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Abstract

We study in this article threshold quantile autoregressive processes. In particular we propose
estimation and inference of the parameters in nonlinear quantile processes when the threshold
parameter defining nonlinearities is known for each quantile, and also when the parameter vec-
tor is estimated consistently. We derive the asymptotic properties of the nonlinear threshold
quantile autoregressive estimator. In addition, we develop hypothesis tests for detecting thresh-
old nonlinearities in the quantile process when the threshold parameter vector is not identified
under the null hypothesis. In this case we propose to approximate the asymptotic distribution
of the composite test using a p-value transformation. This test contributes to the literature on
nonlinearity tests by extending Hansen’s (Econometrica 64, 1996, pp.413-430) methodology for
the conditional mean process to the entire quantile process. We apply the proposed method-
ology to model the dynamics of US unemployment growth after the Second World War. The
results show evidence of important heterogeneity associated with unemployment, and strong
asymmetric persistence on unemployment growth.

Keywords: Nonlinear models; quantile regression; threshold models

JEL Classification: C14, C22, C32, C50

∗Corresponding Author: Department of Economics, City University London, Northampton Square, London EC1V
0HB, UK, email: J.Olmo@city.ac.uk, tel: +44 (0)20-7040-4129.

1



1 Introduction

During the last twenty years the choice of linear time series models has proven to be rather limited

and inadequate for describing the dynamics of macroeconomic and financial time series. These

data are plagued with nonlinear phenomena such as asymmetries in the occurrence and persistence

of negative and positive shocks, time-irreversibility, different tail behavior of the distribution of

the data, asymmetric effects of the heteroskedasticity in the mean process. These phenomena

have sparked a growing interest in applied and theoretical econometrics for developing time series

processes modeling these nonlinearities in various ways.

Among the models that have enjoyed greater popularity are the linear threshold autoregressive

models (TAR) of Tong and Lim (1980), Tong (1983, 1990) or Tsay (1989). Extensions of these

models to accommodate stylized facts in macroeconomics and finance are abundant in the litera-

ture. Thus, Nelson (1991), Glosten, Jagannatthan, and Runkle (1993) or Zakoian (1994) propose

threshold models in the conditional volatility process capable of describing the asymmetries ob-

served in the conditional volatility process due to feedback and leverage effects. Another example

is Sarno, Valente, and Leon (2006) or Clarida, Sarno, Taylor, and Valente (2006) that make use

of these processes to model the dynamics and asymmetries of exchange rates and the term struc-

ture of interest rates, respectively. An alternative widely explored in the literature for modeling

nonlinearities are the Smooth Transition Models (STAR). These models are characterized by an

infinite number of regimes and a state variable that changes smoothly from one state to the other,

see Chan and Tong (1986), Terasvirta (1994) and the references therein for general models.

All these models are aimed at describing the dynamics of the conditional mean process. These

methods, however, are inadequate to describe nonlinearities in the data produced by general forms

of heterogeneity, when different regimes coincide in the mean process. The idea that time series

may have different behavior across quantiles has attracted considerable attention in the theoretical

literature (see for instance Koenker and Xiao, 2006, and the references therein) and a natural

extension is the existence of different regimes depending on the quantile of the series to be modeled.

Thus, the first contribution of this article is to introduce threshold quantile autoregressive processes

(T-QAR), and to derive the asymptotic properties of the nonlinear threshold quantile autoregressive

estimator. We build on the studies of Koenker and Xiao (2006) for quantile autoregressive processes,

and Cai and Stander (2008) for the study of self-exciting processes in quantiles. In particular, we

concentrate on studying estimation and inference for the parameters of nonlinear threshold quantile

autoregressive processes. More specifically, our study will be divided in two different cases. One,
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when the threshold parameter defining the nonlinearity in the quantile is known, and a second

scenario when the parameter needs to be estimated.

The second contribution of this article consists on developing hypothesis tests to detect threshold

nonlinearities in the quantile process. Following Hansen’s (1996) approach we propose heteroskedasticity-

robust Wald tests for the case when the threshold parameter of each quantile is known and also for

the case when the parameter is not identified under the null hypothesis for some quantile. Whereas

for the former case the asymptotic distribution is chi-squared for each quantile, for the latter case

the asymptotic distribution is nonstandard and is approximated by simulation methods. We choose

the p-value transformation method for the supremum and average of the relevant Wald statistic.

Finally, we extend these tests to detect nonlinearities in the entire quantile process. In order to do

this we will use Kolmogorov-Smirnov type tests over the quantile process. These tests contribute

to the literature on nonlinearity tests by extending Hansen (1996) methodology for the conditional

mean process to the entire quantile process.

To motivate the usefulness of this methodology, consider the following example that illustrates

the lack of power of a standard threshold nonlinearity test to detect nonlinearities in the quantile

process.

Consider the following two location-scale models:

yt = θ0 + θ1yt−1 + δyt−1ut, (1)

and

yt = θ0 + θ1yt−1 + δ|yt−1|ut, (2)

where ut is an independent and identically distributed (iid) process with mean 0, variance σ2
u <∞,

and symmetric and differentiable distribution function Fu.

Koenker (2005, p.57) shows that the quantile process of (1) is linear if Fu is symmetric. This

is also true for model (2) if yt > 0 for all t, but interesting nonlinearities appear if yt can take

positive and negative values. In this case, |yt−1| generates differences across quantiles depending

on the sign of yt. In particular, the model becomes a two-regime model of the form

yt =
{
θ0 + θ1yt−1 − δyt−1ut, yt−1 ≤ 0,
θ0 + θ1yt−1 + δyt−1ut, yt−1 > 0.

(3)

Although the model is nonlinear, its first conditional moments are identical across regimes,

E[yt|yt−1 ≤ 0] = E[yt|yt−1 > 0] = θ0 + θ1yt−1, (4)

3



and

V ar[yt|yt−1 ≤ 0] = V ar[yt|yt−1 > 0] = δ2y2
t−1σ

2
u. (5)

This model generates heterogeneity and nonlinearity in the quantile process that the standard

F−test and the heteroskedasticity-robust Wald test are not able to detect. The heteroskedastic

residual sequence at = δyt−1ut from (1) and a′t(0) = (δ − 2δI(yt−1 > 0))yt−1ut from model (2)

are different but satisfy that a2
t = a

′
t(0)2 for all t ∈ N, implying the insensitiveness of the Hansen

test to this type of nonlinearities. In fact, any procedure based on the squared residual sequence

will fail because of the equality of squared residuals. However, the conditional τ -quantile process

of model (3), assuming δ > 0 is

Qyt(τ |yt−1 ≤ 0) = θ0 + (θ1 − δF−1
u (τ))yt−1, (6)

and

Qyt(τ |yt−1 > 0) = θ0 + (θ1 + δF−1
u (τ))yt−1. (7)

Note that unless F−1
u (τ) = 0 both regimes are clearly identified. If the distribution of u is symmetric,

then F−1
u (1/2) = 0, and therefore, the conditional quantile processes will coincide at the median,

but they will differ as we go to the upper or lower extreme quantiles.

