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1 Introduction

Semiparametric panel data models have attracted interest in both theory and applications

since the Gaussian assumptions underlying classical least-squares (LS) methods are some-

times implausible. Koenker (2004) introduced a general approach to estimation of quantile

regression (QR) models for longitudinal data. Individual specific fixed effects (FE) are

treated as pure location shift parameters common to all conditional quantiles and may be

subject to shrinkage toward a common value as in the Gaussian random effects paradigm.

QR methods allow one to explore a range of conditional quantiles exposing a variety of forms

of conditional heterogeneity under weak distributional assumptions and also provide a frame-

work for robust estimation and inference. Controlling for individual specific heterogeneity via

FE while exploring heterogeneous covariate effects within the QR framework offers a more

flexible approach to the analysis of panel data than that afforded by the classical Gaussian

fixed and random effects estimators. Recent work by Lamarche (2006, 2008) and Geraci and

Bottai (2007) have elaborated on these models using penalized QR estimators. Abrevaya

and Dahl (2008) have introduced an alternative approach to estimating QR models for panel

data employing the “correlated random effects” model of Chamberlain (1982).

As first noted by Neyman and Scott (1948), leaving the individual heterogeneity unre-

stricted in a nonlinear or dynamic model generally results in inconsistent estimators of the

common parameters due to the incidental parameters problem; that is, noise in the esti-

mation of the FE when the time dimension is short results in inconsistent estimates of the

common parameters due to the nonlinearity of the problem. QR estimation of panel data

models with FE suffers from similar problems to those seen in the LS case when T is modest.

Reliance on the existing bias reduction strategies using LS differencing, either temporally,

or via the usual deviation from individual means (within) transformation, is unsatisfactory

in the QR setting. Linear transformations that are completely innocuous in the context of

conditional mean models are highly problematic in the conditional quantile models since

they alter in a fundamental way what is being estimated. Expectations enjoy the convenient

property that they commute with linear transformations; quantiles do not.1 Fortunately,

there is no need to transform the QR model to compute the FE estimator. Even when the

1This intrinsic difficulty has been recognized by Abrevaya and Dahl (2008), among others, and is clarified
by Koenker and Hallock (2000, p.19): “Quantiles of convolutions of random variables are rather intractable
objects, and preliminary differencing strategies familiar from Gaussian models have sometimes unanticipated
effects.”
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number of FE is large, interior point optimization methods using modern sparse linear alge-

bra make direct estimation of the QR model quite efficient. Koenker (2004) overcomes the

incidental parameters problem by using a large N and T asymptotics with the restriction

that Na/T → 0, for some a > 0.2

Economic quantities are frequently measured with error, particularly if longitudinal infor-

mation is collected through one-time retrospective surveys, which are notoriously susceptible

to recall errors. If the regressors are indeed subject to measurement errors (ME), it is well

known that the slope coefficient of the least squares (LS) regression estimator is inconsistent

because the measurement error induces endogeneity in the model. In the one regressor case

(or the multiple regressor case with uncorrelated regressors), under standard assumptions,

the ordinary LS estimator is biased toward zero, a problem often denoted as attenuation.

The most common remedy to reduce this bias caused by the endogeneity problem is to use

either economic theory or intuition to find additional observable variables that can serve as

instrumental variables (IV). Most of the literature on the estimation of FE in panel data

models with measurement errors is based on LS with IV and the generalized method of mo-

ments (GMM). See for instance Hsiao (2003, 1992), Wansbeek (2001), Biorn (2000, 1992),

Hsiao and Taylor (1991), Wansbeek and Koning (1989) and Griliches and Hausman (1986).

The goal of this paper is to develop an IV estimator for QR with FE (IVQRFE hereafter)

to reduce the bias caused by the presence of endogeneity in the model. In particular, the IV

estimator for QR introduced by Chernozhukov and Hansen (2006, 2008) will be adapted to

the panel data setting of Koenker (2004). We derive consistency and asymptotic distribution

of this estimator under the same sample size conditions as Koenker (2004), namely, a large

N and T with the restriction that Na/T → 0, for some a > 0. We also suggest a Wald type

test for general linear hypotheses and a Kolmogorov-Smirnov test for linear hypotheses over

a range of quantiles τ ∈ T , and derive the respective limiting distributions. Although the

proposed estimator is general for endogeneity in QR with FE, we focus on the application

ME because this is an important class of endogeneity problem in panel data from the applied

research standpoint, and also, under certain conditions, the instruments are available within

the model. In particular, if the latent regressor is autocorrelated or non-stationary, lags

2More recently, a number of additional approaches have been proposed to reduce the bias in dynamic and
nonlinear panels. These methods use asymptotic approximations derived as both the number of individuals,
N , and the number time series, T , go to infinity jointly; see, for example, Arellano and Hahn (2005) for a
survey, and Hahn and Kuersteiner (2002), Alvarez and Arellano (2003), Hahn and Newey (2004), Bester and
Hansen (2007), for specific approaches.
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of the regressors are valid instruments for the mismeasured variable, and estimators of the

coefficient of the latent regressor will be consistent. Based on Griliches and Hausman (1986),

and Biorn (2000) the IV approach employs lagged (or lagged differences of the) regressors as

instruments. Thus, the estimator combines the usual concept for panel data with ME and

the IV QR framework.

Recently, the topic of ME in variables has also attracted considerable attention in the QR

literature. Chesher (2001) studies the impact of covariate ME on quantile functions using

small variance approximation, and Schennach (2008) discusses identification and estimation

issues for general quantile functions based on Fourier transforms and previous results for

nonlinear models (see Schennach, 2004, 2008). As a by-product contribution of the paper, we

derive an approximation to the bias in the QR FE estimator in the presence of a mismeasured

variable. The effect of ME on the slope coefficient estimators can be seen as an application of

Angrist, Chernozhukov, and Fernandez-Val (2006) omitted variables formula, which provides

a useful generalization of the problem of ME bias discussed above to the QR framework.

This representation provides an explicit formulation for the bias in the slope coefficients and

complements the results in Chesher (2001).

Monte Carlo simulations are used to assess the properties of the estimators in terms

of bias, root mean squared error, and to compare its performance with LS methods. The

simulations show that the QRFE estimator is severally biased in the presence of ME, while

the proposed IV estimator is able to reduce the bias even in short panels. In addition, the

Monte Carlo experiments suggest that IVQRFE performs better than LS-IV in terms of bias

and root mean squared error for non-Gaussian heavy-tailed distributions.

Finally, we provide an example to illustrate the new methods. We apply the IVQRFE es-

timator to study the relationship between investment and Tobin’s q and cash flow, a topic of

considerable attention in corporate finance and applied econometrics in general. Tobin’s q is

the ratio of the market valuation of a firm and the replacement value of its assets. Economic

theory predicts that firms with a high value of q are attractive investment opportunities,

whereas a low value of q indicates the opposite. As argued in Erickson and Whited (2000),

the poor performance of the Tobin’s q theory is probably due to the measurement error of

q values. Related to this is the debate on whether cash flow has an effect on investment

(Alti, 2003; Almeida, Campello, and Weisbach, 2004). We argue that QR methods capture

important heterogeneity across firms in terms of their q and cash flow sensitivities of in-
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vestment. In the upper conditional quantiles of investment, investment may be driven by

insiders knowledge of business opportunities or a particular capital structure that requires

more investment, and therefore, we expect that investment would be more responsive to

changes in q and cash flow, as the firms would use all additional resources to finance its

projects. Moreover, high investment ratios reduce the marginal productivity of additional

investment, and therefore, it would be difficult to get additional resources. Then, we expect

that q and cash flow sensitivity will be higher in the upper quantiles than in the lower quan-

tiles of investment. The results show interesting heterogeneity in the Tobin’s q and cash

flow sensitivities of investment. In both cases, the sensitivities are monotonically increasing

along the quantiles. We show that q values are subject to measurement error, and we use

past values of q in differences as instrumental variables to reduce the bias.

The rest of the paper is organized as follows. Section 2 presents the instrumental variables

quantile regression panel data with FE estimator and derives its asymptotic properties and

related inference. Section 4 has Monte Carlo experiments. In Section 5 illustrates the new

approach in the Tobin’s q theory of investment. Finally, Section 6 concludes the paper.

2 The Model and Assumptions

2.1 Measurement error bias in quantile regression

Consider the following representation of a panel data model with individual FE and ME

yit = d′itη + x∗′itβ + uit i = 1, ..., N ; t = 1, ..., T. (1)

where yit is the response variable, dit denotes a dummy variable that identifies the N distinct

individuals in the sample, η denotes the N -vector of individual FE, and x∗it is a dim(x)-vector

of the mismeasured regressors, β is a p× 1 vector of parameters of interest to be estimated,

and uit is the innovation term. Suppose that we do not observe x∗it, but rather xit, which is

a noisy measure of x∗it subject to an additive ME3 εit,

xit = x∗it + εit. (2)

It is assumed that εit is independent and identically distributed (iid) with V ar[εit] =

3We do not consider Schennach (2008) case of a nonseparable error structure, rather we restrict ourselves
to the traditional framework of additivity.
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σ2
ε <∞. Using equation (2) we can express (1) in terms of the observed y’s and x’s as

yit = d′itη + x′itβ + uit − ε′itβ i = 1, ..., N ; t = 1, ..., T. (3)

It follows that the observed regressor xit in (3) will be correlated with the composite error,

uit − εitβ, inducing endogeneity in the model. This problem is of practical significance since

the resulting bias may be large.

In the following paragraphs, we derive an approximation to the bias in the QR estimator

in the presence of ME using Angrist, Chernozhukov, and Fernandez-Val (2006) (denoted

ACFV hereafter) approximation to the omitted variable bias in QR. This approach shows

that, as in LS, ME bias in QR can be derived analytically as an endogeneity bias, and

provides a simpler representation than that in Chesher (2001). Since this is the first attempt

in the QR literature to do so in this way, we do not tackle simultaneously the incidental

parameter problem, but rather we consider a standard QR structure.4

The standard result for the LS estimator with ME can be seen as an omitted variables

problem, where −εit is the omitted variable. In the rest of this section we omit the indexes

i and t to simplify the notation. Define v∗ = [d′, x∗′]′, Λε = [0′, ε′]′, v = [d′, x′]′ = v∗ + Λε and

ϕ = [η′, β′]′. In addition, let

ϕ∗ = argmin
ϕ

E[y − v∗′ϕ]2, (4)

and

ϕ◦ = argmin
ϕ

E[y − v′ϕ]2, (5)

where ϕ∗ and ϕ◦ are the parameters that solve the population minimization problem. Under

known conditions, of course, these are the probability limit of the corresponding estimators.

