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An Exact Dynamic Stiffness Element Using a Higher Order
Shear Deformation Theory for Free Vibration Analysis of
Composite Plate Assemblies

F. A. Fazzolari®*, M. Boscolo?, J. R. Banerjee?
City University London, Northampton Square, London, EC1V OHB, United Kingdom

Abstract

An exact dynamic stiffness method based on higher order shear deformation theory is developed for the
first time using symbolic computation in order to carry out free vibration analysis of composite plate
assemblies. Hamilton’s principle is applied to derive the governing differential equations of motion and
natural boundary conditions. Then by imposing the geometric boundary conditions in algebraic form the
dynamic stiffness matrix is developed. The Wittrick-Williams algorithm is used as solution technique to
compute the natural frequencies and mode shapes for a range of laminated composite plates and stepped
panels. The effects of significant parameters such as thickness ratio, orthotropy ratio, step ratio, number
of layers, lay-up and stacking sequence and boundary conditions on the natural frequencies and mode
shapes are critically examined and discussed. The accuracy of the method is demonstrated by comparing
results with those available in the literature.

Keywords: Dynamic Stiffness Method, Composite Plates, Free Vibration, Stepped Panels,
Wittrick-Williams algorithm.

1. Introduction

During the last three decades thin-walled composite structures have played very important roles in
aerospace, automotive, marine and civil engineering design, amongst many others. The use of advanced
composite materials allows structures to be much stiffer and stronger and yet much lighter. When these
materials are combined with cutting-edges manufacturing technologies, they provide design engineers a
competitive edge over conventional design with metallic construction. For this reason, research in the
static and dynamic behavior of composite structures has continued to grow. In particular, free vibration
analysis of assemblies of composite plates has received wide attention over the years. The research is
further stimulated by the fact that many practical structural components can be modelled adequately
as thin or thick metallic or composite plates. One method of analysis, other than the conventional finite

element method (FEM) for this type of structures is that of the dynamic stiffness method (DSM) (see
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[1]). Application of this method involves developing the dynamic stiffness (DS) matrix for each individual
element in the structure and then assembling them into a global DS matrix for subsequent free vibration
analysis. This method is, in many ways, analogous to the conventional finite element method (see [2]).
The main difference between the two methods is that the FEM discretizes a structural element based on
assumed shape functions to derive the mass and stiffness matrices separately, whereas the DSM uses a
single element matrix containing both mass and stiffness proprieties, which are derived from the exact
frequency-dependent shape functions obtained from the solution of the governing differential equations
of the element in free vibration. The assembly procedure for the two methods is essentially the same,
but the solution techniques are different in that the FEM generally leads to a linear eingenvalue problem
in sharp contrast to the non-linear (transcendental) eigen-solution encountered in the DSM, which is
generally solved by applying the well-established algorithm of Wittrick and Williams |3]. For structures
consisting of beam elements there is no restriction on the application of the DSM and there are some well
known software based on the method to analyze plane or space frames [4]. Another important difference
between the FEM and the DSM is that, the number of natural frequencies that can be computed using the
FEM is restricted to the number of chosen degrees of freedom of the structure and the accuracy of results
diminishes with higher order modes. This can be a serious limitation in modal analysis. By contrast,
the DSM has no such limitation and any number of natural frequencies can be computed to any desired
accuracy using the DS matrix without the need to increase the number of elements to achieve higher
accuracy. Moreover, when fast iterative matrix solvers are used, the DSM will be much more efficient
than the FEM. With regard to plate elements the DSM gives exact results because the equations of motion
are solved in Levy-type closed form to obtain the element properties and no other approximation is made
en route during the analysis. Wittrick and Williams |5] are known to be the first who attempted the
extension of DSM to plate elements. Their pioneering formulation is interesting and relies on extensive
use of complex algebra. In 1972, Williams [6] presented two computer programs, GASVIP and VIPAL
to compute the natural frequencies, based on DSM. Essentially GASVIP was used to set up the overall
stiffness matrix for the structure, and VIPAL demonstrated the use of substructuring. A couple of
years later, Wittrick and Williams reported the computer code VIPASA [5] for free vibration analysis
of prismatic plate assemblies, which was a significant development at the time. VIPASA code allowed
free vibration analysis of isotropic or anisotropic plates and had many additional features. The complex
stiffnesses described in [1] were incorporated, as well as allowances for eccentric connections between
the component plates were accounted for, but more importantly, the code used a powerful algorithm
as solution technique, developed by Wittrick and Williams [3] to compute natural frequencies of plated
structures. The algorithm is robust and it ensures that no natural frequencies of the structure are missed.
(A brief discussion of the Wittrick-Williams algorithm is presented in section ([Z35])). In 1983, Williams
and Anderson [§] showed modifications to the eigenvalue algorithm described in [3]. They made use of
Lagrangian multipliers to apply point constraints at any location of plate edges. Each sinusoidal mode of
the freely vibrating plate in the longitudinal direction was included within the dynamic stiffness matrix.
These modifications formed the basis for the enhanced computer code VICON (VIpasa with CONstraints)

which was a significant improvement, (see |9]), over the previous code. However, the analysis capability



of VICON was based on classical plate theory (CPT), and particularly for composite plates, attention
was focused on symmetric laminates. A later version of the code included plates on Winkler foundations
[10]. Next, a major enhancement of the program took place in the early nineties when the optimum
design features were added and the new program VICONOPT (VICON with OPTimization) |11, 12] was
born. Anderson and Kennedy [13] incorporated the effect of the shear deformation into VICONOPT
few years later using a numerical approach. The general purpose application of VICONOPT was further
enhanced by them [13] to allow for analysis of angle-ply laminates. An interesting historical review of
the DSM procedure for plates can be found in [14]. It should be noted that DSM has been extensively
researched by Banerjee [1, [L5, |16, [17, [18, [19], amongst others for modal analysis of structures idealized
by beam elements based on Euler-Bernoulli, Timoshenko and associated coupled beam theories. The
extension of the DSM to plate elements is no-doubt difficult, but indeed, essential to model complex
structures. Following the earlier research on DS theories of isotropic and composite plates, Boscolo and
Banerjee advanced the state of the art on these topics by including the effects of shear deformation and
rotatory inertia and thereby providing a detailed modal analysis procedure through the application of
symbolic computation and Matlab [20, [21), 22, 123]. They used the first order shear deformation theory
(FSDT) for which the introduction of a user specified shear corrector factor was necessary. The current
paper is partly motivated by these earlier developments and the most important contribution made by
the authors here is the inclusion of higher order shear deformation theory (HSDT), for the first time,
when developing the DS matrix for laminated composite plates. This useful extension is of considerable
theoretical and computational complexity as will be shown later. The research is particularly relevant
when analysing thick composite plates for their free vibration characteristics. It should be recognised
that Reddy and co-authors [24, 125, 26] have used HSDT in a different context in free vibration analysis
of composite plates without resorting to the development of the DSM. From a historical prospective
HSDT, can be traced back to third order plate bending theory originally proposed by Vlasov [27] in
the late fifties. His theory was substantiated and extended to laminated composite plates many years
later by Reddy [24] using a variational approach. This is sometimes referred to as Vlasov-Reddy theory
(VRT). Further improvements of this theory can be found in the work of Jemielita |28, 29]. During the
last two decades, a variable kinematics 2D model approach with hierarchical capabilities, particularly
for laminated composite beams, plates and shells, has been proposed by Carrera et al. for mechanical
130, 131, 132, 133, 134] and multifield [35, 136, [37] problems. Inclusion of HSDT in the DSM framework will
enable free vibration analysis of plates with moderate to high thickness to width ratio, in an accurate
and computationally efficient manner. One of the great advantages of using HSDT as opposed to FSDT
is that the former accounts for the effects of the shear deformation in a judicious manner without using
a fictitious (and often controversial) shear correction or shape factor that is prevalent in the latter.
The usefulness of HSDT becomes apparent when analysing composite structures, particularly of thicker
dimensions, because fiber reinforced composites have generally very low shear modulii. Both the in-plane
and out-of-plane free vibration analyses are considered in this paper. Extensive results which include
validation and assessment of the effects of significant parameters such as the thickness to width (or

length) ratio, orthotropy ratio, step ratio, number of layers, stacking sequence and boundary conditions,



have been computed and discussed. The paper finished with some concluding remarks.

2. Theoretical formulation

2.1. Displacement field and governing differential equations

In the derivation that follows, the hypotheses of straightness and normality of a transverse normal after
deformation are assumed to be no longer valid for the displacement field which is now considered to be
a cubic function in the thickness coordinate; and hence the use of higher order shear deformation theory
(HSDT). This is in sharp contrast to earlier formulations based on CPT and FSDT. For a composite
plate, the kinematics of deformation of a transverse normal using both first order and higher order shear
deformation are schematically shown in Fig. [[l The laminate is assumed to be composed of N; layers so
that the theory is sufficiently general. The integer k is used as a superscript denoting the layer number
where the numbering starts from the bottom. After imposing the transverse shear stress homogeneous
conditions |38, 139] at the top/bottom surface of the plate, the displacements field is given below in the

usual form:

u(z,y,2,t) = ug (z,y,t) + 2 ¢ (x,y,l‘)—z3i <¢w+8wo)

3h? Oz
4 ow
U@y, 2,t) = vo (,y,8) + 20y (¥,4,1) = 2° 575 (¢y+ 6y0> (1)

w(z,y,2,t) = wo (,y,1)
where u, v, w are general displacements within the plate in the x, y, and z directions, respectively, whereas
o, Vg, wo are the corresponding displacements of the reference surface (mid-plane ). Hamilton principle
is now applied. The variational statement is:

N to
SLFdt=0 (2)
k=17t
where £F is the Lagrangian for the kth layer of the composite plate. The first variation can be expressed
as:

sLF = 6Tk — sU* (3)

where SUF is the virtual strain energy, 6T% is the virtual kinetic energy, and assume the following form:

sU* :/ / ((SekT o'k) dQF dz
Qk J ok

oT* = / / (pk on’ 7]) dQF dz
Qk, Zk

the stresses (o), the strains (e) and the displacements () vectors are expressed as follows:

(4)

T
o= { Ozx Oyy Ozy Ozz Oyz }

T
5:{ Eve Eyy Yoy Vo= 7yz} ()

nlu ool



pF denotes mass density while an over dot denotes differentiation with respect to time. The subscript T
signifies an array transposition and § the variational operator. Constitutive and geometrical relationships

(deformation) are respectively defined as:
o’ =C g", e="Dn (6)

=k
where C" is the plane stress constitutive matrix and D is the differential matrix (see Appendix A for
details). Substituting Eq. (@) into the Eq. () and imposing the condition in Eq. (2)), the equations of

motion are obtained after extensive algebraic manipulation as:

6’“/0 : All U0, zx + A12 Vo,yx + A16 (UO,y:L' + UO,wm) + Bll (b:c,mz' + Bl2 ¢y,y1‘ + BlG (¢1‘,yw + ¢y,1‘w) + Ell C2 (bL,Lz
+ Ei1c2 wWo,zzz Eizco ¢y,ym + Fi2c2 wWo,yyx + Figc2 ¢zc,yac + Ei6 c2 ¢y,xa: +2FEi6c2 wWo,zyz + Aie Uo,zy
+ Ase V0,yy + Ass (UO,yy + 'UO,acy) + Bis ¢ac,a:y + Bas ¢y,yy + Bes (¢:t,yy + ¢y,xy) + FEi2c2 (¢x,wy + wO,xxy)

+ Fag c2 (¢y,yy + wO,yyy) + Ege c2 (¢x,yy + ¢y,xy + 2w0,xyy) = Ioiio + 11 ¢x + I3 c2 ¢ac + I3 c2 'LbO,a:

51)0 : A16 UQ,zz + Aog V0,yz + A66 (UO,yac + 'UD,acac) + Bie ¢$,xx + Bag ¢y,ya¢ + Bse (¢x,yac + ¢y,xw) + Fisca ¢)ac,ac:c
+ E16 C2 Wo,0zx + E26 C2 ¢y ya + Eo6 C2 Wo,yyz + Eo6 C2 Oa,yz + Eo6 C2 Py ze + 2 Eos €2 Wo,aye + A12 U0 2y
+ A22 Vo,yy + A26 (UO,yy + 'UO,zy) + Bl? ¢z,zy + B22 ¢y,yy + BQG (¢z,yy + ¢y,zy) + E12 C2 (¢z,zy + wO,zzy)

