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Abstract

The dynamic stiffness formulation for both inplane and bending free vibration

based on the first order shear deformation theory for composite plates is

presented. The explicit terms of the dynamic stiffness matrices are also given.

Plates with different boundary conditions are considered. Rotation and offset

matrices for the element are developed and an assembly technique given.

The Wittrick and Williams algorithm is modified to avoid the troublesome

computation of the clamped-clamped natural frequencies when solving the

free vibration problem. The validation of the theory and its application to

real structures are illustrated in the second part of this paper.
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1. INTRODUCTION

Composite materials are increasingly being used in structural design, par-

ticularly in the aerospace industry. This is mainly due to the benefits deriv-

able from their high specific strength and from their directional properties.

The former enables design of structures with minimum weight and maximum

strength whereas as the latter can be taken advantage of to produce desir-

able aeroelastic or other dynamic effects. The use of composite materials in

aeronautical design has thus led to much lighter aircraft. However, for an

efficient and optimum design of composite structures an accurate knowledge

of their static and dynamic behaviour is important. In particular, the free

vibration analysis of composite structures is an important consideration in

design. The results from free vibration analysis are generally used to char-

acterise aeroelastic behaviour, dynamic response, acoustic performance, and

also to avoid possible resonance. The free vibration analysis has always been

a fundamental prerequisite for aeroelastic analysis of aircraft structures par-

ticulary when the normal mode method is used.

In order to model various parts of aircraft structures such as wings, fuselage,

tailplane, fin and rudder when using the finite element method (FEM) [1],

it is a standard practice to use plate elements based on assumed shape func-

tions. Components such skins, ribs and spars are generally modelled as plate

elements to provide sufficient accuracy. However, it should be recognised that

although the FEM is a versatile tool that can be used to analyse structures

with complex geometry, it is, nevertheless, an approximate method which by

its very nature, requires high computational resources and time, particularly

in optimisation studies. Naturally, the excessive demand on computational
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resources and time can be avoided if more accurate methods of analysis and

solution techniques are available. For free vibration analysis of structures, a

more accurate and reliable method than the usually adopted FEM is indeed,

available which is that of the dynamic stiffness method (DSM). The method

has been quite extensively developed for beam elements [2–9] but relatively

much less efforts have been expended with some limited, but noteworthy, suc-

cess for the corresponding developments of plate elements [10–13]. This may

probably be due to increased difficulty in formulating the DSM for a two di-

mensional plate element unlike the relatively simple case for one-dimensional

beam element. The limitation in symbolic computation that existed in the

past could also be another reason for the lack of progress in the dynamic stiff-

ness developments for plate elements. Understandably, the DSM is appealing

in dynamic analysis because unlike the FEM, it provides exact solution of

the equation of motion of a structure once the initial assumptions on the

displacement field have been made (e.g. Euler−Bernoulli, Timoshenko theo-

ries for beams or Kirchhoff, Mindlin or higher order theories for plates). No

further approximation is required in the analysis and any number of natural

frequencies can be computed using the DSM with as few as a single element

which, of course, is impossible in the FEM. The DSM can be very effectively

used to study the free vibration behaviour of complex structures because

once the dynamic stiffness (DS) matrix of a structural element has been de-

veloped, it can be rotated, offset and assembled in a similar way to that of

the FEM, to build the global dynamic stiffness matrix of the final structure.

Thus by using the DSM, any number of exact natural frequencies and mode

shapes of a complex structure can be computed without unnecessarily com-
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promising the accuracy.

DS beam elements have already been implemented and validated in programs

such as BUNVIS-RG [14] and PFVIBAT [15]. These programs have clearly

demonstrated the efficiency and potential of the DSM to analyse frameworks.

On the other hand, DS plate elements based on the classical plate theory

(CPT) have been developed for simply support boundary conditions mainly

due to research by Wittrick and Williams, which began in the early seven-

ties [10–13]. They implemented their dynamic stiffness theories into a pro-

gram called VIPASA [13, 16, 17]. In the engineering literature, this program

made considerable impact at the time and it was subsequently developed fur-

ther. Foremost amongst these developments are VICON [16], PASCO [18,19]

and VICONOPT [9,20] which are all well documented.

Wittrick and Williams’ DS formulation for CPT based elements [10–13] has

been enhanced by the present authors with particular reference to isotropic

plates. In this respect, the authors made two principal contributions [21,22]

to the literature. In [21], the DSM for isotropic plates undergoing out of

plane free vibration, was extended to include for the first time the first order

shear deformation theory (FSDT, also known as Mindlin plate theory [23]).

By contrast in [22], the DSM was developed for inplane free vibration of

plates in a much simpler and straightforward way than the one published by

Wittrick and Williams [13], but importantly, a missing set of solution, not

accounted for in the earlier works [9, 13, 16–20], was identified and further

developed.

The inadequacy of CPT when studying thick plates is well known [24–26].

This has recently been highlighted by the present authors [21]. Furthermore,
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it is well recognised that for composite plates the effect of shear deformation

can be significant even when the plate is thin because fibre reinforced com-

posites in general have low shear modulii.

Against the above background, in Part I of this two-part paper, the work of

Wittrick and Williams [10–13] based on CPT and the previous works of the

authors [21, 22] for isotropic plates based on FSDT have been extended to

cover DS theories for composite laminates. First, some essential preliminaries

such as assumptions on displacement field, derivation of equations of motion

and natural boundary conditions for FSDT applications as well as some es-

sential features of classical lamination theory (CLT) are reported briefly in

Section 2. Subsequent to this, the DS matrices for bending (Section 3.1) and

inplane (Section 3.2) free vibration analysis are developed. The complete DS

matrix of the laminated plate element is then formulated in Section 3.3. De-

spite the complexity of the problem due to the inclusion of the effects of shear

deformation and rotatory inertia, it has still been possible to generate explicit

expressions for the DS elements by using symbolic computation (Mathemat-

ica, [27]). As necessitated by the analysis of any complex structure, rotation

and offset transformation matrices that form essential parts of modelling and

problem formulation, are described in Section 3.4. Finally, the procedures to

assemble and constrain degrees of freedoms, i.e. to impose boundary condi-

tions, and the application of the Wittrick-Williams algorithm [28] to compute

natural frequencies and mode shapes are described in Sections 3.5, 3.6, and

3.7, respectively. In this way, the subject matter in Part I concludes (Sec-

tion 4) with the theory, method of analysis and its description, whilst the

numerical results and their validation together with the computational effi-
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ciency and accuracy of the proposed DSM and its applications to practical

structures are reported in Part II [29] of this paper.

2. PRELIMINARIES

The displacement field for a plate based on Mindlin formulation [23] is

assumed as:

u(x, y, z, t) = u0(x, y, t) + zφy(x, y, t) , v(x, y, z, t) = v0(x, y, t)− zφx(x, y, t)

w(x, y, z, t) = w0(x, y, t)

(1)

where u0, v0, w0 are the membrane displacements along x, y and z directions

respectively and φx, φy the bending rotations (Fig. 1(a)). Although a com-

posite plate is made of many layers of different materials, the displacement

is assumed to be linear though the thickness, and the plate is considered

to be an equivalent plate with equivalent properties (classical lamination

theory [30, 31]). The geometric relations and constitutive laws used in the

formulation are presented in Appendix A. Hamilton’s principle is preferred

to derive the equations of motion because it routinely provides the natural

boundary conditions which are necessary for the dynamic stiffness formula-

tion. Hamilton’s principle in the usual notation states:

δ

∫ t2

t1

(T − U)dt = 0 (2)

where the kinetic energy T for the plate is given by:

T =
1

2

∫

A

Nl∑

k=1

∫ zk

zk−1

ρk

((
∂u

∂t

)2

+

(
∂v

∂t

)2

+

(
∂w

∂t

)2
)

dzdA (3)
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(a) Displacement field (b) Forces

Figure 1: Coordinate system and notations for displacements and forces for a plate.

with ρ the density, k is the layer reference, and Nl is the number of layers of

the composite plate.

Similarly, the potential energy U can be written as:

U =
1

2

∫

A

Nl∑

k=1

∫ zk

zk−1

σk
T εkdzdA (4)

where:

σT = [σxx σyy σxy σyz σxz] and εT = [εxx εyy εxy εyz εxz] (5)

By substituting the geometric and constitutive equations (see Appendix A)

into Eqs. (3) and (4) and applying Hamilton’s principle (Eq. (2)) the fol-

lowing equations of motion in free vibration, and the natural boundary con-

ditions are obtained:

δu0 : + A11u
0
,xx + 2A16u

0
,xy + A66u

0
,yy + A16v

0
,xx + (A66 + A12)v

0
,xy

+ A26v
0
,yy −B16φx,xx − (B66 + B12)φx,xy −B26φx,yy + B11φy,xx

+ 2B16φy,xy + B66φy,yy = I0ü
0 + I1φ̈y (6)
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δv0 : + A16u
0
,xx + (A66 + A12)u

0
,xy + A26u

0
,yy + A66v

0
,xx + 2A26v

0
,xy

+ A22v
0
,yy −B66φx,xx − 2B26φx,xy −B22φx,yy + B16φy,xx

+ (B66 + B12)φy,xy + B26φy,yy = I0ü
0 − I1φ̈x (7)

δw0 : + kA55w
0
,xx + 2kA45w

0
,xy + kA44w

0
,yy − kA45φx,x − kA44φx,y

+ kA55φy,x + kA45φy,y = I0ẅ
0 (8)

δφy : + B11u
0
,xx + 2B16u

0
,xy + B66u

0
,yy + B16v

0
,xx + (B66 + B12)v

0
,xy

+ B26v
0
,yy −D16φx,xx − (D66 + D12)φx,xy −D26φx,yy + D11φy,xx

+ 2D16φy,xy + D66φy,yy − kA55w
0
,x − kA45w

0
,y + kA45φx − kA55φy

= I1ü
0 + I2φ̈y (9)

