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Abstract

We present a model of bandwidth allocation in a stylized peer-to-peer file sharing
network with s peers (sharers) who share files and download from each other and f
peers (freeriders) who download from sharers but do not contribute files. Assuming
that upload bandwidth is scarcer than download bandwidth and efficient allocation,
we compute the expected bandwidth obtained by each peer. We show that (i) while
the exact formula is complex, s/(s + f) is a good approximation and (ii) sharers
(freeriders) obtain bandwidth larger (smaller) than s/(s+f). The paper constitutes
a first step towards a general analytical foundation for scarce resource allocation in
peer-to-peer file sharing networks.
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1 Introduction

Consider a peer-to-peer (p2p) file sharing network where content offered for
download is all of similar value to downloaders. Peers in the p2p network may
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act as sharers (by contributing files for others to download) or as freeriders
(by downloading from others but not making files available for download). In
a world where upload bandwidth is scarce, a natural question arises: how is
total upload bandwidth allocated among sharers and freeriders?

In this paper we present a stylized model of a p2p file sharing network to
address this question. Our model of p2p assumes that:

(1) Each sharer provides one unit of upload bandwidth;
(2) All peers have at least one unit of download bandwidth capacity;
(3) Every peer connects to one sharer only;
(4) A sharer may not connect to herself;
(5) Bandwidth obtained from a sharer is allocated equably amongst all peers

connected to her.

We refer to a set of links connecting peers to sharers as an allocation. A stable
allocation is one where no peer can be made strictly better off by connecting
to a different sharer. We assume all stable allocations arise in the network
with equal probability.

For example, consider a p2p network with three peers only: two sharers and one
freerider. In this case, there are two stable allocations (see Figure 1). Notice
that in this simple example, sharer 1 must download from sharer 2 (and vice
versa). Given this, the freerider (peer 3 in the figure) is indifferent between
downloading from sharer 1 or from sharer 2. In both cases, the freerider obtains
download bandwidth equal to 1/2. Depending on the sharer to which the
freerider connects to, sharers may end up with download bandwidth of 1 or
1/2. Under the assumption of equiprobability of stable allocations, sharers
wind up with expected bandwidth equal to 3/4 while the freerider gets 1/2
only.

Fig. 1. Stable allocations with two sharers and one freerider. The arrow originating
from a given peer indicates the sharer from whom that peer obtains files.

In this paper we consider p2p networks with an arbitrary number of peers
and derive an exact formula for the expected bandwidth obtained by sharers
and freeriders, where expectations are taken across all stable allocations. We
show that, just as in the example above, the expected bandwidth obtained
by sharers is always larger than that available to freeriders. Sharers can be
allocated to fewer sources as they face the constraint of not connecting to
themselves.
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We also show that #sharers/#peers is a good approximation to the expected
bandwidth obtained by both sharers and freeriders. Sharers (freeriders) always
obtain expected bandwidth larger than (smaller than) #sharers/#peers. And
as the size of the network grows, the difference between expected bandwidth
and #sharers/#peers quickly decreases. Already in a network of size 10, the
expected bandwidth obtained by sharers and freeriders differs from #shar-
ers/#peers by, at most, 10−4. And when network size is 100, the difference is
always less than 10−6. Because the approximation has an exceedingly simple
form, it provides a foundation for applied theoretical work on p2p. The exact
formula, on the other hand, is discouragingly complex and it is unusable for
all practical purposes.

While the present paper is devoted to the study of bandwidth allocation in
p2p file sharing networks, we believe our approach is quite general and the
results can be extended to other scarce rival resources in p2p networks. The
remainder of the paper is organized as follows. Section 2 relates our contri-
bution to the literature. Section 3 states the problem formally. In Section 4
we introduce two reductions and proceed to count all stable allocations. We
present the formula in Section 5 and discuss some properties. Section 6 pro-
vides graphical representations. In the final section, we present intuition and
discuss limitations.

2 Literature

Several empirical studies have examined the topology of p2p file sharing net-
works, employing different techniques to gather information. Network crawlers
are deployed in Asvanund et al. [1], Chu, Labonte and Levine [2], Ripeanu and
Foster [3], and in Saroiu, Gummadi and Gribble [4]. While in Gummadi et al.
[5] and Sen and Wang [6], p2p traffic is recovered from a trace performed at
the physical network’s backbone. Together, both approaches have helped char-
acterize the main properties of these networks with respect to peer availability
and activity patterns, data traffic paths, and bandwidth bottlenecks.