Finally, we illustrate the two contributions of this paper with an application to unemployment

growth series. In particular we postulate that there is heterogeneity on US unemployment growth,

i.e. growth in the number of people unemployed, after the second world war. In our study, we

claim that this heterogeneity can be due to asymmetric dynamics in the quantile process that for

some quantiles of the process can potentially depend in different ways on previous values of the

variable and lead us, therefore, to propose different autoregressive regimes for different quantiles.

The results show evidence of important heterogeneity associated with unemployment, and strong

asymmetric persistence on unemployment growth.

The article is structured as follows. Section 2 introduces the family of threshold quantile regime

switching models and the statistical properties, in particular, estimation procedures, consistency

and asymptotic normality of the estimators. Section 3 discusses different hypothesis tests, alter-

native to Hansen (1996), for linearity of the process at a given quantile and for the entire quantile

process. In Section 4 we carry out a Monte Carlo experiment where we study the estimators’

properties and different features of nonlinearity tests. Section 5 discusses an application to study

nonlinearities in the dynamics of the quantile process of unemployment growth. Section 6 concludes.

The proofs are gathered in a mathematical appendix.
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2 Statistical Model, Estimation and Inference

2.1 Statistical Model

Consider a nonlinear process {yt} with two possible regimes defined by the known function qt =

q(xt) with xt = (1, yt−1, yt−2, . . . , yt−py), and threshold parameter γ, −∞ < γ < ∞. To make

allowance for different values of γ across quantiles we will index these parameters by τ .

We consider an extension of Koenker and Xiao (2006) quantile autoregressive model to incor-

porate the existence of different regimes. Let {ut} be a sequence of iid standard uniform random

variables. The response variable yt is modeled by

yt = µ(ut, γ(ut)), (8)

where µ(·, ·) is a piece-wise continuous process. For our purposes, assume that

µ(ut, γ(ut)) = xt(γ(ut))′θ(ut) (9)

where θ(·) is a 2× (1+ py) dimensional vector of parameters, and x(γ(·)) = x⊗ (1{q ≤ γ(·)}, 1{q >

γ(·)}), with 1{·} an indicator function and ⊗ the Kronecker product.

Assuming that the right hand side of equation (8) is monotone increasing in ut, it follows that

the conditional quantile function of yt can be written as1

Qyt(τ |=t−1) = µ(τ, γ(τ)), (10)

with =t−1 denoting the σ-field generated by {ys, s ≤ t− 1}.

The model allows for different values of the threshold parameter γ(.) across different quantiles,

but such that the threshold parameter is given for each fixed τ and γ(.) is a continuous function

in τ . This model captures systematic influences on the location, scale and shape of the conditional

distribution function, and thus, it allows for a significant extension of linear regression and time

series models in two dimensions; by allowing for threshold effects and by modeling the whole

quantile process.
1The transition from (9) to (10) is an immediate consequence of the fact that for any monotone increasing function

g and standard uniform random variable, u, we have

Qg(u)(τ) = g(Qu(τ)) = g(τ),

where Qu(τ) is the quantile function of u.
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2.2 Estimation and Inference

For models with a known threshold parameter γ0 ≡ γ0(τ) standard quantile regression (QR) esti-

mation procedures can be applied. These methods consist on finding

θ̂γ0(τ) = arg min
θ

T∑
t=1

ρτ

(
yt − xt(γ0)′θ

)
, (11)

where ρτ (u) = u(τ − I(u < 0)), as in Koenker and Bassett (1978).

The consistency of this vector of estimators for each fixed τ is achieved by the argmax theorem

in van der Vaart and Wellner (1996), and it is shown for pure quantile autoregressive processes in

Koenker and Xiao (2006). These authors also show the asymptotic normality of this type of QR

estimators under proper standardization. In order to generalize Koenker and Xiao (2006) to the

regime switching model we need the following set of assumptions.

Assumptions:

A1: {yt} is a strictly stationary and ergodic sequence;

A2: τ ∈ T = [c, 1− c] with c ∈ (0, 1/2). γ(τ) lies in a compact set G ⊂ R for every τ ∈ T ;

A3: E(‖xt‖2) <∞ with ‖ · ‖ the usual Euclidean norm, and maxt ‖xt‖ = O(
√
T );

A4: Let F (.|=t) = Ft(.) denote the conditional distribution function of yt given =t. Ft(.) has a

continuous Lebesgue density, ft, with 0 < ft(u) < ∞ on U = {u : 0 < Ft(u) < 1} and ft is

uniformly integrable on U ;

A5: Let θγ(τ) = arg minθ E [ρτ (yt − xt(γ)′θ)]. For all τ ∈ T and γ ∈ G, θγ(τ) exists, is unique,

and θγ(τ) ∈ int Θ, with Θ compact and convex;

A6: Ω̂0(γ, γ∗) = 1
T

T∑
t=1
xt(γ)x′t(γ

∗) and Ω̂1(τ, γ) = 1
T

T∑
t=1
f̂t−1(F−1

t−1(τ))xt(γ)xt(γ)′ converge uniformly

to Ω0(γ, γ∗) = E[xt(γ)x′t(γ
∗)] and Ω1(τ, γ) = E[ft−1(F−1

t−1(τ))xt(γ)xt(γ)′], respectively, for

γ(τ) ∈ G and all τ ∈ T .

A7: det(Ω0(γ, γ∗)) > 0, for all γ, γ∗ ∈ G.

These assumptions are common in the quantile regression (QR) and regime switching litera-

ture. A1 guarantees that the process is stationary. Depending on the specific type of model, this
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assumption can be replaced by milder conditions on the values that the parameters in θ can take.

A2 imposes a constraint on the value of γ(.). A3 and A4 are common in the QR literature. A5

guarantees that for each threshold parameter value and quantile the QR problem has a unique

solution. This will be needed for the case where the threshold parameter is not identified. A6 and

A7 guarantee that the variance-covariance matrices in the Wald test statistics derived below exist

and can be estimated for the case when the threshold parameter γ(.) is not identified.

With these assumptions in place we are ready to derive the asymptotic distribution of the

parameter estimators.