δφx : −B16u
0
,xx − (B66 + B12)u

0
,xy −B26u

0
,yy −B66v

0
,xx − 2B26v

0
,xy

−B22v
0
,yy + D66φx,xx + 2D26φx,xy + D22φx,yy −D16φy,xx

− (D66 + D12)φy,xy −D26φy,yy + kA45w
0
,x + kA44w

0
,y − kA44φx

+ kA45φy = −I1v̈
0 + I2φ̈x (10)

The natural boundary conditions with the sign conventions of Figure (1(b))

are:

δu0 : Nxx = +A11u
0
,x + A16u

0
,y + A16v

0
,x + A12v

0
,y −B16φx,x −B12φx,y

+ B11φy,x + B16φy,y (11)
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δv0 : Nxy = +A16u
0
,x + A66u

0
,y + A66v

0
,x + A26v

0
,y −B66φx,x −B26φx,y

+ B16φy,x + B66φy,y (12)

δw0 : Qx = +kA55w
0
,x + kA45w

0
,y − kA45φx + kA55φy (13)

δφy : Mxx = +B11u
0
,x + B16u

0
,y + B16v

0
,x + B12v

0
,y −D16φx,x −D12φx,y

+ D11φy,x + D16φy,y (14)

δφx : Mxy = −B16u
0
,x −B66u

0
,y −B66v

0
,x −B26v

0
,y + D66φx,x + D26φx,y

−D16φy,x −D66φy,y (15)

where the suffix after the comma denotes the derivatives, k the shear correc-

tion factor (π2/12 used by Mindlin [23], 5/6 used by Reissner [32]) and the

matrix A, B, and D and the inertia parameters I0, I1, and I2 are given in

the usual notation:

[A,B,D] =

Nl∑

k=1

Ck [(zk − zk−1), 1/2(zk
2 − zk−1

2), 1/3(zk
3 − zk−1

3)] (16)

[I0, I1, I2] =

Nl∑

k=1

ρk [(zk − zk−1), 1/2(zk
2 − zk−1

2), 1/3(zk
3 − zk−1

3)] (17)

where ρk is the mass density and Ck the material property matrix in the

laminate coordinate system of the k− th layer which is defined in Appendix

A.

The use of Hamilton’s principle, as opposed to Newton’s second law has the

added advantage to give the natural boundary conditions. This is important

because the connections between forces and displacements are essential when

deriving the dynamic stiffness method.
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3. DYNAMIC STIFFNESS FORMULATION

Once the equations of motion (Eqs. 6-10) and the general boundary con-

ditions (Eqs. 11-15) are obtained, the classical method to carry out exact

free vibration analysis of a plate consists of solving the system of differen-

tial equation in Navier’s or Levi’s form and applying particular boundary

conditions to derive the frequency equation by eliminating the integration

constants [26,33–38]. This method, although extremely useful in studying a

single plate, lacks generality and cannot be easily applied to complex struc-

tures that are often solved by approximate methods. On the contrary, the

dynamic stiffness method retains the exactness of the solution whilst being

applied to complex structures. Once the dynamic stiffness matrix of an el-

ement is obtained, it can be offset and/or rotated and finally assembled in

a global DS matrix of a complex structure. This global DS matrix contains

implicity all the exact natural frequencies of the structure which can be com-

puted by using the Wittrick and Williams algorithm [28].

A general procedure to develop the dynamic stiffness matrix of a structural

element can be summarised as follows:

(i) Seek a closed form solution of the governing differential equations of

motion for free vibration.

(ii) Apply a number of general boundary conditions equal to twice the

number of integration constants in algebraic form; these are usually

the nodal displacements and forces.

(iii) Eliminate the constants by relating the harmonically varying nodal

forces to the corresponding displacements which generates the frequency

dependent dynamic stiffness matrix connecting the nodal forces to the
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nodal displacements.

Referring to the equations of motion (Eqs. 6-10), an exact solution can be

found in Levi’s form for symmetric and balanced cross ply laminates. For

these laminates B = A16 = A26 = D16 = D26 = A45 = 0 and the out of

plane motions are decoupled from the inplane ones. The two cases will be

studied separately in Section (3.1) and (3.2) respectively, and finally they

will be combined in Section (3.3).

3.1. Out of plane formulation

The solution of Eqs. (8-10) is sought in the form:

w0(x, y, t) =
∞∑

m=1

Wm(x)eiωtsin(αmy)

φy(x, y, t) =
∞∑

m=1

Φym(x)eiωtsin(αmy)

φx(x, y, t) =
∞∑

m=1

Φxm(x)eiωtcos(αmy)

(18)

where ω is an arbitrary circular frequency, αm = mπ
L

and m = 1, 2, . . . ,∞.

This is also called Levi’s solution which assumes that two opposite sides of

the plate are simply supported (SS), i.e. w = φy = 0 at y = 0 and y = L.

Substituting Eq. (18) into Eqs. (8-10), a set of three coupled ordinary

differential equations is obtained which can be written in matrix form as:



I0ω
2 − kA44α

2
m + kA55D2 kA55D kA44αm

−kA55D D11D2 −D66α
2
m − kA55 + I2ω

2 (D66 + D12)αmD
kA44αm −(D66 + D12)αmD D66D2 −D22α

2
m − kA44 + I2ω

2







Wm

Φym

Φxm


 =




0

0

0




(19)
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where D is the differential operator d/dx. The determinant of the matrix

in Eq. (19) gives the following ordinary differential equation:

(D6 + a1D4 + a2D2 + a3D)Ψ = 0 (20)

where

Ψ = Wm or Φym or Φxm (21)

and a1, a2, and a3 are

a1 =
(
D11D66(I0ω

2 − kA44α
2) + A55k(α2(D2

12 −D11D22 + 2D12D66)−A44D11k

+ (D11 + D66)I2ω
2)

)
/
(
kA55D11D66

)

a2 =
(
α2k(α2(A55D22D66 −A44(D2

12 −D11D22 + 2D12D66)) + 2kA44A55(D12 + 2D66))

+ A55D66I0 + A44A55I2k) + α2((D2
12 −D11D22 + 2D12D66)I0 − (A44(D11 + D66)

+ (−k(A44D11I0 + A55(D22 + D66))I2k))ω2 + I2ω
4((D11 + D66)I0

+ A55I2k)
)
/
(
kA55D11D66

)

a3 = −
(
(α2D66 + A55k − I2ω

2)(A44α
4D22k − (A44I0k + α2(D22I0 + A44I2k))ω2

+ I0I2ω
4
)
/
(
kA55D11D66

)

(22)

Using a trial solution eλ in Eq. (20) yields the following auxiliary equation:

λ6 + a1λ
4 + a2λ

2 + a3 = 0 (23)

Substituting µ = λ2, the 6th order Eq. (23) becomes:

µ3 + a1µ
2 + a2µ + a3 = 0 (24)
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The three roots (µ1, µ2, µ3) are given by:

µ1 = −1

3

(
a1 +

3

√
p +

√
q

2
+

3

√
p−√q

2

)

µ2 = −1

3

(
a1 + β2

3

√
p +

√
q

2
+ β1

3

√
p−√q

2

)

µ3 = −1

3

(
a1 + β1

3

√
p +

√
q

2
+ β2

3

√
p−√q

2

)
(25)

where the above parameters are defined as:

β1 =
i
√

3− 1

2
, β2 = −i

√
3 + 1

2

p = 2a3
1 − 9a1a2 + 27a3 , q = p2 − 4l3 , l = a2

1 − 3a2

(26)

The discriminant ∆ of Eq. (24) can be written as:

∆ = 18a1a2a3 − 4a3
1a3 + a2

1a
2
2 − 4a2

2 − 27a2
3 (27)

The sign of the discriminant ∆ gives information about the nature of the

roots (i.e. if any of them is complex) and by using Descartes’ rule [39],

the signs of the roots can also be determined. This method was applied

earlier by the authors [21, 22] successfully to reduce the number of cases to

be investigated. For the present case, the sign of the discriminant can not be

generally determined a priori for any material and any trial frequency and

can be either positive or negative. Following a parametric study and noting

that the trial frequency and material properties are always positive, it was

observed that no natural frequency could be found from the solutions coming

from complex roots of Eq. (24). Therefore, only real roots of Eq. (24) which

are µ1, µ2, µ3 will be presented. If the three roots of Eq. (24) µ1, µ2, µ3 are

real, there are no more than four possible solutions, i.e. (i) all three roots
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are positive, (ii) one negative and two positive, (iii) two negative and one

positive and (iv) all three roots are negative. These possibilities together

with the associated solutions are elaborated as follows:

• Case 1: µ1, µ2, µ3 > 0. Six real roots r1, −r1, r2, −r2, r3, −r3 where

r1 =
√

µ1, r2 =
√

µ2 and r3 =
√

µ3. Thus:

Wm(x) =A1mcosh(r1mx) + A2msinh(r1mx) + A3mcosh(r2mx)

+ A4msinh(r2mx) + A5mcosh(r3mx) + A6msinh(r3mx)

Φym(x) =B1mcosh(r1mx) + B2msinh(r1mx) + B3mcosh(r2mx)

+ B4msinh(r2mx) + B5mcosh(r3mx) + B6msinh(r3mx)

Φxm(x) =C1mcosh(r1mx) + C2msinh(r1mx) + C3mcosh(r2mx)

+ C4msinh(r2mx) + C5mcosh(r3mx) + C6msinh(r3mx)

(28)

• Case 2: µ1, µ2 > 0 and µ3 < 0. The roots are rearranged so that the

negative root is µ3, thus r1, −r1, r2, −r2, ir3, −ir3 where r1 =
√

µ1,

r2 =
√

µ2 and r3 =
√−µ3. Thus the solutions can be written as:

Wm(x) =A1mcosh(r1mx) + A2msinh(r1mx) + A3mcosh(r2mx)

+ A4msinh(r2mx) + A5mcos(r3mx) + A6msin(r3mx)

Φym(x) =B1mcosh(r1mx) + B2msinh(r1mx) + B3mcosh(r2mx)

+ B4msinh(r2mx) + B5mcos(r3mx) + B6msin(r3mx)

Φxm(x) =C1mcosh(r1mx) + C2msinh(r1mx) + C3mcosh(r2mx)

+ C4msinh(r2mx) + C5mcos(r3mx) + C6msin(r3mx)

(29)

• Case 3. µ1 > 0 and µ2, µ3 < 0. The roots are rearranged so that the

negative roots are µ2 and µ3, thus r1, −r1, ir2, −ir2, ir3, −ir3 where

14



r1 =
√

µ1, r2 =
√−µ2 and r3 =

√−µ3. Thus the solutions can be

written as:

Wm(x) =A1mcosh(r1mx) + A2msinh(r1mx) + A3mcos(r2mx)

+ A4msin(r2mx) + A5mcos(r3mx) + A6msin(r3mx)

Φym(x) =B1mcosh(r1mx) + B2msinh(r1mx) + B3mcos(r2mx)

+ B4msin(r2mx) + B5mcos(r3mx) + B6msin(r3mx)

Φxm(x) =C1mcosh(r1mx) + C2msinh(r1mx) + C3mcos(r2mx)

+ C4msin(r2mx) + C5mcos(r3mx) + C6msin(r3mx)

(30)

• Case 4. µ1, µ2, µ3 < 0. The six roots are imaginary ir1, −ir1, ir2,

−ir2, ir3, −ir3 where r1 =
√−µ1, r2 =

√−µ2 and r3 =
√−µ3. Thus

the solutions can be written as:

Wm(x) =A1mcos(r1mx) + A2msin(r1mx) + A3mcos(r2mx)

+ A4msin(r2mx) + A5mcos(r3mx) + A6msin(r3mx)

Φym(x) =B1mcos(r1mx) + B2msin(r1mx) + B3mcos(r2mx)

+ B4msin(r2mx) + B5mcos(r3mx) + B6msin(r3mx)

Φxm(x) =C1mcos(r1mx) + C2msin(r1mx) + C3mcos(r2mx)

+ C4msin(r2mx) + C5mcos(r3mx) + C6msin(r3mx)

(31)

In this paper only the details regarding the first case will be given for con-

ciseness. The other cases can be solved in a similar manner.

The solutions in Eq. (28) have 18 constants (A1m − A6m , B1m − B6m and

C1m − C6m) which are not all independent. By substituting Eqs. (28) into

the last two equations of Eq. (19) and putting each of the terms to zero, 12

equations in 18 unknowns are obtained. By simultaneously solving the 12
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equations in terms of one of the set of constants, i.e. B1m−B6m , a connection

between the constants can be established and thus only 6 independent inte-

gration constants are now left. As a consequence, the following relationships

are obtained:

A1m = δ1B2m , C1m = γ1B2m , A2m = δ1B1m , C2m = γ1B1m

A3m = δ2B4m , C3m = γ2B4m , A4m = δ2B3m , C4m = γ2B3m

A5m = δ3B6m , C5m = γ3B6m , A6m = δ3B5m , C6m = γ3B5m

(32)

where:

δi =
(
(α2D22 + A44k − I2ω

2)(α2D66 + A55k − I2ω
2)

+ (α2(D2
12 −D11D22 + 2D12D66)− (A44D11 + A55D66)k

+ (D11 + D66)I2ω
2)r2

i + D11D66r
4
1

)
/

(
kri(A44α

2(D12 + D66)− A44A55k + A55(I2ω
2 − α2D22 + D66r

2
i ))

)

(33)

γi =
α(A55(D12 + D66)r

2
i + A44(α

2D66 + A55k − I2ω
2 −D11r

2
i ))

ri(A44α2(D12 + D66)− A44A55k + A55(I2ω2 − α2D22 + D66r2
i ))

(34)

with i = 1, 2, 3.

The above procedure must be completed with care. If a wrong set of equa-

tions is chosen from Eq. (19) to standardise the constants or if a wrong set

of constants is assumed to be independent, numerical instabilities can occur.

The authors have found that the above choice of constants leads to the exact

solutions for all of the 4 cases.

If Eqs. (32) are substituted into Eqs. (28) a solution in terms of only 6
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integration constants can be expressed as

Wm(x) = + B2mδ1cosh(r1mx) + B1mδ1sinh(r1mx) + B4mδ2cosh(r2mx)

+ B3mδ2sinh(r2mx) + B6mδ3cosh(r3mx) + B5mδ3sinh(r3mx)

Φym(x) = + B1mcosh(r1mx) + B2msinh(r1mx) + B3mcosh(r2mx) (35)

+ B4msinh(r2mx) + B5mcosh(r3mx) + B6msinh(r3mx)

Φxm(x) = + B2mγ1cosh(r1mx) + B1mγ1sinh(r1mx) + B4mγ2cosh(r2mx)

+ B3mγ2sinh(r2mx) + B6mγ3cosh(r3mx) + B5mγ3sinh(r3mx)

The expressions for forces and moments can be found in the same way by

substituting Eqs. (35) into Eqs. (13-15). Thus

Qxm(x, y) =Qxm(x)sin(αmy) =

= A55k
(

+ B1m(1 + δ1r1m)cosh(r1mx)

+ B2m(1 + δ1r1m)sinh(r1mx)

+ B3m(1 + δ2r2m)cosh(r2mx)

+ B4m(1 + δ2r2m)sinh(r2mx)

+ B5m(1 + δ3r3m)cosh(r3mx)

+ B6m(1 + δ3r3m)sinh(r3mx)
)
sin(αmy) (36)
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Mxxm(x, y) =Mxxm(x)sin(αmy) =

=
(

+ B2m(D11r1m + αD12γ1)cosh(r1mx)

+ B1m(D11r1m + αD12γ1)sinh(r1mx)

+ B4m(D11r2m + αD12γ2)cosh(r2mx)

+ B3m(D11r2m + αD12γ2)sinh(r2mx)

+ B6m(D11r3m + αD12γ3)cosh(r3mx)

+ B5m(D11r3m + αD12γ3)sinh(r3mx)
)
sin(αmy) (37)

Mxym(x, y) =Mxym(x)cos(αmy) =

= −D66

(
+ B1m(α− γ1r1m)cosh(r1mx)

+ B2m(α− γ1r1m)sinh(r1mx)

+ B3m(α− γ2r2m)cosh(r2mx)

+ B4m(α− γ2r2m)sinh(r2mx)

+ B5m(α− γ3r3m)cosh(r3mx)

+ B6m(α− γ3r3m)sinh(r3mx)
)
cos(αmy) (38)

At this point, zero boundary conditions are generally used to eliminate the

constants in the classical method and establish the frequency equation. By

contrast, in order to develop the dynamic stiffness matrix, general boundary

conditions in algebraic form are used. These boundary conditions can be

seen in Fig. (2) and formulated as

At x = 0 : Wm = W1 , Φym = Φy1 , Φxm = Φx1

At x = b : Wm = W2 , Φym = Φy2 , Φxm = Φx2

(39)
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At x = 0 : Qxm = −Q1 , Mxxm = −Mxx1 , Mxym = −Mxy1

At x = b : Qxm = Q2 , Mxxm = Mxx2 , Mxym = Mxy2

(40)

Figure 2: Edge conditions of the plate element and sign conventions

By substituting Eqs. (39) into Eqs. (35), the following matrix relation

for the displacements is obtained:



W1

Φy1

Φx1

W2

Φy2

Φx2




=




0 δ1 0 δ2 0 δ3

1 0 1 0 1 0

0 γ1 0 γ2 0 γ3

δ1Sh1 δ1Ch1 δ2Sh2 δ2Ch2 δ3Sh3 δ3Ch3

Ch1 Sh1 Ch2 Sh2 Ch3 Sh3

γ1Sh1 γ1Ch1 γ2Sh2 γ2Ch2 γ3Sh3 γ3Ch3







B1

B2

B3

B4

B5

B6




(41)

i.e.

δ = AC (42)
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By applying the same procedure for forces and moments, i.e. substituting

Eqs. (40) into Eqs. (36-38) the following matrix relationship is obtained:



Qx1

Mxx1

Mxy1

Qx2

Mxx2

Mxy2




=




−L1 0 −L2 0 −L3 0

0 −R1 0 −R2 0 −R3

−T1 0 −T2 0 −T3 0

L1Ch1 L1Sh1 L2Ch2 L2Sh2 L3Ch3 L3Sh3

R1Sh1 R1Ch1 R2Sh2 R2Ch2 R3Sh3 R3Ch3

T1Ch1 T1Sh1 T2Ch2 T2Sh2 T3Ch3 T3Sh3







B1

B2

B3

B4

B5

B6




(43)

i.e.

F = RC (44)

where

Li = A55k(1 + δiri) , Ri = αD12γi + D11ri , Ti = D66(α− γiri) (45)

with i = 1, 2, 3.

Now the constant vector C from Eqs. (42) and (44) can be eliminated to

form the dynamic stiffness matrix as follows:

F = Kδ (46)

where

K = RA−1 (47)

K can be written as:

K =




sqq sqm sqt fqq fqm fqt

smm smt −fqm fmm fmt

stt fqt −fmt ftt

Sym sqq −sqm sqt

smm −smt

stt




(48)
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where there are only 12 independent, frequency dependent terms sqq, sqm,

sqt, smm, smt, stt, fqq, fqm, fqt, fmm, fmt, ftt given in explicit algebraic form

in Appendix B.

