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A family of graded decomposition numbers for diagrammatic Cherednik algebras

C. Bowman1, A. G. Cox1, and L. Speyer2

1Department of Mathematics, City University London, Northampton Square, London, EC1V 0HB,
UK and 2Osaka University, Suita, Osaka, 565-0871, Japan

We provide an algorithmic description of a family of graded decomposition numbers for diagrammatic Cherednik

algebras in terms of affine Kazhdan–Lusztig polynomials.

Introduction

Rational Cherednik algebras arise as degenerations of Cherednik’s double affine Hecke algebra, a tool which
first rose to prominence in the proof of the MacDonald constant term conjectures. Rational Cherednik algebras
have become hugely popular of late due to their vast array of connections with other mathematical objects – in
particular with the theory of symplectic resolutions, Hilbert schemes, and the representation theory of complex
reflection groups.

Given a weighting θ ∈ Rℓ and an e-multicharge κ ∈ (Z/eZ)ℓ one can obtain a charge s := s(κ, θ) ∈ Zℓ via
a process of Uglovation as in [Web]. In [Web], Webster defines a finite dimensional, graded, cellular algebra,
A(n, θ, κ), whose module category provides a ‘2-analogue’ of the category Os of the rational Cherednik algebra
of type G(ℓ, 1, n) and charge s introduced in [GGOR03]. These higher representation theoretic objects often have
forbidding diagrammatic presentations. Their dividends lie in possessing bases and multiplication rules which
are intimately related to their representation theoretic structure.

In this paper, we initiate the combinatorial study of these algebras (this is continued in [BS]). We define the
quiver Temperley–Lieb algebra, TLn(κ), of type G(ℓ, 1, n), to be a certain saturated quotient of A(n, θ, κ) for an
adjacency-free e-multicharge κ ∈ (Z/eZ)ℓ and a FLOTW weighting θ ∈ Rℓ (as in [FLOTW99], see Section 3 for
details). We embed affine Kazhdan–Lusztig theory into the combinatorics of TLn(κ) by interpreting the basis of
this algebra as being indexed by orbits of paths in a Euclidean space under the action of an affine Weyl group
of type Âℓ−1. Strikingly, one can run Soergel’s algorithm internally within the graded basis of the algebra; this
allows us to immediately deduce that the decomposition numbers are given by the associated affine Kazhdan–
Lusztig polynomials! Our proof entirely bypasses the technical machinery of sheaf-theory and D-modules which
are usually essential in proving such results.

Theorem. The graded decomposition numbers for an e-regular block of the quiver Temperley–Lieb algebra of
type G(ℓ, 1, n) are given by (non-parabolic) affine Kazhdan–Lusztig polynomials of type Âℓ−1.

The decomposition matrix of TLn(κ) appears as the submatrix of that of A(n, θ, κ) labelled by one-column
ℓ-multipartitions of n. Therefore, under the equivalence of [Web, Theorem A] we obtain the following corollary.

Corollary. Let κ ∈ (Z/eZ)ℓ be an adjacency-free e-multicharge, θ ∈ Rℓ be a FLOTW weighting, and let
s := s(κ, θ) ∈ Zℓ denote the associated charge. The decomposition numbers of the category Os labelled by one-
column e-regular multipartitions are given by the (evaluations at 1 of) non-parobolic affine Kazhdan–Lusztig

polynomials of type Âℓ−1.

In a marked difference from [Gro], we see that it is ŝlℓ which controls the representation theory of
these rational Cherednik algebras, where ℓ is the the level, rather than the quantum characteristic. Our
alcove-geometric description comes complete with a translation principle; it also allows us to deduce that the
decomposition numbers are stable as the rank n tends to infinity. Thus, we conjecture that the algebras considered
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2 C. Bowman, A. G. Cox, and L. Speyer

here are asymptotically related (as the rank tends to infinity) to affine Kac–Moody algebras (see [Kas90]) and
in finite rank to the generalised blob algebras (see [MW03]). In the level 2 case, the blob algebra first arose in
the study of two-dimensional Potts models [MS94], and has subsequently been related to the Virasoro algebra
[GJSV13] in the limit as n tends to infinity.

The representation theory of rational Cherednik algebras in characteristic zero has received a great deal of
attention of late; in particular Rouquier conjectured in [Rou08, Section 6.5] that the decomposition numbers
of these algebras are equal to coefficients in Uglov’s ‘twisted’ Fock spaces. This conjecture now has three
independent proofs, [RSVV, Los, Web].

In type G(1, 1, n) there are two beautiful procedures for computing these coefficients, the LLT and Soergel
algorithms. The LLT algorithm [LLT96] proceeds via explicit ladder combinatorics and Gaussian elimination; the
(computationally more efficient [GW99]) Soergel algorithm is given in terms of paths in an alcove geometry. In
type G(ℓ, 1, n), there exist several higher-level analogues of the LLT algorithm for computing these coefficients,
[Ugl99, Jac05, Yvo07, Fay10], however the beautiful ladder combinatorics developed in [LLT96] is noticeably
absent. While our algorithm only computes a single slice of the wider family of these higher-level coefficients, it
does benefit from being more explicit and efficient; it also reveals an unforeseen connection between the higher
level and classical cases, and brings to light the aforementioned stability and translation principle.

In order to clarify the above, let’s consider an example. We will omit technical details and definitions at this
stage, and instead concentrate on giving a flavour of the combinatorics that is involved. Let ℓ = 3, n = 13, e = 8,
κ = (0, 4, 6). We shall consider a single block/linkage class of the algebra TL13(κ). We identify a one-column
multipartition with a point in R3 via the map (1λ1 , 1λ2 , 1λ3) 7→ λ1ε1 + λ2ε2 + λ3ε3. We then let R2 denote the

quotient space of R3 by the relation ε1 + ε2 + ε3 = 0. The affine Weyl group of type Â2 acts on R2 fixing the
point −ρ for ρ = e(1, 1, 1)− κ = (8, 4, 2).

ε2

ε1

ε3

γ
β

α⊙

Fig. 1: The black points label the multipartitions of a block of TL13(κ). The origin is labelled as ⊙, the points
α = (4, 6, 3), β = (5, 6, 2) and γ = (4, 9, 0) are also marked. The thick black lines denote the hyperplanes for the
ρ-shifted action of the Weyl group.

For a given µ, we have an associated path ωµ, from the origin to µ. Given λ a point in this space, we look
at paths which may be obtained by folding-up the path ωµ along hyperplanes so that it terminates at λ (as
illustrated shortly); we denote the set of such paths by Path(λ, ωµ).

Each path has an associated degree which can be calculated by running Soergel’s (cancellation-free)
algorithm along this path. This degree changes by +1, 0, or −1 whenever the path steps onto or off-of an
alcove wall. The key to working with the quiver Temperley–Lieb algebras is the following observation,

Dimt(∆µ(λ)) =
∑

ω∈Path(λ,ωµ)

tdeg(ω). (†)

From this, (and the conditions on our paths) it is immediate that a necessary condition for [∆(λ) : L(µ)] 6= 0 is
that ℓ(µ) > ℓ(λ) in the length function associated to our geometry. For a fixed λ, we calculate the decomposition
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numbers [∆(λ) : L(µ)] by running Soergel’s algorithm not once, but many times: we run the algorithm to each
point µ such that ℓ(µ) > ℓ(λ). This is a dual set-up to that usually considered.

As n tends to infinity, we find that there are infinitely many µ such that ℓ(µ) > ℓ(λ); the dimension of
the standard module ∆(λ) and the number of composition factors of ∆(λ) also tend to infinity as n becomes
arbitrarily large. Fixing a value of n ∈ N truncates the set of weights µ in our Euclidean space to a finite set
which labels representations of TLn(κ). We shall see that the decomposition numbers are stable under this
limiting behaviour.

For example, let γ = (4, 9, 0); we wish to calculate the dimension of ∆γ(λ) for λ in the above set. Associated
to the point γ is the path ωγ , given by

(ε1, ε2, ε1, ε2, ε1, ε2, ε1, ε2, ε2, ε2, ε2, ε2, ε2)

and pictured in Figure 2. There are a total of 23 distinct paths which may be obtained from this path by a
series of reflections (as our path passes through three alcove walls). For brevity, we truncate our diagrams so as
to only consider alcoves between the origin and γ. The eight paths are listed in Figures 2, 3, and 4.

Fig. 2: Our fixed path ωγ from the origin to γ = (4, 9, 0). (The space has been cropped to only include
points less than or equal to γ in the dominance ordering.)

Fig. 3: The leftmost two paths are in Path(α, ωγ) and are of degrees 1 and 3 respectively. The final two paths
are the elements of Path(β, ωγ) and are of degrees 0 and 2, respectively.

Fig. 4: The unique paths in Path((2, 9, 2), ωγ), in Path((2, 8, 3), ωγ), and in Path((5, 8, 0), ωγ) of degrees 1, 2,
and 1 respectively.

Those familiar with Soergel’s algorithm will recognise the degrees of the paths listed in the figures, (see
Section 1.4 for more details). In general, we will see that at each stage in our algorithm, we remove earlier
subpatterns of paths; the surviving paths correspond to decomposition numbers. For example, from Figure 3
and equation (†) we deduce that

Dimt(∆γ(α)) = t3 + t1 Dimt(∆γ(β)) = t2 + t0.

Page 4 of 32 Manuscript submitted to International Mathematics Research Notices

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

4 C. Bowman, A. G. Cox, and L. Speyer

Grouping together the path of degree zero in Path(β, ωγ) and the path of degree 1 in Path(α, ωγ) we obtain
a subpattern that is removed under Soergel’s algorithm. The remaining six paths in Figures 2 to 4 survive
under Soergel’s procedure and so the degrees of these paths provide the second column in the decomposition
matrix of (a block of) TL13((0, 4, 6)), in Figure 5. Repeating the procedure, one can obtain the remainder of the
decomposition matrix.

(13, 0, 0) 1
(4, 9, 0) t 1
(12, 1, 0) t · 1
(10, 0, 3) t · · 1
(2, 0, 11) t · · · 1
(2, 9, 2) t2 t · · t 1
(5, 8, 0) t2 t t · · · 1
(5, 0, 8) t2 · · t t · · 1
(10, 1, 2) t2 · t t · · · · 1
(2, 1, 10) t2 · t · t · · · · 1
(5, 6, 2) t+ t3 t2 t2 t2 t2 t t t t · 1
(2, 8, 3) t3 t2 t2 · t2 t t · · t · 1
(4, 1, 8) t3 · t2 t2 t2 · · t t t · · 1
(4, 6, 3) t2 + t4 t3 t3 t3 t3 t2 t2 t2 t2 t2 t t t 1

Fig. 5: The decomposition matrix of a block of TL13((0, 4, 6)).

1 Soergel path algebras

In this section (inspired by [MW03, Section 3]), we define an abstract family of algebras whose bases possess
desirable properties. The combinatorics of these algebras is controlled by orbits of paths in a Euclidean space.

1.1 Graded cellular algebras with highest weight theories

The algebras in which we shall be interested are all examples of graded cellular algebras, as in [HM10]. We
extend their definition by adding two extra axioms, which will afford us extra tools for calculating the graded
characters of the modules of these algebras.

Definition 1.1 (cf. Definition 2.1 of [HM10]). Suppose that A is a Z-graded C-algebra which is of finite rank
over C. We say that A is a graded cellular algebra with a highest weight theory if the following conditions hold.

The algebra is equipped with a cell datum (Λ, T , C, deg), where (Λ,Q) is the weight poset. For each λ, µ ∈ Λ,
such that λ Q µ, we have a finite set, denoted T (λ, µ), and we let T (λ) = ∪µ T (λ, µ). There exist maps

C :
∐

λ∈Λ

T (λ)× T (λ) → A; and deg :
∐

λ∈Λ

T (λ) → Z

such that C is injective. We denote C(S,T) = cλST for S,T ∈ T (λ), and

1. Each element cλST is homogeneous of degree

deg(cλST) = deg(S) + deg(T),

for λ ∈ Λ and S,T ∈ T (λ).