A parallel literature has focused on constructing theoretical models of p2p
file sharing. Contributions have emerged from Computer Science (Buragohain,
Agrawal and Suri [7], Feldman et al. [8] and Golle, Leyton-Brown and Mironov
[9]) and Economics (Antoniadis, Courcoubetis and Mason [10], Cunningham,
Alexander and Adilov [11] and Krishnan et al. [12]). This line of work explores
the incentives of peers to contribute resources to p2p networks. Several papers
present mechanisms to induce higher resource contribution levels.

This theoretical literature, however, has so far failed to incorporate insights
from the structure of the network. With just a few exceptions (see Jian and
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MacKie-Mason [13], for instance), the structure of p2p networks is generally
not modeled, and, as a result, the resource allocation rules considered lack a
foundation. In our view, p2p research can benefit from explicitly considering
the properties emerging from the underlying network structure. One main
difficulty in pursuing this approach, however, is the general lack of analytical
tractability of network games. To this end, the approximation result derived
in our analysis can be readily applied in theoretical work.

Casadesus-Masanell and Hervas-Drane [15], for example, use the approxima-
tion to construct a model of a p2p file sharing network with endogenous sharing
that competes against a for-profit firm that offers content on a client-server
architecture at positive prices. Building on the foundation for bandwidth allo-
cation presented here and incorporating the costs associated with file sharing,
the authors show that such a model can explain important stylized facts iden-
tified in the empirical literature.

3 Setup

Let N , S, and F , be the set of all peers, the set of sharers (peers that con-
tribute bandwidth), and the set of freeriders (peers that do not contribute)
respectively. Let n, s, and f , be the cardinalities of these sets. Every peer is
either a sharer or a freerider. That is, F = N\S and f = n − s. Recall that
a stable allocation is one where no peer can be made strictly better off by re-
allocating her to another sharer. Obviously, given N and S there are multiple
stable allocations. And whenever the number of peers is not divisible by the
number of sharers, the bandwidth obtained from the network will differ across
peers.
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Fig. 2. Two alternative representations of an allocation.
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There are two alternative, equivalent ways to represent the p2p networks that
we study. First, we can use a network representation such as that of Figure
1. Nodes are peers and arrows indicate the sharer from whom a given peer
obtains files. Second, we can use urns and balls. Balls are peers (sharers and
freeriders) and there are as many urns as sharers. Balls in an urn are all those
peers downloading from a given sharer. Figure 2 presents both representations
for a given allocation in a network with n = 12 and s = 5. In what follows,
we use the ‘urns and balls’ representation as it is more directly related to the
mathematical development below.

Let b := s−(nmods), and a := ndivs. In every stable allocation we must have
a peers allocated to b sharers and the rest (a + 1) allocated to the remaining
s−b sharers. Therefore, n = ba+(s−b)(a+1). The following figure illustrates
these zones.

Fig. 3. Relevant zones.

To compute the expected bandwidth obtained by freeriders and sharers, we
begin by computing the bandwidth obtained by each peer in every stable
allocation. Let x be a peer, and let G(x) be the bandwidth obtained by the
peer in any given allocation. G(x) is a random variable that can take two
values only, 1/(a + 1) and 1/a. For any given stable allocation, we define the
set B of ‘fortunate’ peers as B = {x|G(x) = 1/a} and the set of ‘unfortunate’
peers as S − B = {x|G(x) = 1/(a + 1)}. Notice that the specific peers in B
and S − B depend on the particular allocation under consideration.

The expected bandwidth obtained across all peers, both sharers and freerid-
ers, is E := E(G(x)) = s/n. Obviously, 1/(a + 1) < s/n ≤ 1/a. We may
also consider the conditional expectations ES := E(G(x)|x ∈ S) and EF :=
E(G(x)|x ∈ F ) (these are the expected bandwidths obtained by sharers and
freeriders, respectively). If sharers were to connect to themselves the calcula-
tion would be trivial. In this case, symmetry implies that ES = EF = E = s/n.

