∑
i

((∂τxi)
2 + (∂σxi)

2 − κ2m2
ix

2
i ),

∂σx
− =

1

2κ

∑
i

(∂τxi)(∂σxi) . (3.8)

In lightcone gauge x+ and x− become non-dynamical variables and the gauge-

fixed Hamiltonian is

H =
1

4πα′

∫ 2π

0
dσ

8∑
i=1

[
(2πα′)2p2

i + (∂σxi)
2 + κ2m2

ix
2
i

]
. (3.9)

Solving the equations of motion (3.7), the xi have the following mode expan-

sion:

xi = Xi
0 +

√
α′

2

∞∑
n=1

1√
ωin

(
aine
−i(ωinτ+nσ) + ain

†ei(ω
i
nτ+nσ)

+ãine
−i(ωinτ−nσ) + ãin

†ei(ω
i
nτ−nσ)

)
, (3.10)

where

ωin =
√
n2 + κ2m2

i , (3.11)

and

Xi
0 = xi0 cosκmτ +

α′

κm
pi0 sinκmτ (3.12)

for massive modes and

Xi
0 = xi0 + α′pi0τ + wiσ (3.13)

in the massless case mi = 0.1

We can insert this mode expansion into the lightcone Hamiltonian (3.9).

1The winding w in the massless mode is only present if the direction associated to the
massless mode in the metric is compact.
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Define the zero modes, for the massive case, as

ai0 = ãi0 =
1

2

√
α′

κmi
pi0 +

i

2

√
κmi

α′
xi0 , (3.14)

then we have

H =
8∑
i=1

∞∑
n=0

ωinN
i
n +

1

2α′

∑
i=1,8

[
(α′pi0)2 + (wi)2

]
, (3.15)

with N i
n the number operator defined as

N i
n = ain

†ain + ãin
†ãin . (3.16)

Now we consider conserved Noether charges. From the independence of

the metric on the coordinates x+ and x− we get conserved charges P+ and

P− upon integrating the conjugate momenta p+ and p−. These are related

to more natural charges: the energy E = i∂τ , and an angular momentum

J = −i∂η coming from the spatial coordinate

η = x+ − x−

R2
. (3.17)

Then we have

P+ = i∂+ = i(∂t + ∂η) = E − J,

P− = i∂− =
i

R2
(∂t − ∂η) =

E + J

R2
, (3.18)

and

P+ =
H

κ
= E − J

=
1

κ

8∑
i=1

∞∑
n=0

ωinN
i
n +

1

2α′κ

∑
i=1,8

[
(α′pi0)2 + (wi)2

]
. (3.19)

Since

P− =

∫ 2π

0
dσp− =

1

πα′

∫ 2π

0
dσ∂τx

+ =
2κ

α′
, (3.20)

we find E+J = 2
√
λκ, with

√
λ = R2

α′ . To leading order in a large J expansion,

E + J ≈ 2J . So writing the right-hand side of (3.19) in terms of J instead of

κ, to leading order we have κ = J√
λ

and so

E − J =
8∑
i=1

∞∑
n=0

√
m2
i +

λn2

J2
N i
n +

√
λ

2α′J

∑
i=1,8

[
(α′pi0)2 + (wi)2

]
. (3.21)
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3.2 Quasimomenta and finite-gap equations

In this section we will describe in more detail the classical integrability of

strings on symmetric space cosets and finite-gap equations [89,92,117].2 that

we introduced in section 2.2.2. There we saw that on integrable coset back-

grounds the fundamental objects describing classical string solutions are the

currents jα(σ, τ), and that we can equivalently use the so-called quasimo-

menta pl(z) defined as functions of the complex spectral parameter z. The

quasimomenta determine classical solutions in terms of their analytic struc-

ture. All quasimomenta possess simple poles at z = ±1, and in addition may

possess a number of branch cuts. On these cuts they are required to satisfy a

monodromy condition, and this ensures that the classical string solution they

describe obeys the equations of motion. The Virasoro constraints do not trans-

late to a condition on the cuts of the quasimomenta, but rather a restriction

on the possible residues of the simple poles.

In this section we will examine these two different sets of restrictions on the

quasimomenta in more detail. First we will review briefly how the monodromy

condition on the cuts can be rewritten in terms of a set of integral equations,

called the finite-gap equations. This will serve mostly to establish some of

the notation we will use in the rest of the chapter. Next we examine the

implementation of the Virasoro constraints on the residues in some detail. In

particular, we will introduce the generalised residue condition that will play

the crucial role in incorporating massless modes, and explain how it differs

from the previously-used residue condition.

3.2.1 Finite-gap equations

We have a set of quasimomenta pl(z) associated with a Cartan basis Hl with

Cartan matrix Alm = Str(HlHm). These have some number of branch cuts,

and we denote the set of branch cuts on the sheet of pl by {Cl,i}. Then the

monodromy condition on these cuts is given by

Alm/pm(z) = 2πinl,i, z ∈ Cl,i, nl,i ∈ Z , (3.22)

where /pl(z) is the continuous part of the quasimomenta across the cuts:

/pl(z) = lim
ε→0

(pl(z + ε) + pl(z − ε)), z ∈ Cl,i , (3.23)

with ε a complex number normal to the branch cut.

We will use a so-called spectral representation to write pl(z) in terms of

integral along its branch cuts. To do so, we introduce the notation for the

2For a more complete discussion and further references see the review [118].
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density function as the difference across the cuts

ρl(z) = lim
ε→0

(pl(z + ε)− pl(z − ε)) , z ∈ Cl,i , (3.24)

and we choose to parametrize the residues at the poles by their sum and

difference, defining constants κl and ml so that as z → ±1

pl =
1

2

κlz + 2πml

z ∓ 1
+ . . . . (3.25)

Then the spectral representation of pl is [119,120]3

pl(z) =
κlz + 2πml

z2 − 1
+ pl(∞) +

∫
⋃
i Cl,i

dw
ρl(w)

z − w
. (3.26)

We saw in section 2.2.2 that the quasimomenta posses an inversion sym-

metry arising from the Z4 automorphism. This symmetry is

pl

(
1

z

)
= Slmpm(z) (3.27)

where the symmetry matrix Slm is determined from the action of the Z4 au-

tomorphism Ω on the Cartan basis via

Ω(Hl) = SlmHm . (3.28)

The inversion symmetry allows us to write the spectral representation in terms

of integrals over only those cuts in the physical region |z| > 1:

pl(z) =
κlz + 2πml

z2 − 1
+ pl(∞) +

∫
⋃
i Cl,i

dw

(
ρl(w)

z − w
− Slm

w2

ρm(w)

z − 1
w

)
. (3.29)

It also places restrictions on κl, ml and pl(∞):

Slmκm = −κl , Slmmm = −ml ,

Slmpm(∞) = pl(∞)− 2πml .
(3.30)

With p(z) defined for z away from the branch cuts as in (3.29), we can

apply the Sochocki-Plemelj formula [119, 120] to evaluate p(z) when z lies

on a branch cut. This is essentially solving the associated Riemann-Hilbert

problem. With the monodromy of the quasimomentum given by equation

3This result comes from applying the Cauchy integral formula on an infinite domain to
the function obtained by subtracting the poles from pl, which is analytic outside this contour
surrounding all the cuts. (3.26) then follows by shrinking the contour down onto the cuts. In
the case that pl is meromorphic, (3.26) still holds with ρl = 0, since in this case subtracting
the poles from the quasimomentum gives an entire function, and the only entire function
satisfying the inversion symmetry is a constant.
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(3.22), we get from the Sochocki-Plemelj formula

Alm−
∫

dw
ρm(w)

z − w
−AlkSkm

∫
dw

w2

ρm(w)

z − 1
w

=−Alm
κmz + 2πmm

z2 − 1
− πAlmmm

+ 2πnl,i, z ∈ Cl,i . (3.31)

These are the finite-gap equations of the system. In the next subsection

we see how the Virasoro constraints place further restrictions on κl and ml in

addition to the inversion symmetry restrictions (3.30).

3.2.2 The Generalised Residue Conditions

There is an equivalent setting [79] in which to define the monodromy matrix

and quasimomenta from a flat Lax connection. In this section we introduce

this setting and show one use for it: considering how the Virasoro constraints

appear at the level of the quasimomenta.

In the so-called auxiliary linear problem, we study the first order differen-

tial equation

∂σΨ(σ, τ, z) = LσΨ(σ, τ, z) . (3.32)

where Ψ is an element of the representation space of g. In this setting the

monodromy matrix is defined by

Ψ(σ + 2π, τ, z) = M(z)Ψ(σ, τ, z) (3.33)

This definition is equivalent to (2.28). We use a basis where M is diagonalised

as in equation (2.37), so that

Ψ(σ + 2π, τ, z) = eipl(z)HlΨ(σ, τ, z) . (3.34)

We know that the quasimomenta have poles at z = ±1. Let us determine

the residues of these poles by solving the auxiliary linear problem (3.32) in the

limit z → ±1. We denote h = z∓1 in this limit, so that h is a small parameter

we can expand in, and define

V = hLσ =
(
j(2)
τ ± j(2)

σ

)
+O(h), h = z ∓ 1 . (3.35)

Since L has simple poles at z = ±1, V is a regular function of h. We make

the Wentzel-Kramers-Brillouin (WKB) ansatz

Ψ(σ, τ, z) = exp

(
Sl(σ, τ, h)Hl

h

)
ξ(h) , (3.36)

where Sl are some complex-valued functions. Then the defining equation (3.32)

of the system becomes

VΨ = (∂σSl)HlΨ . (3.37)
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This implies

Str
(
V 2
)

= Str ((∂σSl)(∂σSm)HlHm) = Alm(∂σSl)(∂σSm) . (3.38)

Since

Str(V 2) = Str
(
j(2)
τ ± j(2)

σ

)2
+O(h), h = z ∓ 1 , (3.39)

the Virasoro constraints, (2.36), can be written as

lim
h→0

Str(V 2) = 0. (3.40)

With the ansatz (3.36), equation (3.34) is solved by

pl(z) =
1

h
(Sl(σ + 2π, h)− Sl(σ, h)) =

1

h

∫ 2π

0
dσ∂σSl(σ, h) . (3.41)

If we define functions f±l (σ, τ) by

f±l (σ, τ) = lim
h→0

∂σSl(σ, τ, h) , (3.42)

then we can see that the residues of the quasimomenta at z = ±1 are precisely

the integrals of these functions,

1

2
(κl ± 2πml) =

∫ 2π

0
f±l dσ . (3.43)

At the same time, we have now seen that the Virasoro constraints can be

written in terms of the same functions. Using the relation (3.38), the Virasoro

constraints (3.40) can be written in terms of f±l as

Almf
±
l f
±
m = 0 . (3.44)

Thus, the condition that the Virasoro constraints place upon the residues of

the quasimomenta can be stated as follows: the residues can be written as

integrals in the form (3.43), such that the integrands satisfy equation (3.44).

To clarify this further: there are obviously many different functions of σ which

give the same result upon integration from 0 to 2π, and so many choices of f±l
such that (3.43) holds. The condition placed on the residues by the Virasoro

constraints is that for at least one of these choices, equation (3.44) holds. We

will refer the condition as the generalised residue condition (GRC).

If we knew the residues, and wanted to write down functions to represent

them via (3.43), the most obvious and simple choice would be to choose the

constant functions

f±l (σ) =
1

4π
(κl ± 2πml) . (3.45)

Although we can always make this choice to satisfy equation (3.43), it is not

in general guaranteed that this choice for f±l will satisfy the condition (3.44).
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The Virasoro constraints imply only that one of the many possible choices for

f±l in equation (3.43) satisfies equation (3.44), not that all possible choices

do, or that one particular simple choice does. When the constant functions

given by equation (3.45) do satisfy equation (3.44), then the condition on the

residues can be written as

Alm(κl ± 2πml)(κm ± 2πmm) = 0 . (3.46)

In much of the literature (see [87] for example), it is the condition of equation

(3.46) that has been taken to hold. In the next section we consider explicit

sigma model solutions for strings on AdS3 × S3 × S3 and their associated

quasimomenta. For each solution we will discuss whether the residues satisfy

the old condition (3.46) or the GRC (3.43) and (3.44). We will see that

solutions containing massless modes do not satisfy the old condition, but do

satisfy the GRC. This will show explicitly that the GRC must be used in the

finite-gap equations in order to capture the dynamics of the massless modes.

3.3 Strings on R× S1 × S1 ⊂ AdS3 × S3 × S3

In this section we consider solutions on the subspace R × S1 × S1 ⊂ AdS3 ×
S3 × S3, with the metric

ds2 = R2

[
− dt2 +

1

cos2 φ
dψ2

1 +
1

sin2 φ
dψ2

2

]
. (3.47)

This subspace contains the coset massless mode of the spectrum in the

plane-wave limit.4 If we choose to consider solutions in lightcone gauge in

this space with the Virasoro constraints solved before quantization, then we

are looking at precisely the same BMN massless mode quantization that we

considered as part of the full space in section 3.1. We will look first at general

solutions in lightcone gauge, and then at particular solutions in static gauge,

since this latter gauge features prominently in the finite-gap analysis. As we

will see, the choice of gauge will not affect the dynamics of the general solution.

Indeed we will check very explicitly that we have the same form of expression

for E − J for each.

We will see presently that the quasimomenta on this subspace have a very

simple analytic structure; they have no branch points or cuts, only simple

poles at z = ±1. This makes it straightforward to write down the most

general quasimomenta for any solution on this space and will serve as a guide

for how to incorporate this massless mode into the finite-gap equations.

4Not the one which appears simply as the dynamics of the isolated S1.
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3.3.1 Coset representatives and quasimomenta

To begin we will take an explicit coset representation for solutions on the R×
S1×S1 subspace, chosen in such a way that the quasimomenta are particularly

simple to compute. We show that the quasimomenta have no branch points or

cuts, and so can be written completely in terms of the residues. In particular,

we will write down the most general quasimomenta for any solution on this

subspace in terms of the numbers κl and ml, and what κl and ml are in terms

of a particular coordinate solution t(σ, τ), ψ1(σ, τ) and ψ2(σ, τ). We show

how the generalised residue conditions (3.43) and (3.44) are clearly equivalent

to the Virasoro conditions expressed in terms of the coordinates. Lastly we

write down an expression for E − J in terms of κl and ml, which we will use

later when we consider particular solutions to show that the correct massless

dispersion relation appears from the quasimomenta of those solutions.

In the bosonic case the most natural choice of group representative g is a

direct sum g = g0⊕ g1⊕ g2 with g0 ∈ SU(1, 1)×SU(1, 1) and gi ∈ (SU(2)i)
2,

where SU(2)1, respectively SU(2)2, is the group manifold for the sphere of

radius 1
cos2 φ

, respectively 1
sin2 φ

. In particular, we choose the coset representa-

tives as follows:

g1 =
1

cosφ
diag

(
ei
ψ1
2 , e−i

ψ1
2 , ei

ψ1
2 , e−i

ψ1
2

)
,

g2 =
1

sinφ
diag

(
ei
ψ2
2 , e−i

ψ2
2 , ei

ψ2
2 , e−i

ψ2
2

)
, (3.48)

and

g0 =

(
cosh t

2 sinh t
2

sinh t
2 cosh t

2

)
⊕

(
cosh t

2 − sinh t
2

− sinh t
2 cosh t

2

)
. (3.49)

Then the current j = g−1dg is

j =
dt

2

[
σ1 ⊕ (−σ1)

]
⊕ i

cosφ

dψ1

2

[
σ3 ⊕ σ3

]
⊕ i

sinφ

dψ1

2

[
σ3 ⊕ σ3

]
. (3.50)

The Z2 automorphism on the space is defined here as Ω(j) = KjtK, where

K =


0 0 −1 0

0 0 0 −1

1 0 0 0

0 1 0 0


⊕3

. (3.51)

For all j’s given here, this acts as Ω(j) = −j, so j(0) = 1
2(j + Ω(j)) = 0,

j(2) = 1
2(j − Ω(j)) = j.

We can check explicitly that the bosonic part coset action (2.34) with j

given as above is identical to the sigma model action on the metric (3.47),
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noting that

tr((j(2))2) = −2

(
−dt2 +

1

cos2 φ
dψ2

1 +
1

sin2 φ
dψ2

2

)
. (3.52)

Since j(0) = 0, the Lax connection is (cf. equation (2.35))

Lσ =
1

z2 − 1

(
(z2 + 1)jσ + 2zjτ

)
. (3.53)

The Lax connection is given by a direct sum of three matrices, each of

which takes the form of a constant matrix multiplied by a function.5 In this

case, the path-ordered exponential taking us from the Lax connection to the

monodromy matrix, given in equation (2.28), reduces to an ordinary matrix

exponential of the integrals of the scalar functions. It is then straightforward

to read off the quasimomenta

p1(z) = − 1

2 cosφ

1

z2 − 1

∫ 2π

0
dσ

[
(z2 + 1)ψ′1 + 2zψ̇1

]
, (3.54)

p2(z) = − 1

2 sinφ

1

z2 − 1

∫ 2π

0
dσ

[
(z2 + 1)ψ′2 + 2zψ̇2

]
(3.55)

and

p0(z) =
i

2

1

z2 − 1

∫ 2π

0
dσ

[
(z2 + 1)t′ + 2zṫ

]
. (3.56)

The quasimomenta can be written in the form of the spectral representation

(3.26), but with no cuts

pl(z) =
κlz + 2πml

z2 − 1
+ πml (3.57)

where

κ0 = i

∫ 2π

0
ṫ dσ , 2πm0 = i

∫ 2π

0
t′ dσ ,

κ1 = − 1

cosφ

∫ 2π

0
ψ̇1 dσ , 2πm1 = − 1

cosφ

∫ 2π

0
ψ′1 dσ ,

κ2 = − 1

sinφ

∫ 2π

0
ψ̇2 dσ , 2πm2 = − 1

sinφ

∫ 2π

0
ψ′2 dσ . (3.58)

Since t must be periodic in σ, we have m0 = 0. We also get conditions for

integer winding modes on ψ1 and ψ2, namely m1 cosφ ∈ Z and m2 sinφ ∈ Z.

The Noether charges of these solutions are the energy E and angular mo-

5Classical solutions studied in [121] have a similarly simple Lax connection.
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menta J1 and J2 given by:

J1 =
R2

2πα′ cos2 φ

∫ 2π

0
ψ̇1 dσ ,

J2 =
R2

2πα′ sin2 φ

∫ 2π

0
ψ̇2 dσ ,

E =
R2

2πα′

∫ 2π

0
ṫ dσ . (3.59)

These are related to the residues κl as

κ0 = i
2πα′

R2
E , κ1 = −2π cosφα′

R2
J1 , κ2 = −2π sinφα′

R2
J2 . (3.60)

This shows explicitly in this case that the Noether charges do indeed arise

from the quasimomenta via an expansion at z →∞ as

pl(z) = −2

z
Ql + . . . . (3.61)

The coefficients of higher order terms in this expansion give higher conserved

charges. For these simple solutions in flat space we can easily see what these

terms are. At O(z−n), the quasimomentum pl is either proportional to κl or

ml, depending on whether n is odd or even.

We can see for these simple solutions how the Virasoro constraints restrict

the residues of the quasimomenta, as discussed in section 3.2.2. Using equa-

tion (3.58), we can read off the functions fl whose σ-integrals are related to

the κl through (3.43)

f0 =
i

2
(ṫ± t′) ,

f1 = − 1

2 cosφ
(ψ̇1 ± ψ′1) ,

f2 = − 1

2 sinφ
(ψ̇2 ± ψ′2) . (3.62)

A straightforward check then confirms how, for R × S1 × S1, the generalised

residue conditions (3.43) and (3.44) are equivalent to the Virasoro condition

expressed on the coordinates,

(ṫ± t′)2 =
1

cos2 φ
(ψ̇1 ± ψ′1)2 +

1

sin2 φ
(ψ̇2 ± ψ′2)2 . (3.63)

In appendix C we show that for quasimomenta describing bosonic strings on

the full curved space, we can write their residues in terms of fields using the

WKB analysis and show explicitly that the GRC does indeed reproduce the

full usual Virasoro constraints there too.

We noted at the end of section 3.2.2 that the GRC reduces to the previ-

ously used condition (3.46) when the functions fl(σ) are constants. For these
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solutions on R × S1 × S1, we can see this occurs only when t, ψ1 and ψ2 are

all linear functions of τ and σ (i.e. when the zero mode and winding mode are

excited but all other excitations are absent).

It is useful at this point to write down a general expression for E − J in

terms of the κl. Recall that J was defined as the Noether charge associated

with the angle η given in (3.17), so in the R× S1 × S1 subspace it is given by

J =
R2

α′

∫ 2π

0
η̇ dσ = cos2 φJ1 + sin2 φJ2 (3.64)

and therefore

E − J =

√
λ

2π
(−iκ0 + cosφκ1 + sinφκ2) . (3.65)

3.3.2 Solutions in lightcone gauge

We will now look at solutions in lightcone gauge x+ = κτ . In this gauge, it is

most natural to write down a solution in the coordinates (x+, x−, x1) and then

switch to the coordinates (t, ψ1, ψ2). We will look first at a simple example,

which will be useful for comparing to the same mode in static gauge, and then

consider the most general mode expansion for x1. When we do so, we will see

that imposing the condition (3.46) on the residues of the quasimomenta would

remove every excitation of this massless mode.6

Consider first the solution for x1 given by

x1 =

√
2α′

n
(a cosn(σ + τ) + ã cos ñ(τ − σ)) , (3.66)

with a a real constant and n an integer. Then the Virasoro constraints deter-

mine x− to be

x− =
α′

2κ

[
na(τ + σ)− a

4
sin 2n(τ + σ) + ñã(τ − σ)− ã

4
sin 2ñ(τ − σ)

]
. (3.67)

In terms of t, ψ1 and ψ2 the solution is

t = κτ +
α′

2κR2

[
na(τ + σ)− a

4
sin 2n(τ + σ)

+ñã(τ − σ)− ã

4
sin 2ñ(τ − σ)

]
, (3.68)

ψ1 = κτ cos2 φ− cos2 φ
α′

2κR2

[
na(τ + σ)− a

4
sin 2n(τ + σ)

+ñã(τ − σ)− ã

4
sin 2ñ(τ − σ)

]
− sinφ cosφ

√
2α′

n

(
a cosn(σ + τ) + ã cos ñ(τ − σ)

)
, (3.69)

6With the exception of the zero-mode and winding which we will discuss later.
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ψ2 = κτ sin2 φ− cos2 φ
α′

2κR2

[
na(τ + σ)− a

4
sin 2n(τ + σ)

+ñã(τ − σ)− ã

4
sin 2ñ(τ − σ)

]
+ sinφ cosφ

√
2α′

n

(
a cosn(σ + τ) + ã cos ñ(τ − σ)

)
. (3.70)

The quasimomenta for this solution are given in the standard form (3.57),

with κl and ml found by inserting the above expression for t, ψ1 and ψ2 into

(3.58) to get

κ1 + 2πm1 = −2π cosφ

(
κ− α′na

κR2

)
, κ1 − 2πm1 = −2π cosφ

(
κ− α′ñã

κR2

)
κ2 + 2πm2 = −2π sinφ

(
κ− α′na

κR2

)
, κ2 − 2πm2 = −2π sinφ

(
κ− α′ñã

κR2

)
κ0 + 2πm0 = 2πi

(
κ+

α′na

κR2

)
, κ0 − 2πm0 = 2πi

(
κ+

α′ñã

κR2

)
.

(3.71)

We can see explicitly that these do not satisfy the condition (3.46) that has

been previously taken to hold for the residues of the quasimomenta, indeed

we have
2∑
l=0

(κl + 2πml)
2 = −16π2α′na

R2
, (3.72)

and
2∑
l=0

(κl − 2πml)
2 = −16π2α′ñã

R2
. (3.73)

We note that in order to have m0 = 0 here (the condition that t is periodic

in σ), we must have na = ñã and hence also m1 = m2 = 0. From (3.65) we

have for this solution:

E − J =

√
λα′(na+ ñã)

κR2
= (na+ ñã)

√
λ

J
. (3.74)

This matches up with the expression (3.21) for dispersion relation when we

have just a single massless excitation, so this solution does indeed correspond

to a massless mode as we expected. This is our first example of a massless

mode solution which satisfies the generalised residue conditions (3.43) and

(3.44) but not the conditions (3.46).

Now we consider the most general mode expansion for the massless mode

x1, as in (3.10). We take

x1 =

√
α′

2

∞∑
n=1

1√
n

(
ane
−in(τ+σ) + a†ne

in(τ+σ) + ãne
−in(τ−σ) + ã†ne

in(τ−σ)

)
+x0 + α′p0τ + wσ . (3.75)

From x1, x− is determined via the Virasoro constraints, see equation (3.8). We
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can then find t, ψ1 and ψ2 from x1 and x− via equation (3.2). The expressions

are easily obtained but as they are long and we do not need them we will not

write them down explicitly. The quasimomenta have the general form given by

equation (3.57) so we only need to find κl and ml, which (cf. equation (3.58))

requires only the τ and σ derivatives of t, ψ1 and ψ2. These derivatives will

have a double sum in the mode expansion7 coming from x− and a single sum

coming from x1. When we integrate over σ in (3.58) the double sum reduces

to a single sum and we pick up only the zero mode contribution from x1. The

conclusion is that the quasimomenta for these solutions are given in the simple

form (3.57), with κl and ml given by

κ0 = 2πiκ+
iπα′

κR2

∞∑
n=1

n(ana
†
n + ãnã

†
n) +

iπ(α′2p2
0 + w2)

2κR2
,

κ1 = −2πκ cosφ+
πα′ cosφ

κR2

∞∑
n=1

n(ana
†
n + ãnã

†
n)

+
π(α′2p2

0 + w2) cosφ

2κR2
+

2πα′p0 sinφ

R
,

κ2 = −2πκ sinφ+
πα′ sinφ

κR2

∞∑
n=1

n(ana
†
n + ãnã

†
n)

+
π(α′2p2

0 + w2) sinφ

2κR2
− 2πα′p0 cosφ

R
,

2πm0 =
iπα′

κR2

∞∑
n=1

n(ana
†
n − ãnã†n) +

iπα′p0w

κR2
,

2πm1 =
πα′ cosφ

κR2

∞∑
n=1

n(ana
†
n − ãnã†n) +

πα′p0w cosφ

κR2
+

2πw sinφ

R
,

2πm2 =
πα′ sinφ

κR2

∞∑
n=1

n(ana
†
n − ãnã†n) +

πα′p0w sinφ

κR2
− 2πw cosφ

R
.

(3.76)

We note that the σ-periodicity of t, m0 = 0, implies the level matching

condition
∞∑
n=1

n(ana
†
n − ãnã†n) + p0w = 0 (3.77)

and so

m1 =
w sinφ

R
, m2 = −w cosφ

R
. (3.78)

Hence, the winding modes in ψ1 and ψ2 come from a winding mode in x1, and

the conditions m1 cosφ ∈ Z and m2 sinφ ∈ Z are both satisfied if

w sinφ cosφ

R
∈ Z . (3.79)

From (3.65) we get for E − J for this general solution (approximating

7This follows since the terms in (3.8) are squares of derivatives of x1.
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κ = J√
λ

again)

E − J =

√
λ

J

∞∑
n=1

n(a†nan + ã†nãn) +
(α′p2

0 + w2

α′ )
√
λ

2J
+O

(
1

J2

)
(3.80)

As expected this is precisely the same as the massless part of the BMN ex-

pression (3.21).