However, we follow ACFV exposition a close as possible in this sub-section.

In this case,

ϕ◦ = ϕ∗ − (E [vv′])
−1
E[vε′β∗] = ϕ∗ − (E [v∗v∗′ + ΛεΛ

′
ε])

−1
E[Λεε

′β∗]. (6)

This shows the standard result that the bias depends on the noise to signal ratio. There-

fore, after some algebra, the bias in the least squares FE estimator of β can be also written

4Alternatively the results presented here can be seen as the special case where N is fixed and T goes to
infinity.

5



as

β◦ = β∗
[
1− σ2

ε

V ar(x∗it − x̄∗i )

]
,

where x̄∗i is the defined as 1
T

∑T
t=1 x

∗
it.

Consider now the τth conditional quantile function of the response y,

Qy(τ |d, x∗) = d′η∗(τ) + x∗′β∗(τ). (7)

In this formulation η, and β are allowed to depend upon the quantile, τ , of interest.5 Using

equation (2) one can rewrite (7) as

Qy(τ |v∗) = d′η∗(τ) + (x− ε)′β∗(τ) = d′η∗(τ) + x′β∗(τ)− ε′β∗(τ) = Qy(τ |v, ε). (8)

As in the standard LS case with measurement error, the QR counterpart can be seen as

an omitted variable problem, where ε is the omitted variable. We derive the approximate

bias using the ACFV omitted variable bias formula.

Applying the standard estimation procedure in QR to equation (7) would solve

ϕ∗(τ) = argmin
ϕ

E[ρτ (y − v∗′ϕ)], (9)

where ρτ (u) := u(τ − I(u < 0)) as in Koenker and Bassett (1978), which is analogous to

equation (4). However, the QR FE estimator, as in the LS case, is biased in the presence

of the mismeasured variables. In this case, in the problem of solving (8) omitting −ε, the

standard QR solves

ϕ◦(τ) = argmin
ϕ

E[ρτ (y − v′ϕ)]. (10)

Here ϕ∗(τ) and ϕ◦(τ) are the parameters that solve the population minimization problem,

defined in an analog way to ACFV paper.

The following Lemma shows that the measurement error bias in QR can be approximated

to an expression similar to that in (6).

Lemma 1 Assume that: (i) the conditional density function fy(y|v, ε) exists and is bounded

a.s.; (ii) E[y], E[Qy(τ |v, ε)2], and E‖[v′, ε′]′‖2 are finite; (iii) ϕ∗(τ) and ϕ◦(τ) uniquely solves

equations (9) and (10) respectively; (iv) ε is independent of (d, x∗, u). Then,

ϕ◦(τ) = ϕ∗(τ)− (E [ωτ (v, ε) · (vv′)])−1
E[ωτ (v, ε) · vε′β∗(τ)]. (11)

5This approach is different from that in Koenker (2004) where the individual effects are constant across
quantiles. A straightforward modification of our estimator returns the constant individual effects case. We
discuss briefly the details in Appendix 0.
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where ωτ (v, ε) :=
∫ 1

0
fu(τ) (u ·∆τ (v, ε;ϕ

◦(τ))|v, ε) du/2 is a weighting function, and ∆τ (v, ε;ϕ
◦(τ)) =

v′ · (ϕ◦(τ)− ϕ∗(τ))′ + ε′β◦(τ) is the QR specification error.

Proof. The proof follows ACFV results for partial QR and omitted variables bias (p.545–

548). Since the conditional quantile function is linear, Qy(τ |v, ε) = v′ϕ∗(τ)− ε′β∗(τ), where

ϕ∗(τ) is defined as in (9). Then, the conditional QR model in equation (7) can be seen

as one with [v′, ε′]′ as covariates. Moreover, the conditional QR with measurement error

Qy(τ |v) = vϕ◦(τ), obtaining the coefficient ϕ◦(τ) from equation (10), can be seen as a model

with omitted variable ε.

Recall that ωτ (v, ε) :=
∫ 1

0
fu(τ) (u ·∆τ (v, ε;ϕ

◦(τ))|v, ε) du/2 where fu(τ)(.|.) is the condi-

tional density function of u(τ) := y − Qy(τ |v, ε), and ∆τ (v, ε;ϕ) := v′ϕ − Qy(τ |v, ε) is the

bias in the estimated quantile function for a given ϕ. Then,

∆τ (v, ε;ϕ
◦(τ)) = d′ · (η◦(τ)− η∗(τ)) + x∗′ · (β◦(τ)− β∗(τ)) + ε′β◦(τ).

Under the stated assumptions, by Theorem 2 in ACFV, ϕ◦(τ) uniquely solves the equation

ϕ◦(τ) := argminϕE[ωτ (v, ε)∆
2
τ (v, ε;ϕ)].

Solving for ϕ◦(τ) we have

ϕ◦(τ) = ϕ∗(τ)− (E [ωτ (v, ε) · (vv′)])−1
E[ωτ (v, ε) · vε′β∗(τ)].

Note that the weighting function ω(.) depends on both v and ε and it is a distinctinve

feature of QR when compared with LS case. However, it can be shown that the leading term

in the QR bias has the same form as that in LS. In order to show this, assume that fy(y|v, ε)
has a first derivative in y that is bounded in absolute value by f̄ ′(v, ε) and consider a Taylor

expansion of the weights as in ACFV, p.546,

ωτ (v, ε) = 1/2 · fy(Qτ (y|v, ε)|v, ε) + ς(v, ε),

where

|ς(v, ε)| ≤ 1/4 · |∆τ (v, ε;ϕ
◦(τ))| · f̄ ′(v, ε).
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Note that by independence of y and ε, fy(Qτ (y|v, ε)|v, ε) = fy(Qτ (y|v∗)|v∗) (with first

derivative bounded by f̄ ′(v∗)). Then, when either ∆τ (v, ε;ϕ
◦(τ)) or f̄ ′(v∗) is small,

ωτ (v, ε) ≈ 1/2 · fy(Qτ (y|v∗)|v∗).

Then, the ACFV weighted LS approximation to QR implies that

ϕ◦(τ) ≈ ϕ∗(τ)− (E [fy(Qτ (y|v∗)|v∗) (v∗v∗′ + ΛεΛ
′
ε)])

−1
E[fy(Qτ (y|v∗)|v∗)Λεε

′β∗(τ)]. (12)

It is important to note that a key factor in the coefficient bias approximation given by

(12) is the conditional density function fy(y|v∗). In addition, we can compare equations (6)

and (12), and as in the OLS case, the bias in the variable with measurement error parameter

in the QR framework depends on the noise to signal ratio, but in the QR case, weighted by

the conditional density function fy(y|v∗).

2.2 Estimation

We consider the panel data model with ME exposed in eqs. (1) and (2), and we add a

covariate z without ME to the model. We repeat the equations for convenience

yit = d′itη + x∗′itβ + z′itα+ uit i = 1, ..., N ; t = 1, ..., T, (13)

with

xit = x∗it + εit. (14)

As in the LS case, the bias in QR can be ameliorated through the use of IV, w, that

affect the determination of x∗ but are independent of both ε and u. If the latent regressor

is autocorrelated, provided that some structure is imposed on the disturbances and ME,

instruments are available within the model. Examples of these are lagged values of the

mismeasured variable (in levels or in differences) or other covariates. Following Biorn (2000)

we use lags of the first differences of the mismeasured variable as IV. In this particular

case, the bias can be solved without relying on additional exogenous variables that do not

belong to the model. If this is not the case, the method is still valid but it relies on the

availability of valid exogenous instruments.6 Other types of ME can be accommodated by

6In a related work, Schennach (2008) discusses identification and estimation for general quantile functions
in the presence of ME in the regressors, establishing the availability of IV that enables the identification and
the consistent estimation of nonparametric QR models. Our estimator has the advantage over Schennach
(2008) estimator that it can be implemented using standard QR and IV techniques.
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the use of appropriate IV, although we consider this simple ME structure to concentrate on

the asymptotic properties of the IV estimator.

Consider now the τth conditional quantile function of the response y,

Qy(τ |d, x, z) = d′η(τ) + x′β(τ) + z′α(τ). (15)

As shown in the previous section, the variable x is endogenous in this model and the associ-

ated coefficient of interest will be biased. Thus, we propose an IV procedure to reduce the

bias.

Following Chernozhukov and Hansen (2006, 2008), from the availability of IV, wit, we

consider estimators defined as:

β̂(τ) = argmin
β

‖γ̂(β, τ)‖A, (16)

where

(η̂(β, τ), α̂(β, τ), γ̂(β, τ)) = argmin
η,α,γ

N∑
i=1

T∑
t=1

ρτ (yit − d′itη − x′itβ − z′itα− w′
itγ), (17)

with ‖x‖A =
√
x′Ax and A is a positive definite matrix.7 As suggested by Chernozhukov

and Hansen (2008), with abuse of notation, in practice, a simple procedure is to let the

instruments wit either be wit itself or the predicted value from a least squares projection of

xit on wit and zit. Our final parameter estimators are thus

ϕ̂(τ) := (η̂(β̂(τ), τ), β̂(τ), α̂(β̂(τ), τ)). (18)

The intuition underlying the estimator is that, since w is a valid instrument, it is inde-

pendent of ε and u, and therefore, it should have a zero coefficient in (17). Thus, for given

β, the QR of (yit − x′itβ) on the variables (dit, zit, wit) should generate a zero coefficient for

the variable wit. Hence, by minimizing the coefficient of the variable wit one can recover a

consistent estimator of η, β and α. Values of lagged x and lags of the exogenous variable z

affect the determination of x∗ but are independent of ε, so they can be used as instruments.8

7As discussed in Chernozhukov and Hansen (2006), the exact form of A is irrelevant when the model is
exactly identified, but it is desirable to set A equal to the asymptotic variance-covariance matrix of γ̂(α(τ), τ)
otherwise.

8It is known that if the distribution of the latent regressor vector is not time invariant, then consistent
IV estimators of the coefficient of the latent regressor vector exist (see e.g. Griliches and Hausman, 1986;
Biorn, 2000). The consistency of these estimators is robust to potential correlation between the individual
heterogeneity and the latent regressor. An interesting point is that serial correlation or non-stationarity of
the latent regressor is favorable from the point of view of identification and estimability.
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The instrumental variables quantile regression (IVQR) estimator method may be viewed as

an appropriate QR analog of the two stage least squares (2SLS). The 2SLS estimates can

be obtained by using the same two steps procedure as described above for the IVQR. In

Appendix 1 we show the details of the derivation.