As sharers do not connect to themselves in peer-to-peer networks, however,
the conditional expectations ES and EF turn out to be different. Nevertheless,
the total bandwidth available in the network, s, must still be equal to the
number of sharers times ES plus the number of freeriders times EF . That
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is, s/n · ES + (n − s)/n · EF = s/n. Therefore, if we compute ES, we can
immediately obtain EF .

Because every stable allocation is assumed to be equiprobable, to compute ES

we need to count all of them and compute the average of G(x)x∈S for each.
Let H be the total number of stable allocations. Let hi be the number of
these allocations with i sharers in B. Notice that for all these allocations, the
average of G(x)x∈S is exactly the same. Therefore, we can consider hi as the
histogram of this value. Then,

ES =
s∑

i=0

(
1

a

i

s
+

1

a + 1

s − i

s

)
hi

H

or

ES =
a +

∑s
i=0

i
s

hi

H

a(a + 1)
.

4 Count

In this section we compute hi. That is, we orderly enumerate and count all
the stable allocations that have i sharers in B. Due to the magnitude of this
task, we proceed by reducing and decomposing the problem.

4.1 First reduction

Given n and s, consider the set of all stable allocations. We can divide this
set into subsets depending on which sharers support B (having only a peers
allocated to them). These subsets are disjoint, and they add up to the entire

set of stable allocations, so they are classes. Specifically, there are
(

s
b

)
classes.

Each of these classes has the same number of allocations. To see this, notice
that there are bijections between the classes, obtained by changing the names
of the elements. Consider class r and let hr

i be the number of allocations with
i sharers in B for class r. Notice that for all r, the value of hr

i (for every i)
is the same. Therefore, by studying one single allocation we can obtain the
total hi =

(
s
b

)
hr

i . Thus, to simplify the analysis, we will study the class in
which the sharers supporting B are the first ones. The next figure illustrates
the approach.
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Fig. 4. The first reduction is to rename sharers to get a clearer view.

4.2 Second reduction

Given n and s, consider the set of all stable allocations where B is supported
by the first sharers. We now compute how many ways we can assign the n
peers between the two zones B and S − B.

4.2.1 Counting reduction 2

In general, there are
(

n
ba

)
possibilities. There are three exceptions:

(1) When b = s there is 1 possibility.

(2) When b = 1 there are
(

n−1
ba

)
possibilities.

(3) When b = s − 1 there are
(

n−1
ba−1

)
possibilities.

These three cases will always be exceptions to the general formula we derive.
They are illustrated in the following figure. The last two cases are special
because they require that a given sharer be assigned to ‘the other’ zone.

Fig. 5. The three exceptions.

In the general case, 1 < b < s − 1, there are
(

n−s
ba−i

)(
s
i

)
possibilities that have

exactly i sharers in B. Using known formulae, adding up we obtain

(
n

ba

)
=

min{s,ba}∑
i=max{0,s+ba−n}

(
n − s

ba − i

)(
s

i

)
,

where the limits come from observing the problem and ensuring the combina-
torial numbers are well defined.
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Fig. 6. Freeriders are plotted in white, easy sharers in grey and complicated sharers
in black.

As illustrated in the figure above, j sharers out of i may be ‘complicated.’ A
complicated sharer is one that supports B and happens to be in B. We have to
take this into account in order to not assign a complicated sharer to herself. An
allocation that has a sharer assigned to herself is called a ‘coincidence.’ There
are

(
n−s
ba−i

)(
s−b
i−j

)(
b
j

)
possibilities that contain exactly j ‘complicated’ sharers.

Again using known formulae, we add up and obtain

(
n

ba

)
=

min{s,ba}∑
i=max{0,s+ba−n}

(
n − s

ba − i

) min{b,i}∑
i=max{0,b+i−s}

(
s − b

i − j

)(
b

j

)
.

4.2.2 Relationship with the original problem

For every possibility of the reduced problem, we now count how many possi-
bilities exist in the original problem. We proceed by assigning the peers in B
to the b sharers that support them.

If there were no ‘complicated’ sharers, this would be a simple multinomial
problem with formula (ab)!

(a!)b . However, because there are j complicated sharers,
we perform the same count but need to subtract all those possibilities with
coincidences. For example, if j = 1,

(ab)!

(a!)b
− (ab − 1)!

(a − 1)!(a!)b−1
=

(ab)!

(a!)b
− a

ab

(ab)!

(a!)b

=
(ab)!

