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Intrinsic Fluorescence-Based Optical Fiber Sensor for
Cocaine Using a Molecularly Imprinted Polymer as

the Recognition Element
T. Hien Nguyen, Sheila A. Hardwick, Tong Sun, and Kenneth T. V. Grattan

Abstract—A fiber-optic chemical sensor for the detection of
cocaine has been developed, based on a molecularly imprinted
polymer (MIP) containing a fluorescein moiety as the signalling
group. The fluorescent MIP was formed and covalently attached to
the distal end of an optical fiber. The sensor exhibited an increase
in fluorescence intensity in response to cocaine in the concentra-
tion range of 0 – 500 � in aqueous acetonitrile mixtures with
good reproducibility over one month. Selectivity for cocaine over
others drugs has also been demonstrated.

Index Terms—Cocaine sensor, fluorescein, fluorescent sensor,
molecular imprinting, optical fiber sensor.

I. INTRODUCTION

C OCAINE is one of the most commonly abused drugs
and this has led to extensive investigative research ef-

forts for its detection, due to the adverse health effects and
related dangers associated with its illicit use [1], [2]. There are
several major analytical methods available for the analysis of
cocaine and its metabolites including gas chromatography mass
spectrometry (GC/MS) [3], [4], high performance liquid chro-
matography (HPLC) [5], [6], thin layer chromatography [7],
voltammetry [8], radioimmunoassay [9] and enzyme-linked im-
munosorbent assay (ELISA) [10]. These traditional methods,
despite having achieved very good results, are generally
expensive, time consuming and cumbersome for real-time mea-
surements outside the laboratory, some of which also require
sample clean-up and derivatization of cocaine prior to analysis.
Biosensors, which rely on the specificities of the binding sites
of receptors, enzymes, antibodies or DNA as biological sensing
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elements, have been considered as alternative analytical devices
due to their specificity, portability, speed and low cost [11].
Biosensors for cocaine based on monoclonal antibodies [12],
[13] and especially aptamers [14]–[18] have been developed
in recent years. However, these sensors suffer from certain
limitations in light of their potential practical applications in
the field due to the fragile and unstable nature of the biological
recognition elements. Therefore, the development of stable,
compact and portable sensing systems which are capable of
real time detection of the target drug remains a compelling goal
which is addressed in this work.

Molecular imprinting has been extensively demonstrated
over the last three decades as a versatile technique for the
preparation of synthetic molecular receptors capable of the
selective recognition of given target molecules. The approach
is based on the self-assembly of a template molecule with
polymerizable monomers possessing functional group(s) inter-
acting with the template [19], [20]. After polymerization, the
template is removed, leaving vacant recognition sites which are
complementary in shape and functional groups to the original
template. Molecularly imprinted polymers (MIPs) provide
an exciting alternative to biological receptors as recognition
elements in chemical sensors [21]. In this research, a robust
fiber optic chemical sensor for cocaine detection has been de-
veloped, based on the combination of molecular imprinting (as
a method for generating chemically selective binding sites) and
fluorescence modulation (as a means of signaling the presence
and concentration of the analyte). The attraction of this ap-
proach lies in the advantages offered both by the optical fiber in
terms of small size, immunity to electromagnetic interference,
remote sensing capability, resistance to chemicals and biocom-
patibility [22], [23] and by the synthetic polymer receptor in
terms of robustness, thermal and chemical stabilities, low cost
and long shelf-life [20]. The molecularly imprinted polymer
(MIP) receptor which is selective for cocaine was covalently
bonded to the distal end of the optical fiber, which facilitated
rapid and highly sensitive detection. Acrylamidofluorescein
(AAF) was used as fluorescent functional monomer interacting
with the template cocaine. The sensing mechanism depends
on changes in the frontier orbitals of fluorescein, which occur
when it is deprotonated by a base. The deprotonated form is
fluorescent and the protonated form is much less so. In the
presence of cocaine, the carboxylate group of AAF is deproto-
nated. Cocaine acts as a base in the ion pair complex, accepting
a proton from AAF and leading to an increase in the observed
fluorescence intensity (Fig. 9). The imprinting and sensing



Fig. 1. Preparation of a cocaine sensing MIP on the surface of the optical fiber which exhibits fluorescence changes upon template binding.

strategy is illustrated in Fig. 1. A complex is formed between
the functional group -COOH on the fluorophore and the amine
group on the template/analyte. The complex is co-polymerized
with a cross-linking monomer and co-monomer on the surface
of the fiber, which has been functionalized with polymer-
izable groups. Then the template/analyte is extracted from
the polymer. The resulting MIP formed on the fiber contains
recognition sites incorporating the fluorophore and exhibits an
increase in fluorescence intensity selectively in the presence of
the template/analyte. As a result, the selectivity of the sensor
has been designed to arise from the functional group of the
fluorophore and from the shape of the cavity.