2. The set {cλST | S,T ∈ T (λ), λ ∈ Λ} is a C-basis of A.

3. If S,T ∈ T (λ), for some λ ∈ Λ, and a ∈ A then there exist scalars rSU(a), which do not depend on T, such
that

acλST =
∑

U∈T (λ)

rSU(a)c
λ
UT (mod A⊲λ),

where A⊲λ is the C-submodule of A spanned by

{cµ
QR

| µ ⊲ λ and Q,R ∈ T (µ)}.

Page 5 of 32Manuscript submitted to International Mathematics Research Notices

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Graded decomposition numbers for diagrammatic Cherednik algebras 5

4. The C-linear map ∗ : A → A determined by (cλST)
∗ = cλTS, for all λ ∈ Λ and all S,T ∈ T (λ), is an anti-

isomorphism of A.

5. The identity 1A of A has a decomposition 1A =
∑

λ∈Λ 1λ into pairwise orthogonal idempotents 1λ.

6. For S ∈ T (λ, µ), T ∈ T (λ, ν), we have that 1µc
λ
ST1ν = cλST. There exists a unique element Tλ ∈ T (λ, λ),

and cλ
TλTλ = 1λ.

Unless otherwise stated, all results in this section follow from [HM10]. Suppose that A is a graded cellular
algebra with a highest weight theory. Given any λ ∈ Λ, the graded standard module ∆(λ) is the graded left
A-module

∆(λ) =
⊕

µ∈Λ
z∈Z

∆µ(λ)z,

where ∆µ(λ)z is the C vector-space with basis {cλS | S ∈ T (λ, µ) and deg(S) = z}. The action of A on ∆(λ) is
given by

acλS =
∑

U∈T (λ)

rSU(a)c
λ
U,

where the scalars rSU(a) are the scalars appearing in condition (3) of Definition 1.1. Suppose that λ ∈ Λ. There
is a bilinear form 〈 , 〉λ on ∆(λ) which is determined by

cλUSc
λ
TV ≡ 〈cλS , c

λ
T〉λc

λ
UV (mod A⊲λ),

for any S,T,U,V ∈ T (λ).

Proposition 1.2. If A is a graded cellular algebra with a highest weight theory, then A is a quasi-hereditary
algebra in the sense of [CPS88].

Proof . Condition (6) of the definition implies that ∆λ(λ) is 1-dimensional and spanned by cλ
Tλ . Therefore

〈cS, cTλ〉λ =

{
1 if S = Tλ

0 otherwise.

This implies that the rank of the Gram matrix is non-zero and so the algebra is quasi-hereditary, by [GL96,
Remark 3.10].

Let t be an indeterminate over N0. If M = ⊕z∈ZMz is a free graded C-module, then its graded dimension

is the Laurent polynomial

Dimt(M) =
∑

k∈Z

(dimC Mk)t
k.

If M is a graded A-module and k ∈ Z, define M〈k〉 to be the same module with (M〈k〉)i = Mi−k for all
i ∈ Z. We call this a degree shift by k. If M is a graded A-module and L is a graded simple module let [M : L〈k〉]
be the multiplicity of L〈k〉 as a graded composition factor of M , for k ∈ Z.

Suppose that A is a graded cellular algebra with a highest weight theory. For every λ ∈ Λ, define L(λ) to be
the quotient of the corresponding standard module ∆(λ) by the radical of the bilinear form 〈 , 〉λ. This module
is graded (by [HM10, Lemma 2.7]) and simple, and in fact every simple module is of the form L(λ)〈k〉 for some
k ∈ Z, λ ∈ Λ. We let Lµ(λ) denote the µ-weight space 1µL(λ). The graded decomposition matrix of A is the
matrix DA(t) = (dλµ(t)), where

dλµ(t) =
∑

k∈Z

[∆(λ) : L(µ)〈k〉] tk,

for λ, µ ∈ Λ. The following proposition is a key ingredient in our proof of the main result of this paper, and
follows immediately from [HM10, Proposition 2.18].

Proposition 1.3. If µ ∈ Λ then Dimt(L(µ)) ∈ N0[t+ t−1].

Given λ, µ ∈ Λ such that λ � µ, we say that λ and µ are tableau-linked if the set T (λ, µ) is non-empty. The
equivalence classes of the equivalence relation on Λ generated by this tableau-linkage are called the tableau-blocks
of A.
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6 C. Bowman, A. G. Cox, and L. Speyer

Proposition 1.4. [The Linkage Principle] If λ, µ ∈ Λ label simple modules in the same block of A, then λ and
µ are tableau-linked.

Proof . It is clear that a necessary condition for Dimt(Hom(P (λ),∆(µ))) = dλµ(t) 6= 0, is that T (λ, µ) 6= ∅. The
result then follows from [GL96, (3.9.8)].

This result inspires the next section, in which we connect tableaux to paths in an alcove geometry.

1.2 The alcove geometry

We shall assume standard facts concerning root systems, see [Bou02]. Let {ε1, ε2, . . . , εr} be a set of formal
symbols and set

Er =

r⊕

i=1

Rεi

to be the r-dimensional real vector space with basis ε1, ε2, . . . , εr. We have an inner product 〈 , 〉 given by
extending linearly the relations

〈εi, εj〉 = δi,j

for all 1 6 i, j 6 r, where δi,j is the Kronecker delta.

Let Φ denote a root system embedded in Er as in [Bou02, Plates I to IX]. We take R+ to be the set of
positive roots. For each α ∈ Φ there is a unique coroot α∨ such that 〈α, α∨〉 = 2. For e ∈ N we let W e denote
the affine reflection group generated by the reflections sα,me (for α ∈ Φ, m ∈ Z) given by

sα,me(x) = x− (〈x, α∨〉 −me)α

for all x ∈ Er. Define W = W∞ to be the subgroup of W e generated by the reflections sα,0 for α ∈ Φ.

Now, given ρ ∈ Er, we shall always consider the shifted action of W e by ρ given by

w · x = w(x+ ρ)− ρ

for all w ∈ W e and x ∈ Er. We regard sα,me as a reflection with respect to the hyperplane

hα,me = {λ ∈ Er | 〈λ+ ρ, α∨〉 = me}.

The reflection group W e acting on Er defines a system of facets. A facet is a non-empty subset of Er of the
form

f = {λ ∈ Er |〈λ+ ρ, α∨〉 = mαe for all α ∈ R0
+(f),

(mα − 1)e < 〈λ+ ρ, α∨〉 < mαe for all α ∈ R1
+(f)},

for suitable integers mα ∈ Z and a disjoint decomposition R+ = R0
+(f) ∪R1

+(f). A facet, f, is called an alcove

if |R0
+(f)| = 0 and a wall if |R0

+(f)| = 1. A point x ∈ f is called e-regular (respectively e-singular) if |R0
+(f)| = 0

(respectively |R0
+(f)| > 1). We extend this terminology to the orbit, W e · x, in the obvious fashion.

Let h denote the Coxeter number of the chosen root system Φ in Er. We assume that e > h and that ρ
is chosen so that the origin is always contained in an alcove, which we refer to as the fundamental alcove. The
closure, f, of a facet, f, is defined as follows

f = {λ ∈ Er |〈λ+ ρ, α∨〉 = mαe for all α ∈ R0
+(f),

(mα − 1)e 6 〈λ+ ρ, α∨〉 6 mαe for all α ∈ R1
+(f)}.

We define a length function on the set of alcoves as follows. We say that two alcoves, ai, aj are adjacent if ai ∩ aj
contains a wall. Given any pair of alcoves a and b, there exists a chain of adjacent alcoves,

a = a0, a1, . . . , aℓ = b,

and we define the length ℓ(a, b) to be the minimal value of ℓ in such a chain. We extend this notation to points
in alcoves in the obvious manner.
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1.3 Paths in an alcove geometry

In this section we fix e > h (so that our alcoves contain lattice points) and will define certain paths in our alcove
geometry. It will be convenient to associate paths with non-negative linear combinations of elements, and so
we will first consider a larger space of paths from which our alcove geometry will arise as a quotient. Fix some
s > r and consider the space Es and set Π =

⊕s

i=1 Nεi ⊂ Es. The set Πn =
{∑s

i=1 aiεi |
∑s

i=1 ai = n
}
⊂ Π will

correspond to the set of terminating points of our paths of length n.

We will assume that there is a projection map φ : Es → Er such that φ(εi) = εi for 1 6 i 6 r and

φ(Π) =

r⊕

i=1

Zεi ⊂ Er.

We will abuse notation and write εi for the image of εi in Er for all 1 6 i 6 s.

Example 1.5. Let Φ be a root system of type Ar, in which case we can take s = r + 1 and

φ(εi) =

{
εi if 1 6 i 6 r

−(ε1 + · · ·+ εr) if i = r + 1.

Here we have identified Er with the hyperplane in Er+1 given by ε1 + · · ·+ εr = 0. This will be the example we
focus on for the rest of the paper.

Now let Φ be any root system embedded into Er as in [Bou02, Plates I to IX]. We can take s = 2r and

φ(εi) =

{
εi if 1 6 i 6 r

−ε2r+1−i if r + 1 6 i 6 2r.

Given k ∈ N, we let k denote the set {1, 2, . . . , k}. Given a map w : n → s we define points ω(k) ∈ Er by

ω(k) =
∑

16i6k

εw(i),

for 1 6 k 6 n. We define the associated path of length n in our alcove geometry Er by ω =
(ω(0), ω(1), ω(2), . . . , ω(n)), where we fix all paths to begin at the origin, so that ω(0) = ⊙ ∈ Er. We let ω6k

denote the subpath of ω of length k corresponding to w6k = w|k : k → s.

Definition 1.6. Fix a path ω = (ω(0), ω(1), ω(2), . . . , ω(n)) such that ω(0) = ⊙ ∈ Er. We define a degree
function on ω by induction. We set deg(ω(0)) = 0 and set

deg(ω6k) = deg(ω6k−1) +
∑

α∈Φ

dα(ω, k)

where dα(ω, k) is defined as follows. Fix α ∈ Φ, and consider the hyperplanes hα,me for m ∈ Z. If ω(k) and
ω(k + 1) both lie on some hα,me or if neither lie on some hα,me for m ∈ Z, then dα(ω, k) = 0. Otherwise, exactly
one of ω(k) and ω(k − 1) lies on some hyperplane hα,me. Removing the hyperplane hα,me leaves two distinct
subsets E+

r (α,me) and E−
r (α,me) where ⊙ ∈ E−

r (α,me). If ω(k − 1) ∈ E−
r (α,me), or ω(k) ∈ E+

r (α,me), then
set dα(ω, k) = 0. If ω(k − 1) ∈ E+

r (α,me), then dα(ω, k) = −1. If ω(k) ∈ E−
r (α,me), then dα(ω, k) = +1.

Figure 6 illustrates the four subcases outlined above. In each case the diagram depicts a hyperplane, labelled
by hα,me, with the corresponding subsets E+

r (α,me) and E−
r (α,me) labelled. The incoming/outgoing arrows

labels steps onto and off of the hyperplane and the corresponding dα(ω, k).

Let ω be a path which passes through a hyperplane hα,me at point ω(k) (note that k is not necessarily
unique). Then, let ω′ be the path obtained from ω by applying the reflection sα,me to all the steps in ω after
the point ω(k). In other words, ω′(i) = ω(i) for all 1 6 i 6 k and ω(i′) = sα,me · ω(i) for k 6 i 6 n. We refer to
the path ω′ as the reflection of ω in hα,me at point ω(k) and denote this by skα,me · ω. We write ω ∼ ω′ if the
path ω can be obtained from ω′ by a series of reflections in W e.
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hα,me− +

+0

+1

hα,me− +

+0

+0

hα,me− +

+1

−1

hα,me− +

−1

+0

Fig. 6: The four subcases for the values of dα(ω, k) as ω crosses a wall. The ± indicate the distinct
subsets E+

r and E−
r of Er. In each case the first (respectively second) step has its degree recorded as

a superscript (respectively subscript).