Lemma 1. Given assumptions A1-A7, and for γ0 known with τ ∈ T fixed,

√
T

(
θ̂γ0(τ)− θγ0(τ)

)
⇒ N(0, τ(1− τ)Σ(τ, γ0)),

where Σ(τ, γ0) = Ω1(τ, γ0)−1Ω0(γ0, γ0)Ω1(τ, γ0)−1.

Proof. The proof of this result uses standard QR asymptotic theory when γ0 is known. The proof

is a simple extension of that in Koenker and Xiao (2006) for the asymptotic normality in quantile

autoregressive models.

The most interesting case is, however, when the threshold value is not known and must be

estimated. For this case we need to impose the following identification condition:

A8: For all τ ∈ T , (θ0(τ), γ0(τ)) = arg min
(θ,γ)

E [ρτ (yt − xt(γ)′θ)] exists and is unique.

In this case, θ0(τ) ≡ θγ0(τ). In this framework this involves estimating the following nonlinear

QR model,

(θ̂(τ), γ̂(τ)) = arg min
(θ,γ)

T∑
t=1

ρτ

(
yt − xt(γ)′θ

)
. (12)

Regarding estimation, there are two different possible scenarios determined by the continuity or

discontinuity of the threshold model. Each method implies a different methodology and properties

of estimators. Thus, under OLS estimation if the threshold model is continuous on the threshold
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variable qt, the corresponding estimator γ̂ is a
√
T−consistent estimator of γ. Furthermore, Chan

and Tsay (1998), still in the OLS context, show that this estimator converges in distribution to

a normal distribution with mean zero and variance that depends on the correlation of γ̂ with the

vector of estimators θ̂. On the other hand, if the threshold model is discontinuous, the estimator γ̂

converges at a faster rate (T−consistent), and is therefore independent of the vector of estimators of

θ. In this case two-stage estimation procedures can be used to estimate consistently the parameters

of the model, see Hansen (1997, 2000) for details on the method. Moreover, Caner (2002) extends

the results in Chan (1993) and Hansen (2000) to the least absolute deviation estimation of a

threshold model.

Similarly, we can study the consistency of the parameter estimators of (θ0(τ), γ0(τ)) in the

QR framework. We will concentrate on the discontinuous case. Here, the two-stage estimation

procedure is as follows. For fixed τ , consider a grid of γ values in the real line, and for each value

estimate model (11) and save θ̂γ(τ). Then minimize,

γ̂(τ) = arg min
γ

T∑
t=1

ρτ

(
yt − xt(γ)′θ̂γ(τ)

)
. (13)

Interestingly, this two-stage procedure is similar to that developed in Hansen (1996, 1997),

where now we are minimizing the sum of the convex check functions ρτ (·) instead of the sum

of squared residuals. Therefore, our procedure is parallel to Hansen’s procedure but in the QR

framework instead of the OLS one.

The consistency of (θ̂(τ), γ̂(τ)) is provided in the following lemma:

Lemma 2. Given assumptions A1-A8, for fixed τ ∈ T ,

(θ̂(τ), γ̂(τ)) = (θ0(τ), γ0(τ)) + op(1).

Proof. The proof is given in the Appendix.

Now, in order to derive the asymptotic distribution of the standardized parameter estimators

we show that the estimation of γ0(τ) has no first order effect on the asymptotic distribution of θ̂(τ)

properly standardized. The reason, is that γ̂(τ) is consistent for γ0(τ) at a faster rate than θ̂(τ).

The following theorem and lemma formalize this fact.
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Theorem 1. Given assumptions A1-A8, and τ ∈ T fixed,

√
T‖θ̂(τ)− θ0(τ)‖ = Op(1) and T |γ̂(τ)− γ0(τ)| = Op(1).

Proof. The proof is given in the Appendix.

From these two results and Lemma 1 it immediately follows the asymptotic normality of
√
T (θ̂(τ)− θ0(τ)).

Lemma 3 Given assumptions A1-A8, and τ ∈ T fixed,

√
T

(
θ̂(τ)− θ̂γ0(τ)

)
= op(1).

Proof. The result follows from Theorem 1 as an application of the first part of Theorem 2 in Chan

(1993).

These results allow us to make inference about the parameters of T-QAR processes introduced

here, when the threshold parameter is known, and also, and more importantly when this value is

not known and needs to be estimated from the data.

In order to make feasible inference about θ(τ) the conditional density function ft(·) needs to

be consistently estimated. Koenker and Xiao (2006) show that this conditional distribution can be

estimated by the difference quotients,

f̂t−1(F−1
t−1(τ)) =

τi − τi−1

Q̂yt(τi|=t−1)− Q̂yt(τi−1|=t−1)
, (14)

with the quantile process consistently estimated by Q̂yt(τ |=t−1) = xt(γ(τ))′θ̂(τ), for some appro-

priately chosen sequence of different τ values indexed by i.

The following section makes use of these asymptotic results and introduces an innovative hy-

pothesis test for the nonlinearity of the different threshold processes defined for each τ−quantile,

and of the entire quantile process indexed by τ ∈ T .
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3 Nonlinearity tests

General hypotheses on the vector θγ(τ) can be accommodated by Wald-type tests. These test

statistics and associated limiting theory provide a natural foundation for the hypothesis H0 :

Rθγ0(τ) = r, when r is known. Here R is a m× (2× (1 + pY )) full rank matrix with rank m and r

is an m-dimensional vector. These tests in the QR framework are introduced in Koenker and Xiao

(2006) and for γ0 known we obtain

WT (τ, γ0) =
T (Rθ̂γ0 − r)′[RΣ̂(τ, γ0)R′]−1(Rθ̂γ0 − r)

τ(1− τ)
, (15)

with Σ̂(τ, γ0) = Ω̂1(τ, γ0)−1Ω̂0(γ0, γ0)Ω̂1(τ, γ0)−1, and show that underH0, and for fixed τ ,WT (τ, γ0)

is asymptotically χ2
m with m-degrees of freedom.

Important tests within this class are nonlinearity tests for detecting regime switching. For

example, in model (3) the selector matrix is given by R = [1 0 − 1 0; 0 1 0 − 1] and r = 0m,

with 0m a vector of zeros of dimension m = 2. The null hypothesis of interest is that of linearity

of the model, H0 : Rθγ(τ) = 0. For the most interesting cases, γ is a nuisance parameter that

is not identified under the null hypothesis. This is particularly important for the composite test

involving the whole range of quantiles since it is sufficient with γ not identified for a value of τ for

the asymptotic distribution of the test to be nonstandard.

