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A novel passive vibration control configuration, namely the Tuned-Mass-

Damper-Inerter (TMDI) is proposed in this work. The TMDI combines the “inerter”, a 

mechanical two-terminal flywheel device developing resisting forces proportional to the 

relative acceleration of its terminals, with the well-known and widely used in various 

passive vibration control applications Tuned-Mass-damper (TMD). Introduced as a 

generalization of the TMD, the TMDI takes advantage of the “mass amplification effect” 

of the inerter to achieve enhanced performance compared to the classical TMD. For linear 

harmonically excited primary systems, analytical closed-form expressions are derived for 

optimal TMDI design/tuning parameters using the well-established and widely applied 

for the case of the classical TMD semi-empirical fixed-point theory. It is shown that for 

the same attached mass the TMDI system is more effective than the classical TMD to 

suppress vibrations close to the natural frequency of the uncontrolled primary system, 

while it is more robust to de-tuning effects. Moreover, it is analytically shown that 

optimally designed TMDI outperforms the classical TMD in minimizing the displacement 

variance of undamped linear single-degree-of-freedom (SDOF) white-noise excited 

primary systems. For this particular case, optimal TMDI parameters are derived in closed-

form as functions of the additional oscillating mass and the inerter constant.  

Furthermore, pertinent numerical data are furnished, derived by means of a 

numerical optimization procedure, for classically damped mechanical cascaded chain-

like primary systems base excited by stationary colored noise. This exemplifies the 

effectiveness of the TMDI over the classical TMD to suppress the fundamental mode of 

vibration for linear MDOF structures. It is concluded that the incorporation of the inerter 

in the proposed TMDI configuration can either replace part of the TMD vibrating mass 

to achieve lightweight passive vibration control solutions, or improve the performance of 

the classical TMD for a given TMD mass.  

The TMDI is further applied for passive vibration control of seismically excited 

building structures. An input non-stationary stochastic process compatible with the elastic 

design spectrum of the European aseismic code provisions (EC8) is assumed. The 

effectiveness of the proposed TMDI configuration over the classical TMD is assessed by 

performing response history analyses for an ensemble of EC8 spectrum compatible field 

recorded strong ground motions. The optimally tuned TMDI solution achieves 

considerable reduction of the peak average top floor displacement and peak average top 

floor accelerations of the considered primary structures compared to the one achieved by 

the optimally designed classical TMD, assuming the same additional mass in both cases. 

Furthermore, the TMDI configuration achieves significant reduction in the maximum 

displacement of the additional oscillating mass. In this study, the primary structures are 

assumed to behave linearly in alignment with current trends in performance based 

requirements for minimally damaged structures protected by passive control devices. 

Furthermore, optimally designed TMDI is applied for vibration suppression and 

energy harvesting via an electromagnetic device which transforms the mechanical kinetic 
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energy into electrical energy. Unlike the case of traditional energy harvesting enabled 

TMD systems, the amount of available energy to be harvested by the herein proposed 

TMDI-based harvester is leveraged by changing the intensity of the mass amplification 

effect of the inerter, through mechanical gearing, without changing the weight of the 

TMDI system. Therefore, the inclusion of the inerter adds a “degree of freedom” or a 

design parameter to the classical TMD-based harvesters allowing to control the trade-off 

between vibration suppression and energy harvesting in a more flexible manner. 

Overall, the herein reported numerical data and analytical work provide evidence 

that the TMDI offers a novel promising solution for passive vibration control and energy 

harvesting. Most importantly, it opens several new research paths involving 

numerical/parametric work, as well as, prototyping, experimental testing and field 

deployment.



______________________________________________________________________ 

______________________________________________________________________ 

 

 

1.1 MOTIVATION AND OBJECTIVES 

 

Depending on their location certain civil structured facilities can be subjected to 

dynamic loads due to gusty wind fronts and/or strong ground motion associated with 

earthquake events of different intensity/severity during their life service. At high levels 

of intensity these naturally occurring dynamic loads may induce permanent structural 

damage and, in extreme cases, total structural failure/collapse. During the past three 

decades the incorporation of various devices such as base isolators, energy dissipation 

equipment (e.g. viscous dampers, friction dampers, etc.), and tuned-mass dampers 

(TMDs) has been considered by various researchers and has been applied in practice to 

passively control the vibratory motion of structures maintaining its amplitude below 

certain acceptable thresholds (Martelli & Forni, 2011; Spencer Jr, 2002; Soong & 

Dargush, 1999; Chang, 1999). Typically, such “non-conventional” means of mitigating 

the hazard posed to structures due to the action of winds and earthquakes are applied to 

protect critical civil infrastructure such as high-rise buildings, hospitals, and long-span 

(foot)bridges. Furthermore, the employment of such passive devices is commonly 

considered to upgrade/reinforce existing/historical structures to meet the contemporary 

safety criteria and to retrofit damaged structures in the aftermath of severe seismic events. 

These practical applications have sustained the important and active research field of 

passive vibration control for new and for existing/damaged structures. Admittedly, it is 

noted that improved structural performance can be achieved by using active/semi-active 

control solutions relying on the integration of sensors, controllers and real-time data 
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processing (Spencer & Nagarajaiah, 2003; Yoshioka et al, 2002; Ozbulut et al, 2011). 

However, due to reliability issues and the installation cost of such solutions, the use of 

active control systems is not as wide spread as the passive control solutions.  

In the context of passive vibration control, the concept of the dynamic vibration 

absorber is historically one of the first and most widely used strategies for passive 

vibration mitigation of dynamically excited mechanical and civil engineering structures 

and structural components (Frahm, 1911 and Ormondroyd & Den Hartog, 1928). It relies 

on attaching an additional free-to-vibrate mass to the structural system (primary or host 

structure) whose motion is to be suppressed via certain mechanical devices. These devices 

are appropriately designed (or “tuned”) such that a resonant out-of-phase motion of the 

attached mass is achieved compared to the primary structure. Arguably, the most 

commonly used dynamic vibration absorber is the so-called “tuned mass-damper” 

(TMD).  In its simplest form, the TMD considers a linear spring and a viscous damper to 

link the additional mass to the primary structure. The effectiveness of this classical TMD 

relies on tuning its stiffness and damping properties such that significant kinetic energy 

is transferred from the vibrating primary structure to the TMD mass and is absorbed 

through the viscous damper. 

Despite being widely used due to the relatively simple and well-established design 

procedures, the TMD suffers the problem of “detuning” (e.g. due to non-linear response 

or a change in the dynamic properties of the primary structure) which may significantly 

affect its vibration suppression performance especially for the case of narrow band or 

harmonic excitations. Moreover, the TMD is not robust to uncertainties in estimating the 

properties of the primary structure from which the optimal TMD design parameters 

depend on. To address these issues, various different strategies have been employed such 

as the use of multiple TMDs (e.g. Yamaguchi & Harnpornchai, 1993) and of hysteretic 
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dampers in place of the linear dashpot (e.g. Ricciardelli & Vickery, 1999). These 

strategies do offer enhanced performance compared to the classical TMD, however, they 

add a further layer of complexity; optimum design/tuning becomes a challenging and 

computationally involved task. In this regard, it should be noted that, perhaps, the most 

straightforward way to enhance the performance and robustness of the TMD is to increase 

the attached mass for which optimum TMD design is sought. Indeed, the larger the 

attached mass considered, the more effective an optimally designed TMD becomes to 

suppress excessive primary structure vibrations at the cost of an increase total weight of 

the structural system (see e.g. Angelis et al, 2012; Hoang et al, 2008 and references 

therein).  

Motivated by the latter observations, this thesis considers the addition of a mass 

amplification mechanical device, dubbed the “inerter” by Smith (2002), to enhance the 

performance of the classical TMD configuration. The thus proposed Tuned-Mass-

Damper Inerter (TMDI) exploits the apparent mass amplification effect of the inerter, a 

two-terminal device developing a resisting force proportional to the relative acceleration 

of its terminals, to achieve improved vibration control compared to the TMD for the same 

attached mass.  

In this context, the underlying equations of motion for linear SDOF and MDOF 

TMDI equipped primary structures are first introduced in the thesis. It is shown that the 

TMDI constitutes a generalization of the classical TMD. Next, standard optimisation 

techniques used for the classical TMD are applied to derive optimum TMDI parameters. 

Focus is given to the vibration control performance of the TMDI over the one achieved 

by the TMD. In particular, a significant part of this thesis is focused on deriving analytical 

closed-form expressions for optimal TMDI design/tuning parameters for harmonically 

and stochastically excited single-degree-of-freedom (SDOF) primary systems.  
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 For multi-degree-of freedom (MDOF) cascaded chain-like mechanical systems, 

pertinent numerical data are furnished, derived by means of a numerical optimization 

procedure when considering stationary “coloured noise” base excitation.  

Next, the TMDI is utilized to achieve a lightweight passive vibration solution for 

seismically excited building structures, focusing as well on the reduction of the peak 

average top floor displacements/accelerations and on the reduction of the required 

additional oscillating mass stroke. For this purpose, an input non-stationary stochastic 

process compatible with the elastic design spectrum of the European aseismic code 

provisions (EC8) is assumed. Furthermore, the effectiveness of the proposed optimum 

designed TMDI configuration over the classical TMD is assessed through response 

history analyses for an ensemble of 7 EC8 spectrum compatible field recorded strong 

ground motions.  

Further, optimally designed TMDIs are applied for simultaneous vibration control 

and energy harvesting .The latter study is motivated by the fact that in considering a 

passive TMD-based harvester device, as the oscillating TMD mass increases, better 

primary structure response reduction is achieved but at the cost of reduced available 

energy for harvesting (Gonzalez-Buelga et al, 2014; Tang & Zuo, 2012; Adhikari & Ali, 

2013). 

In view of the above, Table 1.1 summarises for clarity the main contribution of 

this thesis within a matrix format. Furthermore, the same table provides a location map 

of each TMDI development/application within the thesis’s chapters. Several publications 

derived from this thesis are also enumerated.  
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Table 1.1 Matrix of Thesis Contribution 

  TYPE OF PRIMARY SYSTEMS CONSIDERED 

  Single Degree of 

Freedom Primary 

System 

Multi Degree of Freedom 

Primary Systems 

DEVELOPMENT 

OF THE TMDI 

Governing 

equations of 

motion 

- In time and frequency 

domain.
 (2) (3) 

(Chapter 2) 

- In time and frequency domain.
 (1) 

  

-State Space Formulation.
 
 

-Admittance Matrix Formulation 
(1) 

(Chapter 4), (Appendix II) 

Optimum 

design 

- Closed form Expression 

for Undamped primary 

systems.
(3) 

(Chapter 3)  

- Numerical Optimisation – “min-

max” constraint optimization 

algorithm employing a sequential 

programming method. 
(1), (2) 

(Chapter 4 & Chapter 5)
 

APPLICATIONS 

Simultaneous vibration 

suppression and energy 

harvesting.
 (3) 

(Chapter 6)
 

- Earthquake protection for multi-

storey buildings.
(1) 

(Chapter 5) 

 (1) 
Marian, L. & Giaralis, A. 2013. Optimal design of inerter devices combined with TMDs for vibration 

control of buildings exposed to stochastic seismic excitations. In: Proceedings of the 11th ICOSSAR 

International Conference on Structural Safety and Reliability for Integrating Structural Analysis, Risk and 

Reliability; New York, US (eds: Deodatis G, Ellingwood BR and Frangopol DM), CRC Press. 

(2) Marian, L. & Giaralis, A. 2014. Optimal design of a novel tuned mass-damper-inerter (TMDI) passive 

vibration control configuration for stochastically support-excited structural systems. Probabilistic 

Engineering Mechanics 2014; DOI:/10.1016/j.probengmech.2014.03.007. 

(3) 
Marian, L. & Giaralis, A. 2014. Vibration suppression and energy harvesting in tuned mass-damper –

inerter (TMDI) equipped harmonically support-excited structures. In: Proceedings of the 6th International 

Conference on Structural Control and Health Monitoring 2014; Barcelona, Spain.
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1.2 THESIS ORGANISATION AND OUTLINE 

 

 

This dissertation comprises seven chapters and one appendix followed by the list 

of cited references. The introductory first chapter presents the motivation and the objectives 

of the undertaken work. It outlines the chapters within the thesis with a short summary of 

their content. 

  Chapter 2 provides a brief review on the classical tuned-mass-damper (TMD) and 

on the inerter, focusing on applications in structural engineering. 

In Chapter 3 the governing equations of motion and relevant transfer functions of 

the proposed tuned-mass-damper-inerter (TMDI) configuration are derived for the case 

of linear single-degree-of-freedom (SDOF) primary systems. Analytical expressions are 

derived in closed form for optimum TMDI parameters minimizing the displacement 

amplitude response for the special case of undamped harmonically base-excited SDOF 

primary systems.  Furthermore, analytical expressions for optimum TMDI parameters 

minimizing the displacement variance for the special case of undamped white noise 

excited SDOF primary systems are obtained. 

Chapter 4 introduces the TMDI configuration to suppress oscillations following 

the fundamental mode of vibration of support-excited damped multi-degree-of-freedom 

(MDOF) chain-like primary systems. A numerical optimization procedure for optimum 

design of the TMDI for these primary systems is also discussed.  Numerical data is 

provided to demonstrate the effectiveness and applicability of the TMDI vis-à-vis the 

classical TMD for classically damped support excited MDOF chain-like primary systems. 

Chapter 5 applies the TMDI system to achieve a lightweight passive vibration 

solution for seismically excited building structures. For optimum TMDI parameters 

design, a non-stationery power spectrum compatible in the “mean sense” with the elastic 
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spectrum of the current European aseismic code provisions (EC8) is considered. 

Moreover, the effectiveness of the proposed TMDI configuration over the classical TMD 

is assessed by performing response history analyses for an ensemble of Eurocode 8 

spectrum compatible field recorded strong ground motions. 

In Chapter 6 the TMDI is applied for simultaneous vibration suppression and 

energy harvesting. Analytical and numerical results are reported on the capabilities of 

optimally designed TMDIs for vibration suppression to harvest energy by transferring the 

kinetic energy from harmonically base excited SDOF primary structures into electrical 

energy via a particular electromagnetic energy harvester.  

Finally, Chapter 7 summarizes the main conclusions of the work. 
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2.1 PASSIVE TUNED MASS DAMPER BASED VIBRATION 

CONTROL  

 

The idea of attaching an additional free-to-vibrate mass to dynamically excited 

structural systems (primary structures) to suppress their oscillatory motion is historically 

among the first passive vibration control strategies in the area of structural dynamics 

(Frahm, 1911; Ormondroyd & Den Hartog, 1928; Den Hartog, 1956; Brock, 1946). This 

idea relies on designing or “tuning” the mechanical devices that link the added mass to 

the primary structure to achieve a “resonant” out-of-phase motion of the mass. In this 

context, (Frahm, 1911) introduced the use of a linear spring-mass attachment to suppress 

the oscillations of harmonically excited primary structural systems in naval and 

mechanical engineering applications. This early “dynamic vibration absorber” was able 

to reduce the oscillations of single-degree-of-freedom (SDOF) primary structures within 

a narrow range centred at a particular (pre-specified) frequency of excitation. Later, 

Ormondroyd and Den Hartog (1928) enhanced the effectiveness of the above absorber to 

dissipate the kinetic energy of primary structures by appending a viscous damper 

(dashpot) in parallel to the linear spring. This is known as the Tuned Mass Damper (TMD) 

shown in Figure 2.1 for single-degree-of-freedom (SDOF) and multi-degree-of-freedom 

(MDOF) primary structures.  

CHAPTER 2 : A REVIEW ON THE CLASSICAL TUNED MASS 

DAMPER (TMD) AND MASS AMPLIFICATION DEVICES 

FOCUSING ON APPLICATIONS IN EARTHQUAKE 

ENGINEERING 
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Figure 2.1 A structural frame model of multi-storey (a) and single-storey (b) building structures (primary 

systems) equipped with Tuned-Mass-Damper (TMD) classical passive control solution 

 

A semi-empirical “optimum” design procedure has been established by Den 

Hartog (Den Hartog, 1956) and Brock (Brock, 1946) to “tune” the damping and stiffness 

properties for an a priori specified mass of this spring-mass-damper attachment such that 

the peak displacement of harmonically excited undamped SDOF primary structures is 

minimized (see Krenk, 2005). This design/tuning procedure relies on the “fixed point” 

assumption which states that all frequency response curves of the resulting two-DOF 

dynamical system pass through two specific points; the location of these points being 

independent of the damping coefficient of the dashpot. Thus the tuned spring-mass- 

damper attachment, commonly termed in the literature as the “tuned mass-damper” 

(TMD), achieves the suppression of the oscillatory motion of harmonically excited 

primary structures over a wider range of exciting frequencies compared to a spring-mass 

attachment. Recently, the fixed point-based tuning procedure was shown to be very close 

to the “exact” solution for the optimal tuning of the classical TMD (Nishihara & Asami, 

2002). However, for the case of damped SDOF primary structures, the fixed point theory 
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does not strictly hold and the derivation of optimal TMD parameters in closed form 

becomes a challenging task (e.g. Nishihara & Asami, 2002; Asami et al, 2002). In this 

respect, numerical optimization techniques are applied in practice for optimal design of 

TMDs (e.g. Leung & Zhang, 2009). Motivated mostly by earthquake engineering 

applications, Warburton (1982) derived optimum TMD parameters based on the fixed 

point theory for the case of harmonically base excited undamped SDOF structures. 

Further, substantial research work has been devoted to investigate the potential of using 

the classical TMD to mitigate the motion of stochastically support-excited primary 

structures. Using standard analytical techniques, optimal TMD parameters can be readily 

obtained in closed-form as functions of the TMD mass to minimise the response variance 

of undamped SDOF primary structures subject to white noise support excitation 

(Ayorinde & Warburton, 1980; Warburton, 1982). However, for the case of damped 

SDOF primary structures subjected to stochastic support excitations, the derivation of 

optimal TMD parameters by analytical approaches becomes a challenging task. To this 

end, numerical optimization techniques are commonly employed for optimum design of 

TMDs to minimize the response variance for such primary structures (see e.g. Bakre & 

Jangid, 2005; Hoang et al, 2008; Leung & Zhang, 2009; Salvi & Rizzi, 2011). 

Alternatively, simplified approximate solutions for the problem at hand have been 

reached by making the assumption of “lightly” damped primary structures (e.g. Ghosh & 

Basu, 2005; Krenk & Høgsberg, 2008). Along similar lines, several researchers proposed 

different approximate simplified and numerical methods for the design of TMDs for 

damped linear multi-degree-of-freedom (MDOF) primary structures under stochastic 

base excitation widely used to model seismically excited multi-storey building structures 

(see e.g. Sadek et al, 1997, Rana & Soong, 1998, Moutinho, 2012, Angelis et al, 2012 and 

references therein). Note that, TMD optimum design for vibration suppression of linear 
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multi degree-of-freedom (MDOF) primary structures is a straightforward task since, in 

common practice, the aim is to control vibrations according to a single (the dominant) 

structural mode shape (e.g. Rana & Soong, 1998). 

Although alternative arrangements of linear springs and dashpots (viscous 

dampers) have been considered in the literature to attach a mass to primary structures (see 

e.g.  Liu & Liu, 2005, Cheung & Wong, 2011 and references therein), the above discussed 

“classical” TMD configuration (mass attached via a spring and a dashpot in parallel) is 

the most widely studied in the literature and the most commonly used one for passive 

vibration control of various mechanical and civil engineering structures and structural 

components. 