+ E22 C2 (be,yy + wO,yyy) + E26 C2 (¢z,yy + ¢y,1‘y + 2w0,zyy) - IO 'ﬁO + [1 ¢y + [3 C2 (igy + IS C2 "—DO,y

dwo : Aaa (Py,y + Wo,yy) + Aus (Pz,y + Wo,ay) + Daa 1 (Py,y + Wo,yy) + Das ¢1 (Pz,y + Wo,zy)
+ Aus (Py,z + Wo,0y) + Ass (Pz,z + Wo,02) + Das ¢1 (Py,« + Wo,zy) + Dss 1 (dz,2 + Wo,2a)
+ Dyaci (¢y,y + wo,yy) + Das ¢1 (Po,y + Wo,zy) + Faa c (¢y,y + wo,yy) + Fus i (z,y + Wo,2y)
+ Dys 1 (¢y,e + Wo,zy) + Dss5 €1 (Pz,z + Wo,22) + Fus c (¢y,z + Wo,0y) + Fs5 i (2,2 + Wo,2a)
— E11 ¢2U0,222 — E12 €2 00,22y — E16 C2 (U0,20y + V0,222) — F11 C2 Pz 20z — Fi2 C2 Py zay
— Fi6 c2 (¢z,z2y + Oy zzc) — Hi1 3 (2,220 + Wo,zz0z) — Hi2 3 (2 22y + Wo,z2yy)
— Higcs (Pz,22y + Py 20z + 2W0,zazy) — 2 E16 C2 U0,02y — 2 F26 C2 V0,2yy — 2 Ees 2 (U0,zyy + V0,22y)
— 2 F16 C2 u 0y — 2 Fa6 C2 y,yy — 2 Fo6 C2 (Pu,ayy + Py,cay) — 2 Hie C% (¢z,00y + Wo,z22y)
— 2 Hag Cg (y,zyy + Wo,zyyy) — 2 Heo Cg (Ba,zyy + Py awy + 2W0,z2yy) — E12 C2 Uo,zyy — E22 C2 V0,yyy
— E36 c2 (Uo,yyy + V0,0yy) — F12 C2 Puayy — F22 C2 Gy yyy — F26 C2 (Puyyy + Py ayy)
— Hiscj (P2,2yy + Wo,zzyy) — Haz c3 (Dy.yyy + Wo,yyyy) — 2 Hae c5 (P2,yyy + Dy.ayy + 2W0,0yyy)

= IO 'LbO - I6 Cg (wO,xac + wO,yy) - ]3 Cg (7./:0,32 + uO,y) - (14 + 16) Cg (¢a:,x + ¢y,y)



0y :

Oy :

Bi1 uo,50 + Bi2vo,ye + Bi6 (40,yz + v0,25) + D11 ¢z,00 + D12 Gy.ay + D16 (Pa,yz + Py,zx)

+ Fi1¢2 (¢o,00 + Wo,aax) + Fi2 C2 (dy,ye + Wo,yyz) + Fie C2 (dz,ye + Py,ez + 2W0,0yz)

+ Bi6 10,0y + B26 v0,yy + Bee (10,yy + v0,2y) + D16 $z,2y + D26 dy,yy + Des (Pw,yy + Py,zy)

+ Fi6 c2 (da,oy + Wo,zay) + Fa6 2 (Gy,yy + Wo,yyy) + Foe 2 (da,yy + Py,ay + 2Wo0,2yy)

+ E11 c2Uoze + Er2 c2 V0 ye + Ei6 C2 (Uo,ye + V0,22) + Fi1 C2 ¢z 20 + Fi2 C2 dy,ay + Fi6 €2 (Pa,yz + Gy,za)
+ Hn1 C% (2,00 + Wo,222) + Hiz C% (¢y,yz + Wwo,yyx) + Hie Cg (2,50 + Dy 22 + 2W0,2yx)

+ E6 2 u0,ay + E26 €2 00,yy + Eo6 €2 (U0,yy + V0,2y) + Fi6 €2 Guay + F26 C2 Gy,yy + Foo C2 (Pa,yy + dy,ay)
+ Hig 3 (ba,0y + Wo,22y) + Hag c (By.yy + wo,yyy) + Hes c (ba,yy + Py,ay + 2Wo0,ayy)

— Aus (Py +2wo,y) — Ass (e +2w0,2) — 2 Das c1 (dy + 2wo,y) — 2 Dss 1 (e + 2wo,z)

— Fusc} (¢y 4+ 2wo,y) — Fis¢5 (e + 2wo,0) = (I + 2 I3) dio + (Io+2c2Is + s Is) ba + (Is + c5 Is) o,z

Bi6 uo,22 + B26 vo,ye + Bss (10,yz + V0,22) + D16 Pa,0x + D26 Py,oy + Des (Pa,yz + Py,zz)

+ Fi6 c2 (2,22 + Wo,0zz) + Fa6 C2 (Py,yz + Wo,yyz) + Fo6 €2 (Pz,yz + Py,zz + 2W0,2yz)

+ Bi2uo,zy + B2 vo,yy + Bas (U0,yy + V0,2y) + D12 Pz,zy + D22 &y yy + D26 (P,yy + Py,zy)

+ Fi2¢2 (¢z,zy + Wo,zey) + F22 €2 (Gy,yy + Wo,yyy) + Fos 2 (dz,yy + Sy,zy + 2W0,0yy)

+ E16 C2 U022 + Fa6 €2 00,y + Ee6 €2 (wo,yz + V0,02) + Fi6 C2 Pz,z0 + Fo6 C2 Oy zy + Fo6 C2 (Pz,yz + Py,zz)
+ Hiygca (2,22 + Wo,0zz) + Hae 3 (¢y,ye + Wo,yyz) + Hee s (2,92 + Py,zz + 2W0,0yx)

+ E12 C2 0,2y + F22 C2 V0,yy + Eos C2 (U0,yy + V0,2y) + F12 C2 Pz 2y + F22 C2 Gy yy + Fa6 C2 (Pz,yy + by,zy)
+ Hi2 &3 (¢o,0y + W0 .0ay) + Haz € (by,yy + w0.uyy) + Hao €3 ($o,yy + by.op +2Wo,0yy)

— Aua (py +2wo,y) — Auas (o +2wo0,2) — 2 Daac1 (dy + 2wo,y) — 2 Das c1 (o + 2wo,5)

— Fuci (¢y +2wo,y) — Fus ci (pa +2wo,0) = (I1 4+ c2 I3) U0 + (12 +2co Iy + 5 ]6) <Z>y + (14 +c3 16) Wo,y

(7)

The natural boundary conditions are:

(SU() :

61;0 :

New = A11 U0,¢ + B11 ¢u,0 + E11 C2 Ga,z + F11 C2 Wo,00 + A12 v0,y + Bi2 ¢y,y + E12 C2 ¢y,y + Fr2 C2 Wo,yy

+ A6 uo,y + A16 V0,0 + Bi6 Gu,y + Bi6 Py,z + F16 C2 Pu,y + E16 C2 Py,o + 2 E16 C2 W0, 2y

Ny = A16 uo,5 + Bi6 dz,0 + E16 C2 $z,2 + E16 C2 Wo,20 + A26 Vo,y + Bas ¢y,y + E26 C2 y,y + Ea6 C2 Wo,yy

+ Ag6 w0,y + Ae6 V0,2 + Bes O,y + Eo6 C2 Py,x + E66 C2 Pz,y + Eo6 C2 Py,z + 2 Fes C2 Wo,zy



dwo:  Qu = Hi1C3 ¢uww + Hi1 €3 Wo,zzz + F11 C2Uozz + Fi1 Co ¢ wx + Fr2 C2 0,4z + Fi2 Co by ye
+ Hipch Gy,yz + Hio c5 Wo,yyz + 2 E16 €2 U0,0y + 2 F16 C2 O,y + 2 Higcs Gz,ay + E16 C2 Uo,ya
+ E16 C2 V0,00 + Fi6 C2 ¢u,ye + His s Gz,yx + His 3 Gy,ax +2Hie c Wo,zxy + 2 Eag €2 Vo, yy
+ 2 FoCopyyy +2 ngcg Wo,yyy + 4 Hggcg Wo,zyy + 2 Hoe cg Gz,yy + 2 Has c% Gy,ay + 2 Ess C2 Uo,yy
+ 2 Eg6 C2 00,2y + 2 Fo6 C2 Ou,yy + 2 Fo6 C2 Py ay — 2 Dasc1 ¢y — 2 Dys c1wo,y — Fus i oy

2 2 2
— Fys ¢l wo,y — Ass ¢ — Ass Wo,e — Dss ¢1 ¢ — 21 wo,2 — F55¢T po — Fr5 €7 Wo

0z 1 Mgz = D11 ¢oe + Hir s Gz, + H11 s Wo,ze + B11 U0,z + E11 c2u0,0 + 2 F11 €2 ¢,z + Fi1 C2 W0 22
+ F11 C2 Wo,wz + B12vo,y + D12 ¢y .y + Fra ca ¢y + Fr2 C2 wo yy + E12 C2 00,y + Fi2 C2 ¢y, + Hio & Dy.y
+ Hisch Wo,yy + B16 o,y + B16 V0,0 + D16 o,y + D16 Oy, + Fi6C2 da,y + Fi6 C2 Py,z + 2 Fi C2 Wo 2y

+ Ei6c2uo,y + E16C2 V0,2 + Fi6 2 ¢u,y + Fi6 Co ¢y« + His s Gz,y + Hie 5 Gy,e +2 Hie 3 W0,y

5¢y : sz = Dlﬁ ¢z,z + H16 C% ¢z,z + HIG Cg Wo,zz + BlG U0,z + E16 C2 Uo,z +2 F16 C2 ¢z,z + F16 C2 Wo,zz
+ Fi6 C2 Wo,0z + B2s o,y + D12 ¢y, + Fag C2 ¢y y + Fap C2 Wo,yy + Ea6 C2 V0,y + Fag C2 ¢y, + Hae 3 o
+ Hag c3 Wo,yy + Bee w0,y + Bes v0,2 + Dee Pu,y + Des Py, + Foe C2 dz,y + Foe C2 Py,z + 2 Fop C2 Wo,zy

+ Eg6 c2 o,y + Eo6 C2 V0,2 + Fo6 C2 Pu,y + Fo6 C2 Oy« + Hee 3 Gz,y + Hes c by,« + 2 Hee I Wo, 2y

2 2 2

0wo,z ¢ Pae = Hi1 ¢35 ¢z + Hi1 3 W00z + E11 C2 U0,z + F11C2 Pz + Er12C2 00,y + Fl2C2 ¢y,y + Hi2C5 Py y
2 2 2

+ Hiz c5 wo,yy + F16 C2 o,y + E16 C2 V0,0 + F16 €2 du,y + Fie6 2 @y,z + Hi6Co Puy + Hi6Co Oy.a

2
+ 2 Hi6 c3 wo,zy

where the suffix after the comma denotes the partial derivative with respect to that variable, and

Zj7 Zj?

(Aij, Bij, Dij, Eij, Fij, Hij) / 1z 2% 23 z4,z6) dz

(Lo, 11, I2,Is, 14, 1) = / 1z 22, 23, 24, 26) dz
are laminate stiffnesses and inertia terms, respectively with ¢ and j varying form 1 to 6.

2.2. Dynamic stiffness formulation

Once the equations of motion and the natural boundary conditions, i.e., Eqs. (@) and (&) are obtained,
the classical method to carry out exact free vibration analysis of a plate consists of (i) solving the system
of differential equations in Navier or Leévy type closed form in an exact manner, (ii) applying particular
boundary conditions on the edges and finally (iii) obtaining the frequency equation by eliminating the
integration constants [40, |41, 42, 43]. This method, although extremely useful for analysing an individual
plate, it lacks generality and cannot be easily applied to complex structures for which researchers usually
resort to approximate methods such as the FEM. In this respect, the dynamic stiffness method (DSM),

which is analogous to FEM, but is more powerful as it always retains the exactness of the solution even



when it is applied to complex structures. The dynamic stiffness matrix of a structural element used in the
DSM has many other advantages. It can be offset and/or rotated and assembled in a global DS matrix
in the same way as the FEM. This global DS matrix contains implicitly all the exact natural frequencies
of the structure which can be computed by using the well established algorithm of Wittrick and Williams
13].

A general procedure to develop the dynamic stiffness matrix of a structural element can be summarized

as follows:

(i) Seek a closed form analytical solution of the governing differential equations of motion of the
structural element undergoing free vibration.

