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Abstract

A full-vectorial finite element based approach has been developed to find accurate modal
solutions of acoustic modes in Ge-doped and un-doped planar silica waveguides. The
structural symmetry is exploited and Aitken’s extrapolation is also used to improve the
accuracy of the solutions. The spatial dependences of the dominant and non-dominant
displacement vectors are shown for the fundamental and higher order shear and longitudinal
modes for Ge-doped core. The modal hybridness and modal birefringence between the two
fundamental shear modes are also presented for this low index contrast waveguide. Further,
rigorous analyses of the interactions between the guided acoustic and optical modes are
performed for higher Ge-doped planar, for this case 10% doping is used. The Stimulated
Brillouin Scattering (SBS) frequency and the overlaps between the fundamental and the
higher order shear and longitudinal acoustic modes and the fundamental quasi-TE optical
mode are presented. Brillouin gain spectrum for this moderate index contrast waveguide is
determined. Furthermore, for a high index contrast air-clad rectangular silica strip waveguide,
this program is used to accurately study the evolution of the acoustic modes. The existing
structural symmetry is also exploited to reduce modal degeneration and to enhance the
accuracy of the solutions. The interactions between the guided acoustic and optical modes
are calculated after considering the full-vectorial nature of the modal fields. The SBS
frequency and the overlaps between the fundamental and higher order acoustic modes with
the fundamental quasi-TE optical mode are presented. The peak Brillouin gain, Brillouin
gain spectrum (BGS), strength of Bragg gratings and threshold SBS power for this air-clad
silica guide are also evaluated. Further comments are added on figure of merit (FOM) and
acoustic attenuation coefficient for this air-clad silica waveguide.
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Chapter 1

Introduction

Stimulated Brillouin scattering (SBS) is a non-linear process of light-sound interaction in
an inelastic manner in materials. The first prediction of this inelastic scattering of light
by acoustic phonon was made by Brillouin in 1922 [Brillouin, 1922]. However, in 1918
Mandelstam suggested that the light could be scattered by thermally generated phonons,
and this was published in 1926. That is why this process was referred before as Brillouin-
Mandelstam light scattering process [Eggleton, 2013]. In 1964, the first ever observation of
SBS process and coherent generation of intense hypersonic wave was reported in [Chiao,
1964]. This experiment was performed using a pulse ruby laser of 694 nm wavelength on
quartz and sapphire crystals, where the SBS frequency shift were measured as 0.9 cm−1

(∼ 29.7 GHz) and 2.07 cm−1 (∼ 62 GHz), respectively for these two materials.
In early 1970s, acoustic waves in electromagnetic waveguides were studied and docu-

mented [Auld, 1973]. Even higher order finite element based analysis on surface elastic wave
in guides was reported in [Lagasse, 1973] and for inhomogeneous structures was reported in
[Stone, 1973]. Following that SBS process has been characterized and exploited by many
researcher, categorically some specific contributions are presented below.

Study and characterization of the guidance of acoustic waves in optical waveguides and
its interaction with optical waves have been researched extensively. Based on a perturbation
analysis, the characterization of radial, flexural and torsional acoustics modes were reported
in [Saffaai-Jazi, 1988]. For the first time the theory of forward stimulated Brillouin scattering
in duel-mode single-core fibres was presented by [Russell, 1991]. The SBS process in single
mode fibre (SMF) was studied by [Yeniay, 2002] and the accurate numerical solution of
Brillouin gain spectrum (BGS) in SMF was reported in [Koyamada, 2004]. SBS process
in dispersion engineered fibre has also been reported. [McIntosh, 1997] investigated SBS
process in dispersion compensated fibre (DCF) using two laser sources of different linewidth
at 1556 nm. Utilizing the feature of multiple-peak BGS due to the existence of multiple
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acoustic modes in single-mode dispersion shifted fibre (DSF), [Zou, 2013] demonstrated an
all-optical generation of Brillouin dynamic grating (BDG).

