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Abstract

In this chapter I demonstrate the use of high order general perturbations to analyze policy

changes in dynamic economic models. The inclusion of high moments in approximating the

behavior of dynamic models is particularly necessary for welfare analysis. I apply the method

of general perturbations to the analysis of permanent changes to a �at rate tax on the return

to capital in the context of the standard Ramsey optimal growth model. Reliance on simple

linearizations or quadratic approximations are adequate for generating impulse responses

for the variables of interest or the welfare analysis of small policy changes. However when

considering the welfare implications of sizable policy changes, the failure to include higher

moments can lead not only to quantitatively serious inaccuracies, but even to spurious welfare

reversals.

�This research was funded by the Israel Science Foundation, Grant No. 49/06. e-mail: mbengad@city.ac.uk.
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normative analyses of policy changes, and particularly if the proposed policy changes are large,

failure to consider higher order moments can generate results that are often quantitatively, and

occasionally qualitatively misleading.

In this article I consider the welfare effects of large, but temporary changes to a flat rate

tax on income derived from capital in the context of the standard continuous-time Ramsey

optimal growth model. All revenue from the tax is returned to taxpayers as transfer payments,

so changes in the tax rate only affect household welfare indirectly, through the excess burden or

deadweight loss the distortionary tax generates. To analyze the changes to policy I employ the

method of general perturbations first introduced into economics by Kenneth Judd in the 1980’s

(Judd 1982, 1985, 1987). In those original papers first order perturbations were employed to

analyze relatively small changes in fiscal policy. Here because the changes I analyze are quite

large, I demonstrate the use of high order perturbations (as outlined in Judd (1999)) and how the

inclusion of successively higher moments can change our assessment of the welfare implications

of sizable changes in policy.

There are three reasons why the method of general perturbations is particularly useful for

this type of analysis. First, it yields explicit continuous time formulae that describe the dynamic

behavior of the economic variables rather than policy functions defined by grids or collections

of points. This is particularly advantageous for analyzing welfare in the context of continuous

time models, as such analysis typically requires integration of utility functions that themselves

are dependent on the time path of consumption. Second, the procedure permits high order

approximations that are simple to implement and are analogous to Taylor expansions. Finally,

the perturbations procedure is useful for analyzing complicated dynamic changes to policy,

beyond the simple temporary changes I analyze here (Ben-Gad (2004, 2006, 2008)).

The policy change I consider is a temporary change in a flat rate tax paid on the returns

generated by physical capital and used to fund transfers to the representative household. Start-

ing at a baseline rate of 35%, I consider the quantitative effect on the welfare of the household

of permanently shifting the tax rate between zero to 99% over the course five, ten, fifteen, and

twenty years. I demonstrate that for tax cuts that are sufficiently large, failure to include high

order moments in the approximation can generate the type of spurious welfare reversals docu-

mented by Tesar (1995) and Kim and Kim (2003) when they compare economies with complete

and incomplete markets. Furthermore, even though qualitatively, a first order approximation

may yield the same predicted welfare outcomes as a third order approximation, quantitatively

the results may differ substantially. In the model I present, an analysis based on only the first

moment of the perturbations method (essentially a linearization) can generate significant over-

estimates of the welfare gains from lowering the tax on income from capital and even larger
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underestimates of the welfare losses generated by raising the tax. This quantitative discrepancy

is important, as rarely is such a policy considered in isolation, but only in tandem with con-

siderations involving income distribution and tax incidence. Hence including the nonlinearities

first order approximations ignore is essential for producing a realistic picture of the trade-offs

such policy changes imply.

It is important to bear in mind that the optimal growth model considered here is generally

perceived to be close to linear, which indeed it is. Hence if the changes considered are modest

and only the impulse responses, and not their welfare implications are of interest, first order

approximations may indeed be sufficient. Nonetheless, if the higher moments in this type of

model can prove to be quantitatively important for welfare analysis, then they argue for great

caution when analyzing models characterized by far less linear dynamics. Furthermore, the sim-

ple temporary changes considered here are not particularly dynamic themselves; they generate

one-time jumps in consumption followed by a monotonic path in the opposite direction until the

policy ends, and then gradual convergence back to the original steady state. More complicated

policy changes, such as gradual, non-monotonic, or delayed changes to fiscal policy, even if more

modest in scope than those considered here, provide plenty of opportunities for serious welfare

miscalculations unless the higher moments are included in any approximation the time path the

economy will follow after the policy is announced.

2 The Ramsey Optimal Growth Model with Capital Taxation

Consider a representative agent whose income is generated by wages w (t) from fixed labor

supply l, the return r(t) net of the flat rate tax τ (t) on capital holdings k(t) as well as a transfer

payment v (t) . The agent maximizes the present value of utility U : R++ → R discounted at the

rate ρ, generated by a continuous stream of consumption c (t) :

max
c

∫ ∞

0
e−ρtU (c (t)) dt (1)

subject to the continuous time budget constraint:

·
k(t) = w(t)l + (1− τ (t)) r(t)k(t)− c(t) + v (t) ∀t. (2)

I assume the instantaneous utility function is of the constant intertemporal elasticity of sub-

stitution (constant relative risk aversion) form, U (c) = c1−σ

1−σ , where σ ≥ 0, is the Arrow Pratt

measure of relative risk aversion (the inverse of the intertemporal elasticity of substitution).
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The present value Hamiltonian of the optimization problem:

H (c (t) , k (t) , λ (t)) = e−ρt c (t)1−σ

1− σ
+ λ(t) (w(t)l + (1− τ (t)) r(t)k(t)− c(t) + v (t)) (3)

yields the necessary first order conditions:

∂H

∂c
:

eρt

c(t)σ
= λ(t) (4)

∂H

∂k
: (1− τ (t))λ(t)r(t) = −

·
λ(t) (5)

and the transversality condition:

lim
t→∞λ(t)k(t) = 0. (6)

Differentiating (4) with respect to t and substituting into (4) yields the law of motion for

consumption:
·
c(t) =

1
σ

[(1− τ (t)) r(t)− ρ] c(t) (7)

In this economy firms combine capital and labor to produce a single good that is both

consumed employed as capital, maximizing:

max
k,l

{F [k(t), l]− w(t)l − (r(t)− δ) k(t)} (8)

where F : R2
+ → R+ is the production function and δ is the rate of capital depreciation. From

the optimization problem (8), in equilibrium the returns to the factors of production are their

marginal products:

Fl [k(t), l] = w(t), (9)

Fk [k(t), l] = r(t)− δ. (10)

Assuming the production function takes the Cobb-Douglas form F [k, l] = k(t)αl1−α and

setting l=1, the laws of motion governing the dynamic behavior of the economy are the law of

motion for consumption:

·
c(t) =

1
σ

[
(1− τ (t))αk(t)α−1 − ρ

]
c(t) (11)

and from the market clearing condition, the law of motion for the capital stock:

·
k(t) = k(t)α − c(t)− δk (t) . (12)

In Figure 1 I plot the loci that characterize the relationship between consumption and capital

when in (11)
·
c = 0, and when in (12)

·
k = 0. In each panel σ =0.5, 1.5, or 2.5, the initial rate of

taxation for income from capital is τ = 0.35, and the other parameter values are α = 0.4, δ = 0.1,
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ρ = 0.04. The intersection between the two loci corresponds to steady state consumption and

capital and the arrows in Figure 1 represent the vector field corresponding to the system (11)

and (12). Notice neither the steady state values of consumption or capital, or indeed either

of the loci are themselves functions of the curvature parameter σ, but its value does subtly

influence the dynamics of the system and the shape of the saddle path along which the economy

must converge towards steady state, and ultimately has a profound quantitative impact on the

welfare effects of any change in policy.