(ii) Apply a number of general boundary conditions in algebraic forms that are equal to twice the
number of integration constants; these are usually nodal displacements and forces.

(iii) Eliminate the constants by relating the amplitudes of the harmonically varying nodal forces to those
of the corresponding displacements which essentially generates the frequency-dependent dynamic

stiffness matrix, providing the force-displacement relationship between nodes.

Referring to the equations of motions given by Egs. (), an exact solution can be sought in Levy’s form
for symmetric, cross ply laminates. For such laminates B = E = 0, and C’{% = C’§6 = C'ff5 = 0 and the

out-of-plane displacements are uncoupled from the in-plane ones.

2.3. Levy-type closed form exact solution and DS formulation

The solution of Egs.([) is sought as:

@,y ) = 3 Un(@) e sinfay),  (2,9,0) = 3 Vin(w) " cos(ay),
m=1

m=1
w(@,y,t) = > Wa(z)e“ sin(ay),  du(z,y,t) = Y Ou, (x) ™ sin(ay), (10)
m=1 m=1
by(@,y,t) = Y Dy, (x) " cos(ay)
m=1
where w is the unknown circular frequency, a = “;* and m = 1,2, ..., 00. This is the so-called Levy’s so-

lution which assumes that two the opposite sides of the plate are simply supported (S-S), i.e. w = ¢, =0
at y = 0 and y = L. Substituting Eq. () into Egs. (7)) a set of five ordinary differential equations that
are uncoupled between in-plane and out-of-plane deformations, is obtained which can be written in two
different matrix forms as follows:

|

where L, (i,5 =1,2) and L,,; (i,j = 1,2,3) are differential operators. For the in-plane free vibrations

)

Lo Lo Lo Wm 0
o Lors U, 0 11 12 13
= ’ Loy; Loy Logs dy = 0 (11)

L Vi
P P m
“ * Loz Logz  Logg Dy 0

)



case, L, (i,j = 1,2) are given by:

‘Cpn = (A@(,’ a2 — IO w2) — A11 Di

Ly, = (A2 + Ags) D,

‘szl = (A12 + AGG) aD,

£p22 = (—A22 a? + Iy w2) + Agg ’Di

For the out-of-plane case, £,,; (i,j = 1,2,3) are given by:

Lo, = (*042 (Agq +2co Dyg + 3 Fyg + * & Hao) + (Ip + a* &5 Ig) w2) + (Ass + 2 ¢y Dss + ¢ Fss

+202c2 Hyg +40° ¢ Hes — ¢ Igw?) D2 + (—c2 Hy,) D2

Lo, =As5+2¢ Dss + o ¢y Fia +C%F55 +2a201F66+a2c§H12+2a2c§H66 — ¢y Iy w? —C%I6w2)Dz

+ (—Cl F11 — C% Hll)Di

Loy, = —a(Ags+c2(2Dyg + co Fug) + a? ¢y (Fag + ¢y Hao) — 1 (In + ¢1 Ig) w?) + (avey Fia +2acy Feg

+ ac% Hys + 20(6% H66)’D§

Loy, = (—Ass — c2 (2 Dss + c2 Fs5) — a® ¢1 (Fiz + 2 Fog + ¢1 Hi2 + 2¢1 Hes) + ¢1 (Iy + ¢1 Ig) w?) D,

+ca (Fii+a Hn)Di

£022 = (—A55 — C9 (2 D55 + c2 F55) - Oé2 (D66 + 261 F66 + C% H66) + (IQ + 261 14 + C% IG) w2) + (D11

+2¢ Fyy + ¢t Hyy)D?

[,023 = (—OéDlg—OéDGG—2Oz61F12—2@01F66—050%H12—CKC?HGG)'DI

Los, = —0(Agq +co (2Dyg + c2 Fug) + a? ¢y (Fag + 1 Hag) — ¢y (Is + ¢1 I) w?) + acy (Fia + 2 Feg

+c1 Hig + 2 ¢y Hge) D2



Loy, = (D12 + Dgg + ¢1 (2 F12 + 2 Fs6 + ¢1 (Hi2 + Hee))) Dy

Loss = (—As4 — €2 (2 Dag + c2 Fag) — o® (Dag + ¢1 (2 Fag + ¢1 Ha2)) + (I + ¢1 (214 + ¢1 Ig)) w?)

+ (Dgs + 1 (2 Fs + ¢1 Hgp)) D2

(13)

where Dx = d(ix’ c1 = —# and Cy = —}% and Aij, Bz’j, Cij, Dij, Eij, Fz‘j, Hij have already been defined

in Eq. ([@). Expanding the determinant of the matrices in Eq. () the following differential equations

for the in-plane and out-of-plane cases are respectively obtained as follows:
(b1 Dy + b2 D2 +b3) E =0, (a1 D} + a2 DS+ a3 Dy + as D2 +as) ¥ =0

where

Z2=Un, Vi, U =Wy, @, Pu,,
Using a trial solution e* in Eq. ([4)) yields the following auxiliary equations for the two cases:
b1 Aj + by A2 + by =0, ar M+ a4+ as At +ag X2 +as =0
Substituting p, = /\12, and p, = A2, the fourth and eighth order polynomials of Eqgs. (18] become
bluf,-l—bgup—&-bgzo, a1u§+a2u3+a3u?,+a4uo+a5:0

The two roots for the in-plane case i.e. the quadratic equation of the left are give by:

—by + /bE — 4by by

Hp1 = 2b,
by — /b — by by
Hp2 = 20,

whereas the four roots for the out of plane case, i.e. the quartic equation on the right by:

1 1
M01=—81—2\/—85+52—458—86—2\/5

- 1 S8 Se 1
Ho2 = $1+2 S5 + S2 1% 3aist 2\/5

1 S8 S6 1
MO3:_51_2\/_35+52+4\/5_3a187+2 89

1

2

S8 Se 1
= —51 + —85 + S2 + —— + =V
Hoa S1 S5 T 52 1 /5  3aysm 9 S9
where
S - S z—% a—% s3=12a3 —9asasas — 7242 as + 27a2 as + 27 ay a>
1 Tay’ 2 3a% Qa%’ 3 3 20304 205 205 10y,

(14)

(15)

(16)

(18)

(19)

1
1 Vss —4 3
Sq4 = a% —3azaqs+ 120, as, S5 = — (W> , S¢ = \3/4184, s7 = V/32ss5ay,

aq 32
3
as 4@2 as 8a4 So S6
sg =\ — 7 — S9 =85+ — +
a af ai 2 3s7a

10

(20)



The explicit form of the coefficients a; (j = 1,2,3,4,5) and b; (j = 1,2,3) can be found in Appendix
B. Note that when computing p,; (j = 1,2) and po; (j = 1,2,3,4), some roots may turn out to be
complex, but the amplitude of the displacements Uy, (2), Vi, (2), Wi, (2), @5, (z), $y,, (x) will always
be real, whilst the associated coefficients can be complex. As complex roots occur in conjugate pairs, the
associated coefficients will also occur in conjugate pairs. The solution for out-of-plane and in-plane free
vibration can thus be written as:

W (1) = Ay eTHer® 4 Ay e Mot ™ 4 Ag eTHe2® 4 Ay e Ho2®

+A5 e+uozz +A6 e Moz T +A7 e+uo4z +A8 e Hoa T

(I):cm (l‘) =B ethor + By e He1® 4 By ethoz + By e Hoz?®

+ B; etHos T + Bg e Ho3 T | B ethosz + Bg e Hoa T

P, (z)=C1 ethr® 4 Oy e Mot 4 O3 eThe2® 4 Oy e He2? (21)

4 Cs e+uosx + 06 @ M3 07 eﬂbout + CS e Hoa®

Um (x) — D1 e+up1x +D2 e M T + D3 e+up29c +D4 e Hp2 T

Vin (z) = By etHe1® 4 By e ot ® 4 By ethe2® 4 By o= Hr2®

where Ay — Ag, By — Bg, C; — Cs, D1 — D4, Ey — E4 are integration constants. For both in-plane and
out-of-plane cases, the constants are not all independent. Thus a set of four independent constants, for
the in-plane case, and a set of eight independent constants, for the out-of-plane case, can be chosen and
then related to the others. Constants E; — E4 for in-plane case, and By — Bg for out-of-plane case are
respectively chosen here to be independent. By substituting Eqs. (21]) into (II]) the following relationships

can be obtained for the in-plane case:

Dy = p1Eq, Dy = —-p1E,
(22)
D3 = By B3, Dy=—B2E,
Likewise, for the out-of-plane case
Ay =61 By, As = —01 Bo, Cy1 = By, Cy =18
As = 02 Bs, Ay = —02 By, C3 = 72 Bs, Cy=—72By (23)
As = 43 Bs, Ag = —63 B, Cs = 3 Bs, Ceé = —73 Bs
A7 =64 By, Ag = —64 By, Cr = 4 By, Cs = —74 Bg
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where

8, = Tow® — Ags o® + A1 i
! (A12 + Ace) cupip;

0; = —(—a2 (D12 4+ Dgs + ¢1 (2 D12 + 2 Dgg + 1 (Hi2 + H66)))2 pl; + (—Ass — c2 (2Ds5 + ¢2 Dss)
—a? (Dss + c1 (2 Dgs + c1 Heg)) + (In + c1 (214 + c1 Is)) w? + (D11 +c¢1(2D11 +¢1 Hi)) u?n) (Aua
+ ¢2 (2 Daa + c2 Daa) + o? (D22 + 2c¢1 D22 + e Haz) — (Iz+2c1 Is + a 16)W2 — (Dsgs + 2 c1 Degs I Hee) ,u?n))/
(—ttoi (Aas 4 c2 (2 Daa + 2 Dag) + > (Dag 4+ 2¢1 Dag + ¢§ Hao) — (I + 2¢1 In + ¢ Ig) w®
— (Des + 2 ¢1 Do + ¢§ Heo) pizi)(Ass + 22 Dss + 3 Dss + ¢1 (o (D12 + 2 Des 4 ¢1 Hia + 2 ¢1 Hes) — (In
+c11s)w® — (D11 + 1 Hiy) p2)) + o (D12 + Des + ¢1 (2 D12 + 2 Des + 1 (Hiz + Hee))) froi (Aaa +2¢2 Day
+ ¢3 Dyy + c1 (o (Daa + ¢1 Hag) — (Is + c1 Is) w® — (D12 + 2 Des + ¢1 Hiz + 2¢1 Heo) p125)))

1

;= — Ass + 22 Dss + o Deg + ¢ F:
K (Oé(D12+D66+01(2F12+2F66+C1(H12+H66)))Moi)( %5 2 Pos T 66 T2 e

+2a’c1 Fos + a2 Hes — low® —2c1 I1w? — & Isw? — D1y /ﬁ,i —2c1 F11 ,u?n- —Z Hp ugi - (a2 (D12
+ Dgs + c1 (2 Fi2 + 2 Fes + 1 (Hi2 + H66)))2 ,uii(—A55 —¢2(2Ds5 + c2 Fs5) + 1 (—Ol2 (Fi2 + 2 Fge
4 ¢1 (Hiz + 2 Heo)) + (In + ¢1 Ie) w? + (Fi1 4 1 Hi1) p2:)))/ (= proi (Aaa + c2 (2 Das + c2 Fua) + o° (Dao
+c1(2F +c1 He))— (I +c1 (21 + 1 Ig)) w? — (Des + c1 (2 Fes + c1 H66))H¢2n‘) (As5 +2c¢2 Dss + 3 Fss
+c (Ot2 (Fi2+2Fs6 +c1 (Hi2+2Hes)) — (Ia+ 1 16)0-12 —(Fii+a Hu)ugi)) +a® (D12 + Des + 1 (2 F1z
+ 2 Fs6 + ¢1 (Hi2 + Hee))) poi (Aaa + 22 Das + 3 Fu+ (042 (Fo2 +c1 Ha2) — (Is + 1 1) w? — (Fi2
+ 2 Fs6+c1 (Hi2 + 2 Hes)) le))) — (phoi (Ass5 + 2 (2 Dss + ¢2 Fs5) + o’ (Dgs + c1 (2 Fs6 + c1Hes)) — (12
+ea 2L+ e ls))w® — (Din +c1 (2F11 +c1 Hin)) pli) (Aaa 4 c2 (2 Daa + 2 Faa) + o (Daz + ¢1 (2 Fao
¢ Ha)) — (I 4 ¢ (214 + ¢1 1)) w® — (Des + 1 (2 Fo + 1 Heg)) i) (— Ass — 2 (2 Dss + ¢2 Fss)
+ c1(—a® (Fiz + 2 Fos + 1 (Hi2 + 2 Hee)) + (Is + 1 Ie) w” + (Fin + 1 Hi1) p15:))) / (—poi (Aaa + c2 (2 Das
+ ¢ Fua) + o? (D22 +c¢1 (2Fa2 4+ c¢1 Ho2)) — (Iz 4+ ¢1 (214 + ¢1 1)) w? — (De6 + 1 (2 Fo6 + ¢1 Hes)) H«iz) (Ass
+2¢2 Dss + ¢ Fis + c1 (o (Fia + 2 Feo + 1 (Hiz2 + 2 Hee)) — (Is + c1 Ie) w” — (Fi1 + c1 Hua) o))
+ o (D12 + Dee + c1(2F12 + 2 Fos + ¢1 (Hiz + Hee))) ftoi (Aas + 22 Dag + ¢ Faa + c1 (o (Faz + c1 Haz)
— (Is + 1 Is) W* (Fiz2 + 2 Fos + 1 (Hiz2 + 2 Heg)) p2i))))