The effect of dopant concentration variation in fibre on parameters of SBS has also been
investigated. For the first time, the pump and probe technique for Brillouin gain measurements
in SMF was reported by [Nikles, 1997], where the researchers investigated how the BGS can
be affected by strain, temperature and by variation in Ge doping in the core. A simplified
model to study the effect of Ge doping in silica fibre on acoustic longitudinal modulus and
damping coefficient was presented by [Dragic, 2009]. The influence of Fluorine doping
in SMF on Brillouin scattering properties was reported in [Zou, 2008] and [Cannat, 2008]
demonstrated shorter Brillouin shift with 1.6 times broader spectrum in Erbium-Ytterbium
doped fibre compared with the undoped one. The experimental measurements of BGS in
highly P-doped silica fibre was reported by [Law, 2011], along with they modelled the
effects of dopant concentration variation on acoustic damping and temperature sensitivity
coefficients. The detailed analysis of Brillouin properties of Al-doped silica fibre was reported
by [Dragic, 2012], where the measurements showed that the thermal- and strain-acoustic
coefficients of this fibre were not influenced strongly by the molar density of alumina.

Based on the measurements of stimulated Brillouin scattering threshold (SBST) carried
over SMF with different refractive indices, [Ruffin, 2005] demonstrated the importance of
considering refractive-index-dependent interaction between the acoustic and optical fields in
addition to the optical effective area to account the difference in the SBST between fibre types.
The importance of considering radial material displacements in acousto-optical interaction in
fibres with complex radial index profile was demonstrated by [McCurdy, 2005]. Residual
stresses inside optical fibres can influence BGS significantly, the effect of residual stress was
analysed by [Mamdem, 2012].

SBS process imposes dominant nonlinear penalty among the problems arises in the
communication systems. That is why, SBS suppression or SBST enhancement attracted lots
of researchers attention and they used several techniques to achieve that. [Shiraki, 1996]
reported a non-uniform dopant concentration along fibre’s length can achieve 7 dB larger
SBST than that of the conventional fibre in a 138 km transmission line with an input power
of 16 dBm. A 8 dB enhancements of SBST was achieved by applying 40-step stair-ramp
tensile-strain distributions in 580 m DSF by [Boggio, 2005], where the Brillouin frequency
is observed to shift at a rate of 0.464 GHz/% as a function of the strain. Whereas, [Mishra,
2005] achieved 3 dB increase in SBST for SMF by incorporating a variation of refractive
index along radius. A large effective area fibre (LEAF) for laser with Yb-doped double clad
and Al/Ge co-doped core yielded [Li, 2007] a 6 dB higher SBST than that of LEAF without
a co-doping scheme. A 4.3 dB higher SBST achieved was reported in [Mermelstein, 2009]
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in Al-doped SMF compared to the Ge-doped SMF. Whereas, incorporating a non-uniform
acoustic velocity profile with 5% velocity variation in the core, a 11 dB SBS suppression was
achieved by [Ward, 2009]. A well known method for SBS suppression in optical fibres is
broadening linewidth by phase and/or intensity modulation. Modulating phase by a filtered
noise source a significant enhancement of linewidth was achieved by [Supradeepa, 2013]
in a short fibre length. In [Park, 2014] a quasi-mode interpretation method was presented
to analysis radiating acoustic modes in terms of discrete quasi-modes for an acoustically
anti-guiding optical fibre (AAOF).