The instrumental variables quantile regression with fixed effects (IVQRFE) estimator can

be implemented as follows:

1) For a given quantile of interest τ , define a grid of values {βj, j = 1, ..., J}, and run the

ordinary τ -QR of (yit − x′itβj) on (dit, zit, wit) to obtain coefficients η̂(βj, τ), α̂(βj, τ) and

γ̂(βj, τ), that is, by solving equation (17) for each value βj.

2) Find β̂(τ) as the value among {βj, j = 1, ..., J} that makes ‖γ̂(βj, τ)‖A the closest to zero.

This gives us the parameters in (18). We shall show that this estimator is consistent and

asymptotically normal under some regularity conditions.

Given the parameter estimates, for an individual i, the τ -th conditional quantile function

of yit, can be estimated by,

Q̂yit
(τ |dit, xit, zit) = d′itη̂(τ) + x′itβ̂(τ) + z′itα̂(τ).

In addition, given a family of estimated conditional quantile functions for an individual i,

the conditional density of yit at several values of the conditioning covariate can be estimated

by the difference quotients,

f̂yit
(τ |dit, xit, zit) =

τk − τk−1

Q̂yit
(τk|dit, xit, zit)− Q̂yit

(τk−1|dit, xit, zit)
,

for some appropriately chosen sequence of τs.

Now we discuss the asymptotic properties of the IVQRFE estimator. The parameter η,

whose dimensionN is tending to infinity, raises some new issues for the asymptotic analysis of

the proposed estimator. Following the recent literature on panel data, we derive consistency

and asymptotic normality assuming that both N and T tend to infinity. We impose the

following regularity conditions:

A1 The yit are independent with conditional distribution functions Fit, and differentiable

conditional densities, 0 < fit <∞, with bounded derivatives f ′it for i=1,...,N and t=1,...,T ;

A2 Let D = IN ⊗ ιT , and ιT a T -vector of ones, X = (xit) be a NT × dim(β) matrix,

10



Z = (zit) be a NT × dim(α) matrix, and W = (wit) be a NT × dim(γ) matrix. For

Π(η, β, α, τ) := E[(τ − 1(D′η +X ′β + Z ′α))X̌]

Π(η, β, α, γ, τ) := E[(τ − 1(D′η +X ′β + Z ′α+W ′γ))X̌]

X̌ := [D′,W ′, Z ′]′,

Jacobian matrices ∂
∂(η,β,α)

Π(η, β, α, τ) and ∂
∂(η,α,γ)

Π(η, β, α, γ, τ) are continuous and have full

rank, uniformly over E ×B×A ×G ×T . The parameter space, E ×A ×B, is a connected

set. Moreover the image of E × A × B under the map (η, α, β) → Π(η, α, β, τ) is simply

connected;

A3 Denote Φ(τ) = diag(fit(ξit(τ))), where ξit(τ) = d′itη(τ) + x′itβ(τ) + z′itα(τ) +witγ(τ),

MD = I − PD and PD = D(D′Φ(τ)D)−1D′Φ(τ). Let X̃ = [Z,W ]′. Then, the following

matrix is invertible:

Jαγ = E(X̃ ′MDΦ(τ)MDX̃);

Now define [J̄ ′α, J̄
′
γ]
′ as a partition of J−1

αγ , Jβ = E(X̃ ′MDΦ(τ)MDX) and H = J̄ ′γA[β(τ)]J̄γ.

Then, J ′βHJβ is also invertible;

A4 For all τ ∈ T = [c, 1− c] with c ∈ (0, 1/2), (β(τ), α(τ)) ∈ int B ×A , and B ×A is

compact and convex;

A5 maxit ‖xit‖ = O(
√
NT ); maxit ‖zit‖ = O(

√
NT ); maxit ‖wit‖ = O(

√
NT );

A6 Na

T
→ 0, for some a > 0.

Condition A1 is a standard assumption in the QR literature and imposes a restriction on

the density function of yit. Condition A2 is important for the parameter’s identification. This

is shown through the use of a version of Hadamard’s theorem, as discussed in Chernozhukov

and Hansen (2006). It requires that the instrument w impacts the conditional distribution of

y at many relevant points. In addition, the condition that the image of the parameter space

be simply connected requires that the image can be continuously shrunk to a point, and this

condition can be interpreted as ruling out “holes” in the image of the set.9 Assumption A3

states invertibility conditions for matrices in order to guarantee asymptotic normality. A4

imposes compactness on the parameter space of β(τ). Such assumption is needed since the

objective function is not convex in β. Assumption A5 imposes a bound on the variables.

9We assume that the image of E ×A ×B under the map (η, α, β) → Π(η, α, β, τ) is connected for ease
of exposition. However, it is straightforward to show that the image of a connected set by an continuous
function is a connected set.
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Finally, condition A6 is the same assumption as in Koenker (2004) and allows T to grow

very slowly relative to N .

To further comment on the nature of correlation between X and W required by A2, note

that by A1 we have that

∂E[(τ − 1(D′η +X ′β + Z ′α))X̌]/∂(η, β, α) = E[(D′, Z ′,W ′)′Φ(τ)(D,X,Z)]

Hence, the Jacobian in A2 takes a form of density-weighted covariance matrix for D, X and

W , and A2 requires that this matrix has full rank. In addition, A2 imposes that global

identifiability must hold; hence, the impact of W should be rich enough to guarantee that

the equations are solved uniquely.

We can now establish consistency and asymptotic normality. Proofs appear in Appendix

2. The following theorem states identification and consistency of ϕ̂(τ).

Theorem 1 Define ψτ (u) := (τ − I(u < 0)). Given assumptions A1-A6, (η(τ), β(τ), α(τ))

uniquely solves the equations E[ψτ (Y − D′η − X ′β − Z ′α)X̌] = 0 over E × B × A , and

ϕ(τ) = (η(τ), β(τ), α(τ)) is consistently estimable.

It is important to notice that even if the dimension of the parameter space increases

with the number of cross-section, we only need to impose that parameter space, E ×B ×
A , is simple connected rather than compact. Therefore, by applying a Hadamards global

univalence theorem for general metric spaces it is possible to show that there is a one-to-one

correspondence between the parameter space and Π(E ,B,A , τ), the image of E ×B ×A

under Π(·, ·, ·, τ). In addition, the identification follows from the global convexity of the

quantile function and the instrumental variables exclusion restriction.

Under conditions A1-A6 we show that the asymptotic properties of the IVQRFE estima-

tor as Na/T → 0 for some a > 0. Theorem 1 provides a lower bound for the rate at which

T grows relative to N for ensuring consistency. The intuition behind this condition is that

T must go to infinity fast enough to guarantee consistent estimates for the FE.

The intuition behind the proof of consistency relies on the uniform convergence of the

objective function over the parameter space. The basic technique used to show this uniform

convergence is similar to Wei and He (2006) where we divide the growing parameter space

into small cubes. Then the total number of cubes grows at a polynomial rate so that

the exponential bound obtained at each cube holds globally and the uniform convergence
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follows. Using this technique we establish stochastic equicontinuity, and consistency follows

from application of an argmax theorem as in van der Vaart and Wellner (1996).10

In general, η is only a nuisance parameter with no particular interest. Define θ := (β, α)

as the vector of parameters of interest in this context. The limiting distribution of these

parameters’ IVQRFE estimators is given by Theorem 2.

Theorem 2 (Asymptotic Normality)

Under conditions A1-A6, for a given τ ∈ (0, 1), θ̂(τ) converges to a Gaussian distribution

as
√
NT (θ̂(τ)− θ(τ))

d→ N(0,Ω(τ)), Ω(τ) = (K ′, L′)′S(K ′, L′)

where S = τ(1− τ)E[V V ′], V = X̃ ′MD, K = (J ′βHJβ)−1JβH, H = J̄ ′γA[β(τ)]J̄γ, L = J̄αM ,

M = I−JβK, Jβ = E(X̃ ′MDΦ(τ)MDX), [J̄ ′α, J̄
′
γ]
′ is a partition of J−1

αγ = (E(X̃ ′MDΦMDX̃))−1,

Φ(τ) = diag(fit(ξit(τ))), and X̃ = [W,Z]′.

The proof of asymptotic normality has some elements of the nonlinear panel data liter-

ature where we concentrate out the FE. Here we write a asymptotic representation for the

FE, then we plug them into the representation for all the coefficients. Therefore, there will

be a reminder term coming from this two step procedure. It happens that the large N and

T asymptotics with the restriction that Na/T → 0 is a sufficient condition to ensure that

the reminder term is negligible and the estimator is asymptotically normal centered at zero.

Remark 1. For a finite collection of quantile indexes we have

√
NT (θ̂(τj)− θ(τj))j∈J

d→ N(0,Ω(τk, τl))k,l∈J

where Ω(τk, τl) = (K(τk)
′, L(τk)

′)′S(τk, τl)(K(τl)
′, L(τl)

′).

Remark 2. When dim(γ) = dim(β), the choice of A(β) does not affect asymptotic

variance, and the joint asymptotic variance of β(τ) and α(τ) will generally have the simple

form Ω(τ) = (K ′, L′)′S(K ′, L′), for S,K and L as defined above. As in Chernozhukov and

Hansen (2008), when dim(γ) > dim(β), the choice of the weighting matrix A(β) generally

matters, and it is important for efficiency. A natural choice for A(β) is given by the inverse

10It is important to note that we can use this technique of proof since the parameter space is growing at
a known rate, N . There is a large literature showing the asymptotic properties of QR estimator for infinite
dimension parameter space as He and Shao (2000) and Portnoy (1985) when the rate of the parameter
increasing is not known. However, it is possible to achieve a better rate of N relative to T in the first case.
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of the covariance matrix of γ̂(β(τ), τ). Noticing that A(β) is equal to (J̄γSJ̄γ)
−1 at β(τ), it

follows that the asymptotic variance of
√
NT (β̂(τ)− β(τ)) is given by

Ωβ = (J ′βJ̄
′
γ(J̄γSJ̄

′
γ)

−1J̄γ J̄β)−1.

The components of the asymptotic variance matrix that need to be estimated include

Jαγ, Jβ and S. The matrix S can be estimated by its sample counterpart

Ŝ(τ, τ ′) = (min(τ, τ ′)− ττ ′)
1

NT

N∑
i=1

T∑
t=1

VitV
′
it. (19)

Following Powell (1986), Jαγ and Jβ can be estimated as stated in Theorem 2 above, such

as Jαγ = E(X̃ ′MDΦ(τ)MDX̃) and Jβ = E(X̃ ′MDΦ(τ)MDX). The estimator of Jαγ is given

by the following form

Ĵαγ =
1

2NThn

N∑
i=1

T∑
t=1

I(|û(τ)| ≤ hn)X̃MDM
′
DX̃

′ (20)

where û(τ) := Y −Dη̂(τ) −Xβ̂(τ) − Zα̂(τ) and hn is an appropriately chosen bandwidth,

with hn → 0 and NTh2
n →∞. The estimator of Jβ is analogous to Ĵαγ. By using the same

procedure we can estimate the element DΦ̂(τ)D in PD. The consistency of these asymptotic

covariance matrix estimators are standard and will not be discussed further in this paper.