1.4 Soergel’s algorithm for paths

Fix e > h. We now recall the classical construction of Soergel’s algorithm with respect to a path in the geometry.
The procedure outlined below is somewhat simpler, as all points in our geometry belong to the dominant chamber

[Soe97, Section 4].

Definition 1.7. Let e > h, and assume µ ∈ φ(Πn) is an e-regular point. We say that a path ω from ⊙ to
µ of length n is admissible if (i) deg(ω6k) = 0 for all 1 6 k 6 n, and (ii) whenever ω(k) lies on two distinct
hyperplanes hα,m1e and hβ,m2e for some 1 6 k 6 n this implies that 〈α, β∨〉 = 0 (we say that the hyperplanes
are orthogonal).

Given any e-regular point µ ∈ φ(Πn), it is easy to see that there exists an admissible path from ⊙ to µ.

Definition 1.8. For each µ ∈ φ(Πn), we fix one such path, ωµ. We let Path(λ, ωµ) denote the set of all paths
from ⊙ to λ which may be obtained from ωµ by a series of reflections.

Example 1.9. Recall the example from the introduction. Here the geometry is of type Â2, n = 13, e = 8 and
ρ = (8, 4, 2). The path ωγ is recorded in Figure 2. We clearly have that dα(ω, k) = 0 at all points 1 6 k 6 n and
all α ∈ Φ. The two leftmost diagrams in Figure 3 are the elements of Path((4, 6, 3), ωγ). Let ω (respectively ω′)
denote the path in the leftmost (respectively rightmost) case. We have that

dε2−ε3(ω, 11) = 1, dε1−ε3(ω, 12) = −1, dε1−ε3(ω, 13) = 1

are the only non-zero values of dα(ω, k) for 1 6 k 6 n and α ∈ Φ, and therefore deg(ω) = 1. We have that

dε2−ε3(ω
′, 5) = 1, dε1−ε3(ω

′, 12) = 1, dε1−ε3(ω
′, 13) = 1

are the only non-zero values of dα(ω
′, k) for 1 6 k 6 n and α ∈ Φ, and therefore deg(ω′) = 3.

Remark. For µ an e-regular point, and ω an admissible path from ⊙ to µ, there exist 2ℓ(µ) paths ω′ such that
ω′ ∼ ω.

We say that a path, ω, is an alcove-wall path if (i) deg(ω6k) = 0 for all 1 6 k 6 n and (ii) every step lies
either on a wall or in an alcove. It is clear that any alcove-wall path is admissible.

Definition 1.10. Let µ ∈ φ(Πn) be an e-regular point and let ωµ denote our (fixed choice of) path from ⊙ to
µ. For λ ∈ φ(Πn), we define

mωµ(λ) =
∑

ω∈Path(λ,ωµ)

tdeg(ω).

Given ω an admissible path of length n, we let fk denote the facet containing the point ω(k) for 1 6 k 6 n.

Definition 1.11. We fix an admissible path ω from ⊙ to µ of length n. For 1 6 k 6 n, we let

A+(ω, k) ={(γ,mke) | ω(k) ∈ hγ,mke} \ {(γ,mk−1e) | ω(k − 1) ∈ hγ,mk−1e},

A−(ω, k) ={(γ,mk−1e) | ω(k − 1) ∈ hγ,m′

k−1e
} \ {(γ,mke) | ω(k) ∈ hγ,m′

k
e}.

The orthogonality condition on the admissible path ensures that for 1 6 k 6 n, the set A+(ω, k) (respectively
A−(ω, k)) either consists of one element, denoted α+(ω, k) (respectively α−(ω, k)) or is empty.
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Remark. The α+(ω, k) (respectively α−(ω, k)) record the steps in ω which are on to (respectively off of)
hyperplanes in the geometry.

Definition 1.12. Let ω be an admissible path from ⊙ to µ of length n. For 1 6 k 6 n, we set Ak to be the
alcove, minimal in the length ordering, such that 〈λ+ ρ, α+(ω, i)

∨〉 > 0 for all λ ∈ A+(ω, k) and all 0 6 i 6 k
such that A+(ω, k) 6= ∅. We define the alcove-series of ω to be the ordered set whose elements are given by the
alcoves Ak for 0 6 k 6 n recorded without repeats and in increasing order.

Example 1.13. Consider a geometry of type Â2 with ρ = (8, 4, 2) and n = 13. The path ωγ in Figure 2 is an
alcove-wall path. We let ωγ denote the alcove-wall path

(ε1, ε2, ε1, ε2, ε1, ε2, ε2, ε2, ε2, ε2, ε2, ε2, ε1).

Both paths pass through (the same) alcoves of length 0, 1, 2, 3, which we denote by a(i) for i = 0, 1, 2, 3. We have
that

Aωγ

k =





{a(0)} for k = 0, 1, 2,

{a(1)} for k = 3, 4, 5, 6, 7, 8, 9,

{a(2)} for k = 10, 11,

{a(3)} for k = 12, 13;

Aωγ

k =





{a(0)} for k = 0, 1, 2,

{a(1)} for k = 3, 4, 5, 6, 7, 8,

{a(2)} for k = 9,

{a(3)} for k = 10, 11, 12, 13;

and so the alcove series in both cases is given by {a(0), a(1), a(2), a(3)}.

We let A denote the set of all alcoves in Er. We let b, c, d denote alcoves in our geometry and let a0, . . . , aℓ(µ)
denote the alcove series of an admissible path from ⊙ to µ. We define maps

na6i
: A → N0[t] ma6i

: A → N0[t] ea6i
: A → N0[t+ t−1],

where t is a formal parameter, as follows. We have abused notation by writing a6i to remind the reader that at
each point these maps are defined with respect to the set of alcoves {aj | j 6 i}. We set

na6i
(ai) = 1, ma6i

(ai) = 1, ea6i
(ai) = 1.

We define
na6i

(b) = 0, ma6i
(b) = 0, ea6i

(b) = 0

whenever ℓ(b) 66 ℓ(ai). For each adjacent pair of alcoves ai and ai+1, we let si denote the reflection in the
hyperplane passing through ai ∩ ai+1. The closure, b, of any alcove b has one wall which is in the W e-orbit of
si, and we shall write si · b for the image of b in that wall. Then, with ma6i

known, we set

ma6i+1
(si · b) =

{
ma6i

(b) + t−1ma6i
(si · b), ℓ(si · b) > ℓ(b),

ma6i
(b) + tma6i

(si · b), ℓ(si · b) < ℓ(b).
(1.1)

We refer to this procedure as the cancellation-free Soergel algorithm.

Proposition 1.14. Given e > h, suppose that µ and λ belong to alcoves a and b respectively, and furthermore
that µ ∈ W e · λ. We let a0 denote the fundamental alcove and a0, . . . , aℓ(µ) = a denote the alcove series of an
admissible path ωµ. We have that mωµ(λ) = ma6ℓ(µ)

(b).

Proof . For 1 6 i 6 ℓ(µ), note that the ith hyperplane ai ∩ ai+1 is the hyperplane given by the ith non-trivial
α+(m, k). This gives the required bijection between paths (obtained from ωµ by a series of reflections through
the hα+(m,k) for 1 6 k 6 n) and terms in Soergel’s cancellation-free algorithm (given by a sequence of alcoves,
which are determined by the alcove walls ai ∩ ai+1 through which we reflect).

The α+(ω
µ, k) and α−(ω

µ, k′) for 1 6 k < k′ 6 n come in pairs (whenever we step on to a hyperplane, we
must step off of it at some later point). For a pair 1 6 k < k′ 6 n, the hyperplanes hα+(ωµ,k′′) and hα−(ωµ,k′′)

for k < k′′ < k′ are orthogonal to hα+(m,k).

Fix two points λ, λ+ εi ∈ Er and suppose that λ ∈ hα,me. Assume that λ+ εi belongs to E+
r (α,me) or

E−
r (α,me). Let hβ,m′e denote a hyperplane orthogonal to hα,me and sβ,m′e denote the reflection through this

hyperplane. It is clear that sβ,me · (λ+ εi) still belongs to either E
+
r (α,me) or E−

r (α,me), respectively. (Compare
this with the definition of the degree of a path, Definition 1.6.) Note that in general, this would not be true for
non-orthogonal hyperplanes.

Therefore the contribution dα+(m,k)(ω, k
′) to the degree given by the step at point k′ − 1, is the same as if

it were taken at point k + 1. Thus we can assume that k′ = k + 1, in other words that our path is an alcove-wall
path. Folding up an alcove-wall path, ωµ, so that it terminates at λ corresponds to tracing one of the terms in
the Soergel cancellation-free algorithm, as follows:
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(i) When the path steps from alcove b onto the wall b ∩ si · b and through to the alcove si · b, the degree of
the path does not change on alcoves (as −1 + 1 = 0), as illustrated in the second and third diagrams in
Figure 6. This is equivalent to the first term in each of the two cases of equation 1.1.

(ii) When the path steps from alcove si · b onto the wall b ∩ si · b and then returns to the alcove si · b, the
degree either increases or decreases by one, as seen in the first and fourth diagrams in Figure 6, respectively.
This is equivalent to the second term in the two cases of equation 1.1.

For ease in the above, we have tacitly assumed that we never simultaneously step off of a hyperplane and on
to another hyperplane in the same step (as in ωγ in Example 1.13). In general, this is not the case (as in ωγ

in Example 1.13). Our ignoring of this is justified as the Soergel-degree is given by summing over the Soergel-
degrees of the steps from passing through these separate facets (note that in Definition 1.6, the contributions of
the dα for α ∈ R+ to the sum are independent).

In a similar fashion to above, we assume that nai
has been calculated inductively, and we set

n′
a6i+1

(si · b) =

{
na6i

(b) + t−1na6i
(si · b), ℓ(si · b) > ℓ(b);

na6i
(b) + tna6i

(si · b), ℓ(si · b) < ℓ(b);

and

na6i+1
(b) = n′

a6i+1
(b)−

∑

{d|ℓ(d)<ℓ(ai+1)}

(n′
a6i+1

(d)|t=0)nd(b).

We refer to this procedure as the Soergel algorithm.

Remark. We have that n′
a6i+1

(b) = ma6i+1
(b) for i = 0, 1. However this is not true for i > 2; this is because the

inductive definition of the map n′
a6i+1

is given in terms of na6i
(not in terms of n′

a6i
) and therefore there are

cancellations.

Finally, with ea6i
known by induction, we set

ea6i+1
(si · c) = (t+ t−1)ea6i

(si · c) + ea6i
(c) + (n′

a6i+1
(si · c)|t=0)

if ℓ(si · c) > ℓ(c), and ea6i+1
(si · c) = 0 otherwise. We refer to this procedure as the character algorithm.

Remark. It is shown in [Soe97] that na6ℓ(µ)
(b) is equal to the associated Kazhdan–Lusztig polynomial and is

therefore independent of the alcove series (or equivalently, path) taken.

Assume that a0, . . . , aℓ(µ) is the alcove series of our path ωµ from ⊙ to µ. We let b denote an alcove in
Er and λ ∈ W e · µ denote a point in b. From now on we denote eωµ(λ) = ea6ℓ(µ)

and nµ(λ) = na6ℓ(µ)
. We have

chosen this notation to emphasise that the character algorithm is dependent on the choice of path, whereas the
Soergel algorithm is not.