So far, many researchers also concentrated in characterizing acoustic modes and acousto-
optical interactions with SBS suppression in photonic crystal fibre (PCF). Few selective
highlights are presented here. The characterization of acoustic modes in PCF was presented
by [Laude, 2005], where highly localized acoustic waves were generated by introducing
defects in the transverse plane and aspect of this property in enhancing collinear acousto-
optical interactions was considered. Nano-scale micro-structuring can affect significantly the
Brillouin scattering. It was reported by [Dainese, 2006] that a PCF of solid silica core with
a diameter around 70% of the light wavelength allowed much more tighter confinement of
light compared with that of solid core glass SMF and generated a multi-peaked spectrum
with Stokes frequency shift in 10 GHz range. [Haakested, 2006] reported an axial variations
in acousto-optic phase-mismatch coefficient can increase coupling bandwidth significantly
as compared to an axially uniform two-mode birefringent PCF. The acousto-optical coupling
between torsional acoustic mode and fundamental two optical polarization modes were
reported in [Lee, 2008] for an highly birefringent photonic crystal fibre (HBPCF). Taking
in account both acoustic and optical birefringence a model for acousto-optical coupling for
PCF was formulated and presented by [Lim, 2008]. [Pyatakova, 2009] demonstrated the
influence of the frequency dependence of Bragg angle in formation of partial forbidden
bands of optical and acoustic waves in 2D photonic crystals. The influence of the size
of fibre core on the acoustic modes and Brillouing spectrum for PCF were illustrated in
[Yuan, 2010]. Experimental and FEM based numerical results of simultaneous frequency-
selective excitation of guided acoustic waves in a PCF with multi-scale structured design
were presented in [Stiller, 2011], where strong impact of structural irregularities of the fibre
on the frequency and modal shape of the acoustic wave were also discussed. Considering
electrostriction, a model for acousto-optical interaction was presented by [Beugnot, 2012] to
generate BGS in PCF, which showed strong proximity with experimental results. For SBS
suppression, [Beugnot, 2007, Jan.] demonstrated a three-fold increase in SBST in a 160 m
long solid-core PCF by introducing strain only. Later the same author reported [Beugnot,
2007, Nov.] forward Brillouin scattering in PCF can be enhanced substantially only for
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fundamental acoustic waves because of the efficient transverse acousto-optic field overlap,
which showed a completely different SBS dynamics comparing that of the standard silica
fibres.

Comparatively very high Brillouin gain was achieved using chalcogenide as guide mate-
rial. Some contributions in this field are illustrated here. Acoustic properties of evaporated
chalcogenide glass films are reported in [Kushibiki, 1981], where it was shown that with
appropriate composition ratio of As/S/Se the acoustic impedance of the chalcogenide film can
be controlled with in a range of 5.53−9.3×106 kgm−2s−1. The Brillouin gain coefficient
of As2S3 and As2Se3 chalcogenide glasses were estimated to be 20 times greater than that
of fused silica by [Ogusu, 2004]. [Pant, 2011] demonstrated on-chip SBS at low-average
power in a 7 cm long waveguide with a cross section of 4 µm×850 nm made by As2S3 rib
on silica over Si wafer using pump-probe technique and backscattered signal. The measured
Brillouin gain coefficient, linewidth and Brillouin frequency shift were 0.715×10−9 m/W ,
∼ 6 MHz and ∼ 7.7 GHz respectively. Using SBS based broadband on-chip isolator in
dispersion engineered As2Se3 chalcogenide rib waveguide with a length less than 10 cm,
[Poulton, 2012] demonstrated a significant isolation greater than 20 dB. SBS process has
emerged as a promising technology for microwave signal processing and generation with
greater efficiency through the demonstration of low noise laser, continuously tunable delay,
optical phase shifting, dynamically controlled grating and realization at on-chip scale. To
incorporate the SBS process in photonic integrated devices with single pass and resonator
geometry, chalcogenide as a choice of material, the device properties were presented by
[Pant, 2014]. A 134 times larger Brillouin gain coefficient than fused silica fibre was demon-
strated by [Abedin, 2005] in a 5 m long As2Se3 chalcogenide based SMF, where Brillouin
frequency shift, gain linewidth and gain coefficient measured were 7.95 GHz, 13.2 MHz and
6×10−9 m/W respectively. Acouto-optical transmission resonance with a depth up to −9 dB
and tunable over 235 nm around 1450 nm by creating a long period grating with variable
period in a As2Se3 chalcogenide based SMF, was demonstrated by [Littler, 2006]. Also,
[Florea, 2006] investigated Brillouin scattering in As2S3 and As2Se3 chalcogenide based
SMF. An experimental demonstration of multi-wavelength Bragg grating, internally written
by two-phonon absorption by 1550 nm pump and its backscattered first and second Stokes
generated by cascaded SBS, in a As2Se3 chalcogenide fibre was made by [Buttner, 2012].
Whereas, [Beugnot, 2014, Feb] reported even further enhancement in SBS gain compared
with both chalcogenide and silica optical fibres using a hybrid polymer-chalcogenide optical
microwires.