The above solutions give a clear indication for why we need to generalise the

condition on the residues of the quasimomenta from the conventional one given

in (3.46) to the one proposed in (3.43) and (3.44). To see this, we note that

for these solutions, the generalised residue condition is explicitly satisfied.8

On the other hand, when we compute the sums of squares of residues as in

equation (3.46) we find

2∑
l=0

(κl + 2πml)
2 = −16π2α′

R2

∞∑
n=1

na†nan , (3.81)

2∑
l=0

(κl − 2πml)
2 = −16π2α′

R2

∞∑
n=1

nã†nãn . (3.82)

Imposing the conditions (3.46) would force us to set all of the massless excita-

tions to zero, with the exception of the zero-mode p0 and winding w.9 Ignoring

this single exception for now, the above equation demonstrates explicitly why

in previous finite-gap analysis [61], the massless mode was not present. On

the other hand, the conditions (3.43) and (3.44) are sufficiently general to

incorporate all of the massless modes.

3.3.3 Solutions in static gauge

In static gauge, t = κτ , we cannot take the same approach to writing down a

general massless mode solution as in the last sub-section. It has been noted

previously [122], that quantization of string theory in static gauge is in a cer-

tain manner half-way between quantization in lightcone gauge and covariant

8We saw from the general expressions (3.62) for f±l for any solution on R × S1 × S1 in
our coset parametrisation how equations (3.43) and (3.44) are equivalent to the Virasoro
constraints. Hence our solutions satisfies the residue conditions (3.43) and (3.44) by con-
struction. It can also be confirmed explicitly that the functions f±l for this solution satisfy
equation (3.44).

9We noted in section 3.2.2 that the generalised residue conditions (3.43) and (3.44) reduce
to the condition (3.46) precisely when the functions f±l are constant. In section 3.3.1 we saw
that for our solutions on R× S1 × S1, the functions f±l are constant whenever the solution
is linear in τ and σ, see equation (3.62). We will also see this linear solution in static gauge
in the next section, but there is one difference between the two gauges. In lightcone gauge,
suppose we set an = ãn = 0 for all n > 1, as is required if the condition (3.46) holds. Then
the condition that t is periodic in σ, equation (3.77), becomes p0w = 0. Hence in lightcone
gauge, we can have a solution for x1 with the condition (3.46) holding on the residues of the
quasimomenta if we have either only an excited zero-mode, x1 = α′p0τ , or a winding mode,
x1 = wσ, but not both. In static gauge, t is already periodic in σ by the gauge choice, so we
don’t have this additional restriction.
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quantization: in D dimensions gauge-fixing in static gauge reduces the de-

grees of freedom to D − 1, but it is most natural to impose Virasoro after

quantization, so there still remains one spurious degree of freedom.

However, for particularly simple solutions in static gauge, it is possible to

solve the Virasoro constraints at the classical level fairly simply. If we work

in the coordinates (t, η, x1),10 then we can write down a solution for x1, and

write down the Virasoro constraints as

(∂τ ± ∂σ)η =

√
((∂τ ± ∂σ)t)2 − 1

R2
((∂τ ± ∂σ)x1)2

=

√
κ2 − 1

R2
((∂τ ± ∂σ)x1)2 . (3.83)

We can integrate this in principle to find η, but for a general x1 the resulting

η will be given as an integral not expressible in terms of standard functions.

We note that for all solutions in R × S1 × S1 in static gauge, we can

immediately give the component p0 of the quasimomentum from (3.56) as

p0 =
2iπκz

z2 − 1
, (3.84)

which has the general form (3.57) with κ0 = 2πiκ and m0 = 0.

Consider first a simple solution linear in τ and σ,

x1 = α′p0τ + wσ . (3.85)

In this case one can solve the Virasoro constraints (3.83) explicitly to get

η =
1

2

√
κ2 − (α′p0 + w)2

R2
(τ + σ)

+
1

2

√
κ2 − (α′p0 − w)2

R2
(τ − σ) . (3.86)

In terms of ψ1 and ψ2 we have

ψ1 = cosφ

[
ψ+

1 (τ + σ) + ψ−1 (τ − σ)

]
,

ψ2 = sinφ

[
ψ+

2 (τ + σ) + ψ−2 (τ − σ)

]
, (3.87)

with ψ±1 and ψ±2 constants given by

ψ±1 =
1

2
cosφ

(√
κ2 − (α′p0 ± w)2

R2

)
− sinφ

(α′p0 ± w)

R
)

ψ2 =
1

2
sinφ

(√
κ2 − (α′p0 ± w)2

R2

)
+ cosφ

(α′p0 ± w)

R
) . (3.88)

10Recall η was defined in (3.17).
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The quasimomenta p1 and p2 are again in the form (3.57) with

κi = −2π(ψ+
i + ψ−i ), mi = −(ψ+

i − ψ
−
i ) (3.89)

for i = 1, 2. The condition for integer winding on ψ1 and ψ2 is that m1 cosφ

and m2 sinφ must be integers (cf. equation (3.58)).

Inserting this into (3.65) gives

E − J =
√
λ

(
κ− 1

2

√
κ2 − (α′p0 + w)2

R2

− 1

2

√
κ2 − (α′p0 − w)2

R2

)
. (3.90)

Making again the approximation J =
√
λκ to eliminate J and taking only

the leading term in a large J expansion gives

E − J =
(α′p2

0 + w2

α′ )
√
λ

2J
+O

(
1

J2

)
, (3.91)

and we can compare this with (3.74) to see we have the same form for this

expression as we did in lightcone gauge.

Now we consider the same solution for x1 as we looked at in section 3.3.2,

but this time in static gauge,

t = κτ, x1 =

√
2α′

n
(a cosn(σ + τ) + ã cos ñ(τ − σ)) . (3.92)

η is fixed by the Virasoro constraints:

(∂τ + ∂σ)η =

√
κ2 − 8α′na2

R2
sin2 n(τ + σ) ,

(∂τ − ∂σ)η =

√
κ2 − 8α′ñã2

R2
sin2 ñ(τ − σ) . (3.93)

To integrate this we use the following definition of the incomplete elliptic

integral of the second kind:11

E(φ, k) =

∫ φ

0
dθ
√

1− k2 sin2 θ , (3.94)

so that ∫
dσ+∂+η =

κ

2n
E

(
nσ+,

2
√

2α′na

κR

)
,

∫
dσ−∂−η =

κ

2ñ
E

(
ñσ−,

2
√

2α′ñã

κR

)
(3.95)

11We use the non-standard notation E rather than E to avoid confusion with the energy
E.
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for σ± = τ ± σ, and hence

η =
κ

2n
E

(
n(τ + σ),

2
√

2α′na

κR

)
+

κ

2ñ
E

(
ñ(τ − σ),

2
√

2α′ñã

κR

)
. (3.96)

From η and x1 we have ψ1 and ψ2 (cf. equation (3.2)), and can take

derivatives and then integrate again in order to determine κi and mi (cf.

(3.58)). We get

κ1 = −2κ cosφ

[
E

(
2
√

2α′na

κR

)
+ E

(
2
√

2α′ñã

κR

)]
,

κ2 = −2κ sinφ

[
E

(
2
√

2α′na

κR

)
+ E

(
2
√

2α′ñã

κR

)]
,

2πm1 = −2κ cosφ

[
E

(
2
√

2α′na

κR

)
− E

(
2
√

2α′ñã

κR

)]
,

2πm1 = −2κ sinφ

[
E

(
2
√

2α′na

κR

)
− E

(
2
√

2α′ñã

κR

)]
, (3.97)

written using the complete elliptic integral of the second kind

E(k) =

∫ π
2

0
dθ
√

1− k2 sin2 θ . (3.98)

From (3.65) we have

E − J =
√
λκ

[
1− 1

π
E

(
2
√

2α′na

κR

)
− 1

π
E

(
2
√

2α′ñã

κR

)]
. (3.99)

We make again the approximation J =
√
λκ and expand to leading order

in J , using the expansion for the elliptic integral

E(k) =
π

2
− π

8
k2 +O(k4) (3.100)

for k small. From this we get

E − J = (na2 + ñã2)

√
λ

J
+O

(
1

J2

)
. (3.101)

Comparing this to both the lightcone gauge result (3.74) and the previous

static gauge result for a linear solution (3.91) we see again the same form for

the expression, confirming that this solutions corresponds to a massless mode

in static gauge.

For this solution we have

2∑
l=0

(κl + 2πml)
2 = −4π2κ2 + 16κ2

[
E

(
2
√

2α′na

κR

)]2

, (3.102)
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and

2∑
l=0

(κl − 2πml)
2 = −4π2κ2 + 16κ2

[
E

(
2
√

2α′ñã

κR

)]2

, (3.103)

and these expressions are not zero unless na = ñã = 0.12 We conclude that

these solutions do not satisfy the residue condition (3.46) and so would not

have been part of the conventional finite-gap analysis. They do however satisfy

the generalised conditions (3.43) and (3.44) proposed here.13

3.4 Finite-gap equations with Generalised Residue

Conditions

The quasimomenta studied in section 3.3 described only a bosonic subsector

of the full theory. We now turn our attention to the quasimomenta for the

full supergroup and look at the implications of the GRC for quasimomenta

on AdS3 backgrounds. In particular we present versions of the finite-gap

equations that account for the GRC and thus should include the massless

bosonic modes. In appendices D and E we show that for strings on AdS5 ×
S5 and AdS4 × CP3, the old residue conditions are equivalent to the GRC.

This was to be expected since for those backgrounds the conventional finite-

gap equations are well known to capture the complete string spectrum. In

appendix F we show that the GRC for D(2, 1;α)2 in a mixed grading, as

in [98], is equivalent to the GRC for D(2, 1;α)2 in the grading used here.

We start with quasimomenta for the coset D(2, 1;α)2/(SU(1, 1)×SU(2)2).

We denote the Cartan basis for one factor of D(2, 1;α) by Hl and the other

by Hl̄. We use the same grading for each, with Cartan matrix given by

Alm = Al̄m̄ =

 4 sin2 φ −2 sin2 φ 0

−2 sin2 φ 0 −2 cos2 φ

0 −2 cos2 φ 4 cos2 φ

 . (3.104)

The quasimomenta are pl, pl̄ where l = 1, 2, 3, l̄ = 1̄, 2̄, 3̄. The action of the

inversion symmetry on the quasimomenta is given by equation (3.27) with

S = 13 ⊗ σ1 . (3.105)

where the factor of σ1 exchanges the index l with l̄, hence the inversion sym-

metry is

pl

(
1

z

)
= pl̄(z) . (3.106)

12This follows from the fact that the only solutions to E(k) = π
2

for real k are k = ±1.
13As before, this is by construction, cf. equations (3.62) and the discussion in section 3.3.2.
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In particular this implies the following for the residues:

κl = −κl̄ , ml = −ml̄ . (3.107)

The finite-gap equations for D(2, 1;α)2 are then given as follows:

πn1,i

sin2 φ
=

(2κ1 − κ2)z + 2π(2m1 −m2)

z2 − 1
+−
∫

dw
2ρ1(w)− ρ2(w)

z − w

+

∫
dw

w2

ρ2̄(w)− 2ρ1̄(w)

z − 1
w

,

πn2,i = −(sin2 φκ1 + cos2 φκ3)z + 2π(sin2 φm1 + cos2 φm3)

z2 − 1

−−
∫

dw
sin2φρ1(w) + cos2 φρ3(w)

z − w

+

∫
dw

w2

sin2 φρ1̄(w) + cos2 φρ3̄(w)

z − 1
w

,

πn3,i

cos2 φ
=

(2κ3 − κ2)z + 2π(2m1 −m2)

z2 − 1
+−
∫

dw
2ρ3(w)− ρ2(w)

z − w

+

∫
dw

w2

ρ2̄(w)− 2ρ3̄(w)

z − 1
w

,

πn1̄,i

sin2 φ
= −(2κ1 − κ2)z + 2π(2m1 −m2)

z2 − 1
+−
∫

dw
2ρ1̄(w)− ρ2̄(w)

z − w

+

∫
dw

w2

ρ2(w)− 2ρ1(w)

z − 1
w

,

πn2̄,i =
(sin2 φκ1 + cos2 φκ3)z + 2π(sin2 φm1 + cos2 φm3)

z2 − 1

−−
∫

dw
sin2φρ1̄(w) + cos2 φρ3̄(w)

z − w

+

∫
dw

w2

sin2 φρ1(w) + cos2 φρ3(w)

z − 1
w

,

πn3̄,i

cos2 φ
= −(2κ3 − κ2)z + 2π(2m1 −m2)

z2 − 1
+−
∫

dw
2ρ3̄(w)− ρ2̄(w)

z − w

+

∫
dw

w2

ρ2(w)− 2ρ3(w)

z − 1
w

, (3.108)

The quasimomenta p±l describe string states on AdS3×S3×S3×S1 with the

exception of the bosonic states on S1. These can be included by adding a single

U(1) quasimomentum p9. The Cartan matrix and the inversion matrix S for

this U(1) factor are both simply a 1×1 identity matrix. The quasimomentum

p9 trivially satisfy their own finite-gap equations with no cuts. In appendix G

we give explicit expression for the residues of this quasimomentum in terms

of the bosonic U(1) field u9 in the manner of the previous results for the coset

massless boson.

The residues κl±2πml are written in terms of functions f±l (σ) (cf. equation

(3.43)), and these functions f±l satisfy equation the GRC. With the inversion

symmetry satisfied (so that we can write the residues of the right-movers in
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terms of the left-movers say), the GRC is

2Almf
±
l f
±
m + (f±9 )2 = 0 , (3.109)

where Alm here denotes just the 3×3 Cartan matrix for one factor of D(2, 1α).

Explicitly this is

4 sin2 φ

(
f±1 −

1

2
f±2

)2

+ 4 cos2 φ

(
f±3 −

1

2
f±2

)2

+
(f±9 )2

2
= (f±2 )2 . (3.110)

We note that it is possible to write the general solution to this condition by

introducing functions ζ±(σ) and χ±(σ) with

2 sinφ

(
f±1 −

1

2
f±2

)
= − sin ζ± cosχ± f±2

2 cosφ

(
f±3 −

1

2
f±2

)
= − cos ζ± cosχ± f±2 ,

f±9 =
√

2 sinχ±f±2 . (3.111)

Therefore, the complete proposal for the finite-gap equations with the gen-

eralised residue condition is given by equation (3.108), with κl and ml given

in terms of f±l via equation (3.43), and f±1 ,f±3 and f±9 written in terms of f±2
and additional functions ζ± and χ± via equation (3.111).

Now we consider the case of AdS3×S3×T 4. Closed strings on AdS3×S3

are described by the coset PSU(1,1|2)2

SU(1,1)×SU(2) . We take as the Cartan matrix of

PSU(1, 1|2):

A =

 −1

−1 2 −1

−1

 . (3.112)

The quasimomenta for this space are again pl, pl̄, l = 1, 2, 3, l̄ = 1̄, 2̄, 3̄. The

inversion matrix is given by equation (3.105). The residue condition on this

coset then reduces to

0 = 2Almf
±
l f
±
m = 4f±2 (f±2 − f

±
1 − f

±
3 ) . (3.113)

For strings on AdS3 × S3 × T 4 we can include the massless modes of T 4

much like we included the massless S1 mode above. We add 4 additional

quasimomenta pi, i = 6..9 each associated to a U(1). These have residues

κi±2πmi given in terms of functions fi(σ) just as for the functions fl(σ) giving

the residues of the PSU(1, 1|2) quasimomenta. With the Cartan matrix and

inversion matrix for each U(1) taken to be the identity, the GRC is now

0 = 2Almf
±
l f
±
m + δij(f

±
i )(f±j )

= 4f±2 (f±2 − f
±
1 − f

±
3 ) + δij(f

±
i )(f±j ) . (3.114)
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We can write the general solution to this in terms of functions ζ±i with

f±6 = (f±1 + f±3 ) sin ζ±6 ,

f±7 = (f±1 + f±3 ) cos ζ±6 sin ζ±7 ,

f±8 = (f±1 + f±3 ) cos ζ±6 cos ζ±7 sin ζ±8 ,

f±9 = (f±1 + f±3 ) cos ζ±6 cos ζ±7 cos ζ±8 sin ζ±9 ,

f±2 =
1

2
(f±1 + f±3 )(1− cos ζ±6 cos ζ±7 cos ζ±8 cos ζ±9 ) . (3.115)

In fact, we can make an additional simplification in this case. The Cartan

matrix (3.112) has the null eigenvector (1, 0,−1). Since it is Almκm that

appears in the finite-gap equations, we can add the any null eigenvector to

the residues without changing the finite-gap equations. Therefore we can set

f1 = f3.

The finite-gap equations for the quasimomenta pl are then given by

2πn1,i = −κ2z + 2πm2

z2 − 1
−−
∫

dw
ρ2(w)

z − w
+

∫
dw

w2

ρ2̄(w)

z − 1
w

,

2πn2,i = 2
(κ2 − κ1)z + 2π(m2 −m1)

z2 − 1
+−
∫

dw
2ρ2(w)− ρ1(w)− ρ3(w)

z − w

−
∫

dw

w2

2ρ2̄(w)− ρ1̄(w)− ρ3̄(w)

z − 1
w

,

2πn3,i = −κ2z + 2πm2

z2 − 1
−−
∫

dw
ρ2(w)

z − w
+

∫
dw

w2

ρ2̄(w)

z − 1
w

,

2πn1̄,i =
κ2z + 2πm2

z2 − 1
−−
∫

dw
ρ2̄(w)

z − w
+

∫
dw

w2

ρ2(w)

z − 1
w

,

2πn2̄,i = 2
(κ1 − κ2)z + 2π(m1 −m2)

z2 − 1
+−
∫

dw
2ρ2̄(w)− ρ1̄(w)− ρ3̄(w)

z − w

−
∫

dw

w2

2ρ2(w)− ρ1(w)− ρ3(w)

z − 1
w

,

2πn3̄,i =
κ2z + 2πm2

z2 − 1
−−
∫

dw
ρ2̄(w)

z − w
+

∫
dw

w2

ρ2(w)

z − 1
w

, (3.116)

which should be taken together with the fact that the residues are given in

terms of the functions fl via equation (3.43) and these functions satisfy equa-

tion (3.114). The quasimomenta pi associated to the T 4 directions trivially

satisfy their own finite-gap equations with no cuts.

3.5 Chapter conclusions and outlook

In this chapter we have seen how to incorporate massless modes into the clas-

sical integrability framework of the algebraic curve. The dynamics of massless

modes are encoded not in the branch cuts in which all massive mode dynamics

are encoded, but purely in the residues of the quasimomenta at z = ±1. Using

the auxiliary linear problem in section 3.2.2, we have seen that the generalised
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residue condition is the correct statement of the Virasoro constraints in the

algebraic curve setup. The fact that the GRC is not equivalent to the previ-

ously used residue condition, and is less restrictive in general on the allowed

residues, is the key to why there is the potential for additional dynamics to be

contained in the residues. By explicitly constructing quasimomenta for clas-

sical solutions in the subspace describing the dynamics for the coset massless

boson, we have seen that such quasimomenta do indeed have no branch cuts,

and have residues that are consistent solutions to the GRC but would have

been ruled out by the previous residue conditions. Thus we can conclude that

the GRC is necessarily the correct way to include massless modes.

We have written down finite-gap equations that describe the full classi-

cal dynamics, with residues given by the most general solution to the GRC.

An important goal is to find the full quantum Bethe equations that repro-

duce these finite-gap equations with general residues in the classical limit. As

well as the classical finite-gap equations, pointers to these come from various

directions, including results discussed in the following chapters.

Another direction for future work is to extend the analysis of massless

modes in the classical algebraic curve to the case of the mixed-flux back-

grounds. The coset action of the classical mixed-flux backgrounds [113] results

in quasimomenta which no longer have two simple poles at z = ±1 but four

poles at locations dependent on the NS-NS flux [94]. The Virasoro constraints

are still obtained by a condition on these residues, and so it should be possible

to repeat the derivation of the GRC and the study of solutions for which the

GRC is important for these mixed-flux quasimomenta.
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Chapter 4

Quantum corrections to the

algebraic curve

We now turn to the subject of semiclassical strings, that is to studying the

correction to classical strings at first order in α′, or equivalently in λ. In

particular, any Noether charge, such as the energy E, can be expanded as

E =
√
λ

(
E0 +

1√
λ
E1 + . . .

)
, (4.1)

where E0 is the classical energy and E1 is the 1-loop correction. The leading

order correction to the energy and other charges for given classical solutions

can be found directly from the sigma model, by expanding all fields in the

form

X(σ, τ) = Xcl(σ, τ) +
1

λ1/4
X̃(σ, τ) , (4.2)

and calculating the action to quadratic order in the fluctuations X̃. From this,

imposing the equations of motion and Virasoro constraints on these fluctua-

tions leads to generic solutions of the form

X̃(σ, τ) =
∑
n

ei(ωnτ+nσ) . (4.3)

We refer to ωn as the fluctuation frequencies.

From the context of integrability, we study quantum fluctuations by con-

sidering fluctuations to the classical quasimomenta [121],

pl(z) = pcll (z) + δpl(z) . (4.4)

As for the classical quasimomenta, the information contained in the quasimo-

menta fluctuations is for the most part contained in their analytic structure.

We do not consider fluctuations δpl that have branch cuts. Rather, we allow

them to have isolated poles. The interpretation is that the branch cuts in

quasimomenta corresponding to classical solutions emerge from the condensa-

tion of many poles.

The method for calculating quantum corrections to the energy of classi-

cal states using quasimomenta therefore works as follows. Starting from the

quasimomenta for the classical solution, a series of poles are added, with their

positions determined by the finite-gap equations. The different combinations

of quasimomenta sheets onto which poles are added correspond to excitations
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of different masses. In addition the residues of the quasimomenta at z = ±1

are varied, and the Virasoro constraints are imposed on these fluctuations of

the residues. Finally asymptotic conditions are used to relate the fluctuations

to changes in Noether charges.

In this chapter we will look at the analysis of fluctuations around the class

of classical solutions possessing no branch cuts, first in the case of AdS3 ×
S3 × T 4 and then for AdS3 × S3 × S3 × S1. We will introduce the details of

how the set of modes are defined in each case as we go. We obtain original

results on the energy fluctuation for a complete class of solutions and then

look at specific examples within this class that reduce to other results studied

previously. Alongside this we also show how the use of the GRC gives rise to

contributions from massless bosons at the semiclassical level, where previously

the analysis of fluctuation analysis missed these contributions.

Recently insight into the massless fermions of the BMN limit has been

developed [112] by looking at a class of solutions where these fermionic modes

have a mass, where a limit can be taken towards the BMN solution such

that the energy fluctuation tends smoothly to that of a massless mode. In

the results of this chapter we use the prescription of [112] for including these

modes. It is still not clear how the method of quasimomenta fluctuations

should treat these modes when starting directly from a solution where they

give a massless contribution. From the results we obtain in this chapter, we

will see that a similar issue arises from some bosonic modes that are massive

for the BMN background but become massless around other backgrounds.

4.1 Fluctuations around zero-cut classical solutions

in AdS3 × S3 × T 4

We begin by repeating and gathering together some of the key definitions

regarding classical quasimomenta from the previous chapter. We denote the

quasimomenta for strings on AdS3×S3×T 4 as pl, pl̄ and pi, with l = 1, . . . , 3,

l̄ = 1̄, . . . , 3̄, and i = 6, . . . , 9. pl and pl̄ are associated to the Cartan basis

for PSU(1, 1|2)2. We use the same Cartan basis for each factor, with Cartan

matrix

A =

 0 −1 0

−1 2 −1

0 −1 0

 . (4.5)

These quasimomenta are related by the inversion symmetry

pl(z) = pl̄

(
1

z

)
. (4.6)

The four quasimomenta pi each arise from a factor of U(1).

As discussed extensively in the previous chapter, the residues of the classi-
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cal quasimomenta are related by the generalised residue condition. Denoting

the residue of pl at z = ±1 by 1
2κl ± 2πml (and similarly for the residues of pl̄

and pi), the GRC says that these residues should be given as integrals

1

2
(κl ± 2πml) =

∫ 2π

0
dσf±l (σ) (4.7)

where these functions are required by the Virasoro constraints to obey the

condition

Almf
±
l (σ)f±m(σ) +Al̄m̄f

±
l̄

(σ)f±m̄(σ) + δijf
±
i (σ)f±j (σ) = 0 . (4.8)

The inversion symmetry relates the residues of the two PSU(1, 1|2) factors via

f±l = −f±
l̄

so we can combine both the Virasoro constraints and the action of

the inversion symmetry on the residues into the single condition

Almf
±
l (σ)f±m(σ) +

1

2
δijf

±
i (σ)f±j (σ) = 0 . (4.9)

The large z behaviour of the quasimomenta encodes the Noether charges at

O
(

1
z

)
, as well as a constant term if the solution possesses non-zero worldsheet

momentum. We write

pl(z)→ Pl +
2π√
λ

Ql
z

+ . . . , z →∞ . (4.10)

Fluctuations of classical quasimomenta consist of the addition of extra

poles together with fluctuations of the residues at z = ±1. We will discuss the

residue fluctuations presently. To add fluctuation poles we need to know three

things: which combinations of quasimomenta to add poles to, what positions

in the complex plane the poles can be placed at, and what the residues of

these poles should be. The possible combinations of quasimomenta that can

have a pole excited simultaneously at the same point give us the set of modes

of quantum excitations (with the exception of the massless bosons as we shall

see). The possible modes are determined in this way independently of which

particular classical solution we are expanding around, as should be expected.

By contrast, the position of the poles is determined in a way dependent on the

classical background, and gives rise ultimately to the specific energy contri-

bution of each mode to a particular classical background. The residues of the

poles can be determined to depend on the pole position in a form universal

for each mode and each classical background; this arises from a quantization

condition on the action variables as they appear in this setting.

On the left of figure 6 is shown the Dynkin diagram for PSU(1, 1|2). The

quasimomenta pl are associated to this Cartan basis. We can think of the three

quasimomenta pl as describing a Riemann surface with a four-sheet cover. By

adding poles simultaneously to different combinations of the quasimomenta,
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we are connecting different combinations of these sheets with the poles. Equiv-

alently, we can consider the supermatrix realisation of SU(1, 1|2) as a subgroup

of the supergroup GL(2|2) of (2|2)× (2|2) supermatrices. There are four diag-

onal supermatrices, each of which comes with either a bosonic or a fermionic

Grassmann grading. An alternative way of defining the PSU(1, 1|2) quasimo-

menta than the group-theoretical way used here is to define four quasimomenta

given explicitly through the supermatrix realisation. These four quasimomenta

are associated to the four diagonal supermatrices. The three quasimomenta

pl are associated to the Cartan basis of PSU(1, 1|2) which requires restrict-

ing the diagonal supermatrices to those with zero trace. A convenient basis

involves considering three sums of pairs of diagonal supermatrices. This is

represented pictorially in figure 6 with the nodes of the PSU(1, 1|2) Dynkin

diagram drawn in between four lines. Then a branch cut or pole is always

shared between precisely two of the “supermatrix basis” quasimomenta, and

is related to a cut or pole between the quasimomenta pl by defining which

sheets of the Riemann surface are joined.