3.2. Inplane formulation

As was the case with out of plane free vibration, the solutions of the equa-

tions of motion (6) and (7) are again sought in Levi’s form, i.e two opposite

sides are simply supported (S). The S assumption for inplane displacements

can be of two types [36, 37], namely S1 (for y = 0 and y = L ⇒ u = 0 and

v 6= 0; for x = 0 and x = b ⇒ v = 0 and u 6= 0) and S2 (for y = 0 and y = L

⇒ v = 0 and u 6= 0; for x = 0 and x = b ⇒ u = 0 and v 6= 0). In order to

allow compatibility of inplane and out of plane displacements for the general

case1, only S1 on y = 0 and y = L needs to be considered. Therefore, the

solution for S1 boundary conditions is sought in the following form:

u0(x, y, t) =
∞∑

m=0

Um(x)eiωtsin(αmy)

v0(x, y, t) =
∞∑

m=0

Vm(x)eiωtcos(αmy)

(49)

Substituting Eq. (49) into Eqs. (6) and (7) two coupled ordinary differential

equations are obtained. These can be written in matrix form as:

 A11D2 −A66α

2
m + I0ω

2 −(A66 + A12)αmD
(A66 + A12)αmD A66D2 −A22α

2
m + I0ω

2





 Um

Vm


 =


 0

0


 (50)

1For example, after a 90o rotation, local displacement w becomes local u thus u and w

must have the same distributions on y
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where D is the differential operator d/dx. It is necessary to split the solution

in two independent cases. The first case is for m 6= 0 and the second case is

for m = 0. When m = 0, the nature of the differential equation (50) changes

and the solution must be sought separately. (The case m = 0 was missed in

previous formulations for the inplane dynamic stiffness of plates [13] based

on the classical plate theory.)

3.2.1. General case (m 6= 0) for inplane vibration

For m 6= 0 the determinant of the matrix in Eq. (50) gives the following

governing differential equation:

(D4 + b1D2 + b2)Ψ = 0 (51)

where:

Ψ = Um or Vm (52)

Using a trial solution eλ in Eq. (51) yields the following auxiliary equation:

λ4 + b1λ
2 + b2 = 0 (53)

where:

b1 =
(A2

12 − A11A22 + 2A12A66)α
2 + (A11 + A66)I0ω

2

A11A66

b2 =
(A22α

2 − I0ω
2)2

A11A66

(54)

Substituting µ = λ2, the 4th order Eq. (53) becomes:

µ2 + b1µ + b2 = 0 (55)
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the two roots (µ1, µ2) are given by:

µ1,2 =
−b1 ±

√
b2
1 − 4b2

2
(56)

By analysing the discriminant of Eq. (55) it can be concluded that the two

roots µ1 and µ2 are always real. Thus only three solution cases are possible.

Case 1: µ1, µ2 > 0. Four real roots r1, −r1, r2 and −r2 where r1 =
√

µ1 and

r2 =
√

µ2. Thus:

Um(x) =A1mcosh(r1mx) + A2msinh(r1mx) + A3mcosh(r2mx) + A4msinh(r2mx)

Vm(x) =B1mcosh(r1mx) + B2msinh(r1mx) + B3mcosh(r2mx) + B4msinh(r2mx)

(57)

Case 2: µ1 > 0 and µ2 < 0. The roots are rearranged so that the negative

root is µ2, thus r1, −r1, ir2, −ir2 where r1 =
√

µ1 and r2 =
√

µ2. Thus the

solutions can be written as:

Um(x) =A1mcosh(r1mx) + A2msinh(r1mx) + A3mcos(r2mx) + A4msin(r2mx)

Vm(x) =B1mcosh(r1mx) + B2msinh(r1mx) + B3mcos(r2mx) + B4msin(r2mx)

(58)

Case 3: µ1, µ2 < 0. All four roots are imaginary ir1, −ir1, ir2 and −ir2

where r1 =
√

µ1 and r2 =
√

µ2. Thus the solution can be written as:

Um(x) =A1mcos(r1mx) + A2msin(r1mx) + A3mcos(r2mx) + A4msin(r2mx)

Vm(x) =B1mcos(r1mx) + B2msin(r1mx) + B3mcos(r2mx) + B4msin(r2mx)

(59)

In this paper only the solution for the first case is given, the other cases can

be solved by using the same procedure, but for sake of brevity, they are not
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reported here.

The solutions of Eq. (57) have two sets of four constants A1m − A4m and

B1m−B4m which are not all independent. By substituting Eqs. (57) into the

first equation of Eq. (50) and putting each of the terms to zero, 4 equations

in 8 unknowns are obtained. By simultaneously solving the 4 equations in

terms of one of the set of constants, i.e. A1m−A4m , a relationship between the

constants can be established with only 4 independent integration constants.

In this way

B1m = β1A2m , B2m = β1A1m

B3m = β2A4m , B4m = β2A3m

(60)

where

βi =
I0ω

2 − A66α
2 + A11r

2
i

(A12 + A66)αri

with i = 1, 2 (61)

Likewise, Eqs (60) are substituted into Eqs. (57) a solution in terms of only

4 integration constants can be found as to give

Um(x) =A1mcosh(r1mx) + A2msinh(r1mx) + A3mcosh(r2mx) + A4msinh(r2mx)

Vm(x) =A2mβ1cosh(r1mx) + A1mβ1sinh(r1mx) + A4mβ2cosh(r2mx)

+ A3mβ2sinh(r2mx)

(62)
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The equations for the inplane forces can be found in the same way by sub-

stituting Eqs. (62) into Eqs. (11) and (12):

Nxxm(x, y) =Nxxm(x)cos(αmy) =
(
A1m(A11r1m − A12αmβ1)sinh(r1mx)+

A2m(A11r1m − A12αmβ1)cosh(r1mx)+

A3m(A11r2m − A12αmβ2)sinh(r2mx)+

A4m(A11r2m − A12αmβ2)cosh(r2mx)
)
cos(αmy) (63)

Nxym(x, y) =Nxym(x)sin(αmy) = A66

(
A1m(αm + β1r1m)cosh(r1mx)+

A2m(αm + β1r1m)sinh(r1mx) + A3m(αm + β2r2m)cosh(r2mx)+

A4m(αm + β2r2m)sinh(r2mx)
)
sin(αmy) (64)

To establish the dynamic stiffness matrix, general boundary conditions are

imposed. These boundary conditions can be seen in Fig. (3) and formulated

as

At x = 0 : U = U1 , V = V1 , Nxx = −Nxx1 , Nxy = −Nxy1

At x = b : U = U2 , V = V2 , Nxx = Nxx2 , Nxy = Nxy2

(65)

By substituting Eqs. (65) into Eqs. (62), the following matrix relationship

for the displacements is obtained:



U1

V1

U2

V2




=




1 0 1 0

0 β1 0 β2

Ch1 Sh1 Ch2 Sh2

β1Sh1 β1Ch1 β2Sh2 β2Ch2







A1

A2

A3

A4




(66)

i.e.

δ = AC (67)
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Figure 3: Boundary conditions of the plate element and positive sign conventions

By applying the same procedure for the inplane forces, i.e. substituting Eqs.

(65) into Eqs. (63) and (64) the following matrix relation is obtained:



Nxx1

Nxy1

Nxx2

Nxy2




=




0 −H1 0 −H2

−P1 0 −P2 0

H1Sh1 H1Ch1 H2Sh2 H2Ch2

P1Ch1 P1Sh1 P2Ch2 P2Sh2







A1

A2

A3

A4




(68)

i.e.

F = RC (69)

where

Hi = A11rim − A12αmβi , Pi = A66(αm + βirim) (70)

with i = 1, 2.

By eliminating the constants from Eqs. (67) and (69) the inplane dynamic

stiffness matrix is given by:

F = Kδ (71)

where

K = RA−1 (72)
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K can be written as:

K =




snn snl fnn fnl

sll −fnl fll

snn −snl

Sym stl




(73)

It should be noted that the dynamic stiffness matrix has only 6 independent

terms snn, snl, sll, fnn, fnl and fll. Explicit expressions for these terms are

given in Appendix C for all three cases.

3.2.2. Particular case for inplane vibration when m = 0

When m = 0 in Eq. (49), u0(x, y, t) is zero while v0(x, y, t) = V (x)eiωt.

Thus, the equation of motion Eq. (50) becomes:

A66
d2V

dx2
+ I0ω

2V = 0 (74)

The solution of Eq. (74) can be written as:

V = A1cos(rx) + A2sin(rx) with r = ω

√
I0

A66
(75)

Substituting Eqs. (75) into Eqs. (11) and (12), Nxx(x, y) becomes zero and

Nxy(x, y) = Nxy(x) = A66r (−A1sin(rx) + A2cos(rx)) (76)

The BC for the displacement and force (Fig. 3) are

At x = 0 : V = V1 , Nxy = −Nxy1
;

At x = b : V = V2 , Nxy = +Nxy2

(77)
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By applying BCs for displacements, i.e. substituting Eq. (77) into Eq. (75),

the following relationship is obtained:


 V1

V2


 =


 1 0

C S





 A1

A2


 (78)

where C = cos(rb) and S = sin(rb).