(24)

with j = 1,2 and ¢ = 1,2,3,4. The procedure leading to Eqs. ([22), 23) and (24) must be undertaken
with sufficient care, because if wrong set of constants are chosen from Eq. (21]) to obtain the relationship
connecting other sets of constant, numerical instability can occur. When Eqs. (22)) and (23] are substi-
tuted into Egs. (2] a solution in terms of only eight integration constants for the out-of-plane case and

only four for the in-plane case can be respectively formulated. Thus
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Wi (m) :Bl(sle+M°1w—32516_M01$+B352€+M°2$—B4526_N02x

+ Bs 53 etHos® _ Bg 53 e He3® 4 By 04 gTHot T _ By Oge Hot®

(I’wm (x) =B etHor® + By e 1T 4 Bs ethoz® 4+ By e He2?®

+ Bs ethos @ + Bg e M3 4 Bo ethHos T + Bg @ Bt ®

®, (r)=Biyeth'® — Byyre #'¥ + Byygethor® — Byyge Mo

+ Bs 3 ethosz _ Bs Y3 e He3T 4 B, o ethorz _ Bs Y4 @ Hoa T
Un (z) = By B1etH' % — Fy B1e 21" + By Baethr® — By By e Hr2®

Vi (x) = By et ® 4 By e H1 ™ B eThn® 4 B e He2®
The expressions for forces and moments can also be found in the same way by substituting Eqs. (28]

into Egs. ([§). In this way
ch (.T, y) = (e“”lx (E1 -+ EQ 672#7’1 x) (71412 o+ A11 Up1 Bl)Jr

eH2® (By + Eye 212 %) (= Ay oo+ Ay i ﬂQ)) sin (ay) = Ny sin (ay)

Nyy (z,y) = (e““m (By — Eye 21 %) (Agg (tp1 + o B1))+

elr2® (B3 — By o2 Hp2 ) (Ase (pp2 + aﬁz))) cos (ay) = Ny cos (ay)

Qz (z,y) = (6““ “(B1 + Bye 2Hr ) (Ass + Ass 61 por + 2 ¢2 (Dss + Dss 01 pto1) + ¢3 (Fis + 61 Fs fo1)
+c1 (am (Fi2 +2F66 + ¢ Hia + 2¢1 Heg) fior — oy (Fin + 1 Hiy + ¢1 61 Hiy pror) + o2 (2 Feg
+2c1 Hep + ¢1 01 Hia plo1 + 4 ¢1 61 Heg fto1)))+
e"**(By + Bye 21 ™) (Ass + Ass 02 foz + 2 ¢2 (Dss + Dss 02 fio2) + ¢5 (Fss + 62 Fss 1o2)
+ c1 (2 (Fig + 2 F66 + ¢1 Hip + 2 ¢1 Heg) ftoz — fiog (Fi1 4 c1 Hix + ¢1 62 Hiy jig2) + o (2 Feg
+2¢1 Hee + ¢1 02 Hig flo2 +4¢1 01 Heg 102)))+
"3 7 (By 4+ Bge 212 ) (Ass + Ass 03 fo3 + 2 ¢2 (Dss + Dss 03 1103) + ¢3 (Fss + 03 Fi5 1103)
+ 1 (ays (Fia + 2 F66 + ¢1 Hiz + 21 Heg) pos — pig (Fin + 1 Hix + ¢1 63 Hip fio3) + o2 (2 Feg
+2¢1 Hee + ¢1 03 Hig 103 + 4 ¢1 03 Hee 1103)))+
et *(By + Bye  2Hot ) (Ass + Ass 04 foa + 2 ¢2 (Dss + Dss 04 fio1) + ¢35 (Fss + 64 Fss foa)
+c1 (s (Fia + 2 F66 + c1 Hiz + 2 ¢1 Heg) poa — pizg (F11 + 1 Hi1 + 1 04 Hix fios) + o (2 Fgg

+2c1 Hep + 1 04 Hig pos +4c1 04 Hes Mo4)))) sin (ay) = Qg sin (ay)
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My (7,y) = (e“"l “(By 4 Bye 2Pt ") (o ¢1 61 (Fia + ¢1 Hi2) + a1 (D12 + ¢1 (2 Fia + ¢1 Hiz)) — pio1 (D1
+c1 (2 F11 + ¢y Hiy + 01 Fiy o1 + €101 Hig po1)))+
e#o2%(By + Bye ") (a® ¢1 03 (Fi2 + 1 Hi2) + a2 (D12 + ¢1 (2 Fi2 + ¢1 Hi2)) — o2 (D11
+c1 (2F11 + ¢y Hiy + 62 Fiy o2 + 102 Hig pio2)))+
e"o3%(Bs + By e 2 ") (a® ¢1 03 (Fi2 + ¢1 Hi2) + a3 (D12 + ¢1 (2 Fi2 + ¢1 Hi2)) — o3 (D11
+c1 (2 F11 + ¢y Hiy + 03 Fiy posz + ¢1 03 Hig po3)))+
e'o4® (By + Bge 214 ") (a® ¢1 04 (Fi2 + ¢y Hi2) + avs (D12 + ¢1 (2 Fia + ¢y Hi2)) — pioa (D11

+c1 (2F 1 +ci Hit+ 04 Fii proa + 104 Hiq Mo4)))) sin (ay) = Mgy sin (ay)

My (z,y) = (e“"” (By + Bz e 21%)(y1 (Dgg + 1 (2 Fos + €1 Hee)) pror + @ (Des + ¢1 (2 Fo + ¢1 Heg
+ 201 Fep 11 + 2 ¢1 01 Hee fro1)))+
e"o2® (By + By e 22" )(yy (Dgg + ¢1 (2 Foe + ¢1 Heg)) poz + o (Des + ¢1 (2 Fog + ¢1 Hes
+ 202 Fo6 o1 + 2 ¢1 62 Hes plo2)))+
etos® (By + By e *3%)(v3 (Dgs + c1 (2 Fos + 1 Heg)) thos + o (D6 + ¢1 (2 Fes + ¢1 Hes
+ 263 Fgg floz + 2 ¢1 03 Heg fio2)))+
eM1® (By + By e™ %) (74 (Dgs + c1 (2 Foo + c1 Hes)) pos + a (Des + c1 (2 Fog + 1 Heg

+ 204 Fe pror +2c1 64 Heg ,uo4)))) cos (ay) = Mgy cos (ay)

Py (2,y) = (e#"lx (=B1 + Bye 21 %) (a® ¢ 61 Hio + aoyy (Fia + 1 Hi) — po1 (Fi1 + ¢y Hix (1 + 61 pto1)))+
el2® (—By + Bye ?F2 %) (a® ¢ 65 Hiz + ayz (Fiz + ¢1 Hi) — o2 (Fi1 + ¢1 Hin (14 02 f102)))+
o3 (—By 4 Bye ?#3%) (o ¢ 63 Hiz + avs (Fia + ¢1 Hi2) — pos (Fi1 + ¢1 Hix (14 03 p03)))+
eHot® (=By + Bye ?Ft ) (o ¢y 64 Hia + ayy (Fio + ¢1 Hiz) — pios (F11 + c1 Hiy (1464 Mo4))))

sin (ay) = Pyy sin (o y)

(26)
At this point, zero boundary conditions are generally imposed to eliminate the constants in the classical
method in order to establish the frequency equation for a single plate element. By contrast, the develop-
ment of the dynamic stiffness matrix entails imposition of general boundary conditions in algebraic form.
Thus in order to develop the two dynamic stiffness matrices for in-plane and out-of-plane cases (which

will be subsequently combined), the following boundary conditions are applied next.
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In-plane case:

Out-of-plane case:

=0
r=>b
x=0
r=20b

By substituting Egs.

Ux
\%1
Uz
Vs
and
Wy 51
Py 1
Py 71
lem _ f1
Wy 51 eb Mol
L eb Kol
Dyo 1 el Hol
W o f1 el Hol
where

Equations ([2Z9) and (30)

rz=0
T=0b
=0 :
r=20:
W =W,
Wm:sza

ng 3 me -

sz = _Nm:vl ; Nmy = _nyl
N’I"I‘ = Nracz ) ny = Nryz

1

B1 —p1
1 1
Brebhrl  —pBrebhpt
ebHp1 e~ bup1
=4 52 =82
1 1 1
-7 2 -2
—f1 f2 —f2
—51e bHol  syebHo2 556 b Ho2
_e—bHo1 eb Ho2 —e~bho2
—ypeTPhol  apebHo2  —qpeTbHo2
—fre PHol  foebHo2  _fyeTbHo2
Ji = 0i thois

can be written as

=&,,, D,

(I)ym = (I)yl ) Wm,z =

m

meg 3 Mmy =

B2
1
B b 12

b Hp2

53

3
73
53 b Ho3
b ro3
g el Ho3
fg el Ho3

=y, , Wm,z =

ml x

m2 x

Mmyg ; Pra =

—B2 Eq
1 E>
_ —bup2 E
Boe "t 3
e~ bHp2 Fy
—é3 84
1 1
-3 V4
—f3 fa
—sze~bHo3 5y cbHoa
—e—bro3 eb Hoa
—yze b Ho3 4, ebHod
—fzePHo3  f,ebHod

with i =1,2,3,4

==Q, Moy = —May, sz = _Mmyl s Peo = =Pz,

PZI2

into Eq.(23)), the following matrix relationship is obtained:

—84

—74
—fa
—64e b loa
_e—bloa
—v4 e~ bhoa
—faeblHoa

(29)

(31)

By applying the same procedure for forces and moments, i.e. substituting Eqs. 7)), 28)) into Eq. (26])

the following matrix relationship is obtained:

Nxocl
Nay,
Naz,
Nay,

t1

—81
_ebhup1 t1

ebHpt g1

t1

g1
_e~bupL t1

_e~bupL g1

15

t2

—82

_ebHp2 to

ebHo2 g2

t2

82
_e~bup2 to

_e~bup2 25

(32)



where

ti=Apa—An Hpi Bi, g; = Ags (/ipz' + Oéﬂi) with 7=1,2 (33)
and
Quq Q1 Q1 Qo Qo Q3 Q3 Q4 Q4
Mazq T1 -T1 T2 -T2 T3 -T3 Ta —Ta
Mayq I I ) ) —I3 —I3 —I4 —ZI4
Paxy _ L1 —L1 Lo —L2 L3 —£L3 YL —L4
Quy Q4 el Ho1 —QiebHo1 Qq el Ho2 —QpebHo2 Qg el Ho3 —QgebHo3 Qy el Hoa —Que bHoa
Mazy —Tyeb Mol Tie b Hol —Tyeb Ho2 Tope b Ho2 —Tgeb Ho3 Tge b Ho3 —Tyeb Hoa Tpe b Hod
Mayy ZiebHol Zie bHol Tyeb Ho2 Tge b Ho2 Tgeb Ho3 Tge b Ho3 TyebHod Tye b Hod
Maag —£qebHol Lie~bHol —Loeb o2 Loe~bHo2 —£gebHos Lge b ko3 —Lyeb Hod Lye~0Hoa
where

Q; = —As5(1 4 ipto1) — 2¢2(Dss + Ds5biftoi) — ¢3(Fss + 6 Fsspioi) — c1(ayi(Fia + 2Fge + c1Hia

+ 201 Heg) phoi — p2;(Fi1 + c1 Hip + ¢16;Hiiprog) + o (2Fs6 + 2¢1 Heg + ¢10; Hiopo; + 4¢10; Hoghoi )