In figure 6 we show the possible sets of poles. We denote the position

of a possible pole by zrn. The number n relates to the position of the pole

as we will discuss presently. r defines the mode of the pole, and we will

use a notation where r ⊂ {1, 2, 3} denotes precisely which quasimomenta pl

share that pole, as shown in figure 6. The modes can be identified as bosonic

or fermionic according to the grading of the diagonal supermatrix elements

corresponding to the sheets they join, so that bosonic modes arise from poles

joining two sheets of both bosonic or both fermionic grading etc. We refer

to modes as massive or massless according to how they appear in the BMN

point-particle solution. It was realised that the massless fermions arise from

poles as shown in [112], by considering a family of solutions containing the

BMN point-particle solution where poles on the relevant sheets give modes

with a mass that becomes zero as one takes a limit to the BMN solution. As

we will see, it is not yet completely clear how to deal with these modes when

starting directly from a solution such as the BMN point-particle where they

are massless.

We normalise the pole at z = zrn with a canonical residue α(zrn) given by

α(z) =
2π√
λ

z2

z2 − 1
. (4.11)

This is done in order to produce an integer filling fraction upon integrating

around the pole, as these are the action-variables which are naturally quan-

tized [123,124].

On branch cuts, the classical quasimomenta are required to satisfy the

finite-gap equations which can be written as

Alm/pm(z) = 2πnl . (4.12)
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H3

H2

H1

{2} {1,2,3} {2,3} {1,2} {3} {1}

massive
bosons

massive
fermions

massless
fermions

mode label r:

Figure 6: PSU(1, 1|2) modes. On the left is shown the Cartan diagram. The
quasimomenta describe a four-sheet algebraic curve. A link between two sheets
level with the Cartan element Hl corresponds to a mode which excites a pole
on the corresponding quasimomentum pl.

We can determine the permissible positions for the poles of the fluctuated

quasimomenta by regarding them as infinitesimal branch cuts, and looking

for solutions to the finite-gap equations at a single point. For example, we

determine the position of the poles for mode r = {2} by solving the equation

A2m pm(z{2}n ) = 2πn . (4.13)

We consider classical solutions with no branch cuts, so their dynamics are

contained solely within the residues at z = ±1. Furthermore we consider only

those solutions with equal residues at both poles, that is we set the winding

ml to zero. Explicitly the classical quasimomenta are

pl(z) =
κlz

z2 − 1
= −pl̄(z) , pi(z) =

κiz

z2 − 1
. (4.14)

The residue functions fl(σ), fi(σ) satisfy

(f2)2 +
1

4
δijfifj = f2(f1 + f3) . (4.15)

The position z
{2}
n of the poles added for the mode r = {2} to this class of

classical solutions is determined by

(2κ2 − κ1 − κ3)z
{2}
n

(z
{2}
n )2 − 1

= 2πn (4.16)

and the solution to this is1

z{2}n =
2κ2 − κ1 − κ3

4πn
−
√

1 +
(2κ2 − κ1 − κ3)2

16π2n2
. (4.17)

1We have chosen the sign of the square root to guarantee a physical pole |z| > 1 in the
case κ1 + κ3 > 2κ2. In the reverse case the opposite sign should be chosen.
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Modes that excite poles on multiple quasimomenta should be required to

satisfy ∑
l∈r

Almpm(zrn) = 2πn , (4.18)

as can be understood from the perspective of these types of poles as “stacks”

which are connecting non-adjacent sheets in figure 6. For example, the pole

positions z
{1,2,3}
n of the other massive bosonic mode is determined on our zero-

cut classical quasimomenta by

− (κ1 + κ3)z
{1,2,3}
n

(z
{1,2,3}
n )2 − 1

= 2πn . (4.19)

In general we can write the equations determining the pole position for

every mode on the zero-cut solutions in the following form

zrn
(zrn)2 − 1

= − 2πnsr
(κ1 + κ3)mr

, (4.20)

where sr takes different signs on the two coset factors, sr = +1 for r =

{l}, {l,m} etc. and sr = −1 for r = {l̄}, {l̄, m̄} etc. We will see that the

parameters mr emerge as the masses of the various modes. They are given in

terms of the classical residues as follows

m{2} = m{2̄} = 1− 2κ2

κ1 + κ3
,

m{1,2} = m{1̄,2̄} = m{2,3} = m{2̄,3̄} = 1− κ2

κ1 + κ3
,

m{1} = m{1̄} = m{3} = m{3̄} =
κ2

κ1 + κ3
,

m{1,2,3} = m{1̄,2̄,3̄} = 1 , .

The general solution to equation (4.20) giving the position of the poles for

each mode in terms of these masses is

zrn = −sr
(κ1 + κ3)mr

4πn
− sr

√
1 +

(κ1 + κ3)2m2
r

16π2n2
. (4.21)

The explicit expression for the quasimomenta fluctuations, fixed already

to satisfy the inversion relation, is

δpl(z) =
δκlz

z2 − 1
+
∑
r3l

∞∑
n=0

α(zrn)

z − zrn
N r
n −

∑
r3l̄

∞∑
n=0

α(zrn)
1
z − zrn

N r
n ,

δpl̄(z) = − δκl̄z

z2 − 1
−
∑
r3l̄

∞∑
n=0

α(zrn)

z − zrn
N r
n +

∑
r3l

∞∑
n=0

α(zrn)
1
z − zrn

N r
n ,

δpi(z) =
δκiz

z2 − 1
. (4.22)

As an explicit example to clarify the notation we are using, the fluctuation for
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p1 is given by

δp1(z) =
δκ1z

z2 − 1
+

∞∑
n=0

(
α(z
{1}
n )

z − z{1}n
N{1}n +

α(z
{1,2}
n )

z − z{1,2}n

N{1,2}n +
α(z
{1,3}
n )

z − z{1,3}n

N{1,3}n

− α(z
{1̄}
n )

1
z − z

{1̄}
n

N{1̄}n − α(z
{1̄,2̄}
n )

1
z − z

{1̄,2̄}
n

N{1̄,2̄}n − α(z
{1̄,3̄}
n )

1
z − z

{1̄,3̄}
n

N{1̄,3̄}n

+
α(z
{1,2,3}
n )

z − z{1,2,3}n

N{1,2,3}n − α(z
{1̄,2̄,3̄}
n )

1
z − z

{1̄,2̄,3̄}
n

N{1̄,2̄,3̄}n

)
. (4.23)

N r
n are integers corresponding to the possible multiplicities exciting a single

mode r at a single mode number n. We now impose asymptotic conditions on

the fluctuations. In accordance with the integer filling fractions resulting from

adding poles with the canonical residue (4.11), we have natural quantization

conditions on the conserved charges. Hence we require that as z →∞,2

δpl → cl +
2π

z
√
λ

(
1

2
δ∆ +

∑
r3l

N r

)
,

δpl̄ → cl̄ −
2π

z
√
λ

1

2
δ∆ +

∑
r3l̄

N r

 , (4.24)

where N r =
∑∞

n=0N
r
n. Here δ∆ is sometimes called the anomalous energy

shift. As discussed in [121], it can be thought of as the part of the energy

correction which takes no contribution from any of the zero-modes of the

excitations. Imposing the asymptotic conditions (4.24) at O
(

1
z

)
on the fluc-

tuations (4.22) gives us the relations3

√
λ

2π
δκl +

∑
r3l,l̄

∞∑
n=0

1

(zrn)2 − 1
N r
n =

1

2
δ∆ . (4.25)

Now we need to solve the Virasoro constraints, using the GRC derived

in the previous chapter, to determine the fluctuations δκl at z = ±1. In

particular, we will show that we can choose residue fluctuations that give rise

to the massless bosonic contribution to the energy corrections. We solve the

GRC condition (4.15) for semiclassical quasimomenta by expanding in λ via

fl = f
(0)
l (σ) + λ−1/4f

(1)
l (σ) + λ−1/2f

(2)
l (σ) + . . . (4.26)

(and similarly for fi). f0
l are the classical residue functions. The quasimo-

menta, and in particular the residues of the quasimomenta, have a semiclassi-

2The relationship between the set of charge corrections δQl and the energy correction δ∆
also needs to be checked. Equation (4.42) gives the values of the residue functions in terms
of worldsheet fields for a zero-cut solution. From the dependence on the worldsheet time t
in that equation we can see that the form that δ∆ takes in equation (4.24) is correct.

3Solving the asymptotic conditions at O(1) amounts to just fixing the values of the
constants cl, cl̄. These values play no role in the analysis of the energy correction.
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cal correction at O(λ−1/2). However the residue functions fl arise naturally as

derivatives of the bosonic fields, and therefore like the fields should have their

first subleading correction at O(λ−1/4). This is consistent provided f
(1)
l (σ) are

functions which integrate over the period of σ to zero. We still need to include

them however, because the GRC is a non-linear constraint and so products of

the form f
(1)
l f

(1)
m can show up in the residue fluctuations δκl. Indeed as we

shall see this is exactly how the massless bosonic contributions arise, and we

shall have the four massless bosons arising from the four functions f1
i (σ).

With this expansion, the terms of O(λ−1/4) in the GRC condition (4.15)

give rise to the constraint

2f
(0)
2 f

(1)
2 +

1

2
δijf

(0)
i f

(1)
j = f

(0)
2 (f

(1)
1 + f

(1)
3 ) + f

(1)
2 (f

(0)
1 + f

(0)
3 ) . (4.27)

We can consistently set f
(1)
2 = 0. If f

(0)
2 6= 0, we can solve this first constraint

with

f
(1)
1 + f

(1)
3 =

1

2f
(0)
2

δijf
(0)
i f

(1)
j . (4.28)

If instead f
(0)
2 = 0 we can consistently set f

(1)
1 + f

(1)
3 = 0 in addition to

f
(1)
2 = 0.4 Either way, the terms of the GRC condition at O(λ−1/2) become

f
(2)
2 (f

(0)
1 +f

(0)
3 −2f

(0)
2 )+f

(0)
2 (f

(2)
1 +f

(2)
3 ) =

1

4
δij(f

(1)
i f

(1)
j +2f

(0)
i f

(2)
j ) . (4.29)

We should set f
(2)
i = 0, as the Noether charges coming from the quasimomenta

pi are simply the four U(1) charges which do not receive quantum corrections.5

We can also set all the functions f
(2)
l to be constant in σ, so that6

δκl =
2π√
λ
f

(2)
l . (4.30)

Now we can integrate equation (4.29) so as to give the left-hand side in terms

of classical residues κl and residue fluctuations δκl,
7

(κ1 + κ3 − 2κ2)

√
λ

2π
δκ2 + κ2

√
λ

2π
(δκ1 + δκ3) =

1

4

∫ 2π

0
dσδijf

(1)
i f

(1)
j . (4.31)

4Considering the GRC (4.15) at the leading, classical level, if f
(0)
2 = 0 then δijf

(0)
i f

(0)
j = 0.

As the residue functions are real this means that f
(0)
2 = 0 implies that f

(0)
i = 0 for i = 6, .., 9.

5These Noether charges are of the form Qi ∝
∫ 2π

0
uidσ in the metric (4.41). For a

fluctuation δui of the form (4.3) we can see that δQi = 0.
6The reason we can do this is that we are ultimately interested in the fluctuations of the

residues, not of the residue functions fl(σ). In a semiclassical expansion, at any given order
in λ−1/4, the fluctuation of the residue κl at that order is clearly proportional to just the
constant part of the corresponding residue function fl(σ), since the residue functions are
periodic in σ. The GRC is a nonlinear equation and so non-constant parts of the residue
functions do play a role in an order-by-order solution of the GRC. However the non-constant
parts of f

(2)
l would only have an effect if we were considering the residues at higher orders

than λ−1/2

7Recall the integration over residue functions to give residues is defined as in equa-
tion (4.7).
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We can use the asymptotic conditions in the form of equation (4.25) to elimi-

nate all three residue fluctuations δκl from equation (4.31) in terms of δ∆ and

terms which depend on the pole positions zrn. Rearranging for δ∆ we find it

is given by8

δ∆ =
1

2(κ1 + κ3)

∫ 2π

0
dσδijf

1
i f

1
j +

∑
(All r)

∞∑
n=0

2mr

(z2
n)2 − 1

N r
n . (4.32)

in terms of the masses mr defined in equation (4.21)

Now we pick for the functions f
(1)
i the following form

f
(1)
i (σ) =

∞∑
n=1

√
2n
(

(ai)ne
−inσ + (ai)

†
ne
inσ
)
. (4.33)

Through the study of how the residue functions arise in the previous chap-

ter, we can see that this is very natural for a residue function describing the

quantum fluctuations of each of the U(1) fields, with creation and annihilation

operators (ai)
†
n and (ai)n. However, it is also the general form these functions

should take purely from the algebraic curve perspective without comparing to

the worldsheet, since we know that f
(1)
i must be periodic in σ. We then have

∫ 2π

0
dσ(f

(1)
i )2 = 8π

∞∑
n=1

nN i
n (4.34)

with N i
n being the usual number operator. The energy correction is now given

by

δ∆ =
4π

κ1 + κ3

9∑
i=6

∞∑
n=1

nN i
n +

∑
(All r)

∞∑
n=0

Ωr
nN

r
n (4.35)

with the fluctuation frequencies Ωr
n for all modes excluding the massless bosons

defined to be

Ωr
n = Ω(zrn) =

2mr

(zrn)2 − 1
. (4.36)

Using the explicit expressions for zrn we found previously these are

Ω(zrn) = −mr +

√
m2
r +

(
4π

κ1 + κ3

)2

n2 . (4.37)

The physical one-loop correction to the energy is given by

E1−loop =
∑
r

∞∑
n=0

(−1)FrΩr
n , (4.38)

where Fr is equal to +1 for bosonic modes and −1 for fermionic modes. In

8To see fairly quickly that the masses mr appear in this way note that the left-hand side

of equation (4.31) can be written as
√
λ

2π
(κ1 + κ2)(m{1}δκ1 +m{2}δκ2 +m{3}δκ3) and that

m{1,2} = m{1} +m{2} etc.
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checking whether this sum is UV divergent, we can approximate the sum

by an integral over continuous n and check that there are no divergences in

this integral. For the solutions considered here, the masses (4.21) satisfy the

relation ∑
r

(−1)Frm2
r = 0 , (4.39)

and it follows from this that∑
r

(−1)FrΩr
n ∼ O

(
1

n2

)
(4.40)

for large n, and so the one-loop energy correction has no UV divergence.9

4.1.1 Examples

We now give some examples of particular classical solutions which fall into

this category of having zero-cut algebraic curves and the associated energy

spectra that follows from the analysis above, in particular the set of masses

mr. The simplest such solution is the BMN background. In the coordinates

for AdS3 × S3 × T 4 given by

ds2 =dρ2 − cosh2 ρ dt2 + sinh2 ρ dγ2

+dθ2 + cos2 θ dψ2 + sin2 θ dϕ2 +

9∑
i=6

du2
i , (4.41)

zero cut classical solutions arise from the subspace spanned by t, ψ, ui, and for

such solution the classical residue functions are given in terms of derivatives

of the fields by

f±1 = f±3 =
1

4
(ṫ±

′
t) , f±2 =

1

4
(ṫ±

′
t)− 1

4
(ψ̇ ±

′
ψ) , f±i =

1

2
(u̇i ±

′
ui) .

(4.42)

The BMN background is the solution

t = ψ = κτ , (4.43)

corresponding to classical quasimomenta with f1 = f3 = 1
2κ. Hence we find

straight away from the general analysis above that there are a set of fluctuation

frequencies for massive modes (4 bosons and 4 fermions) with mass mr = 1,

Ωr = −1 +

√
1 +

n2

κ2
, r 3 2, 2̄ . (4.44)

A generalisation of the BMN background is to consider the solution corre-

sponding to an algebraic curve with general constant residue functions, which

9I am grateful to Olof Ohlsson Sax for a discussion of this.
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we can write as

f2 =
1

2
(f1 + f3)(1− cos ζ6 cos ζ7 cos ζ8 cos ζ9) , f6 = (f1 + f3) sin ζ6 ,

f7 = (f1 + f3) cos ζ6 sin ζ7 , f8 = (f1 + f3) cos ζ6 cos ζ7 sin ζ8 ,

f9 = (f1 + f3) cos ζ6 cos ζ7 cos ζ8 sin ζ9 .

(4.45)

This arises from the worldsheet solution

t = κτ , u6 = (κ sin ζ6)τ , u7 = (κ cos ζ6 sin ζ7)τ ,

u8 = (κ cos ζ6 cos ζ7 sin ζ8)τ , u9 = (κ cos ζ6 cos ζ7 cos ζ8 sin ζ9)τ ,

ψ = (κ cos ζ6 cos ζ7 cos ζ8 cos ζ9)τ.

(4.46)

This gives us a set of energy fluctuations where the masses can be read off

from (4.21) with

κ2

κ1 + κ3
=

1

2
(1− cos ζ4 cos ζ5 cos ζ6 cos ζ7) . (4.47)

When ζi = 0 for i = 6 . . . 9 we have the BMN solution with all massive

excitations having the same mass.

The general set of masses (4.21) are given in terms of a single parameter,
κ2

κ1+κ3
. Therefore we can note that given any zero-cut, no-winding background

solution, we can identify a solution of the form (4.46) with the same energy

frequencies by finding the value of κ2
κ1+κ3

for the given background and choosing

ζi that satisfy (4.47). We can also note by examining the set of masses (4.21)

that all these solutions have a maximum of four massless fermions, and a

minimum of four massless bosons. We get six massless bosons from residues

such as

f1 = f2 = f3 =
1

2
κ , f6 = κ , fi = 0 , i = 7 . . . 9 , (4.48)

which corresponds to a BMN-like point-particle solution which instead of ro-

tating around the equator of the S3 rotates around one of the S1’s,

t = u6 = κτ . (4.49)

In addition to the six massless bosons, this solution has two bosons of mass 1,

and eight fermions with mass 1
2 .

One final example we consider is the following solution

t = κτ , u6 = a cos(mσ) cos(mτ) ,

ψ = ωτ , u7 = a cos(mσ) sin(mτ) . (4.50)

with

κ2 = ω2 + a2m2 (4.51)
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to satisfy the Virasoro constraints. This solution has residues functions given

by

f±1 = f±3 =
1

2
κ , f±2 =

1

2
(κ− ω) ,

f±6 = ∓am sin(mσ) , f±7 = am cos(mσ) .
(4.52)

This solution appears to not fall into the category we have considered

since it has non-zero winding with f+
6 6= f−6 . However it does indeed have

fluctuations of the form (4.22) and we do not need to repeat the analysis from

scratch to see this. First, the residues for this solution are given by

κ1 = κ3 = 2πκ , κ2 = 2π(κ− ω) , κ6 = κ7 = 0 , ml = 0 , (4.53)

and we see that the winding does not enter the residues themselves, so the

analysis of adding poles and determining their positions is unaffected. This

only leaves the perturbative solution to the GRC, namely equations (4.28)

and (4.29). With f
(0)+
i 6= f

(0)−
i , equation (4.28) requires us to also have

f
(1)+
1 +f

(1)+
3 6= f

(1)−
1 +f

(1)−
3 , but this then affects nothing else in the derivation

of the fluctuation frequencies. In particular, equation (4.29) does not contain

any terms with residue functions that are unequal at ±1 once we have set

f
(2)
i = 0.

The masses we get for this solution are

m{2} = m{2̄} =
ω

κ
, m{1,2,3} = m{1̄,2̄,3̄} = 1 ,

m{1,2} = m{1̄,2̄} = m{2,3} = m{2̄,3̄} =
1

2

(
1 +

ω

κ

)
,

m{1} = m{1̄} = m{3} = m{3̄} =
1

2

(
1− ω

κ

)
.

(4.54)

The examples we have given here represent good candidates within the

general set of masses (4.21) derived using the algebraic curve to test against

worldsheet calculations. In the next section, where we derive similar results

for the D(2, 1;α) theory, we give examples of the general results that can be

checked against previous worldsheet calculations in the literature.

4.2 Fluctuations around zero-cut classical solutions

in AdS3 × S3 × S3 × S1

The quasimomenta for strings on AdS3 × S3 × S3 × S1 are pl, pl̄ associated

to D(2, 1;α)2 and a single U(1) quasimomentum p9. The Cartan matrix for

D(2, 1;α)2 is

A =

 4 sin2 φ −2 sin2 φ 0

−2 sin2 φ 0 −2 cos2 φ

0 −2 cos2 φ 4 cos2 φ

⊗ 12 . (4.55)
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The analysis of semiclassical fluctuations for zero-cut D(2, 1;α) solutions

is very similar to that done in the section above for PSU(1, 1|2) solutions.

The main difference is the identification of the excitation modes. The possible

mode labels r are as follows:10

light bosons: {1} , {3} , {1̄} , {3̄}
light fermions: {1, 2} , {2, 3} , {1̄, 2̄} , {2̄, 3̄}
heavy bosons: {1, 2, 2, 3} , {1̄, 2̄, 2̄, 3̄}

heavy fermions: {1, 2, 3} , {1̄, 2̄, 3̄}
massless fermions: {2} , {2̄}

Again we label them according to their role in the BMN background. Unlike in

PSU(1, 1|2), we do not distinguish the masses of the modes as either massive

or massless, but distinguish the massive modes into “light” and “heavy”. In

the associated spin-chain, the light modes are the fundamental excitations that

appear, while the heavy modes emerge as composites of the light modes. From

the perspective of the quasimomenta, the heavy modes appear as stacks. Thus

combining either the light boson r = {1} with the light fermion r = {2, 3}, or

the boson r = {3} with the fermion r = {1, 2} gives rise to the same mode,

the heavy fermion r = {1, 2, 3}. The heavy boson arises not by combining two

light bosonic modes, but from two light fermions. Hence it is “doubly” excited

on p2 and we will write it as r = {1, 2, 2, 3}. Explicitly this means that while

all other modes consist of poles at positions zrn determined by equation (4.18),

this heavy bosonic mode has its pole position determined by the condition

(A1m + 2A2m +A3m)pm(z{1,2,2,3}n ) = 2πn , (4.56)

and similarly for the other heavy boson on the other D(2, 1;α) factor.

Using the following masses mr:

m{1} = m{1̄} = sin2 φ

(
1− 2κ1

κ2

)
, m{3} = m{3̄} = cos2 φ

(
1− 2κ3

κ2

)
,

m{2} = m{2̄} = sin2 φ
κ1

κ2
+ cos2 φ

κ3

κ2
, m{1,2,2,3} = m{1̄,2̄,2̄,3̄} = 1 ,

m{1,2} = m{1̄,2̄} = sin2 φ

(
1− κ1

κ2

)
+ cos2 φ

κ3

κ2
,

m{2,3} = m{2̄,3̄} = cos2 φ

(
1− κ3

κ2

)
+ sin2 φ

κ1

κ2
,

m{1,2,3} = m{1̄,2̄,3̄} = 1− sin2 φ
κ1

κ2
− cos2 φ

κ3

κ2
,

(4.57)

we can write the finite-gap equations determining the pole positions for all

modes in a single form, as we did for the modes on PSU(1, 1|2). This equation

10This set of pole fluctuations in the D(2, 1;α) algebraic curve was laid out for the massive
BMN modes in [109], and for the massless fermions in [112]. We can regard the identification
of different pole combinations for light, heavy and massless excitations as a proposition which
is validated by applying the final result for the energy correction to the BMN background.
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is now
zrn

(zrn)2 − 1
= − πnsr

κ2mr
(4.58)

The explicit pole positions are then

zrn = −sr
κ2mr

2πn
− sr

√
1 +

κ2
2m

2
r

4π2n2
. (4.59)

The total form of the quasimomenta fluctuations is again of the form (4.22),

with the exception of δp2, which is given by

δp2(z) =
δκ2z

z2 − 1
+

∑
r={2},{1,2},
{2,3},{1,2,3}

∞∑
n=0

α(zrn)

z − zrn
N r
n +

∞∑
n=0

2α(z
{1,2,2,3}
n )

z − z{1,2,2,3}n

N r
n

−
∑

r={2̄},{1̄,2̄},
{2̄,3̄},{1̄,2̄,3̄}

∞∑
n=0

α(zrn)
1
z − zrn

N r
n +

∞∑
n=0

2α(z
{1̄,2̄,2̄,3̄}
n )

1
z − z

{1̄,2̄,2̄,3̄}
n

N r
n , (4.60)

and δp2̄ which can be read off from the inversion symmetry. We require the

following set of asymptotic conditions as z →∞:11

δp1 → c1 +
2π

z
√
λ

(
1

2
δ∆ +N{1} +N{1,2} +N{1,2,3} +N{1,2,2,3}

)
,

δp2 → c2 +
2π

z
√
λ

(
δ∆ +N{2} +N{1,2} +N{2,3} +N{1,2,3} + 2N{1,2,2,3}

)
,

δp3 → c3 +
2π

z
√
λ

(
1

2
δ∆ +N{3} +N{2,3} +N{1,2,3} +N{1,2,2,3}

)
,

δp1̄ → c1̄ −
2π

z
√
λ

(
1

2
δ∆ +N{1̄} +N{1̄,2̄} +N{1̄,2̄,3̄} +N{1̄,2̄,2̄,3̄}

)
,

δp2̄ → c2̄ −
2π

z
√
λ

(
δ∆ +N{2̄} +N{1̄,2̄} +N{2̄,3̄} +N{1̄,2̄,3̄} + 2N{1̄,2̄,2̄,3̄}

)
,

δp3̄ → c3̄ −
2π

z
√
λ

(
1

2
δ∆ +N{3̄} +N{2̄,3̄} +N{1̄,2̄,3̄} +N{1̄,2̄,2̄,3̄}

)
. (4.61)

At O
(

1
z

)
this gives us the conditions

√
λ

2π
δκl +

∑
r3l,l̄

∞∑
n=0

1

(zrn)2 − 1
N r
n =

1

2
δ∆ , l = 1, 3, 1̄, 3̄ ,

√
λ

2π
δκ2 +

∑
r32,2̄

∞∑
n=0

1

(zrn)2 − 1
N r
n = δ∆ . (4.62)

Now we solve the GRC order by order in an expansion in λ−1/4 as we did

for PSU(1, 1|2). The exact GRC condition for D(2, 1;α) is

sin2 φ(f1)2 + cos2 φ(f3)2 +
1

8
(f9)2 = f2(sin2 φf1 + cos2 φf3) . (4.63)

11See equation (4.74) to confirm that the normalisations of δ∆ here are correct. The
integer values for other charges is imposed as before as a quantisation condition.
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We expand the residue function fl in the form (4.26). Then the O(λ−1/4)

terms of the GRC give the equation

2 sin2 φf
(0)
1 f

(1)
1 + 2 cos2 φf

(0)
3 f

(1)
3 +

1

4
f

(0)
9 f

(1)
9 = f

(0)
2

(
sin2 φf

(1)
1 + cos2 φf

(1)
3

)
+ f

(1)
2

(
sin2 φf

(0)
1 + cos2 φf

(0)
3

)
.

(4.64)

We choose to set sin2 φf
(1)
1 + cos2 φf

(1)
3 = 0 by defining a new function g(σ)

via

f
(1)
1 = − cotφ g , f

(1)
3 = tanφ g . (4.65)

In the case sin2 φf
(0)
1 +cos2 φf

(0)
3 = 0 then the GRC (4.63) at leading, classical

level implies that f
(0)
1 = f

(3)
3 = f

(0)
9 = 0 since the residue functions are real.