If the government chooses to permanently double the tax rate on income from capital from

0.35 to 0.7, in order to fund more generous transfers, the locus corresponding to
·
k = 0 remains

as it was, but the locus corresponding to
·
c = 0 in Figure 2 shifts to the right.1 The vector field in

Figure 2 correspond to the economy after the change in policy has been announced and indicates

that consumption initially rises with the announced change in policy, before declining along with

the capital stock until the system converges to its new steady state equilibrium. Similarly, a

decision to eliminate transfers and the capital tax that funds them produces a qualitatively

symmetric response in Figure 3—consumption initially declines but then both consumption and

capital increase along a saddle path.

If the policy considered is temporary, convergence to the long-run steady state is no longer

monotonic. Instead consumption experiences an immediate jump and then both consumption

and capital gradually move back and forth along a vector field that is itself continuously chang-

ing. There are a number of competing methods for evaluating the evolution of c(t) and k (t)

following such changes in policy or other exogenous shocks. It is important to emphasize that

all methods, including numerical shooting are approximations. In the next section we consider

one method that is both versatile and particularly suited to welfare analysis—the method of

general perturbations. After that I demonstrate how it can be used to calculate the behavior of

the system (11) and (12) to approximate the equilibrium values of c(t) and k (t).

3 The Method of General Perturbations

Consider a general dynamic system:

.
x(t) = Γ [x(t), θ(t)] , (13)

where x(t) ∈ Rn×R, m is the number of control variables, n−m is the number of state variables,

θ(t) ∈ Rp ×R is a vector of policy variables. Assume that the system (13) is saddle path stable.

1The locus corresponding to
·
k = 0 would shift downward if the tax was used to finance government expenditure

rather than a transfer payment.
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Figure 1: Vector field for the baseline model with τ = 0.35.
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Figure 2: Vector field following abolition of the tax on capital income.
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Figure 3: Vector field following the doubling of the tax on capital income.
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Assume the vector θ(t) is a function of a set of dynamic perturbations π(t) ∈ Rp ×R, the

magnitude of its effect on the system governed by a scalar ε so that θ(t) = θ + επ(t). I rewrite

the system as:
.
x(t; ε) = Γ [x(t; ε), θ + επ(t)] , (14)

and differentiate with respect to ε :

.
xε(t; ε) = Γxxε(t; ε) + Γθπ(t), (15)

where Γx and Γθ are Jacobian matrices evaluated at steady state values (corresponding to ε = 0).

A first order approximation of the solution to (13) is:

x(t) ≈ x(0; 0) + εxε(t; ε). (16)

To solve the system (15), apply Laplace transforms to both sides:

Ls

[ .
xε

]
= ΓxLs [xε] + ΓθLs [π] (17)

where the Laplace transform of a function f(t) is Ls [f ] =
∫∞
0 f (t) e−stdt and s is an arbitrary

positive scalar. Applying the relationship: Ls

[ .
f
]

= sLs [f ]−f (0) to (17) and solving for Ls [xε]

yields:

Ls [xε] = [sI− Γx]−1 (xε(0) + ΓθLs [π]) , (18)

which can be interpreted as providing a convenient relationship between the time discounted

value of the variables of the model Ls [xε], the discounted value of the shocks Ls [π] , and the

initial change in the variables at the very moment a policy change becomes known xε(0). Since

Ls [xε] must be bounded for any positive value of s it must be bounded for any of the positive

eigenvalues of Γx : µi, i ∈ {1, 2, ..., m}.2 The determinants |µiI− Γx| for each i ∈ {1, 2, ..., m}
equal zero by definition. Therefore the only way for the system to be bounded when s=µi,

i ∈ {1, 2, ..., m}, is for the numerator of [µiI− Γx]−1, the adjoint matrix of µiI− Γx multiplied

by the vector (xε(0) + ΓθLs [π]) to be equal to zero. Hence the value of the non-zero elements

of xε(0), the first order approximation of the changes in the control variables that occur the

moment the new policy is announced is the solution to:

adj [µiI− Γx] (xε(0) + ΓθLµi [π]) = 0, i ∈ {1, 2, ...,m} . (19)

Taking the inverse Laplace transform of (18) yields the first moment of the approximation:

xε(t; ε) = eΓxtxε(0) +
∫ t

0
eΓx(t−r)Γθπ(r)dr. (20)

2The number of positive eigenvalues must equal the number of controls if the system is saddle path stable.
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A second order approximation is obtained by differentiating (15) with respect to ε :

.
xεε(t; ε) = Γxxεε(t; ε) + ω(t), (21)

where ω(t) is a quadratic function of π(t) and xε(t; ε) and the tensors Γxx, Γxθ, Γθθ yielding

x(t; ε) ≈ x(0; 0) + εxε(t; ε) +
1
2
ε2xεε(t; ε). (22)

The process can then be repeated to produce ever-closer approximations; an approximation of

degree Z is:

x(t; ε) = x(0; 0) +
Z∑

i=1

εi

i!
∂i

∂εi
x(t; ε) +OZ . (23)

As an example, suppose n = 2 and m = p = 1 so that there is one control variable x1, one

state variable x2, and only one policy variable changes. Assume the policy change is immediately

implemented after it is announced, lasts for only T periods and is constant throughout, so

π (t) = U(t− T ) is the indicator function U (x) = 0 if x ≤ 0, and U (x) = 1 if x > 0. Then (20)

is:

x1,ε (t) =
γx12γθ2 − γx22γθ1

µ2µ1
+

etµ2−Tµ1
(
1− eTµ1

)
(γx12γθ2 + γθ1 (µ1 − γx22)) (µ2 − γx22)

(γx22 − µ1) (µ1 − µ2) µ1
(24)

+
1

µ1µ2 (µ2 − µ1)
{
etµ2 (γx12 (γθ2µ1 − γx21γθ1) + γx22γθ1 (µ2 − γx22))

+
[
(γx12 (γx21γθ1 − γθ2µ1) + γx22γθ1 (γx22 − µ2)) eµ2(t−T ) + (γx22γθ1 − γx12γθ2) (µ2 − µ1)

+eµ1(t−T ) (γx22γθ1 (γx11 − µ2) + γx12 (γθ2µ2 − γx21γθ1))
]
U(t− T )

}
,

x2,ε (t) =
γx21γθ1 − γx11γθ2

µ1µ2
+

etµ2−Tµ1
(
1− eTµ1

)
γx21 (γx12γθ2 + γθ1 (µ1 − γx22))

(γx22 − µ1) (µ1 − µ2) µ1
(25)

− 1
µ1µ2 (µ1 − µ2)

{
etµ2

(
γx21γθ1 (γx11 + γx22 − µ2) + γθ2

(
µ2γx11 − γx12γx21 − γ2

x11

))

−
[
e(t−T )µ1 (γθ2 (γx11 − µ1)− γx21γθ1) µ2 + (γx21γθ1 − γx11γθ2) (µ2 − µ1)

+e(t−T )µ2
(
γx21γθ1 (γx11 + γx22 − µ2) + γθ2

(
µ2γx11 − γx12γx21 − γ2

x11

))]U(t− T )
}

.