Hansen (1996), following Davies (1977, 1987) and Andrews and Ploberger (1994), proposes a

supremum Wald test and an average Wald test. We also choose these statistics considered now on

the space γ ∈ G for fixed τ , and later, in order to test for nonlinearity on the entire quantile process,

on the space defined by (τ, γ) ∈ T × G. Hansen (1996), in a OLS context and for hypothesis tests

only for the mean, base his test statistics on the score function. In parallel, we use the Bahadur

representation of the QR model (see for instance Koenker, 2005, p.122):

√
T

(
θ̂γ(τ)− θγ(τ)

)
= Ω−1

1 (τ, γ)ST (τ, γ) + op(1), (16)

where ST (τ, γ) = 1√
T

T∑
t=1
xt(γ)ψτ (yt−F−1

t−1(τ)) is the score function and ψτ (u) = τ − I(u < 0) is the

influence function in the quantile regression models.

The next theorem derives the asymptotic distribution of the bivariate process (16). This

theorem is instrumental for the derivation of the asymptotic distribution of the nonlinearity tests

later introduced.
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Theorem 2. Given assumptions A1-A7,

√
T

(
θ̂γ(τ)− θγ(τ)

)
⇒ B(τ, γ), (17)

with B(τ, γ) a bivariate Gaussian process with mean zero and covariance kernel defined by

K((τi, γi), (τj , γj)) = E (B(τi, γi)B(τj , γj)) = (τi ∧ τj − τiτj) Ω1(τi, γi)−1Ω0(γi, γj)Ω1(τj , γj)−1,

with τi, τj ∈ T and γi, γj ∈ G.

Proof. The proof is given in the Appendix.

Corollary 1. Given assumptions A1-A7,

• For τ ∈ T fixed and γ varying in G,

√
T

(
θ̂γ(τ)− θγ(τ)

)
⇒ Bτ (γ), (18)

with Bτ (γ) a univariate Gaussian process with mean zero and covariance kernel defined by,

Kτ (γi, γj) = τ(1− τ)Ω1(τ, γi)−1Ω0(γi, γj)Ω1(τ, γj)−1, (19)

with γi, γj ∈ G.

• For γ ∈ G fixed and τ varying in T ,

√
T

(
θ̂γ(τ)− θγ(τ)

)
⇒ Bγ(τ), (20)

with Bγ(τ) a univariate Gaussian process with mean zero and covariance kernel defined by,

Kγ(τi, τj) = (τi ∧ τj − τiτj) Ω1(τi, γ)−1Ω0(γ, γ)Ω1(τj , γ)−1,

where τi, τj ∈ T .

Proof. The proof follows trivially from fixing one or other parameter in process (16), and from

applying Theorem 2.

The composite hypothesis of linearity of the model is now H0 : Rθγ(τ) = 0 for all γ ∈ G, and

τ ∈ T . However, if one is only interested in testing for linearity for one fixed quantile τ0 the relevant

test statistics are

sup
γ∈G

W(1)
T (τ0, γ), (21)
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and

ave
γ∈G

W(1)
T (τ0, γ), (22)

with

W(1)
T (τ0, γ) = T (Rθ̂γ(τ0)− r)′[RK̂τ0(γ, γ)R

′]−1(Rθ̂γ(τ0)− r), (23)

and where K̂τ0(γ, γ) = τ0(1− τ0)Ω̂1(τ0, γ)−1Ω̂0(γ, γ)Ω̂1(τ0, γ)−1.

Theorem 3. Given assumptions A1-A7, τ0 ∈ T fixed, and under the null hypothesis of linearity

H0 : Rθγ(τ0) = 0,

sup
γ∈G

W(1)
T (τ0, γ) ⇒ sup

γ∈G
W(1)

0 (τ0, γ), (24)

ave
γ∈G

W(1)
T (τ0, γ) ⇒ ave

γ∈G
W(1)

0 (τ0, γ), (25)

with W(1)
0 a process defined by

W(1)
0 = E[ST (τ0, γ)]′Ω−1

1 (τ0, γ)′R′[RKτ0(γ, γ)R
′]−1RΩ−1

1 (τ0, γ)E[ST (τ0, γ)].

Proof. The proof of this theorem follows from Corollary 1 and the continuous mapping theorem.

For testing for linearity for the entire τ−quantile process the test statistic that we propose is

of Kolmogorov-Smirnov type. Let the relevant test statistics be defined as

KS supW = sup
τ∈T

sup
γ∈G

W(2)
T (τ, γ) (26)

and

KS aveW = sup
τ∈T

ave
γ∈G

W(2)
T (τ, γ), (27)

with

W(2)
T (τ, γ) = T (Rθ̂γ(τ)− r)′[RK̂((τ, γ), (τ, γ))R′]−1(Rθ̂γ(τ)− r), (28)

and where K̂((τ, γ), (τ, γ)) = τ(1− τ)Ω̂1(τ, γ)−1Ω̂0(γ, γ)Ω̂1(τ, γ)−1.

Theorem 4. Given assumptions A1-A7, and under the null hypothesis of linearity H0 : Rθγ(τ) = 0,

for all γ ∈ G, and τ ∈ T ,

KS supW ⇒ sup
τ∈T

sup
γ∈G

W(2)
0 (τ, γ) (29)
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and

KS aveW ⇒ sup
τ∈T

ave
γ∈G

W(2)
0 (τ, γ), (30)

with W(2)
0 a process defined by

W(2)
0 = E[ST (τ, γ)]′Ω−1

1 (τ, γ)′R′[RK((τ, γ), (τ, γ))R′]−1RΩ−1
1 (τ, γ)E[ST (τ, γ)].

Proof. The proof of this theorem follows from Theorem 2 and the continuous mapping theorem.

Since the asymptotic null distributions of these Wald type tests are highly nonstandard, depend

upon the covariance functions Kτ0(τ, γ) and K((τ, γ), (τ, γ)), critical values are data-dependent and

in turn cannot be tabulated. We follow the solution proposed in Hansen (1996) and approximate

the p-value of the asymptotic null distributions by an alternative p-value transformation adapted

to QR. In particular, we are interested in approximating the p-value for the supremum and average

tests for τ0 fixed. The procedure is detailed as follows.