We can then consistently set f
(1)
2 = 0. Otherwise we solve equation (4.64)

with

f
(1)
2 =

1

sin2 φf
(0)
1 + cos2 φf

(0)
3

(
sin 2φ(f

(0)
3 − f (0)

1 )g +
1

4
f

(0)
9 f

(1)
9

)
. (4.66)

With these choices, and f
(2)
9 = 0 since the U(1) charge does not receive

any quantum corrections, the O(λ−1/2) terms in the GRC are

(sin2 φf
(0)
1 + cos2 φf

(0)
3 )f

(2)
2 + cos2 φ(f

(0)
2 − 2f

(0)
3 )f

(2)
3

+ sin2 φ(f
(0)
2 − 2f

(0)
1 )f

(2)
1 = g2 +

1

8
(f

(1)
9 )2 (4.67)

As before12 we are only interested in σ-independent values for f
(2)
l , and so

we can integrate over σ to write the right-hand side in terms of the classical

residues and the residue fluctuations:∫ 2π

0
dσ

(
g2 +

1

8
(f

(1)
9 )2

)
= (sin2 φκ1 + cos2 φκ3)

√
λ

2π
δκ2

+ cos2 φ(κ2 − 2κ3)

√
λ

2π
δκ3

+ sin2 φ(κ2 − 2κ1)

√
λ

2π
δκ1 (4.68)

Now we use the asymptotic conditions (4.62) to eliminate δκl and rearrange

to find δ∆ as13

δ∆ =
2

κ2

∫ 2π

0
dσ

(
g2 +

1

4
(f1

9 )2

)
+
∑

(All r)

∞∑
n=0

2mr

(z2
n)2 − 1

N r
n (4.69)

We expand the functions g and f1
9 to give us the two massless bosonic modes,

12See the footnote to equation (4.30).
13Similarly to the analysis in the previous section, note that the right-hand side of equa-

tion (4.68) can be written as
√
λ

2π
κ2(m{1}δκ1 +m{2}δκ2 +m{3}δκ3).
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just as in the case of PSU(1, 1|2) we obtained the four massless bosons from

f1
i . The normalisations we require for these are

g(σ) =
∞∑
n=1

√
n

2

(
ane
−inσ + a†ne

inσ
)
,

f1
9 (σ) =

∞∑
n=1

√
2n
(
bne
−inσ + b†ne

inσ
)
. (4.70)

Our final result is

δ∆ =
2π

κ2

∞∑
n=1

n(Na
n +N b

n) +
∑

(All r)

∞∑
n=0

Ωr
nN

r
n (4.71)

with the fluctuation energies Ωr
n given by

Ωr
n = Ω(zrn) = −mr +

√
m2
r +

(
2π

κ2

)2

n2 . (4.72)

Just as in the previous section, we can check that the physical one-loop energy

correction from all solutions of the form considered here has no UV diver-

gences, since the masses (4.57) satisfy the condition (4.39).

4.2.1 Examples

The AdS3 × S3 × S3 × S1 metric is

ds2 = dρ2 − cosh2 ρ dt2 + sinh2 ρ dγ2

+
1

sin2 φ

(
dθ2

1 + cos2 θ1 dψ
2
1 + sin2 θ1 dϕ

2
1

)
+

1

cos2 φ

(
dθ2

2 + cos2 θ2 dψ
2
2 + sin2 θ2 dϕ

2
2

)
+ du2

9 . (4.73)

Zero-cut algebraic curves arise from solutions in the subspace spanned by t,

ψ1, ψ2, u9, and have classical residue functions given by

f±1 =
1

4

(
ṫ±

′
t− 1

sin2 φ
(ψ̇2 ±

′
ψ2)

)
, f±2 =

1

2

(
ṫ±

′
t
)
,

f±3 =
1

4

(
ṫ±

′
t− 1

cos2 φ
(ψ̇1 ±

′
ψ1)

)
, f±9 =

1

2

(
u̇9 ±

′
u9

)
. (4.74)

The simplest set of solutions giving rise to the energy fluctuations (4.72)

come from constant residue functions. The most general possible constant

residue functions satisfying the GRC are

f1 =
1

4

(
1− sin ζ cosχ

sinφ

)
, f3 =

1

4

(
1− cos ζ cosχ

cosφ

)
, (4.75)

f2 =
1

2
κ , f9 =

1

2
κ sinχ , (4.76)
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which arise from the point-particle solution given by

t = κτ , ψ1 = (κ cosφ cos ζ cosχ)τ , ψ2 = (κ sinφ sin ζ cosχ)τ

u9 = (κ sinχ)τ .
(4.77)

This solution gives the fluctuations (4.72) with the masses

m{1} = m{1̄} = sinφ sin ζ cosχ , m{3} = m{3̄} = cosφ cos ζ cosχ ,

m{2} = m{2̄} =
1

2
(1− cos(φ− ζ) cosχ) , m{1,2,2,3} = m{1̄,2̄,2̄,3̄} = 1 ,

m{1,2} = m{1̄,2̄} =
1

2
(1− cos(φ+ ζ) cosχ) ,

m{2,3} = m{2̄,3̄} =
1

2
(1 + cos(φ+ ζ) cosχ) ,

m{1,2,3} = m{1̄,2̄,3̄} =
1

2
(1 + cos(φ− ζ) cosχ) ,

(4.78)

When ζ = φ, χ = 0 we reproduce the usual BMN spectrum. As we saw for

the analogous solution in the PSU(1, 1|2) case, within this family of solutions

the BMN solution has the minimum possible number of massless bosons and

the maximum possible number of massless fermions. When we take χ = π
2

(and any value for ζ), we have a solution with six massless bosons, two bosons

of mass 1 and eight fermions of mass 1
2 , arising from a BMN-like solution ro-

tating around the S1. This spectrum is identical to that we obtained for the

solution (4.49) in the PSU(1, 1|2) theory. When we set χ = 0 but leave ζ un-

fixed the solution (4.77) becomes the “non-supersymmetric vacuum” solution

studied in [112] from both a worldsheet and algebraic curve perspective, and

the spectrum (4.78) reproduces that which appears in equation (20) of [112].

Another solution studied in [112] is a folded string solution given by

t = κτ ,

ψ1 = cos2 φ ωτ −A sinφ cosφ cos(mτ) cos(mσ) ,

ψ2 = sin2 φ ωτ +A sinφ cosφ cos(mτ) cos(mσ) ,

u9 = A sin(mτ) cos(mσ), (4.79)

with

κ2 = ω2 +A2m2 . (4.80)

This has residue functions given by

f±1 (σ) =
1

4
(κ+ ω ∓Am cotφ sin(mσ)) , f±9 (σ) =

1

2
Am cos(mσ) ,

f±3 (σ) =
1

4
(κ+ ω ±Am tanφ sin(mσ)) , f±2 (σ) =

1

2
κ . (4.81)

Just as for the solution (4.52) in the T 4 theory, we have winding appearing
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at the level of the residue functions with f+
l 6= f−l , but we can still use our

zero-winding results. The residues themselves, given by

κ1 = κ3 = π(κ+ ω) , κ2 = 2πκ , κ9 = ml = 0 (4.82)

have no winding. This means that the derivation of all modes other than the

massless bosons proceeds as before. Meanwhile the use of the GRC to derive

the massless bosonic fluctuations also proceeds with only slight adjustment.

To solve the GRC at O(λ−1/4) as in equation (4.66) we need now to take

different values for f
(1)+
2 and f

(2)−
2 but we can consistently choose all other

higher order terms for the residue functions above classical level to be equal for

±1. We now have two version of equation (4.67), one with f
(0)+
l and another

with f
(0)+
l . If we take the sum of these two equations and integrate over σ

we get precisely equation (4.68) as before. Taking the difference of the two

equations and integrating we get zero on both sides since ml = 0 and we have

set g+ = g− = 0 etc. consistently.

The masses we obtain from the general result (4.57) using the residues (4.82)

are

m{1} = m{1̄} =
ω

κ
cos2 φ , m{1,2} = m{1̄,2̄} =

1

2

(
1 +

ω

κ
cos 2φ

)
,

m{3} = m{3̄} =
ω

κ
sin2 φ , m{2,3} = m{2̄,3̄} =

1

2

(
1− ω

κ
cos 2φ

)
,

m{1,2,3} = m{1̄,2̄,3̄} =
1

2

(
1− ω

κ

)
, m{2} = m{2̄} =

1

2

(
1 +

ω

κ

)
,

m{1,3} = m{1̄,3̄} = 1 . (4.83)

This matches with equation (55) of [112] and with the worldsheet calculations

in that paper.

4.3 Chapter conclusions and outlook

In this chapter we have examined semiclassical fluctuations around algebraic

curve solutions with no classical branch cuts. We have derived expressions for

the frequencies of all modes for a broad range of classical backgrounds, namely

all zero-cut no-winding solutions in both the D(2, 1;α)2 and PSU(1, 1|2)2

cosets. As part of this, we have exhibited a perturbative semiclassical solu-

tion to the generalised residue conditions which gives rise to massless bosonic

fluctuation frequencies in the algebraic curve analysis. This is the first time

massless frequencies have been explicitly included in this type of analysis. The

use of the GRC to include massless bosons should carry over straightforwardly

from the zero-cut solutions studied here to semiclassical analysis of algebraic

curves with classical branch cuts as well. This is because, while the presence

of branch cuts in the classical algebraic curve affects the positions of fluctua-

tion poles allowed by the no-forcing condition, the dynamics of the massless
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excitations are solely contained in the residues at z = ±1 rather than through

the positions of these additional poles.

In the case of the frequencies around D(2, 1;α)2 backgrounds, we have

shown how particular examples of the results for general zero-cut no-winding

backgrounds given in equations (4.72) and (4.57) match with worldsheet calcu-

lations in [112]. One immediate line of future work that would further confirm

the validity of the results obtained here is to perform similar checks with world-

sheet calculations for energy corrections around solutions in AdS3 × S3 × T 4.

Comparisons between algebraic curve calculations and worldsheet calculations

should be made for physical quantities such as the total one-loop energy shift.

In summing up the contributions of individual mode contributions there can

be issues of regularisation to match these results [125–129]. As we have dis-

cussed here, the one-loop energy correction to the solutions considered in this

chapter has no UV divergences.

We have shown how the massless bosons of the BMN background arise

semiclassically as well as classically solely through the residues of the quasi-

momenta at z = ±1. We have also made use of the prescription introduced

in [112] to include the massless fermions of the BMN background. However

there remains an open question about these massless fermions. The prescrip-

tion of [112] allows fermionic mode frequencies to be calculated for a set of

solutions that includes the BMN point-particle background in a particular

limit. If one first calculates the energy corrections and then takes the limit

to the BMN background the massless fermionic frequencies are well behaved

and approach the expected contribution for massless excitations. However the

quasimomenta themselves are not well behaved in this limit, with a divergence

over the entire complex plane. We have seen that there are other backgrounds

where different modes become massless. In particular one can take a limit

from a general set of rotating point-particle solutions to one rotating only

on a decoupled S1. In this case we have shown that two bosons which are

massive for the BMN background become massless. In this limit the quasi-

momenta again diverge everywhere as a result of these massive-to-massless

modes. Understanding these limits will be important for describing how all

massless states appear in the quantum Bethe equations.

The use of the algebraic curve semiclassical corrections to the energy of

classical string solutions can also be used to find important physical informa-

tion about the phases that enter the S-matrix [130] and as such can be used to

compare to expressions for the phases obtained by solving crossing equations.

In the case of the AdS3 backgrounds, exact S-matrices have recently been

found that include massless interactions [2,64,65,131] (this is the topic of the

next chapter) and so the inclusion of massless excitations into semiclassical

algebraic curve analysis should be used further to test against the phases of

these S-matrices.
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Chapter 5

The worldsheet S-matrix of

AdS3× S3× T 4 with mixed-flux

In this chapter we move from classical and semiclassical integrable strings to

some applications of quantum integrability to stings on AdS3 backgrounds.

In particular, instead of looking at the classical limit, we now be looking at a

different limit: the “decompactification limit”. In this limit the radius of the

worldsheet cylinder becomes large so that the worldsheet effectively becomes

the 2d plane. Excitations of the strings can then correspond to asymptotic

momentum states of a 2d field theory which can scatter amongst themselves,

and the fundamental object describing these interactions is the worldsheet

S-matrix.

We consider the form of lightcone gauge called uniform lightcone gauge [132],

where we set1

x+ = t+ ψ = τ , p− = pψ − pt = 2 , (5.1)

where pm is the momentum conjugate to xm. Now, instead of fixing the radius

of the worldsheet cylinder, we take the range of σ to be [−r, r], with r unfixed

for now. Then we can see that with the uniform lightcone gauge,

P− =

∫ r

−r
p−dσ = E + J = 2r . (5.2)

In other words the gauge choice (5.1) requires the worldsheet cylinder to have

a radius proportional to the lightcone momentum P−.

We consider all fields to be periodic, xm(r, τ) = xm(−r, τ).2 In particular,

the level matching condition is that

∆x− =

∫ r

−r

′
x−dσ = 0 . (5.3)

This turns out to be equivalent to the vanishing of the worldsheet momentum

pws, defined by

pws = −
∫ r

−r
dσ(pi

′
xi) (5.4)

where i = 1..8 are the transverse coordinates.

1This form of lightcone gauge appears to have removed the 1-parameter degree of freedom
in the lightcone gauge in the form (2.11) which couldn’t be gauged away. However this
is illusory. In flat space, we can only reach the gauge (5.1) if we do not completely fix
conformal gauge, but only γτσ = 0 and det(γ) = −1, leaving a single parameter unfixed in
the worldsheet metric.

2We ignore the possibility of winding.
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To describe consistent and non-trivial scattering of elementary excitations,

we need firstly to take the decompactification limit P− →∞ so that we have a

well-defined notion of asymptotic states, and secondly to consider the theory

off-shell, pws 6= 0, so that these states can carry non-zero momentum. Then

we have a basis of “in” and “out” asymptotic n-particle momentum states

|p1, . . . pn〉(in/out)α1...αn
(5.5)

where αi are flavour indices. The worldsheet S-matrix is the object which

relates in- and out-states.

Scattering in 1+1 dimensions with an infinite number of conserved charges

has been studied using the Zamolodchikov-Faddeev (ZF) algebra [133, 134]

and features a number of simplifications. One is that the set of momenta of

the particles cannot change; rather the only possibility is for different parti-

cles to exchange momenta. A corollary to this is that total particle number

is conserved. A second major simplification is that multi-particle scattering

factorises into a product of two-particle scattering processes. Therefore the

fundamental object of interest is the two-particle S-matrix defined by

|p1, p2〉(out)α1,α2
= Sα3α4

α1α2
(p1, p2) |p1, p2〉(in)

α3α4
. (5.6)

One approach to computing the worldsheet S-matrix is to treat it per-

turbatively and calculate scattering amplitudes at progressively higher loop

orders. However, we will instead use an approach which uses the conjectured

full quantum integrability of the theory. In this approach we use consistency

of the S-matrix with the symmetry algebra A of the theory together with

other constraints to completely determine the S-matrix, up to certain phases.

A crucial fact here is that the off-shell symmetry algebra A is not simply the

algebra of the classical superisometries of the string background, but is rather

a central extension of that algebra.

The procedure to construct the S-matrix therefore works as follows. First

we determine the supercurrents which make up the algebra A and compute

the central charge. In this calculation we use a “hybrid expansion” [135] in

which we work exactly in the lightcone bosonic field x− but to subleading

order in transverse fields. This allows us to compute the central charge as

an exact function of the worldsheet momentum pws. Next we determine the

two-particle representations of the algebra A, and finally we use consistency

with the algebra to compute the two-particle S-matrix.

This approach was originally used to compute the worldsheet S-matrix of

AdS5×S5 [135–137], and in these computations the algebra A was computed

by working with the superstring action in its coset formulation, as described in

chapter 2. When the same approach was applied to the AdS3 backgrounds [97,
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99]3 it was found that the S-matrix of the massive sector could be computed,

but the coset action did not allow for inclusion of the massless modes. This

problem is avoided but working not with the coset action but with the Green-

Schwarz action. In this way the complete S-matrix, including the massless

modes, was computed in [64,65] for the pure R-R AdS3×S3×T 4 background.

The work of this chapter is an extension of these results to the entire family

of mixed-flux AdS3 × S3 × T 4 backgrounds.

We use various different sets of indices in this chapter, see appendix A for

index conventions.

5.1 Supergravity background and Killing spinors

The Killing spinors of a supergravity background are the spinorial functions

which encode the preserved supersymmetry transformations of that back-

ground. In this section we write down the Killing spinors for the mixed-flux

AdS3 × S3 × T 4 background. The form of the Killing spinors will be useful

when we come to simplify the Green-Schwarz action.

We use a coordinate system that is convenient for expanding around a

BMN-like vacuum state. In our choice of coordinates the metric of AdS3 ×
S3 × T 4 is given by

ds2 = ds2
AdS3

+ ds2
S3 + ds2

T 4 , (5.7)

with

ds2
AdS3

= −

(
1 + z2

4

1− z2

4

)2

dt2 +

(
1

1− z2

4

)2

(dz2
1 + dz2

2) (5.8)

and

ds2
S3 =

(
1− y2

4

1 + y2

4

)2

dψ2 +

(
1

1 + y2

4

)2

(dy2
3 + dy2

4) , (5.9)

where

z2 = z2
1 + z2

2 , y2 = y2
3 + y2

4 . (5.10)

The background is supported by a mix of NS-NS and R-R three-form fluxes,

and we have a one-parameter family of backgrounds according to the ratio of

these fluxes. Explicitly, the non-zero tangent-space components of the NS-NS

three-form field H and the R-R three-form field F are

F012 = F345 = 2q̃ , H012 = H345 = 2q , (5.11)

where the coefficients q, q̃ satisfy

q2 + q̃2 = 1 , 0 ≤ q, q̃ ≤ 1 . (5.12)

3The S-matrix computed by [97,99] is the spin-chain S-matrix for the dual gauge theory
which is closely related to, but not identical to the string worldsheet S-matrix. See [138] for
an explicit comparison of those results with worldsheet computations.
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The NS-NS three-form arises from a B-field given by

B =
q(z1dz2 − z2dz1) ∧ dt(

1− z2

4

)2 +
q(y3dy4 − y4dy3) ∧ dψ(

1 + y2

4

)2 . (5.13)

The Killing spinor equations for a background with R-R and NS-NS 3-form

fluxes can be written as(
δIJ(∂m +

1

4
/ωm) +

1

8
σIJ1 /Hm +

1

48
σIJ3 /F /Em

)
ε̃J = 0 (5.14)

with I, J = 1, 2. Here we use the contractions

/F = FABCΓABC , /Hm = HmABΓAB , /ωm = ωABm ΓAB , (5.15)

and ωABm is the spin-connection.

In our cases the non-zero components of the fluxes are given in equa-

tion (5.11). ε̃I are Majorana-Weyl spinors. In particular they satisfy the

chirality condition (2.6). We can also impose a second chirality condition,4

Γ̃ε̃I = −ε̃I (5.16)

where Γ̃ = Γ012345.

Instead of solving (5.14) directly, we will make a q-dependent change of

basis to relate the Killing spinors of the mixed-flux background to those of the

pure R-R (q = 0) background. This will be useful to us when simplifying the

Green-Schwarz action, as well as helping to check the consistency of results for

the mixed-flux background with previous results for the pure R-R background

when we set q to zero. We make the change of basis

ε̃1 =

√
1 + q̃

2
ε1 −

√
1− q̃

2
ε2 ,

ε̃2 =

√
1 + q̃

2
ε2 +

√
1− q̃

2
ε1 . (5.17)

Then the Killing spinor equations become[
δIJ(∂m +

1

4
/ωm) + σIJ3

(
q

8
/Hm +

q̃

48
/F /Em

)]
εJ

= σIJ1

(
q

48
/F /Em −

q̃

8
/Hm

)
εJ . (5.18)

As shown in appendix H, the right-hand side of this is zero for any spinors

4This condition arises from the variation of the dilatino in the supergravity background,
which is an additional requirement to the Killing spinor equations (5.14) which arise from
the variation of the gravitino. For the maximally supersymmetric AdS5 × S5 background
with constant 5-form R-R flux, the dilatino condition is trivially satisfied and so there are
twice as many independent Killing spinors, and hence preserved supersymmetries, as for the
maximally supersymmetric AdS3 backgrounds.
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satisfying the chirality condition (5.16) and so this simplifies to(
δIJ(∂m +

1

4
/ωm) +

σIJ3

48q̃
/F /Em

)
εJ = 0 . (5.19)

Since the mixed-flux R-R three-form is related to the pure R-R three-form

by a rescaling by q̃, this is exactly the same equation obeyed by the Killing

spinors for the pure R-R background.

We can write the solutions to the Killing spinor equation (5.19) as tensor

products of two-dimensional spinors as5

εI =

(
1

0

)
⊗

(
0

1

)
⊗ εIAdS3

⊗ ηIS3 ⊗ ψI0 (5.20)

with ψI0 constant two-dimensional spinors. The Killing spinor equations for

the full metric then reduce to those of AdS3 and S3 separately. We find that

all components must be independent of the T 4 coordinates, while ηIS3 are S3

Killing spinors satisfying [139]

(∂m +
1

4
/ωm)ηIS3 =

5∑
A=3

i

2
EAmγAσ

IJ
3 ηJS3 m = ψ, y3, y4 (5.21)

and εIAdS3
are AdS3 Killing spinors satisfying [140]

(∂m +
1

4
/ωm)εIAdS3

=

2∑
A=0

1

2
EAmγAσ

IJ
3 εJAdS3

m = t, z1, z2 . (5.22)

The solutions to these are given by

η1
S3 = M̂S3η1

0 , ε1AdS3
= M̂AdS3ε

1
0 ,

η2
S3 = M̌S3η2

0 , ε2AdS3
= M̌AdS3ε

2
0 (5.23)

where ηI0 and εI0 are constant two-components spinors and

M̂S3 =
1√

1 + y2

4

(
1− iy3

2
σ1 −

iy4

2
σ2

)
e
iψ
2
σ3

M̌S3 =
1√

1 + y2

4

(
1 +

iy3

2
σ1 +

iy4

2
σ2

)
e
−iψ

2
σ3

M̂AdS3 =
1√

1− z2

4

(
1− z1

2
σ1 −

z2

2
σ2

)
e
−t
2
σ3

M̌AdS3 =
1√

1− z2

4

(
1 +

z1

2
σ1 +

z2

2
σ2

)
e
t
2
σ3 (5.24)

5The first and second term in the tensor product arise from the chirality conditions (2.6)
and (5.16) respectively in the tensor product basis of gamma matrices given in appendix B.
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The Killing spinors for AdS3 × S3 × T 4 with pure R-R flux are therefore

given by

ε1 = M̂

((
1

0

)
⊗

(
0

1

)
⊗ ε10 ⊗ η1

0 ⊗ ψ1
0

)
,

ε2 = M̌

((
1

0

)
⊗

(
0

1

)
⊗ ε20 ⊗ η2

0 ⊗ ψ2
0

)
(5.25)

with

M̂ = 12 ⊗ 12 ⊗ M̂AdS3 ⊗ M̂S3 ⊗ 12 ,

M̌ = 12 ⊗ 12 ⊗ M̌AdS3 ⊗ M̌S3 ⊗ 12 . (5.26)

The Killing spinors ε̃I for the mixed-flux background are given by the q-

dependent linear combinations (5.17) of the pure R-R Killing spinors εI . Fi-

nally we note that we can write the matrices M̂ and M̌ in terms of ten-

dimensional gamma matrices as

M̂ = M0Mt , M̌ = M−1
0 M−1

t (5.27)

with

M0 =
1√(

1− z2

4

)(
1 + y2

4

) (1− 1

2
ziΓ

iΓ012

)(
1− 1

2
yjΓ

jΓ345

)
(5.28)

and

Mt = e−
1
2(tΓ12+ψΓ34) . (5.29)

5.2 Bosonic action in lightcone gauge

In this section we examine the bosonic action for the mixed-flux AdS3×S3×T 4

background when we fix uniform lightcone gauge. We start with the usual

bosonic action (2.1.1), with two slight changes. First we leave the radius of

the worldsheet cylinder unfixed, and take the range of σ to be [−r, r]. Second

we use Weyl invariance to set the determinant of the worldsheet metric γ equal

to -1. The bosonic string action is therefore6

SB = −1

2

∫
dτ

∫ r

−r
dσ
(
γαβGmn + εαβBmn

)
∂αX

m∂βX
n . (5.30)

The spacetime metric G and B-field are given in equations (5.7) and (5.13)

respectively.

6We suppress the overall string tension
√
λ

2π
in the worldsheet action and reinsert it once

we compute the central charge.
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We introduce the canonical momenta

pm = − δSB

δẊm
= −2π

(
γττGmnẊ

n + γτσGmn
′
Xn +Bmn

′
Xn
)
. (5.31)

Then we can recast the action in the so-called first-order form

SB = 2π

∫
dτ

∫ r

−r
dσ

(
pmẊ

m +
γτσ

γττ
C1 +

1

2γττ
C2

)
(5.32)

where

C1 = pm
′
Xm (5.33)

and

C2 = Gmnpmpn + 2GmnBnkpm
′
Xk

+
(
Gmn +GklBkmBln

) ′
Xm

′
Xn (5.34)

The Virasoro constraints appear in this first-order form as C1 = c2 = 0.

With uniform lightcone gauge x+ = τ , p− = 1, the condition C1 = 0 can be

solved by
′
x− = −1

2
(pi

′
xi + pi

′
xi) . (5.35)

Hence we see that the vanishing of the worldsheet momentum

pws = −
∫ r

−r
dσ(pi

′
xi + pi

′
xi) (5.36)

is indeed equivalent to the level-matching condition x−(r) = x−(−r). C2 = 0

can be solved to find p+ in terms of the other fields, and the gauge-fixed action

can then be written as

SB =

∫ r

−r
dσ(piẋ

i + piẋ
i −H) (5.37)

in terms of the Hamiltonian H = −p+. To quadratic order in fields this is

given by

H = +
1

2

(
p2
z + p2

y + p2
x +

′
z2 +

′
y2 +

′
x2 + z2 + y2 − 2qεij(zi

′
zj + yi

′
yj)
)
. (5.38)

We can solve the Virasoro constraints explicitly in the uniform lightcone

gauge to find x− in terms of the transverse fields. To quadratic order we get

ẋ− = −1

4
(ż2 + ẏ2 + ẋ2 +

′
z2 +

′
y2 +

′
x2 − z2 − y2) ,

′
x− = −1

2
(ż · ′z + ẏ · ′y + ẋ · ′x) . (5.39)

We can then use the x± equations of motion to find the worldsheet metric. To

89



CHAPTER 5. THE WORLDSHEET S-MATRIX OF ADS3 × S3 × T 4

WITH MIXED-FLUX

quadratic order this is

γττ = −1 +
z2 − y2

2
− q

2
εij(zi

′
zj − yi

′
yj) ,

γτσ =
q

2
εij(zi

′
zj − yi

′
yj) ,

γσσ = +1 +
z2 − y2

2
− q

2
εij(zi

′
zj − yi

′
yj) . (5.40)

5.3 The Green-Schwarz Action

In this section we discuss the gauge-fixing of the Green-Schwarz action for the

AdS3 × S3 × T 4 mixed-flux background. The key result of this section is the

lightcone gauged-fixed action which is given in equations (5.77) and (5.81).