If on the other hand the change in policy is permanent as in Figures 1 to 3, then π = 1, and

(20) reduces to:

x1,ε (t) =
γx12γθ2 − γx22γθ1

µ1µ2
(26)

+
(γx11γθ2 − γx21γθ1)

(
((γx11 − µ1)(γx22 − µ2)γx22e

µ2t − (γx22 + µ1 − µ2)γx12γx21)
)

(µ1 − µ2)γx12µ1
2µ2

,
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x2,ε (t) =
γx21γθ1 − γx11γθ2

µ1µ2

[
1− eµ2t

]
. (27)

The values of x1,ε (t) and x2,ε (t) from (24) and (25), or (26) and (27), become inputs in the

shock processes used to calculate the second moments x1,εε (t) and x2,εε (t), which in turn are

used to calculate third moments. As already mentioned, this process can be repeated indefinitely,

though each successive moment demands ever more computer resources to calculate.

4 Applying the Method of General Perturbations to a Perma-

nent Change in the Rate of Capital Taxation

To implement the method of perturbations to the question of a how change in the tax rate on

capital income affect the economy, substitute for the tax rate on capital income in (11) and (12)

τ(t) = τ + επ(t) where π(t) is any bounded dynamic path and ε is a small number that regulates

its magnitude:

 Ls [cε]

Ls [kε]


 =


 s − (1−α)(ρ+(1−τ)δ)

ασ

(
(1− α) δ + ρ

1−τ

)

−1 s− ρ
1−τ



−1




cε(0) + ρ
σ(1−τ)

((
α(1−τ)

ρ+(1−τ)δ

) 1
1−α +

(
α(1−τ)

ρ+(1−τ)δ

) α
1−α

)
Ls [π]

0


 .

(28)

The initial change in the control variable consumption is:

cε (0) =
α

α
1−α ρ(ρ + (1− α)δ(1− τ))(1− τ)

1
1−α

−2

σ(ρ + δ(1− τ))
1

1−α

Lµ2 [π] (29)

where µ1 = 1
2

(
ρ

1−τ +
√

ρ2

(1−τ)2
+ 4(1−α)(ρ+(1−τ)δ)

ασ

(
(1− α)δ + ρ

1−τ

))
. The first order effects of

an immediate shock to taxation that lasts until period T is:

cε(t) = − α
α

1−α ρ(ρ + (1− α)δ(1− τ))(1− τ)
1

1−α

σµ1 (ρ− (1− τ)µ1) (ρ− 2(1− τ)µ1) ((1− τ) δ + ρ)
1

1−α

(30)

×
[(

e(t−T )µ1 (ρ− (1− τ)µ1) 2 − ρ (ρ− 2(1− τ)µ1)
)
(1− U(t− T ))

(1− τ)2

etµ2µ1

(
e−µ2T µ1U(t− T )− e−µ1T

((
1− eTµ1

)
ρ− (

1− 2eTµ1
)
(1− τ)µ1

)

1− τ

)]
,
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kε(t) = − α
α

1−α ρ(ρ + (1− α)δ(1− τ))(1− τ)
1

1−α

σµ1 (ρ− (1− τ)µ1) (ρ− 2(1− τ)µ1) ((1− τ) δ + ρ)
1

1−α

(31)

[(
(
etµ2 − etµ1

)(
µ1 − ρ

1− τ

)
e−Tµ1 −

(
1− etµ2

)
(ρ− 2(1− τ)µ1)
1− τ

)

+

((
1− e(t−T )µ1

)
ρ− (

2− e(t−T )µ1 − e(t−T )µ2
)
(1− τ)µ1

)U(t− T )
1− τ

]
,

where µ2 = 1
2

(
ρ

1−τ −
√

ρ2

(1−τ)2
+ 4(1−α)(ρ+(1−τ)δ)

ασ

(
(1− α)δ + ρ

1−τ

))
.

If the change in the rate of taxation is permanent, π(t) = 1, and the first order perturbations

that correspond to (26) and (27) are:

cε(t) =
α

1
1−α ρ

(
(1− τ)µ1e

µ2t − ρ
)

(1− α) (1− τ)
1−2α
1−α (δ + ρ− τδ)

2−α
1−α

, (32)

kε(t) =
α

1
1−α ρ

(
eµ2t − 1

)
(1− τ)

α
1−α

(1− α) (δ + ρ− τδ)
2−α
1−α

, (33)

As stated above, the process can be repeated to attain higher order approximations. The

second order shock process in (21) are functions of the values of cε(t) and kε(t). Those that corre-

spond to temporary perturbations are long and calculated expressions but those that correspond

to permanent changes are:

ω1(t) =
2
σ

{
δcε(t)− α

(
ρ + (1− τ) δ

α (1− τ)

) 2−α
1−α

[((
α (1− τ)

ρ + (1− τ) δ

) 1
1−α

+ (1− α) (1− τ) kε(t)

)
cε(t)(34)

+ (1− α)
(

ρ + (1− α) (1− τ) δ

α (1− τ)

) ((
α (1− τ)

ρ + (1− τ) δ

) 1
1−α

+ (1− α

2
)(1− τ)kε(t)

)
kε(t)

]}
,

ω2(t) = −α(1− α)
(

ρ + (1− τ) δ

α (1− τ)

) 2−α
1−α

kε(t). (35)

In Figure 4, I set the value of T=5, in Figure 5, T=10, in Figure 6, T=15, and in Figure 7,

T=20. I then plot the values of the first three moments of the approximation of consumption,

cε(t), cεε(t), and cεεε(t), for three different values of the parameter that governs the curvature of

the utility function, σ = 0.5, 1.5, 2.5. Note three important results. First, contrary to what we

might expect, in each figure the lower the curvature of the utility function (the lower the value

of σ), the larger the third order moments vary relative to the first moment. Second, the higher

the value of T , the greater the two higher order moments vary relative to the first, and the

greater the inaccuracy their exclusion generates. Hence the third order degree of non-linearity is

greatest, the longer the policy lasts and the less averse are agents in the economy to substituting

consumption between different periods of time. Finally, the second moment varies most relative
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curve), cεε(t) (small red dashes), and cεεε(t) (large blue dashes), for T = 5 and σ =0.5, 1.5,