In recent years, several different strategies have been employed to enhance the 

performance of the classical TMD for passive vibration suppression of structural systems 

including the use of multiple classical TMDs (see e.g. Hoang & Warnitchai, 2005; Lee et 

al, 2006 and references therein), the incorporation of non-linear viscous dampers to the 

classical TMD configuration (Rudinger, 2006), and the consideration of hysteretic TMDs 

(see e.g. Ricciardelli & Vickery, 1999). These strategies do offer enhanced performance 

compared to the classical TMD, however, optimum design/tuning becomes a challenging 

and computationally involved task, especially for damped MDOF primary structures. 

Furthermore, analytical and numerical results reported in the extensive relevant literature 

suggest that the effectiveness of the TMD for vibration mitigation of base-excited 

structures increases by increasing the attached TMD mass. This is particularly the case 

for high intensity support excitations (e.g. Hoang et al, 2008; Angelis et al, 2012).  

Indeed, the larger the attached mass considered, the more effective an optimally 

designed TMD becomes to suppress excessive primary structure vibrations at the cost of 

an increase total weight of the structural system (e.g. Feng & Mita, 1995). In this respect, 
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recent studies focus towards non-conventional configurations which have in common the 

employment of significantly large TMD masses, which can reach the order of 15% to 

100% of the primary structure total mass (Feng & Mita, 1995; Moutinho, 2012; Angelis 

et al, 2012; Hoang et al, 2008; Matta & DeStefano, 2009a; 2009b). This can be 

accomplished by the use of substructures utilized as self-contained vibration absorbers in 

tall buildings, as proposed by Feng & Mita (1995) where it is shown that the use of this 

‘mega-substructure configuration’ with masses that can reach 100% of the mass of the 

structure’s main body significantly improves the seismic response of primary structures. 

Moreover, in (Moutinho, 2012) it is proposed to use the top floor of a five storey shear 

building as a large mass TMD to reduce induced seismic vibrations, assuming TMD 

masses which can reach the total mass of the primary structure. This is accomplished 

through the use of rubber bearings which are interposed between the top of the columns 

on the last floor and the roof. It is proven that the use of large mass TMDs improves 

robustness in terms of parameter uncertainties. In a similar manner, large TMDs are also 

proposed in (Angelis et al, 2012) with masses equal to72% of the primary system’s mass. 

The study is carried out by means of both numerical analyses and experimental tests. It is 

concluded that large mass TMDs lead to greater reductions of the structural response 

compared to conventional ones. The proposed solution is also found to be more robust 

against deviations of optimum parameters resulting from uncertainties in structural 

properties. Large mass TMDs are also employed in Hoang et al (2008) for the case of a 

SDOF structure on a design example for seismic retrofitting of a long-span truss bridge. 

A TMD mass equal to 77% of the total mass of the primary structure is proposed. Its 

performance is proved to be robust with respect to uncertainties in the system structural 

parameters as well as the excitation frequency content. Furthermore, the concept of the 

rolling-pendulum roof-garden TMD (RPTMD) is introduced by Matta & DeStefano 
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(2009) where non-structural large masses already available atop buildings are turned into 

TMDs. The occurring TMD mass-uncertainties are inspected through a robust analysis. 

The same authors (Matta & DeStefano, 2009b) provide a comparison between the 

previously proposed rolling-pendulum and the classical translational TMD configuration. 

Given that large mass TMD lead to an undesirable increase of the weight which 

needs to be accommodated by the primary structure using structurally sophisticated 

solutions, there is scope in seeking ways to reduce the attached TMD mass to facilitate 

practical structural design, while maintaining the well-documented effectiveness of large 

mass TMDs to mitigate seismic risk associated with moderate-to-severe earthquake 

induced ground shaking. In this regard, in this thesis the classical TMD is coupled with 

mass amplification devices, reviewed in the following section, aiming to achieve 

enhanced structural performance with reduced weight. 

 

  



 

14 

 

2.2 THE INERTER AND OTHER MASS AMPLIFICATION 

DEVICES IN EARTHQUAKE ENGINEERING APPLICATIONS 

 

Conceptually introduced by Smith (2002), the ideal inerter is a two terminal 

mechanical element of negligible mass/weight developing an internal (resisting) force 

proportional to the relative acceleration of its terminals which are free to move 

independently. Figure 2.2 depicts an inerter device whose terminals are subject to an equal 

and opposite externally applied force F in equilibrium with the internally developed force. 

By definition the following relationship holds for the ideal linear inerter (e.g. Smith, 2002; 

Chuan et al, 2011a): 

 

1 2( - )F b u u , (2-1) 

 

where u1 and u2 are the displacement coordinates of the two terminals and a dot over 

symbol signifies differentiation with respect to time t. In the above equation, the constant 

of proportionality b attains mass units and fully characterizes the behaviour of the inerter. 

Still, the physical mass of an actual inerter device is orders of magnitude lower than b. 

 

 

Figure 2.2  Schematic representation of the two-terminal flywheel device (b is the mass-equivalent 

constant of proportionality 

  

Employing rack and pinion gearing arrangements or ball screw mechanisms to drive 

a rotating flywheel several such devices have been built and prototyped (Smith, 2002; 

Chuan et al, 2011a; Papageorgiou & Smith, 2005). In fact, TTF devices/inerters have been 
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successfully used for vibration control of suspension systems in high performance 

vehicles (e.g. Evangelou et al, 2004; Chuan et al, 2011b and others). More, recently, fluid 

inerter implementations have been proposed (Swift et al, 2013; Wang et al, 2011) which 

use the mass of a fluid flowing through a helical channel to generate the required resistive 

force. Inerter devices can be viewed and modelled as a linear mechanical element which 

complements the ideal linear spring element (i.e. two-terminal device developing an 

internal force proportional to the relative displacement of its terminals) and the linear 

dashpot (i.e. two-terminal device developing an internal force proportional to the relative 

velocity of its terminals). To this end, the concept of the inerter allows for a one-to-one 

mapping of dynamical mechanical systems for passive vibration control analogously to 

the electrical network synthesis. In fact, the concept of the inerter allows for designing 

mechanical systems for passive vibration control analogously to the electrical network 

synthesis. To this end, various topologies of springs, dampers, and inerters have been 

tested for vibration isolation of vehicles. (Chuan et al, 2011b, Evangelou et al, 2004) 

Of particular importance for the purpose of this thesis is the mass amplification 

effect of the inerter which has been noted in the original paper of Smith (2002). This 

effect can be readily understood by examining a seismically excited linear spring-inerter-

mass system. Specifically, consider the single storey portal frame building of Figure 2.3 

having an inerter device exposed to a horizontal seismic excitation and modelled as a 

linear single-degree-of-freedom system with k1 lateral stiffness, m1 mass assumed to be 

lumped at the girder. Let the girder be connected to the ground by means of an ideal 

inerter device. The equation of motion of this structure written in terms of the horizontal 

floor displacement relative to the ground motion is given as: 

 

 1 1 1 1 1 1 gm b x c x kx m a      (2-2) 
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Figure 2.3. Single-degree-of-freedom (SDOF) primary structure ground-connected via an inerter element. 

 

Clearly, the inclusion of the inerter increases the “apparent” mass of the portal 

frame by b. However, the physical mass of the inerter is assumed to be negligible 

compared to the mass m1, in accordance with the definition of the concept of the inerter 

as defined in Smith (2002). To further elaborate on this matter, Figure 2.4 provides a 

mechanical realisation of the inerter comprising a plunger that drives a rotating flywheel 

through a rack, pinion, and a gearing system with n gears (e.g. Smith, 2002).  

 

 

Figure 2.4. Possible mechanical realisation of the inerter comprising a plunger that drives a rotating 

flywheel through a rack, pinion and gearing system with n gears 
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The inertance b achieved from such a mechanical device is expressed as: 

 

2 2

2 2
1

( )
n

f i
f

i
pr i

r
b m

pr



 

   (2-3) 

 

where mf  is the mass of the flywheel and γf is the radius of gyration of the flywheel; rf 

represents the radius of the flywheel pinion and n represents the number of gears with 

radius ri and pinion radius rj chained together between the input gear and the output 

flywheel pinion. It can be easily deducted from Equation (2-3) that, as the number of 

gears considered in the mechanical realization of the inerter increases, the inertance b and 

implicitly the mass amplification effect increases proportional. 

Importantly, the inclusion of the inerter changes (reduces) the natural frequency of 

the system. This issue has been recently examined in (Chen et al, 2014). Further, the 

amplitude of the effective horizontal force is also reduced, consideration which has been 

extensively discussed in (Takewaki et al 2012). 

The use of mass amplification devices/inerters for vibration mitigation in 

seismically excited buildings has recently attracted some attention in the literature. Wang 

et al. (2007; 2010) propose various passive vibration control configurations, assessing the 

performance of several suspension layouts employing inerters placed in between the 

ground and the superstructure in a base isolation type of arrangement. It has been 

established that inerter devices are effective in controlling the response of rigid 

superstructures exposed to vertical band-limited white noise ground motions. Passive 

vibration control systems comprising inerters in conjunction with springs and dampers 

have been considered by Lazar et al. (2013a; 2013b) for vibration isolation of primary 

systems subjected to recorded earthquake excitations applied along the vertical direction. 

Furthermore, a number of energy dissipation devices combining an apparent “mass 
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amplifier”, which achieves a similar dynamic effect as the inerter, in parallel with a 

viscous damper have been discussed in the literature (e.g. Hwang et al, 2007; Ikago et al, 

2012 and others). These rotational inertia dampers are usually arranged as diagonal 

bracing members in multi-story framed buildings to provide supplemental damping and 

inertia properties to structures (e.g. Ikago et al, 2012). In this manner, passive control of 

seismically excited buildings is achieved by increase of the inherent to all structures 

damping and mass properties. Furthermore, a new vibration control device is proposed in 

(Garrido et al, 2013) called rotational inertia double-tuned mass damper (RIDTMD), 

consisting of a classical TMD and a rotational inertia element similar to the inerter. The 

efficiency of the proposed configurations vis-à-vis the classical TMD is assessed via a 

numerical optimisation for SDOF primary structures subjected to harmonic load. In 

(Takewaki et al, 2012) it is shown that inerters distributed along the height of a 

seismically excited structure are effective for the reduction of the maximum absolute 

horizontal acceleration of floors by reducing the applied to the structure horizontal load.  

It is noted that, the TMDI discussed in the following chapters is significantly 

different than the TDI in (Lazar et al., 2013) and the solutions of (Ikago et al, 2012) as in 

all these cases the inerter is placed as a strut within the storeys of buildings in combination 

with spring and damping elements. Further, in a similar manner, Takewaki uses inerters 

allocated within the structure and connected from one storey to another. 
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3.1 PRELIMINARY REMARKS 

 

This chapter introduces the Tuned Mass Damper-Inerter (TMDI) for vibration 

control of harmonically and stochastically excited single-degree-of-freedom (SDOF) 

primary systems. The herein proposed TMDI configuration takes advantage of the “mass 

amplification effect” of the inerter by using it as an additional connective element 

between the TMD oscillating mass and the ground for SDOF primary systems. 

Importantly, the TMDI can be viewed as a generalization of the classical TMD. Thus, all 

established in the literature procedures for optimum design (tuning) of the classical TMD 

are readily applicable to achieve optimal performance for the TMDI configuration.  

In addition to the herein considered TMDI configuration, several other spring-

mass-damper and inerter connectivity arrangements have been studied, as exemplified in 

Appendix I. However, as detailed in Chapter 2.2, the most beneficial way in which the 

mass-amplification effect of the inerter can be exploited is to have one of its terminal 

connected to a fixed points in the inertial frame of reference. The latter thus motivates the 

choice of the proposed TMDI arrangement. 

 This chapter presents the governing differential equations of motion in the time 

and in the frequency domain for TMDI equipped damped linear SDOF primary structures. 

Closed-form analytical expressions for optimal TMDI parameters are derived by 

application of a semi-empirical approach extensively used for the “optimum” 

CHAPTER 3 : THE TUNED-MASS-DAMPER-INERTER PASSIVE 

CONTROL SOLUTION FOR SINGLE-DEGREE-OF-FREEDOM 

PRIMARY SYSTEMS 
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design/tuning of the classical TMD to supress the motion of harmonically excited 

undamped SDOF primary structures. Moreover, optimal TMDI design parameters 

minimizing the relative displacement variance of undamped SDOF primary structures 

under white noise support excitation are analytically derived in closed form as functions 

of the TMD mass and the inerter constant b; based on the computed optimum design 

parameters, the performance of the novel TMDI is analytically assessed vis-à-vis the 

classical TMD. 

 

3.2 GOVERNING EQUATIONS OF MOTION 

 

Consider a linear damped single-degree-of-freedom (SDOF) dynamical system 

(primary structure) modelled by a linear spring of stiffness 
1k , a mass 

1m , and a viscous 

damper with damping coefficient 
1c , excited by an externally mass-applied force P or 

based-excited by an acceleration stochastic process  ga t  as shown in Figure 3.1a and 

Figure 3.1b, respectively. Alternatively, the mechanical dynamical systems of Figure 3.1 

can be viewed as one storey high frame structure buildings as suggested in Figure 3.2. 

To suppress the oscillatory motion of this primary structure it is herein proposed 

to consider the classical tuned mass-damper (TMD), in conjunction with a two terminal 

flywheel (inerter) device as shown in Figure 3.2. The TMDI consists of a mass 
TMDIm  

attached to the primary structure via a linear spring of stiffness 
TMDIk  and a viscous 

damper with damping coefficient 
TMDIc  along with a two-terminal flywheel - inerter 

device which connects the attached mass to the ground. 
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Figure 3.1. Single-degree-of-freedom (SDOF) primary system equipped with a tuned mass-damper-

inerter (TMDI) system (a) force excited; (b) base-excited. 

        
Figure 3.2. Single-degree-of-freedom (SDOF) primary system (modelled as a frame structure) ground-

connected via an inerter element (a) force excited (b) base excited. 

 

Under the assumption that the physical mass of the inerter, the damper, and the spring are 

negligible compared to the masses m1 and mTMDI, the equations of motion of the TMDI 

equipped SDOF primary structure considered are written in matrix form as:  

 

 

 

1 1 1 1

2

11 1

0

0

TMDI TMDI TMDI TMDI TMDI

TMDI TMDI

TMDI TMDI TMDI

TMDI TMDI

m b x c c x

m x c c c x

F tk k x

F tk k k x

        
       

        

      
     

        

 (3-1) 
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In the above equations, x1 and xTMDI are the displacement response histories relative to the 

motion of the ground of the primary structure mass and of the attached mass, respectively 

(see also Figure 3.2). For force excitation, F2(t)=0 in Eq. (3-1) and F2(t)=P(t).  In this 

case, the incorporation of the inerter contribution to an increase of the attached mass 

mTMDI by the inertance b (mass amplification effect). Therefore, the resulting TMDI will 

have the same dynamical behaviour as a classical TMD with attached mass equal to 

mTMDI+b, though the added weight of the TMDI will only be equal to mTMDIg, where g is 

the acceleration of gravity. In this regard, the case of a force excited TMDI equipped 

SDOF primary systems coincides with the classical TMD in terms of equation of motion 

and, thus, with optimum design. To this end, it will not be explicitly treated in this thesis. 

For ground excitation, the following forcing vector applies in Equation (3-1):  

 

 

 
2

1 1

TMDI

g

F t m
a

F t m

    
    

    
 (3-2) 

 

Notably, this is different than the case of a base-excited classical TMD with mTMDI+b 

attached mass. In this respect, the remainder of this section focuses on the case of support-

excited TMDI. 

Denote by ωTMDI and ζTMDI the natural frequency and the critical damping ratio of 

the TMDI system, respectively, defined as 

 

TMDI

TMDI

TMDI

k

m b
 


 , 

2( )

TMDI

TMDI

TMDI TMDI

c

m b






 (3-3) 

 

Further, consider the dimensionless mass ratio µ, the dimensionless frequency ratio 
TMDI

and the dimensionless “inertance” ratio 𝛽 expressed as: 
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1

TMDIm

m
   , 

1

TMDI

TMDI





 , 

1

b

m
   (3-4) 

 

where ω1 is the natural frequency of the primary structure, that is, ω1= (k1/m1)
1/2. Using 

the above definitions, the complex frequency response function (FRF) in terms of the 

relative lateral sway x1 of the frame structure in Figure 3.2 can be written as: 
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 (3-5) 

 

in the domain of frequency ω by considering the normalized acceleration input ag/ω1
2. In 

the latter equation and hereafter 1i   . Furthermore, the complex FRF in terms of the 

relative displacement xTMDI of the attached mass is written as: 
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 (3-6) 

 

It is noted that by setting b=β=0 in Eq. (3-5) and Eq. (3-6) the FRFs in terms of the relative 

displacements x1 and xTMDI, respectively, for an undamped SDOF primary system 

equipped with the classical TMD are retrieved. In this respect, it is seen that the proposed 
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tuned mass-damper-inerter (TMDI) configuration for passive vibration control can be 

interpreted as a generalization of the classical TMD. 

In the next section, optimal TMDI design is sought by considering the minimization 

of the magnitude of the FRF G1 (i.e., |G1(ω)|), commonly referred to as the “dynamic 

amplification factor”. This is the most common design criterion for vibration suppression 

of harmonically excited primary structures by means of the classical TMD system (e.g. 

Krenk, 2005). 
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3.3 OPTIMUM DESIGN OF THE TUNED-MASS-DAMPER-

INERTER FOR HARMONIC EXCITATION 

 

Assume that the TMDI equipped structure of Figure 3.2 is subjected to a harmonic 

support excitation. Given fixed values for the μ and β ratios in (3-4), it is sought to 

determine “optimum” values for the TMDI stiffness and damping constants kTMDI and 

cTMDI, respectively, or equivalently for the TMDI  and ζTMDI dimensionless parameters in 

(3-4) and (3-3) respectively, such that the amplitude of the lateral sway of the primary 

structure is minimized.  

 

3.3.1 DERIVATION OF CLOSED FORM SOLUTIONS FOR OPTIMUM 

DESIGN PARAMETERS 

 

The tuning design approach proposed by (Den Hartog, 1956) for harmonically force 

excited undamped SDOF primary structures equipped with the classical TMD (i.e. TMDI 

with b=β=0) is herein adopted. This approach is based on the “fixed point” theory which 

relies on the empirical observation that the magnitude of the FRF curves |G1(ω)| in 

Equation (3-5) for b=β=0  passes through two specific points, the location of which is 

independent of the damping coefficient cTMDI. Importantly, this observation holds for the 

TMDI system and for harmonically base-excited primary structures, as well. For example, 

in Figure 3.3, the dynamic amplification factor |G1(ω)| is plotted for several values of the 

TMDI damping ratio ζTMDI and for fixed values of the ratios μ, β, and TMDI .  
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Figure 3.3 Relative displacement response amplitude of undamped support excited TMDI equipped 

SDOF primary structure with mass ratio μ=0.1, inertance ratio β=0.1, frequency ratio υTMDI=0.5, and for 

various TMDI damping ratios ζTMDI. 

 

Evidently, there exist two “stationary” points, denoted by P1 and P2, where G1 FRF curves 

intersect for all damping coefficient values cTMDI, or equivalently TMDI damping ratios 

ζTMDI. Following the classical TMD design approach of Den Hartog, the amplitude of 

|G1(ω)| at points P1 and P2 must be equal (Den Hartog, 1956; Brock, 1946; Krenk, 2005) 

for achieving optimum response. Furthermore, |G1(ω)| must attain a local maximum at 

these two points and, thus, the slope of |G1(ω)| at P1 and P2 must be equal to zero. 