Example 1.15. Let e = 4 and ρ = (4, 2) and consider the root system of type Â1. The projection onto the
space E1 can be pictured as a horizontal copy of the real line, and φ(Π) can be pictured as the integral points
along this line. In order to make the paths as clear as possible, we picture them as paths connecting points in
N{ε1, ε2} ⊂ E2 as depicted in Figure 7. To obtain the projection of such a path onto E1, one can simply flatten
the paths in the obvious fashion. As pointed out in [PRH14, Pla13], these can be regarded as walks on Pascal’s
triangle. Let µ = (0, 11) and let ωµ denote the path

(ε2, ε2, ε2, ε2, ε2, ε2, ε2, ε2, ε2, ε2, ε2).

For λ = (4, 7), there are two elements ω, ω′ ∈ Path11(λ, ω
µ), depicted in Figure 7. The former is of degree 2 and

the latter of degree 0. In the former case, dε1−ε2(ω, 3) = 1, dε1−ε2(ω, 7) = 1. In the latter case, dε1−ε2(ω
′, 7) = 1

dε1−ε2(ω
′, 10) = −1.

Let ν = (5, 6); there are two elements of ω′′, ω′′′ ∈ Path11(ν, ω
µ), depicted in Figure 8, of degree 3 and degree

1 respectively. In the former case, dε1−ε2(ω
′′, 3) = 1, dε1−ε2(ω

′′, 7) = 1 and dε1−ε2(ω
′′, 11) = 1. In the latter case,

dε1−ε2(ω
′′′, 7) = 1.

Figure 9 records the result of running the (cancellation-free) Soergel algorithm along the path ωµ. Notice
that the algorithm produces mωµ(λ) = t2 + 1 and nµ(λ) = t2; similarly mωµ(ν) = t3 + t and nµ(ν) = t3. We
have that eωµ(λ) = 1 and eωµ(ν) = 0.
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Fig. 7: Two paths ω, ω′ ∈ Path((4, 7), ω(0,11)).

Fig. 8: Two paths ω′′, ω′′′ ∈ Path((6, 5), ω(0,11)).

alcove a3′ a2′ a1′ a0 a1 a2
1

1 t
1 t t2 t

1 t t2 + 1 t3 + t t2 t

Fig. 9: This table records the result of running the (cancellation-free) Soergel algorithm along the path
ωµ. The alcoves are labelled by their length and primed (respectively unprimed) if they correspond
to an alcove to the left (respectively right) of the origin in the diagrams in Figures 7 and 8.

Proposition 1.16. Let λ, µ denote points belonging to alcoves in Er. Fix an admissible path ωµ. Let ν vary
over all points such that Path(ν, ωµ) 6= ∅ and Path(λ, ων) 6= ∅. We have that

mωµ(λ) =
∑

Path(ν,ωµ) 6=∅
Path(λ,ων) 6=∅

nν(λ)eωµ(ν).

Proof . Assume that a0, . . . , aℓ(µ) is the alcove series of the path ωµ from ⊙ to µ. A subpattern in Soergel’s
algorithm is removed if (n′

a6i+1
(d)|t=0) 6= 0 for some alcove d. The subpatterns removed in the n-algorithm

are (of course) not removed by the m-algorithm; the e-algorithm will keep track of the leading terms in these
subpatterns. The leading term of the subpattern will remain constant unless it is reflected through a hyperplane
through the lower closure of the alcove, in which case we multiply the subpattern by (t+ t−1). This is particularly
clear from the alcove-wall path definition of Soergel’s algorithm (see also the singular combinatorics for Soergel’s
algorithm developed in [RH06]). The result then follows from the definitions.

Example 1.17. Let l = 3, n = 13, e = 8, ρ = (8, 4, 2) and consider the root system of type Â2. Take α = (4, 6, 3),
β = (5, 6, 2) and γ = (4, 9, 0). Let ωγ be the alcove-wall path depicted in Figure 2 in the introduction. The set
of elements in Path(−, ωγ), together with their degrees, is depicted across Figures 3 and 4. Figures 10 and 11
depict the four steps of running Soegel’s algorithm along ωγ .

Under the Soergel procedure, we remove the subpattern labelled by the zero in the alcove containing the
point β. The ‘new zero’ is recorded by the character algorithm. We have that

mωγ (λ) = eωγ (γ)nγ(λ) + eωγ (β)nβ(λ)

for any point λ ∈ φ(Πn). Here eωγ (β) = t0 and eωγ (γ) = t0 and eωγ (λ) = 0 otherwise. This rewriting process is
depicted in Figure 11.
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0

0

1

1

0

2

1

2+0
1

0

3+1
2

1

Fig. 10: The first four steps of running Soergel’s cancellation-free algorithm along ωγ . We have
recorded the powers of the polynomials only (for example, 2 + 0 should be read as t2 + t0).

2+0
1

0

3+1
2

1

=
2

1

0

3

2

1

+
0

1

Fig. 11: Rewriting the mωγ (λ) in terms of nµ(λ) and eωγ (µ).

Example 1.18. Let l = 3, n = 21, e = 6, ρ = (6, 4, 2) and consider the root system of type Â2. We leave it as
an exercise for the reader to show that

mω(4,17,0)(λ) = n(4,17,0)(λ) + n(15,4,2)(λ) + (t+ t−1)n(6,9,0)(λ)

for any λ ∈ φ(Πn). This is the smallest example where we find a path in negative degree. In this case,

eω(4,17,0)(6, 9, 0) = (t+ t−1), eω(4,17,0)(15, 4, 2) = t0, eω(4,17,0)(4, 17, 0) = t0.

1.5 Algebras with Soergel-path bases

Fix e > h. We shall now define a family of algebras whose representation theory is governed by paths in Euclidean
space and show that the decomposition numbers of such an algebra are given by Soergel’s algorithm. Our proof
is based on Kleshchev and Nash’s algorithm for computing decomposition numbers (see [KN10]).

Definition 1.19. Let An(ρ, e) denote a graded cellular algebra with a highest weight theory with respect to
some poset Λn. Let

Λn →֒ φ(Πn) ⊂ Er,

where Er is equipped with the action of the affine Weyl group, W e, associated to a root system Φ, and φ is a
projection from the set of paths in Es for some s > r as in Section 1.3. We say that the algebra An(ρ, e) has a
Soergel-path basis with respect to Φ if (i) there exists a degree preserving bijective map

ω : T (λ, µ) → Path(λ, ωµ)

such that ω(Tµ) = ωµ is admissible for all e-regular µ ∈ Λn, and (ii) if λ ∈ Λn, and µ ∈ W e · λ with ℓ(µ) 6 ℓ(λ),
then µ ∈ Λn.

Proposition 1.20. Let An(ρ, e) denote an algebra with a Soergel-path basis and suppose that dλµ(t) ∈ tN0[t]
for all λ 6= µ ∈ Λn. Then the following hold:

(i) we have Dimt(∆µ(λ)) = mωµ(λ) ∈ N0[t, t
−1] and Dimt(Lµ(λ)) = eωµ(λ) ∈ N0[t+ t−1];

(ii) if Dimt(∆µ(λ)) = 0, then dλµ(t) = 0;

(iii) we have Dimt(∆µ(µ)) = Dimt(Lµ(µ)) = 1;

(iv) if Path(λ, ωµ) = ∅, then Dimt(∆µ(λ)) = 0;

(v) if Path(λ, ωµ) = ∅, then Dimt(Lµ(λ)) = 0;
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(vi) we have that

Dimt(∆µ(λ)) =
∑

ν 6=µ
Path(ν,ωµ) 6=∅
Path(λ,ων) 6=∅

dλν(t)Dimt(Lµ(ν)) + dλµ(t).

Proof . Part (i) is clear by Proposition 1.3, (iii) is a restatement of the condition that ωµ is the only path in
Path(µ, ωµ). A necessary condition for Dimt(Hom(P (µ),∆(λ)) 6= 0 is that ∆µ(λ) 6= 0, therefore (ii) follows.

Part (iv) is by definition, and part (v) follows from the cellular structure. Finally, (vi) follows from
(i), (iii), (v) and our assumption that dλµ(t) ∈ tN0[t] for λ 6= µ.

A point µ ∈ Λn is e-regular if and only if all points in the orbit W e · µ are also e-regular. If An(ρ, e) is
an algebra with a Soergel-path basis, then Proposition 1.4 implies that the linkage classes (under the ρ-shifted
W e-action) decompose into blocks for the algebra An(ρ, e). We therefore say that a block of An(ρ, e) is an
e-regular block if it belongs to an e-regular linkage class. We say that a standard, simple, or projective module
is e-regular if it belongs to an e-regular block.

Theorem 1.21. Let An(ρ, e) denote an algebra with a Soergel-path basis of type Φ. Suppose that dλµ(t) ∈ tN0[t]
for all λ, µ ∈ Λn such that λ 6= µ. The graded decomposition numbers of an e-regular block of An(ρ, e) are given
by the Soergel algorithm

dλµ(t) = nµ(λ)

and the characters of the e-regular simple modules are given by the character algorithm

Dimt(Lµ(λ)) = eωµ(λ).

Proof . By Proposition 1.20 (ii), we may assume Path(λ, ωµ) 6= ∅. We now calculate dλµ(t) and Dimt(Lµ(λ))
by induction on the length ordering on alcoves. Induction begins when ℓ(µ, λ) = 0, hence µ = λ, and we have
dµµ(t) = 1 by Proposition 1.20 (iii) and Dimt(Lµ(µ)) = eωµ(µ) = 1.

Let ℓ(µ, λ) > 1. By induction, we know dλν(t) and Dimt(Lµ(ν)) for points ν ∈ Λn such that ℓ(µ, ν), ℓ(λ, ν) <
ℓ(µ, λ) . By Proposition 1.20 (vi) we have

Dimt(Lµ(λ)) + dλµ(t) = Dimt(∆µ(λ))−
∑

ν 6=µ, ν 6=λ
Path(ν,ωµ) 6=∅
Path(λ,ων) 6=∅

dλν(t)Dimt(Lµ(ν)).

By induction and Proposition 1.20 (i), the right-hand side is equal to

mωµ(λ)−
∑

ν 6=µ, ν 6=λ
Path(ν,ωµ) 6=∅
Path(λ,ων) 6=∅

nν(λ)eωµ(ν).

We know that this final sum is equal to eµ(λ)nλ(λ) + nµ(λ)eµ(µ) by Proposition 1.16. Our base case for induction
showed that nλ(λ) = 1 = eµ(µ), therefore

mωµ(λ)−
∑

ν 6=µ, ν 6=λ
Path(ν,ωµ) 6=∅
Path(λ,ων) 6=∅

nν(λ)eωµ(ν) = eωµ(λ) + nµ(λ).

Recall that Dimt(Lµ(λ)) ∈ N0[t+ t−1] and dλµ ∈ tN0[t]. Therefore there is a unique solution to the equality
(see [KN10, Section 4.1: Basic Algorithm] for a general form, or [Soe97] for the interpretation in terms of
Kazhdan–Lusztig theory) given by

Dimt(Lµ(λ)) = eωµ(λ), dλµ(t) = nµ(λ).
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Corollary 1.22. Let An(ρ, e) denote an algebra with a Soergel-path basis and suppose dλµ(t) ∈ tN0(t) for
λ 6= µ. Let λ, λ′ ∈ a and µ, µ′ ∈ b for some alcoves a, b and suppose that µ ∈ W e · λ and µ′ ∈ W e · λ′. Then

dλµ(t) = dλ′µ′(t).

Proof . This follows as Soergel’s algorithm is well-defined on alcoves.

2 The diagrammatic Cherednik algebra

In this section we recall the definition of the diagrammatic Cherednik algebras (reduced steadied quotients of
weighted KLR algebras in Webster’s terminology) constructed in [Web].