2.3 Inference

In this section, we turn our attention to inference in the IVQRFE model, and suggest a Wald

type test for general linear hypotheses, and a Kolmogorov-Smirnov test for linear hypothesis

over a range of quantiles τ ∈ T .

In the independent and identically distributed setup the conditional quantile functions of

the response variable, given the covariates, are all parallel, implying that covariates effects

shift the location of the response distribution but do not change the scale or shape. However,

slopes estimates often vary across quantiles implying that it is important to test for equality

of slopes across quantiles. Wald tests designed for this purpose were suggested by Koenker

and Bassett (1982a), Koenker and Bassett (1982b), and Koenker and Machado (1999). It is

possible to formulate a wide variety of tests using variants of the proposed Wald test, from

simple tests on a single QR coefficient to joint tests involving many covariates and distinct
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quantiles at the same time. General hypotheses on the vector θ(τ) can be accommodated

by Wald type tests. The Wald process and associated limiting theory provide a natural

foundation for the hypothesis Rθ(τ) = r, when r is known.

Following the arguments of Portnoy (1984) and Gutenbrunner and Jureckova (1992), the

QR process is tight and thus the limiting variate viewed as a function of τ is a Brownian

Bridge over τ ∈ T .11 Therefore, under the linear hypothesis H0 : Rθ(τ) = r, conditions

A1-A6, and letting Σ = (K ′, L′)′EV V ′(K ′, L′), we have

VNT =
√
NT [RΣ(τ)R′]−1/2(Rθ̂(τ)− r) ⇒ Bq(τ), (21)

where Bq(τ) represents a q-dimensional standard Brownian Bridge. For any fixed τ , Bq(τ)

is N(0, τ(1− τ)Iq). The normalized Euclidean norm of Bq(τ)

Qq(τ) = ‖Bq(τ)‖/
√
τ(1− τ)

is generally referred to as a Kiefer process of order q. Thus, for given τ , the regression Wald

process can be constructed as

WNT (τ) = NT (Rθ̂(τ)− r)′[RΩ̂(τ)R′]−1(Rθ̂(τ)− r) (22)

where Ω̂ is a consistent estimator of Ω, and Ω is given by

Ω(τ) = (K ′(τ), L′(τ))′S(τ, τ)(K ′(τ), L′(τ)).

Under H0, the statistic WNT is asymptotically χ2
q with q-degrees of freedom, where q

is the rank of the matrix R. The limiting distributions of the test is summarized in the

following theorem:

Theorem 3 (Wald Test Inference). Under H0 : Rθ(τ) = r, for fixed τ and conditions

A1-A6,

WNT (τ)
a∼ χ2

q.

Proof. The proof of Theorem 3 is very simple and it follows from observing that for any

fixed τ , by Theorem 2
√
NT (θ̂(τ)− θ(τ)) ⇒ N(0,Ω(τ))

11In a related result, Wei and He (2006) establish tightness of the QR process in the longitudinal data
context with increasing parameter dimension, see for instance Lemma 8.4.
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under the null hypothesis,

√
NT (Rθ̂(τ)− r) ⇒ N(0, RΩ(τ)R′)

since Ω̂(τ) is a consistent estimator of Ω(τ), by Slutsky theorem

WNT (τ) = NT (Rθ̂(τ)− r)′[RΩ̂(τ)R′]−1(Rθ̂(τ)− r)
a∼ χ2

q.

In order to implement the test it is necessary to estimate Ω(τ) consistently. It is possible

to obtain such estimator as suggested in Theorem 2 in the previous section, and the main

components of Ω̂(τ) can be obtained as in equations (19) and (20).

More general hypotheses are also easily accommodated by the Wald approach. Let υ =

(θ(τ1)
′, ..., θ(τm)′) and define the null hypothesis as H0 : Rυ = r. The test statistic is the

same Wald test as equation (22). However, Ω is now the matrix with klth bock

Ω(τk, τl) = (K ′(τk), L
′(τk))

′S(τk, τl)(K
′(τl), L

′(τl)),

and S(τk, τl) = (τk ∧ τl − τkτl)E[V V ′], Φ(τj) = diag(fit(ξit(τj))), and the other variables are

as defined above. The statistic WNT is still asymptotically χ2
q under H0 where q is the rank

of the new matrix R. This formulation accommodates a wide variety of testing situations,

from a simple test on single quantiles regression coefficients to joint tests involving several

covariates and several distinct quantiles. Thus, for instance, we might test for the equality

of several slope coefficients across several quantiles.

Another important class of tests in the QR literature involves the Kolmogorov-Smirnov

(KS) type tests, where the interest is to examine the property of the estimator over a range

of quantiles τ ∈ T , instead of focusing only on a selected quantile. Thus, if one has interest

in testing Rθ(τ) = r over τ ∈ T , one may consider the KS type sup-Wald test. Following

Koenker and Xiao (2006), we may construct a KS type test on the panel data regression

quantile process in the following way:

KSWNT = sup
τ∈T

WNT (τ). (23)

The limiting distribution of the Kolmogorov-Smirnov test is given in the following theo-

rem:
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Theorem 4 (Kolmogorov-Smirnov Test). Under H0 and conditions A1-A6,

KSWNT = sup
τ∈T

WNT (τ) ⇒ sup
τ∈T

Q2
q(τ).

The proof of Theorem 4 follows directly from the continuous mapping theorem and

equation (23). Critical values for supQ2
q(τ) have been tabled by DeLong (1981) and, more

extensively, by Andrews (1993) using simulation methods.

3 Monte Carlo Simulation

3.1 Monte Carlo design for the performance of IVQRFE

In this section, we describe the design of some simulation experiments that have been con-

ducted to assess the finite sample performance of the IVQRFE estimator discussed in the

previous sections.12 Two simple versions of the basic model (1) are considered in the simu-

lation experiment. In the first, reported in Tables 1 and 2, the scalar covariate, zit, exerts a

pure location shift effect. In the second, reported in Tables 3 and 4, zit exerts both location

and scale effects. In the former case the response yit is generated by the model

yit = ηi + x∗′itβ + z′itα+ uit,

while in the latter

yit = ηi + x∗′itβ + z′itα+ (γzit)uit.

In both cases we have an additive measurement error of the form

xit = x∗it + εit,

where x∗it follows an ARMA(1,1) process

(1− φL)x∗it = µi + εit + θεit−1 (24)

and εit follows the same distribution as uit, that is, normal distribution and t3 for Schemes

1 and 2 respectively. In all cases we set x∗i,−50 = 0 and generate x∗it for t = −49,−48, ..., T

according to

x∗it = µi + φx∗it−1 + εit + θεit−1. (25)

12The experiment shown in this section is based in Hsiao, Pesaran, and Tahmiscioglu (2002).
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This ensures that the results are not unduly influenced by the initial values of the x∗it process.

Given the structure of the measurement error we use xit−1 as instrumental variable.

We employ two different schemes to generate the disturbances (uit, εit). Under Scheme

1, we generate them as N(0, 1). Under Scheme 2 we generate them as t-distribution with 3

degrees of freedom. The exogenous regressor zit is generated according to the same distribu-

tion as the innovations. In order to estimate the model we discarded the first 50 time series

observations, using the observations t = 0 through T for estimation. The FE, µi and ηi, are

generated as

µi = e1i + T−1

T∑
t=1

εit, e2i ∼ N(0, σ2
e2

).

ηi = e2i + T−1

T∑
t=1

zit, e2i ∼ N(0, σ2
e2

).

The above method of generating µi and ηi ensures that the random effects estimator is

inconsistent because of the correlation that exists among the individual effects and the

explanatory variables.

In the simulations, we experiment with T = 10 and N = 100. We set the number of

replications to 1000, and consider the following values for the remaining parameters:

(β, α) = (1, 1);

φ = 0.6, θ = 0.7, γ = 1, σ2
u = σ2

e1
= σ2

e2
= 1.

In the Monte Carlo study, we compare the LS and QR based estimators in terms of bias

and root mean squared error (RMSE). More specifically, we study four estimators: the usual

least squares within group estimator (FE); the least squares instrumental variables estimator

(IVFE); the quantile regression fixed effects estimator proposed by Koenker (2004) (QRFE);

and finally, the instrumental variables quantile regression fixed effects estimator proposed in

this paper (IVQRFE). The QR estimators are studied only for the median case, although

similar results are obtained for other quantiles.

3.2 Monte Carlo Results

Tables 1 and 2 present bias and RMSE simulations for estimates of the mismeasured co-

efficient, β, and the perfectly measured variable coefficient, α, for the location-shift model

and the normal and t3 distributions of the innovations respectively. The results show that
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Table 1: Location Shift Model: Bias and RMSE of estimators for normal distribution (T = 10
and N = 100)

FE IVFE QRFE IVQRFE
β = 1 Bias −0.196 0.006 −0.197 0.010

RMSE 0.1967 0.0572 0.1978 0.0736
α = 1 Bias 0.002 0.001 0.003 0.001

RMSE 0.0362 0.0462 0.0447 0.0475

Table 2: Location Shift Model: Bias and RMSE of estimators for t3 distribution (T = 10
and N = 100)

FE IVFE QRFE IVQRFE
β = 1 Bias −0.201 −0.004 −0.159 0.009

RMSE 0.2075 0.0619 0.1531 0.0542
α = 1 Bias 0.001 0.001 −0.001 −0.001

RMSE 0.0396 0.0471 0.0342 0.0363

the bias in the mismeasured variable coefficient of the FE and QRFE estimators are severe.

However the coefficients for the IVFE and IVQRFE are approximately unbiased. Moreover,

since we do not consider any correlation among the regressors, as expected, the coefficient

of the perfectly measured variable is approximately unbiased in all cases.