Therefore, according to Den Hartog approach, the minimum response of a TMDI 

equipped harmonically support excited undamped primary structure may be achieved by 

enforcing that there exist two local maxima of |G1(ω)| with equal amplitudes at the 

stationary points P1 and P2. 

Collecting the real and imaginary parts, the square magnitude of the FRF in (3-5) 

is written as: 

 

2 2 2
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Where: 
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By imposing the condition: 

 

2 2

1 1
0

lim ( ) lim ( )
TMDI TMDI

G G
 

 
 

  (3-9) 

 

to enforce that the dynamic amplification factor |G1(ω)| is independent of ζTMDI , one 

obtains: 

 

AD BC   (3-10) 

 

Substitution of A,B,C, and D in the above equation adopting the positive sign leads to the 

trivial solution ω=0. However, use of the negative sign yields the following quadratic 

equation in ω2: 

 

4 2 22 2

1

2

1[ 2 (1(2 2) (2 ) (1 )) ]  2(1 ) 0TMDI TMDIµ µ µ µ µ                (3-11) 

 

whose roots 
1P  and 2P are the natural frequencies corresponding to the stationary 

points P1 and P2; the response amplitude is independent of the TMDI damping coefficient 

cTMDI at these frequencies. The sum of the roots 1P  and 2P  can be expressed as the 

ratio between the coefficient of the linear term and the coefficient of the quadratic term 

in (3-11) with a negative sign, that is, 
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Enforcing equal dynamic amplification at points P1 and P2 for the limit ζTMDI→∞, that is,  

 

1 1 1 2lim ( ) lim ( )
TMDI TMDI

P PG G
 
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the following equation in 
1P  and 

2P is obtained 
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 (3-14) 

 

Solving the system of equations in (3-12) and (3-14), the value of the following 

(optimum) frequency ratio υTMDI is obtained in closed form: 
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 (3-15) 

 

which achieves equal dynamic amplification at points P1 and P2. 

Moreover, the optimum TMDI damping ratio can be obtained by requiring that the 

dynamic amplification at the two stationary points P1 and P2 is maximized locally. This 

condition is achieved by setting: 
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Using the above equation, the “optimal” TMDI parameter ζTMDI is found in terms of the 

ratios µ and 𝛽 as: 
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By substitution of the above optimal TMDI tuning parameters in (3-5), the following 

expression for the dynamic amplification factor at points P1 and P2 is obtained: 
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Note that by setting β=b=0 in Equations (3-16), (3-17) and (3-18) the closed-form 

expressions for optimal parameters and dynamic amplification factor of the classical 

TMD for undamped harmonically support excited SDOF systems are retrieved 

(Warburton, 1982; Rana & Soong, 1998) as shown in Table 3.1. Closed-form expressions 

corresponding to the force excitation case are also included in the latter table for the sake 

of completeness. In this case, the optimal TMDI parameters and dynamic amplification 

factor for harmonically forced excited undamped SDOF structures follows trivially from 

the known expressions of the classical TMD with attached mass m2+b (see Figure 3.2 

and Eq. (3-1)). However, these expressions need to be slightly modified to be consistent 

with the definitions of the parameters υTMDI and ζTMDI in Eq. (3-3).  

 

Table 3.1. Closed-form expressions for optimal TMDI for undamped SDOF harmonically excited primary 

structures vis-à-vis the classical TMD case 

 Frequency ratio (υTMDI) Damping ratio (ζTMDI) 

Dynamic 

amplification factor 

(  1max ( )G


 ) 
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 

 

3

8 1

 

 


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
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3.3.2 QUANTIFICATION OF THE PERFORMANCE ENHANCEMENT AND 

WEIGHT REDUCTION OF THE TUNED-MASS-DAMPER-INERTER 

VIS-À-VIS THE CLASSICAL TUNED-MASS-DAMPER 

 

The optimum TMDI properties 
TMDI  and ζTMDI given by the above derived expressions  

(3-15) and (3-17) minimize the peak dynamic amplification factor |G1(ω)| at frequencies

1P  and 
2P  (and consequently the peak response at those frequencies) of TMDI equipped 

harmonically base excited undamped primary structures for any given value of the ratios 

µ and 𝛽 following the Den Hartog approach for optimal design/tuning of TMDs. In Figure 

3.4 the expressions in (3-15) and (3-17) are plotted, for four different values of the mass 

ratio μ, as a function of the inertance ratio β. The latter quantity takes values within a 

suggested interval of practical interest [0,1], with β=0 being the limiting value for which 

the TMDI degenerates to the classical TMD. It is observed that the optimal frequency 

ratio TMDI  decreases as β increases for all values of μ considered, while it also decreases 

as the attached m2 mass increases. Further, the computed optimum damping ratio ζTMDI 

increases monotonically (and almost linearly) with the normalized inerter constant β for 

all considered values of μ, while it also increases as the attached mTMDI mass increases. 
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Figure 3.4. Optimum TMDI frequency ratio υTMDI and damping ratio ζTMDI as a function of the inertance 

ratio 𝛽 and for several mass ratio values μ. 

 

More importantly, Figure 3.5 plots the dynamic amplification factor |G1(ω)| as a function 

of the input harmonic excitation normalized by the natural frequency of the uncontrolled 

primary structure ω1 for an optimally designed TMDI equipped undamped SDOF primary 

structure with mass ratio μ= 0.1. Different values of the inertance ratio β, including the 

β=0 value which corresponds to the optimally designed classical TMD, are considered. 

As expected, all FRF curves plotted attain two local maxima of equal height at the 

frequencies 1P  and 2P whose location depend on the ratio β. Compared to the case of 

the classical TMD, the incorporation of the inerter in the considered TMDI arrangement 
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reduces significantly the peak dynamic amplification factor of the primary structure at the 

resonant frequency ω1 of the uncontrolled primary structure, as well as at frequencies
1P  

and 
2P . The rate of this reduction saturates as the ratio β increases. This trend can be 

clearly seen in Figure 3.6 which plots the peak response amplitude of the optimally 

designed TMDI equipped primary structure at 1P  normalized by the peak response 

amplitude of the optimally designed classical TMD equipped primary structure (b=0) at 

the same frequency against the inertance ratio β for four different values of the mass ratio. 

 

 

Figure 3.5. Dynamic amplification factor spectra for various optimally designed TMDI (b>0) systems and 

for the classical TMD (b=0). 

 

 

Figure 3.6. Normalized dynamic amplification factor at the “fixed” point ωP1 for optimally designed 

TMDI systems as functions of the inertance ratio β.  
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Figure 3.6 also suggests that the incorporation of the inerter to the classical TMD 

system is more effective for vibration suppression for smaller attached masses mTMDI.  

Nevertheless, it is also observed in Figure 3.5 that for a certain interval of frequencies 

lower than 1P  the classical TMD performs better than the TMDI. Even so, the upper 

bound of this interval reduces as β increases. For example, for the particular case of μ=0.1 

shown in Figure 3.5,  this upper bound becomes as low as 60% of the resonant frequency 

of the uncontrolled primary structure for β>0.5. Furthermore, the dynamic amplification 

factor |G1(ω)| becomes flatter as the inertance ratio β increases and exhibits practically 

insignificant fluctuations for β>0.7 (and μ=0.1) over a considerable range of frequencies. 

Similar observations hold true for other values of mass ratio μ as well. 

In view of the above observations, it is concluded that the consideration of larger 

inertance ratio values β is beneficial as it significantly reduces the peak response within 

a wide range of frequencies about the natural frequency of the uncontrolled primary 

structure compared to the classical TMD. Therefore, the TMDI is more robust for 

vibration suppression vis-à-vis the classical TMD of the same mass ratio μ (and 

consequently of the same weight) as it is less affected by detuning and uncertainties in 

estimating the structural properties of the primary structure.  

 

It is important to point out that the previously reported benefits of incorporating an 

inerter to the classical TMD following the arrangement of Figure 3.2 are similar to 

considering classical TMDs with larger attached mass. This effect is demonstrated in 

Figure 3.7 which plots the dynamic amplification factor of harmonically base excited 

undamped SDOF structures equipped with the classical TMD for different values of the 

attached mass (i.e. different µ values). 
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Figure 3.7. Dynamic amplification factor spectra for various optimally designed TMD (b=0) equipped 

undamped SDOF systems. 

 

Though the curves are different than those of Figure 3.6 (see also the last column of Table 

3.1) the effect of increasing the TMD mass is similar to that of a TMDI with a fixed 

attached mass but with increase inertance. In this regard, an important practical advantage 

of the TMDI is that it achieves similar levels of vibration suppression compared to the 

classical TMD with significantly smaller additive weight. This aspect is quantified in 

Figure 3.8 using a bar chart diagram of the required attached mass ratio to achieve specific 

peak dynamic amplification factors for different values of inertance including the limiting 

case of β=b=0 corresponding to the classical TMD. 
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Figure 3.8. Dynamic amplification factor spectra for various optimally designed TMD (b=0) equipped 

undamped SDOF systems. 

 

For example, a peak dynamic amplification factor of 3 can be achieved by a TMDI 

with inertance equal to 10% of the mass of the primary structure and with almost half the 

total weight of a classical TMD. Assuming a primary structure with m1= 360t mass, an 

inerter with inertance b= 36t can be achieved by a flywheel with mass equal to 10kg and 

ratio γf/γpr= 3 connected to the rack by two gears (n=2 in Eq. (2-1) one having a 

transmission ratio r/pr equal to 5 and the other equal to 4 (see also Figure 2.4).    
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3.4 OPTIMUM DESIGN OF THE TUNED-MASS-DAMPER-

INERTER FOR STOCHASTIC WHITE NOISE EXCITATION 

 

3.4.1 DERIVATION OF CLOSED FORM SOLUTIONS FOR OPTIMUM 

DESIGN PARAMETERS 

 

Assume that the TMDI system of Figure 3.2b is subjected to a stationary stochastic 

support excitation process   2

1/ga t   represented in the frequency domain by a double-

sided spectral density function (power spectrum) S(ω). The variance of the relative 

displacement process 
1x  of the primary structure is written as: 

 

22

1 1( ) ( )G S d   



   (3-19) 

 

In the latter equation, the “transfer function” 
2

1( )G   is the squared modulus of 

the FRF defined in Equation (3-5). Given μ and β mass ratios, it is sought to determine 

optimum values for the stiffness 
TMDIk  and damping 

TMDIc  constants of the considered 

TMDI configuration, or equivalently υTMDI and
TMDI  dimensionless parameters (see 

Equations (3-3) and (3-4)), which minimize the variance 
2

1  in Equation (3-19) for the 

case of the undamped (
1 0  ) TMDI equipped SDOF primary structures under white 

noise support excitation.  

The latter is a well-studied in the literature special case for which analytical 

formulae for the optimal “tuning” of the classical TMD exist (see e.g. Warburton, 1982). 
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For this purpose, considering an undamped primary structure (
1 =0) the transfer 

function in Equation (3-5) can be written by grouping its coefficients as: 

  

4 2
2 2 1 0

1 4 3 2 4 3 2

4 3 2 1 0 4 3 2 1 0

( )
b b b

G
a a a a a a a a a a
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 


       
 (3-20) 

 

where the numerator coefficients are expressed as: 
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(3-21) 

 

and the denominator coefficients are expressed as: 
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 (3-22) 

 

Assuming a constant power spectrum over all frequencies S(ω)=S0 (ideal white noise) 

and using standard analytical techniques to evaluate the integral in Equation (3-19) (see 

e.g. Roberts & Spanos, 2003) the variance 
2

1 for an undamped primary system equipped 

with a TMDI is expressed as: 

 

2 2
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 (3-23) 

 

in which: 

http://web.doverpublications.com/cgi-bin/jump?sterm=J.+B.+Roberts
http://web.doverpublications.com/cgi-bin/jump?sterm=P.+D.+Spanos
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 (3-24) 

 

Assuming constant mass ratios μ and β, the variance 
2

1  of Eq. (3-23) is minimized in 

terms of the TMD frequency ratio υTMDI and damping ratio 
TMDI  by enforcing the 

following two conditions: 

 

2 2

1 10 and 0
TMDI TMDI

 
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 (3-25) 

 

These conditions yield a system of two equations from which the “optimal” tuning 

parameters υTMDI and 
TMDI  of the proposed TMDI configuration are found in terms of 

the mass ratios µ and 𝛽 as: 

 

[ ( 1) (2 )(1 )]1

1 2(1 )
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and:  
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     
 (3-27) 

 

Further, by substitution of the above optimal TMDI tuning parameters into 

Equation (3-23) the following expression for the achieved minimum variance of the 

relative displacement process 
1x  is obtained 
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2

1,min 0 1

(1 )[ (3 ) (4 )(1 )]
(1 )

( )(1 )
S

    
   

   

    
 

  
 (3-28) 

 

It is important to note that by setting b=β=0 in Equations (3-26), (3-27) and (3-28) 

the optimal tuning formulae of the classical TMD which minimize the relative 

displacement variance of an undamped SDOF primary structure subjected to white noise 

support excitation reported in the literature (Warburton, 1982) can be retrieved.  

To facilitate comparison between the proposed TMDI configuration of Figure 

3.2b and the TMD, the previously derived formulae for the optimal tuning of the TMDI 

are juxtaposed with the known formulae corresponding to the classical TMD in Table 3.2. 

Similar to the case of harmonic excitation TMDI presented in subchapter 3.3, closed-form 

expressions corresponding to the force excitation are also included in Table 3.2 for the 

sake of completeness. In this case, the optimal TMDI parameters and minimum achieved 

variance for white noise forced excited undamped SDOF structures follows from the 

known expressions of the classical TMD with attached mass. 

 

Table 3.2. Closed-form expressions for optimal tuning of the proposed TMDI configuration for undamped 

SDOF primary structures subject to white noise base excitation vis-à-vis the classical TMD case. 

 Frequency ratio (υTMDI) Damping ratio (ζTMDI) 
Minimum achieved variance of 

1x  

Force 
excited 

TMD 
(b=0) 

(1 / 2)

1








 

(1 3 / 4)

4(1 )(1 / 2)

 

 



 
 

0 1

3
1

4

(1 )
S


 

 




 

Force 
excited 

TMDI 

(b>0) 

(1 ( ) / 2)

1

 

 

 

 
 

( )(1 3( ) / 4)

4(1 ( ))(1 ( ) / 2)

   

   

  

   

 
0 1

3
1 ( )

4

( )(1 )
S

 
 

   

 

  
 

Base 

excited 

TMD 
(b=0) 

(1 / 2)

1








 

(1 / 4)

4(1 )(1 / 2)

 

 



 
 0 1

(1 )(4 )
(1 )S

 
  



 
  

Base 

excited 

TMDI 
(b>0) 

( )[ ( 1) (2 )(1 )]1

1 2 (1 )

     

   

    

  

 

( ) (3 ) (4 )(1 )

2 2 (1 )[ (1 ) (2 )(1 )]

     

      

    

     

 

0 1

(1 )[ (3 ) (4 )(1 )]
(1 )

( )(1 )
S

    
  

   

    


  
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In the following section, the potential of the TMDI to suppress the oscillatory 

motion of white noise support excited undamped SDOF primary structures is assessed 

vis-à-vis the classical TMD. 

 

3.4.2 QUANTIFICATION OF PERFORMANCE ENHANCEMENT AND 

WEIGHT REDUCTION OF THE TUNED-MASS-DAMPER-INERTER 

VIS-À-VIS THE CLASSICAL TUNED-MASS-DAMPER. 

 

In Figure 3.9 and Figure 3.10, Equations (3-26) and (3-27) are plotted, 

respectively, for four different values of the mass ratio μ and for β ratios within a 

suggested interval of practical interest [0,1], with β=0 being the limiting value for which 

the TMDI degenerates to the classical TMD. It is observed that the influence of the 

apparent “mass amplification” effect due to the additional inerter device incorporated in 

the proposed TMDI is more prominent for lower values of the mass ratio μ. Specifically, 

for μ>0.6 the “optimum” frequency ratio υ decreases slightly as β increases, while for 

μ<0.4 the ratio υ increases significantly for values of β up to about 0.3 to 0.4 and then 

decays for higher values of β. More importantly, the achieved “optimum” damping ratio 

TMDI  increases monotonically (and almost linearly) for all considered values of μ as the 

normalized inerter constant β increases. However, the rate of this increase deteriorates for 

higher values of μ. These trends suggest that the incorporation of an inerter device to the 

classical TMD is more beneficial for relatively smaller values of the mass ratio μ (i.e. for 

relatively lower vibrating TMD masses) as it allows for “driving” viscous dampers with 

higher kinetic energy absorption capabilities (i.e. damping ratios). 
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Figure 3.9. Optimum TMDI frequency ratio for various values of 𝛽 and several mass ratio values 

 

 

Figure 3.10. Optimum TMD damping ratio for various values of 𝛽 and several mass ratio values 

 

The above argument is confirmed by the numerical data of Figure 3.11 in which 

the minimum relative displacement variance of the primary structure achieved by means 

of TMDI  2

1,min 0b   is plotted (Equation (3-28)), normalized by the minimum variance 

achieved via the classical TMD  2

1,min 0b   for the same values of the mass ratios μ 

and β as previously considered. In all cases, the displacement response variance decreases 

significantly as the parameter 𝛽 increases demonstrating that the proposed TMDI 

configuration is more effective to suppress oscillations compared to the classical TMD. 
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Further, the effectiveness of the TMDI increases considerably as lower values of the mass 

ratio μ (µ<0.4) are considered, commonly adopted in practical TMD implementations.  

 

 

Figure 3.11. Minimum variance ratio between the proposed model (b>0) and the classical TMD (b=0) 

 

In fact, although in most practical applications of the TMD the considered mass 

ratio µ rarely exceeds values of 0.2~0.3, it can be shown that the proposed TMDI 

configuration is more effective than the classical TMD in suppressing the relative 

displacement variance of the primary structure for all values of the mass ratio μ within 

the interval (0,4]. Specifically, by relying on Eq. (3-28), it can be shown that: 

 

2

1,min,

2

1,min,

( 0)
1

( 0)

b

b









 (3-29) 

 

for 

 

0 <   3 and  > 0   (3-30) 

 

and for: 
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24 3
3 4 and 0

3

 





 
  


 (3-31) 

 

In view of the above analytical and numerical data, it can be concluded that the 

use of the inerter in the proposed configuration reduces significantly the minimum 

variance of an undamped SDOF subjected to white noise base acceleration in comparison 

with classical TMD. 

 

It has already been showed in the previous sub-chapter that the optimum designed 

TMDI configuration is more effective than the classical TMD for a fixed value of the 

TMD mass in suppressing the displacement variance of white noise excited undamped 

SDOF primary structures. In all cases, the displacement response variance decreases 

significantly as the parameter 𝛽 increases demonstrating that the proposed TMDI 

configuration is more effective to suppress oscillations compared to the classical TMD. 

Herein, to emphasize on the mass reduction capabilities of the inerter, Figure 3.12 reports 

the required additional mTMDI mass values for achieving pre-imposed levels of structural 

response for both TMDI passive control configuration and for the classical TMD solution. 