Given a sample of observations {yt, xt}, t = 1, . . . , T , denote

ŜT (τ0, γ) = 1√
T

T∑
t=1
xt(γ)ψτ0(yt − F̂−1

t−1(τ0)),

where F̂t−1(·) is an estimator of the corresponding conditional distribution function Ft−1(·). The

asymptotic p-value of the supremum and average of the W(1)
0 (τ0, γ) process can be approximated

by generating independent replicas of the test statistic W(1)
T (τ0, γ), for fixed τ0 and taking the

supremum over γ. Now, using the multiplier central limit theorem in van der Vaart and Wellner

(1996, p.176) we have that

Ŝ∗T (τ0, γ) = 1√
T

T∑
t=1
xt(γ)ψτ0(yt − F̂−1

t−1(τ0))vt,

with {vt}T
t=1 an iid sequence of N(0, 1) random variables, also satisfies (16). By the continuous

mapping theorem and the Bahadur representation discussed above, the corresponding replica

W(1)∗
T (τ0, γ) =

(
RΩ−1

1 (τ0, γ)S∗T (τ0, γ)
)′ (RKτ0(γ, γ)R

′)−1
(
RΩ−1

1 (τ0, γ)S∗T (τ0, γ)
)
, (31)

converges to independent and identical replicas of the asymptotic process in Theorem 2.
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4 Monte Carlo experiments

4.1 Estimating γ

Consider a baseline linear location-scale two-regime switching SETAR process, as a particular T-

QAR model,

yt =
{
θ01 + θ11yt−1 + δyt−1ut, yt−1 ≤ γ0,
θ02 + θ12yt−1 − δyt−1ut, yt−1 > γ0.

(32)

We construct a Monte Carlo experiment with θ01 = θ02 = 0.5, θ11 = θ12 = 0.5, δ = 1, γ0 =

1, u ∼ iid N(0, 1), T = 500, where T is the sample size, and R = 500 where R is the number of

repeated experiments. Figure 1 plots the root mean square error (RMSE) of estimating γ0. For

the QR estimates we consider τ ∈ [0.1, 0.9].

Let θ̂γ(τ) denote the QR estimate for fixed τ and γ, and θ̄γ be the OLS estimate for fixed γ.

The following estimators of γ0 are considered:

Solid line : γ̂(τ) = arg min
γ

T∑
t=1

ρτ

(
yt − xt(γ)′θ̂γ(τ)

)

Dashed line : γ̄(τ) = arg min
γ

T∑
t=1

(
yt − xt(γ)′θ̂γ(τ)

)2

Dotted line : γ̄ = arg min
γ

T∑
t=1

(
yt − xt(γ)′θ̄γ

)2

Here the regressor variable xt(γ) is defined as in Section 2. γ̂(τ) is our preferred estimator,

while γ̄ is the least squares SETAR estimator for the threshold parameter, and γ̄(τ) is a hybrid

estimator that runs QR for each pair (τ, γ) but minimizes the sum of square errors as in the least

squares framework.

The figure shows that γ̂(τ) has the smallest RMSE, which decreases as |τ − 0.5| increases2.

This gives evidence that least squares SETAR models cannot identify the presence of two regimes

that coincide in the mean process. Moreover, this generalizes to the case where a symmetric loss

function such as the square loss function is used to estimate γ (i.e. as used in γ̄ and γ̄(τ)).
2Note that for this case F−1

u (0.5) = 0 and therefore, Qyt(0.5|=t−1, yt−1 ≤ 1) = Qyt(0.5|=t−1, yt−1 > 1).
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Figure 1: RMSE in estimating gamma
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4.2 Nonlinearity tests

Now consider a test for linearity of the two-regime baseline model. If we were modeling the con-

ditional mean this test would involve H0 : θ01 = θ02, θ11 = θ12. An extension of the test for

conditional quantile models could be H0 : θ01(τ0) = θ02(τ0), θ11(τ0) = θ12(τ0), for fixed τ0 ∈ T or

H0 : θ01(τ) = θ02(τ), θ11(τ) = θ12(τ),∀τ ∈ T . In this experiment we assume that γ is not known

and approximate by simulation the distribution of the Wald tests to obtain the p-value transfor-

mation. We calculate the p-value using 1000 random draws and consider a sample size of T = 500.

The experiments are based on R = 500 repeated experiments. In all cases we consider theoretical

sizes of 5% and 10%.

To investigate the empirical size of the tests we consider a standard AR(1) model yt = θ0 +

θ1yt−1 + ut, with θ0 = 0.5, θ1 = 0.5 and u ∼ iid N(0, 1), with simulation results reported in

table 1. We first compute the heteroskedasticity-robust Wald test for least-squares described in

Hansen (1996). As previously found in the literature, the supremum Wald test (supWLS) approach

shows considerable over-rejection. These results are similar to Hansen (1996) or Martinez and

Olmo (2008) that showed similar problems of this test in related nonlinear contexts. Moreover, the

corresponding average Wald test (aveWLS) reports better size properties, although even in this

case, rejection rates are above the theoretical size. Over-rejection is also observed for the extreme

quantiles (0.1 and 0.9) in QR based Wald tests (supWQR and aveWQR). The results support the

evidence that the average Wald test performs better that the supremum, also in the QR context. In

this method, the rejection rates are closer to the theoretical size as the quantile moves towards the

median. Overall, the tests developed here show encouraging signs to provide a better alternative

to the least-squares based Hansen statistics. Kolmogorov-Smirnov tests (KS supWQR and KS

aveWQR) are mainly driven by the extreme quantiles, and as a result, they have high rejection

rates.

In order to evaluate these tests in terms of power we calculate the empirical size for the two-

regime baseline model (32). The results for this experiment are reported in table 2. As expected,

it can be observed that Hansen tests show little power against the null hypothesis of linearity,

because the mean process is the same in both regimes. Rejection rates are only slightly above those

in the size experiments, and therefore, it can be concluded that they do not identify the presence

of different regimes. Moreover, QR based tests have good power properties, which increase towards

the extremes. In this case, tests for τ = 0.5 should not reject, but this power may be due to the

effect of contiguous quantiles. As before, Kolmogorov-Smirnov tests have empirical rejection rates
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Table 1: Size - Gaussian AR(1) process
Theoretical size

0.05 0.10 0.05 0.10
supWLS aveWLS

0.200 0.304 0.095 0.147
τ supWQR aveWQR

0.10 0.304 0.408 0.182 0.278
0.25 0.078 0.121 0.026 0.069
0.50 0.008 0.017 0.017 0.069
0.75 0.052 0.086 0.060 0.113
0.9 0.200 0.304 0.156 0.208

KS supWQR KS aveWQR

0.252 0.400 0.174 0.234

similar to those in the extreme quantiles.

Overall, the average Wald statistics for non-extreme quantiles have the best performance in

terms of size and power.