2.5.
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Figure 5: The first three moments of the approximation of consumption, cε(t) (solid black

curve), cεε(t) (small red dashes), and cεεε(t) (large blue dashes), for T = 10 and σ =0.5, 1.5,

2.5.
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Figure 6: The first three moments of the approximation of consumption, cε(t) (solid black
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2.5.
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Figure 8: The behavior of consumption following the doubling of the tax on income from

capital from 0.35 to 0.7 for T = 5 years. The solid black curve represents a first order

approximation, the curve with small red dashes, a second order approximation, the large

blue dashes, a third order approximation. 17
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Figure 9: The behavior of consumption following the doubling of the tax on income from

capital from 0.35 to 0.7 for T = 10 years. The solid black curve represents a first order

approximation, the curve with small red dashes, a second order approximation, the large

blue dashes, a third order approximation. 18
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Figure 10: The behavior of consumption following the doubling of the tax on income from

capital from 0.35 to 0.7 for T = 15 years. The solid black curve represents a first order

approximation, the curve with small red dashes, a second order approximation, the large

blue dashes, a third order approximation. 19
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Figure 11: The behavior of consumption following the doubling of the tax on income from

capital from 0.35 to 0.7 for T = 20 years. The solid black curve represents a first order

approximation, the curve with small red dashes, a second order approximation, the large

blue dashes, a third order approximation. 20



to the first if σ = 1.5. For both higher and lower values of σ, the quadratic component of

non-linearity in the response of consumption is smaller.

I present the impulse responses of consumption itself following the doubling of the tax in

Figures 8-11 or elimination of the tax in Figures 12-15. Doubling the rate of tax lowers the

net rate of return, and the representative agent responds by dissaving, immediately raising

consumption. From this high point consumption gradually declines and savings increase in

response to the subsequent rise in the rate of return to capital. The rate of return to capital

which is merely its marginal product increases because the capital stock deteriorates as long as

the total amount saved is insufficient to compensate for depreciation. Approximately halfway

between the time the policy is implemented and the old policy is restored, consumption drops

below its long-run value as agents anticipate the further rise in net returns that will follow the

expiration of the policy. Finally, once the old tax rate is restored, consumption increases once

again, this time gradually, until it returns to its initial level. Of course the longer the period over

which the period is implemented, the greater the initial instantaneous increase in consumption.

Similarly the less curvature in the utility function the greater the initial response and subsequent

adjustments.

The linear approximation of consumption following the doubling the tax rate for five years in

Figure 8 appears to roughly coincide with the impulse responses generated with the additional

higher moments—particularly if the value of σ is high. However as the tax increase is extended

over a longer period Figures 9 through 11 reveal that the impulse response generated by only

the first moment underestimates the initial increase in consumption as well as its subsequent

gradual decline. The result is that by omitting higher moments in the approximation, we risk

underestimating the volatility in the path of consumption such an increase in taxes generates.

Now consider the temporary elimination of the tax in Figures 12-15. The immediate in-

crease in capital’s net rate of return, provides a strong incentive for higher savings and lower

consumption—consumption drops immediately with the announced change in policy. Over time

the higher savings generates faster accumulation of capital and a decline in the marginal product

of capital and therefore also its rate of return. Consumption gradually recovers until eventually

as agents in the economy anticipate the resumption of the tax, consumption rises above its initial

level and continues to rise until the tax is reimposed. From that point consumption declines

gradually until eventually it returns to its initial level as the economy converges.

As in Figure 8, the difference between the different impulse responses in each graph in

Figure 12, where the tax cut lasts only five years, is not very large. However as the time period

lengthens in Figures 13-15, the differences between the approximated paths of consumption

become more pronounced across the different degrees of approximation. Unlike before, the
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Figure 12: The behavior of consumption following the reduction of the tax on income from

capital from 0.35 to zero for T = 5 years. The solid black curve represents a first order

approximation, the curve with small red dashes, a second order approximation, the large

blue dashes, a third order approximation. 22
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Figure 13: The behavior of consumption following the reduction of the tax on income from

capital from 0.35 to zero for T = 10 years. The solid black curve represents a first order

approximation, the curve with small red dashes, a second order approximation, the large

blue dashes, a third order approximation. 23
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Figure 14: The behavior of consumption following the reduction of the tax on income from

capital from 0.35 to zero for T = 15 years. The solid black curve represents a first order

approximation, the curve with small red dashes, a second order approximation, the large

blue dashes, a third order approximation. 24
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Figure 15: The behavior of consumption following the reduction of the tax on income from

capital from 0.35 to zero for T = 20 years. The solid black curve represents a first order

approximation, the curve with small red dashes, a second order approximation, the large

blue dashes, a third order approximation. 25



linear approximation now overstates the volatility of consumption that the tax cut generates.

The second order approximation yields both a lower initial drop in consumption, and a lower

increase in consumption at the point where the policy expires. The third moment, rather than

reinforcing the effect of the second moment, as was the case for the tax increase, now slightly

moderates its effect.

5 Welfare Calculations

In practice, the lower order approximations in Figures 8 through 15 are often sufficiently accurate

for most positive economic analyses. Not so for normative analyses—as I will demonstrate here,

the subtle nonlinearities that can be safely ignored in other contexts have profound implications

when analyzing welfare effects of large policy changes. Furthermore, the more direct numerically

driven methods for approximation such as numerical shooting do not produce explicit formulae,

but rather specific numerical values. When evaluating welfare in the context of a continuous

time model, the use of numerical shooting to analyze the behavior of the model necessitates the

use of interpolation between each point as the utility function of the time path of consumption is

integrated. Thus the accuracy of the welfare calculations associated with each change in policy

is inversely related to the size of the gaps between the numerical values. This creates a second

source of inaccuracy. By contrast, perturbations methods produce explicit formulae describing

the time path of consumption whose explicit integral can often be expressed algebraically (at

least the first moment as in (30) and (31), or (32) and (33)). In this example all the moments

that approximate the time path of consumption can be characterized as two simple sums of

exponential functions, each multiplied by an indicator function.

To calculate the change in welfare generated by the changes in fiscal policy I calculate the

compensating differential q, the fractional change in the value of initial steady state consumption

c̄ necessary to equal the utility generated by the time path of consumption c(t; ε), following the

change in policy: ∫ ∞

0
e−ρt ((1 + q) c̄)1−σ

1− σ
dt =

∫ ∞

0
e−ρt c(t; ε)

1−σ

1− σ
dt.

Solving for q yields:

q =

[
ρ

∫ ∞

0
e−ρt

(
c(t; ε)

c̄

)1−σ

dt

] 1
1−σ

− 1.