Table 1 shows that when the disturbances are sampled from a normal distribution, as

expected, the mismeasured regressor coefficient is downward biased for the FE case, but the

IVFE is approximately unbiased. Similarly, in the presence of errors in variables, the QRFE

estimator proposed by Koenker (2004) is downward biased and IVQRFE is able to reduce

the bias. In summary, estimates are biased in both the FE and the QRFE cases, and the

IV strategy is able to considerably diminish the bias for both LS and QR cases. Regarding

the RMSE, in the Gaussian condition, the LS based estimators perform better than the

respective QR estimators. Thus, under Gaussian conditions, the IVQRFE is capable to

reduce the bias but it has a larger RMSE when compared with the IVFE.

Table 2 presents simulations for the t3-distribution case. The β estimates of FE and

QRFE are biased, and the FE has a larger bias when compared with the same estimator in the

Gaussian case. The IVQRFE is approximately an unbiased estimator for both coefficients.

Interestingly, in the non-Gaussian heavy-tailed condition, the RMSE of IVQRFE is smaller

than the RMSE of IVFE, evidencing that there are gains in efficiency by using a robust

estimator.
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Table 3: Location-Scale Shift Model: Bias and RMSE of estimators for normal distribution
(T = 10 and N = 100)

FE IVFE QRFE IVQRFE
β = 1 Bias −0.199 0.005 −0.195 0.009

RMSE 0.1970 0.0569 0.1962 0.0685
α = 1 Bias 0.001 0.001 0.000 0.001

RMSE 0.0533 0.0579 0.0566 0.0622

Table 4: Location-Scale Shift Model: Bias and RMSE of estimators for t3 distribution
(T = 10 and N = 100)

FE IVFE QRFE IVQRFE
β = 1 Bias −0.208 0.004 −0.146 0.007

RMSE 0.2086 0.0779 0.1475 0.0480
α = 1 Bias 0.002 0.003 0.004 0.001

RMSE 0.2797 0.2801 0.0791 0.0789

Tables 3 and 4 present bias and RMSE results for the location-scale-shift model for the

normal and t3 distributions respectively. In both cases the FE and QRFE estimators are

downward biased and the IVFE and IVQRFE are approximately unbiased. Note that the

IVQRFE estimator presents a considerable smaller bias than QRFE and much more precision

when compared with IVFE in the t3 case.

4 Empirical application: Investment, Tobin’s q and

cash flow

As pointed out in Wansbeek (2001), the most frequent application of measurement error

techniques is in the estimation of investment models using Tobin’s q. This variable is the

ratio of the market valuation of a firm and the replacement value of its assets. Firms with

a high value of q are considered attractive as to the investment opportunities, whereas a

low value of q indicates the opposite. Since the operationalization of q is not clear-cut and

unambiguous, estimation poses a measurement error problem. Many empirical investment

studies found a very disappointing performance of the q theory of investment, although

this theory has a good performance when measurement error is purged as in Erickson and

Whited (2000). In parallel, investment theory is also interested in the effect of cash flow, as

the theory predicts that financially constrained firms are more likely to rely on internal funds

20



to finance investment (see for instance Alti, 2003; Almeida, Campello and Weisbach, 2004).

However, Erickson and Whited (2000) argue that cash flow has no effect on investment once

measurement error in Tobin’s q is taken into account.

There are distinct advantages in exploiting panel data on individual firms (see for in-

stance Blundell, Bond, Devereux and Schiantarelli, 1992). In the first place it allows testing

the theory, developed in the context of a ‘representative’ firm, in the context of many firms,

so reducing econometric problems introduced by aggregation across firms. Aggregation prob-

lems may be important here since the standard q model is specified in ratios and there are

clear nonlinearities. Secondly, the estimates are obtained by using both the time-series and

cross-sectional variation in the data. This contributes to their precision and also allows con-

sistent estimation in the presence of firm specific effects correlated both with investment and

q values. Although not reported, pooled and FE estimates differ in our estimation, which

determines that firm individual FE need to be controlled for in our model.

We argue that QR is useful to describe differences in investment ratios across firms in

the presence of unobserved heterogeneity. Unobserved characteristics (for the econometri-

cian) across firms may be due to several reasons. The ability of managers (insiders) or the

characteristics of investors (outsiders) can be named as the main unobservable component.

For instance, Bertrand and Schoar (2003) find that a significant extent of the heterogeneity

in investment, financial, and organizational practices of firms can be explained by managers

’style’. Walentin and Lorenzoni (2007) develop a model of financially constrained firms fi-

nanced partly by insiders, who control its assets, and partly by outside investors. When

their wealth is scarce, insiders earn a rate of return higher than the market rate of return,

that is, they receive a quasi-rent on invested capital. Therefore, differences in insiders and

outsiders characteristics across firms may contribute to differences in investment behavior.

Additional heterogeneity may be due to differences in firms’ capital structure. Chirinko

(1993) shows that when the q theory is expanded for the possibility that the value of the

firm depends on two or more capital inputs with differing adjustment cost technologies, the

econometric equation following from optimizing behavior includes q as well as additional

variables (e.g. inventory, research and development). In the upper conditional quantiles of

investment, investment may be driven by insiders knowledge of business opportunities or

a particular capital structure that requires more investment, and therefore, we expect that

investment would be more responsive to changes in q and cash flow, as the firms would use

all available resources to finance its projects. Moreover, high investment ratios reduce the
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marginal productivity of additional investment, and therefore, it would be difficult to get

additional resources. In other words, q and cash flow sensitivities will be higher in the upper

quantiles of investment than in the lower quantiles.

In contrast with the interpretation of QR in cross-section, by controlling for the firm-

specific characteristics, the quantiles should be interpreted in terms of the pairs firm-year. In

this case, low (high) quantiles refer to firms in periods with unusually low (high) investment

ratios when conditioning on other time-variant observable information. This determines that

the same firm can be at different quantiles in different periods, which is in line with the idea

that firm’s behavior will change depending on their investment needs.

The baseline model in the literature is

Iit/Kit = ηi + βq∗it + αCFit/Kit + uit, (26)

where I denotes investment, K capital stock, CF cash flow, q∗ well-measured Tobin’s q,

η is the firm-specific effects and u is the innovation term. Our objective is estimating the

following conditional quantile function:

QI/K(τ |η, CF/K, q) = ηi(τ) + β(τ)q∗it + α(τ)CFit/Kit. (27)

As mentioned earlier, if q is subject to measurement error, estimates of β(τ) will be

biased down (assuming β(·) > 0), but this problem can be ameliorated by using instrumental

variables.

We follow Almeida, Campello, and Weisbach (2004) approach by considering a sample

of manufacturing firms (SICs 2000 to 3999) over the 1980 to 2005 period with data available

from COMPUSTAT’s P/S/T, Full Coverage. Only firms with observations in every year are

used, in order to construct a balanced panel of firms for the 26 year period.13 Moreover,

following those authors we eliminate firms for which cash-holdings exceeded the value of

total assets and those displaying asset or sales growth exceeding 100%. Our final sample

consists of 4550 firm-years and 175 firms. Summary statistics of the variables employed

in our econometric specifications appear in Table 5. Because we only consider firms that

report information in each of the 26 years, the sample consists mainly of relatively large

firms. Although this reduces the sample heterogeneity in terms of credit constraints (e.g.

13The choice of a balanced panel is made to reduce the computational burden.
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presumably firms with market information for continuous 26 years are credit unconstrained),

it serves for our purposes of studying firm heterogeneity along different quantiles.

Table 5: Summary statistics

Variable Mean Std.Dev. 0.25 quantile Median 0.75 quantile
I/K 0.203 0.145 0.119 0.174 0.249
q 0.778 0.265 0.617 0.738 0.873

CF/K 0.414 0.444 0.211 0.345 0.534
∆I/K -0.003 0.168 -0.050 -0.000 0.045

∆q -0.004 0.136 -0.057 -0.004 0.049
∆CF/K -0.000 0.302 -0.066 0.006 0.074

Table 6 report the regression estimates. The first column reports least squares within

group (FE) estimators without (first set of rows) and with instruments (last set of rows,

IVFE). The second column reports least squares in first differences for the same set of rows

(FD and IVFD respectively). Following Biorn (2000) we use lags of the first differences

of the mismeasured variable as instruments for fixed effects, and lags in levels for the first

differences estimator. The last five columns report QR estimates with fixed effects (QRFE).

Our proposed estimator, IVQRFE, appears in the last rows where the same instruments used

in FE are employed. IV estimates are reported with one instrument (∆qt−1 for the model in

levels, qt−2 for FD) and with two instruments (∆qt−1,∆qt−2 for the model in levels, qt−2, qt−3

for FD) to assess the sensitivity of the estimates to the instrument selection.14

Table 6: Econometric results

τ = 0.10 τ = 0.25 τ = 0.50 τ = 0.75 τ = 0.90
Variable FE FD QRFE

q 0.087 0.100 0.043 0.050 0.078 0.089 0.099
(0.010) (0.018) (0.009) (0.009) (0.009) (0.013) (0.017)

CF/K 0.095 0.053 0.049 0.060 0.088 0.112 0.142
(0.006) (0.008) (0.007) (0.009) (0.009) (0.013) (0.014)
IVFE IVFD IVQRFE

q 0.282 0.224 0.092 0.144 0.275 0.211 0.426
(0.074) (0.081) (0.033) (0.045) (0.089) (0.104) (0.219)

CF/K 0.074 0.053 0.043 0.052 0.066 0.111 0.123
(0.010) (0.008) (0.008) (0.008) (0.012) (0.025) (0.032)

14Although not reported, we also use least squares projections as a different set of instruments in the QR
estimations. We consider the projection of qit on each respective instrument and the exogenous variables,
i.e. the fixed effects and cash flow. In every case, we obtain similar results.
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Inst. ∆qt−1 qt−2 ∆qt−1

q 0.203 0.181 0.086 0.116 0.245 0.223 0.322
(0.051) (0.080) (0.022) (0.033) (0.057) (0.082) (0.167)

CF/K 0.083 0.053 0.044 0.056 0.067 0.109 0.132
(0.008) (0.008) (0.029) (0.029) (0.046) (0.061) (0.078)

Inst. ∆qt−1,∆qt−2 qt−2, qt−3 ∆qt−1,∆qt−2

Notes: Standard errors in parenthesis. Sample of 4550 firm-years and 175 firms. FE: fixed effects least
squares; FD: first differences least squares; QRFE: quantile regression with fixed effects; IVFE: instrumental
variables fixed effects least squares; IVFD: instrumental variables fixed differences least squares; IVQRFE:
instrumental variables quantile regression fixed effects.

Both FE and FD estimators give similar results for the effect of Tobin’s q on investment,

implying that firms with higher q values would invest more. In particular, the q-sensitivity

of investment is close to 0.10. Cash flow appear as positive and statistically significant.