T: = a?c16;(Fia + c1Hi2) + ayi(D12 + ¢1(2F12 + c1H12)) — p1oi(D11 + e1(2F11 + e1 Hiy

+ 6 Fipboi + c10:Hiiftos))

Z; = v1(Dgg + ¢1(2Fs6 + c1Hes) ) proi — @(Des + ¢1(2Fs6 + ¢1Hes + 20; Fosltoi + 2¢10; Heeltoi )

L; = ci(a®c16;Hia + avi(Fia + c1Hia) — proi(Fi1 + crHii (14 0ipt0:))) with 4=1,2,3,4
(35)

Equations [B2)) and ([34) can be written as

F,=R,C,; F,=R,C, (36)

By eliminating the constants vectors C), and C|, the two dynamic stiffness matrices for the in-plane and

out-of-plane cases are respectively formulated as follows:

_ -1, — -1
Kp—RpAp ; K,=R,A, (37)
i.e.
Sqq  Sqm Sqt  Sqh Jaq Sqm fat Jan
Smm Smt  Smh _fqm fmm fmt fmh
Snn  Sni fan fni Stt Sth fat  —fmt frt ftn
. s —ful fu . s —fan  Smn —ftn  fhn
Kp - ) K, = S
Snn  —Snl ym Sqqg  —Sqm Sqt  —Sqh
Sym St Smm  —Smt Smh
Stt —Sth
- Shh -
(38)
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Finally the in-plane DS matrix K, and the out-of-plane DS matrix K, are combined together, to give

the complete dynamic stiffness matrix as:

F=K29¢ (39)
or more explicitly

[ Now, | [ Snm s O 0 0 0 fan  fu 0 0 0 o] [ 1 ]
Nay, su 0 0 0 0 —fu  fu 0 0 0 0 Vi
Qay Sqq Sqm Sqt Sqh 0 0 faq fqm fqt fan Wi
Mazay Smm Smt  Smh 0 0 —fom  fmm  fmt  fmn Pz
My, Stt  Sth 0 0 fat  —fmt fre fen Dy,
Pray _ Shh 0 0 —fer  fmn —fth  Jrn Wiz
Nowy | Snn —Snl 0 0 0 0 Us
Nays su 0 0 0 0 Vo
Qz, Sym Sqq  —Sgm Sqt  —Sqh Wa
Mgz, Smm  —Smt Smh Dy,
My, Stt  —Sth Dy,

L Pzasy L shh | | Wa2z |

(40)

The above dynamic stiffness matrix will now be used in conjunction with the Wittrick-Williams algorithm
[3] to analyze assemblies of composite plates to investigate their free vibration characteristics based on
HSDT. Explicit expressions for each element of the DS matrix were obtained via symbolic computation,
but they are far too extensive and voluminous to report. The correctness of these expressions was further
checked by implementing them in a Matlab program and then carrying out a wide rage of numerical

simulations.

2.4. Assembly procedure, boundary conditions and similarities with FEM

Once the DS matrix of a laminate element has been developed, it can be rotated and/or offset if
required and thus can be assembled to form the global DS matrix of the final structure. The assembly
procedure is schematically shown in Fig. 2] which is similar to that of FEM. Although like the FEM, a
mesh is required in the DSM, it should be noted that the latter is mesh independent in the sense that
additional elements are required only when there is a change in the geometry of the structure. A single
DS laminate element is enough to compute any number of its natural frequencies to any desired accuracy,
which, of course, is impossible in the FEM. However, for the type of structures under consideration DS
plate elements do not have point nodes, but have line nodes instead. In this particular case, no change in
geometry along the longitudinal direction is admitted. This is in addition to the assumed simple support
boundary conditions on two opposite sides, inherent in DSM for plate elements at present. The other
two sides of the plate can have any boundary conditions. The application of the boundary conditions
of the global dynamic stiffness matrix involves the use of the so-called penalty method. This consists
of adding a large stiffness to the appropriate leading diagonal term which corresponds to the degree of
freedom of the node that needs to be suppressed. It is thus possible to apply free (F), simple support (S)
and clamped (C) boundary conditions on the structure by penalizing the appropriate degrees of freedom.

Clearly for simple support boundary condition, V', W and ®, are penalized. On the other hand, for
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clamped boundary condition U, V', W, ®,, ®,, W,z will have to be penalized. Of course for the free-
edge boundary condition no penalty will be applied. Because of the similarities between DSM and FEM,
DS elements can be implemented in FEM codes and thus the accuracy of results can be enhanced very

considerably.

2.5. Application of the Wittrick- Williams Algorithm

In order to compute the natural frequencies of a structure by using the DSM, an efficient way to solve
the eigenvalue-problem is to apply the Wittrick-Williams algorithm [3] which has featured in literally
hundreds of papers. For the sake of completeness the procedure is briefly summarized as follows.

First the global dynamic stiffness matrix of the final structure K* is computed for an arbitrarily chosen
trial frequency w*. Next, by applying the usual form of Gauss elimination the global stiffness matrix, is
transformed into its upper triangular K *“ form. The number of negative terms on the leading diagonal
of K** is now defined as the sign count s(K*) which forms the fundamental basis of the algorithm. In
its simplest form, the algorithm states that j, the number of natural frequencies (w) of a structures that

lie below an arbitrarily chosen trial frequency (w*) is given by:
J = Jjo+s(K") (41)

where jo is the number of natural frequencies of all single elements within the structure which are still
lower than the trial frequency (w*) when their nodes are fully clamped. It is necessary to account for this
clamped-clamped frequencies because exact free vibration analysis using DSM allows an infinity number
of natural frequencies to be accounted for when all the nodes of the structures are fully clamped, i.e.
in the overall formulation K & = 0, these natural frequencies correspond to § = 0 modes. Thus jj is
an integral part of the algorithm and not really a peripheral issue. However, unless exceptionally high
frequencies are needed, jp is usually zero and the dominant term of the algorithm is the sign-count s(K™*),
of Eq. [ @I)). One way of avoiding the computation of jy is to split the structure into sufficient number of
elements so that the clamped-clamped natural frequencies of an individual element in the structure are
never exceeded. Once s(K*) and jy of Eq. (&I]) are known, any suitable method, for example, bi-section
technique, can be devised to bracket any natural frequency within any desired accuracy. The mode shapes
are routinely computed by using standard eigenvector recovery procedure in which the global dynamic
stiffness matrix is computed at the natural frequency and the force vector is set to zero whilst deleting
one row of the DS matrix and giving one of the nodal displacement component an arbitrarily chosen

value and then determining the rest of the displacements in terms of the chosen one.

3. Results ans Discussion

The first set of results was obtained to validate the dynamic stiffness theory using HSDT presented
in this paper. For the fundamental natural frequency, Table [Il shows representative results in non-
dimensional form for a cross-ply composite square plate simply supported on all edges using the present
theory along side the published results from literature. Of particular significance, is the inclusion of

the 3D elasticity solution and numerical results using ANSYS which show close agreement with the
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results obtained by the present theory. Note that the ANSYS results were obtained by using SHELL181
element. Results in Table [l cover a broad range of laminate lay-ups and stacking sequences. It is evident
that the DS theory using HSDT predicts natural frequencies of composite plate in an accurate manner.
The maximum error incurred when compared to 3D elasticity solution is 4.54% for an artificially large
value of the orthotropic ratio E;/FEs = 40. For realistic orthotropic ratios, the error is expected to be
much less. (Note that for carbon-epoxy and glass-epoxy composite structures the ratio E;/Es is around
10.) The next set of results was obtained to examine the effects of the thickness to length ratio and
the orthotropic ratio on the first four natural frequencies of the square plate, simply supported on all
edges, but with stacking sequence [0°/90°/0°/90°/0°],. The results using the current DSM based on
HSDT are shown in Table 2] together with the ones obtained by using the DSM program (based on
FSDT) developed by Boscolo and Banerjee |22, [23]. Some interesting observations can be made from
these results. Clearly, the difference in natural frequencies when using the more accurate HSDT and
as opposed to relatively less accurate FSDT, increases when the plate becomes progressively thicker, as
expected. One of the anomalies in using FSDT arises from the difficulty to select the shear corrector
factor (x), which is generally introduced on an ad-hoc basis in an attempt to account for the correct
shear stress distribution which in reality is not uniform through the cross section. Strictly speaking, the
FSDT can never achieve zero shear stress distribution at the free boundaries. Thus there is an element
of uncertainty in choosing the shear corrector factor and different authors have used different values (see
Mindlin [44] , Reissner [45]). The problem of choosing the shear corrector factor is even more troublesome
for composites. However, this factor is taken to be 5/6 (see [45]) in the FSDT results shown in Table
By contrast the HSDT results based on refined displacement field do not rely on such fictitious (and quite
often arbitrarily chosen) shear correction factor because the HSDT intrinsically account for the parabolic
shear stresses distribution. To confirm the predictable accuracy of the current method, 3D elasticity
solution has been used for comparison purposes. Both the influence of the thickness-to-length ratio and
the orthotropic ratio on results are also shown in Table 2l The next set of results are focused on the
effect of boundary conditions. For two representative values of thickness ratio (b/h), the results in Table
Bl show the effects of the boundary conditions on the first four natural frequencies of the above plate.
It should be noted that FSDT results are also included in the table. Clearly, when the plate is simply
supported on to opposite sides and clamped on the other two sides, the natural frequencies assume higher
values as expected. For this case, the maximum error encountered is in the third natural frequency when
using FSDT instead of the more accurate HSDT. The absolute values of these errors are around 7.5%
and 4.2% when the thickness ratios are 5 and 10 respectively, as can be seen in Table [3l It also evident
from the results that on occasions, the FSDT results are lower than the HSDT ones. The reason for this
can be attributed to the fact that the choice of the shear correction factor (which is non-existent and
unnecessary in HSDT), influences the FSDT results in some unpredictable way. Such discrepancies are
not uncommon and can be found in the literature. In order to demonstrate the applicability of the theory
to an assembly of composite plates, a stepped panel which is schematically shown in Fig. Bl has also been
analysed. As in previous cases, the results were obtained in non-dimensional form and with particular

reference to Fig. Bl The ratio by /b, ba/b, b3/b are taken to be 1/5, 1/20, 1/10, respectively which are
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representative from a practical standpoint. The results where obtained for different boundary condition,
and for a wide range of thickness ratios between the stiffened plate and parent plate (¢2/t1) ranging from
2 to 6. The first ten natural frequencies using the present theory with S-C-S-C and S-F-S-F boundary
conditions, are shown in Table [ for different values of b/h. The results shown are exact and cannot be
found in the existing literature, neither can they be obtained in an exact sense using other methods. The
following comments about these results are relevant. Understandably, the natural frequencies are higher
for S-C-S-C boundary conditions compared to S-F-S-F ones, as expected, but more importantly, for thick
plates, e.g. b/h = 2, increasing to/t1, decreases all the natural frequencies significantly. By contrast, for
relatively thin plates with b/h = 10 the natural frequencies increase with increasing to/t; ratio for this
particular problem. The reason for this can be attributed to the fact that for higher b/h ratio the effect
of mass of the stiffened plate appears to be more pronounced than its stiffness, yielding lower natural
frequencies as a consequence. The final set of results was obtained to demonstrate the mode shapes of the
composite plate and the stepped panel using HSDT based DSM. In Figs. M to [l a direct comparison of
the first, fifth and ninth modes between the simple cross-ply laminated composite plate and the stepped
panel has been made for the boundary conditions S-C-S-C, when the step ratio t2/t; = 2, whilst the
overall dimensions for the two configurations are kept the same. These figures reveal some interesting
features. For the fundamental mode, see Fig. @ there is hardly any difference in the natural frequency
and mode shape between the simple plate and stepped panel. This is in sharp contrast to the fifth and
ninth modes shown in Figs. Bl and [0l respectively, where some differences in the natural frequencies and
mode shapes are prevalent. It is clear from these two figures that significant alteration in the mode
shapes is possible when required as a result of using stepped panel. The corresponding results for S-F-
S-F boundary condition are shown in Figs. [[l Bl and @ Figure [1 shows that the fundamental natural
frequency changes significantly, but the mode shape follows more or less the same pattern. The sixth and
ninth modes shown in Figs. [§ and Q] fortuitously reveal the same picture as the fundamental one shown
in Fig. [1 It is interesting to note that for S-C-S-C and S-F-S-F boundary conditions, results and trends
are markedly different. These observations are important when solving frequency attenuation problems

to avoid certain undesirable natural frequencies and mode shapes of complex composite structures.