(a!)b

(
1 − a

ab

)
.

If j = 2, we subtract twice the cases with one coincidence, but add once the
cases with two coincidences,
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(ab)!

(a!)b
− 2

(ab − 1)!

(a − 1)1!(a!)b−1
+ 1

(ab − 2)!

(a − 1)!2(a!)b−2
=

=
(ab)!

(a!)b
(1 − 2

a1

(ab)
+ 1

a2

(ab)(ab − 1)
) =

=
(ab)!

(a!)b

(
2

0

)
a0(ab − 0)!

(ab)!
− (ab)!

(a!)b

(
2

1

)
a1(ab − 1)!

(ab)!
+

(ab)!

(a!)b

(
2

2

)
a2(ab − 2)!

(ab)!
.

In this process, we are applying the principle of inclusion-exclusion. The prob-
lem is similar to a derangement. By analogy, we define the Multinomial De-
rangement number,

MD(b, a) =
(ab)!

(a!)b

b∑
k=0

(
b

k

)
(−1)kak (ab − k)!

(ab)!
,

and the Generalized Multinomial Derangement number,

GMD(b, a, j) =
(ab)!

(a!)b

j∑
k=0

(
j

k

)
(−1)kak (ab − k)!

(ab)!
.

Notice that MD(b, a) = GMD(b, a, b), and MD(b, 1) = Derangements(b) =
!b.

As we have to take into account both zones, B and S−B, for each possibility of
the reduced problem there are GMD(b, a, j)GMD(s−b, a+1, (s−b)−(i−j))
possibilities of the original problem.

5 Formula

Consider the original problem described in Section 3. Let n be the number of
peers, s the number of sharers, a = n div s and b = s − (n mod s).

0) For b = s, we have that ES = 1/a = s/n. Otherwise, if H :=
∑

i hi,

ES =
a +

∑s
i=0

i
s

hi

H

a(a + 1)
.

1) For b = 1, i ∈ [max{0, s + ba − n}, min{s − 1, ba}].
2) For b = s − 1, i ∈ [max{1, s + ba − n}, min{s, ba}].
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3) Otherwise, 1 < b < s − 1, i ∈ [max{0, s + ba − n}, min{s, ba}].

Where

hi =

(
n − s

ba − i

) min{b,i}∑
j=max{0,b+i−s}

(
s − b

i − j

)(
b

j

)
GMD(b, a, j)·

· GMD(s − b, a + 1, (s − b) − (i − j)),

and

GMD(b, a, j) =
(ab)!

(a!)b

j∑
k=0

(
j

k

)
(−1)kak (ab − k)!

(ab)!
.

5.1 Properties

If sharers can connect to themselves we obtain ES = s/n. To see this, notice
that in this case the GMD() factors disappear and

∑
i

i

s

hi

H
=

∑
i

i
s

(
n−s
ba−i

)(
s
i

)
(

n
ba

) =

∑
i

(
(n−1)−(s−1)
(ba−1)−(i−1)

)(
(s−1)
(i−1)

)
(

n
ba

) =

(
n−1
ba−1

)
(

n
ba

) =
ab

n
.

Therefore, the difference is given by the GMD() factors.

Also note that (ab)!/(a!)b is not relevant within GMD(). Because this expres-
sion does not depend on i or j, it also appears in H :=

∑
i hi. Therefore it

cancels out.

Two efficient ways to compute GMD() recursively are as follows. Let
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dk : =

(
j

k

)
(−1)kak (ab − k)!

(ab)!

= {(j − 0)...(j − k + 1)

12...k
}{(−1)...(−1)}{aa...a}{ 11...1

(ba − 0)...(ba − k + 1)
},

fk : =
(−1)(j − k + 1)(a)

(k)(ba − k + 1)
, f0 := 1,

dk : = fkdk−1, d0 := 1,

gk : = fj−k(1 + gk−1), g0 := fj.

Then,

GMD(b, a, j) =
(ab)!

(a!)b

j∑
k=0

dk =
(ab)!

(a!)b
gj.