II. EXPERIMENTAL APPROACH

A. Sensor Probe Fabrication

All chemicals were of analytical grade, purchased from
Sigma-Aldrich and were used without further purification,
except for ethylene glycol dimethacrylate (EDMA) which was
distilled under reduced pressure prior to use. AAF was prepared
from fluoresceinamine according to the literature procedure
[24] as shown in Fig. 10. All solvents used were of HPLC grade
from Fisher Scientific. Dry ethanol and dry acetonitrile for
probe fabrication were taken from sealed bottles under argon.
All aqueous solutions were prepared using distilled water.
Absorption and fluorescence measurements of aqueous solu-
tions containing fluorophore were carried out on a PerkinElmer
Lambda 35 spectrophotometer and a Horiba Jobin Yvon Flu-
oromax-4 spetrofluorometer system with FluorEssence™ as
driving software, respectively.

The fabrication of the cocaine sensing probe requires a
multi-step process which is described below. The distal end
of a 1000 m diameter UV multimode fiber purchased from
Thorlabs was polished in succession with 5 m, 3 m and
1 m polishing pads (Thorlabs) and washed with acetone. The
distal end was then immersed in 10% KOH in isopropanol for
30 min with subsequent rinsing in copious amounts of distilled
water and dried with compressed nitrogen. After that, it was
treated in a 30:70 (v/v) mixture of (30%) and
(conc.) (Piranha solution) for 30 min, rinsed in distilled water
for 15 min and dried in an oven at 100 for 30 min. This
procedure leaves the surface with exposed hydroxyl groups
which facilitate bonding of a silane agent. The fiber surface
was then modified by silanizing for 2 h in a 10% solution of
3-(trimethoxysilyl) propyl methacrylate in dry ethanol. The
fiber was washed with ethanol repeatedly in an ultrasonic bath.
Subsequently, it was dried in an oven at 70 for 2 h. This

Fig. 2. Cocaine probe prepared in this work showing the active distal end of the
sensor a) under normal conditions and b) when 375 nm ultraviolet (UV) light
was launched to the end of the fiber.

procedure functionalizes the fiber surface with polymerizable
acrylate groups.

The pre-polymerization mixture was prepared by dissolving
cocaine (6.1 mg, 0.02 mmol), AAF (4.0 mg, 0.01 mmol), ethy-
lene glycol dimethacrylate cross linker (150.9 , 0.8 mmol),
acrylamide co-monomer (10.0 mg, 0.14 mmol) and 2,2’-azobi-
sisobutyronitrile initiator (1.1 mg) in 222 dry MeCN. The
solution was purged thoroughly with argon for 10 min. A small
volume of the solution was placed into a capillary tube via sy-
ringe and the distal end of the fiber was inserted. They were
sealed quickly with PTFE tape and polymerized in an oven at
70 for 16 h. This procedure forms a MIP layer on both the
cylindrical surface and the distal end surface of the fiber. How-
ever, only the MIP on the distal end surface is responsible for
the fluorescence signal which is produced by direct excitation
from the light source. The MIP on the side plays no role in the
sensing process since evanescent wave excitation is eliminated
by keeping the cladding of the fiber intact. The probe prepared
by this procedure is shown in Fig. 2 where it can be seen that
the distal end of the probe shows a distinctive coloration due
to the presence of the fluorophore. The sensor tip was washed
repeatedly with MeOH-AcOH (8:2, v/v) in an ultrasonic bath,
followed by the same procedure with MeOH alone to remove
the template and all unreacted materials and the excess amount
of polymer formed which was not directly bound to the fiber.
The probe was then stored in a cool and dark place until use.
A control probe (non-imprinted polymer, NIP) was prepared at
the same time under identical conditions, using the same recipe
but without the addition of the template cocaine.