Between Tables 1 to 4, and Figures 16 to 20, I vary the time period T of the tax changes

between five, ten, fifteen, and twenty years. In each I present the values of the compensating

differential q as the temporary tax rate on capital income varies between zero to 0.9 for the

values of σ = 0.5, 1.5, 2.5, each corresponding to a time path of consumption calculated as first,
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Tax σ = 0.5 σ = 1.5 σ = 2.5

Rate First Second Third First Second Third First Second Third

0 0.0012 0.0010 0.0010 0.0008 0.0007 0.0007 0.0006 0.0006 0.0006

0.1 0.0009 0.0008 0.0008 0.0006 0.0005 0.0005 0.0005 0.0004 0.0004

0.2 0.0006 0.0005 0.0005 0.0004 0.0003 0.0004 0.0003 0.0003 0.0003

0.3 0.0002 0.0002 0.0002 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

0.4 -0.0002 -0.0002 -0.0002 -0.0001 -0.0001 -0.0001 -0.0001 -0.0001 -0.0001

0.5 -0.0007 -0.0007 -0.0007 -0.0004 -0.0004 -0.0004 -0.0003 -0.0003 -0.0003

0.6 -0.0012 -0.0014 -0.0014 -0.0007 -0.0008 -0.0008 -0.0005 -0.0006 -0.0006

0.7 -0.0017 -0.0021 -0.0022 -0.0010 -0.0011 -0.0011 -0.0008 -0.0008 -0.0008

0.8 -0.0023 -0.0029 -0.0031 -0.0014 -0.0015 -0.0016 -0.001 -0.0011 -0.0011

0.9 -0.0029 -0.0039 -0.0042 -0.0017 -0.002 -0.002 -0.0013 -0.0014 -0.0015

Table 1: Welfare effects q generated by changing the rate of taxation on income from capital

from the baseline rate of 0.35 for five years.

second or third order approximations. Once again α = 0.4, δ = 0.1, ρ = 0.04 and the initial rate

of taxation on income from capital is τ = 0.35. For small changes all the approximations yield

welfare effects that are symmetric, with little difference between the different approximations.

A five year rise in the rate of taxation from 0.35 to 0.4 generates a loss in welfare equivalent to

a permanent drop in consumption of between 0.06% if σ = 0.5, to 0.03% if σ = 2.5. The same

rise in the rate of taxation extended to twenty years costs agents in the economy the equivalent

of a permanent 0.14% in consumption if σ = 0.5, and 0.09% if σ = 2.5.3 Lowering the tax rate

to 0.3 for the same number of years generates a welfare increases of nearly identical magnitudes.

Again it is important to emphasize that these welfare effects are generated by changes in the

excess burden the tax on capital income generates, rather than the direct effects of taxation on

net income, as all proceeds from the tax are returned to the same representative agent as direct

transfer payments.

The extent to which the different degrees of approximation diverge depends somewhat on
3The magnitudes of both the modest welfare gains generated by a given tax cut and the relatively larger

welfare losses generated by a similar-sized tax increase are inversely related to the value of σ. Hence the higher

the intertemporal elasticity of substitution the more sensitive the economy to changes in the tax rate on capital

income. Although this parameter plays no role in determining the steady state values of consumption and capital,

it does determine the speed of convergence. The more willing the representative agent is to substitute consumption

between periods in response to changes in the net rate of return, the faster the agent accumulates or disaccumulates

capital in Figures 8 through 15.
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Tax σ = 0.5 σ = 1.5 σ = 2.5

Rate First Second Third First Second Third First Second Third

0 0.0034 0.0018 0.0023 0.0022 0.0016 0.0018 0.0018 0.0015 0.0015

0.1 0.0026 0.0017 0.0019 0.0017 0.0014 0.0014 0.0014 0.0012 0.0012

0.2 0.0016 0.0013 0.0014 0.0011 0.0010 0.0010 0.0009 0.0008 0.0008

0.3 0.0006 0.0005 0.0005 0.0004 0.0004 0.0004 0.0003 0.0003 0.0003

0.4 -0.0006 -0.0006 -0.0006 -0.0004 -0.0004 -0.0004 -0.0003 -0.0003 -0.0003

0.5 -0.0019 -0.0022 -0.0023 -0.0013 -0.0014 -0.0014 -0.0010 -0.0011 -0.0011

0.6 -0.0033 -0.0043 -0.0046 -0.0022 -0.0026 -0.0027 -0.0017 -0.0020 -0.0020

0.7 -0.0048 -0.0069 -0.0076 -0.0032 -0.004 -0.0042 -0.0026 -0.0030 -0.0031

0.8 -0.0064 -0.0100 -0.0116 -0.0043 -0.0057 -0.0061 -0.0034 -0.0042 -0.0043

0.9 -0.0081 -0.0138 -0.0168 -0.0055 -0.0076 -0.0083 -0.0043 -0.0056 -0.0058

Table 2: Welfare effects q generated by changing the rate of taxation on income from capital

from the baseline rate of 0.35 for ten years.

the curvature of the utility function but primarily on how long the tax rate changes. In Table

1, the value of the compensating differentials does not vary substantially between the different

columns following a reduction in taxation for a period of five years. This is true across the

first row, which corresponds to the welfare effects of completely eliminating the tax during this

period. The same is true for doubling the tax rate. Only if the tax rate rises to 90% do we see

significant evidence of divergence and then only if the curvature parameter σ is set to 0.5. Even

then as is evident in Figure 16, the second order approximation is sufficient to capture nearly

all the non-linearity that might affect welfare.

Double the time over which the tax rate changes to ten years and more significant differences

emerge. For σ = 0.5, a decade long elimination of the tax on capital raises welfare by the

equivalent of a 0.34% rise in consumption according to the approximation generated with a

first order perturbation, but only 0.18% according to the calculation obtained with a second

order perturbation, and 0.23% when the third order perturbation is included. Raise the rate of

taxation to 60% or higher and we see similar divergence. Hence obtaining an accurate estimate

of the welfare effects of large changes in taxes for a period of ten years or longer necessitates the

inclusion of at very least second, if not third order perturbations.

This last conclusion is further reinforced by the results in Tables 3 and 4. In each instance

and for every value of σ, the first order approximations significantly overestimate the welfare
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Tax σ = 0.5 σ = 1.5 σ = 2.5

Rate First Second Third First Second Third First Second Third

0 0.0056 0.0020 0.0036 0.0038 0.0023 0.0028 0.0031 0.0021 0.0024

0.1 0.0042 0.0023 0.0029 0.0029 0.0021 0.0023 0.0024 0.0019 0.0019

0.2 0.0027 0.0020 0.0021 0.0019 0.0016 0.0016 0.0015 0.0013 0.0013

0.3 0.0009 0.0009 0.0009 0.0007 0.0006 0.0006 0.0005 0.0005 0.0005

0.4 -0.0010 -0.0011 -0.0011 -0.0007 -0.0007 -0.0007 -0.0006 -0.0006 -0.0006

0.5 -0.0031 -0.0038 -0.0040 -0.0022 -0.0026 -0.0026 -0.0018 -0.0020 -0.0020

0.6 -0.0053 -0.0075 -0.0082 -0.0039 -0.0049 -0.0051 -0.0032 -0.0038 -0.0039

0.7 -0.0077 -0.0123 -0.0142 -0.0057 -0.0078 -0.0084 -0.0046 -0.0060 -0.0063

0.8 -0.0103 -0.0181 -0.0223 -0.0076 -0.0113 -0.0126 -0.0062 -0.0085 -0.0092

0.9 -0.0130 -0.0251 -0.0330 -0.0097 -0.0154 -0.0180 -0.0079 -0.0115 -0.0127

Table 3: Welfare effects q generated by changing the rate of taxation on income from capital

from the baseline rate of 0.35 for fifteen years.

gains from the temporary abolition of the tax on capital. In the most extreme case with the

value of σ set to 0.5, and the tax eliminated for twenty years, the first order approximation

predicts a welfare gain equivalent to 0.78% permanent increase in consumption, whereas the

third order approximation predicts a far more modest 0.48%.