6 Plots

In this section we present a few plots to illustrate the properties of ES, the
expected bandwidth obtained by sharers. We initially fix the number of peers
to n = 100, increase the number of sharers from s = 2 to 100, and plot ES.
The plot reveals that ES ≥ s/n (the diagonal line). ES is a curve with several
peaks, always above s/n. Of course, ES > s/n implies that EF < s/n. This
follows from the fact that s/n · ES + (n − s)/n · EF = s/n. The difference
between ES and s/n is small. In the following plot we have augmented 10,000
times the difference to make it visible.
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Plot 1. ES ≥ s/n

We now plot the absolute difference, ade = ES − s/n. We should note that,
in order to generate a statistical plot of ade by the Montecarlo method, one
needs to be especially careful not to end up with a biased generator. A full
3D plot is included in the Appendix. Although a plot of the relative difference
in percentage terms between ES and s/n could be more informative, such a
curve has peaks that vary wildly in size and cannot be drawn well.

Plot 2. A reference plot of ade.

As we increase n, the differences between ES and s/n maintains a similar
pattern, only the magnitudes differ. The next plot shows ade for different
values of n (n = 60, n = 120, and n = 240), normalized in order for the largest
peak to reach 1. We have also stretched the horizontal axis. For example, the
plot for n = 60 has its horizontal axis stretched 4 times. And the plot for
n = 120 has its horizontal axis stretched twice. The similarity between the
three plots is remarkable.
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Plot 3. The ade curve has almost the same shape everywhere.

As n changes, the most pronounced differences in the shape of ade occur at
the values of s where ade approaches zero (n/2, n/3, n/4,...). If n is divisible
by s, then ade is equal to zero. Otherwise, ade > 0. The following plot shows
ade for n = 60 and n = 61. 60 is divisible by 2, 3, 4, 5, 6, 10, 12, 15, 20, and
30. At all these points ade is zero. 61, however, is prime. In this case ade never
reaches zero.

Plot 4. The biggest differences are on the zeros.

The fact that ade is similar for all n allows us to tabulate ade for a given n and
then extrapolate its value for other n. In this way, we can obtain approximate
values of ade without costly calculations.

It is of interest to evaluate how ade varies as we increase n; or how the band-
width difference between sharers and freeriders evolves as the size of the net-
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work increases. We next plot the values of ade at the last peak as we increase
both n and s, thus maintaining the proportion of sharers.

Plot 5. The ade curve’s last peak decreases at an exponential rate of -2 as new
peers arrive.

The plot shows that ade decreases at a quadratic rate. This suggests a quick
method to approximate the value of ade given s and n: look up s100 = s/n100
in the second plot, and apply the formula ade = ade100(100/n)2.

It is also interesting to see how ade evolves for a given s as n increases. In the
following plot, we set s = 20 and let n vary from 20 to 120.

Plot 6. The ade curve when only freeriders arrive.

The next plot shows how the values at the peaks of the ade curve decrease
for this case. The decrease rate is also exponential, but even larger with a -3
exponent.
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Plot 7. The peaks of the ade curve decrease at an exponential rate of -3 as new
freeriders arrive.

These results suggest that ade quickly converges to 0 as n increases.

7 Discussion

7.1 Connectivity constraints

As we have just shown, the difference in expectations ES and EF is due to
the constraint that a sharer cannot connect to herself. Furthermore, not only
ES �= EF , but ES ≥ EF . The constraint ‘helps’ sharers; they end up better
off (in expected terms). Counterintuitively, peers with more options available
(freeriders) are worse off than those with less options (sharers).

To further illustrate the effect consider the following modified model where
each sharer can only be connected to herself. Notice that the constraint is now
stronger than before; sharers have only one feasible link and connections to
other sharers are no longer available. The analysis is immediate,

ES =
1

s
(b

1

a
+ (s − b)

1

a + 1
) =

1

s

sa + b

a(a + 1)
.

The following plot illustrates the behavior of ade in the modified model.
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Plot 8. The ade curve when sharers can only connect to themselves.

As shown by the graph, ade > 0. And in fact, the difference between ES and
s/n is now even larger. This example shows that the more constrained peers
are, the better off they end up. As a result, if peers could commit not to be
allocated to a given sharer, they would do so.

7.2 Number of links

Our model assumes that peers can connect to one sharer only. While in real
networks peers hold multiple links, the number of simultaneous connections is
generally limited. In this sense, our single-link assumption is not that unreal-
istic. A more general model of p2p file sharing would allow for multiple-link
formation. We have considered generalizations of the model in this direction,
but the complexity of the analysis raises substantially and we have been un-
successful in generating the more general formula.