However, the FD estimate of cash flow is half of that in FE. When instrumental variables

are used, the effect of Tobin’s q raises considerably, which is in line with the presence of

measurement error in this variable. By contrasting the effect of the instrumental variables

across different estimates, it can be concluded that measurement error in Tobin’s q reduces

its effect by a half. Moreover, the point estimates of cash flow do not change, which can be

interpreted as the fact that measurement error in Tobin’s q has no spillover measurement

error to cash flow. In turn, this contradicts Erickson and Whited (2000) statement that cash

flow “does not matter” as it has a highly significant (mean) effect.

FE, FD and QRFE point estimates differ both in terms of Tobin’s q and cash flow effects.

QRFE estimates are monotonically increasing in τ , ranging from 0.045 for τ = 0.05 to 0.11

at τ = 0.95 (see figure 1). In terms of the Tobin’s q point estimates, QRFE is below FE

for τ < 0.75 and below FD almost everywhere. As a result, firms-years with unusually

high investment ratios will be very responsive to changes in their market valuation. In a

similar token, the effect of cash flow on investment is monotonically increasing in τ . This

determines that firms with conditionally high investment ratios have a higher propensity

to use additional internal resources to finance investment than those with low investment

ratios.

The use of IVQRFE differ from QRFE point estimates in a similar way as IVFE and

IVFD differ from FE and FD respectively (see figures 2 and 3). However, in this case, the

monotonicity is weakened in the q-sensitivity of investment. For low quantiles, QRFE and

IVQRFE provide similar point estimates. However, both estimators differ greatly as τ in-

creases. This suggests an interesting asymmetry in terms of the measurement error problem,
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as it may manifest itself mostly for firms-years in the upper quantiles of the investment

distribution. Point estimates for IVQRFE are particularly high for τ ≥ 0.90, reaching a

q-sensitivity of 0.4. Nevertheless, IVQRFE has bigger standard errors than both IVFE and

QRFE. In fact for τ > 0.25 the IVFE confidence interval is contained in the IVQRFE inter-

val, while QRFE interval is always contained. In addition, QRFE and IVQRFE give similar

estimates in terms of the cash flow sensitivity of investment, which reassures the fact that

the effect of this variable on investment is not due to measurement error in Tobin’s q and

that its effect is increasing in τ . Finally, it can be observed that the effect of expanding the

instruments’ set on the IVQRFE point estimates is in line with that in least squares model.

That is, using only ∆qt−1 produces a higher estimate for the q-sensitivity of investment than

when ∆qt−1 and ∆qt−2 are used.
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Figure 1: FE and QRFE
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Figure 2: IVFE and IVQRFE (Instrument ∆qt−1)
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Figure 3: IVFE and IVQRFE (Instruments ∆qt−1,∆qt−2)
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5 Conclusion

We propose the use of an instrumental variables strategy for estimation and inference in

quantile regression FE panel data models with measurement errors. Quantile regression

methods allow one to explore a range of conditional quantiles exposing a variety of forms

of conditional heterogeneity under less compelling distributional assumptions and provide a

framework for robust estimation and inference. Most instrumental variables estimators are

at least partly based on the intuition that first differencing yields a model free of FE. Despite

its appeal as a procedure that avoids the estimation of the individual effects, differencing

transformation to eliminate the FE is not available in the quantile regression framework,

and we are required to deal directly with the full problem. We derive an approximation

to the bias in the QRFE estimator in the presence of a mismeasured variable. We suggest

the use of an instrumental variables strategy for estimation based on Chernozhukov and

Hansen (2006, 2008) that reduces the bias in the resulting point estimates. We show that

the IV FE panel estimator is consistent and asymptotically normal, provided that both N

and T grow to infinity and Na/T → 0, for some a > 0. In addition, we suggest Wald and

Kolmogorov-Smirnov type of tests for general linear hypotheses, and derive the respective

limiting distributions.

Monte Carlo studies are conducted to evaluate the finite sample properties of the quan-

tile regression instrumental variables estimator for different types of distributions. It is

shown that the estimator proposed by Koenker (2004) is severely biased in the presence of

mismeasured variables, while the IVQRFE sharply reduces the bias in this environment. In

addition, IVQRFE has a better performance vis-a-vis the IV least squares based approach in

terms of the bias and root mean square error of the estimators for non-Gaussian heavy-tailed

distributions.

Finally, we apply the instrumental variables estimator to the most frequent application of

measurement error techniques, the Tobin’s q theory of investment in corporate finance. We

show that the IVQRFE estimator purges for measurement error in a similar way to standard

IV techniques in the least squares framework, but it shows interesting asymmetries in terms

of the measurement error correction across quantiles.
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Appendix 0: η’s with Pure Location Shift

The η’s are intend to capture some individual specific source of variability, or “unobserved

heterogeneity,” that was not adequately controlled for by other covariates. In most applica-

tions the time series dimension T is relatively small compared to the number of individuals

N . Therefore, it might be difficult to estimate a τ -dependent distributional individual effect.

In this case, we still can estimate an individual specific location-shift effect.

Consider the following model for conditional quantile functions

Qyit
(τ |x∗it, zit) = ηi + x∗′itβ(τ) + z′itα(τ), (28)

where xit = x∗it + εit.

In this formulation the η’s have a pure location shift effect on the conditional quantiles

of the response variable. The effects of the covariates (xit, zit) are allowed to depend upon

the quantile, τ , of interest but the η’s do not. From the availability of a valid instrument,

w, following Koenker (2004) and Chernozhukov and Hansen (2006, 2008) to estimate model

(28) for several quantiles simultaneously we propose the following estimator

β̂(τk) = argmin
β

‖γ̂(β, τk)‖, (29)

where

(η̂(β), α̂(β, τ), γ̂(β, τ)) = argmin
η,α,γ

K∑
k=1

N∑
i=1

T∑
t=1

υkρτ (yit − d′itη − x′itβ(τk)− z′itα(τk)− w′
itγ(τk)),

(30)

and υk are the weights that control the relative influence of the K quantiles {τ1, ..., τK} on

the estimation of the ηi parameter. The design matrix for the problem of estimating K > 1

is as follows:

[υ ⊗ (In ⊗ 1T )
...Υ⊗X

...Υ⊗ Z
...Υ⊗W ],

where In is a N × N identity matrix, 1T is a T × 1 vector of ones, Υ is a K ×K diagonal

matrix with the weights υ in the diagonal. Moreover, as Koenker (2004) observes, in typical

applications the above design matrix of the full problem is very sparse, i.e. has mostly

zero elements. Standard sparse matrix storage schemes only require space for the non-zero

elements and their indexing locations, and this considerably reduces the computational effort

and memory requirements in large problems.
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The optimization may become very large depending on the number of estimated quantiles.

Therefore, instead of using a grid search we use a numerical optimization function in R

(optim). As starting values, we use the parameters of “naive” estimation (28) without any

instruments. It is important to notice that all the results presented previously are still valid.

In addition, inference is essentially the same to that presented in section 2. However, the

elements of the variance-covariance matrix in Theorem 2 should now be as in the design

matrix presented above.

Appendix 1: Analogy between QRIV and 2SLS

Regular OLS Case

Consider the following model

y = X ′β + Z ′α+ u

where X is the endogenous variable, Z is the exogenous covariate and u is the error term.

Let W be a valid instrument for X. In the two stage least squares procedure

β̂ = (X ′PMZWX)−1X ′PMZWy, (31)

where PMZW = MZW (W ′MZW )−1W ′MZ . Note that if the same number of columns in X

is the same as in W , then W ′MZX is an invertible matrix and we can simplify the above

equation to

β̂ = (W ′MZX)−1W ′MZy. (32)

Grid Case

Now we consider the Grid case. Define a grid for β, {βj, j = 1, ..., J}, and for given βj ,

consider the following regression

y −X ′βj = Z ′α+ Ŵ ′γ + v,

where Ŵ is an instrument for X, defined as the projection of X on Z and W ,

Ŵ := X̂ = Z ′λ̂+W ′δ̂.

The estimator γ̂(βj) is

γ̂(βj) = (Ŵ ′MZŴ )−1Ŵ ′MZ(y −Xβj).
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Now define the estimator of β̂ as

β̂ = arg min
β
‖γ̂(β)‖A,

where ‖γ̂(β)‖A = γ̂(β)′Aγ̂(β), γ̂(β) is the vector containing the estimates γ̂(βj), and A is

the identity matrix. Noticing that MZŴ = MZW (W ′MZW )−1W ′MZX, and from the first

order condition

β̂ = (X ′MZW (W ′MZW )−1W ′MZX)−1X ′MZW (W ′MZW )−1W ′MZy.

Using the definition of PMZW we have

β̂ = (X ′PMZWX)−1X ′PMZWy, (33)

which is the same estimator as in equation (31). When the model is exactly identified

β̂ = (W ′MZX)−1W ′MZy, (34)

which is the same estimator as in equation (32).

Appendix 2: Proof of the Theorems

The next three Lemmas help in the derivation of the results. The first Lemma shows the

identification of the parameters. The second guarantees a law of large numbers. The third

Lemma states an Argmax Process argument which is helpful in the derivation of consistency.

Later we show consistency of θ̂(τ).

Lemma 2 Given assumptions A1-A6, (η(τ), β(τ), α(τ)) uniquely solves the equations

E[ψ(Y −Dη −Xβ − Zα)X̌(τ)] = 0 over E ×B ×A .

Proof. We want to show that (η(τ), β(τ), α(τ)) uniquely solves the limit problem for each τ ,

that is η(β∗(τ), τ) = η(τ), β∗(τ) = β(τ), and α(β∗(τ), τ) = α(τ). Let ψ(u) := (τ−I(u < 0)).

Define:

Π(η, β, α, τ) := E[ψ(Y −D′η(τ)−X ′β(τ)− Z ′α(τ))X̌(τ)]

H(η, β, α, τ) :=
∂

∂(η, β, α)
E[ψ(Y −D′η(τ)−X ′β(τ)− Z ′α(τ))X̌(τ)]

By assumption A2 H(η, β, α, τ) is continuous in (η, β, α) and full rank, uniformly over

E × B × A . Moreover, by A2, the image of the set E × B × A under the mapping
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(η, β, α) → Π(η, β, α, τ) is assumed the be simply connected. As in Chernozhukov and

Hansen (2005), the application of Hadamard’s global univalence theorem for general met-

ric spaces, e.g. Theorem 1.8 in Ambrosetti and Prodi (1995), yields that the mapping

Π(·, ·, τ) is a homeomorphism (one-to-one) between (E × B × A ) and Π(E ,B,A , τ), the

image of E ×B×A under Π(·, ·, τ). Since (η, β, α) = (η(τ), β(τ), α(τ)) solves the equation

Π(η, β, α, τ) = 0; and thus it is the only solution in (E ×B×A ). This argument applies for

every τ ∈ T . So, we have that the true parameters (η, β, α) = (η(τ), β(τ), α(τ)) uniquely

solve the equation

E[ψ(Y −D′η −X ′β − Z ′α−W ′0)X̌(τ)] = 0. (35)

Define φ := (η, α, γ). By assumption and in view of the global convexity of Q(β, φ, τ) in φ

for each τ and β, φ(β, τ) is defined by the subgradient condition

E[ψ(Y −D′η(β, τ)−X ′β − Z ′α(β, τ)−W ′γ(β, τ))X̌(τ)]v ≥ 0 (36)

for all v : φ(β, τ) + v ∈ E ×A × G .