We start with the action up to quadratic order in fermions in the following

form [141]. We have the kinetic terms, by which we mean all those proportional

to the worldsheet metric, given by

Lkin = −iγαβ ¯̃
θI /Eα

(
Dβδ

IJ +
1

8
σIJ3 /Hβ +

1

48
σIJ1 /F /Eβ

)
θ̃J (5.41)

and the Wess-Zumino (WZ) terms given by

LWZ = iεαβ
¯̃
θIσ

IJ
3 /Eα

(
Dβδ

JK +
1

8
σJK3 /Hβ +

1

48
σJK1 /F /Eβ

)
θ̃K . (5.42)

Here /Eα is the pull-back of the contracted vielbein,

/Eα = ∂αX
m /Em = ∂αX

mEAmΓA , (5.43)

and Dm is the covariant derivative

Dm = ∂m +
1

4
ωABm ΓAB . (5.44)

We make a q-dependent redefinition of the fermions θ̃I to a new basis θI ,

θ̃1 =
1

2

(√
1 + q̃ +

√
1− q̃

)
θ1 +

1

2

(√
1 + q̃ −

√
1− q̃

)
θ2 ,

θ̃2 =
1

2

(√
1 + q̃ −

√
1− q̃

)
θ1 −

1

2

(√
1 + q̃ +

√
1− q̃

)
θ2 (5.45)

and then split the fermions θI according to their chirality under Γ̃ = Γ012345;

θ±I =
1

2
(1± Γ̃)θI . (5.46)

The fermions θ− obey the same chirality condition as the Killing spinors.

This means that, after an appropriate rotation, shifts of these fermions realise

the supersymmetry variations, and we will see explicitly that these are the

massive fermions of this background. We also note that their chirality under
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Γ̃ means they obey the condition (H.1) which will be used in simplifying the

action presently. The fermions θ+ will be seen explicitly, after an appropriate

rotation, to be the massless fermions of this background.

We define contractions of the vielbeins over the AdS3×S3 and T 4 compo-

nents separately

/̄Eα =
5∑

a=0

EaαΓa , /̇Eα =
9∑

ȧ=6

EȧαΓȧ . (5.47)

Using the chirality conditions of the fermions we can replace each full vielbein

contraction with one of these sub-contractions, giving us the following for the

kinetic action

Lkin =− iγαβ(θ̄−I /̄Eα + θ̄+
I
/̇Eα)

(
δIJDβ +

q

8
σIJ3 /Hβ +

q̃

48
σIJ3 /F /̄Eβ

)
θ−J

− iγαβ(θ̄−I
/̇Eα + θ̄+

I
/̄Eα)

(
δIJDβ +

1

8
(qσIJ3 + q̃σIJ1 ) /Hβ

)
θ+
J

− iγαβ 1

48
(θ̄−I /̄Eα + θ̄+

I
/̇Eα)(q̃σIJ3 − qσIJ1 )/F /̇Eβθ

+
J (5.48)

and for the WZ action

LWZ = + iqεαβ(θ̄−I /̄Eα + θ̄+
I
/̇Eα)

(
σIJ3 Dβ +

q

8
δIJ /Hβ +

q̃

48
δIJ /F /̄Eβ

)
θ−J

+ iq̃εαβ(θ̄−I /̄Eα + θ̄+
I
/̇Eα)

(
σIJ1 Dβ −

q

8
iσIJ2 /Hβ −

q̃

48
iσIJ2 /F /̄Eβ

)
θ−J

+ iεαβ(θ̄−I
/̇Eα + θ̄+

I
/̄Eα)

(
(qσIJ3 + q̃σIJ1 )Dβ +

1

8
δIJ /Hβ

)
θ+
J

− iεαβ 1

48
(θ̄−I /̄Eα + θ̄+

I
/̇Eα)iσIJ2 /F /̇Eβθ

+
J (5.49)

Now we can simplify the “mixed” terms involving both θ+ and θ− by

making use of Majorana flip identities and equation (H.1) to write all terms

with θ− on the right. In particular we use the following identities

θ̄−I
/̇Eα∂βθ

+
J = −(∂β θ̄

−
I ) /̇Eαθ

+
J = θ̄+

J
/̇Eα∂βθ

−
I ,

θ̄−I
/̇Eα /Hβθ

+
J = θ̄+

J
/̇Eα /Hβθ

−
I ,

θ̄−I /̄Eα /F
/̇Eβθ

+
J = θ̄+

J
/̇Eβ /F /̄Eαθ

−
I , (5.50)

where we have dropped a total integral in the first line. Using these we can

write the kinetic action as

Lkin =− iγαβ(θ̄−I /̄Eα + 2θ̄+
I
/̇Eα)

(
δIJDβ +

q

8
σIJ3 /Hβ +

q̃

48
σIJ3 /F /̄Eβ

)
θ−J

− iγαβ θ̄+
I
/̄Eα

(
δIJDβ +

1

8
(qσIJ3 + q̃σIJ1 ) /Hβ

)
θ+
J

− iγαβ 1

48
θ̄+
I
/̇Eα(q̃σIJ3 − qσIJ1 )/F /̇Eβθ

+
J (5.51)
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and the WZ action as

LWZ = + iqεαβ(θ̄−I /̄Eα + 2θ̄+
I
/̇Eα)

(
σIJ3 Dβ +

q

8
δIJ /Hβ +

q̃

48
δIJ /F /̄Eβ

)
θ−J

+ iq̃εαβ(θ̄−I /̄Eα + 2θ̄+
I
/̇Eα)

(
σIJ1 Dβ −

q

8
iσIJ2 /Hβ −

q̃

48
iσIJ2 /F /̄Eβ

)
θ−J

+ iεαβ θ̄+
I
/̄Eα

(
(qσIJ3 + q̃σIJ1 )Dβ +

1

8
δIJ /Hβ

)
θ+
J

− iεαβ 1

48
θ̄+
I
/̇Eαiσ

IJ
2 /F /̇Eβθ

+
J (5.52)

We will make use of two different rotations of the fermions. The first is

most useful for exhibiting supersymmetry while the second is most useful for

fixing lightcone gauge. The first rotation is to define new fermions via

θ−1 = M̂ϑ−1 , θ+
1 = M̂ϑ+

1 , θ−2 = M̌ϑ−2 , θ+
2 = M̌ϑ+

2 (5.53)

where M̂ and Ň are the matrices appearing in the solutions to the Killing

spinor equations (5.26). The rotated fermion conjugates are given by

θ̄−1 = ϑ̄−1 M̂
−1 , θ̄+

1 = ϑ̄+
1 M̂

−1 , θ̄−2 = ϑ̄−2 M̌
−1 , θ̄+

2 = ϑ̄+
2 M̌

−1 , (5.54)

since M̂ and M̌ satisfy

M̂ †Γ0 = Γ0M̂−1 , M̌ †Γ0 = Γ0M̌−1 . (5.55)

Along with rotated fermions we also define rotated vielbeins K̂ and Ǩ by

K̂A
M = M̂A

BE
B
M , ǨA

M = M̌A
BE

B
M (5.56)

where the orthogonal matrices M̂ and M̌ are defined by

M̂−1ΓAM̂ = ΓBM̂A
B , M̌−1ΓAM̌ = ΓBM̌A

B . (5.57)

Acting on the contracted vielbeins, we have /̇K = /̇E and

/̂Kα ≡
5∑

a=0

K̂a
αΓa = M̂−1 /̄EαM̂ , /̌Kα ≡

5∑
a=0

ĚaαΓa = M̌−1 /̄EαM̌ (5.58)

We can simplify all terms in the action involving θII immediately via(
Dα +

q

8
/Hα +

q̃

48
/F /̄Eα

)
θ−1 = M̂∂αϑ

−
1 ,(

Dα −
q

8
/Hα −

q̃

48
/F /̄Eα

)
θ−2 = M̌∂αϑ

−
2 . (5.59)

as shown in appendix I. The remaining terms involving the covariant derivative

can be rewritten using the spin-connections ω̂ and ω̌ for the rotated vielbeins
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K̂ and Ǩ. We have

M̂−1DαM̂ϑ+
I = ∂αϑ

+
I +

1

4
/̂ωαϑ

+
I = ∂αϑ

+
I −

1

2
/̂KαΓ012ϑ+

I ,

M̌−1DαM̌ϑ+
I = ∂αϑ

+
I +

1

4
/̌ωϑ+

I = ∂αϑ
+
I +

1

2
/̌KαΓ012ϑ+

I (5.60)

using the expressions for /̂ω and /̌ω given in appendix I. Meanwhile the remaining

terms proportional to the NS-NS and R-R fluxes are

M̂−1 /HαM̂ϑ+
I = 4q /̂KαΓ012ϑ+

I ,

M̌−1 /HαM̌ϑ+
I = 4q /̌KαΓ012ϑ+

I ,

/F /̇Eαϑ
+
I = − /̇Eα /Fϑ+

I = −24q̃ /̇EαΓ012ϑ+
I . (5.61)

We also note that

γαβ
(
/̂Kα /̂Kβ + /̇Eα /̇Eβ

)
= γαβ

(
/̌Kα /̌Kβ + /̇Eα /̇Eβ

)
= γαβηABE

A
αE

B
β (5.62)

as K̂ and Ǩ come from SO(1, 9) transformations of the diagonal vielbein E.

The final expressions we obtain for the action are

Lkin = −iγαβ
[
ϑ̄−1

/̂Kα∂βϑ
−
1 + 2ϑ̄+

1
/̇Eα∂βϑ

−
1 + ϑ̄+

1
/̂Kα∂βϑ

+
1

+ϑ̄−2 /̌Kα∂βϑ
−
2 + 2ϑ̄+

2
/̇Eα∂βϑ

−
2 + ϑ̄+

2
/̌Kα∂βϑ

+
2

− q̃
2

2
σIJ3 ϑ̄+

I Γ012ϑ+
J E

A
αE

B
β ηAB

+
qq̃

2
ϑ̄+

1 M̂
−1M̌Γ012ϑ+

2 E
A
αE

B
β ηAB

+
qq̃

2
ϑ̄+

2 M̌
−1M̂Γ012ϑ+

1 E
A
αE

B
β ηAB

]
, (5.63)

LWZ = iεαβ
[
q
(
ϑ̄−1

/̂Kα∂βϑ
−
1 + 2ϑ̄+

1
/̇Eα∂βϑ

−
1 + ϑ̄+

1
/̂Kα∂βϑ

+
1

)
−q
(
ϑ̄−2 /̌Kα∂βϑ

−
2 + 2ϑ̄+

2
/̇Eα∂βϑ

+
2 + ϑ̄+

2
/̌Kα∂βϑ

+
2

)
+q̃
(
ϑ̄−2 M̌

−1M̂ /̂Kα∂βϑ
−
1 + ϑ̄+

2 M̌
−1M̂ /̂Kα∂βϑ

+
1

)
+q̃
(
ϑ̄−1 M̂

−1M̌ /̌Kα∂βϑ
−
2 + ϑ̄+

1 M̂
−1M̌ /̌Kα∂βϑ

+
2

)
+q̃
(
ϑ̄−2 M̌

−1M̂ /̇Eα∂βϑ
+
1 + ϑ̄+

2 M̌
−1M̂ /̇Eα∂βϑ

−
1

)
+q̃
(
ϑ̄−1 M̂

−1M̌ /̇Eα∂βϑ
+
2 + ϑ̄+

1 M̂
−1M̌ /̇Eα∂βϑ

−
2

)
+
q̃

2
ϑ̄+

2 M̌
−1M̂

(
/̂Kα

/̂Kβ + /̇Eα /̇Eβ

)
Γ012ϑ+

1

+
q̃

2
ϑ̄+

1 M̂
−1M̌

(
/̌Kα /̌Kβ + /̇Eα /̇Eβ

)
Γ012ϑ+

2

]
. (5.64)

Supersymmetry is realised in the action in this form as a shift of the
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fermions ϑ−I . The 8 independent real components of each of the Majorana-

Weyl spinors ϑ−1 , ϑ−2 thus gives us 16 real supersymmetries as is to be expected.

5.3.1 Fixing kappa gauge

To fix kappa gauge we make a different rotation of the fermions, such that the

resulting fermions are independent of the lightcone coordinates t and ψ. We

make the rotation

θ−1 = M0η1 , θ−2 = M−1
0 η2 ,

θ+
1 = M0χ1 , θ+

2 = M−1
0 χ2 (5.65)

We also use a different set of rotated vielbeins which satisfy

/̂Eα = M−1
0
/̄EαM0 , /̌Eα = M0 /̄EαM

−1
0 (5.66)

It is simplest to obtain the resulting form of the Green-Schwarz action from

the expressions (5.63) and (5.64) rather than from the original action. We

have various expressions such as

ϑ̄−1 /̂Kα∂βϑ
−
1 = η̄1

/̂Eα∂βη1 + η̄1
/̂Eα
(
Mt∂βM

−1
t

)
η1 (5.67)

and

ϑ̄−2 M̌
−1M̂ /̂E∂βϑ

−
1 = η̄2M

2
0
/̂Eα∂βη1 + η̄2M

2
0
/̂Eα
(
Mt∂βM

−1
t

)
η1 (5.68)

Note that

Mt∂βM
−1
t = −M−1

t ∂βMt =
1

2

(
Γ12 + Γ34

)
∂βx

+ − 1

2

(
Γ12 − Γ34

)
∂βx

− .

(5.69)

We introduce the lightcone bosonic coordinates, lightcone vielbeins and

lightcone gamma matrices

x± =
1

2
(ψ ± t) , E± =

1

2

(
E5 ± E0

)
, Γ± =

1

2

(
Γ5 ± Γ0

)
(5.70)

Then we fix lightcone kappa gauge by requiring

Γ+ηI = 0 , Γ+χI = 0 (5.71)

One consequence of this is that ηI and χI then satisfy

Γ12ηI = Γ34ηI , Γ12χI = −Γ34χI (5.72)

For any spinors ε1 and ε2 satisfying Γ+εI = 0 we have

ε̄1ΓA1...Anε2 = 0 (5.73)
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for any A1 . . . An = 1 . . . 8, because Γ+Γ− + Γ−Γ+ = 110 and so

ε̄1ΓA1...Anε2 = ε̄1Γ+Γ−ΓA1...Anε2 + ε̄1ΓA1...AnΓ+Γ−ε2 = 0 (5.74)

as we have Γ+ acting on η to either the left or right in each term. It then

follows that

ε̄1 /̂Eαε2 = 2ε̄1Ê
+
α Γ−ε2 ,

ε̄1 /̌Eαε2 = 2ε̄1Ě
+
α Γ−ε2 ,

ε̄1 /̇Eαε2 = 0 (5.75)

Making use of the above and the fact that

M2
0
/̂Eα = /̌EαM

2
0 , M−2

0
/̌Eα = /̂EαM

−2
0 (5.76)

we obtain the following for the lightcone gauged-fixed kinetic action

Lkin = Lηηkin + Lχχkin , (5.77)

with

Lηηkin = −2iγαβ
[
η̄1Ê

+
α Γ−

(
∂βη1 + Γ12η1∂βx

+
)

+η̄2Ě
+
α Γ−

(
∂βη2 − Γ12η2∂βx

+
) ]

, (5.78)

and

Lχχkin = −2iγαβ
[
+χ̄1Ê

+
α Γ−

(
∂βχ1 − Γ12χ1∂βx

−)
+χ̄2Ě

+
α Γ−

(
∂βχ2 + Γ12χ2∂βx

−)
− q̃

2

4
σ3
IJ χ̄IΓ

012χJE
A
αE

B
β ηAB

+
qq̃

4

(
χ̄1M

−2
0 Γ012χ2 + χ̄2M

2
0 Γ012χ1

)
EAαE

B
β ηAB

]
(5.79)

To zeroth order in bosons in lightcone gauge, Ê+
0 = Ě+

0 = 1 with all

other vielbein components vanishing, and the worldsheet metric is conformal,

γαβ = ηαβ. Hence to zeroth order in bosons the kinetic fermion action is

Lkin = 2i

[
η̄IΓ

−η̇I + σIJ3 η̄IΓ
−Γ12ηJ + χ̄IΓ

−χ̇I

]
. (5.80)

From this we can see directly that η and χ are indeed massive and massless

fermions respectively.
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The lightcone gauged-fixed WZ action is

LWZ = LηηWZ + LχηWZ + LχχWZ , (5.81)

with

LχηWZ = 2iεαβ
[
q̃χ̄1 /̇EαM

−2
0

(
∂βη2 − Γ12η2∂βx

+
)

+q̃χ̄2 /̇EαM
2
0

(
∂βη1 + Γ12η1∂βx

+
) ]

, (5.82)

LηηWZ = 2iεαβ
[
q̃

2
η̄1
/̂EαM

−2
0

(
∂βη2 − Γ12η2∂βx

+
)

+
q̃

2
η̄2 /̌EαM

2
0

(
∂βη1 + Γ12η1∂βx

+
)

+qη̄1Ê
+
α Γ−

(
∂βη1 + Γ12η1∂βx

+
)

−qη̄2Ě
+
α Γ−

(
∂βη2 − Γ12η2∂βx

+
) ]

, (5.83)

and

LχχWZ = 2iεαβ
[
2iεαβ

[
q̃

4
χ̄1

(
/̂Eα /̂Eβ + /̇Eα /̇Eβ

)
M−2

0 Γ012χ2

− q̃
4
χ̄2

(
/̌Eα /̌Eβ + /̇Eα /̇Eβ

)
M2

0 Γ012χ1

+
q̃

2
χ̄1 /̌EαM

−2
0

(
∂βχ2 + Γ12χ2∂βx

−)
+
q̃

2
χ̄2
/̂EαM

2
0

(
∂βχ1 − Γ12χ1∂βx

−)
+qχ̄1Ê

+
α Γ−

(
∂βχ1 − Γ12χ1∂βx

−)
−qχ̄2Ě

+
α Γ−

(
∂βχ2 + Γ12χ2∂βx

−) ]. (5.84)

5.4 Supercurrents

Having written down the gauge-fixed action, we can now construct conserved

supercurrents for this action jαI satisfying

∂τ j
τ
I + ∂σj

σ
I = 0 . (5.85)

We construct these supercurrents to leading order in fermions and cubic order

in bosons. Our expressions for the action in the previous section are written

in terms of ten-dimensional gamma matrices ΓA and the fermions ηI and χI

are 32-component spinors. However, they satisfy the Weyl condition (2.6), the

kappa-gauge condition (5.71) as well as having definite chirality under Γ012345

from their definition in equation (5.65). As such, each has 4 independent phys-

ical components. We have therefore 8 independent supercharges coming from
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j1 and j2. This is also consistent with another role these supercurrents play.

They are associated with those supervariations that have to be combined with

a kappa transformation in order to preserve lightcone gauge. In practice we

do not construct the supercurrents from a Noether procedure which explicitly

includes this corresponding kappa transformation. Instead we construct them

order by order to satisfy the conservation equation.

The physical spinors transform as bispinors of so(4)1⊕so(4)2, where so(4)1

corresponds to the transverse directions of AdS3 × S3 in lightcone-gauge and

so(4)2 corresponds to T 4. We use indices a, ȧ = 1, 2 to represent the so(4)1

spinor indices which are respectively positive and negative under Γ012345 chi-

rality. Similarly we use indices a and ȧ to represent positive and negative

chirality so(4)2 spinor indices. We also use indices i = 1, 2, 3, 4, i = 6, 7, 8, 9

to represent respectively the transverse AdS3 × S3 and T 4 tangent indices of

so(4)1 and so(4)2 gamma matrices. The explicit basis γi and τ i we use is

γ1 = +σ3, γ2 = −i1, γ3 = +σ2, γ4 = +σ1,

τ6 = +σ1, τ7 = +σ2, τ8 = +σ3, τ9 = +i1, .
(5.86)

We also define

γ̃i = +(γi)† , τ̃ i = −(τ i)† , (5.87)

and

(γij)ab =
1

2
(γiγ̃j − γj γ̃i)ab, (τ ij)ab =

1

2
(τ iτ̃ j − τ j τ̃ i)ab,

(γ̃ij)ȧḃ =
1

2
(γ̃γj − γ̃jγi)ȧḃ, (τ̃ ij)ȧḃ =

1

2
(τ̃ iτ j − τ̃ jτ i)ȧḃ .

(5.88)

The relationship between the ten-dimensional gamma matrices and these so(4)

gamma matrices is discussed in [65].

The supercurrents are given to quadratic order by

jτ1 = ie+x−γ34[
(żi − ẏi)γiη1 + (zi + yi)γ34γiη1 − (

′
zi − ′

yi)γi(q̃η2 + qη1)

+ẋiγ34τ̃iχ1 −
′
xiγ34τ̃i(q̃χ2 + qχ1)

]
, (5.89)

jτ2 = ie−x
−γ34[

(żi − ẏi)γiη2 − (zi + yi)γ34γiη2 − (
′
zi − ′

yi)γi(q̃η1 − qη2)

+ẋiγ34τ̃iχ2 −
′
xiγ34τ̃i(q̃χ1 − qχ2)

]
, (5.90)

jσ1 = ie+x−γ34[
(żi − ẏi)γi(q̃η2 + qη1) + (zi + yi)γ34γi(q̃η2 + qη1)

−(
′
zi − ′

yi)γiη1 + ẋiγ34τ̃i(q̃χ2 + qχ1)− ′
xiγ34τ̃i)χ1

]
, (5.91)

jσ2 = ie−x
−γ34[

(żi − ẏi)γi(q̃η1 − qη2)− (zi + yi)γ34γi(q̃η1 − qη2)

−(
′
zi − ′

yi)γiη2 + ẋiγ34τ̃i(q̃χ1 − qχ2)− ′
xiγ34τ̃iχ2

]
. (5.92)

97



CHAPTER 5. THE WORLDSHEET S-MATRIX OF ADS3 × S3 × T 4

WITH MIXED-FLUX

In appendix J we give the supercurrents to quartic order in fields. These ex-

pressions all satisfy the conservation equation (5.85) to the appropriate order.

We now give the Poisson brackets of these supercurrents, which will be

used in the next section when we discuss in full the algebra A. For this we

need the Poisson brackets of the fermions, which are given in appendix K. We

then find Poisson brackets of j1 and j2 with themselves given by7

∫
dσ dσ′{jτ1 (σ), jτ1 (σ′)}

PB

= +
i

2

∫
dσ(H+M) ε ε, (5.93)

∫
dσ dσ′{jτ2 (σ), jτ2 (σ′)}

PB

= +
i

2

∫
dσ(H−M) ε ε. (5.94)

where the bosonic Hamiltonian density H is given to quartic order by

H = +
1

2

(
p2
z + p2

y + p2
x +

′
z2 +

′
y2 +

′
x2 + z2 + y2 − 2qεij(zi

′
zj + yi

′
yj)
)

+
1

4

(
p2
z + p2

y + p2
x +

′
z2 +

′
y2 +

′
x2
)(

(z2 − y2) + qεij(
′
zizj −

′
yiyj)

+
1

4
z2
( ′
z2 − p2

z + qεij(
′
zizj +

′
yiyj

)
− 1

4
y2
( ′
y2 − p2

y + qεij(
′
zizj +

′
yiyj

)
− q

2
εij
(
pzizj + pyiyj

)(
pz ·

′
z + py ·

′
y + px ·

′
x
)
.

(5.95)

and the “mass” term M is given by

M = −εij(pizj + piyj)− q(pi
′
zi + pi

′
yi + pi

′
xi). (5.96)

Note that M does not have any quartic corrections.

The Poisson bracket of j1 with j2 gives∫
dσ dσ′{jτ1 (σ), jτ2 (σ′)}

PB

= − iq̃
2
e+2γ34x−(−∞)

(
e+γ34pws − 1

)
γ34ε ε . (5.97)

Hence the algebra A has a central charge

C =
iζh

2

(
eipws − 1

)
, (5.98)

where we define ζ = exp(2ix−(∞)) and the coupling h is given, once we put

back the string tension which we have been suppressing, by

h =
q̃
√
λ

2π
. (5.99)

This is a rescaling by q̃ of the central charge for the pure R-R theory.

7We have suppressed spinor indices.
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5.5 The algebra A and its representations

In this section we will examine the off-shell symmetry algebra A and its repre-

sentations. We will first consider the near-plane-wave algebra and then deform

this to produce the exact algebra. The near-plane-wave generators for A are

precisely the components of the currents j, truncated to quadratic order in

fields, as given in the previous section. We will introduce notation for these

generators which better exhibits their algebraic structure. In particular we

will have two sets of supercharges Q ȧ
L and Q ȧ

R , carrying a natural su(2) index

ȧ, together with their conjugates Q
ȧ

L and Q
ȧ

R . The anticommutation relations

for these supercharges will turn out to be

{Q ȧ
L ,QLḃ} =

1

2
δȧ
ḃ
(H + M) , {Q ȧ

L ,QRḃ} = δȧ
ḃ
C ,

{QRȧ,Q
ḃ

R } =
1

2
δȧ
ḃ
(H−M) , {QLȧ,Q

ḃ
R } = δȧ

ḃ
C . (5.100)

This algebra is a central extension of psu(1|1)4. We will find explicit expres-

sions for the charges H, M, C and C in the near-plane-wave limit and then

in the exact theory.

The key results of this section are as follows. The exact central charges

are given in equations (5.140), (5.141) and (5.142). Explicit representations

for the algebra which satisfies (5.100) are given in equation (5.143), (5.144)

and (5.145) in terms of representation parameters which are defined in equa-

tion (5.146) so as to reproduce the correct charges.

5.5.1 Near-plane-wave algebra

We begin by defining the superchargers Q ȧ
L and Q ȧ

R in terms of the currents

jI via

Q 1
L = −

∫
dσ (jτ1 )21, Q 2

L = +

∫
dσ (jτ1 )22,

QR1 = −
∫

dσ (jτ2 )12, QR2 = −
∫

dσ (jτ2 )11.

(5.101)

The Hermitian conjugates of these,

QLȧ = (Q ȧ
L )†, Q

ȧ
R = (QRȧ)

†, (5.102)

are then given in terms of the remaining components of the currents by:

QL1 = +

∫
dσ (jτ1 )12, QL2 = +

∫
dσ (jτ1 )11,

Q
1

R = +

∫
dσ (jτ2 )21, Q

2
R = −

∫
dσ (jτ2 )22.