Based on the third order approximation, doubling the tax rate on capital from 0.35 to 0.7 for

twenty years, yields a welfare loss equivalent to a permanent decrease in consumption that ranges

between just over two percent if the intertemporal elasticity of substitution is high (σ = 0.5),

and just under one percent if the intertemporal elasticity of substitution is low (σ = 2.5). For

the U.S., U.K., or Japanese economies this is the equivalent of between four quarters (in the

first instance) and two quarters (in the second instance) of average per-capita output growth.

By contrast should policy makers rely on only first order approximations they would conclude

that the welfare losses from eliminating the tax are perhaps only half as big as they are likely

to be.

The difference between the compensating differentials estimated using first and second order

perturbations versus including third order perturbations as well, is far smaller than the difference

between the compensating differentials estimated using only the first order perturbation and the

first and second order perturbations. This indicates that with the addition of each successive

moment, there is convergence to increasingly more accurate approximations of welfare changes.
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Tax σ = 0.5 σ = 1.5 σ = 2.5

Rate First Second Third First Second Third First Second Third

0 0.0078 0.0019 0.0048 0.0054 0.0025 0.0036 0.0044 0.0025 0.0031

0.1 0.0058 0.0027 0.0038 0.0041 0.0026 0.0030 0.0034 0.0024 0.0026

0.2 0.0036 0.0025 0.0027 0.0026 0.0021 0.0022 0.0022 0.0018 0.0018

0.3 0.0013 0.0011 0.0011 0.0009 0.0009 0.0009 0.0008 0.0007 0.0007

0.4 -0.0013 -0.0014 -0.0014 -0.0010 -0.0010 -0.0011 -0.0008 -0.0009 -0.0009

0.5 -0.0040 -0.0053 -0.0055 -0.0031 -0.0037 -0.0038 -0.0026 -0.0030 -0.0031

0.6 -0.0070 -0.0104 -0.0116 -0.0054 -0.0073 -0.0077 -0.0045 -0.0058 -0.0060

0.7 -0.0101 -0.0171 -0.0203 -0.0079 -0.0117 -0.0130 -0.0067 -0.0092 -0.0099

0.8 -0.0134 -0.0253 -0.0324 -0.0106 -0.0172 -0.0201 -0.0090 -0.0133 -0.0149

0.9 -0.0169 -0.0353 -0.0486 -0.0135 -0.0237 -0.0293 -0.0114 -0.0183 -0.0212

Table 4: Welfare effects q generated by changing the rate of taxation on income from capital

from the baseline rate of 0.35 for twenty years.

Nonetheless in Table 3, for σ = 0.5, the welfare gain from reducing the tax rate from the

baseline rate of 0.35 to 0.1 is slightly larger than the welfare gain generated by reducing it to

zero. This phenomenon emerges in Table 4 as well for both σ = 0.5 and σ = 1.5, and in each case

implies that reducing the magnitude of a distortionary tax is preferable to eliminating it. Such

welfare reversals are clearly spurious and underline the need to consider third or even higher

approximations in these instances.

Another issue at least partially obscured if higher order moments are ignored, is the asymme-

try between the welfare gains generated by tax cuts, and the losses generated by tax increases.

This can be seen in the way the curves in Figures 16 to 20 become progressively less linear as we

pass from simulations based on first order perturbations only to simulations that include sec-

ond and then third order perturbations as well. This nonlinearity is precisely analogous to the

Harberger triangle—the property of the excess burden increasing at an approximately quadratic

rate in the magnitude of the distortionary tax.

6 Conclusion

The results derived in this article demonstrate not only the method for analyzing high order

approximations of dynamic non-linear models, but the pitfalls of failing to account for high

order nonlinearities when considering the welfare effects of policy changes. It is important to
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Figure 16: The compensating differential q (on the vertical axis) representing welfare effects

of changing the tax rate (on the horizontal axis) from its baseline rate of 0.35 for five years

Using the first order (solid black curve), second order (small red dashes) and third order

(large blue dashes) perturbation methods.
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Figure 17: The compensating differential q (on the vertical axis) representing welfare effects

of changing the tax rate (on the horizontal axis) from its baseline rate of 0.35 for ten years

Using the first order (solid black curve), second order (small red dashes) and third order

(large blue dashes) perturbation methods.
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Figure 18: The compensating differential q (on the vertical axis) representing welfare effects

of changing the tax rate (on the horizontal axis) from its baseline rate of 0.35 for fifteen

years Using the first order (solid black curve), second order (small red dashes) and third

order (large blue dashes) perturbation methods.
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Figure 19: The compensating differential q (on the vertical axis) representing welfare effects

of changing the tax rate (on the horizontal axis) from its baseline rate of 0.35 for twenty

years Using the first order (solid black curve), second order (small red dashes) and third

order (large blue dashes) perturbation methods.
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emphasize that the model as well as the policy changes considered here are each about the

simplest possible.

A more complicated change in the tax rate, for example one that whose duration is unknown,

or one whose implementation is preceded by a long delay will produce far more complicated

dynamics, necessitating high order approximations even if the magnitudes of the policy changes

are far more modest. Similarly, this model has only a single sector, a single representative agent

and a single simple distortion. In any richer model, one with heterogenous agents, multiple

sectors, external effects, more activities taxed, or graduated tax rates, linear or even quadratic

approximations will yield misleading welfare predictions, possibly even spurious welfare reversals,

though the proposed changes in policy might well be relatively simple in nature or far more

modest in scale than the changes in the tax on capital income considered here.
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7 Appendix

The moments of the approximation for consumption for the Ramsey optimal growth model with

α = 0.4, δ = 0.1, ρ = 0.04 and τ = 0.35. Note that these are all the sum of exponential

functions. The third order approximation of the time path of consumption is the sum of these

moments weighted by ε, ε2/2, and ε3/6.