As the SBS process provides a promising implication in nano-scale devices for the coming
future, nano-structured and small-core optical waveguides have attracted attention to harness
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and harvest stimulated Brillouin scattering (SBS), recently, by co-confining acoustic and
optical waves and ensuring potentially strong interactions between them. It was also recently
reported [Aryanfar 2014] that nearly 10% of the acousto-optical interactions value in nano-
scale photonic devices could be due to radiation pressure and motion of boundaries. Some
recent contributions based on small-core silica and nano-scale silicon waveguides are present
here. A full-vectorial formulation of SBS coupling taking in account both electrostriction and
radiation pressure for a nano-scale silicon waveguide was presented by [Qiu, 2013], where it
had been shown that both played a significant role in SBS coupling when modal confinement
approached sub-wavelength scale. Whereas, [Shin, 2013] reported SBS coupling over a range
of 1 to 18 GHz by forward SBS process through tailorable travelling wave in a nano-scale
silicon waveguide. A simulation based on SBS generated mode conversion in a high-contrast
suspended silicon nano-scale waveguide with a dimension of 350×300 nm2 was presented
by [Aryanfar, 2014]. By considering the electrostriction [Laude, 2013] presented elastic
energy spectrum for both forward and backward SBS scattering for small-core air-clad strip
waveguide composed of silica and silicon, separately, with a dimension of 1.5×1 µm2. The
first experimental observation of SBS using surface acoustic wave was reported by [Beugnot,
2014, Oct.], where backscattering of light took place by a Rayleigh type hypersound wave
travelling with velocity of 3400 m/s over a 8 cm long tapered silica microwire surface of
diameter 1 µm. The Doppler shift was measured as 6 GHz. The author claimed that surface
acoustic wave (SAW) Brillouin scattering possesses great potential in microwave photonics,
non-linear plasmonics and sensing operation, as this acoustic resonance was found to be
highly sensitive to surface defects and features. The author also observed a hybrid acoustic
wave with a velocity of 5900 m/s at 9 GHz acoustic frequency in a silica microwire of
diameter 0.5 µm.

This chapter, further, discusses the basic introduction to the non-linear effects in optical
waveguides, giving emphasis, especially to the light scattering non-linearities. In addition it
highlighted, some numerical methods in a brief, aims, objectives and area of expectation of
this dissertation. It concludes with the illustration of the structure of this thesis.

1.1 Non-linear effects in optical waveguides

Relatively lower threshold towards optical non-linearities is one of the unique characteristics
of optical fibres. The core size and the length can strongly enhance optical non-linearities.
Mainly following three parameters are important in optical non-linearities,

• Effective core area Ae f f : It is assumed that along Ae f f the optical beam is uniformly
distributed and is zero outside. The effective area for conventional single mode fibre
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(SMF) is ∼ 80 µm2, for dispersion shifted fibre (DSF) is ∼ 50 µm2 and for dispersion
compensated fibre (DCF) is ∼ 20 µm2 [Toulouse, 2005].

• Effective length Le f f : It is the length of the fibre or guide along which the signal
amplitude is constant and zero beyond. For SMF with loss α = 0.2 dB/km the
effective length is 21 km. Mathematically,

Le f f =
1
α

(
1− e−αL) (1.1)

here, α is the optical attenuation coefficient and L is fibre length.

• Group velocity dispersion (GVD) β2: It is defined as, β2 ≡ −(λ 2
o /2πc2)(dng/dλo),

where ng is group refractive index and ng ≡ n−λo(dn/dλo), λo is the optical wave-
length, n if the refractive index. Positive β2 indicates normal dispersion, here longer
wavelength travels faster and negative β2 indicates anomalous dispersion, here shorter
wavelength travels faster.