4. Concluding Remarks

An exact dynamic stiffness theory for composite plate elements using higher order shear deformation
theory is developed for the first time in this paper using Hamiltonian mechanics and symbolic algebra.
The theory is implemented in a computer program to carry out free vibration analysis of composite
structures modelled as plate assemblies. The proposed theory is a significant refinement over recently
developed dynamic stiffness method using classical and first order shear deformation plate theories. The
developed DSM model is particularly useful when analyzing thick composite plates with moderate to high
orthotropic ratios for which the FEM may become unreliable, particularly at high frequencies. A detailed
parametric study has been carried out by varying significant plate parameters and boundary conditions.
The results have been critically examined and the theory has been assessed using existing theories and

in particular three-dimensional mathematical theory of elasticity. A stepped composite plates has also
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been analyzed for its dynamic behavior. Based on the computed results the following comments can be

made:

e The proposed exact dynamic stiffness composite plate element based on HSDT is shown to be more
accurate in terms of results and computational efficiency when compared with FEM in free vibration

analysis of composite plate assemblies.

e The theory provides a significant refinement over FSDT element, particularly when thick plates

with high orthotropic ratios are analyzed.

e The boundary conditions do not seem to affect the error incurred using FSDT as opposed to more

accurate HSDT.

e The dynamic behavior of stepped composite plates are very different from those of simple com-
posite plates depending on the boundary conditions, but significant alteration in mode shapes is possible

by using stepped panels. This could be useful in solving frequency attenuation problems.
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Tables

Table 1: Dimensionless fundamental natural frequency parameter & = wa \ /EL2, for a cross-ply square composite plate

simply supported at all edges with a/h =5, E1/FE2 = open, G12/E2 = G13/E2 = 0.6, Ga23/FE2 = 0.5, v12 = v13 = 0.25.

Stacking sequence Models E1/E>
3 20 40

[0°/90°] 3D-Elasticity [46] 6.6185 Al % 9.5603 Asp% 10.7515  Agp%

ANSYSt 6.5638  (—0.83) 9.2574  (-3.17) 10.221  (—4.93)
Classical Levy’s solution  Reddy [46] 6.5527  (—0.99) 9.2348  (—3.40) 10.2631  (—4.54)
DSM HSDT 6.5527  (—0.99) 9.2349  (—3.40) 10.2632  (—4.54)
[0°/90°/0°] 3D-Elasticity [46] 6.6468 Asp% 9.948 Asp% 11.3435 Asp%

ANSYSH 6.5780  (—1.04) 9.7363  (—2.13) 11.051  (—2.58)
Classical Levy’s solution  Reddy [46] 6.5850  (—0.93) 9.8413  (—1.07) 11.2617  (—0.72)
DSM HSDT 6.5850  (—0.93) 9.8413  (—1.07) 11.2617  (—0.72)
[0°/90° /0° /90° /0°], 3D-Elasticity [46] 6.66 Asp% 10.1368 Asp% 11.6698 Asp%

ANSYSt 6.5879  (—1.08) 9.9986  (—1.36) 11.4926  (—5.74)
Classical Levy’s solution  Reddy [46] 6.5959  (—0.96) 10.0598  (—0.76) 11.6198  (—0.43)
DSM HSDT 6.5959  (—0.96) 10.0599  (—0.76) 11.620  (—0.43)

Asp% = =23
T Asp% 3D

x 100.

1 FEM mesh 50 x 50 elements.
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Table 2: Dimensionless fundamental natural frequency parameter © = wa \ /ELZ, of a cross-ply square composite plate, sim-
ply supported at all edges with stacking sequence [0°/90°/0°/90°/0°],, b/h = open, E1/E2 = open, G12/E2 = G13/E2 =
0.6, GQ3/E2 = 0.5, vi2 =113 = 0.25 .

Ei1/E> Models b/h
2 5 10 100
3 HSDT 4.5542 ALT% 6.5974 Apt% 7.2559 Agt% 7.5327 Agt%
FSDT:_,  4.5375  (-0.36) 6.5955  (—0.03) 7.2556  (—0.004) 7.5327  (0.00)
=&
10 HSDT 5.1766 At % 8.5341 Apt% 9.9576 Agt% 10.6416  Apt%
FSDT _s 51355 (~0.79) 8.5227  (—0.13) 9.9532  (—0.04) 10.6416  (0.00)
=&
20 HSDT 5.5412 Agt% 10.0646 Aut% 12.5357 Agt% 13.9312 Apt%
FSDTXié 5.4572 (—1.52) 10.0415 (—0.23) 12.5229 (—0.10) 13.9312 (0.00)
=%
30 HSDT 5.7410 Agt% 10.9927 Auat% 14.3872 Agt% 16.5764 Apt%
FSDT, _s  5.6065 (—2.34) 10.9605  (—0.29) 14.3663  (—0.15) 16.5764  (0.00)
=&
40 HSDT 5.8815 Agt% 11.6200 Aut% 15.8222 Aut% 18.8499 Aut%
FSDT, s 56925 (-3.21) 11.5788  (—0.35) 15,7943 (—0.17) 18.8499  (0.00)
=&

Apr% = ZESDT—CHSDT » 100,
T HT WHSDT

* x Shear Corrector Factor.
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Table 3: Dimensionless natural frequency parameter @ = wa A/ EL;, of a cross-ply square composite plate, with stacking

sequence [00/900/00/900/60]5, b/h =5, E1/Es =40, G12/E2 = G13/E2 = 0.6, G23/E2 = 0.5, v12 = v13 = va3 = 0.25.

b/h  Mode S-S-5-S S-S-S-F S-S-S-C
5 mn HSDT FSDT' Al,% mn HSDT FSDT Aur% mn HSDT FSDT Aur%
1 11 11620 11579 (—0.35) 11  7.442  7.652  (3.13) 11 12538 12,027 (—4.08)
2 21 20326 20916  (2.90) 12 15292 14976 (—2.07) 21 20.853 21.157  (1.46)
3 12 22742 21547 (—5.25) 21 18264 19.028  (4.18) 12 24.001 21.660 (—9.75)
4 22 28227 27.706 (—1.85) 22 22.745 23.027  (1.24) 22 29.250 27.792 (—4.98)

10 mn HSDT FSDT Apgr% mn HSDT FSDT Agt% mn HSDT FSDT Agr%
1 11 15.822 15.794 (—0.17) 11 9.622 9.740 (1.23) 11 18.524 18.116 (—2.20)
2 21 31972 32.736 (2.39) 12 21486 21.314 (—0.80) 21 33.342  33.862 (1.56)
3 12 37.075 36.189  (—2.39) 21 29.238  30.126 (3.03) 12 39.463 37.479 (—5.03)
4 22  46.480 46.315  (—0.35) 22 35421 35.988 (1.60) 22 48365 47.285 (—2.23)

S-F-S-F S-C-S-F S-C-8-C
5 mn HSDT FSDT Apr% mn HSDT FSDT Agr% mn HSDT FSDT  Apr%
1 11 7263 7489  (3.11) 11 8348 8463  (1.38) 11 13715 12688 (—7.49)
2 21 7909 8073  (207) 12 16105 15039 (—6.62) 21 21.553 21.518 (—0.16)
3 12 18113 18916  (443) 21 18620 19.342  (3.88) 12 25310 21.725 (—14.2)
4 22 18113 19330  (6.72) 22 23310 23.071 (—1.03) 22 30.335 27.843 (—8.21)
10 mn HSDT FSDT Apr% mn HSDT FSDT Agr% mn HSDT FSDT  Aur%

1 11 9.394 9516  (1.29) 11 10.764 10.842 (0.72) 11 21.438 20.547 (—4.16)
2 12 10.248  10.352 (1.01) 12 23977 23177 (—3.34) 21 34970 35.149  (0.51)
3 13 29017 28638 (—1.30) 21 29.637 30.497  (2.90) 12 41.668 38.546 (—7.49)
4 21 20.054 29956  (3.10) 22 36.952 37.075 (0.33) 22 50.153 48.107 (—4.08)

= = -

Apr% = ZESDT—CHSDT » 100,
T HT 70 WHSDT

1 Shear Corrector Factor x = 5/6.
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Table 4: Dimensionless natural frequency parameter & = wa \ /EL27 of a simply supported cross-ply square composite

plate, using a HSDT for stacking sequence [0°/90°/90°/0°], E1/E2 = 40, G12/E2 = Gi3/E2 = 0.6, Ga3/E2 = 0.5,

vi2 = v13 = vo3 = 0.25.

ta/t1 S-C-S-C S-F-S-F
b/h 2 10 50 b/h 2 10 50
Mode mn mn m n m n mn mn
1 11 6.097 11 18473 11 30.046 11 3.403 11 7.244 11 8.002
2 21 9.227 21 30.000 21 41.947 12 3.946 12 8.217 12 9.586
3 12 12115 12 37404 31 71.210 21 7.616 21 23303 21 30.356
4 31 13372 22 44296 12 77.876 13 7.736 22 23444 22 30.863
2 5 22 14.0565 31 47505 22 84.531 22 8.301 13 27773 13 35.785
6 13 16.099 13 56.002 32 102922 23 9.803 23 36539 23 49.778
7 14 16920 32 57595 41 115.004 14 9.886 31 42134 31 62.796
8 32 17025 23 61073 42 136311 31 12160 32 42.253 32 64.236
9 15 17289 41 66.859 13 149614 24 12173 33 51.799 33 82.335
10 41 18240 33 71.819 23 153671 32 12957 14 52953 14 86.661
Mode mn m n m n m n mn mn
1 11 5.922 11 18783 11 30.145 11 2.705 11 10633 11 15.947
2 12 7.725 12 33663 21 71.096 12 3.762 12 11327 12 16.435
3 21 8.750 21 34431 12 71.258 21 5.371 13 26287 13 36.993
4 22 8.750 22 44351 22 97.426 13 6.107 21 27.064 21 48.923
4 5 13 9.403 13 47389 13 124620 31 8.544 22 28594 22 50.370
6 31 11.022 31 53139 31 135590 14 8.952 23 37628 23 71.117
7 23 13713 23 56.002 23 141442 15 8.952 31 45638 31 85.170
8 41 14.039 32 60239 32 148635 22 9.824 32 46.783 32 85.414
9 14 14076 33 69.624 33 186.566 23 9.824 14 49484 14 85.546
10 15 15088 14 71520 41 208478 24 11.007 33 54.682 24 106.295
Mode mn mn m n m n mn mn
1 11 4.444 11 19266 11 34.798 11 1.948 11 11953 11 29.947
2 12 4.444 12 29658 12 69.167 21 4.277 12 13722 12 29.948
3 21 5.869 21 36346 21 96.522 12 6.748 13 23874 13 42.819
4 22 5.869 22 42039 13 110864 22 7.103 21 28197 21 72.821
6 5 31 8.500 13 42082 22 114264 31 7.197 22 30669 22 72.821
6 13 8.913 14 44622 23 144387 32 8.510 23 36323 14 103.419
7 14 10.091 23 51451 31 175783 13 9.027 14 40.146 15 103.524
8 32 10263 31 56.107 32 184.041 14 9.027 15 44438 16  109.667
9 23 10393 15 58325 14 199545 23 9.457 31 46.155 23 114.436
10 15 10405 16 59.233 33 211.700 24 9.457 24 47365 24  114.437
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Appendix A. Laminate Geometric and Constitutive Equations

The geometric relation for a lamina in the local or lamina reference system can be written as:

Exx Dy 0

Eyy 0 Dy u

Yy = Dy Dy v (A 1)
Yyz 0 D, Dy w

Yxz Dz 0 Da

and in terms of the functional degrees of freedom:

cxx Dy 0 (Cl 23) Daa (z +cy 23) Dy 0 0
cyy 0 Dy <(:1 z3) Dyy 0 (z +e1 zS) D, 20
Yoy = Dy Do (c123Day+e12®Dya) (24c¢12%) Dy (24012%) Do w0 (AQ)
Yyz 0 0 (14380c122) Dy 0 (1+4380c122) b
Yoz 0 0 (1+3ec122) Do (143e122) 0 by
where D, and D, are the derivatives in x and y respectively and ¢; = —ﬁ. The constitutive equations

in the lamina reference system can be written, in terms of reduced stiffness coefficients, as:

o1 C11 Cig 0 0 0 e1
oo C1a  Cao 0 [ 0 eg
T12 = 0 0 Cegg 0 0 Y12 (AS)
723 0 0 0 Cyq 0 723
T13 0 0 0 0 Csp Y13
where the Cj; are expressed in terms of stiffness coefficients Cj;, as:
= C3 Ei = Ci3 Ca3 vigEo ~ C3. Es
Ci=Cn—-B2=—7 | Ci2 = Cr2 — = ) Crp=Copp— B ==
Cs3  1—vigvan Cs3 1 —wviova1 C33  1—viovy (A.4)