(5.103)

The give explicit expressions for these supercharges in terms of fields we
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need to introduce notation for the components of the fermions ηI and χI . We

write the fermion components as follows:

(η1)ȧḃ =

(
−e+iπ/4η̄L2 −e+iπ/4η̄L1

e−iπ/4η 1
L −e−iπ/4η 2

L

)
, (5.104)

(η2)ȧḃ =

(
e−iπ/4ηR2 e−iπ/4ηR1

−e+iπ/4η̄ 1
R e+iπ/4η̄ 2

R

)
, (5.105)

(χ1)ab =

(
−e+iπ/4χ̄+2 e+iπ/4χ̄+1

−e−iπ/4χ 1
+ −e−iπ/4χ 2

+

)
, (5.106)

(χ2)ab =

(
e−iπ/4χ 1

− e−iπ/4χ 2
−

−e+iπ/4χ̄−2 e+iπ/4χ̄−1

)
. (5.107)

To help produce compact expressions we also introduce complex bosonic co-

ordinates

Z = −z2 + iz1, Z̄ = −z2 − iz1, Y = −y3 − iy4, Ȳ = −y3 + iy4,

X11 = −x6 + ix7 = (X22)†, X12 = x8 − ix9 = −(X21)†,

(5.108)

with conjugate momenta

PZ = 2Ż, PZ̄ = 2 ˙̄Z, PZ = 2Ż, PȲ = 2 ˙̄Y,

P11 = P †22 = 2Ẋ22, P12 = −P †21 = −2Ẋ21.
(5.109)

These fields so defined satisfy the commutation relations

[Z(σ1), PZ̄(σ2)] = [Z̄(σ1), PZ(σ2)] = iδ(σ1 − σ2) ,

[Y (σ1), PȲ (σ2)] = [Ȳ (σ1), PY (σ2)] = iδ(σ1 − σ2) ,

[X ȧa(σ1), Pḃb(σ2)] = iδȧ
ḃ
δab δ(σ1 − σ2), (5.110)

and the anti-commutation relations

{η̄Lȧ(σ1), η ḃ
L (σ2)} = {η̄ ḃ

R (σ1), ηRȧ(σ2)} = δḃȧδ(σ1 − σ2),

{χ̄+a(σ1), χb+(σ2)} = {χ̄−a(σ1), χb−(σ2)} = δbaδ(σ1 − σ2).
(5.111)

The quadratic supercharges are then given in terms of the fields defined
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above by

Q ȧ
L = e−iπ/4

∫
dσ

[
1

2
PZη

ȧ
L + Z ′(iq̃ η̄ ȧ

R − q η ȧ
L ) + iZη ȧ

L

− εȧḃ
(
i

2
PȲ η̄Lḃ + Ȳ ′(q̃ η

Rḃ − iq η̄Lḃ) + Ȳ η̄
Lḃ

)
− 1

2
εȧḃPḃaχ

a
+ − (X ȧa)′(iq̃ χ̄−a + q εabχ

b
+)

]
,

QRȧ = e−iπ/4
∫

dσ

[
1

2
PZ̄ηRȧ + Z̄ ′(iq̃ η̄Lȧ + q ηRȧ) + iZ̄ηRȧ

+ εȧḃ

(
i

2
PY η̄

ḃ
R + Y ′(q̃ η ḃ

L + iq η̄ ḃ
R ) + Y η̄ ḃ

R

)
− 1

2
Pȧaχ

a
− + εȧḃ(X

ḃa)′(iq̃ χ̄+a + q εabχ
b
−)

]
.

(5.112)

It will prove more useful to us to work in momentum space by introducing

creation and annihilation operators. We define annihilation operators for the

massive bosons as

aLz(p) =
1√
2π

∫
dσ√
ωL
p

(
ωL
p Z̄ +

i

2
PZ̄

)
e−ipσ,

aRz(p) =
1√
2π

∫
dσ√
ωR
p

(
ωR
pZ +

i

2
PZ

)
e−ipσ,

aLy(p) =
1√
2π

∫
dσ√
ωL
p

(
ωL
p Ȳ +

i

2
PȲ

)
e−ipσ,

aRy(p) =
1√
2π

∫
dσ√
ωR
p

(
ωR
p Y +

i

2
PY

)
e−ipσ,

(5.113)

and for the massless bosons as

aȧa(p) =
1√
2π

∫
dσ√
ω̃p

(
ω̃pXȧa +

i

2
Pȧa

)
e−ipσ, (5.114)

where Xȧa =
(
X ȧa

)†
. We also define annihilation operators for the massive

fermions as

dLȧ(p) = +
e+iπ/4

√
2π

∫
dσ√
ωL
p

εȧḃ(f
L
p η

ḃ
L + igL

p η̄
ḃ

R )e−ipσ,

d ȧ
R (p) = −e

+iπ/4

√
2π

∫
dσ√
ωR
p

εȧḃ(fR
p ηRḃ + igR

p η̄Lḃ)e
−ipσ , (5.115)

and for the massless fermions as

d̃a(p) =
e−iπ/4√

2π

∫
dσ√
ω̃p

(
f̃pχ̄+a − ig̃pεabχ b

−

)
e−ipσ,

da(p) =
e+iπ/4

√
2π

∫
dσ√
ω̃p

(
f̃pεabχ

b
+ − ig̃pχ̄−b

)
e−ipσ. (5.116)
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Creation operators are then given by complex conjugation.

Our definitions of the annihilation operators above involve the dispersion

parameters ωL
p , ωR

p and ω̃p and the fermion wavefunction parameters fL
p , fR

p

and f̃p. In the absence of NS-NS flux, the excitations of the near-plane-wave

limit would have the usual relativistic dispersion given as a function of the

mass m of the excitation

ω(m, p) =
√
m2 + p2 . (5.117)

However for non-zero q the massive dispersion is altered, and there are two

distinct dispersion relations corresponding to the different excitations we have

labelled left and right. These are given by

ωL
p =

√
q̃2 + (p+ q)2 , ωR

p =
√
q̃2 + (p− q)2 . (5.118)

In choosing the fermion wavefunction parameters we want to ensure that the

creation and annihilation operators all satisfy the canonical commutation and

anticommutation relations

[a†Lz(p1), aLz(p2)] = [a†Rz(p1), aRz(p2)] = δ(p1 − p2),

[a†Ly(p1), aLy(p2)] = [a†Ry(p1), aRy(p2)] = δ(p1 − p2),

[aḃb†(p1), aȧa(p2)] = δḃȧδ
b
aδ(p1 − p2),

{dȧL†(p1), dLḃ(p2)} = {d†
Rḃ

(p1), dȧR(p2)} = δȧ
ḃ
δ(p1 − p2),

{d̃a†(p1), d̃b(p2)} = {da†(p1), db(p2)} = δab δ(p1 − p2) (5.119)

These (anti)commutators hold provided we choose the wavefunction parame-

ters to satisfy

(fL
p )2 + (gL

p)2 = ωL
p , (fR

p )2 + (gR
p )2 = ωR

p , (f̃p)
2 + (g̃p)

2 = ω̃p (5.120)

and

fL
p g

R
−p + fR

−pg
L
p = f̃pg̃−p + f̃−pg̃p = 0 . (5.121)

We make the following choice which satisfies these conditions:

fL
p =

√
1 + qp+ ωL

p

2
, fR

p =

√
1− qp+ ωR

p

2
, f̃p =

√
qp+ ω̃p

2
,

gL
p = − q̃p

2fL
p

, gR
p = − q̃p

2fR
p

, g̃p = − q̃p

2f̃p
. (5.122)

In terms of the creation and annihilation operators defined above with
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these choices of the wavefunction parameters, the supercharges are given by

Q ȧ
L =

∫
dp

[
(d ȧ

L
†aLy + εȧḃa†LzdLḃ)f

L
p + (a†Ryd

ȧ
R + εȧḃd†

Rḃ
aRz)g

R
p

+ (εȧḃd̃a†aḃa + aȧa†da)f̃p

]
,

QRȧ =

∫
dp

[
(d†

RȧaRy − εȧḃa
†
Rzd

ḃ
R )fR

p + (a†LydLȧ − εȧḃd
ḃ

L
†aLz)g

L
p

+ (da†aȧa − εȧḃa
ḃa†d̃a)g̃p

]
.

(5.123)

We can now confirm that these supercharges obey the algebra (5.100) with

the charges given in terms of oscillators as follows. The Hamiltonian is given

by

H =

∫
dp

[(
a†LzaLz + a†LyaLy + d ȧ

L
†dLȧ

) (
(fL
p )2 + (gL

p)2
)

+
(
a†RzaRz + a†RyaRy + d ȧ

R
†dRȧ

) (
(fR
p )2 + (gR

p )2
)

+
(
a†ȧaa

ȧa + da†da + d̃a†d̃a

)(
(f̃p)

2 + (g̃p)
2
)]

, (5.124)

the mass term is given by

M =

∫
dp

[(
a†LzaLz + a†LyaLy + d ȧ

L
†dLȧ

) (
(fL
p )2 − (gL

p)2
)

+
(
a†RzaRz + a†RyaRy + d ȧ

R
†dRȧ

) (
(fR
p )2 − (gR

p )2
)

+
(
a†ȧaa

ȧa + da†da + d̃a†d̃a

)(
(f̃p)

2 − (g̃p)
2
)]

, (5.125)

and the central charges are

C = C =

∫
dp

[(
a†LzaLz + a†LyaLy + d ȧ

L
†dLȧ

)
fL
p g

L
p

+
(
a†RzaRz + a†RyaRy + d ȧ

R
†dRȧ

)
fR
p g

R
p

+
(
a†ȧaa

ȧa + da†da + d̃a†d̃a

)
f̃pg̃p

]
. (5.126)

We define the 8+8 massive and massless states

|ZL,R〉 = a†L,R z |0〉 , |Y L,R〉 = a†L,R y |0〉 ,

|ηLȧ〉 = d ȧ†
L |0〉 , |ηR

ȧ〉 = d†
Rȧ |0〉 ,

|T ȧa〉 = aȧa† |0〉 , |χa〉 = da † |0〉 , |χ̃a〉 = d̃a † |0〉 .

(5.127)

The action of the supercharges (5.123) on these states gives rise to three ir-

reducible representations. We have one representation acting on the “left”

103



CHAPTER 5. THE WORLDSHEET S-MATRIX OF ADS3 × S3 × T 4

WITH MIXED-FLUX

massive states, with

Q ȧ
L |Y L

p 〉 = fL
p |ηLȧ

p 〉 , Q ȧ
L |ηLḃ

p 〉 = εȧḃ fL
p |ZL

p 〉 ,

QLȧ |ZL
p 〉 = −εȧḃ f

L
p |ηLḃ

p 〉 , QLȧ |ηLḃ
p 〉 = δ ḃ

ȧ f
L
p |Y L

p 〉 ,

QRȧ |ZL
p 〉 = −εȧḃ g

L
p |ηLḃ

p 〉 , QRȧ |ηLḃ
p 〉 = δ ḃ

ȧ g
L
p |Y L

p 〉 ,

Q ȧ
R |Y L

p 〉 = gL
p |ηLȧ

p 〉 , Q ȧ
R |ηLḃ

p 〉 = εȧḃ gL
p |ZL

p 〉 ,

(5.128)

and

Q ȧ
L |ZL

p 〉 = QLȧ |Y L
p 〉 = QRȧ |Y L

p 〉 = Q ȧ
R |ZL

p 〉 = 0 . (5.129)

We have similarly a “right” massive representation given by

Q ȧ
L |ZR

p 〉 = gR
p |ηRȧ

p 〉 , Q ȧ
L |ηRḃ

p 〉 = −εȧḃ gR
p |Y R

p 〉 ,

QLȧ |Y R
p 〉 = εȧḃ g

R
p |ηRḃ

p 〉 , QLȧ |ηRḃ
p 〉 = δ ḃ

ȧ g
R
p |ZR

p 〉 ,

QRȧ |Y R
p 〉 = εȧḃ f

R
p |ηRḃ

p 〉 , QRȧ |ηRḃ
p 〉 = δ ḃ

ȧ f
R
p |ZR

p 〉 ,

Q ȧ
R |ZR

p 〉 = fR
p |ηRȧ

p 〉 , Q ȧ
R |ηRḃ

p 〉 = −εȧḃ fR
p |Y R

p 〉 ,

(5.130)

and

Q ȧ
L |Y R

p 〉 = QLȧ |ZR
p 〉 = QRȧ |ZR

p 〉 = Q ȧ
R |Y R

p 〉 = 0 , (5.131)

and a single massless representation given by

Q ȧ
L |T ḃap 〉 = εȧḃf̃p |χ̃ap〉 , Q ȧ

L |χap〉 = f̃p |T ȧap 〉 ,

QLȧ |χ̃ap〉 = −εȧḃf̃p |T
ḃa
p 〉 , QLȧ |T ḃap 〉 = δ ḃ

ȧ f̃p |χap〉 ,

QRȧ |T ḃap 〉 = δ ḃ
ȧ g̃p |χap〉 , QRȧ |χ̃ap〉 = −εȧḃg̃p |T

ḃa
p 〉 ,

Q ȧ
R |χap〉 = g̃p |T ȧap 〉 , Q ȧ

R |T ḃap 〉 = εȧḃg̃p |χ̃ap〉 ,

(5.132)

and

Q ȧ
L |χ̃ap〉 = QLȧ |χap〉 = QRȧ |χap〉 = Q ȧ

R |χ̃ap〉 = 0 . (5.133)

We can read off the values of the charges H, M and C on the states directly

from equations (5.124), (5.125) and (5.126). H takes values

H |ZL, Y L, ηLȧ〉 =
√
q̃2 + (p+ q)2 |ZL, Y L, ηLȧ〉 ,

H |ZR, Y R, ηRȧ〉 =
√
q̃2 + (p− q)2 |ZR, Y R, ηRȧ〉 ,

H |T ḃap , χap, χ̃ap〉 =
√
p2 |T ḃap , χap, χ̃ap〉 . (5.134)

M takes values

M |ZL, Y L, ηLȧ〉 = (qp+ 1) |ZL, Y L, ηLȧ〉 ,

M |ZR, Y R, ηRȧ〉 = (qp− 1) |ZR, Y R, ηRȧ〉 ,

M |T ḃap , χap, χ̃ap〉 = qp |T ḃap , χap, χ̃ap〉 (5.135)
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which we will write hereafter as

M |Xp〉 = (qp+m) |Xp〉 (5.136)

with m suitably defined according to whether the excitation |Xp〉 is left/right-

massive or massless. Finally the value of the central charge is the same for all

excitations,

C |Xp〉 = C |Xp〉 = − q̃p
2
|Xp〉 . (5.137)

We note that acting on all excitations, the charges satisfy the condition

H2 = M2 + 4CC . (5.138)

This is the shortening condition, meaning that the representations described

above are short representations.

5.5.2 Exact representations

Having written down near-plane-wave representations of the algebra A, we

now deform these to produce exact representations. We first need the exact

values for the charges H, M, C and C. In section 5.4 we calculated the values

for C, C which are exact in worldsheet momentum using the hybrid expansion.

We need also to allow for corrections at finite order in λ. The central charges

have an overall normalisation proportional to the coupling constant h(λ, q̃).

From the worldsheet calculations we know this is given to leading order in

large λ by

h(λ, q̃) =

√
λ

2π
q̃ + . . . (5.139)

but we allow for subleading terms at finite-λ. The exact central charges are

C |Xp〉 = +
ih

2

(
e+ip − 1

)
|Xp〉 , C |Xp〉 = − ih

2

(
e−ip − 1

)
|Xp〉 . (5.140)

The worldsheet calculations of section 5.4 showed that the charge M re-

ceives no corrections at quartic order in fields. From this we expect the value of

M in equation (5.136) to be already exact in momentum. We can strengthen

this argument, and argue further that it also receives no corrections in 1√
λ

either by noting that M plays the role of an angular momentum in the world-

sheet theory. Thus we expect it to be quantized with integer values. When

we reinsert the factor of worldsheet momentum in equation (5.136) we have

M |Xp〉 =

(
m+

√
λ

2π
qp

)
|Xp〉 =

(
m+

kp

2π

)
|Xp〉 , (5.141)

where k ∈ Z is the WZW level. On-shell, a one-particle state with non-

zero winding has momentum p = 2πw where w ∈ Z is the winding number,
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and so M clearly takes integer value on such a state. We effectively have a

second coupling −k related to the WZW level by k = 2π−k. −k(λ) takes the same

form (5.139) as h(λ) at large λ but unlike h cannot receive any corrections

consistent with the integer quantization of M on a one-particle on-shell state.

Also, −k cannot have any non-linear momentum-dependence consistently with

the action of M on a multiparticle state.

Having exact forms for the charges M, C and C, we find the H by requir-

ing that the shortening condition (5.138) still holds for exact representations,

which must be true since the representations cannot change size in going to

the near-plane-wave limit. Thus we have H given by the all-loop dispersion

relation

H |Xp〉 =

√
(m+ −kp)2 + 4h2 sin2

(p
2

)
|Xp〉 (5.142)

To deform the near-plane-wave representations we look for representation

coefficients which reduce to fL,R
p , gL,R

p , f̃p, g̃p in the near-plane-wave limit and

produce the exact charges we have constructed. We absorb the mass |m| of the

representation into the definition of the representation coefficients instead of

defining distinct coefficients for massive and massless representations. Hence

we just have left- and right-coefficients. Consistently with our choices in the

near-plane-wave limit, we choose the massless representation to be given as

a |m| → 0 limit of the left-massive representation. We could find an equiva-

lent massless representation from the limit of the right-massive representation.

While the coefficients fL
p etc. were all real, we should no longer assume this

since we have seen that the exact central charge is not real. As such we in-

troduce coefficients aL,R
p , bL,R

p and their complex conjugates. We produce the

exact left-massive representation by replacing fL
p everywhere in (5.128) with

aL
p or āL

p and gL
p everywhere by bL

p or b̄L
p. Our choices are restricted by the

fact that the energy must be positive-definite. In fact this fixes the choices

uniquely up to an overall arbitrary choice of whether the product aL
pb

L
p gives

C or C. We then have the exact left-massive representation

Q ȧ
L |Y L

p 〉 = aL
p |ηLȧ

p 〉 , Q ȧ
L |ηLḃ

p 〉 = εȧḃ aL
p |ZL

p 〉 ,

QLȧ |ZL
p 〉 = −εȧḃ ā

L
p |ηLḃ

p 〉 , QLȧ |ηLḃ
p 〉 = δ ḃ

ȧ ā
L
p |Y L

p 〉 ,

QRȧ |ZL
p 〉 = −εȧḃ b

L
p |ηLḃ

p 〉 , QRȧ |ηLḃ
p 〉 = δ ḃ

ȧ b
L
p |Y L

p 〉 ,

Q ȧ
R |Y L

p 〉 = b̄L
p |ηLȧ

p 〉 , Q ȧ
R |ηLḃ

p 〉 = εȧḃ b̄L
p |ZL

p 〉 .

(5.143)

Similarly we have the exact right-massive representation

Q ȧ
L |ZR

p 〉 = bR
p |ηRȧ

p 〉 , Q ȧ
L |ηRḃ

p 〉 = −εȧḃ bR
p |Y R

p 〉 ,

QLȧ |Y R
p 〉 = εȧḃ b̄

R
p |ηRḃ

p 〉 , QLȧ |ηRḃ
p 〉 = δ ḃ

ȧ b̄
R
p |ZR

p 〉 ,

QRȧ |Y R
p 〉 = εȧḃ a

R
p |ηRḃ

p 〉 , QRȧ |ηRḃ
p 〉 = δ ḃ

ȧ a
R
p |ZR

p 〉 ,

Q ȧ
R |ZR

p 〉 = āR
p |ηRȧ

p 〉 , Q ȧ
R |ηRḃ

p 〉 = −εȧḃ āR
p |Y R

p 〉 ,

(5.144)
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and the exact massless representation

Q ȧ
L |T ḃap 〉 = εȧḃaL

p |χ̃ap〉 , Q ȧ
L |χap〉 = aL

p |T ȧap 〉 ,

QLȧ |χ̃ap〉 = −εȧḃā
L
p |T ḃap 〉 , QLȧ |T ḃap 〉 = δ ḃ

ȧ ā
L
p |χap〉 ,

QRȧ |T ḃap 〉 = δ ḃ
ȧ b

L
p |χap〉 , QRȧ |χ̃ap〉 = −εȧḃb

L
p |T ḃap 〉 ,

Q ȧ
R |χap〉 = b̄L

p |T ȧap 〉 , Q ȧ
R |T ḃap 〉 = εȧḃb̄L

p |χ̃ap〉 .

(5.145)

We make a choice of representation parameters that produce the correct

charges as follows. We take

aL,R
p = ηL,R

p eiξ, āL,R
p = ηL,R

p e−ip/2e−iξ,

bL,R
p = − ηL,R

p

x−L,R p
e−ip/2eiξ, b̄L,R

p = − ηL,R
p

x+
L,R p

e−iξ
(5.146)

where

ηL,R
p = eip/4

√
ih

2
(x−L,R p − x+

L,R p), (5.147)

and x±L , x±R are two sets of so-called Zhukovski variables. We define them here

to satisfy

x+
L p

x−L p
= eip, x+

L p +
1

x+
L p

− x−L p −
1

x−L p
=

2i (|m|+ k p)

h
,

x+
R p

x−R p
= eip, x+

R p +
1

x+
R p

− x−R p −
1

x−R p
=

2i (|m| − k p)
h

.

(5.148)

An explicit solution to this is

x±L p =
(|m|+ kp) +

√
(|m|+ kp)2 + 4h2 sin2(p2)

2h sin(p2)
e±

i
2
p,

x±R p =
(|m| − kp) +

√
(|m| − kp)2 + 4h2 sin2(p2)

2h sin(p2)
e±

i
2
p,

(5.149)

We end this section with two tensor product representations that we will

need in the S-matrix calculations of the next section. First, we note that

we can obtain the psu(1|1)4 representations (5.143), (5.144) and (5.145) as

tensor products of su(1|1)2 representations as follows. We consider one su(1|1)2

representation which we label %L given by

QL |φL
p〉 = aL

p |ψL
p〉 , QL |ψL

p〉 = āL
p |φL

p〉 ,

QR |ψL
p〉 = bL

p |φL
p〉 , QR |φL

p〉 = b̄L
p |ψL

p〉 ,
(5.150)

and another which we label %R given by

QL |ψR
p 〉 = bR

p |φR
p 〉 , QL |φR

p 〉 = b̄R
p |ψR

p 〉 ,

QR |φR
p 〉 = aR

p |ψR
p 〉 , QR |ψR

p 〉 = āR
p |φR

p 〉 .
(5.151)
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We also define a representation %̃L which is similar to %L with fermionic and

bosonic states interchanged,

QL |ψ̃L
p〉 = aL

p |φ̃L
p〉 , QL |φ̃L

p〉 = āL
p |ψ̃L

p〉 ,

QR |φ̃L
p〉 = bL

p |ψ̃L
p〉 , QR |ψ̃L

p〉 = b̄L
p |φ̃L

p〉 ,
(5.152)

We obtain the psu(1|1)4 representations by taking appropriate tensor products

of these su(1|1)2 representations. We define operators of the tensor product(
su(1|1)2

)2
by

Q 1
L = QL ⊗ 1, Q 2

L = 1⊗QL, QR1 = QR ⊗ 1, QR2 = 1⊗QR,

QL1 = QL ⊗ 1, QL2 = 1⊗QL, Q 1
R = QR ⊗ 1, Q 2

R = 1⊗QR,

(5.153)

Then we obtain the representation (5.143) from %L ⊗ %L with states given by

Y L = φL ⊗ φL , ηL1 = ψL ⊗ φL ,

ZL = ψL ⊗ ψL , ηL2 = φL ⊗ ψL . (5.154)

The representation (5.144) is obtained from %R ⊗ %R with states

Y R = φR ⊗ φR , ηR
1 = ψR ⊗ φR ,

ZR = ψR ⊗ ψR ηR
2 = φR ⊗ ψR . (5.155)

The massless representations (5.145) are obtained from (%L ⊗ %̃L)⊕2 with states

T 1a =
(
ψL ⊗ ψ̃L

)a
, χ̃a =

(
ψL ⊗ φ̃L

)a
,

T 2a =
(
φL ⊗ φ̃L

)a
, χa =

(
φL ⊗ ψ̃L

)a
. (5.156)

In the next section we will first construct S-matrices which are invariant under

these su(1|1)2 representations and then the full psu(1|1)4-invariant S-matrices

will follow from taking appropriate tensor products.

We also need to describe the two-particle representations of the algebra.

We construct these as tensor products of one-particle representations. A com-

plicating factor is that we need to pick the phase ξ which appears in the repre-

sentations parameters in equation (5.146) appropriately. For the one-particle

representations we can choose ξ = 0. However, for a two-particle representa-

tion with two phases ξ1 and ξ2, the choice ξ1 = ξ2 = 0 is not consistent with

the correct values for the central charges. Given a general two-particle state

|XpYq〉, we want the central charge to take the same form as before but with

the one-particle momentum replaced with the total momentum p + q. That

is, we require

C |XpYq〉 =
ih

2

(
ei(p+q) − 1

)
|XpYq〉 . (5.157)
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This requires us to choose the two phases ξ1 and ξ2 as either

ξ1 = 0 , ξ2 = p/2 , (5.158)

or

ξ1 = q/2 , ξ2 = 0 . (5.159)

We use the first choice. The two-particle supercharges Q(12) are then defined

by

Q ȧ
L (12)(p, q) = Q ȧ

L (p)⊗ 1 + e+ i
2
pΣ⊗Q ȧ

L (q) ,

QRȧ(12)(p, q) = QRȧ(p)⊗ 1 + e+ i
2
pΣ⊗QRȧ(q) ,

QLȧ(12)(p, q) = QLȧ(p)⊗ 1 + e−
i
2
pΣ⊗QLȧ(q) ,

Q ȧ
R (12)(p, q) = Q ȧ

R (p)⊗ 1 + e−
i
2
pΣ⊗Q ȧ

R (q) ,

(5.160)

where Σ is the fermion-sign matrices taking values of +1 and -1 on bosons and

fermions respectively. Note that in equation (5.160) we have explicitly put the

phase factor in such a way that the one-particle supercharges in both parts of

the tensor product still have zero phase.

5.6 The all-loop S-matrix

In this section we describe the derivation of the all-loop S-matrix from the sym-

metry algebra described in the previous section. We begin by constructing a

set of S-matrices which are invariant under the various two-particle represen-

tations of su(1|1)2: one for the scattering of two particles both transforming

under %L; one for the scattering of a particle transforming under %L with one

transforming under %R etc. We will then discuss the appropriate tensor prod-

ucts of these su(1|1)2 S-matrices to produce the full psu(1|1)4 S-matrix.

As defined in equation (5.6), the S-matrix relates a basis of in-states to

one of out-states. These two bases are naturally related however, and we can

choose to use a single basis of states with in-states and out-states distinguished

by the ordering of momentum. A natural basis to use is one where the two-

particle state |XpYq〉 describes an in-state if p > q and an out-state if q > p,

see figure 7. We will choose to always order momenta such that p > q, hence

|XpYq〉 is unambiguously an in-state while |YqXp〉 is an out-state.

The key condition we use to determine the S-matrix S(12) is consistency

with the symmetries described by the supercharges Q(12). This consistency

demands that S(12) commutes with all the supercharges, i.e.

S(12)(p, q) Q(12)(p, q) = Q(12)(q, p) S(12)(p, q). (5.161)

The different ordering of momenta in Q(12) on each side is due to the fact that

on the left Q(12) acts on an in-state while on the right it acts on an out-state.

Scattering processes in 1+1 dimensions can be divided between transmis-
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1 2

p q

1 2

q p

2 1

q p

In-state

Out-state after transmission

Out-state after reflection

Figure 7: In-states and out-states after scattering processes of reflection and
transmission.

sion processes and reflection processes, see figure 7. Since the S-matrix acts

non-trivially on the flavour indices, this distinction only matters for scattering

of two particles transforming under different representations. For example, if

X L
p transforms in %L and X R

q transforms under %R then we can write8

S |X L
p X R

q 〉 = Tpq
∑
Y
|YR
q YL

p 〉+Rpq
∑
Y
|YL
qYR

p 〉 , (5.162)

where Tpq and Rpq are transmission and reflection amplitudes respectively.

However, we can set Rpq = 0 immediately in this case by the following argu-

ment. Since the symmetry condition (5.161) has to hold for all supercharges it

also must hold for all anticommutators of the supercharges and in particular

for H. This is just the statement that scattering preserves the total energy.

But, with a value for the angular momentum m of +1 in %L and -1 in %R, a

non-zero reflection amplitude in the symmetry condition would require

E(p, 1) + E(q,−1) = E(q, 1) + E(p,−1) (5.163)

which does not hold for the energy E(p,m) in equation (5.142). We will

determine the scattering amplitudes as functions of the Zhukovski variables

and so only implicitly as functions of m, but we will assume that whenever we

scatter particles in different representations a different value for the angular

momentum is being used for each and so we have only transmission. When we

come to describe the tensor products of su(1|1)2 S-matrices we will confirm

that this assumption was correct.