By applying BC for the forces, i.e. substituting Eq. (77) into Eqs. (76), the

following relationship is obtained:


 Nxy1

Nxy2


 =


 0 −A66r

−A66rS A66rC





 A1

A2


 (79)

From Eqs. (78) and (79), the vector of the integration constants can be

eliminated and in this way, the dynamic stiffness matrix can be obtained as

K =


 snn fnn

fnn snn


 (80)

where the 2 independent terms are:

snn = A66r cot(rb) , fnn = −A66r cosec(rb) (81)

3.2.3. Inplane free vibration with S2 boundary conditions

Although S2 boundary conditions on sides y = 0 and y = L can not

be used to study a structure with complex geometry since in order to have

compatibility of the displacements after rotation, u and w must be in phase,

the S2 boundary conditions can still be used to study inplane vibration of

simple plates. The dynamic stiffness matrix for inplane free vibration based
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on S2 boundary conditions has never been developed before. Different from

Equation (49), the displacement field is now assumed to be:

u0(x, y, t) =
∞∑

m=0

Um(x)eiωtcos(αmy)

v0(x, y, t) =
∞∑

m=0

Vm(x)eiωtsin(αmy)

(82)

Following the same procedure presented in Section 3.2.1 the dynamic stiffness

matrix is obtained. The matrix is of the same as the one reported in Equation

(73) with the only differences in the following terms:

sSS2
nl = −sSS1

nl and fSS2
nl = −fSS1

nl (83)

The explicit expressions for S1 boundary condition are reported in Appendix

C.

For what concerns the particular case for m = 0, the displacements become

u0(x, y, t) = U(x)eiωt while v0(x, y, t) is zero. Following the same procedure

presented in section 3.2.2, the dynamic stiffness matrix has the same expres-

sion reported in Equation (80) but the 2 independent terms are:

snn = A11r cot(rb) , fnn = −A11r cosec(rb) (84)
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3.3. Complete dynamic stiffness matrix of a single element

The complete dynamic stiffness matrix of a composite plate element based

on the FSDT can now be obtained by combining Eqs. (48) and (73) to give



Nxx1

Nxy1

Qx1

Mxx1

Mxy1

Nxx2

Nxy2

Qx2

Mxx2

Mxy2




=




snn snl 0 0 0 fnn fnl 0 0 0

sll 0 0 0 −fnl fll 0 0 0

sqq sqm sqt 0 0 fqq fqm fqt

smm smt 0 0 −fqm fmm fmt

stt 0 0 fqt −fmt ftt

snn −snl 0 0 0

stl 0 0 0

sqq −sqm sqt

smm −smt

stt







U1

V1

W1

Φy1

Φx1

U2

V3

W2

Φy2

Φx2




(85)

Forces and displacements sign conventions are shown in Fig. (4).

Figure 4: Complete dynamic stiffness FSDT plate element

3.4. Rotation and offset of dynamic stiffness element

The global dynamic stiffness matrix of an element may often need to

be rotated and/or offset before being assembled to form the global dynamic
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stiffness matrix. Rotation and offset are applied by using standard transfor-

mation matrices.

Referring to Fig. (5), let the global reference system be x′, y′ and z′ and

local one x, y and z.

Figure 5: Displacement transformations from global to local reference system

The local displacements and forces on node 1 and 2 can be expressed as

functions of global displacements and forces on node 1 and 2 as follow:



U1

V1

W1

Φy1

Φx1

U2

V2

W2

Φy2

Φx2




=




cos(θ) 0 sin(θ) 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

−sin(θ) 0 cos(θ) 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 cos(θ) 0 sin(θ) 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 −sin(θ) 0 cos(θ) 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1







U ′
1

V ′
1

W ′
1

Φ′y1

Φ′x1

U ′
2

V ′
2

W ′
2

Φ′y2

Φ′x2




(86)

i.e.

δ = Trδ
′ or F = TrF

′ (87)

where Tr is the rotation matrix.

Also eccentric connections need to be considered for certain problems when

investigating the free vibration behaviour of plate assemblies. Let us consider
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eccentricities ex and ez at node 1 of the plate element (Fig. 6). The two

eccentricities can be used separately for simplicity. The first eccentricity is

ex which moves node 1 to node C1. The equivalent forces and moments on

node C1 can be written as (see Fig. 6(a)):

MxxC1
= Mxx1 + V1ex, MxyC1

= Mxy1 , MzzC1
= Nxy1ex

QxC1
= Qx1 , NxyC1

= Nxy1 , NxxC1
= Nxx1

(88)

(a) Offset in the x direction. (b) Offset in the z direction.

Figure 6: Transformation of forces due to eccentricities, equivalent forces and moments.

It should be noted that as the moment MzzC1
does not exist, it should be

balanced by some inplane forces. By referring to Fig. 6(a), it can be seen

that the inplane component is NxxC1
which becomes:

NxyC1
= Nxy1 −

dNxy1

dy
ex = Nxy1 + αNxy1ex (89)

The transformation can now be written in matrix form as


NxxC1

NxyC1

QxC1

MxxC1

MxyC1




=




1 αex 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 ex 1 0

0 0 0 0 1







Nxx1

Nxy1

Qx1

Mxx1

Mxy1




(90)
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The second transformation using ez which moves node C1 to node CC1

(Fig. 6(b)) is now applied. In this case, the equivalent forces and moments

are:

MxxCC1
= MxxC1

−NxxC1
ez, MxyCC1

= MxyC1
−NxyC1

ez,

QxCC1
= QxC1

, NxyCC1
= NxyC1

, NxxCC1
= NxxC1

(91)

The transformation can be written in matrix form as:


NxxCC1

NxyCC1

QxCC1

MxxCC1

MxyCC1




=




1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

−ez 0 0 1 0

0 −ez 0 0 1







NxxC1

NxyC1

QxC1

MxxC1

MxyC1




(92)

By combining Eqs. (90) and (92) and considering eccentricity ex1 and ez1

at node 1 and ex2 and ez2 at node 2 the transpose of the total eccentricity

matrix is obtained as

Te
T =




1 αex1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

−ez1 0 ex1 1 0 0 0 0 0 0

0 −ez1 0 0 1 0 0 0 0 0

0 0 0 0 0 1 αex2 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 −ez2 0 ex2 1 0

0 0 0 0 0 0 −ez2 0 0 1




(93)

The dynamic stiffness matrix of an element, in the global coordinate system

with eccentricity can now be computed by using the local stiffness matrix

(Eq. 85) and the transformation matrices (Eqs. 86 and 93) to give

Kr,e = Tr
T Te

T KTeTr (94)
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3.5. Assembly procedure, boundary conditions and similarities with FEM

Once the DS matrix of a laminate element has been computed, rotated

and offset if required, it can be assembled in a global DS matrix of the whole

structure as schematically shown in Fig. (7). The procedure is similar to

that used in the FEM and the global matrix is banded as well. Although a

mesh is also required in the DSM, it should be noted that the results are not

mesh dependent and additional elements are required only when a change

in the geometry or structural property occurs in the structure. A single DS

laminate element is sufficient to compute any number of natural frequencies

for an individual plate to any desired accuracy.

Figure 7: Assembly of dynamic stiffness matrices

Unlike the FEM, DS plate elements do not have point nodes but have

line nodes for each strip. Furthermore, no change in geometry along the

y-direction can be modelled and the two sides y = 0 and y = b must be

simply supported (SS1 as described in Section 3.2). The other two sides

of the structure can have any boundary condition. Boundary conditions

are applied to the global dynamic stiffness matrix using the penalty method.

This consists of adding a large stiffness to the position on the leading diagonal

term which corresponds to the degree of freedom of the node which needs

to be constrained. Any of the following boundary conditions on the two
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sides x = 0 and x = b can be applied: (i) Free (F): no penalty is applied, (ii)

Simply supported (SS1): Vi, Wi and Φxi
are penalised, (iii) Simply supported

(SS2): Ui, Wi and Φxi
are penalised, (iv) Clamped (C): Ui, Vi, Wi, Φyi

, Φxi

are penalised; i the node to be constrained.

Because of the similarities between DS and finite elements, DS elements can

be implemented in FEM codes to increase the accuracy very considerably

for free vibration analysis of structures. It should be emphasised that when

analytical solutions are available, resorting to numerical techniques results

in loss of accuracy and often excessive computational time.

3.6. The Wittrick-Williams algorithm

In order to compute the natural frequencies of a structure using the DSM,

the most efficient method is to apply the Wittrick and Williams algorithm

[28]. For clarity and completeness, the procedure is briefly summarised as

follows.

The global dynamic stiffness matrix of the structure K∗ is computed at a

trial frequency ω∗. By applying Gauss elimination the global stiffness matrix

is then triangulated in upper triangular K∗4 form. If the number of negative

terms on the leading diagonal of K∗4 is defined as the sign count s(K∗), the

number (j) of natural frequencies (ω) which lie below the trial frequency (ω∗)

is given by [28]:

j = j0 + s(K∗) (95)

where j0 is the number of frequencies of all individual single strip elements

in the structure when clamped on their opposite sides which are still lower

than the trial frequency (ω∗). Note that the DSM allows for an infinite num-

ber of natural frequencies between nodes to be accounted for when all nodal
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displacements, i.e. the displacements components to which the overall DS

matrix corresponds to are zero. When s(K∗) and j0 are known, bi-section

method can be used to bracket any natural frequency up to the required

accuracy.

Computing j0 can sometimes be cumbersome, but can be avoided if a suffi-

ciently fine mesh is used although this will increase the computational time.

The value of j0 can be computed for each trial frequency if the C-C frequen-

cies of the elements within the structure are know beforehand. These C-C

frequencies can be computed by splitting each element in smaller sub-strip

elements and then computing the natural frequencies of the global structure

up to the first C-C natural frequency of the largest sub-strip. This is the

upper limit of the trial frequency in the analysis analysis, if higher frequen-

cies needs to be computed, smaller strips will need to be used. Once these

C-C frequencies are know, j0 can be computed, thus W-W algorithm can be

applied without any increase in the computational time due to a fine mesh.

3.7. Mode shape computation

The mode shapes are routinely computed by using the global dynamic

stiffness matrix of the structure, and setting the force vector to zero. A

carefully chosen nodal displacement is given an arbitrary value and then de-

termining the rest of the nodal displacements in terms of the chosen one.