7.1 σ = 0.5

T = 5 :
cε(t) =

[−0.2724 + 0.8768e−0.1673t − 0.09962e0.2288t
]
U(5− t)− 0.474e−0.1673tU(t− 5)

cεε(t) =
[
e0.2288t(−0.007557t− 0.005527) + 0.07867e−0.3346t − 0.09758e0.06154t

+0.02444e0.4577t + e−0.1673t(0.09951t + 1.158)− 0.8316
]
U(5− t)

+
[
0.023e−0.3346t − 0.3037e−0.1673t

]
U(t− 5)

cεεε(t) = e−1.11t
[
e1.171t(−0.02772t− 0.7098)− 0.02657e0.6077t + 0.06589e1.004t − 3.412e1.11t

+ 0.0555e1.4t − 0.01088e1.796t + e1.567t(0.005562t + 0.06804) + e0.775t(0.02678t− 0.6782)

−0.000430e1.338t(t− 9.16)(t + 196.5) + e0.9423t
(
0.008469t2 + 0.2601t + 4.252

)]
U(5− t)

+
[
0.004199e−0.5019t + 0.04420e−0.3346t − 0.3823e−0.1673t

]
U(t− 5)

T = 10 :
cε(t) =

[−0.2724 + 0.9697e−0.1673t − 0.03173e0.2288t
]
U(10− t)− 2.148e−0.1673tU(t− 10)

cεε(t) =
[
e0.2288t(−0.002407t− 0.002652) + 0.09622e−0.3346t − 0.03437e0.06154t

+0.002479e0.4577t + e−0.1673t(0.11t + 1.421)− 0.8316
]
U(10− t)

+
[
0.4723e−0.3346t − 2.439e−0.1673t

]
U(t− 10)

cεεε(t) = e−1.11t
[
e1.171t(−0.009762t− 0.2589)− 0.03594e0.6077t + 0.02566e1.004t − 3.412e1.11t

+ 0.006226e1.4t − 0.0003514e1.796t + e1.567t(0.0005642t + 0.00711) + e0.775t(0.03276t− 0.7878)

−0.0001369e1.338t(t− 11.37)(t + 199.4) + e0.9423t
(
0.009366t2 + 0.3114t + 5.31

)]
U(10− t)

+
[
0.3909e−0.5019t + 1.609e−0.3346t − 5.212e−0.1673t

]
U(t− 10)

T = 15 :
cε(t) =

[−0.2724 + 0.9993e−0.1673t − 0.01010e0.2288t
]
U(15− t)− 6.198e−0.1673tU(t− 15)

cεε(t) =
[
e0.2288t(0.0008922− 0.0007665t) + 0.1022e−0.3346t − 0.01128e0.06154t

+0.0002514e0.4577t + e−0.1673t(0.1134t + 1.521)− 0.8316
]
U(15− t)

+
(
3.931e−0.3346t − 8.741e−0.1673t

)
U(t− 15)

cεεε(t) = e−1.11t
[
e1.171t(−0.003204t− 0.08302)− 0.03933e0.6077t + 0.00868e1.004t − 3.412e1.11t

+ 0.0006508e1.4t − 0.00001135e1.796t + e1.567t(0.00005722t + 0.0005915) + e0.775t(0.03479t− 0.8191)

−0.0000436e1.338t(t− 14.62)(t + 198.1) + e0.9423t
(
0.009652t2 + 0.3306t + 5.738

)]
U(15− t)

+
[
9.386e−0.5019t + 16.63e−0.3346t − 22.34e−0.1673t

]
U(t− 15)

T = 20 :
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cε(t) =
[−0.2724 + 1.009e−0.1673t − 0.003218e0.2288t

]
U(20− t)− 15.61e−0.1673tU(t− 20)

cεε(t) =
[
e0.2288t(0.001202− 0.0002441t) + 0.1041e−0.3346t − 0.003626e0.06154t

+0.00002550e0.4577t + e−0.1673t(0.1145t + 1.553)− 0.8316
]
U(20− t)

+
[
24.92e−0.3346t − 24.31e−0.1673t

]
U(t− 20)

cεεε(t) = e−1.11t
[
e1.171t(−0.001030t− 0.02524)− 0.04045e0.6077t + 0.002817e1.004t

− 3.412e1.11t + 0.00006663e1.4t − (
3.666× 10-7

)
e1.796t

+ e1.567t
((

5.804× 10-6
)
t + 0.00003818

)
+ e0.775t(0.03545t− 0.8291)

−0.00001389e1.338t(t− 18.72)(t + 194.7) + e0.9423t
(
0.009743t2 + 0.3368t + 5.86

)]
U(20− t)

+
[
149.8e−0.5019t + 116.5e−0.3346t − 67.22e−0.1673t

]
U(t− 20)

7.2 σ = 1.5

T = 5 :
cε(t) =

[−0.2724 + 0.5393e−0.08631t − 0.06725e0.1479t
]
U(5− t)− 0.09696e−0.08631tU(t− 5)

cεε(t) =
[
e0.1479t(0.1047− 0.006769t)− 0.06753e−0.1726t − 0.1216e0.06154t

+0.01830e0.2957t + e−0.08631t(0.04784t + 0.9560)− 0.8316
]
U(5− t)

+
[−0.002183e−0.1726t − 0.03029e−0.08631t

]
U(t− 5)

cεεε(t) = e−0.5427t
[
e0.6042t(−0.03453t− 0.6726) + 0.04753e0.2837t − 0.05374e0.5179t − 3.412e0.5427t

+ 0.08575e0.752t − 0.009797e0.9862t + e0.37t(−0.01797t− 0.7028) + e0.8384t(0.005525t− 0.02099)

−0.0005110e0.6905t(t− 20.63)(t + 89.50) + e0.4563t
(
0.003182t2 + 0.1896t + 3.828

)]
U(5− t)

+
[−0.0002762e−0.2589t − 0.002046e−0.1726t − 0.01888e−0.08631t

]
U(t− 5)

T = 10 :
cε(t) =

[−0.2724 + 0.5995e−0.08631t − 0.03211e0.1479t
]
U(10− t)− 0.3802e−0.08631tU(t− 10)

cεε(t) =
[
e0.1479t(0.05210− 0.003232t)− 0.08344e−0.1726t − 0.06452e0.06154t

+0.004171e0.2957t + e−0.08631t(0.05318t + 1.083)− 0.8316
]
U(10− t)

+
[−0.03355e−0.1726t − 0.2643e−0.08631t

]
U(t− 10)

cεεε(t) = e−0.5427t
[
e0.37t(−0.02220t− 0.8771) + 0.06528e0.2837t − 0.03171e0.5179t

− 3.412e0.5427t + 0.02173e0.752t − 0.001066e0.9862t

+ e0.6042t(−0.01833t− 0.3540) + e0.8384t(0.00126t− 0.005611)

−0.0002440e0.6905t(t− 22.92)(t + 90.47) + e0.4563t
(
0.003537t2 + 0.2135t + 4.266

)]
U(10− t)

+
[−0.01664e−0.2589t − 0.06996e−0.1726t − 0.3544e−0.08631t

]
U(t− 10)

T = 15 :
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cε(t) =
[−0.2724 + 0.6283e−0.08631t − 0.01533e0.1479t