5.6.1 su(1|1)2-invariant S-matrices

To show explicitly how the S-matrix is determined by symmetry conditions,

consider the scattering of two particles in the %L representation. In the basis

8By
∑
Y we mean a sum over possible flavours of out-states |Y〉.
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(|φL
pφ

L
q〉 , |φL

pψ
L
q 〉 , |ψL

pφ
L
q〉 , |ψL

pψ
L
q 〉), the two-particle supercharges are given by

QL(p, q) =


0 0 0 0

e
ip
2 ηL

q 0 0 0

ηL
p 0 0 0

0 ηL
p −e

ip
2 ηL

q 0

 ,

QR(p, q) =



0 − e
i
2 (p−q)

x−Lq
ηL
q − e

−ip
2

x−Lp
ηL
p 0

0 0 0 − e
−ip

2

x−Lp
ηL
p

0 0 0 e
i
2 (p−q)

x−Lq
ηL
q

0 0 0 0


. (5.164)

Now requiring that equation (5.161) holds for both these supercharges and

their conjugates, the S-matrix is determined to be

SLL(p, q) =


ALL
pq 0 0 0

0 CLL
pq DLL

pq 0

0 BLL
pq ELL

pq 0

0 0 0 F LL
pq

 (5.165)

where expressions for the elements ALL
pq , . . . are given in appendix L. As equa-

tion (5.161) is linear, there is an overall undetermined normalisation. We

choose to set ALL
pq = 1, and then the overall normalisation will reappear as a

dressing factor later.

Similarly we compute the S-matrix for scattering in other representations.

We noted earlier that the representation %̃L is related to %L by a choice of

different highest weight state. This ensures that the S-matrices for scattering

of a particle transforming under %L with one transforming under %̃L, and for

scattering of two particles transforming under %̃L, are related to the S-matrix

above by a change of basis. Altogether we write the action of the S-matrices

we compute as follows. First for all “left-left” scattering:

SLL |φL
pφ

L
q〉 = ALL

pq |φL
qφ

L
p〉 , SLL |φL

pψ
L
q 〉 = BLL

pq |ψL
qφ

L
p〉+ CLL

pq |φL
qψ

L
p〉 ,

SLL |ψL
pψ

L
q 〉 = F LL

pq |ψL
qψ

L
p〉 , SLL |ψL

pφ
L
q〉 = DLL

pq |φL
qψ

L
p〉+ ELL

pq |ψL
qφ

L
p〉 ,

(5.166)

S L̃L̃ |φ̃L
pφ̃

L
q〉 = −F LL

pq |φ̃L
q φ̃

L
p〉 , S L̃L̃ |φ̃L

pψ̃
L
q 〉 = DLL

pq |ψ̃L
q φ̃

L
p〉 − ELL

pq |φ̃L
q ψ̃

L
p〉 ,

S L̃L̃ |ψ̃L
p ψ̃

L
q 〉 = −ALL

pq |ψ̃L
q ψ̃

L
p〉 , S L̃L̃ |ψ̃L

p φ̃
L
q〉 = BLL

pq |φ̃L
q ψ̃

L
p〉 − CLL

pq |ψ̃L
q φ̃

L
p〉 ,

(5.167)
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SLL̃ |φL
pφ̃

L
q〉 = BLL

pq |φ̃L
qφ

L
p〉 − CLL

pq |ψ̃L
qψ

L
p〉 , SLL̃ |φL

pψ̃
L
q 〉 = ALL

pq |ψ̃L
qφ

L
p〉 ,

SLL̃ |ψL
p ψ̃

L
q 〉 = −DLL

pq |ψ̃L
qψ

L
p〉+ ELL

pq |φ̃L
qφ

L
p〉 , SLL̃ |ψL

p φ̃
L
q〉 = −F LL

pq |φ̃L
qψ

L
p〉 ,

(5.168)

S L̃L |φ̃L
pφ

L
q〉 = DLL

pq |φL
q φ̃

L
p〉+ ELL

pq |ψL
q ψ̃

L
p〉 , S L̃L |φ̃L

pψ
L
q 〉 = −F LL

pq |ψL
q φ̃

L
p〉 ,

S L̃L |ψ̃L
pψ

L
q 〉 = −BLL

pq |ψL
q ψ̃

L
p〉 − CLL

pq |φL
q φ̃

L
p〉 , S L̃L |ψ̃L

pφ
L
q〉 = ALL

pq |φL
q ψ̃

L
p〉 .

(5.169)

Next for “left-right” scattering:

SLR |φL
pφ

R
q 〉 = ALR

pq |φR
q φ

L
p〉+BLR

pq |ψR
q ψ

L
p〉 , SLR |φL

pψ
R
q 〉 = CLR

pq |ψR
q φ

L
p〉 ,

SLR |ψL
pψ

R
q 〉 = ELR

pq |ψR
q ψ

L
p〉+ F LR

pq |φR
q φ

L
p〉 , SLR |ψL

pφ
R
q 〉 = DLR

pq |φR
qψ

L
p〉 ,

(5.170)

SRL |φR
pφ

L
q〉 = ARL

pq |φL
qφ

R
p 〉+BLR

pq |ψL
qψ

R
p 〉 , SRL |φR

pψ
L
q 〉 = CRL

pq |ψL
qφ

R
p 〉 ,

SRL |ψR
pψ

L
q 〉 = ERL

pq |ψL
qψ

R
p 〉+ FRL

pq |φL
qφ

R
p 〉 , SRL |ψR

pφ
L
q〉 = DRL

pq |φL
qψ

R
p 〉 ,
(5.171)

S L̃R |φ̃L
pφ

R
q 〉 = +DLR

pq |φR
q φ̃

L
p〉 , S L̃R |φ̃L

pψ
R
q 〉 = −ELR

pq |ψR
q φ̃

L
p〉 − F LR

pq |φR
q ψ̃

L
p〉 ,

S L̃R |ψ̃L
pψ

R
q 〉 = −CLR

pq |ψR
q ψ̃

L
p〉 , S L̃R |ψ̃L

pφ
R
q 〉 = +ALR

pq |φR
q ψ̃

L
p〉 −BLR

pq |ψR
q φ̃

L
p〉 ,

(5.172)

SRL̃ |φR
p φ̃

L
q〉 = +CRL

pq |φ̃L
qφ

R
p 〉 , SRL̃ |φR

p ψ̃
L
q 〉 = +ARL

pq |ψ̃L
qφ

R
p 〉 −BRL

pq |φ̃L
qψ

R
p 〉 ,

SRL̃ |ψR
p ψ̃

L
q 〉 = −DRL

pq |ψ̃L
qψ

R
p 〉 , SRL̃ |ψR

p φ̃
L
q〉 = −ERL

pq |φ̃L
qψ

R
p 〉+ FRL

pq |ψ̃L
qφ

R
p 〉 .

(5.173)

The S-matrices for “right-left” and “right-right” scattering are obtained by

the use of left-right symmetry on the above.

5.6.2 psu(1|1)4-invariant S-matrices

We have found the su(1|1)2-invariant S-matrices. To find the full psu(1|1)4-

invariant S-matrices, we need in principle to look for 16 x 16 matrices which

satisfy (5.161) for the two-particle supercharges of the full algebra. However,

since the psu(1|1)4 supercharges are obtained by tensor products of the su(1|1)2

supercharges, we can obtain the full S-matrix by taking tensor products of

the S-matrices we have already computed. We have to take a graded tensor

product however, to account for the correct ordering of the two tensor products

taking us from su(1|1)2 to psu(1|1)4, and from one-particle to two-particle

representations, the latter of which is graded. We define the graded tensor

product we need as follows. Consider a basis for two-particle psu(1|1)4 states
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given naturally in terms of su(1|1)2 states as follows:

(|φpφpφqφq〉 , |φpφpφqψq〉 , |φpφpψqφq〉 , . . . |ψpψpψqψq〉) (5.174)

where each particle is in an appropriate representation. For example, in defin-

ing the graded tensor product SLL⊗̂ SLL̃, this basis is

(|φL
pφ

L
pφ

L
qφ

L̃
q〉 , |φL

pφ
L
pφ

L
qψ

L̃
q 〉 , |φL

pφ
L
pψ

L
qφ

L̃
q〉 , . . . |ψL

pψ
L
pψ

L
qψ

L̃
q 〉)

=(|Y L
p T

2a
q 〉 , |Y L

p χ
a
q〉 , |Y L

p χ̃
a
q〉 , . . . |ZL

pT
1a
q 〉) (5.175)

and so this clearly describes scattering between a left-massive and massless

particle. We define the graded tensor product S(1)
su(1|1)2⊗̂ S

(2)
su(1|1)2 in such a

basis in terms of the normal tensor product by

S(1)
su(1|1)2⊗̂ S

(2)
su(1|1)2 = P

(
S(1)
su(1|1)2 ⊗ S

(2)
su(1|1)2

)
P (5.176)

where

P = 12 ⊗


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 −1

⊗ 12 (5.177)

The full S-matrix S factorises into sectors for massive-only, massless-only

and massive-massive scattering. We denote the massive-massive S-matrix by

S••, the massless-massless S-matrix by S◦◦ and the mixed-mass S-matrices

by S◦•, S•◦. The massive psu(1|1)4 representations are %L ⊗ %L and %R ⊗ %R.

Therefore the graded tensor products of su(1|1)2 S-matrices giving rise to

the massive psu(1|1)4 S-matrix S•• are SLL ⊗̂ SLL, SRL ⊗̂ SRL, SLR ⊗̂ SLR and

SRR ⊗̂ SRR. Each of these comes with its own undetermined dressing factor

since we have not determined the normalisations of the su(1|1)2 S-matrices.

Hence the S-matrix for the massive-massive sector is given by

S•• =

(
σ••LL SLL ⊗̂ SLL σ̃••RL SRL ⊗̂ SRL

σ̃••LR SLR ⊗̂ SLR σ••RR SRR ⊗̂ SRR

)
. (5.178)

The dressing factors are related by left-right symmetry, so we can define func-

tions σ•• and σ̃•• of the Zhukovski variables such that

σ••LL(p, q) = σ••(x±p L, x
±
q L), σ••RR(p, q) = σ••(x±pR, x

±
q R),

σ̃••LR(p, q) = σ̃••(x±p L, x
±
q R), σ̃••RL(p, q) = σ̃••(x±pR, x

±
q L) ,

(5.179)

The massless psu(1|1)4 representations are (%L ⊗ %L̃)⊕2. The tensor sum

corresponds to transformations under su(2)◦ which acts on the indices a, b . . . .

Hence the graded tensor products of su(1|1)2 S-matrices giving rise to the

massive-massless psu(1|1)4 S-matrix S•◦ are SLL ⊗̂ SLL̃ and SRL ⊗̂ SRL̃, and

113



CHAPTER 5. THE WORLDSHEET S-MATRIX OF ADS3 × S3 × T 4

WITH MIXED-FLUX

each comes as a doublet under su(2)◦. Hence S•◦ is given by

S•◦ =
[
σ•◦L (SLL ⊗ SLL̃)⊕2

]
⊕
[
σ•◦R (SRL ⊗ SRL̃)⊕2

]
. (5.180)

Left-right symmetry again means we can write the two dressing factors in

terms of a single function σ•◦ of the Zhukovski variables, with

σ•◦L (p, q) = σ•◦(x±L p, x
±
L q), σ•◦R (p, q) = σ•◦(x±R p, x

±
R q) . (5.181)

Similarly, S◦• is given by

S◦• =
[
σ◦•L (SLL ⊗ S L̃L)⊕2

]
⊕
[
σ◦•R (SLR ⊗ S L̃R)⊕2

]
, (5.182)

with

σ◦•L (p, q) = σ◦•(x±L p, x
±
L q), σ◦•R (p, q) = σ◦•(x±R p, x

±
R q) . (5.183)

Taking two copies of the massless representation (%L ⊗ %L̃)⊕2, we see that

the massless psu(1|1)4 S-matrix S◦◦ arises from four copies of SLL ⊗̂ S L̃L̃, that

transform under su(2)◦, so S◦◦ is given as a tensor product of SLL ⊗̂ S L̃L̃ with

an su(2)-invariant S-matrix, that is

S◦◦ = σ◦◦ Ssu(2) ⊗
(
SLL ⊗̂ S L̃L̃

)
. (5.184)

The full S-matrix has been determined up to the dressing factors. These

are subject to several constraints namely, unitarity of the full S-matrix and

crossing symmetry [142] which gives rise to the crossing equations. These are

discussed for the dressing factors here in [2].

5.7 Chapter conclusions and outlook

In this chapter we have seen how the complete all-loop S-matrix for scattering

of fundamental excitations in AdS3 × S3 × T 4 with mixed-flux can be derived

from the symmetry algebra of the theory. By deriving the algebra of symme-

try currents from the Green-Schwarz action, rather than the coset action, we

avoid the problems associated with massless excitations in the coset action and

thus find an S-matrix which includes massless excitations. The massive sector

of the S-matrix derived here reproduces the results found in [115, 116]. In

particular the results here support the dispersion relation proposed in [116]9.

The dispersion relation for mixed-flux excitations represents an important dif-

ference from the results of the pure R-R background. In particular, as we

have seen, the left- and right-massive representations are different for q 6= 0.

9However recently perturbative worldsheet calculations to two loops [108] have suggested
a disagreement with the proposed exact massless dispersion relation.
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When we take the limit q → 0 of the S-matrix computed in this chapter we

reproduce the exact complete pure R-R S-matrix found in [64,65].

One natural development from the work described in this chapter and re-

lated papers [64,65,131] is to study the inclusion of massless excitations in the

S-matrices of other AdS backgrounds where these massless modes are present,

such as in the integrable AdS2 backgrounds. Some progress in this direction

was made in [143]. There expressions for massless scattering constructed by

taking massless limits in representations obtained from the coset symmetry

algebra were tested against arguments from Yangian symmetry [144].

An interesting prospect raised by the developments in integrability for

the mixed-flux AdS3 dualities is to consider the limit q → 1 and thus de-

scribe the pure NS-NS backgrounds using integrability. AdS3 backgrounds

with pure NS-NS flux were studied before the discovery of integrability in

holography using worldsheet CFT techniques [29–36] and so it might be pos-

sible to make a connection between these approaches and integrability. The

pure NS-NS backgrounds have been studied from an integrability perspective

recently in [145].

The exact S-matrix derived in this chapter has two parameters: the flux

parameter q and the coupling constant λ. In [131] where the exact S-matrix

for AdS3×S3×S3×S1 was found using the same approach, this was extended

to a three-parameter family with the addition of the parameter α describing

the relative S3 radii. The complex set of quantum integrable models being

explored by these techniques provides good opportunities for exploring inte-

grability in holography in quite general settings.

In the context of relativistic two-dimensional quantum field theories, mass-

less integrable models had been studied in the early 1990s in an effort to un-

derstand renormalization group flows [146–151]. These results relate only to

relativistic field theories, while the massless modes that enter the AdS3/CFT2

correspondence are non-relativistic. It would be interesting to look at the

near-relativistic limit of the S-matrix constructed in this chapter in order to

see whether some of the relativistic S-matrices found previously can be ob-

tained as limits of the AdS3/CFT2 S-matrix.
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Conclusion

The gauge/string correspondence is a completely new way of understanding

quantum gauge and gravity theories. Since it is a weak/strong duality it

opens the door for understanding strongly-coupled gauge theories and highly

curved gravity in terms of the weakly-coupled duals. Perhaps more signif-

icantly, the duality states that these very different theories in fact describe

the same physics. As a result understanding exactly how holography works

remains of considerable interest.

In highly supersymmetric settings such as AdS5 × S5 and AdS4 × CP3,

integrability has proven to be a powerful tool in unravelling the inner workings

of the correspondence. In these theories integrability provides an explicit tool

for calculating anomalous dimensions of operators, or equivalently the energies

of closed string states, at all values of the coupling. As such it helps explain

exactly how these dualities work.

While integrability is unlikely to explain generic gauge/string duals, it can

be applied to other classes of duals. It was observed in [61] that AdS3/CFT2

backgrounds with 8+8 supersymmetries are likely to be integrable. However,

initial progress was not as rapid as in the case of AdS4/CFT3 as it was found

that these backgrounds possessed so called massless modes which were at first

more difficult to incorporate within the methods of integrability.

In this thesis we have investigated the AdS3/CFT2 correspondence by

studying two families of backgrounds: AdS3 × S3 × T 4 and AdS3 × S3 ×
S3 × S1, supported by mixed R-R and NS-NS fluxes. Our work has focused

on the role that the massless modes play in these settings. In chapter 3

we incorporated massless modes into the classical integrability machinery as

encoded in the algebraic curve and finite-gap equations. Our work focused on

the zero-cut sector which contained precisely the massless bosonic modes of

the theory. Previous implementations of the Virasoro constraints on the finite-

gap equations were appropriate to AdS5 × S5 and AdS4 × CP3 backgrounds,

but were not sufficiently general to take into account the multiple factors in

the geometry of the AdS3 backgrounds. We demonstrated how the Virasoro

constraints had to be implemented in this setting in a way that included these

massless modes. This led us to the so-called Generalised Residue Condition

(GRC) (3.44).

In chapter 4 we saw how fluctuations around this zero-cut sector can be

studied quite generally, and that quantum massless excitations remain decou-

pled as z = ±1 residue fluctuations. There is still a puzzle regarding what

could be thought of as the point where this distinction between cut-dynamics
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and residue-dynamics breaks down: for particular backgrounds where mas-

sive excitations become massless. Nonetheless our analysis provides the tools

necessary to investigate strings in a semi-classical setting. Such calculations

provide important information about the expressions for the phases of the

worldsheet S-matrix that cannot be fixed from symmetries alone, and allow

for comparisons with expressions for the phases obtained by solving crossing

equations.

In chapter 5 we saw how it is possible to incorporate massless excitations

into the all-loop S-matrix, with a resultant complete S-matrix factorising into

massive-massive, massless-massless and massive-massless sectors. As well as

being important for understanding 3d/2d dualities, progress in incorporating

massless sectors will have applications elsewhere, e.g. 2d/1d dualities, and

other cases with less supersymmetry.

As well as progress in applying integrability techniques to the massless

sectors of the theories, in this thesis we have also seen progress in extending

integrability to mixed-flux backgrounds. In chapter 5 we obtained mixed-flux,

q-dependent expressions for the quadratic action, supercharges and S-matrix.

As well as developing insight into a greater range of dualities, we have seen how

studying the mixed-flux backgrounds can provide greater insight into the pure

R-R backgrounds as well. For example, we saw that whereas in the derivation

of the exact S-matrix for the pure R-R theory from symmetries one has to

appeal to perturbative calculations to choose the pure-transmission S-matrix

over the pure-reflection S-matrix, in the mixed-flux case this choice can be

deduced solely from the symmetries.

The results obtained in this thesis using the semiclassical algebraic curve

and exact S-matrix techniques can be compared with results from perturbative

worldsheet calculations. The results in chapter 4 reproduce worldsheet results

in [112] and suggest further worldsheet calculations that could be carried out

in comparison. The exact results obtained in chapter 5 can be compared with

worldsheet results for dispersion relations and scattering in [107,108,114,152].

In this thesis we have focused on integrability on the string side of the

dualities. Exact results from the string side such as the all-loop S-matrix

lead to integrable spin-chains [95,96,98,99] that must describe certain weakly-

coupled sectors of the dual CFTs. However, for several years there was no real

evidence of integrability directly on the CFT side. One natural place where

one might have looked for signs of integrability on the CFT2 side was near

the SymN (T 4) orbifold point. An extensive study by Pakman, Rastelli and

Razamat [153] searched for signs of an integrable spin-chain by computing

anomalous dimensions of operators in the SymN (T 4) theory deformed by a

marginal operator. Despite a large effort, the authors were unable to identify

a spin-chain picture of the type discovered by Minahan and Zarembo [24].

More recently [39], evidence of integrability on the CFT2 side was found by
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studying the IR dynamics of two-dimensional gauge theories [154].

Integrability has shown itself to be an invaluable tool for understanding

low supersymmetry holography. In this thesis we have seen various contexts

where the scope of integrability to study these dualities has been widened

beyond its previous boundaries. By understanding more examples of exact

dualities, it can be hoped that we will gain general insights into the physics of

holography.
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Appendix A

Index conventions

In this appendix we give our conventions for indices. We denote worldsheet

coordinates by α, β, . . . = τ, σ; spacetime coordinates by indices m,n, . . . =

0, . . . 9; and so(1, 9) tangent coordinates by A,B, . . . = 0, . . . 9. We label the

two sets of spacetime spinors with indices I, J, . . . = 1, 2. Indices l,m . . . are

associated to the Cartan bases of supergroups and are carried by the associated

quasimomenta.

We also use indices referring to representations of the algebra so(4)1 ×
so(4)2, where so(4)1 corresponds to rotations along the AdS3 × S3 directions

transverse to the light-cone directions t and ψ and so(4)2 corresponds to ro-

tations along T 4. We use indices a, b, . . . = 1, 2 and ȧ, ḃ, . . . = 1, 2 for the

two Weyl spinors of so(4)1; and indices a, b, . . . = 1, 2 and ȧ, ḃ, . . . = 1, 2 for

the two Weyl spinors of so(4)2. We use indices i, j, . . . = 1, . . . , 4 for the

vector of so(4)1. We use the same indices for the transverse coordinates of

AdS3 and S3 themselves (zi and yi respectively) with the understanding that

z3 = z4 = y1 = y2 = 0. We use summation conventions on all indices listed

above.

We raise and lower spinor indices with epsilon symbols normalised as

ε12 = −ε12 = +1 . (A.1)

We also occasionally write εij , by this we will always mean an expression of

the following form

εijzi∂αzj = z1∂αz2 − z2∂αz1 , εijyi∂αyj = y3∂αy4 − y4∂αy3 . (A.2)

Similarly in our conventions

ż · ′z = żi
′
zi = ż1

′
z1 + ż2

′
z2 , ẏ · ′y = ẏi

′
yi = ẏ3

′
y3 + ẏ4

′
y4 . (A.3)
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Gamma matrices

We define AdS3 and S3 gamma matrices γA as

γ0 = −iσ3, γ1 = σ1, γ2 = σ2, γ3 = σ1, γ4 = σ2, γ5 = σ3. (B.1)

In addition we define

γ6 = σ1, γ7 = σ2, γ8 = σ3. (B.2)

In terms of these we define ten-dimensional gamma matrices ΓA by

ΓA = +σ1 ⊗ σ2 ⊗ γA ⊗ 1⊗ 1, A = 0, 1, 2,

ΓA = +σ1 ⊗ σ1 ⊗ 1⊗ γA ⊗ 1, A = 3, 4, 5,

ΓA = +σ1 ⊗ σ3 ⊗ 1⊗ 1⊗ γA, A = 6, 7, 8,

Γ9 = −σ2 ⊗ 1⊗ 1⊗ 1⊗ 1.

(B.3)

Further defining the matrices

T = −iσ2 ⊗ σ2 ⊗ σ2 ⊗ σ2 ⊗ σ2⊗ , C = Γ0 , B = −Γ0T , (B.4)

Majorana spinors θ are those whose Dirac and Majorana conjugates are equal,

θ̄ = θ†C = θtT , (B.5)

which is equivalent to the reality condition

θ∗ = Bθ . (B.6)

Note that the matrices T, C and B satisfy the relations

T †T = C†C = B†B = 1 ,

T † = T t = −T ,

C† = Ct = −C ,

B† = Bt = B . (B.7)
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Appendix C

Quasimomenta residues for

general solutions on

R× S3 × S1

The metric is

ds2 = R2

[
−dt2 +

1

cos2 φ
(dθ2 + cos2 θdψ2

1 + sin2 θdϕ2) +
1

sin2 φ
dψ2

2

]
. (C.1)

The group representative g is a direct sum g = g0 ⊕ g1 ⊕ g2 as before. g0 and

g2 are chosen exactly as in (3.49) and (3.48), but for g1 corresponding to the

full S3 we take

g1 =

√
1

2 cosφ


cos θeiψ1 − sin θe−iϕ 0 0

sin θeiϕ cos θe−iψ1 0 0

0 0 i sin θe−iϕ −i cos θeiψ1

0 0 i cos θe−iψ1 −i sin θeiϕ

 .

(C.2)

The current j is (with the first and third terms in the direct sum unchanged

from equation (3.50))

j =
dt

2


0 1 0 0

1 0 0 0

0 0 0 −1

0 0 −1 0

⊕ 1

2 cosφ


iu −v + iw 0 0

v + iw −iu 0 0

0 0 iu −v − iw
0 0 v − iw −iu



⊕ i

sinφ

dψ2

2


1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1

 , (C.3)

where u, v and w are all real one-forms given by

u = cos2 θdψ1 + sin2 θdϕ

v + iw = ei(ψ1+ϕ) (dθ + i sin θ cos θ(dϕ− dψ1)) . (C.4)
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As in section 3.3, we have again chosen a group representative satisfying

Ω(j) = −j and so j(2) = 1
2(j − Ω(j)) = j. We can confirm that

tr
[
(j(2))2

]
= tr(j2) = 2

[
dt2 − 1

cos2 φ

(
u2 + v2 + w2

)
− 1

sin2 φ
dψ2

2

]
= 2

[
dt2 − 1

cos2 φ

(
dθ2 + cos2 θdψ2

1 + sin2 θdϕ2
)
− 1

sin2 φ
dψ2

2

]
.

(C.5)

The relevant (S3) part of the Lax operator Lσ obtained from the current

in (C.3) is given by

Lσ =


ia −b+ ic 0 0

b+ ic −ia 0 0

0 0 ia −b− ic
0 0 b− ic −ia

 , (C.6)

with a, b and c given by

a =
1

2 cosφ

1

z2 − 1

[
(z2 + 1)uσ + 2zuτ

]
,

b =
1

2 cosφ

1

z2 − 1

[
(z2 + 1)vσ + 2zvτ

]
,

c =
1

2 cosφ

1

z2 − 1

[
(z2 + 1)wσ + 2zwτ

]
. (C.7)

We can find the residues of the quasimomenta on this space using the

WKB analysis (see section 3.2.2). We need the eigenvalues of V = −ihLσ in

the limit h = z ∓ 1→ 0. With Lσ as in equation (C.6), there is the following

eigenvalue of multiplicity 2:

1

2 cosφ

√
(uτ ± uσ)2 + (vτ ± vσ)2 + (wτ ± wσ)2 (C.8)

and of course the negative of this. Note that ± in this expression refers to the

limit z → ±1.

We therefore have expressions for the residues of the quasimomenta on

this space as follows. There are residues κ0 ± 2πm0 and κ3 ± 2πm2 given as

in equation (3.58) for the quasimomenta associated to R and S1. There are

generically two distinct quasimomenta p+
1 and p−1 associated to S3, but they

both have the same residues (with opposite signs as required by the inversion

symmetry); this equality of residues is seen in the fact that the residues of V

have multiplicity two. These residues are

κ1 ± 2πm1 =
1

cosφ

∫ 2π

0
dσ
√

(uτ ± uσ)2 + (vτ ± vσ)2 + (wτ ± wσ)2 . (C.9)

We can therefore see that the residues for all quasimomenta, including those on
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S3, are given naturally in terms of integrals of functions f±l (σ). Furthermore,

using equation (C.5), we can see that the condition (3.44) on these functions is

exactly the more familiar form of the Virasoro constraints on classical bosonic

strings on a curved background, here R× S3 × S1, namely

Gmn(Ẋm ±X ′m)(Ẋn ±X ′n) = 0 (C.10)

where Xm are the spacetime fields and Gmn is the spacetime metric.