B. Experimental setup Used for Measurement

The setup used for the measurements undertaken to calibrate
the probe is as presented in Fig. 3, where light from a LED, emit-
ting at a centre wavelength of 375 nm is coupled through a mul-



Fig. 3. Experimental setup used in the evaluation of the performance of the probe designed.

Fig. 4. Dynamic response of the sensor probe at 515 nm (excitation at 375 nm)
showing the 15 min response time (to 95%).

timode UV/Visible fiber with hard polymer cladding, 1000 m
silica core and numerical aperture (NA) of 0.37, using collima-
tion and focusing lenses, into a 2 1 Y fiber coupler, made using
two multimode UV/Visible fibers with hard polymer cladding,
600 m silica core and 0.37 NA, which is connected to the
sensor probe with the active sensing region being located at the
distal end of the fiber. Following interaction of cocaine with the
active region, a portion of the total light emitted from the sensing
layer is collected and guided through the other end of the fiber
coupler to an Ocean Optics USB2000 spectrometer, the output
from which is then displayed on a computer screen.

III. RESULTS AND DISCUSSION

A. Response Time of the Sensor

Before performing measurements to calibrate the sensor, its
response time was investigated. Fig. 4 shows the dynamic re-
sponse of the sensor obtained from the spectrofluorometer to
a step change from no cocaine present (0 ) to 25 and
to 250 cocaine in /MeCN 9:1. Although around 70%
of the total signal change occurred within five minutes, it took
around fifteen minutes for the sensor to attain equilibrium (to
95%) in 250 cocaine and twenty minutes in 25 cocaine.
The higher concentration of cocaine appeared to give a slightly
quicker response time. However, the difference was not signifi-
cant. This response time is considered to be rapid compared to

other MIP sensor systems where a few hours incubation is re-
quired for the interaction between the template/analyte and the
binding sites in the MIP to reach equilibrium [25], [26]. This im-
portant result is most probably due to both the intrinsic sensor
design and the thickness of the polymer film since the thicker
the polymer layer the longer it takes for the target compound to
penetrate into the polymer network to interact with the binding
sites.

B. Response of the Sensor to Cocaine

The calibration measurements were performed by immersing
the probe in different cocaine solutions at various concentra-
tions. The signals were allowed to reach constant values and
then recorded. After each measurement, the probe was washed
with MeOH-AcOH (8:2, v/v) in an ultrasonic bath, followed
by the same procedure with MeOH alone to remove bound
cocaine. Initially, experiments were carried out in MeCN/
9:1. MeCN was used because the MIP was prepared in MeCN,
so its recognition properties would be expected to be best in
MeCN (since this should result in no loss of selectivity due to
MIP swelling) [27]. was added at 10% (v/v) in order to
reduce non-specific binding. The sensor exhibited an increase
in fluorescence intensity with increasing cocaine concentration
in the range from 0 – 250 (Fig. 5(a)). At higher concentra-
tions of cocaine, no further change of intensity was observed
due to the saturation of all available binding sites. It was also
interesting to see if the sensor could work in aqueous media
where biological recognition mainly occurs. Measurements
were carried out in a manner similar to those of Fig. 5(a) but the
solvent system was replaced by /MeCN 9:1 (MeCN was
added to solubilize the analyte). The sensor showed a greater
increase in fluorescence in the aqueous than in the organic so-
lution (Fig. 5(b)), which is attributed to the difference between
the photophysical properties of the fluorophore in aqueous and
in organic media. The dynamic response range of the sensor
in aqueous solution is also wider, from 0 up to 500 . This
arises because non-covalent interactions between cocaine and
the functional groups in the MIP were weaker in and
thus the available binding sites were not fully occupied until
higher concentrations of cocaine were used. The lower limit
of detection of the system may vary since it depends on the
type and sensitivity of detector used. With the Ocean Optics



Fig. 5. Response of the sensor to cocaine in the concentration range from 0
to 1000 �� in a) MeCN/� � 9:1 and b) in � �/MeCN 9:1. Insets show the
dependence of emission maximum on cocaine concentration.