The optical non-linearities outlined here are results from the interactions of optical fields
and acoustic wave simultaneously present in the fibre or waveguide. These non-linearities
are involved with switching, the controlling of the spectral and temporal shape of pulses, the
generation of new frequency or wavelength, the wavelength conversions and giving rise to
gain. Generally optical non-linearities can be divided in two groups [Agrawal, 2013]:

1. The non-linearities resulted from the change of refractive index by optical signals. This
may cause either phase modulation or generation and mixing of channel frequencies.
It includes,

• Self-phase modulation (SPM)

• Cross-phase modulation (XPM)

• Four-wave mixing (FWM)

2. The non-linearities resulted by scattering. It includes,

• Stimulated Raman scattering (SRS)

• Stimulated Brillouin scattering (SBS)

If any real physical system is over driven it may exhibit non-linear response. In an
optical system if the intensity of the pump is sufficient, it will also exhibit non-linearity. This
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non-linearity is demonstrated in the polarization of the guide material. All these type of
non-linearities, addressed above, may be raised due to the intensity of optical field, which
may modify the material response and can be found from the power series expansion of the
polarization in terms of total applied optical field E [Boyd, 2008] as below,

℘= εo

(
χ
(1)E +χ

(2)EE +χ
(3)EEE + . . .

)
(1.2)

here, ℘ is the polarization, εo is free space permittivity and χ(n) is the nth-order susceptibility
at optical frequencies.

The FWM can be expressed in terms of the real part of the susceptibility that is related
with the refractive index. Whereas, both SRS and SBS can be related to the imaginary part
of the susceptibility, which is associated with the material response time or phase delay
[Toulouse, 2005]. At this stage it is important to define some other important lengths those
can be associated with the development of these non-linearities. These length become
important only if they are shorter or at least comparable to Le f f of the fibre. In addition some
other essential terms are defined below, as well.

• Dispersion length (LD): The dispersion length is LD ≡ τ2
o/|β2|, where τo is the width

of a pulse and β2 is the GVD.

• Non-linear length (LNL): A co-propagating pump with a signal in a medium can
contribute to the non-linearities, as long as it is strong enough. LNL = (GpPp), is the
length over which the pump can effectively contribute towards the gain. Here Gp is the
gain and Pp is the pump power.

• Phase coherence length (LC): It is defined as, LC = 2π/|κ|, where κ is phase mismatch.
This length is important while considering phase mismatch non-linearities, along which
co-propagating optical waves may lose their mutual phase coherence.

• Polarization beat length (LB): It is defined as, LB = 2π/|nx −ny|, here nx, ny are the
refractive indices along x and y-direction, respectively. A 2π phase difference can be
developed between x and y polarized fields of optical wave along this length. This
length is important while considering polarization effects.

• Non-linear refractive index (n2): The refractive index of a medium can be expressed as,
n = no +n2Ip, where no is the linear refractive index, n2 is the non-linear coefficient
of refractive index and Ip is the pump intensity. The third-order susceptibility can

be related to n2 by, n2 =
3

8no
Re
(

χ(3)
)

. For silica n2 ≈ 2.6×10−20m2/W [Toulouse,
2005].
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• Measure of non-linear effect (γ): The magnitude of the non-linear effect can be
expressed by, γ = 2πn2

λoAe f f
, where λo is optical wavelength and Ae f f effective area of the

core. For silica based SMF, γ ≈ 20km−1W−1 [Toulouse, 2005].

• Non-linear Phase Shift Φ(NL): Fibre non-linearities can introduces phase shift in the
optical wave and this non-linear phase shift can be expressed as,Φ(NL)(z) = γPmz =
z/Le f f , where Pm is the maximum peak power of optical signal and Le f f is the effective
length of fibre given in Eq. 1.1.

1.1.1 Self-phase modulation (SPM)

All non-scattering type non-linearities mentioned earlier, are referred as χ(3) non-linearities
and resulted from the refractive index modulation due to the propagating optical wave
intensity.

When a pulse propagates through a optical waveguide, it introduces variation in refractive
index due to optical Kerr effect. This variation in refractive index will induce a phase shift
in the propagating pulse, which broaden the frequency spectrum of the pulse. This spectral
broadening can be calculated by taking time dependent derivative of non-linear phase shift
as,

△ωo(z, t) =−
∂Φ(NL)(z)

∂ t
=−n2

dIp(t)
dt

koz (1.3)

here, △ωo is the change in optical angular frequency, ko is the optical wavenumber and Ip

is the optical signal intensity. The time dependent derivative in the above equation ensures
that due to SPM the leading edge of the propagating pulse with be red-shifted, whereas the
tailing edge will be blue-shifted. The chromatic dispersion of fibre can either compensate
or amplify this non-linear spectral broadening effect. Including the chromatic dispersion of
the fibre, the pulse characteristics, such as, its temporal shape, spectrum and initial chirp
influence the total effect of SPM. In the anomalous dispersion regime SPM can raise two
other non-linear effects, soliton generation and modulation instability.