To provide some insight on the effect of multiple links we analyze the following
simple case. Consider a p2p network with s = n− 1 sharers (there is only one
freerider) and where peers hold k = s−1 simultaneous links. By construction,
every sharer is connected to all other sharers in all stable allocations. Hence
the upload bandwidth contributed by any given sharer is always accessed
by the remaining k sharers. This implies that the freerider obtains the same
bandwidth across all her links in all stable allocations,

EF = k
1

k + 1
.

We can calculate the bandwidth obtained by sharers by taking into account
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that s/n · ES + (n − s)/n · EF = s/n and n = s + 1:

ES =
1 + k + k2

(1 + k)2
,

which implies that in this particular example ES > EF . This suggests that
the asymmetry identified above is likely to hold more generally to the case of
multiple links.

7.3 Equiprobability

We have assumed throughout that stable allocations are equiprobable. We
next motivate this assumption in the context of a model where peers decide
with whom to connect to. The nature of p2p applications suggests one-sided
link formation, where peers can decide which sharer to connect to without the
consent of the sharer. 1 In this setting, a simultaneous one-shot game yields a
set of equilibria that coincides by definition with our set of stable allocations.
Clearly, this is the set of allocations that are of interest for the analysis. 2

A one-shot game, however, provides no insight on the relative probability of
each outcome. To construct a probability distribution over this set we need to
consider a sequential game, where peers decide orderly with whom to connect
to. To model such a game consider a randomized connecting order with myopic
peers. That is, peers take the current allocation as given when choosing their
connection; no forward induction takes place (which is unfeasible given the
size and complexity of p2p networks). In the model described, however, the
probability distribution over the set of stable allocations depends on the fine
details of the connection process.

Consider the following example. There are six peers, three sharers (1, 2 and
3) and three freeriders (4, 5 and 6). The random ordering of peers is 3, 2, 4,
5, 6, and 1. In the connecting sequence 3 connects to 2; 2 connects to 3; 4
connects to 1; 5 connects to 2; and 6 connects to 3. At this point, 1 can only
connect to 2 or 3. But neither constitutes a stable allocation.

1 See Jackson [16] for a survey of models of networks in Economics and a discussion
of different models of link formation.
2 We should note that in our model no tradeoff exists between stability and effi-
ciency. An allocation is Pareto efficient if and only if the upload bandwidth provided
by all sharers is being utilized in the network. That is, if the whole bandwidth pro-
vision in the network is enjoyed by peers. Clearly, if an allocation does not satisfy
this condition, a peer reassigned to a free sharer can be made better off without
worsening the remaining peers. Hence stable allocations are a subset of Pareto al-
locations.
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Fig. 7. Sequential connecting orderings with myopic peers may yield unstable allo-
cations.

It turns out that constraining sharers not to connect to themselves while de-
manding equiprobability is somewhat equivalent to allocating them first, or at
least, not last. This provides further intuition as to why the more constrained
they are, the better off they end up.

And as shown by the example, further assumptions are required concerning
the mechanism by which peers may update their links if unstable allocations
arise. Due to the dependence of the solution on the fine details of the model-
ing choice, we have assumed equiprobability. Different mechanisms may favor
either sharers or freeriders compared to the equiprobability benchmark.

7.4 Applicability and limitations

We end with a few observations regarding the limitations of the model. An
important characteristic of real networks we have not considered in the anal-
ysis is peer heterogeneity. In real networks, upload and download bandwidth
capacities differ between peers. Heterogeneity in upload capacities, for exam-
ple, would imply that certain sharers are able to provide higher utility to the
peers that connect to them. Our model is also static, it does not consider how
stable allocations are reached nor the evolution of the network over time. In
real networks, peers enter and leave.

Even with these limitations, we hope to have provided a benchmark on which
to construct these (and other) extensions. We believe the qualitative results
obtained from our model are robust and should hold under more general spec-
ifications. A clear understanding of bandwidth allocation in p2p file sharing
networks is a necessary first step towards providing a theory of incentives to
contribute resources to p2p. 3

3 For a recent application of the s/n approximation see Casadesus-Masanell and
Hervas-Drane [15].
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Appendix

A three dimensional plot of ade. The plane defined by the ade and s axis
corresponds to the ade curve depicted in plot 2.
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