]
U(15− t)− 0.8801e−0.08631tU(t− 15)

cεε(t) =
[
e0.1479t(0.02703− 0.001543t)− 0.09163e−0.1726t − 0.03228e0.06154t

+0.0009510e0.2957t + e−0.08631t(0.05573t + 1.161)− 0.8316
]
U(15− t)

+
[−0.1798e−0.1726t − 0.8874e−0.08631t

]
U(t− 15)

cεεε(t) = e−0.5427t
[
e0.37t(−0.02438t− 0.9745) + 0.07513e0.2837t − 0.01663e0.5179t − 3.412e0.5427t

+ 0.005191e0.752t − 0.0001161e0.9862t + e0.6042t(−0.009169t− 0.1723) + e0.8384t(0.0002872t− 0.001680)

−0.0001165e0.6905t(t− 25.16)(t + 89.92) + e0.4563t
(
0.003707t2 + 0.2272t + 4.556

)]
U(15− t)

+
[−0.2065e−0.2589t − 0.5439e−0.1726t − 1.659e−0.08631t

]
U(t− 15)

T = 20 :
cε(t) =

[−0.2724 + 0.642e−0.08631t − 0.007320e0.1479t
]
U(20− t)− 1.68e−0.08631tU(t− 20)

cεε(t) =
[
e0.1479t(0.01469− 0.0007368t)− 0.09568e−0.1726t − 0.01575e0.06154t

+0.0002168e0.2957t + e−0.08631t(0.05694t + 1.202)− 0.8316
]
U(20− t)

+
(−0.6555e−0.1726t − 2.090e−0.08631t

)
U(t− 20)

cεεε(t) = e−0.5427t
[
e0.37t(−0.02546t− 1.024) + 0.08016e0.2837t − 0.008289e0.5179t

− 3.412e0.5427t + 0.001209e0.752t − 0.00001264e0.9862t

+ e0.6042t(−0.004474t− 0.07886) + e0.8384t(0.00006547t− 0.0005414)

−0.00005562e0.6905t(t− 27.90)(t + 87.82) + e0.4563t
(
0.003788t2 + 0.2341t + 4.706

)]
U(20− t)

+
[−1.438e−0.2589t − 2.446e−0.1726t − 4.669e−0.08631t

]
U(t− 20)

7.3 σ = 2.5

T = 5 :
cε(t) =

[−0.2724 + 0.4483e−0.06199t − 0.04944e0.1235t
]
U(5− t)− 0.04810e−0.06199tU(t− 5)

cεε(t) =
[
e0.1235t(0.1314− 0.005526t)− 0.07117e−0.1240t − 0.1238e0.06154t

+0.01322e0.2471t + e−0.06199t(0.03478t + 0.9063)− 0.8316
]
U(5− t)

+
[−0.0008194e−0.124t − 0.01037e−0.06199t

]
U(t− 5)

cεεε(t) = e−0.3724t
[
e0.4339t(−0.03517t− 0.5268) + 0.04610e0.1864t − 0.1415e0.3719t − 3.412e0.3724t

+ 0.08688e0.5574t − 0.007174e0.7429t + e0.2484t(−0.01656t− 0.5880) + e0.6194t(0.004432t− 0.05248)

−0.0004632e0.4959t(t− 29.35)(t + 63.46) + e0.3104t
(
0.002024t2 + 0.1543t + 3.742

)]
U(5− t)

+
[−0.00005695e−0.186t − 0.0005299e−0.124t − 0.004432e−0.06199t

]
U(t− 5)

T = 10 :
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cε(t) =
[−0.2724 + 0.4937e−0.06199t − 0.02666e0.1235t

]
U(10− t)− 0.1831e−0.06199tU(t− 10)

cεε(t) =
[
e0.1235t(0.07474− 0.002980t)− 0.08631e−0.124t − 0.07353e0.06154t

+0.003843e0.2471t + e−0.06199t(0.03830t + 0.9883)− 0.8316
]
U(10− t)

+
[−0.01187e−0.124t − 0.09547e−0.06199t

]
U(t− 10)

cεεε(t) = e−0.3724t
[
e0.4339t(−0.02088t− 0.2946) + 0.06157e0.1864t − 0.09256e0.3719t − 3.412e0.3724t

+ 0.02782e0.5574t − 0.001125e0.7429t + e0.2484t(−0.02009t− 0.7080) + e0.6194t(0.001289t− 0.01694)

−0.0002498e0.4959t(t− 31.79)(t + 63.29) + e0.3104t
(
0.002229t2 + 0.1688t + 3.995

)]
U(10− t)

+
[−0.003139e−0.186t − 0.01857e−0.124t − 0.09568e−0.06199t

]
U(t− 10)

T = 15 :
cε(t) =

[−0.2724 + 0.5182e−0.06199t − 0.01438e0.1235t
]
U(15− t)− 0.4045e−0.06199tU(t− 15)

cεε(t) =
[
e0.1235t(0.04259− 0.001607t)− 0.09508e−0.124t − 0.04161e0.06154t

+0.001117e0.2471t + e−0.06199t(0.04020t + 1.045)− 0.8316
]
U(15− t)

+
[−0.05793e−0.124t − 0.3257e−0.06199t

]
U(t− 15)

cεεε(t) = e−0.3724t
[
e0.2484t(−0.02213t− 0.7839) + 0.07119e0.1864t − 0.05498e0.3719t − 3.412e0.3724t

+ 0.00849e0.5574t − 0.0001764e0.7429t + e0.4339t(−0.01182t− 0.1577) + e0.6194t(0.0003747t− 0.005459)

−0.0001347e0.4959t(t− 33.87)(t + 62.52) + e0.3104t
(
0.002339t2 + 0.1780t + 4.179

)]
U(15− t)

+
[−0.03386e−0.186t − 0.1399e−0.124t − 0.4849e−0.06199t

]
U(t− 15)

T = 20 :
cε(t) =

[−0.2724 + 0.5314e−0.06199t − 0.007752e0.1235t
]
U(20− t)− 0.7265e−0.06199tU(t− 20)

cεε(t) =
[
e0.1235t(0.02473− 0.0008664t)− 0.09999e−0.124t − 0.02301e0.06154t

+0.0003249e0.2471t + e−0.06199t(0.04123t + 1.078)− 0.8316
]
U(20− t)

+
[−0.1869e−0.124t − 0.7576e

]
U(t− 20)

cεεε(t) = e−0.3724t
[
e0.2484t(−0.02327t− 0.8284) + 0.07677e0.1864t − 0.03118e0.3719t

− 3.412e0.3724t + 0.002531e0.5574t − 0.00002765e0.7429t

+ e0.4339t(−0.006536t− 0.0798) + e0.6194t(0.0001089t− 0.001809)

−0.00007263e0.4959t(t− 36.13)(t + 60.71) + e0.3104t
(
0.002399t2 + 0.1833t + 4.292

)]
U(20− t)

+
[−0.1962e−0.186t − 0.5847e−0.124t − 1.412e−0.06199t

]
U(t− 20)
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