1.1.2 Cross-phase modulation (XPM)

If two optical signal co-propagate through a material, the intensity modulation of one signal
will modulate the phase of the other signal. This is due to XPM. If the total electric field can
be written as, E(x,y, t) = 1/2[E1e− jωo1t +E2e− jωo2t ]+ c.c, here E1 and ωo1 are the electric
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field and angular frequency, respectively, for the first optical signal, E2 and ωo2 are the
electric field and angular frequency, respectively, for the second optical signal. Then the
non-linear phase change can be written as,

Φ
ωo1
(NL)(z) = γ[|E1|2 +2|E2|2] (1.4)

The first term is due to SPM and the second term is due to XPM. So, XPM caused spectral
broadening is twice as large as that of in SPM. A similar non-linear phase change, Φ

ωo2
(NL)(z),

can be written for the second signal as well. The condition for these phase change to occur
is that the group velocities need to be same, so that, two signals can overlap in time and in
space. In case of pulses two signals should have equal GVDs to avoid the walk-off from each
other. Energy exchange between signals does not happen in XPM, rather it has significant
effect on pulse time and shape changing. For this reason XPM can have advantageous role in
control application.

The XPM attracted attention in wavelength conversion for being a very fast process.
It can results in simultaneous multiple wavelengths conversion and can scale to a high bit
rates with negligible signal degeneration or none at all. On the other hand, XPM can cause
problem in WDM communication network by inducing cross-talk between nearby channels.
If a limited amount of residual dispersion can be introduced to the system, this problem can
be addressed.

1.1.3 Four-wave mixing (FWM)

When two or more optical signal wavelengths interact in a guide, this give rise to a non-linear
parametric process known as four-wave mixing. In addition to the requirement of a high
level of optical power, this coherent process also needs that the optical signals should have
same phase velocity, i.e., be phase matched. In general, interacting three optical wavelengths
can generate a new forth wavelength (idler) and this process requires the energy conservation
and wave vector conservation should be maintained.

One of the most common application of FWM is wavelength conversion. Another
application is parametric amplification. It is the basis of parametric optical amplifiers and
lasers, which results from the degenerate FWM process. Where a strong pump at ωo1, if
launched with a weak signal of frequency ωo3, amplifies the weak signal and generates
the idler of frequency ωo4. It can also be applied for optical regeneration of reshaping of
pulses. It can also be used for simultaneous measurement of the chromatic dispersion and
non-linear coefficient of fibre by evaluating FWM generating efficiency [O. Aso, 2000]. The
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detrimental effect of FWM in WDM is that it can generate a similar wavelength signal from
the interactions of the existing wavelengths, and can be minimized by ensuring unequal
channel spacing in WDM network.

1.1.4 Stimulated Raman Scattering (SRS)

Raman scattering is an inelastic process and to address it, vibrational modes that exists
in molecular structure is to be considered. Raman scattering results from the interaction
between these molecular vibrational modes and incident light and its energy can be expressed
in terms of phonon [Cho, 2002]. In this process the incident phonon either gains or losses
energy. Thus Stokes signal generates in case of energy is lost and anti-Stokes in case energy
is gained. Raman scattering occurs over a wide range of frequencies in silica glass for the
reason that the molecules in silica are amorphous or non-crystalline in nature, which leads
to different vibrational energies for different groups of molecules with in its structure. The
Stokes and anti-Stokes exhibits broadband spectra for this reason. In fact, the wavelength
range for this scattering process can extend up to 230 nm from the incident wavelength with
peak at 100 nm [Seo, 2001].