Similarly for the quasimomenta for the full coset space of AdS3×S3×S3,

the Virasoro constraints in the form (C.10) can be seen to be equivalent to the

generalised residue conditions (3.43) and (3.44), not the null residue condition

(3.46).
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Appendix D

Generalised residue condition

for AdS5 × S5

The coset for strings on AdS5×S5 is PSU(2,2|4)
SO(4,1)×SO(5) . We follow the conventions

of the review [87]. The Cartan matrix for PSU(2, 2|4) is

A =



1

1 −2 1

1 −1

−1 2 −1

−1 1

1 −2 1

1


(D.1)

and the matrix S giving the inversion symmetry through equation (3.27) is

S =



1 −1

1 −1

1 −1

−1

−1 1

−1 1

−1 1


. (D.2)

The quasimomenta are pl with the index l running from 1 to 7. The

residues are given in terms of functions fl(σ) as in equation (3.43). The action

of the inversion symmetry on the residues (see equation (3.30)) means fl must

satisfy
7∑

m=1

Slmfm = −fl . (D.3)

Solving this inversion symmetry, we find that we can choose f1, f4 and f7

to be independent, while the remaining functions are given in terms of these

three:

f2 = f6 =
1

2
f4, f3 = f4 − f1, f5 = f4 − f7 . (D.4)

With these substitutions made, the version of the condition (3.109) on this

space is

0 =
7∑

l,m=1

Almflfm = f4

(
f1 + f7 −

1

2
f4

)
. (D.5)
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The values of fl for the BMN vacuum are

f1 + f7 = κ, f4 = 0 . (D.6)

For the residues of D(2, 1;α)2 we were able to solve the constraint on the

functions fl in such a way that we could have a range of solutions including

the BMN vacuum with residues for solutions away from the BMN vacuum

having qualitively different values. In particular in equation (3.111) the BMN

vacuum solution has ζ±−φ = χ± = 0, but other solutions could vary smoothly

away from this. In contrast, any solution to (D.5) must either have residues

identical to the BMN vacuum for some value of κ or be disconnected from

it: the solution f1 + f7 = 1
2f4 can only be smoothly connected to the BMN

vacuum when κ = 0.

130



Appendix E

Generalised residue condition

for AdS4 × CP 3

The coset for strings on AdS4 × CP 3 is OSp(6|4)
U(3)×SO(3,1) . The Cartan matrix of

OSp(6|4) is

A =


1

1 −2 1

1 −1 −1

−1 2

−1 2

 (E.1)

and the inversion symmetry matrix S is

S =


1 −1 −1

1 −1 −1

1 −1 −1

−1

−1

 . (E.2)

Now the quasimomenta are pl with l running from 1 to 5. The action of

the inversion symmetry on the residues means that there are 2 independent

functions f1 and f4, with the others given by

f2 = f5 = f4, f3 = 2f4 − f1 . (E.3)

Then in terms of f1 and f4, the condition the functions need to satisfy is

0 =

5∑
l,m=1

Almflfm = 2f4(2f1 − f4) . (E.4)

We see that this is very similar in form to the condition (D.5), and the argu-

ment from this point is identical to that in the last section. The BMN vacuum

has f4 = 0 and f1 = κ, and there is no other solution smoothly connected to

this.
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Generalised residue condition

for D(2, 1;α)2 in mixed grading

In section 3.4, we used a grading for D(2, 1;α)2 which involves bosonic Cartan

generators only. In [98] an alternative grading was used, involving bosonic

Cartan generators on one factor of D(2, 1;α) and fermionic generators on the

other. The Cartan matrix is given in this mixed grading by

A =



4 sin2 φ −2 sin2 φ

−2 sin2 φ −2 cos2 φ

−2 cos2 φ 4 cos2 φ

2 sin2 φ −2

2 sin2 φ 2 cos2 φ

−2 2 cos2 φ


(F.1)

and the matrix S defining the action of the inversion symmetry on the quasi-

momenta through equation (3.27) is given by

S =

 −1

−1 1 −1

−1

⊗ σ1 . (F.2)

Following the notation in [98], we take the index structure on the quasimo-

menta as follows: we have quasimomenta pl and pl̄ with l, l̄ = 1, 2, 3. The

upper left quadrant of A corresponds to indies l, the lower right to indices l̄,

and the factor of σ1 in S interchanges l and l̄.

The action of the inversion symmetry on the residues via equation (3.30)

means we can determine the functions fl̄ in terms of fl. We have:

f1̄ = f1, f3̄ = f3, f2̄ = f1 − f2 + f3 . (F.3)

We can insert this into the relevant equivalent of the condition (3.109) and we

find that:1

3∑
l,m

Almflfm =
3∑

l̄,m̄=1

Al̄m̄fl̄fm̄

= 4 sin2 φf1(f1 − f2) + 4 cos2 φf3(f3 − f2) . (F.4)

1Alm referring only to the upper-left components of A and Al̄m̄ to the lower-right com-
ponents.
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IN MIXED GRADING

In other words, in the mixed grading just as in the bosonic grading, the residue

condition is identical when considered either solely on left-movers or right-

movers. The full condition in this case is

3∑
l,m

Almflfm +
3∑

l̄,m̄=1

Al̄m̄fl̄fm̄ = 0 (F.5)

and so we have exactly the same condition with exactly the same analysis for

quasimomenta in the mixed grading as in bosonic grading.
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Decoupled S1 mode

In section 3.3 we showed that classical solutions corresponding to the “coset”

massless boson have residues that satisfy the GRC but not the old residue

conditions. Here we present the quasimomenta for classical solutions in AdS3×
S3 × S3 × S1 that correspond to the other massless boson associated to the

S1. We give these results only in lightcone gauge.

We consider the most general solution for the decoupled mode in lightcone

gauge, so explicitly the solution is1

x+ = κτ

x8 = x0 + α′p0τ + wσ

+

√
α′

2

∞∑
n=1

1√
n

(
ane
−in(τ+σ) + a†ne

in(τ+σ) + ãne
−in(τ−σ) + ã†ne

in(τ−σ)
)
.

(G.1)

The results are then very similar to those of the analogous solution for

the ”coset mode” in section 3.3.2. The Virasoro constraints determine x−.

Just as for the coset solution, we do not write down the full expression for

x1 as we only need integrals over σ of its derivatives. We note however, that

the expression for x− for this decoupled solution is very similar to that for

the coset solution; the only difference is to the zero mode contribution which

arose previously from x1, see equation (3.2). We must now also account for

the additional quasimomentum p9 coming from the coordinate u9 of the S1.

It is again purely analytic, so is given by equation (3.57) where the residues

κ9 ± 2πm9 are now given by

κ9 =
1

R

∫ 2π

0
dσ∂τx8 , 2πm9 =

1

R

∫ 2π

0
dσ∂σx8 . (G.2)

We then have the final solution for the quasimomenta of this decoupled

mode solution as follows: pl are given by equation (3.57) for l = 0, 1, 2, 9, with

the residues given as follows:

κ0 = 2πiκ+
iπα′

κR2

∞∑
n=1

n(ana
†
n + ãnã

†
n) +

iπ(α′2p2
0 + w2)

2κR2
, (G.3)

κ1 = −2πκ cosφ+
πα′ cosφ

κR2

∞∑
n=1

n(ana
†
n+ ãnã

†
n)+

π(α′2p2
0 + w2) cosφ

2κR2
, (G.4)

1x8 is defined in equation (3.2).
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κ2 = −2πκ sinφ+
πα′ sinφ

κR2

∞∑
n=1

n(ana
†
n + ãnã

†
n) +

π(α′2p2
0 + w2) sinφ

2κR2
, (G.5)

2πm0 =
iπα′

κR2

∞∑
n=1

n(ana
†
n − ãnã†n) +

iπα′p0w

κR2
, (G.6)

2πm1 =
πα′ cosφ

κR2

∞∑
n=1

n(ana
†
n − ãnã†n) +

πα′p0w cosφ

κR2
, (G.7)

2πm2 =
πα′ sinφ

κR2

∞∑
n=1

n(ana
†
n − ãnã†n) +

πα′p0w sinφ

κR2
, (G.8)

κ9 =
α′p0

R
, 2πm9 =

w

R
. (G.9)

This should be compared with the very similar expression (3.76) for the coset

mode solution. As in that case, we impose the level matching condition (3.77)

from σ-periodicity of t, and in this case this fixes

m1 = m2 = 0 (G.10)

so the only non-zero winding mode is m9.
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Appendix H

Spinor identity

In this appendix we show that for all spinors ε which are anti-chiral under Γ̃,

the following relation holds:

q̃

8
/Hmε =

q

48
/F /Emε . (H.1)

This identity is used several times in chapter 5.

We note first that /F can be expressed in any of the following ways:

/F = 12q̃(Γ012 + Γ345) = 12q̃Γ012(1 + Γ̃) = 12q̃Γ345(1 + Γ̃) . (H.2)

and that Γ̃ commutes with Γa for a = 6 . . . 9 while for a = 0 . . . 5:

(1± Γ̃)Γa = Γa(1∓ Γ̃) . (H.3)

Now for m = Xi (the T 4 coordinates), (H.1) is trivially true with both

sides equal to zero. For other m, we expand the right-hand side over the AdS3

and S3 coordinates separately:

q

48
/F /Emε =

qq̃

4

(
Γ012

2∑
a=0

EamΓa + Γ345
5∑

a=3

EamΓa

)
(1− Γ̃)ε

=
qq̃

2

(
Γ012

2∑
a=0

EamΓa + Γ345
5∑

a=3

EamΓa

)
ε

=
qq̃

4

( 2∑
a,b,c=0

εabcΓ
bcEam +

5∑
a,b,c=3

εabcΓ
bcEam

)
ε (H.4)

where ε012 = ε345 = 1. This last line is precisely the left-hand side of (H.1)

once we expand it in coordinates.
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Appendix I

Spin-connections

In this appendix we give explicit expressions for the spin-connection compo-

nents ωABm and the rotated spin-connection components ω̂ABm and ω̌ABm . We

also prove some identities with these rotated spin-connections that are used

in the main text.

The natural diagonal dreibein for the AdS3 metric (5.8) is

E A
m =

1

1 + y2

4

 1 0 0

0 1 0

0 0 1− y2

4

 . (I.1)

The tangent components of the spin connection for this dreibein are given by

ωAB =
1

2

1

1 + y2

4

 0 y3dy4 − y4dy3 2y3dψ

y4dy3 − y3dy4 0 2y4dψ

−2y3dψ −2y4dψ 0

 . (I.2)

Similarly we have the diagonal dreibein for the AdS3 metric

E A
m =

1

1− z2

4

 1 + z2

4 0 0

0 1 0

0 0 1

 , (I.3)

with spin connection components given by

ωAB =
1

2

1

1− z2

4

 0 2z1dt 2z2dt

−2z1dt 0 z2dz1 − z1dz2

−2z2dt z1dz2 − z2dz1 0

 . (I.4)

We change basis to the “rotated” dreibeins as follows. We note that

M̂−1
S3 γAM̂S3EAm = γAM̂A

BE
B
m , M̌−1

S3 γAM̌S3EAm = γAM̌A
BE

B
m (I.5)

where M̂A
B and M̌A

B the orthogonal matrices. Then we define the rotated

S3 dreibeins K̂ and Ǩ by

K̂A
m = M̂A

BE
B
m , Ǩa

m = M̌A
BE

B
m . (I.6)
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Explicitly the components of the rotated dreibeins are

K̂ A
m =


1 +

y2
3−y2

4
4 +y3y4

2 +y4

+y3y4

2 1− y2
3−y2

4
4 −y3

−y4

(
1− y2

4

)
+y3

(
1− y2

4

)
1


 + cosψ − sinψ 0

+ sinψ + cosψ 0

0 0 1



Ǩ A
m =


1 +

y2
3−y2

4
4 +y3y4

2 −y4

+y3y4

2 1− y2
3−y2

4
4 +y3

+y4

(
1− y2

4

)
−y3

(
1− y2

4

)
1


 + cosψ + sinψ 0

− sinψ + cosψ 0

0 0 1


(I.7)

Defining rotated drebeins for AdS3 similarly we find components for these

given by

K̂ A
m =


1 +z2

(
1 + z2

4

)
−z1

(
1 + z2

4

)
+z2 1− z2

1−z2
2

4 − z1z2
2

−z1 − z1z2
2 1 +

z2
1−z2

2
4


 1 0 0

0 + cos t − sin t

0 + sin t + cos t



Ǩ A
m =


1 −z2

(
1 + z2

4

)
+z1

(
1 + z2

4

)
−z2 1− z2

1−z2
2

4 − z1z2
2

+z1 − z1z2
2 1 +

z2
1−z2

2
4


 1 0 0

0 + cos t + sin t

0 − sin t + cos t


(I.8)

When we calculate the components of the spin-connections for these ro-

tated dreibeins we find that they can be given simply in terms of the dreibein

components. We find the relations

ω̂mAB = −εABCK̂C
m , ω̌mAB = +εABCǨ

C
m (I.9)

holding for both the AdS3 and S3 spin-connections, where εABC denotes ep-

silon symbols with ε012 = ε345 = 1. We can therefore write the contracted

spin-connection /̂ωm = ωmABΓAB as

1

4
/̂ωm = −1

2

2∑
A=0

K̂A
mΓAΓ012 − 1

2

5∑
A=3

K̂A
mΓAΓ345

= −1

4
/̂Kα

(
Γ012 + Γ345

)
− 1

4

(
Γ012 + Γ345

)
/̂Kα (I.10)

and similarly

1

4
/̌ωm = +

1

4
/̌Kα

(
Γ012 + Γ345

)
+

1

4

(
Γ012 + Γ345

)
/̌Kα (I.11)

We can see from these expressions that /̂ωα is proportional to /̂Hα.

Using these expressions for the rotated spin-connections and the fact that
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the rotated covariant derivative satisfies the relations

M̂−1

(
∂m +

1

4
/ωm

)
M̂ = ∂m +

1

4
/̂ωm ,

M̌−1

(
∂m +

1

4
/ωm

)
M̌ = ∂m +

1

4
/̌ωm , (I.12)

we can derive the following expressions:

M̂−1

(
Dα +

q

8
/Hα +

q̃

48
/F /Eα

)
M̂ = ∂α −

q̃2

2
/̂Kα

(
Γ012 + Γ345

)
,

M̌−1

(
Dα −

q

8
/Hα −

q̃

48
/F /Eα

)
M̌ = ∂α +

q̃2

2
/̂Kα

(
Γ012 + Γ345

)
. (I.13)

Using these expressions we can see directly that the spinors (5.20) do indeed

satisfy the Killing spinor equation (5.18), and that equation (5.59) holds for

the massive fermions in the Green-Schwarz action.
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Appendix J

Quartic Supercurrents

In this appendix we give expressions for the supercurrents of section 5.4to cubic

order in bosonic fields and leading order in bosons. We split the expressions

up in the form

jI = jI,massless + jI,massive + jI,mixed . (J.1)

The massless currents receive no corrections at quartic order, and are given

by

jτ1,massless = iγ34e+x−γ34
(

+ẋiτ̃iχ1 − q̃
′
xiτ̃iχ2 − q

′
xiτ̃iχ1

)
,

jτ2,massless = iγ34e−x
−γ34

(
+ẋiτ̃iχ2 − q̃

′
xiτ̃iχ1 + q

′
xiτ̃iχ2

)
,

jσ1,massless = iγ34e+x−γ34
(
− ′xiτ̃iχ1 + q̃ẋiτ̃iχ2 + qẋiτ̃iχ1

)
,

jσ2,massless = iγ34e−x
−γ34

(
− ′xiτ̃iχ2 + q̃ẋiτ̃iχ1 − qẋiτ̃iχ2

)
.

(J.2)

The massive currents are given by

jτ1,massive = ie+x−γ34
[
+(żi − ẏi)γiη1 + (zi − yi)γiγ̃34η1 − (

′
zi − ′

yi)γi(q̃η2 + qη1)

−1
2

(
(z2 − y2)(żi − ẏi)− 3

2(z2żi + y2ẏi)

+ (z · żzi + y · ẏyi)
)
γiη1

−1
4

(
(ż2 +

′
z2 + ẏ2 +

′
y2)(zi + yi)− (y2zi + z2yi)

)
γiγ̃

34η1

− q̃
2

(
(z2 − y2)(

′
zi − ′

yi)− 1
2(z2 ′zi + y2 ′yi)

+ 2(z · ′z − y · ′y)(zi − yi)− (z · ′zzi + y · ′yyi)
)
γiη2

− q̃
2(ż · ′z + ẏ · ′y)(zi + yi)γiγ̃

34η2

− q
4

(
(z2 ′zk + y2 ′yk) + 2εij(z

iżj − yiẏj)( ′zk − ′
yk)

+ 2εij(y
i ′yj żk + zi

′
zj ẏk)

)
γkη1

− q
2

(
(z · ż ′zk + y · ẏ ′yk)− (ẏ · ′yzk + ż · ′zyk)

− εij(yi
′
yjzk + zi

′
zjyk)

)
γkγ̃

34η1

]
, (J.3)

143



APPENDIX J. QUARTIC SUPERCURRENTS

jτ2,massive = ie−x
−γ34

[
+(żi − ẏi)γiη2 − (zi − yi)γiγ̃34η2 − (

′
zi − ′

yi)γi(q̃η1 − qη2)

−1
2

(
(z2 − y2)(żi − ẏi)− 3

2(z2żi + y2ẏi)

+ (z · żzi + y · ẏyi)
)

)γiη2

−1
4

(
(ż2 +

′
z2 + ẏ2 +

′
y2)(zi + yi) + (y2zi + z2yi)

)
γiγ̃

34η2

− q̃
2

(
(z2 − y2)(

′
zi − ′

yi)− 1
2(z2 ′zi + y2 ′yi)

+ 2(z · ′z − y · ′y)(zi − yi)− (z · ′zzi + y · ′yyi)
)
γiη1

− q̃
2(ż · ′z + ẏ · ′y)(zi + yi)γiγ̃

34η1

+ q
4

(
(z2 ′zk + y2 ′yk)− 2εij(z

iżj − yiẏj)( ′zk − ′
yk)

− 2εij(y
i ′yj żk + zi

′
zj ẏk)

)
γkη2

− q
2

(
(z · ż ′zk + y · ẏ ′yk)− (ẏ · ′yzk + ż · ′zyk)

− εij(yi
′
yjzk + zi

′
zjyk)

)
γkγ̃

34η2

]
, (J.4)

jσ1,massive = ie+x−γ34
[
−(

′
zi − ′

yi)γiη1 − (zi − yi)γiγ̃34η1 + (żi − ẏi)γi(q̃η2 + qη1)

−1
2

(
(z2 − y2)(

′
zi − ′

yi) + 3
2(z2 ′zi + y2 ′yi)

− (z · ′zzi + y · ′yyi)
)
γiη1

−1
2(ż · ′z + ẏ · ′y)(zi + yi)γiγ̃

34η1

+ q̃
4

(
(z2 − y2)(żi − ẏi)− (z2żi + y2ẏi)

+ 2(z · ż − y · ẏ)(zi − yi)− 2(y · ẏzi + z · żyi)
)
γiη2

− q̃
4

(
(ż2 +

′
z2 + z2 + ẏ2 +

′
y2 + y2)(zi + yi)

− 3(z2zi + y2yi)
)

)γiγ̃
34η2

+ q
4

(
(z2żk + y2ẏk)− 2εij(z

iżj − yiẏj)(żk − ẏk)

+ 2εij(z
i ′zj − yi ′yj)( ′zk − ′

yk)
)
γkη1

+ q
4

(
(ż2 +

′
z2 − z2 + ẏ2 +

′
y2 − y2)(zk + yk) + 3(z2zk + y2yk)

+ 2εij(y
iẏjzk + ziżjyk)

)
γkγ̃

34η1

]
, (J.5)
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jσ2,massive = ie−x
−γ34

[
−(

′
zi − ′

yi)γiη2 + (zi − yi)γiγ̃34η2 + (żi − ẏi)γi(q̃η1 − qη2)

−1
2

(
(z2 − y2)(

′
zi − ′

yi) + 3
2(z2 ′zi + y2 ′yi)

− (z · ′zzi + y · ′yyi)
)
γiη2

+1
2(ż · ′z + ẏ · ′y)(zi + yi)γiγ̃

34η2

+ q̃
4

(
z2 − y2)(żi − ẏi)− (z2żi + y2ẏi)

+ 2(z · ż − y · ẏ)(zi − yi)− 2(y · ẏzi + z · żyi)
)
γiη1

− q̃
4

(
(ż2 +

′
z2 + z2 + ẏ2 +

′
y2 + y2)(zi + yi)

+ 3(z2zi + y2yi)
)
γiγ̃

34η1

− q
4

(
(z2żk + y2ẏk) + 2εij(z

iżj − yiẏj)(żk − ẏk)

− 2εij(z
i ′zj − yi ′yj)( ′zk − ′

yk)
)

)γkη2

+ q
4

(
(ż2 +

′
z2 − z2 + ẏ2 +

′
y2 − y2)(zk + yk) + 3(z2zk + y2yk)

− 2εij(y
iẏjzk + ziżjyk)

)
γkγ̃

34η2

]
. (J.6)

The mixed currents are given by

jτ1,mixed = ie+x−γ34
(
−1

2(z2 − y2)(ẋiγ34τ̃iχ1 + q̃
′
xiγ34τ̃iχ2) + q̃ ziyj

′
xkγ34γij τ̃kχ2

+1
4(ẋ2 +

′
x2)(zi + yi)γiγ̃

34η1 + q̃
2(ẋ · ′x)(zi + yi)γiγ̃

34η2

+ q
2

(
εij(z

i ′zj − yi ′yj)ẋk − εij(ziżj − yiẏj)
′
xk
)
γ34τ̃kχ1

− q
2(ẋ · ′x)(zi + yi)γiγ̃

34η1

)
, (J.7)

jτ2,mixed = ie−x
−γ34

(
−1

2(z2 − y2)(ẋiγ34τ̃iχ2 + q̃
′
xiγ34τ̃iχ1) + q̃ ziyj

′
xkγ34γij τ̃kχ1

+1
4(ẋ2 +

′
x2)(zi + yi)γiγ̃

34η2 − q̃
2(ẋ · ′x)(zi + yi)γiγ̃

34η1

+ q
2

(
εij(z

i ′zj − yi ′yj)ẋk − εi(ziżj − yiẏj)
′
xk
)
γ34τ̃kχ2

− q
2(ẋ · ′x)(zi + yi)γiγ̃

34η2

)
, (J.8)

jσ1,mixed = ie+x−γ34
(
−1

2(z2 − y2)(
′
xiγ34τ̃iχ1 − q̃ ẋiγ34τ̃iχ2)− q̃ ziyj ẋkγ34γij τ̃kχ2

− q̃
4(ẋ2 +

′
x2)(zi + yi)γiγ̃

34η2 − 1
2(ẋ · ′x)(zi + yi)γiγ̃

34η1

− q
2

(
εij(z

iżj − yiẏj)ẋk − εij(zi
′
zj − yi ′yj) ′xk

)
γ34τ̃kχ1

+ q
4(ẋ2 +

′
x2)(zi + yi)γiγ̃

34η1

)
, (J.9)
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jσ2,mixed = ie−x
−γ34

(
−1

2(z2 − y2)(
′
xiγ34τ̃iχ2 − q̃ ẋiγ34τ̃iχ1)− q̃ ziyj ẋkγ34γij τ̃kχ1

+ q̃
4(ẋ2 +

′
x2)(zi + yi)γiγ̃

34η1 + 1
2(ẋ · ′x)(zi + yi)γiγ̃

34η2

− q
2

(
εij(z

iżj − yiẏj)ẋk − εij(zi
′
zj − yi ′yj) ′xk

)
γ34τ̃kχ2

+ q
4(ẋ2 +

′
x2)(zi + yi)γiγ̃

34η2

)
. (J.10)
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Appendix K

Poisson brackets

In this appendix we give the Poisson brackets of the fermion fields ηI , χI which

are used to compute the algebra of supercurrents in section (5.4). They are

{(η1)ȧȧ, (η1)ḃḃ}
PB

= − i
4

(1 +A1) εȧḃ εȧḃ,

{(η1)ȧȧ, (η2)ḃḃ}
PB

= − i
4

(A2)ȧċ ε
ċḃ εȧḃ,

{(η2)ȧȧ, (η2)ḃḃ}
PB

= − i
4

(1−A1) εȧḃ εȧḃ,

{(χ1)aa, (χ2)bb}
PB

= − i
4

(A3)ac ε
cb εab,

{(χ1)aa, (χ1)bb}
PB

= − i
4

(1 +A1) εab εab,

{(η1)ȧȧ, (χ2)bb}
PB

= − i
4

(A4)ȧȧcc ε
cb εcb,

{(χ2)aa, (χ2)bb}
PB

= − i
4

(1−A1) εab εab,

{(η2)ȧȧ, (χ1)bb}
PB

= +
i

4
(A4)ȧȧcc ε

cb εcb,

(K.1)

with the coefficients Ai given to quadratic order by

A1 = −1
2ε
ij(ziżj − yiẏj),

A2 = − q̃
2 γ̃

34(z · ′z − y · ′y) + q̃
2 γ̃

34γ̃ij(zi
′
yj +

′
ziyj),

A3 = + q̃
2γ

34(z · ′z + y · ′y) + q̃
2γ

34γij(zi
′
yj −

′
ziyj),

A4 = + q̃
2 γ̃

iτ̃k(zi − yi)
′
xk.

(K.2)
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Appendix L

S-matrix elements

Here we give the components of the su(1|1)-invariant S-matrices of section 5.6.1,

in terms of the Zhukovski variables (5.149). The components of SLL are

ALL
pq = 1,

BLL
pq =

(
x−L p

x+
L p

)1/2
x+

L p − x+
L q

x−L p − x+
L q

,

CLL
pq =

(
x−L p

x+
L p

x+
L q

x−L q

)1/2
x−L q − x+

L q

x−L p − x+
L q

ηL
p

ηL
q

,

DLL
pq =

(
x+

L q

x−L q

)1/2
x−L p − x−L q
x−L p − x+

L q

,

ELL
pq =

x−L p − x+
L p

x−L p − x+
L q

ηL
q

ηL
p

,

F LL
pq = −

(
x−L p

x+
L p

x+
L q

x−L q

)1/2
x+

L p − x−L q
x−L p − x+

L q

,

(L.1)

and the components of SLR are

ALR
pq =

√
x+

L p

x−L p

1− 1
x+

L px
−
R q

1− 1
x−L px

−
R q

,

CLR
pq = 1,

BLR
pq = −2i

h

√
x−L p

x+
L p

x+
R q

x−R q

ηL
pη

R
q

x−L px
+
R q

1

1− 1
x−L px

−
R q

,

DLR
pq =

√
x+

L p

x−L p

x+
R q

x−R q

1− 1
x+

L px
+
R q

1− 1
x−L px

−
R q

,

F LR
pq =

2i

h

√
x+

L p

x−L p

x+
R q

x−R q

ηL
pη

R
q

x+
L px

+
R q

1

1− 1
x−L px

−
R q

,

ELR
pq = −

√
x+

R q

x−R q

1− 1
x−L px

+
R q

1− 1
x−L px

−
R q

.

(L.2)

Components of the other S-matrices can be found using left-right symmetry.
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