The best degree of freedom to choose for normalising the mode shapes is the

one which causes the sign count of K to increase when applying the Wit-

trick and Williams algorithm (see section 3.6). In fact, if this procedure is

not adopted and a displacement is chosen randomly, inplane modes could be

erroneously picked up as the out of plane modes. It seems that the degree
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of freedom which is associated with the increase of the sign count of K is

also the one which triggers the mode. This observation has never been made

before because thick plates with both inplane and out of plane modes have

apparently not been analysed using the DSM before.

Once the correct degree of freedom has been chosen to normalise the mode,

solving the system of algebraic equations gives the nodal displacements of the

strips. In order to have an accurate plot of the modes either a finer mesh or

further post processing may be required. A finer mesh increases the compu-

tational time considerably in which case further post-processing is preferred.

This consists of computing the integration constants for each element from

Eqs. (42) and (67) and subsequently computing the displacements of each

strip by using Eqs. (35) and (62). In this way the modes can be plotted as

accurately as required.

4. CONCLUDING REMARKS

In Part I of this two-part paper the complete dynamic stiffness matrix

of a laminated composite element based on the first order shear deformation

theory has been formulated. This is a new development and in sharp contrast

to previous work reported in the literature, the effects of shear deformation

and rotatory inertia have been considered and exact explicit expressions for

the elements of the dynamic stiffness matrix have been presented. The trans-

formation matrices for rotation and offset connections have been developed

and the assembly procedure to generate the global dynamic stiffness matrix

of the complete structure has been fully described. The Wittrick-Williams

algorithm which is essential to solve the free vibration problem has been
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illustrated along with a method to avoid computation of the otherwise re-

quired clamped-clamped natural frequencies. Once the natural frequencies

are computed, the procedure to obtain the mode shapes has been explained

with particular attention to a method for correctly distinguishing between

inplane and out of plane modes. The dynamic stiffness laminate elements,

although similar to finite elements, provide an exact solution for free vibra-

tion analysis of complex structures.

In the second part of this paper [29], the method and theory presented herein

is first validated against exact results in the literature for simple plates, and

then the free vibration analysis of typical aeronautical structures such as

stringer panels are investigated. In the sequel, the results obtained by the

dynamic stiffness method are compared with results from finite element anal-

ysis using NASTRAN in order to show the superiority of the present method

in terms of both accuracy and computational efficiency.
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APPENDIX A: LAMINATE GEOMETRIC AND CONSTITU-

TIVE EQUATIONS

The geometric relation for a lamina in the local or lamina reference system

can be written as:



εxx

εyy

εxy

εyz

εxz




=




Dx 0 0 zDx 0

0 Dy 0 0 −zDy

Dy Dx 0 zDy −zDx

0 0 Dy 0 −1

0 0 Dx 1 0







u0

v0

w0

φy

φx




(96)

where Dx and Dy are the derivatives in x and y respectively. The constitutive

equations in the lamina reference system can be written as:



σxx

σyy

σxy

σyz

σxz




=




C11 C12 0 0 0

C12 C22 0 0 0

0 0 C66 0 0

0 0 0 C44 0

0 0 0 0 C55







εxx

εyy

εxy

εyz

εxz




(97)

where

C11 =
E1

1− ν12ν21

; C12 =
ν12E2

1− ν12ν21

; C22 =
E2

1− ν12ν21

;

C66 = G12; C44 = G23; C55 = G13

(98)

where E1 is the elastic modulus in the fibre direction, E2 the elastic modulus

in perpendicular to the fibre, ν12 and ν21 = ν12E2/E1 the Poisson’s ratios,

G12 = G13 and G23 the shear modulus of each single orthotropic lamina. If

the lamina is placed at an angle θ in the laminate or global reference system,

the equation need to be transformed as follows:

C11 =C11C4 + 2(C12 + 2C66)S2C2 + C22S4 (99)
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C12 =(C11 + C22 − 4C66)S2C2 + C12(S4 + C4) (100)

C16 =(C11 − C12 − 2C66)SC3 + (C12 − C22 + 2C66)S3C (101)

C22 =C11S4 + 2(C12 + 2C66)S2C∈ + C22C4 (102)

C26 =(C11 − C12 − 2C66)S3C + (C12 − C22 + 2C66)SC3 (103)

C66 =(C11 + C22 − 2C12 − 2C66)S2C2 + C66(S4 + C4) (104)

C44 =C44C2 + C55S2 C55 = C44S2 + C55C2, C45 = (C55 − C44)CS (105)

where C = cosθ and S = sinθ. This leads to the constitutive equation for

the k-th lamina in the laminate or global reference system:



σxx

σyy

σxy

σyz

σxz




=




C11 C12 C16 0 0

C12 C22 C26 0 0

C16 C26 C66 0 0

0 0 0 C44 C45

0 0 0 C45 C55







εxx

εyy

εxy

εyz

εxz




(106)

that in compact form can be written for each k-th lamina as:

σk = Ckεk (107)

APPENDIX B: EXPLICIT EXPRESSIONS FOR THE DYNAMIC

STIFFNESS ELEMENTS FOR OUT OF PLANE MOTION

Explicit expressions for the coefficients of the DS matrix are given only for
case 1 for brevity. The coefficients for the other 3 cases can be obtained by
following the procedure reported in section 3.1. Given the complexity of these
coefficient, the use of a symbolic computation program such as Mathemat-
ica [27] is essential. In order to avoid numerical instabilities and overflows,
the expressions need to be simplified and carefully constructed. Full simpli-
fication is achieved by using the explicit expressions of the terms appearing
in the matrix A and R (Eqs. 41 and 43). Numerical inversion of matrix A

40



should be avoided because it may cause ill-conditioning.

sqq =
1

∆

(
k A55 (−(Ch3 (γ1 δ3 (r2 γ2 δ2 + r3 γ3 δ2 − 2 r3 γ2 δ3) + δ1 (−((r1 γ1 + r2 γ2) γ3 δ2) (B.1)

+ γ2 (r1 γ1 + r3 γ3) δ3) + Sh1 Sh2 (δ3 ((r2 γ1
2 + r3 γ2 γ3) δ2 − r3 (γ1

2 + γ2
2) δ3)

+ δ1 (−((r2 γ1 + r1 γ2) γ3 δ2) + (r1 γ2
2 + r3 γ1 γ3) δ3)))) + Ch2 (δ1 (−((r1 γ1 + r2 γ2) γ3 δ2)

+ γ2 (r1 γ1 + r3 γ3) δ3) + γ1 δ2 (2 r2 γ3 δ2 − (r2 γ2 + r3 γ3) δ3) + Sh1 Sh3 (δ1 (−((r2 γ1 γ2 + r1 γ3
2) δ2)

+ γ2 (r3 γ1 + r1 γ3) δ3) + δ2 (r2 (γ1
2 + γ3

2) δ2 − (r3 γ1
2 + r2 γ2 γ3) δ3))) + Ch1 (2 r1 γ2 γ3 δ1

2

− r1 γ1 γ3 δ1 δ2 − r2 γ2 γ3 δ1 δ2 − r1 γ1 γ2 δ1 δ3 − r3 γ2 γ3 δ1 δ3 + r2 γ1 γ2 δ2 δ3 + r3 γ1 γ3 δ2 δ3

+ Sh2 Sh3 (r1 (γ2
2 + γ3

2) δ1
2 + γ1 (r3 γ2 + r2 γ3) δ2 δ3 − δ1 (r1 γ1 γ2 δ2 + r2 γ3

2 δ2 + r3 γ2
2 δ3

+ r1 γ1 γ3 δ3))− Ch2 Ch3 (2 r1 γ2 γ3 δ1
2 − δ1 ((r1 γ1 + r2 γ2) γ3 δ2

+ γ2 (r1 γ1 + r3 γ3) δ3) + γ1 (2 r2 γ3 δ2
2 − (r2 γ2 + r3 γ3) δ2 δ3 + 2 r3 γ2 δ3

2))))
)

sqm =
1

∆

(
k A55 (−((−(γ2 δ1) + γ1 δ2) (1 + r3 δ3) ((−1 + Ch1 Ch3 )Sh2 (−(γ3 δ2) + γ2 δ3) (B.2)

+ Sh1 (−(γ3 δ1) + Sh2 Sh3 (−(γ2 δ1) + γ1 δ2) + γ1 δ3 − Ch2 Ch3 (−(γ3 δ1) + γ1 δ3))))

− (1 + r2 δ2) (−(γ3 δ1) + γ1 δ3) ((−1 + Ch1 Ch2 )Sh3 (γ3 δ2 − γ2 δ3) + Sh1 (−(γ2 δ1) + γ1 δ2

− Ch2 Ch3 (−(γ2 δ1) + γ1 δ2) + Sh2 Sh3 (−(γ3 δ1) + γ1 δ3))) + (1 + r1 δ1) (γ3 δ2

− γ2 δ3) ((−1 + Ch1 Ch2 )Sh3 (γ3 δ1 − γ1 δ3) + Sh2 (γ2 δ1 − γ1 δ2 + Ch1 Ch3 (−(γ2 δ1) + γ1 δ2)

+ Sh1 Sh3 (−(γ3 δ2) + γ2 δ3))))
)

sqt =
1

∆

(
k A55 (Ch3 (γ1 δ2 δ3 (r2 δ2 − r3 δ3) + r1 δ1

2 (−(γ3 δ2) + γ2 δ3)− δ1 (r2 γ3 δ2
2 (B.3)

− 2 r3 γ3 δ2 δ3 + r3 γ2 δ3
2)− Sh1 Sh2 (γ3 δ1

2 (r2 δ2 − r3 δ3)

+ r3 δ2 δ3 (−(γ3 δ2) + γ2 δ3) + δ1 (r1 γ3 δ2
2 − (r2 γ1 + r1 γ2) δ2 δ3 + r3 γ1 δ3

2)))