2.1 Combinatorial preliminaries

Fix integers ℓ, n ∈ Z>0, g ∈ R>0 and e ∈ {3, 4, . . . } ∪ {∞}. We define a weighting θ = (θ1, . . . , θℓ) ∈ Rℓ to be
any ℓ-tuple such that θi − θj is not an integer multiple of g for 1 6 i < j 6 ℓ. Let κ denote an e-multicharge

κ = (κ1, . . . , κℓ) ∈ (Z/eZ)ℓ.

Definition 2.1. We say that θ ∈ Rℓ is a well-separated (respectively FLOTW) weighting if |θj − θi| > ng
(respectively |θi − θj | < g) for all 1 6 i < j 6 ℓ.

Definition 2.2. An ℓ-multipartition λ = (λ(1), . . . , λ(ℓ)) of n is an ℓ-tuple of partitions such that |λ(1)|+ · · ·+
|λ(ℓ)| = n. We will denote the set of ℓ-multipartitions of n by Pℓ

n.

Let λ = (λ(1), λ(2), . . . , λ(ℓ)) ∈ Pℓ
n. The Young diagram [λ] is defined to be the set

{(r, c,m) ∈ N×N× {1, . . . , ℓ} | c 6 λ(m)
r }.

We refer to elements of [λ] as nodes (of [λ] or λ). We define the residue of a node (r, c,m) ∈ [λ] to be κm + c− r
(mod e).

We define the Russian array as follows. For each 1 6 m 6 ℓ, we place a point on the real line at θm and
consider the region bounded by half-lines at angles 3π/4 and π/4. We tile the resulting quadrant with a lattice
of squares, each with diagonal of length 2g. For each node of [λ] we draw a box in the Russian array. We place
the first node of component m at θm on the real line, with rows going northwest from this node, and columns
going northeast. The diagram is tilted ever-so-slightly in the clockwise direction so that the top vertex of the
box (r, c,m) (that is, the box in the rth row and cth column of the mth component of [λ]) has x-coordinate
θm + g(r − c) + (r + c)ǫ.

Here the tilt ǫ is chosen so that nǫ is absolutely small with respect to g (so that ǫ ≪ g/n) and with respect
to the weighting (so that g does not divide any number in the interval |θi − θj |+ (−nǫ,+nǫ) for 1 6 i < j 6 ℓ).
With these assumptions firmly in place, we will drop any mention of ǫ when speaking of the ghost distance,
g ∈ R>0, or the weighting, θ ∈ Rℓ.

We define a loading, i, to be an element of (R× (Z/eZ))n such that no real number occurs with multiplicity
greater than one. Given a multipartition λ ∈ Pℓ

n we have an associated loading, iλ, given by the projection of
the top vertex of each box (r, c,m) ∈ [λ] to its x-coordinate i(r,c,m) ∈ R, and attaching to each point the residue
κm + c− r (mod e) of this node.

We let Dλ denote the underlying ordered subset of R given by the points of the loading. Given a ∈ Dλ, we
abuse notation and let a denote the corresponding node of λ (that is, the node whose top vertex projects onto
x-coordinate a ∈ R). The residue sequence of λ is given by reading the residues of the nodes of λ according to
the ordering given by Dλ.

Example 2.3. Let ℓ = 2, g = 1, ǫ = 1/100, and θ = (0, 0.5). The bipartition ((2, 1), (13)) has Young diagram and
corresponding loading iλ given in Figure 12. The residue sequence of λ is (κ1 + 1, κ1, κ2, κ1 − 1, κ2 − 1, κ2 − 2),
and the ordered set Dλ is {−0.97, 0.02, 0.52, 1.03, 1.53, 2.54}. The node x = −0.97 in λ can be identified with
the node in the first row and second column of the first component of λ.

Definition 2.4. We refer to an unordered multiset R of n elements from (Z/eZ) as a residue set of cardinality
n. We let Pℓ

n(R) denote the subset of Pℓ
n whose residue set is equal to R.
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Fig. 12: The diagram and loading of the bipartition ((2, 1), (13)) for ℓ = 2, g = 1, θ = (0, 0.5).

Example 2.5. Let n = 3, ℓ = 2, e = 4, g = 2, κ = (0, 2), and θ = (0, 1). The set P2
3 ({0, 1, 2}) consists of 4

bipartitions, namely (∅, (13)), ((1), (12)), ((2), (1)), and ((3),∅). We record the diagrams corresponding to these
bipartitions in Figure 13; in the cases where one of the components is empty, we record where it would be, for
perspective.

Fig. 13: The loadings of the bipartitions of 3 with residue {0, 1, 2} for θ = (0, 1), g = 2.

The respective sets Dµ for the bipartitions (∅, (13)), ((1), (12)), ((2), (1)), and ((3),∅), are as follows:

{1 + 2ǫ, 3 + 3ǫ, 5 + 4ǫ}, {0 + 2ǫ, 1 + 2ǫ, 3 + 3ǫ}, {−2 + 3ǫ, 0 + 2ǫ, 1 + 2ǫ}, {−4 + 4ǫ,−2 + 3ǫ, 0 + 2ǫ}.

Definition 2.6. Let λ, µ ∈ Pℓ
n. A λ-tableau of weight µ is a bijective map T : [λ] → Dµ which respects residues.

In other words, we fill a given node (r, c,m) of the diagram [λ] with a real number d from Dµ (without
multiplicities) so that the residue attached to the real number d in the loading iµ is equal to κm + c− r
(mod e).

Definition 2.7. A λ-tableau, T, of shape λ and weight µ is said to be semistandard if

◦ T(1, 1,m) > θm,

◦ T(r, c,m) > T(r − 1, c,m) + g,

◦ T(r, c,m) > T(r, c− 1,m)− g.

We denote the set of all semistandard tableaux of shape λ and weight µ by SStd(λ, µ). Given T ∈ SStd(λ, µ),
we write Shape(T) = λ.

Remark 2.8. In this paper, we only consider examples of multipartitions in which each component is a hook.
This means that when drawing diagrams in the Russian convention, no two nodes have the same x-coordinate
for ǫ = 0, therefore we omit ǫ from our tableaux and weightings without introducing ambiguity.

Definition 2.9. Let i and j denote two loadings of size n. We say that i dominates j if for every real number
a ∈ R and every r ∈ Z/eZ, we have that

|{(x, r) ∈ i | x < a}| > |{(x, r) ∈ j | x < a}|.

Given λ, µ ∈ Pℓ
n, θ ∈ Rℓ, we say that λ θ-dominates µ (and write µ Pθ λ) if iλ dominates iµ.
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Example 2.10. We have the following two important examples of dominance orders. Let n = 3 and ℓ = 2
and take (θ1, θ2) so that (i) 0 < θ2 − θ1 < g (ii) θ2 − θ1 > ng. The dominance order on a P l

n(R) is given by
intersecting the posets in Figure 14 with the set of bipartitions with residue class R. The leftmost poset in
Figure 14 will be of the most interest to us in this paper.

(∅, (13))

((13),∅)

((1), (12))

((12), (1))

((1), (2))

((2), (1))

((2, 1),∅)

(∅, (2, 1))

((3),∅)

(∅, (3))

(∅, (13))

(∅, (2, 1))

(∅, (3))((1), (12))

((13),∅) ((2), (1))

((1), (2))

((12), (1))

((3),∅)

((2, 1),∅)

Fig. 14: The Hasse diagrams of the posets corresponding to the FLOTW and well-separated
weightings.

Example 2.11. We continue Example 2.5 with n = 3, ℓ = 2, e = 4, g = 2, κ = (0, 2) and θ = (0, 1). In this case,
the dominance order on bipartitions of residue {0, 1, 2} is given by reading the diagrams in Figure 13 from left
to right in ascending order. In other words

(∅, (13)) ⊳θ ((1), (12)) ⊳θ ((2), (1)) ⊳θ ((3),∅).

Recall the loadings of these bipartitions from Example 2.5. Recall that we let ǫ → 0 for ease of notation. Figure
15 lists all three semistandard tableaux of shape λ and weight µ (for µ 6= λ) for λ, µ in this residue class.

5
3

1

0

3

1

0

−2

1

Fig. 15: The semistandard tableaux T ∈ SStd(((1), (12)), (∅, (13))), U ∈ SStd(((2), (1)), ((1), (12))),
and V ∈ SStd(((3),∅), ((2), (1))), respectively.

Remark. We have that Pℓ
n = ∪RPℓ

n(R) is a disjoint decomposition of the set Pℓ
n; notice that all of the above

combinatorics respects this decomposition.

2.2 The diagrammatic Cherednik algebra

Recall that we have fixed ℓ, n ∈ Z>0, g ∈ R>0 and e ∈ {3, 4, . . . } ∪ {∞}. Given any weighting θ = (θ1, . . . , θℓ)
and κ = (κ1, . . . , κℓ) an e-multicharge, we will define what we refer to as the diagrammatic Cherednik algebra,
A(n, θ, κ).

This is an example of one of many finite dimensional algebras (reduced steadied quotients of weighted
KLR algebras in Webster’s terminology) constructed in [Web], whose module categories are equivalent, over the
complex field, to category O for the rational cyclotomic Cherednik algebra [Web, Theorem 2.3 and 3.9].

Definition 2.12. We define a θ-diagram of type G(ℓ, 1, n) to be a frame R× [0, 1] with distinguished black
points on the northern and southern boundaries given by the loadings iµ and iλ for some λ, µ ∈ Pℓ

n(R) and a
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collection of curves each of which starts at a northern point and ends at a southern point of the same residue,
i say (we refer to this as a black i-strand). We further require that each curve has a mapping diffeomorphically
to [0, 1] via the projection to the y-axis. Each curve is allowed to carry any number of dots. We draw

◦ a dashed line g units to the left of each strand, which we call a ghost i-strand or i-ghost ;

◦ vertical red lines at θm ∈ R each of which carries a residue κm for 1 6 m 6 ℓ which we call a red κm-strand.

We now require that there are no triple points or tangencies involving any combination of strands, ghosts or red
lines and no dots lie on crossings. We consider these diagrams equivalent if they are related by an isotopy that
avoids these tangencies, double points and dots on crossings.

Remark. Note that our diagrams do not distinguish between ‘over’ and ‘under’ crossings.

Definition 2.13 (Definition 4.1 [Web]). The diagrammatic Cherednik algebra, A(n, θ, κ), is the C-algebra
spanned by all θ-diagrams modulo the following local relations (here a local relation means one that can be
applied on a small region of the diagram).

(2.1) Any diagram may be deformed isotopically; that is, by a continuous deformation of the diagram which at
no point introduces or removes any crossings of strands (black, ghost, or red).

(2.2) For i 6= j we have that dots pass through crossings.

i j

=

i j

(2.3) For two like-labelled strands we get an error term.

i i

=

i i

+

i i i i

=

i i

+

i i

(2.4) For double crossings of black strands, we have the following.

i i

= 0

i j

=

ji

(2.5) If j 6= i− 1, then we can pass ghosts through black strands.

i j

=

i j i j

=

i j

(2.6) On the other hand, in the case where j = i− 1, we have the following.

i i−1

=

i i−1

−

i i−1

(2.7) We also have the relation below, obtained by symmetry.

i i−1

=

i i−1

−

i i−1
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(2.8) Strands can move through crossings of black strands freely.

ki j

=

ki j

Similarly, this holds for triple points involving ghosts, except for the following relations when j = i− 1.

(2.9)

jji

=

jji

−

jji

(2.10)

ii j

=

ii j

+

ii j

In the diagrams with crossings in (2.9) and (2.10), we say that the black (respectively ghost) strand bypasses the
crossing of ghost strands (respectively black strands). The ghost strands may pass through red strands freely.
For i 6= j, the black i-strands may pass through red j-strands freely. If the red and black strands have the same
label, a dot is added to the black strand when straightening. Diagrammatically, these relations are given by

(2.11)

i i

=

ii ji

=

i j

and their mirror images. All black crossings and dots can pass through red strands, with a correction term.

(2.12)

ij k

=

ij k

+

ij k

δi,j,k

(2.13)

= =

(2.14)

= =

Finally, we have the following non-local idempotent relation.