Fig. 6. Response of the sensor probe and control probe to 0.1 mM cocaine in
� �/MeCN 9:1.

mini-spectrometer used in this work, the lowest concentration
of cocaine that can cause a distinguishable change in fluores-
cence intensity is 2 . The response of the control probe
(NIP) to cocaine was also studied and it was observed that
the NIP probe showed a lesser increase in fluorescence upon
cocaine addition of 0.1 mM /MeCN 9:1 than do the MIP
probe (139% compared to 52%, Fig. 6), suggesting that the
analyte bound to the MIP more strongly than to the NIP and
confirming the existence of recognition sites in the MIP.

C. Selectivity of the Sensor Towards Different Drugs

Different drugs including cocaine, ketamine, amphetamine
sulphate, ecgonine methyl ester and buprenorphine.HCl were
used for an investigation into the selectivity of the probe de-
veloped to cocaine, as it is often seen in the presence of other

Fig. 7. Response of the sensor probe to different drugs with concentrations of
500 �� in � �/MeCN 9:1.

Fig. 8. Fluorescence intensity of the probe at the emission wavelength as func-
tion of time during 60 min of continuous illumination by a high power Xe lamp.

agents. The concentration of all the drugs considered was fixed
at 500 in /MeCN 9:1 where the most significant in-
crease in the fluorescence signal intensity was seen for cocaine.
It can thus be observed from Fig. 7 that the sensor responds less
to any of these drugs than to the template cocaine. This once
again indicates successful imprinting and selective recognition
sites in the MIP. The difference in fluorescence response of the
sensor to different competitors can be explained in terms of the
difference in their basicities and the similarity in shape and func-
tional groups of their structures to that of cocaine. Significantly
higher reactivity of the sensor for codeine compared to that for
other competitors may also be due to the availability of more
functional groups on the codeine molecule which are able to
interact non-covanlently with the binding sites in the MIP. It
should also be noted that some of the drugs tested were in the
salt forms, not free bases, and the presence of acids might affect
the test results obtained.

D. Reproducibility and Photostability

The stability of the probe both in terms of storage, its sus-
ceptibility to error due to intense irradiation of the sample and
its reproducibility in use is very critical to the successful appli-
cation of the system. A preliminary evaluation of these param-
eters was made in order to understand better the performance



Fig. 9. Interaction between AAF and cocaine.

Fig. 10. Preparation of Acrylamidofluorescein (AAF).

of the sensor. The stability of the sensor was tested by cali-
brating it with different cocaine concentrations ranging from 0
to 500 and recalibrating it after 24 h and then one month.
After each calibration, the probe was washed thoroughly with
MeOH-AcOH (8:2, v/v) in an ultrasonic bath, followed by the
same procedure with MeOH alone to remove bound cocaine and
then it was stored in the dark until next use. No significant dif-
ference was observed between the measurements and the results
obtained were found to be fairly reproducible even after one
month (data not shown). In order to test the photostability of the
sensor, it was coupled into the fluorimeter through a dichroic
mirror using a fiber bundle. The excitation light at 375 nm was
launched to the distal end of the probe consisting of the sensing
material by the high power Xe lamp of the fluorimeter contin-
uously for 1 h. The fluorescence intensity of the probe was dy-
namically collected. As can be seen from Fig. 8, very little pho-
tobleaching (less than 1%) was observed over the time inves-
tigated. Compared to the decrease in fluorescence intensity by
65% observed for carboxyfluorescein or by 10–13% observed
for iminocoumarin derivatives on their free forms in solution
after 60 min of continuous illumination using a mercury lamp
[28], the MIP prepared in this work possesses superior photo-
stability, a feature that is critically important with excitation by
high intensity solid state sources.

IV. CONCLUSION

In this paper, an effective approach to the development of
a sensor for cocaine, showing superior performance and fast
response has been reported. The novel robust, compact and
portable system developed has been evaluated and preliminary
results reported. The sensor have showed an increase in fluo-
rescence intensity in response to cocaine in the concentration
range of 0 – 500 in aqueous acetonitrile mixtures with
good selectivity and reproducibility over one month. Once

its performance is further refined, this type of sensor will
potentially make a significant impact on the homeland security
enhancement as it can provide technical evidence on the spot
with minimum invasion.
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