Table 2: Power
Theoretical size

0.05 0.10 0.05 0.10
supWLS aveWLS

0.321 0.379 0.264 0.367
τ supWQR aveWQR

0.10 1.000 1.000 1.000 1.000
0.25 0.988 0.988 0.988 0.988
0.50 0.632 0.643 0.505 0.574
0.75 1.000 1.000 1.000 1.000
0.9 1.000 1.000 1.000 1.000

KS supWQR KS aveWQR

1.000 1.000 1.000 1.000

5 Empirical Application

Most macroeconomic series are affected by booms and bursts in economic activity that produce in

turn expansionary and contractionary business cycles. It is well known in empirical macroecono-

metrics that the dynamics of these series have an asymmetric behavior which extent depends on

the nature of the macroeconomic series studied. Examples can be found in Beaudry and Koop

(1993) that study the effects of negative and positive shocks in US GDP; Sarno, Valente, and Leon
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(2006) that use regime switching processes to model asymmetries in exchange rates, and Koenker

and Xiao (2006) that study the asymmetries in US unemployment rates with quantile autoregres-

sive models. In particular these authors conclude that there exists heterogeneity in this series that

cannot be simply reflected with processes modeling the mean and estimated with ordinary least

squares methods.

Our analysis extends this study by contemplating the possibility of nonlinearities in the quantile

process. In this way we postulate that the heterogeneity found in series on unemployment growth,

i.e. growth in the number of people unemployed, can be due to asymmetric dynamics in the

quantile process that, for some quantiles of the process, can potentially depend on different manners

on previous values of the variable and lead us, therefore, to propose different TAR processes for

different quantiles. The choice of this series is due to the clear stationary character, in contrast

to US unemployment rates series. Moreover, this is an important variable from the policymaker

perspective, as it clearly anticipates periods of social calm or distress. Figure 2 reports the monthly

unemployment growth series from February 1948 to June 2007.

A preliminary exploratory analysis of this data inclines us to choose autoregressive processes of

order one, which allow us to compare with Monte Carlo experiments above. The nonlinear model

that we explore is

Qyt(τ |yt−1) =
{
θ01 + θ11yt−1, yt−1 ≤ γ(τ),
θ02 + θ12yt−1, yt−1 > γ(τ).

The ordinary least squares estimates for this model appear in table 3. The Hansen’s (1996)

supremum and average Wald-test statistics cannot reject the linearity of the mean process at the

15% significance level. Therefore the data suggest that the mean process follows a linear process

with autoregressive parameter 0.116 (standard error 0.037).

Table 3: OLS estimates

Regime 1 Regime 2 threshold Wald-test (sup) Wald-test (ave)
yt−1 ≤ γ yt−1 > γ

θ01 θ11 θ02 θ12 γ p-value p-value
0.723
(0.423)

0.119
(0.110)

−0.278
(0.235)

0.242
(0.113)

-1.348 0.267 0.148

Note: Standard deviations in parenthesis.

Alternatively, the estimates from the QR method are reported in table 4 and figure 3. The results

from this table are illuminating. As the quantile increases towards unity we find statistical evidence
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Figure 2: Unemployment growth series (in %)

Notes: Monthly unemployment growth for US spanning the period February 1948 to June 2007.
Source: freelunch.com

Table 4: QR estimates

Regime 1 Regime 2 threshold Wald-test (sup) Wald-test (ave)
yt−1 ≤ γ(τ) yt−1 > γ(τ)

τ θ01(τ) θ11(τ) θ02(τ) θ12(τ) γ(τ) p-value p-value
0.10 −0.624

(0.775)
0.595
(0.237)

−3.942
(0.259)

0.025
(0.105)

-1.983 0.019 0.189

0.25 −1.327
(0.166)

−0.0097
(0.064)

−4.147
(1.697)

0.380
(0.238)

3.915 0.622 0.344

0.50 0.944
(0.963)

0.034
(0.158)

0.210
(0.179)

0.196
(0.067)

-2.897 0.041 0.006

0.75 1.928
(0.235)

0.019
(0.073)

−0.587
(1.161)

0.770
(0.268)

1.969 0.028 0.002

0.9 4.529
(0.373)

0.087
(0.088)

1.053
(1.327)

0.876
(0.279)

1.969 0.027 0.003

Kolmogorov-Smirnov 0.040 0.008

Note: Standard deviations in parenthesis.
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Figure 3: Parameter estimates: OLS and QR
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to reject the autoregressive linear specification above. In particular we observe two regimes in the

autoregressive parameter for τ ≥ 0.50. In these cases, the autoregressive parameter for the regime

determined by yt−1 ≤ γ(τ) is not statistically significant. On the other hand, the autoregressive

parameters corresponding to the upper regime (i.e. yt−1 > γ(τ)) are strongly significant and

monotonically increasing as τ goes to 1.

Overall, we can conclude that in calm periods of the economy characterized by levels of un-

employment growth below 2% unemployment growth is serially independent, pointing out that

increases and declines in the level of unemployment have no persistence and are due to instanta-

neous shocks affecting the economy. On the contrary, when unemployment growth reaches extreme

levels, defined by increments of roughly 2% monthly, we conclude that the higher quantiles of the

response variable have quite a strong persistence and depend heavily on the level of unemployment

growth in the previous period. This is particularly remarkable for τ ≥ 0.75. For moderately low

quantiles, on the other hand, we observe no persistence of the variable and unemployment growth

can be considered driven by serially independent shocks.

6 Conclusions

This paper provides useful insights on estimation procedures to identify threshold parameters in

threshold autoregressive models. Moreover, it shows that the threshold quantile autoregressive (T-

QAR) framework has similar asymptotic properties to those found in Chan (1993) study for OLS

based models. Simulation results show that the gains in root mean squared error are considerable

when QR methods are used.

This paper also shows the insensitivity of Hansen (1996, 1997) Wald tests to reject the linearity

hypothesis when the nonlinearity appears in the quantile process but it is absent in the mean

process. To solve this, we propose an alternative Wald test based on QR methods that contains

several advantages over Hansen’s device. First, it detects nonlinearities in asymmetric processes

when the conditional quantile behavior varies but the mean (and variance) process are the same.

Second, it has better empirical size properties in small samples, except for extreme quantiles, than

the OLS based tests.

Finally, in the empirical application we extend the study in Koenker and Xiao (2006) to the

macroeconomic series of unemployment growth. In our study we find statistical evidence of nonlin-

earity in the higher quantiles of the quantile process that the standard linearity test of Hansen fails

to detect. We conclude from our experiment that the higher quantiles of the conditional distribu-
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tion of the dynamics in unemployment growth exhibit an strong persistence when the economy is

in distress periods, that can be well described by processes of autoregressive type. The conditional

median of this variable seems, however, not to be affected by the growth in unemployment produced

in previous periods.