(2.15) Any idempotent where the strands can be broken into two groups separated by a blank space of size > g
(so no ghost from the right-hand group can be left of a strand in the left group and vice versa) with all
double-red strands in the right-hand group is referred to as unsteady and set to be equal to zero.

Remark. We remark that the θ-diagrams are clearly dependent on our choice of the parameters e, ℓ, n ∈ N

and g ∈ R>0, as well as θ ∈ Rℓ and κ ∈ (Z/eZ)ℓ. The dependence of A(n, θ, κ) on e and ℓ is subsumed by the
dependence on κ. We have chosen to not emphasise the dependence of A(n, θ, κ) on g ∈ R>0 because this ‘ghost’
variable can always be scaled appropriately so that the definition of the algebra depends only on θ ∈ Rℓ.

Finally, for the reader’s convenience, we make note of the choices of notation we have used, and how they
match those in [Web, Definition 4.1]. There, Webster defines the algebra over a ring, S. He notes that one
interesting case (giving rise to a nice grading) is when S is a field, and his parameters h, z1, . . . , zℓ are all zero.
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This is the setting we work in. Furthermore, Webster has a parameter k in his presentation, which we have set
to −1. Finally, the strands in Webster’s diagrams have ghosts appearing to the left or right of their associated
strands, depending on whether g (which he denotes by −κ in the version of his paper we cite) is negative or
positive, respectively. Here, we have allowed only positive g, (or equivalently negative κ) so as to reduce some
confusion.

2.3 The grading on the diagrammatic Cherednik algebra

This algebra is graded as follows:

◦ dots have degree 2;

◦ the crossing of two strands has degree 0, unless they have the same label, in which case it has degree −2;

◦ the crossing of a black strand with label i and a ghost has degree 1 if the ghost has label i− 1 and 0
otherwise;

◦ the crossing of a black strand with a red strand has degree 0, unless they have the same label, in which
case it has degree 1.

In other words,

deg

i

= 2 deg

i j

= −2δi,j deg

i j

= δj,i+1 deg

i j

= δj,i−1

deg

i j

= δi,j deg

i j

= δj,i.

2.4 Representation theory of the diagrammatic Cherednik algebra

Given any T ∈ SStd(λ, µ), we have a θ-diagram BT consisting of a frame in which the n black strands each
connecting a northern and southern distinguished point are drawn so that they trace out the bijection determined
by T in such a way that we use the minimal number of crossings without creating any bigons between pairs of
strands or strands and ghosts. This diagram is not unique up to isotopy (since we have not specified how to
resolve triple points), but we can choose one such diagram arbitrarily.

Given a pair of semistandard tableaux of the same shape (S,T) ∈ SStd(λ, µ)× SStd(λ, ν), we have a diagram
CS,T = BSB

∗
T where B∗

T is the diagram obtained from BT by flipping it through the horizontal axis. Notice that
there is a unique element Tλ ∈ SStd(λ, λ) and the corresponding basis element CTλ,Tλ is the idempotent in
which all black strands are vertical. A degree function on tableaux is defined in [Web, Defintion 2.13]; for our
purposes it is enough to note that deg(T) = deg(BT) as we shall always work with the θ-diagrams directly.

Theorem 2.14 ([Web, Section 2.6]). The algebra A(n, θ, κ) is a graded cellular algebra with a highest weight
theory. The cellular basis is given by

C = {CS,T | S ∈ SStd(λ, µ),T ∈ SStd(λ, ν), λ, µ, ν ∈ P
ℓ
n}

with respect to the θ-dominance order on the set Pℓ
n and the anti-isomorphism given by flipping a diagram

through the horizontal axis.

Remark. Notice that the basis of A(n, θ, κ) also respects the decomposition of Pℓ
n by residue sets. Given a

residue set R, we let AR(n, θ, κ) denote the subalgebra of A(n, θ, κ) with basis given by all θ-diagrams indexed
by multipartitions λ, µ, ν ∈ Pℓ

n(R).

Theorem 2.15 ([Web], Theorem 6.2). Over C, the (basic algebra of the) diagrammatic Cherednik algebra
A(n, θ, κ) is Koszul. Over C, we therefore have that the graded decomposition numbers dλµ(t) ∈ tN0[t] for
λ 6= µ ∈ Pℓ

n.

Example 2.16. We continue Example 2.5 with n = 3, ℓ = 2, e = 4, g = 2, and κ = (0, 2) and θ = (0, 1). Consider
the block with residue R = {0, 1, 2}.

The loadings of the four distinct λ, µ ∈ Pℓ
n(R) are depicted in Figure 13. The three distinct semistandard

tableaux S of shape λ and weight µ for λ 6= µ are depicted in Figure 15 and the corresponding basis elements BS
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0 20 2 1

0 20 21

0 202 1

Fig. 16: The basis elements corresponding to the tableaux T, U, and V in SStd(((1), (12)), (∅, (13))),
SStd(((2), (1)), ((1), (12))), and SStd(((3),∅), ((2), (1))), respectively (see Figure 15).

0 202 1 0 202 1

Fig. 17: Basis of the standard module ∆((3),∅). The frames of the diagrams have been truncated in
the horizontal axis so as to fit next to one another.

are depicted in Figure 16. For each λ ∈ Pℓ
n(R), there is an element Tλ ∈ SStd(λ, λ) (the trivial bijection from

iλ to itself) and a corresponding element BTλ (for each λ the diagram BTλ consists of 3 vertical black strands
with x-coordinates given by iλ). The full 7-dimensional algebra is given by taking the pairs of flipped elements
CST for S and T of the same shape.

The left standard module ∆((3),∅) is two-dimensional with basis as depicted in Figure 17. The former
diagram contains no crossings, and so is of degree 0. In the latter diagram (corresponding to the tableau
V ∈ SStd(((3),∅), ((2), (1)))), the crossing of the black strand of residue 2 with the red strand of residue 2 has
degree 1 (and is the only crossing of non-zero degree); therefore this diagram is of degree 1. We shall now show
that [∆((3),∅) : L((2), (1))] = t. To see this, it suffices to check that the latter diagram in Figure 17 belongs to
the radical of ∆((3),∅).

By the definition of the bilinear form on ∆((3),∅), it is enough to show that (BV)
∗(BV) = 0. We apply

relation (2.11) followed by relations (2.5) and (2.11) to the product B∗
VBV to obtain the rightmost diagram as

in Figure 18.

0 202 1

=

0 202 1

=

0 202 1

Fig. 18: The product (BV)
∗(BV). The first equality follows from relations (2.11); the second follows

from relations (2.5) and (2.11).

We now apply relation (2.7) to the rightmost diagram in Figure 18, thus obtaining two terms, as depicted
in Figure 19. The first term is zero because the black 2-strand can be pulled > |g| units to the left (by isotopy,
as in relation (2.1)) so that the centre of the diagram is an unsteady idempotent (and so is 0, by relation (2.15)).
We can then repeat the argument above for the second term, and hence rewrite it as a sum of two terms: the

Page 21 of 32Manuscript submitted to International Mathematics Research Notices

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Graded decomposition numbers for diagrammatic Cherednik algebras 21

former (respectively latter) term is unsteady (respectively is unsteady after applying relation (2.11)). Therefore
the product is zero, as required.

0 202 1

= (−1)

0 202 1

+

0 202 1

Fig. 19: The two terms obtained by applying relation (2.7) to the rightmost diagram in Figure 18.

One can treat the other standard modules in a similar fashion and hence compute the entire decomposition
matrix of this block (depicted in Figure 20). Alternatively, one can calculate the decomposition numbers using
the graded characters of standard modules and appealing to Proposition 1.3.

(∅, (13)) 1
((1), (12)) t 1
((2), (1)) · t 1
((3),∅) · · t 1

Fig. 20: The graded decomposition matrix for the algebra AR(n, θ, κ) as in Example 2.5.

3 The quiver Temperley–Lieb algebra of type G(ℓ, 1, n)

In this section we shall define the quiver Temperley–Lieb algebras of type G(ℓ, 1, n) and prove that these algebras

possess Soergel-path bases of type Âℓ−1. We hence calculate the graded decomposition numbers of the e-regular
blocks of these algebras. We then consider the level 2 case is greater detail; we calculate the full submodule
structure of the standard modules of an e-regular block of such an algebra.

Fix ℓ, n, e ∈ N and g ∈ R>0. Recall from Definition 2.1 that θ ∈ Rℓ is said to be a FLOTW weighting
if 0 < |θj − θi| < g for all 1 6 i < j 6 ℓ. We say that an e-multicharge, κ ∈ (Z/eZ)ℓ, is adjacency-free if
κi 6∈ {κj − 1, κj , κj + 1} for 1 6 i < j 6 ℓ. Note that a tacit assumption for κ ∈ (Z/eZ)ℓ to be adjacency-free is
that 2ℓ 6 e.

We let π denote the set of all ℓ-multipartitions of n all of whose components have at most one column. We
refer to this as the set of one-column multipartitions. We let

eπ =
∑

λ 6∈π

CTλTλ .

We shall see in the proof of Proposition 3.3 below that any such choice of FLOTW weighting, θ ∈ Rℓ, guarantees
that π is a saturated subset of Pℓ

n with respect to the θ-dominance order.

Lemma 3.1. Let κ be an adjacency-free e-multicharge. Given two choices of FLOTW weighting, θ(1), θ(2) ∈ Rℓ,
the algebras A(n, θ(1), κ) and A(n, θ(2), κ) are isomorphic.

Proof . Given κ an adjacency-free e-multicharge, we have that for any two choices θ(1) and θ(2) of FLOTW
weighting, the combinatorics of tableaux are identical. This is because (i) the x-coordinates of the θ(1) and θ(2)

loadings of any given multipartition differ only by moving the nodes of a given component by less than |g| units
to the left or right and (ii) the restriction on κ implies that the distance between any pair of nodes of adjacent
residue is at least |g|. This results in a bijection between the cellular bases of the algebras A(n, θ(1), κ) and
A(n, θ(2), κ). The basis elements identified under this bijection may be obtained from one another by isotopy.
Therefore this is an isomorphism of algebras, via relation (2.1) of Section 2.2.
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By the previous lemma, it is enough to consider a preferred choice of FLOTW weighting. For the remainder
of the paper, given TLn(κ) with κ ∈ (Z/eZ)ℓ, we shall fix g = ℓ and θ = (0, 1, 2, . . . , ℓ− 1) (this choice is easily
seen to satisfy the conditions above), and adopt the conventions of Remark 2.8. With this choice made, the
loadings of multipartitions in π have a very simple form. Namely, given any λ ∈ π of the form

λ = (1λ1 , 1λ2 , . . . , 1λℓ)

(with
∑l

i=1 λi = n) the loading iλ has x-coordinates given by the set

{(i− 1) + jℓ | λi 6= 0 and 1 6 j 6 λi}.

Given θ as above, we refer to the θ-dominance order on multipartitions as the FLOTW dominance order.

Definition 3.2. Fix an adjacency-free e-multicharge κ ∈ (Z/eZ)ℓ and a FLOTW weighting θ ∈ Rℓ. We define
the quiver Temperley–Lieb algebra of type G(ℓ, 1, n), denoted TLn(κ), to be the algebra

TLn(κ) = A(n, θ, κ)/(A(n, θ, κ)eπA(n, θ, κ)).

Proposition 3.3. The quiver Temperley–Lieb algebra of type G(ℓ, 1, n) is a graded cellular algebra with a
highest weight theory. The cellular basis is given by

{CST | S ∈ SStd(λ, µ), T ∈ SStd(λ, ν), λ, µ, ν ∈ π},

with respect to the FLOTW dominance order on the set of one-column multipartitions, π. We have that
dλµ(t) ∈ tN0[t] for λ 6= µ elements of π.