Cua = Cas = Gas, Cs5 = Cs55 = Gi3 Ce6 = Cs6 = G12
where F; is the elastic modulus in the fibre direction, Fs the elastic modulus in perpendicular to the
fibre, 112 and ve; = v19 E2/E; the Poisson’s ratios, Gi2 = G13 and Gas the shear modulus of each single
orthotropic lamina. If the lamina is placed at an angle 6 in the laminate or global reference system, the

equation need to be transformed as follows:
C11 =C11C* +2(Chg + 2C66)S?C? + Cp08*
12 =(C11 + Cog — 4C66)S?C? + C1a(S* +CY)
16 =(C11 — Cha — 2C66)SC? + (Crz — Cog 4 2C46)S?
22 =C118* + 2(Cha + 2C66)SC? + CoaC*
Ca6 =(C11 — Cha — 2C56)S3C + (Ch2 — Caa + 2C66)SC? (A.5)
Cgs =(C11 + Caa — 2012 — 2C6)S?C? + Co(S* +CY)
Cay =CyaC? + C55S5”
Cs5 =C1uS® + C55C°
Cu5 =(Cs5 — C14)CS
where C = cos (f) and S = sin (#). This leads to the constitutive equation for the k-th lamina in the

laminate or global reference system:

Oaa Cu Ci2 Cis 0 0 Ean
Oyy Ciz Ca2 Ca 0 0 Eyy
Try = Cis6 Cas Ces 0 0 Yay (AG)
Tyz 0 0 0 644 545 Yyz
Trz 0 0 0 645 655 Yxz
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Appendix B. Polynomial Coefficients

The polynomial coefficients for out-of-plane and in-plane cases are following defined:

2 2
ay =cy (Fi; — D11 H11)(Dge + c1 (2 Fge + 1 Hep))

ag = —c2 (Agy + o2 Dyy) FE + Ass D11 (Dgg + c1 (2Fg6 + c1 Heg)) + c3 (D11 Dgg Fss + 21 D11 Fss Feg

+¢f (~Ff) Fag + D11 Faq Hi1 + D11 Fs5 Hee)) + 2 ¢z (—¢3 Dag Fiy + D11 (] Dag H11 + D55 (Deg

+2¢1 Fog + c Hep)) + cf (Agq D11 Hi1 — o (Dig Hiy — 2 D12 (F11 (Fig + 2 Fge + 1 Hiz + 2 1 Heg)

— Hi1 (Deg + e1 (F12 — ¢1 Hgp))) + c1 (Fiy (2 Fag + e1 Hag) — 2 F11 (Fig — 4 Fgg + 1 (Fia + 2 Fgg) Hiz

+2Dgg (Hiz + 2 Hgg)) + Hi1 (c1 (Fig + 2 Fgg)? + 4 Dgg (F12 — e1 Hgg))) + D11 (Fig + 4 Fgg — Dag Hip

— 2 Dgg (Hia +2 Hgg) + 2 F1 (2 Fgg + e1 (H1a + 2 Hgg)) + e1 (—2 Fag Hy1 + ey (Hig — Hiy Hag +2 Hyo

Hgg)))) — (H11 (D11 + Dgg + 2 ¢1 Fge + ¢ Heg) T2 + 2 e1 D11H1y T4 — 2 F11 (Dg + ¢1 (2Fe6 + c1 Heg)) Ta

+ D11 (Dgg + c1 (2 Fgg + e1 (H11 + Hee))) Ts — Fiy (Iz + ¢1 (214 + e Ig))) w?)
ag = — Agq Aps D11 — 2 Ags c3 D11 Dgg — 2 Agq cp D11 Dgs + 20 g DIy Dgg — 2a? g D1y Dag Dgg — 4¢3 D11 Dyg Dss

— Agqa® D1y Dgg — 2% e D1y Dyy Dgg + 4 a? ca D1 Dys Dgg — 2 Agq @ e1 D1g F1y —4a® ey eg D1g Dyg F11 — 4 Agy

a?c1 Dgg Fi11 — 8a® cq ep Dyg Deg F11 +2 Agq a® 1 D11 Fia +4a® cq ep D11 Dag Fig + 402 ¢1 g D1 Dgs Fia + 8o

c1 ez D55 Deg F2 + 2 Agq a® cf Fi1 Fig +20* ¢f Dag Fiy Fig +4a? ¢f ca Dyg F11 F12 — 20% ¢f D1o Fiy +20% ¢ 3

Dss Fig — 40 e} F¥y —4a? ¢q ca D1y Ds Fap — 20 ¢f D1y Fiy Fag — 20 ] Dgg F11 Faz + 20 ¢f D1y Fip Fap +40*

C% F11 F1p Fag — Ags C% Dyy Fyq — 26% Djy D55 Faq — a? Cg Dj1 Dge Faq — 202 c1 C% Dy F11 Faq — 10 c1 C% Dgg F11 Fa4q

+2a% ¢y cd Dyy Fip Fay +20®cf ¢ Fiy Fia Fay — Aggch D1y Fss + o ¢ DIy Fss — a® ¢ Dyy Dag Fs5 — 2¢3 D1y Day Fss

+2a%c3 Dip Dgg Fs5 + 2% ¢1 ¢3 Dig Fia Fss +4a” ¢1 ¢ Dgg Fia Fss + o ¢} ¢3 Fiy Fys — 2% ¢1 ¢ D1y Fag F5 — <5

D11 Faq Fs5 + 2 Agq a® ¢1 D11 Fge + 4 a® cq ep D11 Dag Feg + 4 Agg a® C% F11 Fgg + 40 C% Daa Fi1 Fgg +8a? C% e Dgg F11

Fgg — 8atc? Dig Fip Fgg + 8 a2 c3 cy Dss Fio Fgg — 16 ot ¢§ Fy Fgg + 4 at ¢2 Dy Fag Fgg + 12a ¢ Fiy Fog Fgg + 202 ¢;

€3 D11 Fay Fog + 40° ¢f ¢ P11 Fay Fog +40” ¢f ¢3 F1a F55 Fog — 8a' o D1y Fgg + 8a® cf 3 D55 Fgg — 160§ Fip Fig

+4a® e} Fyg Fgg — 2 Agq a” ¢f D1g Hyg — 4a”® cf ey Dyg Dyy Hiy — 4 Agq o® of Dgg Hiy — o ¢f Doy Dgg Hyp — 8a®cf cp (Bl)

Dygq Dgg Hi1 +2a* e} Dog F1g Hyy — 20 e} D1 Fag Hyp — 40t e} Dgg Fag H1y + 2a C‘11 F1a Fap Hiy — 20” ¢ ¢3 Dig Fyq Hiy

— 402 ¢} c3 Dgg Fua H11 + 20 ¢} Dog Fgg Hi1 +4a* cf Fao Fgg Hip +2a% f DIy Hip —20* eI D1y Dog Hip +40* ¢} Do

Dgg Hiz — 2% C? Do Fi1 Hip + 40 C? Dip Fip Hip +8at C? Dgg Fiz Hiz — 2a* C% F122 Hip —2a C:f Diy Fap Hip — 20* 0411
P11 Fap Hip — 8o ¢} Fig Fog Hip — 8a ¢ Fgs Hig + 20 ¢ Dip HYy + 40 o Dgg HIy — 20% ¢f c3 D11 Dss Hap — o e D1y
Dgg Hao — 20” ¢} Dy Fiy Hap — 40} Dgg F11 Hag + 20 ¢ Dyy Fip Hyo + 20 ] Fiy Fig Hap — a? ¢} § Dyy Fs Hap + 2
a* o D1y Fog Hao + 40 ¢} Fiy Fog Hap — 20 ¢ D1y Hyy Hag — 4a* of Dgg H1y Hag — Agg o ¢f D1y Heg + 4o o DI, Heg
—aat Cf Dy Dao Heg — 22 U% 3 D11 Dyg Heg — 402 C% ea D12 Dgs Hgg + 8 a* C? D13 Dgg Heg — 8 C% c2 D55 Dgg Hee — 4
ot C? Daa Fi1 Hgg + 8o C? D1 Fi3 Hgg + 16 a* C? Dgg Fi2 Hge — 4o C? D1y Fap Hgg — 2o C411 P11 Fa Heg — o C% C% Dy Fag
Hgg — 20 ¢} 3 D1y Fs5 Hog — 4 ¢f 3 Dgg Fss Hog — o’ ] Dog Hi1 Hee +4a* cf D1y Hiz Heg + 8 ¢f Dgg Hiz Heg — ot
C% D11 Hap Hgg + Ass Q2(D%2 — D11( Doz + ¢1(2F25 + ¢1 Ho3)) +2D12(Dgg + c1(Fi1a — ¢y Hgg)) + c1(c1(Fr2 + 2FGG)2
+4Dgg(Fr2 — c1 Hep))) + (Dee( Ass + c2(2 D55 + c2 Fi55)) Iz +2¢1(Dgg F11 1o + (Ass + c2(2 D55 + c2 Fs5)) Fee 12)+
3 (Dgg Hi1 Tg — a®(F1a + 2 Fgg)? T2 + Agq Hi1 T2 + o Dog Hyg In + 2¢3 Dyg Hi1 To + o Deg Hi1 In + c3 Fag Hi1 Iz + 20
Dgg Hiz T2 + Ass Hgg Iz + 2 ¢z D5 Heg T2 + 4 a® Dgg Heg T2 + C% Fs5 Heg T2 + 2a® D1 Fip Iy + 4o D1a Fgg Ig + 2 F11(2 Feg
(Ig — a®T3) — (Agq +2c2 Dag + c3 Faa) Iy + o® (= Fia Io + (D12 — D3z + Dgg) 14)) — o> D12( D12 + 2 Dgg) Ig) + D11
((As5 + c2(2 D55 + 3 Fi5)) Iz + 2¢1( Fgg I + (Ags + ¢2(2 D55 + cg Fi5)) Ig) + o ¢f(Haz + Hgg) Ig + Dgg (1o + o cf Ig)
+2a% e} (Hip Iy + 2 Hge 14 — (F12 — Fag + Feg) I) + i (Heg(To +40a” Io) + (Agg + Ass + c2(2 Dy +2 D55 + ca( Fag
+ F55))) Ig + a®(2 Hig Iy — 2( Fig + 2 Fgg) Ig + Doo Ig))) + 2ch(—4a? FEg Iy + Fee(Hi1(Ig — o Ig) — 6o Fip Iy) + o
(Fa3 Hiy To + Fiy Iy + (D12 +2 Deg)(H11 + Hiz + 2 Heg) T4 — Fia2((Hiy + Hia + 2 Heg) Iz + (D12 + 2 Deg) Ig)) + F11
(Heg(To +2a® I2) + a®(Hip I3 — 2( F1a + Fa2) Iy + (D12 + 2 Deg) I6))) + e (— a®(HTy Iz + 2 Hip Heg Iz — 2( F11 + Fi2
+2Fg6) Hig I4 + 2 F11(Hop — Heg) T4 + ((F12 +2 Fge)(2 F11 + Fi2 + 2 Feg) — 2( D12 + 2 Dgg) Hee) 16) + H11(Hee (1o
+ a?Iy) + a®(Hag Iy — 2( F1g + 2 Fgg) Iy + 2( D12 + 2 Dgg) I6)))) w? — C%(— I4(2 F11 I2 + (Dgp + c1(4F11 + 2 Fge + 1