These models have several other potential applications, which are left for future research, but

that we believe highlight the usefulness of this methodology. For instance, following CAPM method-

ologies we may measure the risk premium (in probability) of a risky asset in terms of the risk

premium of the market portfolio (E[RM ] − Rf ), and see whether this depends on the state of

the market (booming or falling markets). Another potential application of T-QAR models is in

exchange rates. These time series are usually modeled by nonlinear processes that assume the

presence of some fluctuation bands. Once these bands are exceeded the market forces (arbitrage

conditions) make the series to be mean-reverting. It can be interesting to analyze the quantile

processes corresponding to these models, and see whether these bands are different across τ , and

their economic implications.
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7 Appendix

First, we prove Lemma 2. The approach to prove consistency will be to use the argmax theorem,

Corollary 3.2.3 van der Vaart and Wellner (1996).

Proof. We first need to establish that MT ⇒M (where ⇒ means weak convergence) in l∞(B) for

all compact set B ⊂ Θ× G, where M(θ) ≡ PTmθ, PT = T−1
∑T

i=1 δXi , and δx assigns mass 1 at x

and zero elsewhere. Then, the argmax theorem will yield the consistency.

For simplicity, define α and β as the subsets of parameters in θ that correspond to the regimes

qt−1 ≤ γ and qt−1 > γ respectively, where the dependence on τ is omitted. We will use the notation

xt = (1, yt−1, yt−2, . . . , yt−py). For the particular SETAR(1) case, qt−1 = yt−1.

Fix a compact set B. We now verify that =B ≡ {mθ : θ ∈ B} is Glivenko-Cantelli. Note that

mθ = ρτ (ξ(τ)− x′tα+ x′tα0)1(qt−1 < γ ∧ γ0) + ρτ (ξ(τ)− x′tβ + x′tα0)1(γ < qt−1 ≤ γ0)

+ ρτ (ξ(τ)− x′tα+ x′tβ0)1(γ0 < qt−1 ≤ γ) + ρτ (ξ(τ)− x′tβ + x′tβ0)1(qt−1 > γ ∨ γ0).

In addition, {ρτ (ξ(τ) − x′tα − x′tα0) : θ ∈ B} and 1{qt−1 < γ ∧ γ0 : θ ∈ B} are separately

Glivenko-Cantelli classes. For the first part, let

P = {gT (θ, γ) : (θ, γ) ∈ Θ× G},

where gT ≡ ρτ (yt − xt(γ)′θ). Note that by assumption A2 Θ× G is compact, P is continuous and

uniformly Lipschitz over Θ × G. Therefore by Lemma 3.10 in van de Geer (2000) we have that

H1,B(δ,P, P ) <∞, that is, the δ-entropy with bracketing of P is finite. Hence, it satisfies a uni-

form law of large numbers. The second part follows directly from assumption A2 and monotonicity

of the indicator function (Theorem 2.7.5 in van der Vaart and Wellner (1996)).

Thus, by corollary 9.26 in Kosorok (2008), the product of the components is integrable, the

product of the two classes is also Glivenko-Cantelli. Similar arguments reveal that the remaining

terms of the sum are also Glivenko-Cantelli and the same theorem yields that =B is Glivenko-

Cantelli. Thus MT ⇒M in l∞(B) for all compact B. Hence, (θ̂(τ), γ̂(τ))
p→ (θ0(τ), γ0(τ)).

Now we prove Theorem 1.

Proof.

We want to show that
√
T‖θ̂(τ)− θ0(τ)‖ = Op(1) and T |γ̂(τ)− γ0(τ)| = Op(1). For simplicity,

we omit the dependence on τ and denote θ̂(τ) = θ̂T and γ̂(τ) = γ̂T .
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Theorem 14.4 in Kosorok (2008) (Rate of convergence) Let MT be a sequence of stochastic

processes indexed by a semimetric space (Θ, d) and M : Θ → R a deterministic function such that

for every θ in a neighborhood of θ0, there exists a c1 > 0 such that

M(θ)−M(θ0) ≤ −c1d̃2(θ, θ0),

where d̃ : Θ×Θ 7→ [0,∞) satisfies d̃(θT , θ) → 0 as d(θT , θ) → 0. Suppose that for all n large enough

and sufficiently small δ, the centered process MT −M satisfies

E∗ sup
d̃(θT ,θ)<δ

√
T |(MT −M)(θ)− (MT −M)(θ0)| ≤ c2φT (δ),

for c2 <∞ and functions φT such that δ 7→ φT (δ)/δα is decreasing for some α < 2 not depending

on n. Let

r2Tφ(r−1
T ) ≤ c3

√
T

for every n and some c3 <∞. If the sequence θ̂T satisfies MT (θ̂T ) ≥ supθ∈ΘMT (θ)−Op(r−2
T ) and

converges in outer probability to θ0, then rT d̃(θ̂T , θ0) = Op(1).

We will use Theorem 14.4 in Kosorok (2008) to obtain the convergence rates via the discrepancy

function d̃(θ, θ0) ≡ ‖θ − θ0‖+
√
|γ − γ0|. Note that this is not a norm since it does not satisfy the

triangle inequality. Nevertheless, d̃(θ, θ0) → 0 if and only if ‖θ − θ0‖ → 0. Moreover, we have that

M(θ)−M(θ0) = P{qt−1 < γ ∧ γ0}
[
ρτ (ξ(τ)− x′tα+ x′tα0)− ρτ (ξ(τ))

]
+ P{γ < qt−1 ≤ γ0}}

[
ρτ (ξ(τ)− x′tβ + x′tα0)− ρτ (ξ(τ))

]
+ P{γ0 < qt−1 ≤ γ}}

[
ρτ (ξ(τ)− x′tα+ x′tβ0)− ρτ (ξ(τ))

]
+ P{qt−1 > γ ∨ γ0}

[
ρτ (ξ(τ)− x′tβ + x′tβ0)− ρτ (ξ(τ))

]
≤ P{qt−1 < a}|x′t(α− α0)|+ P{qt−1 > b}|x′t(β − β0)|+ k1(1 + o(1))

√
|γ − γ0|

≤ P{qt−1 < a}‖xt‖‖α− α0‖+ P{qt−1 > b}‖xt‖‖β − β0‖+ k1(1 + o(1))
√
|γ − γ0|

≤ (k1 ∧ δ1 − o(1))d̃(θ, θ0)

where the first inequality follows from the fact that that ρτ (x+ y)− ρτ (x) ≤ 2|y|, and the product

of the density of qt−1 and |α0 − β0| is bounded below by some k1 > 0. The second inequality

follows from Cauchy-Schwarz inequality. The third inequality follows from both P (qt−1 < a)

and P (qt−1 > b) being bounded below by some δ1 > 0 and A3 (using A3 ‖xt‖ = op(1)). Thus