These are obtained by numerically solving for μ in Equation (3-28) for the case of β=0 

(classical TMD) and for β>0 (TMDI configuration). 
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Figure 3.12 Additional mTMDI mass values required for achieving the same level of performance in terms 

of displacement response variance for the proposes TMDI configuration and classical TMD (b=0) 

 

It is observed that the same level of response amplitude evaluated by means of the 

normalized response variance 
2

1,min 0 1/ S   can be achieved by adopting e.g. the classical 

TMD solution with a mass ratio μ=0.51 or by employing a  TMDI solution with β=0.1 

and with a mass ratio μ=0.13. It is important to mention that, the physical mass of the 

considered inerter might be up to two orders of magnitude smaller than its b constant 

(implicitly β ratio) as detailed in Section 2.2 and thus the TMDI configuration represents 

a much lighter passive control solution compared to the case of classical TMD. 

As a final remark, it is noted that the optimum tuning parameters TMDI  and 
TMDI  

obtained for undamped SDOF primary structures (Equations (3-26) and (3-27)) can be 

used to facilitate the optimum design of a novel TMDI configuration to suppress the 

oscillatory motion of support excited multi-degree-of-freedom (MDOF) primary 

structures. 
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4.1 PRELIMINARY REMARKS 

 

This chapter develops the TMDI for passive vibration control of mechanical chain-

like (cascaded) damped multi-degree-of-freedom (MDOF) primary systems. In particular, 

consider a linear proportionally (classically) damped multi-degree-of-freedom (MDOF) 

system with masses jm  (j=1,2,…n), linked together by linear springs of stiffness 

coefficients jk  (j=1,2,…n) and viscous dampers with damping coefficients jc  

(j=1,2,…n) as shown in Figure 4.1., where n is the number of the DOFs of the system, 

based-excited by an acceleration stochastic process  ga t . 

To suppress the motion of this chain-like MDOF primary structure according to its, 

presumably dominant, fundamental (first) mode shape of vibration, it is proposed to 

consider a tuned mass-damper (TMD) attached to the “lead” 
1m  mass in conjunction with 

an inerter device connecting the TMD mass to the penultimate 
2m  of the primary structure 

(Fig. 6). Note that by eliminating the inerter (b=0), the above tuned mass-damper-inerter 

(TMDI) configuration coincides with TMD arrangements commonly used to control the 

fundamental mode of vibration of  base excited “regular” MDOF structures.  This 

arrangement is motivated by earthquake engineering applications where TMD attached 

to the top building floor are used for seismic protection of multi-storey buildings (e.g. 

Rana & Soong, 1998). In this regard, as in the case of the SDOF primary structure 

presented in previous sections, the herein proposed TMDI configuration can be 

CHAPTER 4 : THE TUNED-MASS-DAMPER-INERTER FOR 

SUPPORT EXCITED MULTI-DEGREE-OF-FREEDOM PRIMARY 

SYSTEMS 
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interpreted as a generalization of the commonly used TMD arrangements for passive 

vibration control of support-excited MDOF primary structures. In the remainder of this 

chapter, the governing differential equations of motion of TMDI equipped system in 

Figure 4.1 are derived in the time and Laplace domain. Further, a standard optimization 

procedure is considered to obtain optimum TMDI and classical TMD designs (as a special 

case of a TMDI with b=0) which minimize the displacement variance of the “lead” mass 

(most remote mass from the support) of the primary structure base excited. Coloured 

noise base excitations are considered for the ensuing numerical applications. 

 

 

Figure 4.1. Cascaded chai-like multi-degree-of-freedom (MDOF) primary system incorporating the 

proposed tuned mass-damper-inerter (TMDI) configuration. 
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4.2 GOVERNING EQUATIONS OF MOTION 

 

The n+1 equations of motion of the resulting MDOF system in Figure 4.1 subject 

to a lateral ground motion represented by an acceleration stochastic process αg(t) are 

written in matrix form as: 

 

( )ga tMx + Cx + Kx = -Mδ  (4-1) 

 

In the above equation, δ is the unit column vector and x is the vector collecting all 

lateral floor deflections xi (i=1,2,…,n) and the relative to the ground displacement TMDIx  

of the attached TMDI mass, that is, 

 

 1 2( ) ( ) ( ) ( )
T

TMDI nx t x t x t x tx  (4-2) 

 

where the superscript “T” denotes matrix transposition. Further, in Equation (4-1) the 

mass matrix M, the damping matrix C, and the stiffness matrix K are given by the 

expressions: 

 

1

2

3

0 0 0

0 0 0

0 0

0 0 0

0

0 0

TMDI

n

m b b

m

b m b

m

m

  
 
 
  

  
 
 
 
  

M  (4-3) 
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1 1

1 1 2 2

2

1

1 1

0 0

0

0

0 0 0

0 0

TMDI TMDI

TMDI TMDI

n

n n n

c c

c c c c

c c c c

c

c

c c c



 

 
 
  
 
   

  
 

 
 

   

C  (4-4) 

 

1 1

1 1 2 2

2

1

1 1

0 0

0

0

0 0 0

0 0

TMDI TMDI

TMDI TMDI

n

n n n

k k

k k k k

k k k k

k

k

k k k



 

 
 
  
 
   

  
 

 
 

   

K  (4-5) 

 

respectively, where mi, ki, and ci are the mass, lateral stiffness, and damping of floor i 

(i=1,2,…,n) and TMDIm , TMDIk , TMDIc , and b are the TMDI mass, stiffness, damping, and 

inertance coefficients (see also Figure 4.1). Note that for b=0 Eqs. (4-1) to (4-5) govern 

the response of a base excited chain-like MDOF system with the classical TMD attached 

to its leading mass. The latter TMD topology is widely considered to control the first 

mode of vibration of structural systems which, in many practical cases, dominates their 

dynamic response to broadband base excitations such as seismically excited multi-storey 

buildings subjected to earthquake ground motions (e.g. Rana & Soong, 1998). The 

inclusion of the inerter device as shown in (4-3) alters the mass matrix which is no longer 

diagonal. However, the overall system remains linear and, from a practical viewpoint, the 

same well-established computational methods for optimal design of classical TMD can 

be readily applied for the optimal design of the TMDI system of Figure 4.1. 

The optimal design of the TMDI for chain-like MDOF systems requires the 

determination of the transfer function between the input support excitation and the output 

displacement of the lead mass relative to the base motion x1 in Figure 4.1. This can be 
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achieved by first writing the n+1 system of second-order differential equations of Eq. 

(4-1) as a system of 2n+2 first-order differential equations (state-space form):  

 

( )ga tz = Az B  (4-6) 

 

where z is the state vector defined as 

 

 
 
 

x
z =

x
 (4-7) 

 

and A and B are the system matrix and input matrix, respectively, given by: 

 

,
 
 
 

n+1 n+1

-1 -1

0 I
A =

-M ×K -M ×C
 (4-8) 

 

 
 
 

n+1

n+1

0
B =

I
 (4-9) 

 

It is noted On+1 and In+1 as the zero and unit square matrices respectively of dimension 

n+1. Let Y(t) denote the output of the system expressed by: 

 

( ) ( )OY t C Z t   (4-10) 

 

where Co is defined as the measurement (output) matrix which depends on the selection 

of the studied output variable (e.g. displacement/velocity of the primary system). 

Assuming that the initial condition state vector is homogenous, that is: 
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 0 0,Z   (4-11) 

 

the Laplace transforms of Eqs.(4-6) and (4-10) are expressed after basic manipulations 

as: 

 

( ) ( ) ( )sZ s A Z s B A s     (4-12) 

 

( ) ( )OY s C Z s   (4-13) 

 

respectively. It is noted  A s as the Laplace transform of the support acceleration process 

ag(t) and ( )Z s  as the Laplace transform of ( )Z t . Further manipulation leads to: 

 

1

2( 1)( ) ( ) ( )nZ s sI A B A s

     (4-14) 

 

Substituting the latter back into Equation (4-10) one obtains: 

 

1

2( 1)( ) ( ) ( )O nY s C sI A B A s


        (4-15) 

 

Based on the above equation, the overall system transfer function that relates input base 

acceleration to the output is expressed by: 

 

1

1 2( 1)

( )
( ) ( )

( )
O n

Y s
G s C sI A B

A s



      (4-16) 

 

Setting the output matrix Co as: 
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 
(2 2)

0 1 0 0O n
C


  (4-17) 

 

in Equation (4-16),  the transfer function G1(s) relating the (input) support excitation in 

terms of acceleration to the (output) top floor mass m1 relative displacement is reached. 

Specifically, that is: 

 

1
1

( )
( ) ,

( )

x s
G s

A s
  (4-18) 

 

where 1( )x s is the Laplace transform of the second element in the vector defined by 

Equation (4-2). Actually, the location of the non-zero element in the Co vector identifies 

the location of the floor (lead mass m1) - for which the output is sought for. Evaluation of 

G1(s) along the imaginary axis yields the frequency response function noted herein G1(ω).  

The following section goes through the steps taken for optimum design of the herein 

proposed TMDI configuration for a given MDOF primary structure and for pre-specified 

(fixed) values of mTMDI and b. 

 

 

 

 

 

 

 

 

 

 



 

52 

 

4.3 OPTIMUM DESIGN OF TUNED-MASS-DAMPER-INERTER 

CONFIGURATION FOR DAMPED MULTI-DEGREE-OF-

FREEDOM PRIMARY SYSTEMS 

 

Consider the dimensionless modal mass ratio defined by: 

 

1

TMDI
M

m

M
   (4-19) 

 

where 
1M  is the generalized mass of the fundamental mode shape of the uncontrolled 

(primary) chain-like MDOF structure of Figure 4.1 given by the expression: 

 

1 pM  Τ

1 1
φ Μ φ  (4-20) 

 

In the last equation 
1
φ  is the fundamental mode shape vector (eigenvector) normalized 

by the modal coordinate corresponding to the lead mass 1m  (see also Rana & Soong, 

1998). Further, pΜ is obtained from the mass matrix Μ of Equation (4-3) by elimination 

of the first row and column and by setting b equal to zero. Similarly to the case of SDOF 

primary structures discussed in Chapter 3, a second dimensionless (modal) mass ratio 

involving the constant of the inerter b is defined as: 

 

1

M

b

M
   (4-21) 
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Let the support excitation process  ga t  be non-stationary, represented in the 

frequency domain by a one-sided evolutionary power spectral density function (power 

spectrum) S(ω,t).  It is sought to determine optimal design values for the frequency ratio 

υ and the damping ratio 
TMDI   defined in Eqs. (3-3) and (3-4), respectively, to minimize 

the variance of the process 
1x  (relative displacement of the lead mass

1m ) given the mass 

ratios
M  and 

M .To this aim, the following dimensionless cost function or 

“performance index” (PI) is considered: 

 

0

TMDIJ
PI

J
  (4-22) 

 

where 0J  and TMDIJ  denote the relative displacement variance of the lead mass (
1m ) for 

an uncontrolled primary structure exposed to the support acceleration  ga t and for the 

same primary structure equipped with the proposed TMDI configuration, respectively. 

Specifically, 

 

 
2

1
0

( ) max ( , )TMDI

t
J G S t d  



   (4-23) 

 

where 
2

1( )G   is the squared modulus of the frequency response function (“transfer 

function”) between the input acceleration and the output displacement of the primary 

system evaluated on the imaginary axis of the Laplace s-plane. The input seismic action 

is represented by the non-stationary power spectrum ( , )S t . Note that, notation-wise, for 

b=0: JTMDI= JTMD and for b=µM=0:  JTMDI=J0. 

In all of the ensuing numerical work, a standard MATLAB® built-in “min-max” 

constraint optimization algorithm employing a sequential programming method is used 
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to minimize the PI of Equation (4-22) for the design parameters 
TMDI and 

TMDI  (Salvi & 

Rizzi, 2011). The required “seed” values of TMDI  and 
TMDI  used to initiate the 

optimization algorithm are determined by substituting 
M  and 

M   in 

Equations (3-26) and (3-27), respectively. These values minimize the considered PI for 

an undamped linear SDOF primary structure under white noise support excitation, as 

detailed in Chapter 3. Further, the constraints  

 

0.5 4.50 0 1.00TMDand      (4-24) 

 

are enforced to the sought TMDI design parameters relying on physical considerations. 
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4.4 NUMERICAL APPLICATION OF THE TUNED-MASS-

DAMPER-INERTER FOR DAMPED MULTI-DEGREE-OF-

FREEDOM PRIMARY SYSTEMS: OPTIMUM DESIGN FOR 

STATIONARY COLOURED NOISE SUPPORT EXCITION 

 

In this section optimum design parameters are derived following the procedure 

discussed in Section 4.3 for the TMDI passive vibration control configuration of Figure 

4.1. The purpose is to demonstrate the applicability of the numerical algorithm proposed 

and to gauge on the effectiveness of the TMDI over the TMD to supress the lead mass 

displacement for damped MDOF systems. The need for such a numerical based 

evaluation, as opposed to an analytical one followed in Chapter 3, stems from the fact 

that optimum TMDI design for damped MDOF (even when targeting to control the first 

mode) is a challenging task. For the more general case of coloured noise excitation is not 

feasible. In this respect, a judicially chosen primary system and base excitation are 

considered. In particular, a 3-DOF primary system (n=3) is used whose inertial and elastic 

properties are shown in Table 4.1. The undamped natural frequencies of the considered 

primary system obtained from standard modal analysis are ω1= 6.37rad/s, ω2= 13.02rad/s, 

and ω3= 20.57rad/s. Further, the fundamental mode shape normalized by the modal 

coordinate of the lead mass 1m  is computed as  1.000 0.593 0.286
T


1
φ  and the 

corresponding generalized mass is equal to M1= 16.9x103 kg (Eq. (4-20)).   

The damping coefficients of the considered primary structure are assumed to be 

stiffness proportional (“classically” damped system), determined by the expression: 

 

 1

1

2
1,2,3j jc k j




   (4-25) 
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in which 1 is the critical damping ratio of the fundamental mode shape taken equal to 

0.02. 

 

Table 4.1 Inertial and elastic properties of the considered 3-DOF primary structure 

j 
Mass mj  

(kg) 

Stiffness kj  

(N/m) 

Damping cj 

 (Ns/m) 

1 
10 x 103 10 x 105 6280 

2 
15 x 103 25 x 105 15670 

3 
20 x 103 35 x 105 21980 

 

Further, the input action is represented by the stationary coloured noise stochastic 

process represented in the frequency domain by the power spectrum S(ω) plotted in 

Figure 4.2. Incidentally, this spectrum is compatible in the “mean sense” with the elastic 

spectrum of the European seismic code for peak ground acceleration 0.36g (g=981cm/s2) 

and ground type “B” (Eurocode 8, 2004). It has been derived by a methodology described 

in (Giaralis & Spanos, 2010). However, it is noted that this spectrum has been selected to 

attain a single dominant frequency (spike) at the damped 2nd natural frequency. In this 

way, the considered spectrum can be regarded as a broadband excitation since all three 

modes of the system are dynamically excited. (see Figure 4.2).  

Furthermore, for the herein considered base excitation, the numerator in (4-23)  

simplifies to: 

 

2

1
0

( ) ( )TMDIJ G S d  


   (4-26) 
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Figure 4.2. One-sided power spectrum representing the acceleration support excitation αg(t). 

 

 

4.4.1 OPTIMUM DESIGN OF THE CLASSICAL TUNED-MASS-DAMPER AS 

A SPECIAL CASE OF THE TUNED-MASS-DAMPER-INERTER 

CONFIGURATION 

 

As discussed in Section 4.2, by setting 0b  , or equivalently 0M  (Eq. (30)), 

the proposed TMDI configuration depicted in Figure 4.1 becomes the classical TMD used 

to suppress oscillations according to the fundamental mode of vibration for MDOF 

primary systems. Therefore, optimal design TMD parameters for the frequency ratio υTMDI 

and the damping ratio TMDI  can be determined by following the procedure outlined in 

section 4.3. For example, set 0M   and let the additional oscillating mass be equal to 

450 kg, that is, 1% of the total mass of the 3-DOF chain-like primary system with 

properties given in Table 4.1. The modal mass ratio becomes 0.0267M  (Eq. (4-19)). 

Next, the “seed” values υTMDI= 0.967 and 0.081TMDI  are computed from Eqs. (3-26) 

and (3-27) respectively to initialize the adopted optimization algorithm to minimize the 

cost function of Equation (4-22) (see section 4.3). Similar computations are performed 

for different values of the TMD mass within a commonly used in engineering applications 
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range: 1% to 10% of the total mass of the primary structure, corresponding to 450kg to 

4500kg of mass. The optimal frequency ratio υ and damping ratio TMD  parameters 

obtained from the adopted optimization procedure are plotted as functions of the TMD 

mass in Figs. 9 and 10, respectively (b=0 classical TMD curve). 

 

 

 

Figure 4.3. Optimum frequency ratio as a function of the TMD mass for various values of the inerter 

constant b to control the fundamental mode of vibration of the 3-DOF primary structure of Table 4.1 

 

Figure 4.4. Optimum damping ratio as a function of the TMD mass for various values of the inerter 

constant b to control the fundamental mode of vibration of the 3-DOF primary structure of Table 4.1. 
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Further, the achieved value of the performance index of Equation (4-22) for the 

classical TMD (b =0) are plotted in Figure 4.5 as a function of the TMD mass. 

It is noted that the numerical data presented in Figure 4.3 and Figure 4.4 for the 

classical TMD are in alignment with similar results reported in the literature obtained by 

alternative numerical optimization techniques (see e.g. Hoang et al, 2008; Rana & Soong, 

1998; Lee et al, 2006 and references therein). 

 

 

Figure 4.5. Achieved performance index versus the TMD mass for various values of the inerter constant 

b. 

 

Specifically, increased values of the TMD mass require higher damping ratios 

TMDI  values and lower TMD frequency ratios to achieve optimal tuning. Consequently, 

larger TMD mass is more effective in controlling the dynamic response of the primary 

structure according to its fundamental mode shape, at the cost of an increase total weight 

of the structural system. However, the rate of decay of the PI (proportional to the variance 

of the relative displacement of the 1m  mass) decreases rapidly (i.e. PI “saturates”) as the 
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TMD mass increases. It reaches a practically constant value for TMD mass larger than 

5% the total mass of the considered primary structure. 

 

 

4.4.2 OPTIMUM DESIGN OF THE TUNED-MASS-DAMPER-INERTER 

CONFIGURATION 

 

Let an inerter device be incorporated to the considered 3-DOF mechanical 

primary system with the properties listed in Table 4.1 according to the proposed TMDI 

configuration of Figure 4.1. The previously considered optimization procedure is used to 

derive optimum TMDI parameters (υTMDI and TMDI ) minimizing the cost function of 

Equation (4-22) for the input power spectrum of Figure 4.2. 