Hgg)) I4) + (( D11 + Dgg + 2 c1 Fog + 5 Hgg) Iz + 2c1( D11 — c1 F11) Ig) Ig + €3 D11 1§ + Hip In(Iz + e1(214 + c1 Ig)) o
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ag =—2a" c3 DIy Dyy +2a% 3 D11 Doy Dyg +8a? c3 D1g Dyy Dss — 4a” ca D1g Day Deg + 2 a 3 Doy Dss Deg + 16 0 ¢3 Day
Dg5 Dgg + 2 Agq Ass @ (D12 + 2 Dgg) + 4 Ags o 3 Dyg( D12 + 2 Dgg) + 4 Agy o cg D55(Dig + 2 Dgg) + 4o ¢1 ca Dy Dyy
F11 —4a*ej ey Dig Dyy Fia — 4o ey g Doy Dys Fia — 8a® e1 g Dyy Dgg Fiz — o of Doy Fiy — 20" cf g Dyy Fiy +daater e
Dia D5 Fap +8a® ¢1 ¢ D5 Dag Fao + 20 ef D1g Fia Fag — 40 ¢f ep Dg5 Fia Fog + 208 ¢ Ffy Fag — o8¢ D1y F3, — 208
3 P11 F3y — a® ¢3 D3y Fag + o €] D1y Dog Fuyq +4a® ¢ D1y Dy Fag — 2a* ¢ D1y Dgg Fag + 8 02 ¢ Dss Dgg Faq + 2 Ass a® c3
(Dyg +2Dgg) Faa + 20 ey 3 Do iy Fyy —2a ey 2 Do Fig Fyy — 4a ey 2 Dgg Fro Fug — a® 22 P2y Fuy +4a2cd Do Dyy
Fss + o ¢3 Dyg Deg Fss + 8 a” c3 Dy Dgg Fss + 2 Agg o 3( D1 + 2 Dgg) Fss — 20’ ¢1 ¢3 Doy Fia Fss +2a’ ¢y ¢§ Do Fap Fss
+4at ey o] Dgg Fag Fss5 — 2a” f ¢§ Fip Fag Fss +20% ¢ Dip Fuy Fss + 40° ¢ Dgg Fag Fss — 4a ¢1 3 Doy D5 Fgg — 40 cf
Daa Fia Fgg — 8 a® ¢f cg Dyy F1a Fgg +4a® ¢f D1g Fag Fog — 8 a® f ep D Fan Fog — 40 of ¢ F1a Fay Fgo — 2a* ¢1 ¢3 Dag Frg
Fog — 4a? c? c3 Fag Fys Fgg — 4a® 2 Dog FZg — 8a ¢ cg Dyy Feg — 808§ Fag FZg — aa* e ¢ Fyy F25 +2a* ¢ ¢y Doy Dyy Hiy
— a%ct P2 Hyy 4+ ot c2 2 Doy Fyy Hyy + 208 2 Doy Deg Hig — 208 e Doy Fio Hin + 2088 Dig Fog Hip + 408 c§ Dgg Fan Hig
+20a8 el Fig Fap Hig +40a® cf Fap Fog Hig — o o] Doy 0Ty — o ] DIy Hag + af ef D1y Dag Hap + 40 ef cg Dig Dsg Hag — 208
§ D13 Dgg Hag +8at C% ep D55 Deg Haz +2 a8 C% Day Fy1 Hpp — 2a° C‘;’ Dy Fip Hap — 4a% ¢ Dgg Fip Hyp — af 6411 F122 Hyp +20?
ef 3 D1g Fs5 Hap +4a” ¢f c3 Dgg Fs5 Hap — 4a® cf Fip Feg Hap — 40 ¢} Fgg Haz + of of Doo Hiy Hog + 40 f ca D1y Dyg Heg+
2a* ¢} ¢y Doy Dss Heg + 4 ef Dag Dgg Heg + 8 a® of co Day Deg Hep — 4 a® ¢ Doy Fio Heg + 408 ¢ D1y Fay Heg + 808 e Deg
Fap Heg +2a* ¢f c5 D1p Fuq Heg + 4 ¢f ¢ Dgg Fag Heg + o’ of o3 Doy Fs5 Hee — 2a® cf Dag Hip Hee + 2% ¢f D1y Hap Heg+
408 ¢} Dgg Haz Hge — Asg o (Dig — D1y Dog + ¢1(—2 Dag F11 + 4 Dgg F12 + c1( F12 + 2 Fgg)® — 1 Dag Hi1 — 4 ¢1 Dgg Heg)+
2 D12(Dgg + c1(Fia — c1 Hep))) + Ags a®(2e1( Fag(D1a + 2 Dgg — ¢1( Fia + 2 Fgg)) + ¢1( D1g + 2 Dgg) Haz) + Daa( Dgg+
c1(=2(F12 + Fge) + c1 Hep))) + (= (As5(Dee + c1(2 Fee + c1 Hee)) +2¢c2( D11 Dag + D55 Dee + c1(2 Dygq F11 + 2 D55 Fee
+ e1 Dgq H1y + ey Dys Heg)) + c5( D11 Faa + Dgg Fss + c1(2 F11 Faq + 2 Fs5 Fg + 1 Faq H11 + c1 Fs5 Hgg))) Io — e2(2 Dag
+ c2 Faq)(Ags + c2(2 D55 + c2 F55)) Iz — (= D3y Ig — 2 D12 Dgg o + 2 ¢y Dag F11 Ig — 4 ey Dgg F1a o — 4¢f Fiy Ig +4cf
P11 Fap Ig — 8¢ Fig Feg Io + cf Dag Hiy Io + 25 Fap Hiy Ig — 25 Deg Hia To — 4 ¢} Fig Hip Ig — 4 ¢} Fog Hiz Io — ¢f Hig Io
+2¢§ Fiy Hag To + ¢ Hiy Hag Ig + D11(Dag + e1(2 Fap + e1 Haz)) To — 4¢5 F1a Heg To — 21 Hip Hge To — 2¢1 D122 Fi2
+2Fge + c1(Hi2 + Hgg)) Io + Ass D22 Iz +2c3 Do Dsg Ip + Ass Dge I2 + 2 ¢ Dag Deg 12 +2¢2 D55 Dgg 12 +4cqp co Dag 1y
Iy —2Agg ey Fig In —4cy g Dyg Fip In —4cy eg Dgg F1p Io + 2 Agg ey Fog I +4ey co Dgs Fag In + c3 Dgg Faq Io +2 ¢ ¢3 Fiy
Faq Iz —2¢ G% Flg Faq Ig + cg D11(2Dygq + g Faq) I2 + C% Dag Fs5 Iz + C% Deg F55 12 —2¢1 C% Fig Fs5 I3 +2¢y C% Fap Fs5 I
— 2Ap5c1 Fge 12 —4c1 ca Dag Fge 12 — 4 ¢y c2 Dss Fee 12 — 2¢1 Cg Faq Fge 12 —2¢3 Cg Fs55 Fee 12 + 26% c2 Dgq Hyy Iz + C% C% Faq
Hiy Ip + Aggcl Hag Ip +2c5 cg DysHag In + ¢f 3 Fsg Hag In + Ags cf Heg Iz + 2 ¢ co Dyg Heg Iz + 2 ¢ co Dgs Heg Iz + <3 c3
Fy4 Heg T2 + ¢ ¢3 Fs5 Heg T2 +4 Ass c1 Dgg T4 + 8¢y cp Dag Deg T4 + 8¢y ca Dss Dgg Ta — 2 Ass cf Fip Iy —4cf cp Dy Fio Iy—
4cf ey D55 Fig Iy +4cy e Deg Fag T4 — 205 ¢ Fip Fag T4 +4cy ¢ Dgg Fss T4 — 2¢5 ¢3 Fip Fs5 T4 +2c1 D1a(Ass + c2(2 Day +2
Dgs + ea(Fag + F55))) Is — 4 Ags ¢} Fgg 14 — 8¢5 3 Dag Fog Is — 8¢ eg Dss Fog T4 — 4¢3 5 Fay Fgg Is — 4 ¢ e Fs5 Fog 14 + 2
3(D12 +2Dgg)(Ass + c2(2 Dag +2 D5 + c2( Fag + F55))) Tg) — Aaq((Ass + 2 ¢z Dss + o Dgg + €3 Fs5) Iz + D11( Ig + o
1) +2e1(Fi1( To + o2 Iz) + a®(=(Fi2 + Fgg) T2 + (D12 +2 Dgg) 14)) + ¢ (H11( Ig + o I2) + o?(Heg Iz — 2( F12 + 2 Fgg)
I4 +2( D12 + 2 Dgg) 1)) — o ¢} (4 F3g To + 2 Dog Hip T + 2 Dgg Hia Tz — ¢} Hig In + Diy Hap Tp + Dgg Hao Tn + 21 F11
Hayp Ty — 2¢1 Fgg Hap To + f Hyy Hap Ip +4 Dag Heg T2 + 4 Deg Heg T2 — 2¢§ Hip Heg T2 + ¢f Hap Heg Iz + 4 D12 Fgg 14 — 4 Do
Fee 14 —8cy Fge Iy +2cy D12 Hyp Ig +2¢y Doy Hyg I4 +4cy Deg Hi2 Iy +4C§ Fee H12 I4 +2cy D12 Ha Iy +4cy Dgg Haz 14
—4¢f Fgg Hag T4 +4c1 D1o Heg T4 +4c1 Dao Heg T4 + 8¢y Dgg Heg 14 + (— Dig + D11 Dag +2 D1a(— Dgg + 3 ( Haz + Hege))
+4¢3(~ Fgs + Dge( Haz + Heg)) + Daa(Des + c1(2F11 — 2 Fge + c1(Hi1 + Hgg)))) Ig + 2 F1a(—( Faz + 2 Fg + c1( Hiz + Haz
+2Hgg)) Iz + (D12 — Dag + e1(—2 Fap + c1 Hip — 1 Ha2)) I — e1( D12 + Doz +2 Dgg + c1 Faz + 2 ¢1 Fgg) Ig) — Fig( Int
e1(=2 Iy + e1 Ig)) + 2 Foo((— D11 + Di1g + Dgg) T4 + 5 (= Hiy + Hig + Hgg) Ig + c1(Hig Ig +2Hgg I — 2 F1y Ig + D1a Ig
+2Dgg Ig) — 2 Fea( Iz + e1(3 Iy + c1 16)))) w? + (D11 Ig I + Dgg Io Ia +2c1 Fi1 Ig Ia + 21 Fgg Io Iz + ¢f Hi1 Ig Io + ¢f
Hge Io Iz + Ass I3 + 2cp D55 I3 + 3 Fss I3 +2a” cf Hig I3 +4a” ¢f Hee 15 +2c1 D11 To 14 +2¢1 Deg To 1o +4¢f Fiy Ig Iy
+4c? Fgg Io Iy +2c5 Hyp Ig Iy +2c5 Hgg Io Iy +2Asscy In Iy +4cycg Dss In Iy —4a2c2 Fig Iy Iy +2cy c3 Fag Ip Iy —8a’
2 Fgg In Iy +4a2c Hyg Iy Iy +8a2cd Hgg In Iy — Agqcl 13 — a?c2 Dy 17 +2a2 2 Dyg 13 — a?c2 Doy 17 —2c2 ey Dyy I3
+2a2c2Dgg 12 —2a2 3 Py 13 —4a? S Pip 17 — 202 B Fyg 15 — 2 E Fyq 13 — 1202 3 Feg 13 — o2 et Hyy 15 + 202 cf Hyp 1T
— a®cl Hap 13 +20% ¢ Heg 15 + cf(Dgg To +2c1 F11 To +2¢y Fgg Io + ¢f Hi1 To + f Heg 1o + (Asa + Ass + o Doy + 2 e
(Daq + Ds55)) T2 +2a® Dgg Ta +2a? ey F13 In —4a® ey Fip Io +2a? ey Fag I + e Faq I + c3 Fg5 Iz — 40”1 Fgg Io + o2 ¢}
Hip In+ o2 2 Hop In + 202 2 Hgg In + D11 (Ig+ a2 In) +4a2ci(Dig +2Dgg — c1(Fia + 2 Fgg)) I4) I + 202 ci( Dy + 2

Deg) 1g) wh + eF( 13 — I3 Ig)( Iz + c1(2 Iy + 1 Ig)) wS

2 2 2 2 2, 4 2
a5 = —(Ags +2cg D55 + ¢3 F55 + a”(Dgg + 2¢1 Fee + ¢] Hep) — (T2 +2¢c1 Iy + e Ig) w™)(a” (Agq Dag + 2cp Dag Dgyg + c3 Dag

Fys + o ¢ (= F3y + Dop Haz)) — (c2(2Dayg + ca Fag) To + Ags( T + o Iz) + o®((Dag + 21 Fap + ¢f Hap) To + c2(2 Dag+

co Fuq) I) + ot e} (Hap In — 2 Fap Iy + Dos Ig)) w? + (o2 ef (= I3 + In Ig) + Io( Iz + c1(2 Ig + c1 16))) w?)
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b2

b3

—A11 Age

2 2 2 2 2 2
—Ajga” + A1y Agga” —2A13 Agg a” — Ay lgw” — Age I w

—Agp Agg at + Agp a? Igw? 4+ Agga? Igw? — 1w
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