Raman scattering can be applicable in distributed temperature sensing [Alahbabi, 2005].
Since the SRS gain can be found at a large shifted wavelength from pump ( 13 THz of 100
nm at 1550 nm in silica), this process can be used in wavelength conversion [Toulouse, 2005].
From late 90s it has attracted attention in fibre amplifiers and lasers, and has been exploited
in optical modulation and switching.

1.1.5 Stimulated Brillouin scattering (SBS)

Light scattering can happen with fluctuations of optical properties in guide material. If this
fluctuation is induced thermally, the light scattering is process is called spontaneous and if this
fluctuation is caused by the electric field of the guided optical wave, it is said to be stimulated.
Stimulated light scattering is much more efficient than spontaneous scattering [Boyd, 2008].
SBS is the most important example among stimulated light scattering processes.

The SBS is an inelastic nonlinear process that results from two-way interaction between
mechanical and electromagnetic waves, where the optical wave generates acoustic wave in
the waveguide through which it is guided and also can be scattered by it [Eggleton, 2013].
This phenomenon generally takes place when an intense optical pump wave, while being
guided through the medium, produces a mechanical vibration in the material due to its large
electric field, through electrostriction process. This vibration produces density fluctuations
and modulates the refractive index of the medium [Agrawal, 2007]. This modulated refractive
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index acts as an index grating and scatters the optical wave as Stokes waves. Beating of the
Stokes and the pump waves further stimulates this scattering process [Boyd, 2008].

Through two different mechanisms the interference of pump and Stokes waves can drive
the acoustic vibrations. The first mechanism is electrostriction, it is the tendency of the
material to become more dense in the presence of high optical intensity. The other mechanism
is optical absorption. In the high optical intensity regions due to optical absorption heat is
generated and the material tends to expand causing acoustic disturbance. Absorptive SBS
occurs only in lossy optical media, so this process is seldom used.

SBS process can either be a generation process or an amplification process. In SBS
generation only pump is applied externally. In the interaction region from thermally generated
noise the Stokes and acoustic waves start to grow. Whereas, in SBS amplification both pump
and Stokes wave are applied externally as counter propagating. Because the spatial overlap
of the pump and Stokes waves is greater if they are counter propagating, backscattered SBS
process is usually observed [Boyd, 2008].

Fig. 1.1 Schematic representation of SBS process.

Even the scattered light can become quite intense when the incident pump field has
sufficiently high intensity in spontaneous scattering. Through the beating of these two light
fields density variations in the material can arise by means of electrostriction, as stated
earlier. The incident pump can then further scattered off by refractive index modulation
induced by these density variations. This generated Stokes will constructively add up with
the previously created scattered light that started the acoustic vibration. By this way, until the
acoustic wave and Stokes attain sufficiently large amplitude, they continue to reinforce each
other’s development. This whole process is illustrated in Fig. 1.1, where the blue arrows
represent the forward propagation directions and the red arrow represents the backward
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motion direction. The incident pump of amplitude E1, wave vector ko1 and angular frequency
ωo1 is scattered off as Stokes of amplitude E2, wave vector ko2 and angular frequency ωo2

due to acoustic vibration of amplitude U , wave vector k and angular frequency Ω.
Since, the incident light is being scattered by the co-propagating acoustic wave as Stokes,

the angular frequency of the Stokes, ωo2, will be down shifted and can be expressed as,

ωo2 = ωo1 −Ω. (1.5)

The acoustic angular frequency can be related to the acoustic wave vector by phonon
dispersion relation as,

Ω = |k|v (1.6)

here v is the velocity of acoustic wave. It was assumed that the acoustic wave is driven by
the beating of Stokes and incident wave, so, the acoustic wave vector can be expressed as,

k = ko1 − ko2. (1.7)

Replacing Eq. (1.7) in Eq. (1.6), the acoustic angular frequency,

Ω =
vn
c
(ωo1 +ωo2) (1.8)

here n is the refractive index and c is the speed of light at vacuum, which are related to
the optical wave vector as, |ki|= nωi/c. Now, placing Eq. (1.5) in the above equation and
approximating v ≪ c/n, the Eq. (1.8) can be rewritten as,

Ω =
2vn
c

ωo1 (1.9)

At this stage, the acoustic wave vector can be expressed as,

k = 2ko1 (1.10)
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which indicates that phase matching and energy conservation is the condition for ensuring
interaction of incident light wave and acoustic wave.