In fact, if φ(β, τ) is in the interior of E ×A × G , it uniquely solves the first order condition

version of (36)

E[ψ(Y −D′η(β, τ)−X ′β − Z ′α(β, τ)−W ′γ(β, τ))X̌(τ)] = 0. (37)

We need to find β∗(τ) by minimizing ‖γ(β, τ)‖ over β subject to (36) holding. By (35)

β∗(τ) = β(τ) makes ‖γ(β∗, τ)‖ = 0 and satisfies (37) and hence (36) at the same time.

According to the preceding argument, it is the only such solution. Thus, also by (37)

(η(β∗(τ), τ) = η(τ), α(β∗(τ), τ) = α(τ)).

Lemma 3

Let ξit(τ) = d′itη(τ)+x
′
itβ(τ)+z′itα(τ)+w′

itγ(τ) and uit(τ) = yit−ξit(τ). Let ϑ := (η, β, α, γ)

be a parameter vector in V := E ×B ×A × G . Let

δ =


δη
δβ
δα
δγ

 =


√
T (η − η(τ))√
NT (β − β(τ))√
NT (α− α(τ))√
NT (γ − γ(τ)),

 .

Under conditions A1-A6,

sup
ϑ∈V

(NT )−1
∣∣∣∑

i

∑
t

[
ρτ (uit(τ)−

d′itδη√
T
− x′itδβ√

NT
− z′itδα√

NT
− w′

itδγ√
NT

)− ρτ (uit(τ)) (38)

−E[ρτ (uit(τ)−
d′itδη√
T
− x′itδβ√

NT
− z′itδα√

NT
− w′

itδγ√
NT

)− ρτ (uit(τ))]
]∣∣∣ = op(1).
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Proof. With some abuse of notation let x̃it = (xit, zit, wit), β̃ = (β, α, γ). Let ‖ · ‖ denote

the Euclidean norm.

It is sufficient to show that for any ε > 0

P
(
sup
ϑ∈V

(NT )−1
∣∣∣∑

i

∑
t

[
ρτ (uit(τ)− x̃′it

δβ̃√
NT

− d′it
δη√
T

)− ρτ (uit(τ))

−E[ρ(uit − x̃′it
δβ̃√
NT

− d′it
δη√
T

)− ρ(uit)]
]∣∣∣ > ε

)
→ 0.

(39)

Partition the parameter space Γ = V into KN disjoint parts Γ1,Γ2, . . . ,ΓKN
, such that

the diameter of each part is less than qNT = εNa

12C1T
. Let pN be the dimension of ϑ, pN = O(N),

and then KN ≤ (2
√
pN/qNT + 1)pN (c.f. Wei and He (2006)).

Let ζi ∈ Γi, i = 1, . . . , KN be fixed points. Then the left-hand side of (39) can be bounded

by P1 + P2, where

P1 = P
(

max
1≤q≤KN

sup
ϑ∈Γq

(NT )−1
∣∣∣∑

i

∑
t

[
ρτ (uit(τ)− x̃′it

δβ̃√
NT

− d′it
δη√
T

)− ρτ (uit(τ))

−ρ(uit − x̃it

ζqβ̃√
NT

− d′it
ζqη√
T

) + ρτ (uit(τ))

−E[ρτ (uit(τ)− x̃′it
δβ̃√
NT

− d′it
δη√
T

)− ρτ (uit(τ))]

+E[ρτ (uit(τ)− x̃′it
ζqβ̃√
NT

− d′it
ζqη√
T

)− ρτ (uit(τ))]
]∣∣∣ > ε/2

)
and

P2 = P
(

max
1≤q≤KN

(NT )−1
∣∣∣∑

i

∑
t

[
ρτ (uit(τ)− x̃′it

ζqβ̃√
NT

− d′it
ζqη√
T

) + ρτ (uit(τ))

−E[ρτ (uit(τ)− x̃′it
ζqβ̃√
NT

− d′it
ζqη√
T

)− ρτ (uit(τ))]
]∣∣∣ > ε/2

)
.

Therefore, it suffices to show that bot P1 and P2 are op(1). Noting that |ρτ (x + y) −
ρτ (x)| ≤ 2|y|, we have
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max
1≤q≤KN

sup
ϑ∈Γq

(NT )−1
∣∣∣∑

i

∑
t

[
ρτ (uit(τ)− x̃′it

δβ̃√
NT

− d′it
δη√
T

)− ρτ (uit(τ))

−ρτ (uit(τ)− x̃′it
ζqβ̃√
NT

− d′it
qζqη√
T

) + ρτ (uit(τ))

−E[ρτ (uit(τ)− x̃′it
δβ̃√
NT

− d′it
δη√
T

)− ρτ (uit(τ))]

+E[ρ(uit − x̃′it
ζqβ̃√
NT

− d′it
ζqη√
T

)− ρ(uit)]
]∣∣∣

≤ max
1≤q≤KN

sup
ϑ∈Γq

(NT )−1
[
2
∣∣∣∑

i

∑
t

[
x̃it√
NT

(δβ̃ − ζqβ̃)− d′it√
T

(δη − ζqη)]
∣∣∣

+2
∣∣∣∑

i

∑
t

E[
x̃it√
NT

(δβ̃ − ζqβ̃)− d′it√
T

(δη − ζqη)]
∣∣∣]

≤ max
1≤q≤KN

sup
ϑ∈Γq

(NT )−1
[
2
∑

i

∑
t

[
1√
NT

‖x̃′it‖‖(δβ̃ − ζqβ̃)‖ − 1√
T
‖d′it‖‖(δη − ζqη)‖]

+2
∑

i

∑
t

E[
1√
NT

‖x̃′it‖‖(δβ̃ − ζqβ̃)‖ − 1√
T
‖d′it‖‖(δη − ζqη)‖]

≤
[
4qNT ]

]
≤ ε

2
,

where the last equality follows by assumptions A5-A6, and implies P1 = op(1). Thus, it

remains to show that P2 = op(1).

If we write mitq = [ρτ (uit(τ)− x̃′it
ζqβ̃√
NT

− d′it
ζqη√

T
)− ρτ (uit(τ))] en

P2 = P
(

max
1≤q≤KN

(NT )−1
∣∣∣∑

i

∑
t

[mitq − Emitq]
∣∣∣ > ε/2

)
≤

KN∑
q=1

P
(
(NT )−1

∣∣∣∑
i

[∑
t

mitq − E
∑

t

mitq

]∣∣∣ > ε/2
)

For fixed i, ∑
t

mitq ≤
∑

t

sup
ζ∈Γq

∣∣∣ρτ (uit(τ)− x̃′it
ζβ̃√
NT

− d′it
ζη√
T

)− ρτ (uit(τ))
∣∣∣

≤
∑

t

sup
ζ∈Γq

2
∣∣∣x̃′it ζβ̃√

NT
+ d′it

ζη√
T

∣∣∣
≤
∑

t

sup
ζ∈Γq

2
[ 1√

NT
‖x̃′it‖‖ζβ̃‖+

1√
T
‖dit‖‖ζη‖

]
≤ TC2,
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and,

V ar(
T∑

t=1

mitq) ≤ T

T∑
t=1

V ar(mitq).

Note that,

|x̃it

ζqβ̃√
NT

+ d′it
ζqη√
T
|2 ≤ C3‖ζqβ̃‖+ C4‖ζqη‖

Using the fact that ‖ζq‖ < C for any q and the independence across individuals in A1, we

have ∑
i

V ar
∑

t

mitq ≤ T
∑

i

∑
t

Em2
itq ≤ NT 2C5 + o(1)

By the assumption of independence, we can bound P2 using Bernstein’s inequality:

P2 ≤ 2KNexp
(
−

(
εNT

2

)2

P
i V ar

P
t mit+

TC2
3

(
εNT

2

))

≤ 2(2
√
pN/qNT + 1)pN exp

(
−

(
εNT

2

)2

NT 2C5+o(1)+
TC2

3

(
εNT

2

))

= 2exp
(
pN ln(2

√
pN/qNT + 1)−

(
εNT

2

)2

NT 2C5+o(1)+
TC2

3

(
εNT

2

))

= 2exp
(
O(N) ln(24O(N1/2−aT )C1/ε+ 1)−

(
εNT

2

)2

NT 2C5+o(1)+
TC2

3

(
εNT

2

))
Hence, P2 → 0 as N, T →∞ and Na/T → 0 and the lemma follows.

Lemma 4 (Corollary 3.2.3 - van der Vaart and Wellner (1996))

Let Mn be stochastic processes indexed by a metric space Θ, and let M : Θ → < be a

deterministic function. Suppose that ‖Mn −M‖Θ
p→ 0 and that there exists a point θ0 such

that

M(θ0) > sup
θ/∈D

M(θ)

for every open setD that contains θ0. Then any sequence θ̂n, such thatQn(θ̂n) > supθ Qn(θ)−
op(1), satisfies θ̂n

p→ θ0.
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Theorem 1 (Consistency):

Under conditions A1-A6

ϕ̂(τ) = ϕ(τ) + op(1).

Proof.

Define

P = (η, β, α, γ) → ρτ (Y −D′η −X ′β − Z ′α−W ′γ)

and note that P is continuous. Therefore, uniform convergence is given by Lemma 3, such

that

sup
ϑ∈V

|Mn(ϑ)−M(ϑ)| = op(1)

where Mn ≡ 1
NT

∑N
i=1

∑T
t=1 ρτ (uit(τ)− x̃′it

δβ̃√
NT

− d′it
δη√
T
)− ρτ (uit(τ)), and M = EMn.