The same range of pre-specified TMD mass (1% to 10% of the total mass of the 

primary structure) is considered as in the previous section, while three different values of 

the inerter constant b are taken: 2000, 4000, and 6000 kg. Optimal TMDI parameters are 

plotted in Figure 4.3 and Figure 4.4 in which the case of the classical TMD (b=0) is also 

included for comparison purposes. Further, in Figure 4.5 curves of the performance index 

of Equation (4-22) achieved by the different TMDI systems considered are superposed to 

numerical results corresponding to the classical TMD (b =0). It can be readily seen from 

the herein reported numerical data that the value of the Performance Index, or 

equivalently the variance of the relative displacement of the 1m mass, is reduced as the 

value of the inerter b increases. In fact, in all cases considered, the proposed TMDI 

configuration outperforms the classical TMD in terms of minimizing the adopted cost 

function. The achieved improved performance of the TMDI over the classical TMD is 

reported in the rightmost column of Table 4.2 for several selected cases. 
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Table 4.2. Optimal TMDI parameters, Performance Index (PI) and percentage difference of PI achieved 

for different values of the attached TMDI mass and the inerter constant b compared to the classical TMD 

(b=0). 

mTMDI 

(kg) 

𝑏 (kg) υTMDI ζTMDI PI 

Percentage difference 

of PI compared to the 

classical TMD (%) 

450 

(1%) 

 

0 0.97 0.105 0.369 - 

2000 2.31 0.307 0.317 14.1 

4000 3.16 0.582 0.270 27.0 

6000 3.84 0.852 0.235 36.5 

900 

(2%) 

 

0 0.94 0.146 0.290 - 

2000 1.73 0.280 0.272 6.1 

4000 2.28 0.454 0.243 16.3 

6000 2.73 0.671 0.220 24.4 

1350 

(4%) 

 

0 0.92 0.175 0.250 - 

2000 1.48 0.310 0.246 1.4 

4000 1.89 0.452 0.226 9.5 

6000 2.24 0.615 0.208 16.8 

1800 

(6%) 

 

0 0.89 0.200 0.225 - 

2000 1.32 0.301 0.224 0.6 

4000 1.66 0.455 0.213 5.4 

6000 1.94 0.594 0.198 11.8 

 

 

The performance improvement is considerably higher for relatively small TMD 

mass values (less than about 3% of the total mass of the primary system) while it becomes 

less significant for attached TMDI mass values greater than 6% of the total mass of the 

mechanical primary system. Note that similar trends were found in the case of the 

undamped SDOF primary structure for which optimal TMDI parameters have been 

derived in closed form Figure 3.11. Therefore, it can be concluded that the effectiveness 

of an inerter device to suppress the displacement response variance beyond what can be 

achieved by the classical TMD increases for relatively small attached oscillating masses. 

It is also noted that the enhanced performance of the TMDI system requires that the TMD 
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mass is attached to the primary structure by “stiffer” connection arrangements and by 

considering viscous damping devices with higher damping coefficients.  

More importantly, the herein furnished data demonstrate that the “mass 

amplifying” effect of the inerter device can be effectively used to replace part of the 

oscillating TMD mass and, thus, to reduce the total weight of the structural system for the 

same level of performance in terms of keeping the oscillatory motion of the primary 

system below a certain threshold. For example, as shown in Table 4.2, in the case of the 

considered 3-DOF chain-like cascaded mechanical system, an optimally tuned TMDI 

with an inerter device of “mass” constant b=6000 kg and an attached mass of 450kg 

achieves similar level of performance (more than 75% reduction to the displacement 

variance of the 1m  mass compared to the uncontrolled primary structure) as an optimally 

tuned classical TMD with four times heavier oscillating mass (1800kg). However, the 

physical mass of the considered inerter might be up to two orders of magnitude smaller 

than its b constant. Specifically, ratios of constant b over physical mass for inerters of up 

to 200/1 or more have been reported in the literature (Papageorgiou & Smith, 2005). 

Adopting this ratio, the considered inerter has a physical mass of 6000/200= 30kg. 

Therefore, the total weight of the examined TMDI system remains about four times 

lighter than a classical TMD for similar vibration control performance assuming that the 

weight of the equipment used to attach the TMD mass to the primary structure and of the 

viscous damping devices are similar in both cases. The latter consideration may have 

significant advantages in certain real-life structural passive vibration control design 

scenarios necessitating the use of large TMD masses to achieve the desired vibration 

suppression effect, as is the case of building structures excited by severe earthquake 

induced strong ground motions (see e.g. Hoang et al, 2008; Moutinho, 2012 and 

references therein).  
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Comprehensive numerical results are furnished along these lines in the next 

chapter focusing on the design and assessment of TMDI for seismic protection of multi-

storey building structures. 
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5.1 PRELIMINARY REMARKS 

 

Civil engineering structures at seismically prone areas are exposed to earthquake 

induced ground motions of different severity levels during the structures’ life service. At 

high levels of seismic severity, the inertial dynamic loads exerted to structures may induce 

permanent damage and, in extreme cases, total structural failure/collapse. Admittedly, 

current conventional codes of practice for earthquake resistance design are based on 

concepts of inelastic energy absorption through controlled localized damage, allowing 

ordinary structures to yield under a specified “design” seismic excitation level for the 

purpose of reducing initial excessive construction expenditures. Regardless of this 

acceptable design risk criterion, recent major seismic events incurred extensive structural 

damage in urban areas (e.g. Kobe- Japan 1995 and Christchurch-New Zealand 2011) 

where the associated cost of structural retrofit and downtime has been significant. In this 

respect, the incorporation of various equipment such as base isolators (Naeim & Kelly, 

1999), energy dissipation devices (e.g. viscous dampers, friction dampers, etc.), and 

Tuned-Mass Dampers (TMD) (Chang, 1999; Spencer, 2002; Martelli & Forni, 2011) has 

been proposed by various researchers and has been applied in practice for the passive 

vibration control of civil engineering structures exposed to earthquake induced ground 

motions to achieve “minimal damage” structures (Karavasilis et al. 2011). Such passive 

vibration control devices/equipment are designed to maintain the seismic response of 

structures bellow certain acceptable thresholds. 

CHAPTER 5 : DESIGN AND ASSESMENT OF THE TUNED-MASS-

DAMPER-INERTER FOR SEISMIC PROTECTION OF MULTI-

STOREY BUILDINGS 
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Initially proposed for naval and mechanical engineering application (Ormondroyd 

& Den Hartog, 1928; Frahm, 1911; Den Hartog, 1956; Brock, 1956), the TMD is 

commonly used in present day in the field of civil engineering as a mean to mitigate wind 

and traffic-induced vibration, where the weight of the TMD mass commonly ranges 

between 1% to 10% of the total weight of the building (e.g. Chung et al, 2013; Shi & Cai, 

2008). However, this passive control solution is not commonly considered for the 

mitigation of earthquake-induced vibrations. Instead, more involved TMD-based 

solutions are used such as multiple TMDs, non-linear TMDs and large mass TMDs as 

reviewed in Section 2.1. This is mainly due to the facts listed below: 

- Dependence on the property of the primary system. Classical TMDs are effective 

only for a narrow band of exciting frequency, which creates difficulties in designing 

effective and robust TMDs, whose parameters commonly depend on structural and 

earthquake characteristics, both with inherent uncertainties.  

- Impulsive nature of earthquake loads. Typically seismic events have large energy 

dissipated within a short period of time. In this case, the TMD absorbing capabilities are 

impaired due to the long period of time it takes to accommodate appropriate 

displacements with significant out-of-phase motion.  

- Much larger TMD mass displacements. Since earthquake-induced vibrations 

impose higher displacement demands compared to with wind-induced ones, there is also 

a concern of practical importance weather the displacement amplitude of the additional 

mass, referred to as TMD stroke, can be physically accommodated within the limitations 

of the construction. 

 To this end, in this chapter the novel TMDI passive vibration control solution 

proposed in Chapter 4 is herein applied for the seismic protection of building structures 

to demonstrate its effectiveness and to explore its efficiency and usefulness in addressing 
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several practical disadvantages of the classical TMD, while maintaining its advantages. 

To this aim, seismically excited n-storey frame buildings modelled as linear 

proportionally damped multi-degree-of-freedom (MDOF) systems with the inertial/mass 

properties lumped at the floor slabs are considered. The tuned mass-damper-inerter 

(TMDI) is incorporated in the considered MDOF primary structure in between the top 

floor mass and the second to the top floor mass as shown in Figure 5.1.  

 

 

Figure 5.1. Tuned mass-damper-inerter (TMDI) equipped n-storey frame building. 

 

 As mentioned, one of the drawbacks when considering classical TMDs is the lack 

of robustness towards uncertainties in the properties of the primary structure which 

critically influence its design and control efficiency (Soto-Brito & Ruiz, 1999; Pinkaew 

et al, 2003). Specifically, the optimum TMD parameters are fundamentally given as 

dependent on the natural frequency and the mass of the primary structure (see Equation 

(3-4)). In this respect, alongside, a TMDI parametric efficiency study is undertaken to 

emphasize on the influence of the properties of the primary structures in terms of mass 
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and stiffness distribution along its height to the optimum design of the TMDI passive 

control solutions. For this purpose, several building structures have been chosen such that 

they vary from a uniform in elevation structure to structures with reduced top floor 

stiffness and structures with reduced top floor mass. For the purpose of this work, an input 

non-stationary stochastic process compatible with the elastic design spectrum of the 

European aseismic code provisions (EC8) has been assumed. The effectiveness of the 

proposed TMDI configuration over the classical TMD is assessed by performing response 

history analyses for an ensemble of EC8 spectrum compatible field recorded strong 

ground motions. Furthermore, the study will extend on the impact of TMDI control 

capabilities of higher modes. 
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5.2 EUROCODE 8 COMPATIBLE OPTIMUM TUNED-MASS-

DAMPER-INERTER DEISGN OF BUILDING STRUCTURES 

 

In this section optimum design parameters are derived following the procedure 

reviewed in Section 4.3 for the TMDI passive vibration control solution of Figure 5.1. In 

order to assess the influence of the stiffness and mass distribution along the height of the 

primary structure, three-storey buildings are considered having different inertial and 

elastic properties as shown in Table 5.1. Specifically, a uniform in elevation structure 

(Structure I) to structures with reduced top floor stiffness (Structures IIa and IIb) and 

structures with reduced top floor mass (Structures IIIa and IIIb) are considered. The 

characteristics of these structures are similar to those considered as test/benchmark 

primary structures used in the literature to study the performance and design of TMDs for 

earthquake engineering applications (e.g. Sadek et al, 1997, Rana & Soong, 1998; Salvi 

& Rizzi, 2011). Table 5.2 reports the undamped natural frequencies of the considered 

primary structures obtained from standard modal analysis. Further, the damping matrix 

of the (uncontrolled) primary structure [Cp] is assumed to be proportional to the stiffness 

matrix of the primary structure [Kp] following the expression: 

 

1

1

2
,p pC K




        (5-1) 

 

where ω1 is the fundamental undamped natural frequency of the primary structure and ξ1 

is the critical damping ratio of the fundamental mode shape taken equal to 0.02. In the 

last equation [Kp] is obtained from the stiffness matrix [K] of Equation (4-5) by 

elimination of the first row and column and by setting kTMDI equal to zero.  
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Table 5.1. Inertial and elastic properties of the 

considered primary structure 

 

Structure 
Story Mass (kg) 

Stiffness 

(N/m) 

CONSTANT PROPERTIES 

3DOF 

(I) 

1 (top) 30 x 10^3 30 x 10^6 

2 30 x 10^3 30 x 10^6 

3 30 x 10^3 30 x 10^6 

REDUCED TOP FLOOR STIFFNES 

3DOF 

(IIa) 

1 (top) 30 x 10^3 25 x 10^6 

2 30 x 10^3 30 x 10^6 

3 30 x 10^3 30 x 10^6 

3DOF 

(IIb) 

1 (top) 30 x 10^3 20 x 10^6 

2 30 x 10^3 30 x 10^6 

3 30 x 10^3 30 x 10^6 

INCREASED TOP FLOOR MASS 

3DOF 

(IIIa) 

1 (top) 35 x 10^3 30 x 10^6 

2 30 x 10^3 30 x 10^6 

3 30 x 10^3 30 x 10^6 

3DOF 

(IIIb) 

1 (top) 40 x 10^3 30 x 10^6 

2 30 x 10^3 30 x 10^6 

3 30 x 10^3 30 x 10^6 
 

 

 Table 5.2. Undamped natural frequencies of 

the considered primary structure. 

Structure 
Mode 

Period 

(s) 

Frequency 

(rad/s) 

CONSTANT PROPERTIES 

3DOF 

(I) 

1st 0.44 14.07 

2nd  0.16 39.43 

3rd 0.11 56.98 

REDUCED TOP FLOOR STIFFNES 

3DOF 

(IIa) 

1st 0.45 13.92 

2nd  0.17 37.40 

3rd 0.11 55.45 

3DOF 

(IIb) 

1st 0.46 13.69 

2nd  0.18 34.82 

3rd 0.02 54.16 

INCREASED TOP FLOOR MASS 

3DOF 

(IIIa) 

1st 0.47 13.47 

2nd  0.16 38.42 

3rd 0.11 56.56 

3DOF 

(IIIb) 

1st 0.49 12.93 

2nd  0.17 37.62 

3rd 0.11 56.27 
 

 

The input seismic action is represented by the non-stationery power spectrum 

S(ω,t) plotted in Figure 5.2 which is compatible in the “mean sense” with the elastic 

spectrum of the current European aseismic code provisions (EC8) for peak ground 

acceleration 0.36g (g=981cm/s2) and ground type “B” (CEN 2004). The considered 

power spectrum is derived by a methodology described in detail in (Giaralis & Spanos, 

2010). 
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Figure 5.2. Considered EC8 compatible evolutionary power spectrum S(ω,t) for design purposes 

The adopted design evolutionary power spectrum (EPS) S(ω,t) is expressed in a 

parametric form and, in particular, it involves a deterministic time varying envelop 

function proposed by (Bogdanoff et al., 1961) modulating a stationary power spectrum 

expressed by the Clough-Penzien (C-P) spectral form (Clough & Penzien, 1993): 
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 (5-2) 

 

where parameters C and b are defining characteristics of the ground acceleration’s 

intensity and of the envelop function’s width respectively. The parameters ωf and ζf  of 

the (C-P) spectrum determine the characteristics of the high-pass filter which supresses 

the low frequency allowed by YKT(ω) – the Kanai-Tajimi (K-T) spectrum (Kanai, 1957). 

Also, in Equation (5-2), the defining parameters ωg and ζg allow for a clear physical 

interpretation for the influence of the site conditions on the seismic input frequency 

content, accounting for the ‘frequency’ and the ‘damping’ characteristics of the ground 

respectively. 

 Considering the above, for the herein considered base excitation the numerator in 

(4-23)  becomes: 
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It is defined in (5-3)  tmax as the instant in time at which the proposed non-stationary power 

spectrum is maximized. 

 

As a final note, Table 5.3 reports the parameters defining C-P EPS compatible with 

the EC8 spectrum for PGA= 0.36g, damping ratio 5%, soil conditions “B” (Giaralis & 

Spanos, 2012). 

 

Table 5.3. Parameters for the definition of C-P evolutionary power spectrum compatible with EC8 spectra 

C 

(cm/sec2.5) 

b 

(1/sec) 
ζg 

ωg 

(rad/sec) 
ζf 

ωf 

(rad/sec) 

17.76 0.58 0.78 10.73 0.90 2.33 

 

 

In what follows, the optimization procedure previously described in Chapter 4 is 

applied to derive optimum design parameters υTMDI and ξTMDI for the considered primary 

structures, at the time the input power spectrum of Figure 5.2 is maximized and for 

various values of μM and b. 

 

 

5.2.1 OPTIMUM TUNED MASS-DAMPER-INERTER DESIGN 

PARAMETERS  
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The normalized by the top floor value of the first mode shape vector and the 

corresponding generalised masses for the considered three DOF primary structures are 

summarised below in Table 5.4. The optimization procedure described in Section 4.3 is 

used to derive optimum TMDI parameters for both b=0 and b>0 while considering a 

same range of pre-specified additional mTMDI mass values commonly used. 

 

 

Table 5.4. The normalized by the top floor value of the first mode shape vector and the corresponding 

generalised masses 

Structure 
Normalized by the top floor value of 

the first mode shape vector 

Generalized 

Mass (Kg) 

3DOF (I) 
{Φ1_I}={1  0.802  0.445}T 55235 

3DOF (IIa) 
{Φ1_IIa}={1 0.815  0.412} 55019 

3DOF (IIb) 
{Φ1_IIb}={1  0.832  0.370} 54872 

3DOF (IIIa) 
{Φ1_IIIa}={1 0.788  0.434}T 59278 

3DOF (IIIb) 
{Φ1_IIIb}={1 0.777 0.424}T 63501 

 

Given the primary frame structures studied, the trends of the derived optimum 

parameters which minimise the cost function of Equation (4-22) (frequency ratio υTMDI 

and damping ratio ξTMDI) are given in Figure 5.3, Figure 5.4 and Figure 5.5 These 

parameters are plotted as functions of the additional mass mTMDI, for the particular case 

of b=0 (TMD) which are superposed to the optimum parameters obtained for several a-

priori specified b values (TMDI) (thin dashed line for TMD; marked lines for TMDI) for 

the sake of comparison. Figure 5.6, Figure 5.7 and Figure 5.8 plot the optimum parameters 

in terms of stiffness TMDIk and damping value TMDIc . 
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Figure 5.3. Three DOF primary structure (I). Optimum TMDI parameters. Frequency ratio (a) and TMDI 

damping ratio (b), versus the additional mTMDI mass for various values of b. 
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Figure 5.4. Three DOF primary structure (IIa). Optimum TMDI parameters. Frequency ratio (a) and 

TMDI damping ratio (b), versus the additional mTMDI mass for various values of b. 

 

Figure 5.5. Three DOF primary structure (IIIa). Optimum TMDI parameters. Frequency ratio (a) and 

TMDI damping ratio (b), versus the additional mTMDI mass for various values of b. 
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For the particular case of classical TMD (b=0), the numerical data presented are in 

alignment with similar results reported in the literature obtained by alternative numerical 

optimization techniques (see e.g. Rana & Soong, 1998; Salvi & Rizzi, 2011; Brown & 

Singh, 2010 and references therein). Specifically, increased values of the assumed 

attached mTMDI mass necessitate higher ξTMDI values and lower frequency ratios to achieve 

optimal tuning. 

 

 

Figure 5.6. Three DOF primary structure (I). Optimum TMDI parameters. TMDI stiffnes value (a) and 

TMDI damping value (b), versus the additional mTMDI mass for various values of b. 
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Figure 5.7. Three DOF primary structure (IIa). Optimum TMDI parameters. TMDI stiffnes value (a) and 

TMDI damping value (b), versus the additional mTMDI mass for various values of b. 
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Figure 5.8. Three DOF primary structure (IIIa). Optimum TMDI parameters. TMDI stiffnes value (a) and 

TMDI damping value (b), versus the additional mTMDI mass for various values of b. 

When the inerter is incorporated in the proposed TMDI configuration (for b>0), 

numerical data evidence that optimum design requires higher kTMDI and damping cTMDI 

values for the elements connecting the attached mass to the primary structure compared 

with classical TMD. Furthermore, these values also increase as the b value increases, 

similar to the case of TMDI equipped SDOF.  

It is also noted that as the mass of the top floor is increased (primary structures 

IIIa and IIIb), a reduction in the optimum frequency and damping values are observed for 

the same constant b and attached mass mTMDI value. Furthermore, reducing the stiffness 

of the top floor (primary structures IIa and IIb), will require the use of higher damping 



 

78 

 

forces introduced by the dashpot cTMDI and lower stiffness values in order to achieve 

optimum control. This can be clearly seen in Figure 5.9 and Figure 5.10 which plot the 

optimum TMDI stiffness and damping values respectively versus the additional mTMDI 

mass for all primary structures considered.  

 

 

Figure 5.9. Optimum TMDI parameters. Comparison of TMDI stiffness value versus the additional mTMDI 

mass for all primary structures considered. 

 

 

Figure 5.10. Optimum TMDI parameters. Comparison of TMDI damping value versus the additional 

mTMDI mass for all primary structures considered 
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It can also be observed in the last figures that, for classical TMDs, the changes 

occurring in the properties of the primary system have a much smaller impact on the range 

of required parameters for optimum design, compared with the TMDI. This suggests that 

the TMDI is more robust compared with classical TMD to deviations in the optimum 

parameters. 