− Ch2 (γ1 δ2 δ3 (r2 δ2 − r3 δ3) + r1 δ1
2 (−(γ3 δ2) + γ2 δ3) + δ1 (r2 γ3 δ2

2 − 2 r2 γ2 δ2 δ3 + r3 γ2 δ3
2)

+ Sh1 Sh3 (r2 δ2 δ3 (γ3 δ2 − γ2 δ3) + δ1
2 (−(r2 γ2 δ2) + r3 γ2 δ3) + δ1 (r2 γ1 δ2

2

− (r3 γ1 + r1 γ3) δ2 δ3 + r1 γ2 δ3
2))) + Ch1 (−(r1 γ3 δ1

2 δ2) + r2 γ3 δ1 δ2
2 − r1 γ2 δ1

2 δ3

+ 2 r1 γ1 δ1 δ2 δ3 − r2 γ1 δ2
2 δ3 + r3 γ2 δ1 δ3

2 − r3 γ1 δ2 δ3
2 − Sh2 Sh3 (γ1 δ2 δ3 (r3 δ2 + r2 δ3)

+ r1 δ1
2 (γ2 δ2 + γ3 δ3)− δ1 (r1 γ1 δ2

2 + r3 γ2 δ2 δ3 + r2 γ3 δ2 δ3 + r1 γ1 δ3
2))

+ Ch2 Ch3 (γ1 δ2 δ3 (r2 δ2 + r3 δ3) + r1 δ1
2 (γ3 δ2 + γ2 δ3)

+ δ1 (r2 γ3 δ2
2 − 2 (r1 γ1 + r2 γ2 + r3 γ3) δ2 δ3 + r3 γ2 δ3

2))))
)
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fqq =
1

∆

(
k A55 (−(r1 Sh2 Sh3 γ2

2 δ1
2)− 2 r1 γ2 γ3 δ1

2 − r1 Sh2 Sh3 γ3
2 δ1

2 + r2 Sh1 Sh3 γ1 γ2 δ1 δ2

(B.4)

+ r1 Sh2 Sh3 γ1 γ2 δ1 δ2 + r1 γ1 γ3 δ1 δ2 − r2 Sh1 Sh2 γ1 γ3 δ1 δ2 + r2 γ2 γ3 δ1 δ2

− r1 Sh1 Sh2 γ2 γ3 δ1 δ2 + r1 Sh1 Sh3 γ3
2 δ1 δ2 + r2 Sh2 Sh3 γ3

2 δ1 δ2 − r2 Sh1 Sh3 γ1
2 δ2

2

− 2 r2 γ1 γ3 δ2
2 − r2 Sh1 Sh3 γ3

2 δ2
2 + r1 γ1 γ2 δ1 δ3 − r3 Sh1 Sh3 γ1 γ2 δ1 δ3

+ r1 Sh1 Sh2 γ2
2 δ1 δ3 + r3 Sh2 Sh3 γ2

2 δ1 δ3 + r3 Sh1 Sh2 γ1 γ3 δ1 δ3 + r1 Sh2 Sh3 γ1 γ3 δ1 δ3

+ r3 γ2 γ3 δ1 δ3 − r1 Sh1 Sh3 γ2 γ3 δ1 δ3 + r2 Sh1 Sh2 γ1
2 δ2 δ3 + r3 Sh1 Sh3 γ1

2 δ2 δ3 + r2 γ1 γ2 δ2 δ3

− r3 Sh2 Sh3 γ1 γ2 δ2 δ3 + r3 γ1 γ3 δ2 δ3 − r2 Sh2 Sh3 γ1 γ3 δ2 δ3 + r3 Sh1 Sh2 γ2 γ3 δ2 δ3

+ r2 Sh1 Sh3 γ2 γ3 δ2 δ3 − r3 Sh1 Sh2 γ1
2 δ3

2 − 2 r3 γ1 γ2 δ3
2 − r3 Sh1 Sh2 γ2

2 δ3
2

+ Ch2 Ch3 (2 r1 γ2 γ3 δ1
2 + γ1 (r2 γ2 + r3 γ3) δ2 δ3 − δ1 (r1 γ1 γ3 δ2 + r2 γ2 γ3 δ2 + r1 γ1 γ2 δ3

+ r3 γ2 γ3 δ3))− Ch1 (Ch3 (γ1 δ2 (−2 r2 γ3 δ2 + r2 γ2 δ3 + r3 γ3 δ3) + δ1 ((r1 γ1 + r2 γ2) γ3 δ2

− γ2 (r1 γ1 + r3 γ3) δ3)) + Ch2 (γ1 δ3 (r2 γ2 δ2 + r3 γ3 δ2 − 2 r3 γ2 δ3) + δ1 (−((r1 γ1 + r2 γ2) γ3 δ2)

+ γ2 (r1 γ1 + r3 γ3) δ3))))
)

fqm =
1

∆

(
k A55 (Ch1 (−(γ3 δ2) + γ2 δ3) (Sh2 (−(γ2 δ1) + γ1 δ2) (r1 δ1 − r3 δ3) (B.5)

+ Sh3 (r1 δ1 − r2 δ2) (γ3 δ1 − γ1 δ3)) + Ch2 (−(γ3 δ1) + γ1 δ3) (Sh1 (γ2 δ1 − γ1 δ2) (r2 δ2 − r3 δ3)

+ Sh3 (r1 δ1 − r2 δ2) (−(γ3 δ2) + γ2 δ3)) + Ch3 (−(γ2 δ1) + γ1 δ2) (Sh1 (r2 δ2 − r3 δ3) (−(γ3 δ1)

+ γ1 δ3) + Sh2 (−(r1 δ1) + r3 δ3) (−(γ3 δ2) + γ2 δ3)))
)

fqt =
1

∆

(
k A55 (−(r2 Sh1 Sh3 γ2 δ1

2 δ2) + r1 Sh2 Sh3 γ2 δ1
2 δ2 + r1 γ3 δ1

2 δ2 + r2 Sh1 Sh2 γ3 δ1
2 δ2

(B.6)

+ r2 Sh1 Sh3 γ1 δ1 δ2
2 − r1 Sh2 Sh3 γ1 δ1 δ2

2 + r2 γ3 δ1 δ2
2 + r1 Sh1 Sh2 γ3 δ1 δ2

2

+ r1 γ2 δ1
2 δ3 + r3 Sh1 Sh3 γ2 δ1

2 δ3 − r3 Sh1 Sh2 γ3 δ1
2 δ3 + r1 Sh2 Sh3 γ3 δ1

2 δ3 − 2 r1 γ1 δ1 δ2 δ3

− r2 Sh1 Sh2 γ1 δ1 δ2 δ3 − r3 Sh1 Sh3 γ1 δ1 δ2 δ3 − 2 r2 γ2 δ1 δ2 δ3 − r1 Sh1 Sh2 γ2 δ1 δ2 δ3

− r3 Sh2 Sh3 γ2 δ1 δ2 δ3 − 2 r3 γ3 δ1 δ2 δ3 − r1 Sh1 Sh3 γ3 δ1 δ2 δ3 − r2 Sh2 Sh3 γ3 δ1 δ2 δ3

+ r2 γ1 δ2
2 δ3 + r3 Sh2 Sh3 γ1 δ2

2 δ3 − r3 Sh1 Sh2 γ3 δ2
2 δ3 + r2 Sh1 Sh3 γ3 δ2

2 δ3

+ r3 Sh1 Sh2 γ1 δ1 δ3
2 − r1 Sh2 Sh3 γ1 δ1 δ3

2 + r3 γ2 δ1 δ3
2 + r1 Sh1 Sh3 γ2 δ1 δ3

2

+ r3 γ1 δ2 δ3
2 + r2 Sh2 Sh3 γ1 δ2 δ3

2 + r3 Sh1 Sh2 γ2 δ2 δ3
2 − r2 Sh1 Sh3 γ2 δ2 δ3

2

− Ch2 Ch3 (γ1 δ2 δ3 (r2 δ2 + r3 δ3) + r1 δ1
2 (γ3 δ2 + γ2 δ3)− δ1 (r2 γ3 δ2

2 + 2 r1 γ1 δ2 δ3 + r3 γ2 δ3
2))

+ Ch1 (−(Ch3 (γ1 δ2 δ3 (r2 δ2 − r3 δ3) + r1 δ1
2 (−(γ3 δ2) + γ2 δ3) + δ1 (r2 γ3 δ2

2 − 2 r2 γ2 δ2 δ3

+ r3 γ2 δ3
2))) + Ch2 (γ1 δ2 δ3 (r2 δ2 − r3 δ3) + r1 δ1

2 (−(γ3 δ2) + γ2 δ3)− δ1 (r2 γ3 δ2
2

− 2 r3 γ3 δ2 δ3 + r3 γ2 δ3
2))))

)
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smm =
1

∆

(
D11 (−(r3 γ2 δ1) + r2 γ3 δ1 + r3 γ1 δ2 − r1 γ3 δ2 − r2 γ1 δ3 + r1 γ2 δ3) (Ch3 Sh1 Sh2 (−(γ2 δ1)

(B.7)

+ γ1 δ2) + Sh3 (Ch2 Sh1 (γ3 δ1 − γ1 δ3) + Ch1 Sh2 (−(γ3 δ2) + γ2 δ3)))
)

smt =
1

∆

(
(−(D11 r3)− α D12 γ3) (−((−1 + Ch1 Ch3 )Sh2 δ2 (−(γ2 δ1) + γ1 δ2)) (B.8)

+ (−1 + Ch1 Ch2 )Sh3 (−2 γ3 δ1 δ2 + γ2 δ1 δ3 + γ1 δ2 δ3) + Sh1 (δ1 (γ2 δ1 − γ1 δ2)− Ch2 Ch3 δ1 (γ2 δ1