Proof . We shall show that the set π is saturated in the θ-dominance order for θ ∈ Rℓ a FLOTW weighting. In
other words, given any λ ∈ π and µ �θ λ, we have that µ ∈ π. This will imply that

〈CST | S ∈ SStd(λ, µ), T ∈ SStd(λ, ν), λ, µ, ν 6∈ π〉C

is an ideal of A(n, θ, κ) (the ideal generated by eπ, in fact) and the resulting quotient has the desired basis
(by conditions (2) and (3) of Definition 1.1 and Theorem 2.14). The graded decomposition numbers (as well
as dimensions of higher extension groups) are preserved under this quotient; this follows by the arguments of
[Don98, Appendix: Lemmas A3.1 and A3.3] (for the ungraded case) as the ideal is generated by a (degree zero)
idempotent.

Recall that 0 < |θj − θi| < g for 1 6 i < j 6 ℓ. This implies that if we add a box to the second column of
any component λ(m) (that is, add a node (1, 2,m) for some m), this box has x-coordinate strictly less than
any box in the first column of any component, and thus the resulting multipartition is more dominant in the
θ-dominance ordering. Therefore the set of one-column multipartitions is saturated.

Definition 3.4. Let λ be a one-column multipartition (1λ1 , 1λ2 , . . . , 1λℓ). A node of λ is removable if it can be
removed from the diagram of λ to leave the diagram of a (one-column) multipartition, while a node not in the
diagram of λ is an addable node of λ if it can be added to the diagram of λ to give the diagram of a one-column
multipartition.

If the node has residue r ∈ Z/eZ, we say that the node is r-removable or r-addable. Given λ ∈ π and
r ∈ Z/eZ, we let Add(λ, r) denote the set of 1 6 j 6 ℓ such that there is an r-addable node in the jth component
of λ.

In the previous section, we refrained from defining the degree of a general tableau. This was because of
the technicalities in defining addable and removable nodes for such tableaux (see [Web, Section 2.2]). These
difficulties do not appear for tableaux corresponding to one-column multipartitions.

Definition 3.5. Let λ and µ be two one-column ℓ-multipartitions of n. Let � denote a removable node of [λ]
of residue r ∈ Z/eZ. We set

dλ(�) =
∣∣{addable r-nodes of λ to the right of �}

∣∣
−
∣∣{removable r-nodes of λ to the right of �}

∣∣.

Given 1 6 k 6 n and T ∈ SStd(λ, µ), we let Tk denote the node of [λ] containing the entry Dµ(k) and we
let T6k denote the tableau consisting of the nodes with entries in Dµ{1, 2, . . . , k}. We define the degree of the
tableau T recursively, setting deg(T) = 0 when T is the unique ∅-tableau. We set

deg(T) = dλ(Tn) + deg(T<n).
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Example 3.6. Let e = 4, ℓ = 2, n = 7, and κ = (0, 2). By tableau-linkage, it is clear that any residue class
decomposes as a sum of blocks of TLn(κ). Fix the residue class to be {0, 0, 1, 2, 2, 3, 3}. The one-column
multipartitions with these residues for our given value e-multicharge are

{((17), (0)), ((16), (1)), ((13), (14)), ((12), (15))}. (3.1)

Formally, the loading of the multipartition λ = ((17), (0)) is

Dλ = {0 + ǫ, 2 + 2ǫ, 4 + 3ǫ, 6 + 4ǫ, 8 + 5ǫ, 10 + 6ǫ, 12 + 7ǫ}.

With the conventions of Remark 2.8 in place, the loadings of the multipartitions in equation (3.1) are given by

(0, 2, 4, 6, 8, 10, 12), (0, 1, 2, 4, 6, 8, 10), (0, 1, 2, 3, 4, 5, 7), (0, 1, 2, 3, 5, 7, 9),

respectively. The semistandard tableaux of shape (13, 14) are given in Figure 21, along with their degrees. For
example, the nodes in the rightmost diagram are of degree 0 except for those containing the integers 4 and 12,
which are of degree 1. Therefore the rightmost tableau has degree 2.

0
2

4

1
3

5
7 0

2
9

1
3

5
7 0

2
4

1
6

8
10 0

2
12

4
6

8
10

Fig. 21: These semistandard tableaux are of weights ((13), (14)), ((12), (15)), ((16), (1)) and ((17),∅) respectively.
The tableaux are of degrees 0, 1, 1, and 2 respectively.

3.1 The geometry

Let n, ℓ, e be non-negative integers such that e > 2ℓ and let κ ∈ (Z/eZ)ℓ be an adjacency-free e-multicharge. We
identify λ ∈ π with a point in Eℓ via the map (1λ1 , . . . , 1λℓ) 7→

∑
i λiεi. We then let Eℓ−1 denote the quotient

space of Eℓ by the relation ε1 + ε2 + · · ·+ εn = 0. Let Φℓ−1 be a root system of type Aℓ−1 with simple roots

{εi − εj : 1 6 i < j 6 ℓ},

and let W e
ℓ denote the corresponding affine Weyl group, generated by the affine reflections si,j,me with

1 6 i < j 6 ℓ and m ∈ Z and which acts on Eℓ−1 via

si,j,me(x) = x− (〈x, εi − εj〉 −me)(εi − εj).

Let ρ = (e− κ1, . . . , e− κℓ). Given an element w ∈ W e
ℓ , we set

w ·ρ x = w(x+ ρ)− ρ.

We say that λ ∈ π is an e-regular multipartition if it is identified with an e-regular point in Eℓ−1. Note that
condition (ii) of Definition 1.19 is satisfied for this embedding of Λn in Euclidean space.

Lemma 3.7. Given λ ∈ π, we have that

〈λ+ ρ, εi − εj〉 = me

for some m ∈ Z, if and only if the addable nodes in the ith and jth components of the multipartition λ have
the same residue.

Proof . To see this, note that both statements are equivalent to

(λi + e− κi) ≡ (λj + e− κj) (mod e).
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Fig. 22: The path ω(T) ∈ Path((3, 4), ω(7,0)).

Definition 3.8. Given λ, µ ∈ π and T ∈ SStd(λ, µ), we define the component word R(T) of T to be given by
reading the entries of the tableau in numerical order and recording the components in which they appear. We
define the path ω(T) to be the associated path in the alcove geometry.

Example 3.9. Let e = 4, ℓ = 2, n = 7, and κ = (0, 2). Let T ∈ SStd(((13), (14)), ((17),∅)) denote the rightmost
tableau depicted in Figure 21. The component word, R(T), is (1, 1, 2, 2, 2, 2, 1). The path ω(T) is pictured in
Figure 22.

Given the unique Tµ ∈ SStd(µ, µ), it is clear that ω(Tµ) = ωµ is the path corresponding to the word
w : {1, . . . , n} → {1, . . . , ℓ} given by

w(1) = min{i | µi 6= 0}

and for i > 1,
w(i) = (w(i− 1) + j) modulo ℓ

where j > 1 is minimal such that 〈ωµ(i− 1) + ρ, εw(i−1)+j〉 < µw(i−1)+j where the subscripts are also read
modulo ℓ.

Example 3.10. As in the introduction, let ℓ = 3, n = 13, e = 8, κ = (0, 4, 6). For µ = (5, 6, 2) the component
word of Tµ is

(1, 2, 3, 1, 2, 3, 1, 2, 1, 2, 1, 2, 2).

Proposition 3.11. Given an e-regular µ ∈ π, we fix the path ω(Tµ) as above. We have that ω defines a bijective
map

ω : SStd(λ, µ) → Path(λ, ωµ).

Proof . The map ω is clearly an injective map, it remains to show that both sets have the same size. The sets
SStd(µ, µ) and Path(µ, ωµ) each possess a unique element Tµ, respectively ωµ. For 1 6 k 6 n, let r(k) denote
the residue of the node Tµ

k and let t(k) denote the component of the ℓ-multipartition in which this node is added.
For 1 6 k 6 n, it follows by Lemma 3.7 that

Add(Shape(Tµ
6k−1), r(k)) = {i | ωµ(k) ∈ hεi−εt(k),mike for some mik ∈ Z}.

We let dk denote the cardinality of this set.

We construct both T ∈ SStd(−, µ) and ω ∈ Path(−, ωµ) step-by-step; in the former case, by adding one
node at a time to the tableau and in the latter case by taking one step at a time in the geometry.

The number of choices to be made at the kth point in the tableau is equal to dk, for 1 6 k 6 n. Therefore
the number of tableaux of weight µ is equal to d1d2 . . . dn. On the other hand, in the notation of Section 1.3,
any path ω ∈ Path(−, ωµ) may be written as

ω = s1εi(1)−εt(1),mi1e
. . . snεi(n)−εt(n),mine

ωµ

for i(k) ∈ Add(Shape(Tµ
6k−1), r(k)) and mik ∈ Z (of course, if dk = 1, the reflection is necessarily trivial). The

number of such paths is equal to the number of distinct possible series of reflections, d1 . . . dn. The result
follows.

Corollary 3.12. If λ, µ ∈ π, label simple modules in the same TLn(κ)-block, this implies that their images in
Eℓ−1 are in the same W e

ℓ−1-orbit under the ρ-shifted action.
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Proof . This follows from Proposition 1.4, as it is easy to see that the equivalence classes of the relation generated
by λ ∼ µ if Path(λ, ωµ) 6= ∅ are the same as the W e

ℓ−1-orbits.

Lemma 3.13. Let λ = (1λ1 , . . . , 1λℓ) ∈ π be such that λi > λj for some 1 6 i, j 6 ℓ and suppose that the
residues of the addable nodes in ith and jth components of λ are equal to r ∈ (Z/eZ).

Then λ ∈ Eℓ−1 lies on a hyperplane of the form xi − xj = mije for some mij ∈ Z. We have that (λ+ εi) ∈
E+

ℓ−1(εi − εj ,mije) and (λ+ εj) ∈ E−
ℓ−1(εi − εj ,mije).

Proof . We have seen that λ lies on a hyperplane by Lemma 3.7. We have assumed that λi > λj , and so

〈λ+ ρ+ εi, εi − εj〉 > 〈λ+ ρ, εi − εj〉

〈λ+ ρ+ εj , εi − εj〉 < 〈λ+ ρ, εi − εj〉

as required.

Proposition 3.14. The map ω : SStd(λ, µ) → Path(λ, ωµ) is degree preserving.

Proof . We fix a tableau T ∈ SStd(λ, µ) and let ω := ω(T) denote the corresponding element of Path(λ, ωµ).
For 1 6 k 6 n, we truncate to consider the path of length k − 1 (respectively tableau with k − 1 nodes), ω6k−1

(respectively T6k−1) and identify this with the multipartition Shape(T6k−1) ∈ π.

Let rk denote the residue of the addable node Tk and let t(k) denote the component in which this node is
added. By the definition of the Soergel-degree, we are interested in the cases where 1 6 i 6 ℓ is such that

(i) ω(k − 1) ∈ hεi−εt(k),mike and ω(k) ∈ E−
ℓ−1(εi − εt(k),mike) for some mik ∈ Z,

(ii) ω(k − 1) ∈ E+
ℓ−1(εi − εt(k),mike) and ω(k) ∈ hεi−εt(k),mike for some mik ∈ Z.

By Lemma 3.13, the 1 6 i 6 ℓ above label the components of

(i) the rk-addable nodes of T6k−1 to the right of Tk,

(ii) the (rk − 1)-addable nodes of T6k−1 to the right of Tk.

We observe that, because of the condition κi 6∈ {κj , κj + 1} for i 6= j, the set of 1 6 i 6 ℓ which label (rk − 1)-
addable nodes of T6k to the right of Tk is equal to the set of rk-removable nodes of T6k−1 to the right of Tk.
Therefore the result follows.

Proposition 3.15. Given an e-regular µ ∈ Pℓ
n, the path ωµ is admissible.