 

5.2.2 TOP FLOOR DISPLACEMENT VARIANCE OF OPTIMALLY 

DESIGNED TUNED-MASS-DAMPER-INERTER (b>0) VERSUS TUNED-

MASS-DAMPER (b=0) FOR EUROCODE 8 COMPATIBLE 

STOCHASTIC EXCITATION.  

 

Given the optimum design parameters derived in the previous sub-section, 

numerical results obtained from the adopted optimization procedure are plotted, in terms 

of the PI of Equation (4-22) and for the given input non-stationary power spectrum for all 

3DOF primary structures herein considered. 

 

Figure 5.11. Three DOF primary structure - 3DOF (I). Performance index versus the additional mTMDI 

mass for various values of b. 
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Figure 5.12. Three DOF primary structure - 3DOF (IIa). Performance index versus the additional mTMDI 

mass for various values of b. 

 

Figure 5.13. Three DOF primary structure - 3DOF (IIb). Performance index versus the additional mTMDI 

mass for various values of b. 
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Figure 5.14. Three DOF primary structure - 3DOF (IIIa). Performance index versus the additional mTMDI 

mass for various values of b. 

 

Figure 5.15. Three DOF primary structure - 3DOF (IIIb). Performance index versus the additional mTMDI 

mass for various values of b. 

 

For the case of classical TMD (thin dashed line), it is obvious that  larger values for 

the attached mass are more effective in controlling the dynamic response of the primary 

structure of interest related to its fundamental (and dominant) mode shape. However, the 

rate of decrease of the PI decreases rapidly (PI “saturates”) as the TMD mass increases. 
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It reaches an almost flat plateau for mTMD values larger than 25% the total mass of the 

considered primary structure.  

For b values greater than zero, it can be readily deduced from the reported numerical 

data that the proposed TMDI configuration reduces the value of the Performance Index 

as the value of b increases or equivalently, the variance of the relative displacement of 

the top floor mass is reduced as the value of the inerter b increases, for TMD mass values 

less than about 10% of the total mass of the primary structure).  However, it is noted that 

this enhanced performance comes at the cost of higher damping and stiffness values for 

the elements connecting the TMD mass to the primary structure. The same data are 

provided in tabular form, as well (Table 5.5). 

Importantly, as the stiffness of the top floor is reduced (structures 3DOF IIa and 

IIb), and similarly, as the mass of the top floor is increased (structures 3DOF IIIa and 

IIIb), better performance of the TMDI is observed.  

 

Table 5.5. TMDI parameters and Performance Index for different values of the additional mTMDI mass and 

of the inerter constant b. 

 

 

m2 

(kg) 

[% 

total  

 mass] 

𝑏 (kg) υTMDI 

kTMDI 

(10^6N/m) 

ξTMDI 
cTMDI 

(10^5 Ns/m) 

PI 
Percentage difference 

of PI compared to the 

classical TMD (%) 

3DOF 

(I) 

5400 

[6%] 

0(w/o 

TTF) 
0.8671 

0.803 
0.1961 

0.2583 
0.2472 - 

80000 1.040 18.29 0.3679 9.196 0.2728 -10% 

100000 1.049 22.97 0.4768 14.84 0.2564 -4% 

120000 1.026 26.11 0.6284 22.74 0.2419 2% 

140000 0.946 25.76 0.8445 32.69 0.2298 7% 

3DOF 

(IIa) 

5400 

 [6%] 

0(w/o 

TTF) 

0.8633 0.779 
0.1961 

0.2570 
0.2425 - 

80000 0.9971 16.45 0.4583 10.87 0.2391 1% 

100000 0.9615 18.88 0.6187 17.45 0.2228 8% 

120000 1.037 26.12 0.7171 25.96 0.2044 16% 

140000 0.7436 15.58 0.937 34.21 0.1982 18% 

3DOF 

(IIIa) 

5700 

 [6%] 

0(w/o 

TTF) 
0.8695 

0.782 
0.1883 

0.2514 
0.2436 - 
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80000 1.018 16.11 0.3367 7.91 0.2605 -7% 

100000 1.022 20.05 0.4346 12.65 0.2457 -1% 

120000 1.008 23.15 0.5522 18.84 0.2318 5% 

140000 0.9684 24.79 0.6943 26.39 0.2192 10% 

 

The most significant PI reduction is observed for the structure with reduced top 

floor stiffness (IIa) while the structure with regular distribution in elevation of mass and 

stiffness achieves the smallest improvement for the same b values. These results, as 

expected, emphasise on the importance of stiffness and mas distribution for exploiting 

the maximum control capabilities of passive systems, including the herein considered 

TMDI. Actually, it can be observed from Figure 5.11 as well as Table 5.5 that for the 

3DOF structure with uniform mass and stiffness distribution (3DOF -I), when considering 

an oscillating added mass of 6% from the total mass of the primary system, the TMDI 

does not outperform the traditional TMD solution for lower b values. 

Similar to the above, referring to the unit value as the threshold where the 

performance of a TMDI is equal to that of a classical TMD, both optimally designed, 

Figure 5.16 plots the Performance Index ratio /TMDI TMDJ J  for an mTMDI mass equal to 

10% from the total mass of the primary system and for increasing values of b, when 

considering all five structures studied. It can be seen that, in order to achieve a better 

TMDI response compared to classical TMD (values on the vertical axis below unity) a 

certain interval of b values needs to be considered. For b values above or below this 

interval, the TMDI will become less effective than the TMD for the same attached mTMDI 

mass. More so, when considering the structure 3DOF-I, with regular mass and stiffness 

conformation, for an mTMDI mass equal to 10% there is no such b value for which the 

TMDI will outperform the TMD configuration. 
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Figure 5.16. Performance index ratio between an optimum designed TMD and an optimum designed 

TMDI for an mTMDI mass of 10% from the total mass of the primary structure and for various values of b. 

 

It is also observed from Figure 5.16 that, as the primary structure stiffness and 

mass shifts away from a uniform distribution in elevation, the TMDI becomes more 

effective in comparison with the classical TMD for the same mTMDI mass. Specifically, as 

the flexibility of the top floor is reduced, the b interval of TMDI effectiveness versus 

TMD enlarges and the performance index ratio reduces. It is noted that better results can 

be obtained by considering primary structures with a flexible top floor storey.  

 In addition, referring to Figures 5.11 to 5.15, the ‘flat’ characteristic of the TMDI 

P.I. curves, even for small oscillating additional masses, suggests an improved robustness 

over the classical TMD. This is better exemplified in Figure 5.17 which plots the same 

P.I. curves when considering an off-tuning effect for both TMD and TMDI control 

solution. Specifically, a variation in estimating the characteristics of the primary 

structures is assumed by considering frequency ratio values above and below the 

optimum. The figure shows that, the performance of the classical TMD (b=0) is 

drastically reduced, especially when considering small additional oscillating masses. For 

example, when considering an oscillating mass of 6% the total mass of the primary 
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system, a 20% positive detuning effect implies a reduction of about 25% in the control 

capabilities of the classical TMD. However, changes in the optimum control frequency 

have a much less significant impact on the TMDI performance, which varies with less 

than 10% in all cases considered.  

 

 

Figure 5.17. Three DOF primary structure - 3DOF (IIa). Performance index versus the additional mTMDI 

mass for various values of b. Robustness assessment of optimal TMDI on structures with uncertainty in 

natural frequency.  

 

This clearly suggests an improved robustness of the TMDI towards estimating the 

properties of the primary structure over classical TMDs. 

 

To shed more light on the TMDI-TMD performance comparisons, Figure 5.18 plots 

the transfer function between the input ground acceleration and the output top floor 

displacement for the uncontrolled (primary) structure 3DOF IIa, for an optimal TMD and 

an optimal TMDI. 
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Figure 5.18. Absolute transfer function between the input ground acceleration and the output top floor 

displacement for the uncontrolled (primary) structure 3DOF IIa, structure equipped with optimal TMD 

and structure equipped with optimal TMDI 

 

It is observed that, similar to the case of TMDI equipped SDOF presented in section 

3.3, the TMDI effectiveness extends over a considerable range of frequencies allowing 

for efficient passive control of higher modes. This is not the case with the classical TMDs 

which can target only a single mode they are tuned to control it. 

 

5.2.3 ON THE WEIGHT REDUCTION OF THE TUNED-MASS-DAMPER-

INERTER (b>0) VERSUS THE CLASSICAL TUNED-MASS-DAMPER 

(b=0)  

 

The data furnished in the previous sub-chapter demonstrates the applicability of 

using the “mass amplifying” effect of the TTF/inerter device to replace part of the 

oscillating mass of the TMD. This may be a significant advantage in certain real-life 

earthquake resistance design scenarios. For example, in the case of the herein considered 

3 DOF primary structure (IIa) and EC8 compatible seismic excitation, the use of a inerter 

with a “mass” constant of b=120000 kg in combination with a TMD mass of 5400kg 
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achieves improved level of response in terms of top floor deflection variance as the 

classical TMD two times heavier oscillating mass (10500kg). However, the physical mass 

of the employed inerter might be up to two orders of magnitude smaller than its b constant 

as explained in Chapter 2.2, that is, about 400 kg (Smith, 2002). Thus, the total weight of 

the examined TMDI system becomes about two times lighter than the classical TMD. The 

‘weight reduction’ capacity of the TMDI solution is better exemplified in Figure 5.19, 

Figure 5.20 and Figure 5.21 where the mTMDI values required for achieving a certain level 

of response, evaluated by means of the PI of Equation (4-22), are plotted. 

 

Figure 5.19. Additional mTMDI mass values required for achieving the same level of performance index for 

the proposed TMDI configuration (b>0) and for classical TMD (b=0). Three DOF primary structure - 

3DOF (I). 
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Figure 5.20. Additional mTMDI mass values required for achieving the same level of performance index for 

the proposed TMDI configuration (b>0) and for classical TMD (b=0). Three DOF primary structure - 

3DOF (IIa). 

 

 

Figure 5.21. Additional mTMDI mass values required for achieving the same level of performance index for 

the proposed TMDI configuration (b>0) and for classical TMD (b=0). Three DOF primary structure - 

3DOF (IIIa). 

 

The latter consideration may have significant advantages in certain real-life 

structural passive vibration control design scenarios necessitating the use of large 

additional vibrating masses to achieve robust and efficient vibration suppression effect of 

building structures excited by severe earthquake induced strong ground motions (see e.g.  

Feng & Mita, 1995; Moutinho, 2012; Angelis et al 2012; Hoang et al, 2008; Matta & 

DeStefano, 2009; Matta & DeStefano., 2009).  

It is also noted that, when considering the last figures, the most significant mass 

reduction for the same P.I. value occurs for the primary structure with reduced top floor 

stiffness (3DOF - IIa) while structures with uniform distribution of mass and stiffness 

will allow for the smallest TMDI/TMD reductions in the weight of the required oscillating 

masses.  
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5.3 PERFORMANCE ASSESMENT OF OPTIMALLY DESIGNED      

TUNED - MASS - DAMPER - INERTER EQUIPPED 

STRUCTURES USING FIELD RECORDED EUROCODE 8 

COMPATIBLE ACCELEROGRAMS 

This section furnishes pertinent numerical results to quantify the effectiveness of 

the herein proposed TMDI configuration vis-à-vis the classical TMD for passive vibration 

control of building structures. To this aim, the peak top floor deflection of the previously 

described primary structure herein noted as 3DOF IIa is obtained for an ensemble of 7 

filed recorded accelerograms.  A comparison is conducted between the uncontrolled 

(primary) structure, structure equipped with optimal TMD and structure equipped with 

optimal TMDI, for the same additional mTMDI mass. The two considered passive vibration 

control systems have been optimally designed for the stochastic input compatible with 

the EC8 spectrum of Figure 5.2 as detailed in the Section 4.3 (see also Table 5.5).  

The top row of Table 5.6 reports the properties considered for the two systems. 

Further, the same table lists the considered 7 accelerograms: they have been selected out 

of a data-bank specifically proposed to be used as input for the design and assessment of 

passively controlled civil structures (Naeim & Kelly 1999). The original records have 

been scaled in a non-uniform manner using a harmonic wavelet-based approach (Giaralis 

& Spanos 2009, Giaralis & Spanos 2012) to become compatible with the target EC8 

spectrum of Figure 5.2 according to EC8 compatibility criteria. Specifically, their average 

response spectral ordinates are greater than 90% of the target spectrum within a [0.2T1 

2T1] period interval where T1=1s is the fundamental natural period of the considered 

primary structure (Figure 5.22). This numerical study is motivated by the fact that EC8 

prescribes using the average of pertinent peak response quantities for design purposes 
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when at least 7 response history analyses are performed for spectrum compatible 

accelerograms. 

 
Figure 5.22. Response spectra of the considered EC8 compatible field recorded accelerograms listed in 

Table 5.6 

 

Table 5.6.  Maximum top floor displacements (cm) for 3DOF Structure IIa 

 

Recorded strong 

ground motion  

component. 

(Uncontrolled) 

Primary 

 structure 

TMD 

(m=5400 

Kg, b=0 Kg) 

TMDI 

(m=5400 Kg, 

b=80000 Kg) 

TMDI 

(m=5400 Kg, 

b=100000 Kg) 

TMDI 

(m=5400 Kg, 

b=120000 Kg) 

 

Petrolia- 90o 

1992- Petrolia 
8.21 4.86 5.54 4.08 4.69 

Corralitos- 90o 

Eureka Canyon  

1989-Loma Prieta 

10.68 4.79 5.09 3.91 6.08 

El Centro #6-230o 

Huston Rd. 

1979-Imperial Val. 

8.28 5.51 4.72 4.15 4.01 

Hollister-90o 

South St & Pine Dr 

1989- Loma Prieta 

9.87 6.38 5.23 4.38 4.23 

Oakland-35o  

Outer harbor wharf  

1989- Loma Prieta 

9.91 5.01 4.43 7.18 4.03 

Century City-90o LACC 

North 

(1994- Northridge) 

7.6 4.97 5.52 3.78 3.41 

Sylmar- 90o  

County Hospital  

(1994- Northridge) 

7.85 5.65 6.68 3.58 4.56 

Average 
8.91 5.3 5.31 4.44 4.43 
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When considering the 3 DOF structure IIa, on average (Table 5.6), the TMD (b=0) 

achieves 60% peak response reduction compared to the uncontrolled primary structure, 

while the TMDI achieves 50% reduction. This additional peak response reduction 

accomplished by the herein proposed configuration is due to the virtual “mass amplifying 

effect” of the inerter which can accommodate, in an optimal manner, a damper with an 

order of magnitude higher damping coefficient (cTMDI) for the same mTMDI mass. 

However, as detailed in Chapter 2.2, the added actual physical mass of the inerter in this 

case is much smaller than the b value. Figure 5.23 and Figure 5.24 show the time history 

top floor displacement and acceleration respectively for the structure during the Century 

City Earthquake. 

 

 

Figure 5.23. Three DOF primary structure IIa. Top floor displacement responses for uncontrolled 

structure, structure equipped with optimal TMD and structure equipped with optimal TMD and TTF 

device. 

 

 

 



 

92 

 

 

Figure 5.24.  Three DOF primary structure IIa. Top floor acceleration responses for uncontrolled 

structure, structure equipped with optimal TMD and structure equipped with optimal TMD and TTF 

device. 

 

These are obtained by standard numerical integration of the linear equations of 

motion for the uncontrolled and the two controlled cases considered in Table 5.6. The 

proposed TMDI configuration controls better the displacement throughout the duration 

of the strong ground motion. Similar conclusions are drawn from response histories 

obtained for the other 6 EC8 compatible accelerograms. 

Inertial dynamic loads exerted to structures are proportional to the absolute 

horizontal accelerations experienced by each floor of the building. Thus, the maximum 

floor acceleration is an important factor in evaluating the level of resident comfort. To 

this aim, Table 5.7 reports the maximum top floor acceleration for the considered 

ensemble of 7 accelerograms and for the same characteristics of the TMD/TMDI passive 

vibration control solutions. 
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 Table 5.7. Maximum top floor acceleration (g) for 3DOF Structure IIa 

 

The numerical result in Table 5.7 show that the TMDI control solution efficiently 

reduces the top floor accelerations. For the 3 DOF structure considered, this is reduced 

from 62% in case of classical TMD to 17% when an inerter with b=120000 Kg is 

considered in the TMDI configuration.  

In addition, it is of interest to also evaluate the time history displacements of the 

additional oscillating mass mTMDI, as a comparison between the two vibration control 

solutions proposed. This is because the TMD mass displacement or ‘TMD stroke’ can be 

an important issue of concern, especially for earthquake-induced vibrations with much 

larger amplitudes compared with wind-induced ones (e.g., Lin et al, 2010; Wang et al, 

2009). In this respect, it is shown in Table 5.8 that, on average, the TMDI configuration 

achieves around 35% reduction in the maximum displacement of the oscillating mass for 

Recorded strong 

ground motion  

component . 

Uncontrolled 

 structure 

TMD 

(mTMDI=5400 

Kg, b=0 Kg) 

TMDI 

( mTMDI =5400 

Kg, b=80000 

Kg) 

TMDI 

( mTMDI =5400 

Kg, b=100000 

Kg) 

 

TMDI 

( mTMDI =5400 

Kg, b=120000 

Kg) 

 

Petrolia- 90o 
1992- Petrolia 

1.59 
1.07 0.57 0.33 0.32 

Corralitos- 90o 

Eureka Canyon  
1989-Loma Prieta 

2.25 0.97 0.44 0.35 0.31 

El Centro #6-230o 

Huston Rd. 
1979-Imperial Val. 

1.53 0.92 0.44 0.38 0.33 

Hollister-90o 

South St & Pine Dr 
1989- Loma Prieta 

1.97 1.22 0.4 0.31 0.3 

Oakland-35o  
Outer harbor wharf  
1989- Loma Prieta 

1.97 1.42 0.34 0.37 0.24 

Century City-90o 
LACC North 

(1994- Northridge) 

1.5 0.99 0.45 0.32 0.27 

Sylmar- 90o  
County Hospital  

(1994- Northridge) 

1.58 1.12 0.55 0.3 0.31 

Average 
1.77 1.1 0.46 0.34 0.3 
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the 7 response history analyses performed. Similar results are found for other primary 

structures. 

Table 5.8. Maximum mTMDI mass displacements (cm)  

 

 

It can thus be concluded that the inclusion of the inerter in the proposed TMDI 

configuration reduces not only the top floor displacement variance, but also accelerations 

and TMDI mass displacement. 

 

 

 

 

Recorded strong 

ground motion  

component . 

TMD 

(mTMDI=5400 

Kg, b=0 Kg) 

TMDI 

( mTMDI =5400 

Kg, b=80000 Kg) 

TMDI 

( mTMDI =5400 

Kg, b=100000 

Kg) 

 

TMDI 

( mTMDI =5400 

Kg, b=120000 

Kg) 

 

Petrolia- 90o 
1992- Petrolia 

13.74 6.41 4.22 4.79 

Corralitos- 90o 

Eureka Canyon  
1989-Loma Prieta 

11.62 5.61 4.25 6.49 

El Centro #6-230o 

Huston Rd. 
1979-Imperial Val. 