Therefore, denoting φ := (η′, α′, γ′)′, by Lemma 4 we have that ‖φ̂(β, τ)− φ(β, τ)‖ p→ 0

(*) which implies that ‖γ̂(β, τ)‖ − ‖γ(β, τ)‖ p→ 0, which by a simple Argmax process over

a compact set argument (assumption A4) implies that ‖β̂(τ) − β(τ)‖ p→ 0, which by (*)

implies that ‖α̂(τ) − α(τ)‖ p→ 0 and ‖γ̂(β̂, τ) − 0‖ p→ 0. Therefore, ‖θ̂(τ) − θ(τ)‖ p→ 0 and

the theorem follows.

Now we prove Theorem 2, i.e., under conditions A1-A6 the proposed estimator is asymp-

totically normal.

Proof.

Consider the following model

yit = d′itη + x′itβ + z′itα+ uit. (40)

The objective function is

min
η,β,α,γ

N∑
i=1

T∑
t=1

ρτ (yit − d′itη − x′itβ − z′itα− w′
itγ). (41)

Consider a collection of closed balls Bn(β(τ)), centered at β(τ), with radius πn, and

πn → 0 slowly enough. Note that, for any βn(τ)
p→ β(τ) we can write the objective function

as
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VNT (δN) =
N∑

i=1

T∑
t=1

ρτ (yit − ξit(τ)− ditδη/
√
T − x′itδβ/

√
NT − z′itδα/

√
NT − w′

itδγ/
√
NT )−

ρτ (yit − ξit(τ))

(42)

where ξit(τ) = d′itη(τ) + x′itβ(τ) + z′itα(τ) + w′
itγ(τ), and in the minimum

δ̂n =


δ̂η(βn(τ))

δ̂β(βn(τ))

δ̂α(βn(τ))

δ̂γ(βn(τ))

 =


√
T (η̂(βn(τ), τ)− η(τ))√
NT (βn(τ)− β(τ))√

NT (α̂(βn(τ), τ)− α(τ))√
NT (γ̂(βn(τ), τ)− 0)

 .

Note that, for fixed (δβ, δα, δγ), we can consider the behavior of δη. For each i,

gi(δηi
, δβ, δα, δγ) = − 1√

T

T∑
t=1

ψτ (yit − ξit(τ)−
δηi√
T
− x′it

δβ√
NT

− z′it
δα√
NT

− w′
it

δγ√
NT

).

For, fixed δα, δγ, supτ∈T ‖βn(τ)− β(τ)‖ p→ 0, and K > 0

sup
|δηi |<K

‖gi(δηi
, δβ, δα, δγ)− gi(0, 0, 0, 0)− E[gi(δηi

, δβ, δα, δγ)− gi(0, 0, 0, 0)]‖ = op(1).

Expanding we have

E[gi(δηi
, δβ, δα, δγ)− gi(0, 0, 0, 0)]

= E
(
− 1√

T

T∑
t=1

ψτ (yit − ξit(τ)−
δηi√
T
− x′it

δβ√
NT

− z′it
δα√
NT

− w′
it

δγ√
NT

) +
1√
T

T∑
t=1

ψτ (yit − ξit(τ))
)

= − 1√
T

T∑
t=1

[
τ − F (ξit(τ) +

δηi√
T

+ x′it
δβ√
NT

+ z′it
δα√
NT

+ w′
it

δγ√
NT

)

]

=
1√
T

T∑
t=1

[
F (ξit(τ) +

δηi√
T

+ x′it
δβ√
NT

+ z′it
δα√
NT

+ w′
it

δγ√
NT

)− τ

]

=
1√
T

[ T∑
t=1

fit(ξit(τ))

[
δηi√
T

+ x′it
δβ√
NT

+ zit
δα√
NT

w′
it +

δγ√
NT

]
+Rit

]
=

1√
T

T∑
t=1

fit(ξit(τ))

[
δηi√
T

+ x′it
δβ√
NT

+ z′it
δα√
NT

+ w′
it

δγ√
NT

]
+Rit.

Optimality of δ̂ηi
implies that gi(δηi

, δβ, δα, δγ) = o(T−1), and thus

δ̂ηi
= −f−1

i

[
1√
T

T∑
t=1

fit(ξit(τ))

[
x′it

δβ√
NT

+ zit
δα√
NT

+ wit
δγ√
NT

]
− 1√

T

T∑
t=1

ψτ (yit − ξit(τ))

]
+Rit
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where f i = T−1
∑

t fit and Rit is the remainder term for each i.

Substituting δ̂η’s, we denote

G(δβ, δα, δγ) = − 1√
NT

N∑
i=1

T∑
t=1

X̃itψτ (yit− ξit(τ)− d′it
δ̂η√
T
−x′it

δβ√
NT

− z′it
δα√
NT

−wit
δγ√
NT

)

where X̃it = (w′
it, z

′
it)

′, and δβ(βn) =
√
NT (βn(τ)−β(τ)), δα(βn) =

√
NT (α̂(βn, τ)−α), and

δγ(βn) =
√
NT (γ̂(βn, τ)− 0).

According to Lemma B2 in Chernozhukov and Hansen (2006)

sup
‖(δβ ,δα,δγ)‖<K

‖Gi(δβ, δα, δγ)−Gi(0, 0, 0)− E[Gi(δβ, δα, δγ)−Gi(0, 0, 0)]‖ = op(1),

and at the minimizer, G(δ̂β, δ̂α, δ̂γ) = o((NT )−1).

Expanding, as above,

E[G(δβ, δα, δγ)−G(0, 0, 0)]

=
1√
NT

∑
i

∑
t

X̃itfit

(
x′it

δβ√
NT

+ z′it
δα√
NT

+ w′
it

δγ√
NT

+
δ̂η√
T

)
+ op(1)

=
1√
NT

∑
i

∑
t

X̃itfit

[
x′it

δβ√
NT

+ z′it
δα√
NT

+ w′
it

δγ√
NT

− 1√
T
f
−1

i

[
T−1/2

∑
t

fit(ξit(τ))[
x′it

δβ√
NT

+ z′it
δα√
NT

+ w′
it

δγ√
NT

]
− T−1/2

T∑
t=1

ψτ (yit − ξit(τ))
]
+Rit

]
+ op(1)

=
1

NT

∑
i

∑
t

X̃itfit

(
xit − f

−1

i T−1
∑

t

fitxit

)′

δβ +
1

NT

∑
i

∑
t

X̃itfit

(
zit − f

−1

i T−1
∑

t

fitzit

)′

δα

+
1

NT

∑
i

∑
t

X̃itfit

(
wit − f

−1

i T−1
∑

t

fitwit

)′

δγ −
1√
NT

∑
i

∑
t

X̃itfitf
−1

i T−1/2
∑

t

ψ(yit − ξit)

− 1√
NT

∑
i

∑
t

X̃itfitRit/
√
T + op(1),

where the order of the final term is controlled by the bound on the derivative of the con-

ditional density. It is important to note that G(δ̂β, δ̂α, δ̂γ) = 0 and then E[G(δβ, δα, δγ) −
G(0, 0, 0)] = −G(0, 0, 0). Let δαγ = (δα, δγ) and let Ψτ be a NT -vector (ψτ (yit − ξit(τ))),

E(X̃ ′MDΦ(τ)MDX)δβ + E(X̃ ′MDΦ(τ)MDX̃)δαγ − X̃ ′PDΨτ = −X̃ ′Ψτ +RnT

Jαγδαγ = [−(X̃ ′MDΨτ −RnT )− Jβδβ]

δ̂αγ = J−1
αγ [−(X̃ ′MDΨτ −RnT )− Jβδβ]
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where

MD = I − PD

PD = D(D′Φ(τ)D)−1DΦ(τ)

Jαγ = E(X̃ ′MDΦ(τ))MDX̃)

Jβ = E(X̃ ′MDΦ(τ)MDX)

and

RnT =
1√
NT

N∑
i=1

T∑
t=1

X̃itfitRit/
√
T + op(1).

Let [J̄ ′α, J̄
′
γ]
′ be the conformable partition of J−1

αγ , then

δ̂γ = J̄γ[−(X̃ ′MDΨτ −RnT )− Jβδβ] (43)

δ̂α = J̄α[−(X̃ ′MDΨτ −RnT )− Jβδβ]. (44)

The remainder term RnT has a dominant component that comes from the Bahadur rep-

resentation of the η’s. By A1 and A5, we have for a generic constant K

RnT = T−1/4 K√
N

N∑
i=1

Ri0 + op(1).

The analysis of Knight (2001) shows that the summands converge in distribution, that is as

T →∞ the remainder term T 1/4Rit
d→ Ri0, where Ri0 are functionals of Brownian motions

with finite second moment. Therefore, independence of yit, and condition A6 ensure that

the contribution of the remainder is negligible. Thus (43) and (34) simplify to

δ̂γ = J̄γ[−(X̃ ′MDΨ(τ))− Jβδβ]

δ̂β = Jβ[−(X̃ ′MDΨ(τ))− Jβδβ].

By consistency, wp→ 1

δ̂β = min
δβ∈Bn(β(τ))

δ̂γ(δβ)
′
Aδ̂γ(δβ),

assuming that δ̂
′
γAδ̂γ is continuous in δβ, and from the first order condition

δ̂β = −[J ′βJ̄γAJ̄γJβ]−1[J ′βJ̄γAJ̄γ(X̃
′MDΨ)].
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Substituting δ̂β back in δα we obtain

δ̂α = −J̄α[(X̃ ′MDΨ)− Jβ[J ′βJ̄γAJ̄γJβ]−1J ′βJ̄γAJ̄γ(X̃
′MDΨ)]

= −J̄α[(I − Jβ[J ′βJ̄γAJ̄γJβ]−1J ′βJ̄γAJ̄γ)(X̃
′MDΨ)].

It is also important to analyze δ̂γ. Thus, replacing δ̂β in δγ

δ̂γ = −J̄γ[(X̃
′MDΨ)− Jβ[J ′βJ̄γAJ̄γJβ]−1J ′βJ̄γAJ̄γ(X̃

′MDΨ)]

= −J̄γ[(I − Jβ[J ′βJ̄γAJ̄γJβ]−1J ′βJ̄γAJ̄γ)(X̃
′MDΨ)].

By condition A3, using the fact that J̄γJβ is invertible

δ̂γ = 0 +Op(1) + op(1).

Noticing that under assumptions A1-A6, Ψ
d→ N(0, ω), where ω = τ(1− τ). Neglecting

the remainder term, and using the definition of δβ and δα we have

√
NT (θ̂ − θ)

d→ N(0,Ω), Ω = (K ′, L′)′S(K ′, L′)

where S = τ(1− τ)E[V V ′], V = X̃ ′MD, K = (J ′βHJβ)−1JβH, H = J̄ ′γA[β(τ)]J̄γ, L = J̄αM ,

M = I − JβK.
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