Proof . It is clear that deg(ω6k) = 0 for 1 6 k 6 n. Now assume that ωµ(k) lies on two (or more) distinct
hyperplanes xi − xj = m1e and xi′ − xj′ = m2e for some 1 6 k 6 n and m1,m2 ∈ Z. We will show that i, j, i′, j′

are necessarily distinct, and so the hyperplanes are orthogonal.

To prove the claim, we recall our description of ωµ. Let rk denote the residue of the addable node Tk and let
t(k) denote the component in which this node is added. It is clear that the result holds for k = 0, we proceed by
induction. For 1 6 k 6 n, assume ωµ(k) lies on the hyperplane hεi−εt(k),mike for some mik ∈ Z. Our assumption
on κ ensures that κt(k) 6= κj , κj ± 1 for any 1 6 j 6 ℓ. This implies that if 〈ωµ(k) + ρ, εt(k) − εj〉 ≡ 0 (mod e)
for any 1 6 j 6 ℓ, then 〈ωµ(k) + ρ, εj〉 = 〈ωµ + ρ, εj〉. Our assumption that µ is e-regular implies that there is
a maximum of one such value of 1 6 j 6 ℓ. The result follows.

This allows us to obtain the main theorem as stated in the introduction to this paper.

Theorem 3.16. Let n ∈ N and κ ∈ (Z/eZ)ℓ be an adjacency-free e-multicharge. The algebra TLn(κ) has a

Soergel-path basis of type Âℓ−1. The graded decomposition numbers of an e-regular block are given by Soergel’s
algorithm

dλµ(t) = nµ(λ),

and the characters of the e-regular simple modules are given by the character algorithm

Dimt(Lµ(λ)) = eωµ(λ).
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Proof . This follows from Theorems 1.21 and 2.15 and Propositions 3.3, 3.11, 3.14, and 3.15.

We also observe the following stability in the decomposition numbers as n tends to infinity. Fix n, ℓ ∈ N.
Given λ a one-column multipartition of n and i > 0, we let λ+ (1i, . . . , 1i) denote the one-column multipartition
of n+ iℓ obtained by adding i boxes to every component of λ. This defines an injective map from multipartitions
of n to multipartitions of n′ = n+ iℓ. These points may be identified with points in the hyperplanes
ε1 + · · ·+ εℓ = n and ε1 + · · ·+ εℓ = n+ iℓ of Eℓ−1, respectively. We identify points in these two hyperplanes
via the projection in the direction ε1 + · · ·+ εℓ.

Theorem 3.17. The decomposition numbers of TLn(κ) are stable as n tends to infinity. To be more precise,

dλµ(t) = dλ+(1i,...,1i),µ+(1i,...,1i)(t)

for i > 0.

Proof . Given ω ∈ Path(λ, ωµ) we let ω′ ∈ Path(λ+ (1i, . . . , 1i), ωµ+(1i,...,1i)) denote the concatenated path

(ε1, ε2, . . . , εℓ)
i ◦ ω.

It is clear that this map is a degree preserving bijection. The result follows.

Recall that a one-column multipartition is said to be e-regular if it corresponds to an e-regular point in
Euclidean space under the embedding of Subsection 3.1. The following corollary is immediate from the definition
of the quiver Temperley–Lieb algebras as saturated quotients of the diagrammatic Cherednik algebras.

Corollary 3.18. Fix an adjacency-free e-multicharge κ ∈ (Z/eZ)ℓ and a FLOTW weighting, θ ∈ Rℓ. Let λ, µ
denote a pair of e-regular one-column multipartitions. The graded decomposition numbers for A(n, θ, κ) are

dλµ(t) = nµ(λ),

where nµ(λ) is the associated affine Kazhdan–Lusztig polynomial of type Âℓ−1. These decomposition numbers
are stable in the limit as n tends to infinity as in Theorem 3.17 above.

Under the equivalence of [Web, Theorem A] we immediately obtain the corollary in the introduction to the
paper.

The Soergel-path basis contains a vast amount of information concerning the representation theory of the
quiver Temperley–Lieb algebras of type G(ℓ, 1, n). We have already seen that it provides a new interpretation for
Soergel’s algorithm for computing the decomposition numbers of TLn(κ). In the next section we shall consider
the ℓ = 2 case, calculate the full submodule structure of the standard modules of TLn(κ) for κ ∈ (Z/eZ)2, and
show that the algebra is positively graded.

3.2 Remarks on the generalised blob algebras

We have already remarked that our approach to the algebras TLn(κ) is heavily inspired by the combinatorics
of [MW03]. In [MW03], the generalised blob algebra, which we denote bn(κ), is defined as a certain quotient of
the Ariki–Koike algebra of type G(ℓ, 1, n) with e-multicharge κ ∈ (Z/eZ)ℓ.

In [MW03], it is conjectured that the decomposition numbers of the generalised blob algebras are given by
the same Kazhdan–Lusztig polynomials as those considered here. Our algebra is a quotient of the diagrammatic
Cherednik algebra, whereas the generalised blob algebra is the corresponding quotient of the Ariki–Koike algebra.
For a fixed weighting θ, the standard/Specht modules of these algebras have the same labelling set; however,
there is no known cellular basis for the Ariki–Koike algebra with respect to the θ-dominance order (except when
θ is well-separated, see [GJ11]) and hence no way to relate the representation theories of the generalised blob
and Ariki–Koike algebras via an analogue of Proposition 3.3. Moreover, the resulting quotient algebra would
not be amenable to our methods as it does not possess a Soergel-path basis (for example, for ℓ = 2 the blob
algebra is not positively graded, [Pla13]). However, we present the following conjecture.

Conjecture 3.19. The algebras bn(κ) and TLn(κ) are Morita equivalent.
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3.3 The quiver Temperley–Lieb algebras of level two

For ℓ = 2, the structure of the standard modules for TLn(κ) labelled by e-regular points is particularly simple.
The proofs in this section are lightly sketched, but augmented with illustrative examples.

We remark that the submodule lattices obtained here are identical to those computed for the blob algebra in
[MW00]. This provides further evidence that the quiver Temperley–Lieb algebras are (graded) Morita equivalent
to the generalised blob algebras.

Let ai denote the alcove of length i = ℓ(ai) to the right of the origin and ai′ denote the alcove of length
i = ℓ(ai′) to the left of the origin, as depicted in the examples below. Fix a point λ0 in the alcove containing the
origin. We let λi and λi′ denote the points in alcoves ai and ai′ which are in the same orbit as λ0.

Proposition 3.20. For κ ∈ (Z/eZ)2, the algebra TLn(κ) is positively graded. We have that

dµ,ν(t) = nν(µ) =

{
tj−i for i < j

0 otherwise.

where µ ∈ {λi, λi′} and ν ∈ {λj , λj′}.

Proof . Positivity follows as our paths start at ⊙ and the root system is of rank 1. The closed form for these
Kazhdan–Lusztig polynomials is well-known (see for example the introduction to [MW03]).

Remark. The algebra TLn(κ) is not positively graded for ℓ > 3, as seen in Example 1.18.

Given any pair µ ∈ {λi, λi′} and ν ∈ {λj , λj′} with i < j, there exists a unique element of Path(µ, ων) of
maximal degree equal to j − i. This is the unique path, ω(T), terminating at µ which may be obtained from the
path ωµ using the maximum number of reflections in the hyperplanes a0 ∩ a1 and a0 ∩ a1′ . We let 1νµ denote the
element BT for ω(T) the unique maximal path in Path(ν, µ).

Example 3.21. Let n = 11, e = 4 and κ = (0, 2). Some of maximal and non-maximal paths are given in
Figures 23 and 24.

a0a1′a2′a3′ a1 a2 a3 a0a1′a2′a3′ a1 a2 a3

Fig. 23: The two elements of Path(λ0, ω
λ3′ ). The former (respectively latter) is maximal of degree 3

(respectively non-maximal of degree 1).

a0a1′a2′a3′ a1 a2 a3 a0a1′a2′a3′ a1 a2 a3 a0a1′a2′a3′ a1 a2 a3

Fig. 24: Some examples of maximal paths (of degree 2, 1, and 1 respectively).

The elements 1νµ corresponding to the paths in Figure 24 are depicted in Figure 25.
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12
′

0 =

0 2

12
′

1′ =

0 2

11
′

0 =

0 2

Fig. 25: The elements 12
′

0 , 11
′

0 , and 12
′

1′ corresponding to the paths in Figure 24.

Theorem 3.22. If ℓ = 2, the full submodule structure of the TLn(κ)-modules ∆(λi) and ∆(λi′) are given by
the strong Alperin diagrams (in the sense of [Alp80]) below.

L(λi)

L(λi+1′ 〈1〉)L(λi+1〈1〉)

L(λi+2〈2〉)L(λi+2′ 〈2〉)

L(λi′ )

L(λi+1′ 〈1〉)L(λi+1〈1〉)

L(λi+2〈2〉)L(λi+2′ 〈2〉)

Letting µ ∈ {λi, λi′} and ν ∈ {λj , λj′}, we therefore have that

Dimt(HomTLn(κ)(∆(ν),∆(µ))) = tj−i,

for i < j (in which case this homomorphism is injective) and the dimension is 0 otherwise.

Proof . Given any pair µ ∈ {λi, λi′} and ν ∈ {λj , λj′} with i < j, we have seen that if ω(T) ∈ Path(µ, ν) is
maximal, then it labels a decomposition number dµν(t) = tj−i. Therefore 1νµ = BT generates a simple composition
factor L(ν)〈j − i〉 of the standard module ∆(µ). We shall show that

1νλi+1
◦ 1λi+1

µ = c1νµ = 1νλi+1′
◦ 1

λi+1′

µ (3.2)

for c = ±1 and j = i+ 2, and the result will follow. First, notice that deg(1νµ) = j − i and this is the unique basis
element of ∆ν(µ) of this degree. By comparing degrees, we deduce that equation (3.2) holds for some c ∈ C. It
remains to show that c = ±1 (note that, for the result to hold, it is enough to show that c 6= 0).

It is clear that the lefthand side of Equation 3.2 is a diagram with distinguished black points on northern and
southern boundaries given by the loadings corresponding to the partitions ν and µ respectively (with j = i+ 2).
If the bijection traced out by the strands (after concatenation) uses the minimal number of crossings, then we
are done.

Suppose that we are not in the case above, then we must apply the relations to the concatenated diagram
to obtain a diagram of the form c1νµ for some c ∈ C. Then the concatenated diagram has a number of ‘extra
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crossings’ of strands of the same residue (that is, crossings which do not appear in 1νµ). The rightmost of these
crossings involves a pair of strands of residue r, say. This crossing is bypassed by the ghost of the strand of
residue r − 1 immediately to its right (for an example, see Figure 26). Applying relation (2.10), the product can
be written as a sum of two terms: one is zero modulo more dominant terms, the other differs from the original
diagram only where we have untied the distinguished crossing (for an example, see Figure 26).

Now suppose that the resulting diagram is not equal to 1νµ, in which case it has a rightmost ‘extra crossing’
of residue r + 1. Now consider the ghost of the leftmost of the two strands we untied in the previous step; the
ghost of this strand bypasses the rightmost ‘extra crossing’. Repeating the above argument for all the crossings,
we obtain the result.

0 0 1

123 123

12

0 0 112

= (−1)

Fig. 26: The top diagram is obtained by concatenation of the diagram 12
′

1′ above 11
′

0 . The lower

diagram is obtained by applying relation (2.10) to the product 12
′

1′ ◦ 1
1′

0 . We move the ghost 0 strand
through the crossing pair of black strands of residue 1 (we do not record the diagram which is zero
modulo more dominant terms).
We have made emphasised the strands to which we are applying relation (2.10) and we have recorded
their residues along the southern edge of the frames. Along the northern edge of the frame of the top
diagram, we have recorded the residues of the 3 extra crossings of like-labelled pairs.
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