− γ1 δ2) + Sh2 Sh3 (γ3 δ1
2 + γ3 δ2

2 − γ1 δ1 δ3 − γ2 δ2 δ3))) + (−(D11 r1)− α D12 γ1) ((Sh2 (δ2

− Ch1 Ch3 δ2) + (−1 + Ch1 Ch2 )Sh3 δ3) (γ3 δ2 − γ2 δ3) + Sh1 (−(γ3 δ1 δ2)

− γ2 δ1 δ3 + 2 γ1 δ2 δ3 − Ch2 Ch3 (−(γ3 δ1 δ2)− γ2 δ1 δ3 + 2 γ1 δ2 δ3)

+ Sh2 Sh3 (−(γ2 δ1 δ2) + γ1 δ2
2 − γ3 δ1 δ3 + γ1 δ3

2))) + (−(D11 r2)

− α D12 γ2) (−((−1 + Ch1 Ch2 )Sh3 δ3 (−(γ3 δ1) + γ1 δ3)) + (−1 + Ch1 Ch3 )Sh2 (γ3 δ1 δ2

− 2 γ2 δ1 δ3 + γ1 δ2 δ3) + Sh1 (δ1 (γ3 δ1 − γ1 δ3)− Ch2 Ch3 δ1 (γ3 δ1 − γ1 δ3) + Sh2 Sh3 (γ2 δ1
2

− γ1 δ1 δ2 − γ3 δ2 δ3 + γ2 δ3
2)))

)

fmm =
1

∆

(
D11 (−(r3 γ2 δ1) + r2 γ3 δ1 + r3 γ1 δ2 − r1 γ3 δ2 − r2 γ1 δ3 + r1 γ2 δ3) (Sh2 Sh3 (γ3 δ2 (B.9)

− γ2 δ3) + Sh1 (Sh2 (γ2 δ1 − γ1 δ2) + Sh3 (−(γ3 δ1) + γ1 δ3)))
)

fmt =
1

∆

(
D11 (r3 γ2 δ1 − r2 γ3 δ1 − r3 γ1 δ2 + r1 γ3 δ2 + r2 γ1 δ3 − r1 γ2 δ3) (Ch3 (−(Sh1 δ1) + Sh2 δ2)

(B.10)

+ Ch2 (Sh1 δ1 − Sh3 δ3) + Ch1 (−(Sh2 δ2) + Sh3 δ3))
)

stt =
1

∆

(
D66 (Ch2 (−(γ1 (r2 γ2 − r3 γ3) δ2 δ3)− δ1 ((−(r1 γ1) + r2 γ2) γ3 δ2 + γ2 (r1 γ1 − 2 r2 γ2 (B.11)

+ r3 γ3) δ3)− Sh1 Sh3 ((r2 γ2 − r3 γ3) δ1 (−(γ2 δ1) + γ1 δ2) + (−(r1 γ1) + r2 γ2) γ3 δ2 δ3

+ γ2 (r1 γ1 − r2 γ2) δ3
2))− Ch3 (γ1 (−(r2 γ2) + r3 γ3) δ2 δ3 + δ1 (γ3 (r1 γ1 + r2 γ2 − 2 r3 γ3) δ2

+ (−(r1 γ1 γ2) + r3 γ2 γ3) δ3) + Sh1 Sh2 (γ3 (r1 γ1 − r3 γ3) δ2
2 + γ2 (−(r1 γ1) + r3 γ3) δ2 δ3

+ (−(r2 γ2) + r3 γ3) δ1 (−(γ3 δ1) + γ1 δ3))) + Ch1 (−(r1 γ1 γ3 δ1 δ2) + r2 γ2 γ3 δ1 δ2

− r1 γ1 γ2 δ1 δ3 + r3 γ2 γ3 δ1 δ3 + 2 r1 γ1
2 δ2 δ3 − r2 γ1 γ2 δ2 δ3 − r3 γ1 γ3 δ2 δ3

+ Sh2 Sh3 (γ2 (−(r1 γ1) + r3 γ3) δ1 δ2 + γ1 (r1 γ1 − r3 γ3) δ2
2 + (r1 γ1 − r2 γ2) δ3 (−(γ3 δ1)

+ γ1 δ3))− Ch2 Ch3 (γ2 (−(r1 γ1) + 2 r2 γ2 − r3 γ3) δ1 δ3 + δ2 (γ3 (−(r1 γ1)− r2 γ2

+ 2 r3 γ3) δ1 + γ1 (2 r1 γ1 − r2 γ2 − r3 γ3) δ3))))
)
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ftt =
1

∆

(
D66 (−(r2 Sh1 Sh3 γ2

2 δ1
2) + r2 Sh1 Sh2 γ2 γ3 δ1

2 + r3 Sh1 Sh3 γ2 γ3 δ1
2 (B.12)

− r3 Sh1 Sh2 γ3
2 δ1

2 + r2 Sh1 Sh3 γ1 γ2 δ1 δ2 + r1 Sh2 Sh3 γ1 γ2 δ1 δ2 + r1 γ1 γ3 δ1 δ2

− r3 Sh1 Sh3 γ1 γ3 δ1 δ2 + r2 γ2 γ3 δ1 δ2 − r3 Sh2 Sh3 γ2 γ3 δ1 δ2 − 2 r3 γ3
2 δ1 δ2

− r1 Sh2 Sh3 γ1
2 δ2

2 + r1 Sh1 Sh2 γ1 γ3 δ2
2 + r3 Sh2 Sh3 γ1 γ3 δ2

2 − r3 Sh1 Sh2 γ3
2 δ2

2

+ r1 γ1 γ2 δ1 δ3 − r2 Sh1 Sh2 γ1 γ2 δ1 δ3 − 2 r2 γ2
2 δ1 δ3 + r3 Sh1 Sh2 γ1 γ3 δ1 δ3

+ r1 Sh2 Sh3 γ1 γ3 δ1 δ3 + r3 γ2 γ3 δ1 δ3 − r2 Sh2 Sh3 γ2 γ3 δ1 δ3 − 2 r1 γ1
2 δ2 δ3 + r2 γ1 γ2 δ2 δ3

− r1 Sh1 Sh2 γ1 γ2 δ2 δ3 + r3 γ1 γ3 δ2 δ3 − r1 Sh1 Sh3 γ1 γ3 δ2 δ3 + r3 Sh1 Sh2 γ2 γ3 δ2 δ3

+ r2 Sh1 Sh3 γ2 γ3 δ2 δ3 − r1 Sh2 Sh3 γ1
2 δ3

2 + r1 Sh1 Sh3 γ1 γ2 δ3
2 + r2 Sh2 Sh3 γ1 γ2 δ3

2

− r2 Sh1 Sh3 γ2
2 δ3

2 + Ch2 Ch3 (γ2 (−(r1 γ1) + r3 γ3) δ1 δ3 + δ2 ((−(r1 γ1) + r2 γ2) γ3 δ1

+ γ1 (2 r1 γ1 − r2 γ2 − r3 γ3) δ3)) + Ch1 (Ch2 (γ1 (r2 γ2 − r3 γ3) δ2 δ3 + δ1 (γ3 (−(r1 γ1)

− r2 γ2 + 2 r3 γ3) δ2 + γ2 (r1 γ1 − r3 γ3) δ3))− Ch3 (γ1 (r2 γ2 − r3 γ3) δ2 δ3

+ δ1 ((−(r1 γ1) + r2 γ2) γ3 δ2 + γ2 (r1 γ1 − 2 r2 γ2 + r3 γ3) δ3))))
)

where

∆ =− 2 (−(γ3 δ2) + γ2 δ3) ((−1 + Ch1 Ch3 )Sh2 (γ2 δ1 − γ1 δ2) + (−1 + Ch1 Ch2 )Sh3 (−(γ3 δ1)

+ γ1 δ3)) + Sh1 (2 (−(γ2 δ1) + γ1 δ2) (−(γ3 δ1) + γ1 δ3)− 2 Ch2 Ch3 (−(γ2 δ1) + γ1 δ2) (−(γ3 δ1)

+ γ1 δ3) + Sh2 Sh3 ((γ2
2 + γ3

2) δ1
2 + (γ1

2 + γ3
2) δ2

2 − 2 γ1 γ3 δ1 δ3 + (γ1
2 + γ2

2) δ3
2

− 2 γ2 δ2 (γ1 δ1 + γ3 δ3)))

(B.13)

APPENDIX C: EXPLICIT EXPRESSIONS FOR THE DYNAMIC

STIFFNESS ELEMENTS FOR INPLANE MOTION

Explicit expressions of the elements of the dynamic stiffness matrix are
given only for case 1 for brevity. The coefficients for the other 2 cases can be
obtained by following the procedure reported in section 3.2.1.:

snn =
A11 (r1 δ2 − r2 δ1) (Ch1 Sh2 δ2 − Ch2 Sh1 δ1)

Λ
(C.1)

snl =
1

Λ

(
−A11 r2 δ1 −A11 r1 δ2 + 2 α A12 δ1 δ2 − Ch1 Ch2 (2 α A12 δ1 δ2 −A11 (r2 δ1 + r1 δ2)) (C.2)

+ Sh1 Sh2 (α A12 (δ1
2 + δ2

2)−A11 (r1 δ1 + r2 δ2))
)

fnn =
A11 (r1 δ2 − r2 δ1) (Sh1 δ1 − Sh2 δ2)

Λ
(C.3)

fnl =
A11 (Ch1 − Ch2 ) (r2 δ1 − r1 δ2)

Λ
(C.4)

sll =
A66 (r1 δ1 − r2 δ2) (Ch1 Sh2 δ1 − Ch2 Sh1 δ2)

Λ
(C.5)
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fll =
A66 (r2 δ2 − r1 δ1) (Sh2 δ1 − Sh1 δ2)

Λ
(C.6)

where
Λ = 2 δ1 δ2 − 2 Ch1 Ch2 δ1 δ2 + Sh1 Sh2

(
δ1

2 + δ2
2
)

(C.7)
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