13.22 5.27 4.52 4.28 

Hollister-90o 

South St & Pine Dr 
1989- Loma Prieta 

15.03 6.00 4.78 4.70 

Oakland-35o  
Outer harbor wharf  
1989- Loma Prieta 

10.09 5.06 7.82 4.32 

Century City-90o 
LACC North 

(1994- Northridge) 
15.34 6.28 4.03 3.56 

Sylmar- 90o  
County Hospital  

(1994- Northridge) 
13.80 7.57 4.14 4.83 

Average 13.26 6.03 4.82 4.71 
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5.4 ON THE CONTROL OF HIGHER MODES USING THE 

TUNED-MASS-DAMPER-INERTER PASSIVE CONTROL 

SOLUTION  

 

This section emphasises on the capabilities of the TMDI passive solution for 

controlling higher modes. As detailed in the previous section, the efficiency of the TMDI 

critically depends on the choice of the primary structure it is applied to. For buildings 

with regular distribution of stiffness and mass along its height, the TMDI might not 

always outperform the traditional TMD configuration, as is the case of the 3DOF structure 

– 3DOF (I) previously studied. However, it is important to note that, as suggested in 

Figure 5.18 for the case of 3DOF primary structure, the TMDI control solution also allows 

for efficient passive control of higher than the first modes. Along these lines, Figure 5.26 

reports the absolute transfer function between the input ground acceleration and the 

output top floor absolute displacement of a regular 10DOF primary structure whose 

characteristics are detailed in Table 5.9 and Table 5.10 (Taflanidis & Giaralis, 2015). 

 

       Table 5.9.   Inertial and elastic properties of 
the considered primary structure  

Structure 
Story Mass (kg) 

Stiffness 
(N/m) 

10DOF 

1 (top) 900 x 10^3 470 x 10^6 
2 900 x 10^3 470 x 10^6 
3 900 x 10^3 470 x 10^6 
4 900 x 10^3 630 x 10^6 
5 900 x 10^3 630 x 10^6 
6 900 x 10^3 630 x 10^6 
7 900 x 10^3 780 x 10^6 
8 900 x 10^3 780 x 10^6 
9 900 x 10^3 780 x 10^6 
10 900 x 10^3 780 x 10^6 

 

Table 5.10. Undamped natural frequencies of the 
considered primary structure.  

Structure 
Mode Period (s) 

Frequency 
(rad/s) 

10DOF 

1st 1.50 4.19 
2nd  0.54 11.52 
3rd 0.33 18.87 
4th 0.24 26.34 
5th 0.19 32.19 
6th 0.17 38.09 
7th 0.14 42.22 
8th 0.13 46.84 
9th 0.12 50.72 
10th 0.11 56.24 

 

  

These curves were derived following the optimisation procedure described in 

Section 4.3. Specifically, the following are considered: 
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Table 5.11.Inertial and elastic properties of the considered primary structure 

 

 

mTMDI (kg) 
𝑏 (kg) υTMDI 

kTMDI 

(10^6N/m) 

ξTMDI 
cTMDI 

(10^5 Ns/m) 

PI 
Improvement 

(%) 

10DOF 45000 
0(w/o TTF) 0.9850 0.766 0.0514 0.191 0.8011 - 

240*10^4 2.2260 20.91 0.9694 43.46 0.8013 0% 

 

Notably, given the increased overall total mass and rigidity of the primary 

structure, considerably larger b values are required for optimum design compared with 

the previously studied examples.  

The last column of Table 5.11 shows that, given the regular distribution of mass 

and stiffness of the structure considered, and as expected from the findings of the previous 

section, the TMDI does note outperform the TMD when evaluating the control 

capabilities at the fundamental mode shape of vibration. Actually, the choice of b has 

been made such that both TMD and TMDI obtain similar performance in terms of top 

floor response. With respect to Figures 5.11 to 5.15, the values of the performance index 

in Table 5.11 can be viewed as the point of intersection of the TMDI-TMD performance 

curves. 

 

Figure 5.25. Absolute transfer function between the input ground acceleration and the output top floor 

displacement for the 10DOF uncontrolled (primary) structure, structure equipped with optimal TMD and 

structure equipped with optimal TMDI 
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It can be seen that, although both control solution have been optimally design such 

that they achieve similar response variance (i.e. equal areas under graphs of Figure 5.25), 

at the fundamental frequency the TMD solution offers negligible improvements 

compared with TMDI. More importantly, when analysing higher modes, Figure 5.25 

suggests a reduction in the overall response amplitudes for the TMDI compared with 

traditional TMD. Given the broad-band influence of the TMDI as compared with classical 

one-frequency targeted control of the TMD, this suggests the practical applicability of the 

TMDI for medium-height to tall structures where large response amplitudes can be 

observed at frequencies higher than the fundamental one. 

In addition, it is also useful to consider the absolute transfer function between the 

input ground acceleration and the output top floor acceleration for the regular 10DOF, as 

reported in Figure 5.26. It can be seen that, although both control solutions offer identical 

control performance in terms of top floor displacement variance, an overall reduction in 

the acceleration response of higher modes can be observed. This has an important 

significance in real-life scenarios where acceleration-sensitive non-structural components 

can have a major effect on the safety of occupants and integrity of facilities (Petrone et 

al, 2015).  

 

Figure 5.26. Absolute transfer function between the input ground acceleration and the output top floor 

acceleration for the regular 10DOF uncontrolled (primary) structure, structure equipped with optimal 

TMD and structure equipped with optimal TMDI 
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Along the same lines, Table 5.12 reports the average displacement, acceleration and 

added oscillating mass displacement for the studied 10DOF uncontrolled structure, 

structure equipped with classical TMD (b=0) and structure equipped with TMDI (b>0)  

when considering the recorded strong ground motions detailed of Table 5.6. 

 

Table 5.12.  Maximum top floor and next-to-top floor displacements (cm) and accelerations for the 

10DOF primary structure 

 

When comparing the TMD-TMDI responses in Table 5.12, it can be observed 

that, as suggested by the P.I. of Table 5.11, similar responses are obtained in terms of 

displacement responses for bot top and next-to-top floors. However, the TMDI achieves 

a much greater reduction in terms of floor acceleration compared with TMD. 

Furthermore, an even more significant reduction is achieved in terms of the displacement 

requirements for the additional oscillating mass thus demonstrating the superiority of the 

herein proposed TMDI over classical TMDs. 

 

 

 

 

 

 
(Uncontrolled) Primary 

structure 

TMD 

(m=45000 Kg, b=0 Kg) 

TMDI 

(m=45000 Kg, 

b=240*10^4 Kg) 

 Top floor 
Next-to-top 

floor 
Top floor 

Next-to-top 

floor 
Top floor 

Next-to-top 

floor 

Average Displacement 

(cm) 

(Improvement) 

46.08 

 

44.33 

 

37.33 

(19%) 
35.87 

(19%) 
37.78 

(18%) 
36.09 

(19%) 

Average Acceleration 

(g) 

(Improvement) 

1.30 

 

1.17 

 

1.20 

(8%) 
1.11 

(5%) 
1.08 

(17%) 
1.05 

(10%) 

Average TMD 

displacement 

(cm) 

(Improvement) 

- 

 
198.2 

37.5 

(81%) 
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6.1 PRELIMINARY REMARKS 

 

As described in previous chapters, TMDs are widely used today in a plethora of 

different applications in civil engineering to mitigate undesirable vibrations due to 

dynamic loads caused by different sources such as traffic, wind, and earthquakes (e.g. Shi 

& Cai, 2008; Chung et al, 2012; Angelis et al 2013). In addition, the potential of energy 

harvesting from TMD equipped civil structural facilities has been recently recognized and 

explored to some extent (Zuo & Tang, 2013; Gonzalez-Buelga et al 2014, Tang & Zuo 

2012; Adhikari & Ali, 2013). It relies on the idea of using certain devices capable of 

transforming kinetic into electric energy in order to link the attached mass to the primary 

structure as opposed to using only a damper at which kinetic energy is “lost” into radiating 

heat. 

In this context, a “tuned mass damper/harvester” (TMD/H) control configuration 

is proposed in (Gonzalez-Buelga et al, 2014) where an electromagnetic motor consisted 

of a magnet travelling within a constant magnetic field is considered, along with a linear 

spring and a damper, to link the attached mass to the primary structure. Pertinent 

numerical and experimental results furnished evidence that sufficient energy can be 

generated from harmonic force or support excitation such that the proposed configuration 

can perform as a self-tuned regenerative semi-active vibration control solution. Along 

similar lines, an electromagnetic transducer connected to an energy harvesting enabled 

CHAPTER 6 : SIMULTANEOUS VIBRATION SUPRESSION 

AND ENERGY HARVESTING USING THE TUNED-MASS-

DAMPER-INERTER  
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circuit is used to transform kinetic energy into electric power and to provide controlled 

force vibrations mitigation for TMD equipped multi-storey buildings structures in (Tang 

& Zuo, 2012). Experimental results demonstrate the effectiveness of the thus created self-

powered active TMD to achieve vibration suppression. Further, an “energy harvester-

dynamic vibration absorber” (EHD-VA) configuration is employed in (Tang & Zuo, 

2012), in which electric energy is generated from strains developed in layers of 

piezoelectric material mounted onto the attached vibrating mass of a TMD. An 

approximate formulation based on Den Hartog fixed point theory is used to derive closed 

form expressions for optimal design parameters of the proposed EHD-VA.  

In this chapter, the TMDI is applied to achieve simulations vibration suppression 

and energy harvesting for harmonically excited structures. In particular, the potential of 

optimally designed TMDIs for energy harvesting using a linear electromagnetic motor 

acting in parallel with the standard dashpot of the TMDI is explored, as this is commonly 

considered in the literature for energy scavenging. This study is motivated by the fact that 

in considering a passive TMD-based harvester device, as the oscillating TMD mass 

increases, better primary structure response reduction is achieved but at the cost of 

reduced available energy for harvesting (Gonzalez-Buelga et al, 2014; Adhikari & Ali, 

2013). However, this trade-off between better vibration suppression vis-à-vis energy 

harvesting may be controlled by considering inerters with varying inertance and therefore 

TMDIs with varying inertial properties.  
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6.2 MECHANICAL DESCRIPTION AND CHARACTERISATION 

OF THE PROPOSED ENERGY HARVESTING ENABLED 

TUNED-MASS-DAMPER-INERTER 

 

Having established the effectiveness of the TMDI system for vibration suppression and 

weight reduction for harmonically excited structures in section 3.3, this section assesses 

its potential for energy harvesting by relying on the use of an electromagnetic linear motor 

(EM) to harness electric energy from low-frequency vibrations. The idea is to channel 

part of the kinetic energy of the attached mass to the EM to transform part of the kinetic 

into electric energy. Therefore, not all of the kinetic energy is “lost” (dissipated) in the 

form of radiating heat at the TMDI damper.  In this context, the energy harvesting enabled 

TMDI system shown in Figure 6.1 is herein proposed which incorporates an EM 

connected in parallel with a spring and a damper to the attached TMDI mass. The herein 

considered EM comprises a moving magnet DC voice coil linear actuator connected to a 

resistance emulator circuit (see e.g. Gonzalez-Buelga et al, 2014). The moving magnet 

observes the relative motion of the primary structure and of the attached mass and travels 

within a magnetic field of constant flux density J generating voltage V expressed as: 

 

1 2( )V J x x   (6-1) 

 

In this manner, the considered electromagnetic energy harvester achieves kinetic to 

electrical energy conversion. In particular, the harvester “resists” the relative motion 

between the primary structure and the attached mass by developing an additional 

electromechanical “damping” force FEM. This force is expressed in the “mechanical 

domain” shown in Figure 6.1 by the equation: 
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1 2( )EM EMF c x x   (6-2) 

 

 
Figure 6.1 Single-degree-of-freedom (SDOF) primary structure incorporating the proposed tuned mass-

damper-inerter-harvester (TMDI-H) configuration. 

where 
EMc  is the electromechanical damping coefficient. Further, the above damping 

force FEM generated by the considered device is linearly proportional to the generated 

electric current intensity I, that is, 

EMF J I  (6-3) 

 

Using (6-2) and (6-3) in conjunction with Ohm’s law I=V/R, which relates the electric 

current I through a circuit with resistance R due to a voltage V across R, the 

electromechanical damping coefficient 
EMc is expressed as (Gonzalez-Buelga et al, 2014): 

 

2

( )
EM

C L

J
c

R R



 (6-4) 

 

In the last equation, RC represents the internal “parasitic” resistance of the 

electromechanical device which models the overall energy losses within the device. 

Further, RL is the resistive load due to the resistance emulator circuit proposed in 

(Gonzalez-Buelga et al, 2014) harvesting kinetic energy from the dynamic mechanical 
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system of Figure 6.1. By comparing the latter system with the TMDI system of Figure 

6.1 it is readily seen that the total damping coefficient 
2c of the energy harvesting enabled 

TMDI is given by the sum of the electromechanical damping coefficient with the damping 

Mc of the TMDI linear damper. That is, 

 

2 TMDI EM Mc c c c    (6-5) 
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6.3 QUANTIFICATION OF ENERGY SCAVENGED BY THE 

PROPOSED TUNED-MASS-DAMPER-INERTER ELECTRO-

MAGNETIC HARVESTER DEVICE 

 

In this section, the energy (or the power) available to harvest from the vibrating 

system of Figure 6.1 is quantified by assuming that the energy harvesting enabled TMDI 

system is optimally designed for vibration suppression of a harmonically base-excited 

primary structure as detailed in section 3.3. To this aim, it is noted that the power P that 

can be harvested from the mechanical domain vibrations is given by the resistive load RL 

of the electromechanical harvester. Therefore, it is given by the standard relationship: 

 

2

LP I R  (6-6) 

 

Use of Eq. (6-1) to Eq. (6-5) in conjunction with the above relationship yields the 

following expression of the power P that can be harvested from the considered 

harmonically support-excited structural system of Figure 6.1 

 

 
2

2

2
( )

( )
RV L

C L

J
P G R

R R
 


 (6-7) 

 

In the above equation, 
RVG is the relative velocity FRF between the m1 mass of the primary 

structure and the attached m2 mass given as: 

 

1 2

2

1

( ) ( )
( )RV

G G
G i

 
 




  (6-8) 

 

where the FRFs G1 and G2 have been defined in  (3-5) and (3-6), respectively. 
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In Figure 6.2, the magnitude of the 
RVG  FRF is plotted as a function of the input 

harmonic excitation normalized by the natural frequency of the uncontrolled primary 

structure ω1 for an optimally designed TMDI equipped undamped SDOF primary 

structure with mass ratio μ= 0.1 and for different values of the inertance ratio β using the 

optimum parameters in (3-15) and (3-17). The amplitude of 
RVG  reduces as higher β 

values are used (for a fixed μ) and, therefore, enhanced vibration suppression is achieved 

(see also Figure 3.5). However, the reduction of  
RVG  is not beneficial in terms of energy 

harvesting as is readily inferred from (6-7).  

 

 

Figure 6.2. Normalized relative velocity amplitude for an undamped structure equipped with optimal 

TMDI configuration 

 

This effect of the inertance ratio β on the energy harvesting capabilities of the TMDI 

system of Figure 6.1 is further quantitatively illustrated in Figure 6.3 which plots the 

magnitude of the power in (6-7) normalized by the amplitude of the input harmonic 

support acceleration. The latter plots have been obtained by taking J=11.34 N/A and Rc= 

2.96Ω, and by assuming that M EMc c  (Gonzalez et al, 2014). Further, the optimal c2 

value has been obtained by use of (3-3), (3-17), (6-4) and (6-5). 
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Figure 6.3. Normalized power harvested from various TMDI systems optimally designed for vibration 

suppression. 

 

Focusing on Figure 6.3, it is seen that the increase of the ratio β has a negative 

effect in terms of the available energy for harvesting close to the natural period of the 

uncontrolled primary structure. However, similarly to what has been observed and 

discussed in view of Fig. 5, the effect of β to the peak values of the magnitude of FRFs 

saturates for β>0.5, while the range of frequencies that the FRFs take on non-negligible 

values increases (i.e., the FRF curves become flatter). In every case, Figure 3.5 and Figure 

6.3 confirm what has been reported in the literature for the case of the classical TMD: “an 

optimal absorber is not an optimal harvester” (Gonzalez et al, 2014). Still, the herein 

considered TMDI system is not necessarily confined by an a priori fixed mass ratio μ, as 

the classical TMD. This aspect is addressed in the next section. 
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6.4 SIMULTANIOUS ENERGY HARVESTING AND VIBRATION 

SUPRESSION FOR TUNED-MASS-DAMPER-INERTER 

EQUIPPED SYSTEMS WITH VARYING INERTANCE 

 

The inertance value b of the flywheel-based inerter shown schematically in Figure 

6.1 can change at will, without changing the total physical mass or weight of the TMDI, 

by considering a relatively simple stepped gearbox (see e.g. Papageorgiou & Smith, 

2005). In this manner, the sequence and/or the ratio of gears linking the flywheel to the 

rack can change in a passive/adaptive mode and, consequently, the inertance b computed 

by Eq. (2-1). This consideration allows for increasing the potential amount of energy that 

can be harvested from a TMDI optimally designed for vibration suppression for fixed 

attached mass spring and damper coefficients. This is exemplified in Figure 6.4 and 

Figure 6.5 which plot the dynamic amplification factor spectra and, respectively, the 

normalized energy harvested spectra for an optimally designed TMDI for vibration 

suppression with mass ratio μ= 0.1 and inertance ratio 𝛽=0.6 having optimal TMDI 

parameters ʋTMDI=0.5651 and ζTMDI=0.4132 (see Equations  (3-5) and (6-7)). 

It is observed that as β reduces, the (sub-optimal) TMDI becomes less effective 

for vibration suppression at the ω1 frequency, for fixed μ, ʋTMDI and ζTMDI parameters. 

However, as reduced β values are used (for a fixed μ, ʋTMDI and ζTMDI) the TMDI allows 

for increased energy to be harvested at excitation frequencies equal to the natural 

frequency of the uncontrolled system ω1, (see Figure 6.5). 
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Figure 6.4. Dynamic amplification factor spectra (left panel) for an optimally designed TMDI system for 

vibration suppresion with µ=0.1and 𝛽=0.6 (fixed ʋTMDI=0.5651 and ζTMDI=0.4132) and for several values 

of inertance. 

 
 

Figure 6.5. Normalized power harvested speactra for an optimally designed TMDI system for vibration 

suppresion with µ=0.1and 𝛽=0.6 (fixed ʋTMDI=0.5651 and ζTMDI=0.4132) and for several values of 

inertance. 

Therefore, by keeping constant the weight of the TMDI, changes in the inertance b allows 

for controlling the trade-off between energy harvesting and vibration suppression in the 

range of excitation frequencies between 70%~90% of the ω1 frequency.  

This can be clearly seen in Figure 6.6 which plots the peak response amplitude of 

the non-optimal TMDI configuration normalised by the peak response amplitude of the 

optimally designed TMDI with β=0.6, as the inertance ratio β changes for four different 
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values of the mass ratio μ and for constant optimal TMDI parameters ʋTMDI  and ζTMDI  as 

exemplified in Table 6.1. 