M(θ)−M(θ0) ≤ d̃(θ, θ0) for all ‖θ − θ0‖ small enough, as desired.
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Consider now the class of functionsMδ ≡ {mθ−mθ0 : d̃(θ, θ0) < δ}. Using previous calculations,

we have

mθ −mθ0 =
[
ρτ (ξ(τ)− x′tα+ x′tα0)− ρτ (ξ(τ))

]
1{qt−1 < γ ∧ γ0}

+
[
ρτ (ξ(τ)− x′tβ + x′tα0)− ρτ (ξ(τ))

]
1{γ < qt−1 ≤ γ0}

+
[
ρτ (ξ(τ)− x′tα+ x′tβ0)− ρτ (ξ(τ))

]
1{γ0 < qt−1 ≤ γ}

+
[
ρτ (ξ(τ)− x′tβ + x′tβ0)− ρτ (ξ(τ))

]
1{qt−1 > γ ∨ γ0}

≤ ‖xt‖‖α− α0‖1{qt−1 < γ ∧ γ0}+ ‖xt‖‖β − α0‖1{γ < qt−1 ≤ γ0}

+ ‖xt‖‖α− β0‖1{γ0 < qt−1 ≤ γ}+ ‖xt‖‖β − β0‖1{qt−1 > γ ∨ γ0}

≡ A1(θ) +A2(θ) +A3(θ) +A4(θ).

Consider first A1(θ). Since {1{qt−1 ≤ t} : t ∈ [a, b]} is in the class of indicator functions, it is a

VC class. So, as a consequence of Lemma 8.17 in Kosorok (2008), it is possible to compute

E∗ sup
d̃(θ,θ0)<δ

|GTA1(θ)| ≤ δ

where GT =
√
T (PT − P ), and PTmθ = MT (θ). Similar calculations apply to A4(θ).

Now we consider A2. An envelope for the class F = {A2(θ) : d̃(θ, θ0) < δ} is F = (‖xt‖‖β0 −

α0‖+ δ)1{γ0 − δ2 < qt−1 ≤ γ0}, then it is possible to verify that

logN[](η‖F‖P,2,F , L2(P )) ≤ log(1/η).

Now Theorem 11.4 in Kosorok (2008) yields

E∗ sup
d̃(θ,θ0)<δ

|GTA2(θ)| = E∗‖GT ‖F × ‖F‖P,2 ≤ δ2.

Similar calculations apply to A3. Combining all the results with the fact that O(δ2) = O(δ), we

obtain E∗ supd̃(θ,θ0)<δ ‖GT ‖Mδ
≤ δ.

Now when δ 7→ φ(δ) = δ, φ(δ)/δα is decreasing for any α ∈ (1, 2). Thus, the condition of the

Theorem 3.2.5 in van der Vaart and Wellner (1996) is satisfied with φ(δ) = δ. Since r2Tφ(1/rT ) = rT ,

we obtain that
√
T d̃(θ̂, θ0) = Op(1). By the form of d̃, this implies that

√
T‖θ̂T − θ0‖ = Op(1) and

T |γ̂T − γ0| = Op(1).

For τ ∈ T and γ ∈ G define

ST (τ, γ, b) =
1√
T

T∑
t=1

xtγψτ (yt − F−1
yt

(τ |=t−1)) = T−1/2
T∑

t=1

xtγψτ (utτ ),
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where utτ = yt − x′tγb and xtγ = xt(γ).

The next lemma shows Donskerness of the process, and will help in the derivation of Theorem

2.

Lemma A1 Suppose assumptions A1-A7 hold. Then, the process ST (τ, γ) is Donsker.

Proof. Let

ST (τ, γ, θ(τ)) = T−1/2
T∑

t=1

xtγ [1(yt ≤ x′tγθ(τ))− τ ]

= T−1/2
T∑

t=1

xtγ [1(Ft(yt) ≤ τ)− τ ]

where Ft(·) is the conditional distribution function of yt, and the last equality follows because

Assumption A4 implies F (·) is absolute continuous and strictly increasing almost everywhere.

Define ut = Ft(yt), then ut has a standard uniform distribution. Hence,

ST (τ, γ, θ(τ)) = T−1/2
T∑

t=1

xtγ [1(ut ≤ τ)− τ ]

= T−1/2
T∑

t=1

(xt1(yt−1 ≤ γ), xt1(yt−1 > γ))[1(ut ≤ τ)− τ ]

. Therefore by Assumption A2-A3, uniformly boundedness, monotonicity of the indicator function

and Theorem 2.7.5 in van der Vaart and Wellner (1996), the bracketing entropy integral is finite

and the Donsker property holds.

Then, we can finally prove Theorem 2.

Proof. Let us fix γ ∈ G, for certain τ ∈ T given. From the Bahadur representation of the QR

model

√
T

(
θ̂γ(τ)− θγ(τ)

)
= Ω̂−1

1 (τ, γ)ST (τ, γ) + op(1),

where ST (τ, γ) = 1√
T

T∑
t=1
xt(γ)ψτ (yt − F−1

t (τ)) is the score function and ψτ (u) = τ − I(u < 0)

is the influence function in the quantile regression models. By the law of iterated expectations

E[xt(γ)ψτ (yt−F−1
t (τ))|=t] = 0. Now, by the central limit theorem, Slutsky’s theorem, and A1-A7,

we have
1√
T

Ω̂−1
1 (τ, γ(τ))

T∑
t=1

xt(γ)ψτ (yt − F−1
t (τ)) ⇒ N (0, τ(1− τ)Σ(τ, γ)) , (33)
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with

Σ(τ, γ) = Ω1(τ, γ)−1Ω0(γ, γ)Ω1(τ, γ)−1. (34)

Now, we can extend this result to the corresponding functional process indexed by τ and γ,

with τ and γ dense in T and G respectively. By Lemma A1, this is possible given that the class of

functions we are interested belongs to the Donsker class. Then, this process converges in distribution

in the Skorohod space D(T ,G), equipped with the uniform norm, to a bivariate Gaussian process

with zero mean and covariance kernel

K((τi, γi), (τj , γj)) = (τi ∧ τj − τiτj) Ω1(τi, γi)−1Ω0(γi, γj)Ω1(τj , γj)−1,

for every i, j = 1, . . . , n with τi, τj ∈ T and γi, γj ∈ G.

Finally, under H0 : Rθγ(τ) = 0, we obtain

√
TR

(
θ̂γ(τ)− θγ(τ)

)
= Ω−1

1 (τ, γ)RST (τ, γ) + op(1), (35)

that converges in distribution to the mean zero bivariate Gaussian process B(τ, γ) with covariance

kernel Kτ ((τi, γi), (τj , γj)).
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