 

Table 6.1 Optimal TMDI parameters derived for β=0.6 and several mass ratio μ values 

 Frequency ratio ʋTMDI Damping ratio ζTMDI 

μ =0.2 0.5512 0.4497 

μ =0.4,  0.4226 0.5227 

μ =0.6 0.3484 0.6026 

μ =0.8 0.2846 0.6990 

 

 

 

Figure 6.6. Peak dynamic amplification factor for the non-optimal  TMDI configurations  normalized by 

the maximum of the dynamic amplification factor for optimally designed TMDI (for β=0.6) as functions 

of the inertance ratio β 

The last figure also suggests that as the ratio β shifts from the value the TMDI was 

optimally designed against, the non-optimal configurations obtained are less effective for 

vibration suppression, as β decreases (β<0.6). Furthermore, increasing the mTMDI mass 

provides less fluctuations on the performance of the TMDI configuration, as β varies 

(almost flat performance curves). Similarly, the same type of performance robustness can 

be observed when considering β values closer to the optimum. 

Lastly, Figure 6.7 plots the maximum power available to be harvested from a non-

optimal  TMDI configuration normalized by the maximum power available to be 



 

110 

 

harvested for an optimally designed TMDI for vibration suppression (for β=0.6), as 

function of the inertance ratio β and for several mass ratio µ values. 

 

 

Figure 6.7. Peak normalized potential harvesting power for the non-optimal TMDI configurations 

normalized by the maximum of the dynamic amplification factor for optimally designed TMDI (for 

β=0.6) as functions of the inertance ratio β 

 

Specifically, the curves in Figure 6.7 are obtained by varying the inerter constant 

b while keeping constant the optimum cTMDI and kTMDI values for several µ values in order 

to demonstrate the benefits of considering inerters with varying inertance. It readily be 

observed that, as β reduces from the value for which the TMDI was optimally designed 

(β=0.6), more power will be available for harvesting. Furthermore, when considering 

both Figure 6.6 and Figure 6.7 it can be observed that, for larger µ values, the changes in 

the inertance values will imply less variations in the power harvested as well as less 

variation in the control performance of the TMDI.  

All the above suggest the applicability of considering TMDIs with varying 

inertance according to pre-set optimally tuned values for different objectives such as 

optimal vibration suppression or energy harvesting. The above findings also motivate 

future research directions by suggesting in a progressive manner semi-actively controlled 

TMDI with varying b, cTMDI and even kTMDI. 
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A novel passive vibration control configuration, namely the tuned mass-damper-

inerter (TMDI) has been proposed in this work. Initially, the TMDI was developed for 

single-degree-of freedom (SDOF) primary systems where its performance superiority 

over classical tuned-mass-dampers (TMDs) was analytically proven. Similarly, following 

a standard optimisation procedure, TMDI benefits in terms in vibration suppression and 

weight reduction has been demonstrated for multi-degree-of freedom (MDOF) primary 

systems. Next, the TMDI was applied for seismic protection of building structures where 

it was shown that it allows for significant reductions in terms of displacements, 

accelerations and TMDI ‘stroke’ compared with classical TMDs. Further, it was shown 

that by assuming TMDI with varying inertance, simultaneous vibration suppression and 

energy harvesting can be achieved. 

Following from Table 1.1 – Matrix of Thesis Contribution, the above can be 

further elaborated into: 

 

(I) Development of the TMDI for Single Degree of Freedom Primary Systems 

(SDOF) 

The herein proposed TMDI configuration for SDOF primary systems takes 

advantage of the “mass amplification effect” of the inerter, a two terminal mechanical 

element of negligible mass/weight developing an internal (resisting) force proportional to 

the relative acceleration of its terminals which are free to move independently, by using 

it as an additional connective element between the TMD oscillating mass and the ground 

for SDOF primary systems. For both ground and force excitation, the governing 

differential equations of motion have been derived in the time and in the frequency 

CHAPTER 7 : CONCLUDING REMARKS 
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domain for TMDI equipped damped linear SDOF primary structures. The TMDI system 

has been herein considered for vibration control of harmonically and white noise support-

excited structures. Closed-form analytical expressions for optimal TMDI parameters have 

been derived by application of a semi-empirical approach extensively used for the 

“optimum” design/tuning of the classical TMD to supress the motion of harmonically 

excited undamped SDOF primary structures. Furthermore, optimal TMDI design 

parameters minimizing the relative displacement variance of undamped SDOF primary 

structures under white noise support excitation have been derived analytically in closed 

form as functions of the TMD mass and the inerter properties. 

The main conclusion drawn from the above development stage can be summarised as: 

- The TMDI can be viewed as a generalization of the classical TMD for both 

primary mass or support excited SDOF primary structures. Therefore, all established in 

the literature procedures for optimum design (“tuning”) of the classical TMD are readily 

applicable to achieve “optimal” performance for the new TMDI configuration. 

- It was analytically shown that the TMDIs perform better than the classical TMDs for 

passive vibration control of harmonically excited undamped SDOF systems, for the same 

attached oscillating mass. The TMDI system is more effective than the classical TMD to 

suppress vibrations close to the natural frequency of the uncontrolled harmonically 

excited primary structure, while it is more robust to de-tuning effects. 

- It was analytically shown that the TMDI configuration is more effective than the 

classical TMD for a fixed value of the TMD mass in suppressing the displacement 

variance of white noise excited undamped SDOF primary structures (based on optimally 

derived closed form design parameters).  Further, the effectiveness of the TMDI increases 

for relatively low values of the TMD mass. 
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-It was proven that an optimum designed TMDI can achieve a significantly lighter 

passive vibration control solution (TMD mass replacement effect) for achieving equal 

levels of primary structure’s response. 

 

(II) Development of the TMDI for Multi Degree of Freedom Primary Systems 

(MDOF) 

The TMDI is developed for MDOF systems by taking advantage of the ‘mass 

amplification’ effect of the inerter which is placed in between the TMD oscillating mass 

and the lead mass in mechanical chain-like (cascaded) primary structures. The governing 

differential equations of motion have been derived in the Laplace domain for damped 

chain-like MDOF primary structures incorporating a TMDI to suppress the fundamental 

mode of vibration. A standard optimization procedure has been considered to obtain 

optimum TMDI and classical TMD designs (as a special case of a TMDI with b=0) which 

minimize the displacement variance of the “lead” mass (most remote mass from the 

support) of the primary structure base excited by a stationary coloured stochastic process. 

Pertinent numerical data for the case of a 3-DOF damped primary structure base excited 

by a stationary coloured stochastic process reported that: 

- The TMDI can be viewed as a generalization of the classical TMD for support 

excited MDOF primary structures and all optimum tuning approaches used in the 

literature for the TMD hold. 

- The variance of the relative displacement of the lead mass, is reduced as the 

value of the inerter constant of proportionality increases. 

- The TMDI configuration can either replace part of the TMD vibrating mass to 

achieve a significantly lighter passive vibration control solution (TMD mass replacement 
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effect), or improve the TMD performance for a fixed TMD mass (TMD mass 

amplification effect).  

- The TMDI is more effective for relatively small attached masses in which case 

the inclusion of the inerter accommodates viscous dampers with much higher damping 

coefficients and “stiffer” connection arrangements compared to an optimally tuned 

classical TMD. The TMDI effectiveness becomes less significant for attached TMDI 

mass values greater than 6% of the total mass of the mechanical primary system. 

 

(III) Application of the TMDI for Multi Degree of Freedom Primary Systems 

(MDOF) - Earthquake Protection of Multi-Storey Buildings  

The TMDI has been applied for vibration control of seismically excited MDOF 

building structures. For this purpose the TMDI was placed in-between the top floor mass 

and the second to the top floor mass to control the fundamental mode of vibration. The 

governing differential equations of motion have been derived in time and frequency 

domain for TMDI equipped damped building structures ideally modelled as frames. A 

standard optimisation criterion has been adopted to obtain optimum TMDI parameters 

which minimize the mean square top floor displacement of low-height frame buildings 

base excited by a stationary stochastic process. Alongside, a TMDI parametric efficiency 

study has been undertaken, in order to emphasize on the importance of the primary 

structures’ properties when designing the TMDI passive control solutions. For this 

purpose, several building structures have been chosen such that they vary from a uniform 

in elevation structure to structures with reduced top floor stiffness and structures with 

reduced top floor mass. An input non-stationary stochastic process compatible with the 

elastic design spectrum of the European aseismic code provisions (EC8) has been 

assumed. Furthermore, the effectiveness of the proposed TMDI configuration over the 
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classical TMD has been demonstrated by performing response history analyses for an 

ensemble of 7 EC8 spectrum compatible field recorded strong ground motions. 

 

(IIIa) When considering EUROCODE 8 compatible design, the main conclusions of 

the proposed TMDI application can be summarised as: 

- It was proven that the TMDI outperforms the classical TMD mass for the same 

value of the additional oscillating mass when considering linear seismically excited 

MDOF buildings. 

- It was numerically evidenced that, when the inerter is incorporated in the 

proposed TMDI configuration, that optimum design requires higher stiffness and 

damping values for the elements connecting the attached mass to the primary structure 

compared with classical TMD. Furthermore, these values also increase as the inerter 

constant of proportionality increases.  

- It was proven that, the changes occurring in the properties of the primary system 

have a higher impact on the range of required TMDI parameters for optimum design, 

compared with the classical TMDI.  

-The TMDI is most efficient for top-storey variance reduction of seismically 

excited structures with reduced top floor stiffness (‘soft’ top storey).  

- It was proven that, changes in the optimum control frequency have a less 

significant impact on the TMDI performance compared with TMD, thus clearly 

suggesting an improved robustness of the TMDI towards estimating the properties of the 

primary structure over classical TMDs. 

- It was shown that the TMDI effectiveness extends over a considerable range of 

frequencies allowing for efficient passive control of higher modes. This is drastically 
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opposed to classical TMDs which traditionally target only the mode they are tuned 

against. 

-  The TMDI system represents a significantly lighter passive vibration control 

solution compared with classical TMDs when considering linear seismically excited 

MDOF buildings. 

 

 

(IIIb) When assessing the Performance of the proposed TMDI application using field 

recorded EUROCODE 8 compatible accelerograms the main conclusions can be 

summarised as: 

-  The optimally tuned TMDI solution achieves considerable reduction of the peak 

average top floor displacement and accelerations of the considered primary structures 

compared to the ones achieved by the optimally designed classical TMD, assuming the 

same additional mass in both cases. 

- The TMDI configuration achieves significant reduction in the maximum 

displacement of the additional oscillating mass. 

-  The TMDI offers a broad-band influence compared with classical one-

frequency targeted control of the TMD, thus justifying the practical applicability of the 

TMDI for medium-height to tall structures where large response amplitudes can be 

observed at frequencies higher than the fundamental one. 

- Even though the TMDI achieves similar performance with the TMD when 

evaluating the displacement control capability, the TMDI allows for a significant 

reduction of floor accelerations. 
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(IV) Application of the TMDI for Single Degree of Freedom Primary Systems 

(SDOF) - Energy harvesting and vibration suppression. 

The TMDI was applied for simultaneous energy harvesting and vibration suppression. 

The energy harvesting enabled TMDI system was thus proposed which incorporates a 

typical electromagnetic (EM) motor for electric energy generation connected in parallel 

with a spring and a damper to the attached TMDI mass. The herein considered EM 

comprises a moving magnet DC voice coil linear actuator connected to a resistance 

emulator circuit. The energy (or the power) available to harvest from the system has been 

parametrically and numerically quantified for an optimally designed TMDI for vibration 

suppression. The main conclusions of the proposed TMDI application can be summarised 

as: 

- It was shown that the inerter constant b leverages the available power to be 

harvested in an optimally designed TMDI for vibration suppression. The larger the inerter 

constant b is, the less the available energy to be harvested. Therefore, the fact that an 

optimum vibration absorber is not an optimum energy harvester is confirmed.  

- In the case of the energy harvesting enabled TMDI system, the value of b can 

change by considering flywheel-based inerters combined with a gearbox thus allowing a 

trade-off in between vibration control and energy harvesting capabilities.  

- The applicability of considering TMDIs with varying inertance according to pre-

set optimally tuned values for different objectives such as optimal vibration suppression 

or energy harvesting was proven. 
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Aiming to counteract some of the limitations of the present work, further studies can be 

directed towards: 

 

 For SDOF Primary Systems: 

- Consideration of other optimisation methodologies/criteria for deriving closed form 

TMDI parameters in addition to Den Hartog’s empirical method such as energy based 

methods.  

- Extend current study to nonlinear and damped SDOF primary structures to allow for a 

better analysis and interpretation of the TMDI robustness superiority over classical 

TMDs. 

- Consideration of non-linear dampers as opposed to linear ones used in the present study. 

- Establishing alternative configurations/topologies to combine TMDs with inerter 

devices to control the dynamic response of SDOF primary systems. 

 

 For MDOF Primary Systems: 

- Establishing alternative configurations/topologies to combine TMDs with inerter 

devices to control the dynamic response of various mechanical and civil engineering 

structures and structural systems for stochastic and deterministic excitations and for 

various response minimization criteria. 

- A further extension of this work could consider placing the TMDI in-between not-

consecutive floors, thus taking advantage of much-larger relative acceleration which 

implies greater forces generated by the inerter. Indeed, drawing on the findings herein, 

this solutions has already been introduced for the case of reliability-based Design of 

TMDI frame buildings under Seismic Excitation (Giaralis & Taflanidis, 2015). 
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 For application of the TMDI in seismically excited structures: 

- The present study can be extended to 3D primary building structures in order to capture 

torsional effects.  

- Consideration of pulse-like earthquakes. 

- Alternative work could also focus on the use of semi-active TMDIs which could be 

designed by considering alternative optimisation criteria (e.g. acceleration based, life-

cycle costs analysis and others) 

 

 For application of the TMDI for simultaneous vibration control and energy 

harvesting 

- Extend present study and explore electric energy harvesting from the kinetic energy 

generated by the rotation of the inerters’ flywheel. 

- Explore other connectivity arrangements of spring-mass-damper-inerter and electric 

motor harvester. 

- Consider the dynamics/coupling between the electric motor, energy harvesting circuit 

in the study. 

 

Furthermore, in addition to the above, further research could focus on: 

- TMDI for vibration control and energy harvesting of wind excited structures. 

- TMDI for medium to high-rise structures. 

- Prototyping and experimental work thus validating the herein reported 

numerical results. 
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Alternative connectivity arrangements of spring-damper and inerter device have 

also been explored in addition to the proposed TMDI configuration, as suggested by 

Figure 0.1.  

 

Figure 0.1. Alternative connectivity arrangements of TMD-inerter considered 

 

Specifically, a parallel connection of spring-damper-inerter as described in Figure 

0.1 was adopted. Also the inclusion of an inerter device to the classical TMD 

configuration was considered by introducing the inerter in series with a parallel 

connection of spring and damper as shown in Figure 0.1b. Furthermore, a series 

connection of damper and inerter device in parallel with spring was explored as shown in 

Figure 0.1c. For this alternative arrangements, the inclusion of an inerter device under the 

APPENDIX I - ALTERNATIVE CONNECTIVITY ARRANGEMENTS 

OF SPRINGS, DAMPERS AND INERTERS 
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proposed configurations does not outperform the classical TMD in controlling the 

dynamic behaviour of the primary system. 

For example, considering the configuration given by Figure 0.1a, it can be shown 

following the methodology described in detail in Chapter 3.3 that the optimum frequency 

ratio can be expressed as: 

 

1

1
TMDI

 




 



 (0-1) 

 

Furthermore, the maximum dynamic amplification factor achieved at the points 

P1 and P2 (see Chapter 3.3) can be obtained as: 

 

 1 1 1 1 2

2 2 2)
max ( ) ( ) ( )P PG G G


  
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

  
    (0-2) 

 

For the case of traditional TMD configuration, the Dynamic amplification factor 

which can be achieved at the two points is expressed as: 

  

   1 1 1 1 2

2
max ( ) ( ) ( ) 1P PG G G


   


     (0-3) 

 

Based on the above, it can be deducted that: 

 

 
2 2 2) 2

1 , ( , )
  

  
 

  
    (0-4) 

 

Thus, for all values of 𝛽 (and thus for all values of inerter constant of 

proportionality, 𝑏) the inclusion of parallel combination of spring, damper and inerter 
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device to connect the primary system to the TMD does not have an improved effect on 

the response of the primary system, compared with the classical case of TMD. Only 

when  𝑏 = 0, the Dynamic Amplification Factor becomes equal for both cases, and for 

any values of 𝑏 > 0 we have the inequality in Equation (0-4). Furthermore, the above 

results can be supplemented by the graph in Figure 0.2. 

 

 

Figure 0.2. Dynamic amplification factor for the system equipped with TMD and for the same system 

equipped with TMD-inerter, for varying values of b 

 

Following a similar approach, it can be proved the inclusion of the inerter in all 

other configuration explored does not outperform the traditional TMD.  
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As an alternative approach to Newton’s method used in Section 4.2, the derivation 

of the governing equations of motion of the linear dynamical structural system of Figure 

4.1 can be obtained by considering passive mechanical “admittances” Q defined as the 

ratio of force over velocity in the Laplace domain (e.g. Hixson, 1961). This is a common 

practice in topology studies of mechanical system networks. In this respect, the 

considered MDOF primary structure equipped with the TMDI configuration of Figure 4.1 

can be interpreted as a system of n+1 masses inter-connected by “networks” represented 

by admittances Q as shown in Figure 0.3. 

 

Figure 0.3. Multi-degree-of-freedom (MDOF) primary structure incorporating the proposed tuned mass- 

 

In particular, the mechanical admittances shown in Figure 0.3 are expressed in 

terms of the standard Laplace variable s by: 

 

 ( ) ; ( ) ; ( ) 1...
jTMDI

TTF TMDI TMDI j j

kk
Q s bs Q s c Q s c j n

s s
       (0-5) 

 

where 
TTFQ  is the admittance corresponding to the inerter (two terminal flywheel), 

TMDIQ  

is the admittance corresponding to the mass-spring-and-damper-in-parallel “network” 

APPENDIX II – TUNED-MASS-DAMPER-INERTER EQUATIONS 

OF MOTION USING A SYSTEM NETWORK APPROACH 
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connecting the additional attached mass to the lead mass 
1m of the primary structure and 

jQ  are the admittances of the n spring-plus-dashpot-in-parallel “networks” linking the n 

masses of the primary mechanical system together and with the ground (see Figure 4.1 

and Figure 0.3). By relying on the previous expressions, the n+1equations of motions of 

the linear MDOF dynamical system of Figure 4.1 can be written in the Laplace domain 

as: 

 

     sQ s s A s X M δ  (0-6) 

 

where : 
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(0-7) 

 

δ  is the unit column vector,  A s  is the Laplace transform of the support acceleration 

process  ga t , sM is the diagonal mass matrix of the primary system written as: 

 

1

0 0

0

0

0 0

TMDI

s

n

m

m

m

 
 
 
 
 
 

M  (0-8) 

 

and  sX is the Laplace transform of the vector: 



 

125 

 

 1 2( ) ( ) ( ) ( )
T

TMDI nx t x t x t x tx  (0-9) 

 

collecting the relative displacements of the n+1 masses included in the considered 

system. In the latter equation, the superscript “T” denotes matrix transposition. 

The frequency response function (FRF)  1G   relating the (input) support 

excitation in terms of acceleration to the (output) relative displacement of the lead mass

1m  of the primary structure is reached by evaluating the ratio: 

 

1
1

( )
( )

( )

x s
G s

A s
  (0-10) 

 

along the imaginary axis s=iω. In the latter equation, 
1( )x s  is the Laplace transform of 

1( )x t which is analytically found by solving Equation (0-6). That is, 

     ss Q s A s-1
X = - M δ  (0-11) 

 

Note that, the transfer function in Section 4-6 yields the same results as in Equation 

(0-11) but uses a different approach to evaluate the denominator.  
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