Materials of choice

SBS process may appear in all states of materials, such as, in gases, liquids, solids and
plasma. So far, SBS has been explored in quite a good number of materials through various
experiments in last few decades. The optimization of the choice of material for a particular
system to explore SBS, the factors [Damzen, 2003] play the role are, lasing wavelength, pulse
duration, gain coefficient, absorption in the medium, phonon life time etc, but mainly the
Brillouin gain coefficient, acoustic frequency and decay time. Other secondary considerations
are, threshold power for other non-linear effects, specially for breakdown and material
transparency for the chosen wavelength. For the system that works in low power and have
short pulse duration, high Brillouin gain and short decay time will be suitable choices.

Applications of SBS

Recently, integrated on-chip and nano-structured optical waveguides have attracted attention
to harness and harvest stimulated Brillouin scattering (SBS) by co-confining acoustic and
optical waves and ensuring potentially strong interactions between them [Laude, 2011 and
Eggleton, 2013]. Although SBS impairs the possibility of high power delivery, as it occurs at
lower power level than other known non-linear scattering effects [Agrawal, 2007 and Boyd,
2008], however, SBS can also be enormously useful and being exploited in a number of
fields, such as, tailoring the acousto-optical interaction [Shin, 2013], distributed strain and
temperature sensing [Thevenaz, 1998], Brillouin cooling [Bahl, 2012], slow and fast light
[Song, 2006], both microwave signal processing [Chin, 2010] and generation [Li, 2013], chip
based microwave filter [Marpaung, 2015], and on-chip based nano-photonic devices [Shin,
2013]. It was also recently reported [Aryanfar, 2014] that nearly 10% of the acousto-optical
interactions value in nano-scale photonic devices could be due to radiation pressure and
motion of boundaries. SBS process can also be effective in imprinting dynamic gratings
in guiding material [Sancho, 2012] to produce intense phase-conjugate beams through
Brillouin-enhanced four-wave mixing [Buttner, 2014] non-linear process. It can also be
useful in opto-mechanics [Bahl, 2013] and development of ultra narrow bandwidth lasers
[Al-Mansoori, 2009].
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1.1.6 Comparison of Brillouin and Raman scattering in silica fibre

Mainly SRS differs from SBS in three different ways. Firstly, although its gain (gR =

1×10−13m/W ) is lower than SBS gain, SRS occurs at much higher power, typically greater
than ∼ 1W [Toulouse, 2005]. Secondly, the Raman frequency shift, which is 13 THz in
silica, is much greater than SBS frequency shift, which is in 11 GHz level. Thirdly, in SRS
both Stokes and anti-Stokes are generated [Vilhelmsson, 1986]. Some Comparisons between
SRS and SBS in different medium are presented below, these are according to [Damzen,
2003].

• The frequency shift in SBS is considerably smaller with a order of 0.1 cm−1, whereas
in SRS appears with a order of 1000 cm−1. As the gain bandwidth in most of the
materials is quite larger than the Brillouin shift, it offers the potential of re-amplification
for backscatter pulse in many laser system.

• The phonon damping time in SBS is in nano-second range that may produce some
transient phenomena in the scattering process. But for SRS it is in pico-second range.

• For the requirement of phase matching condition in SBS, it is not possible to have any
forward scattering in isotropic medium, only backward scattering occurs. Whereas,
in SRS both types of scattering may occur. Usually gain is maximum in forward
direction.

• Relatively large frequency shift of the Stokes put forward limitations for phase-
conjugation possibility in Raman Scattering. Whereas, in Brilloin scattering as
Stokes is spontaneously generated from acoustic vibration, it frequently induces phase-
conjugated backscattered signal.

Table 1.1 Few properties of spontaneous Brillouin and Raman scattering for silica fibre at
1550 nm wavelength

Parameters Brillouin Raman

Gain bandwidth ∼ 20−100 MHz ∼ 5 T Hz
Gain peak ∼ 5×10−11 m/W ∼ 0.7×10−13 m/W
Frequency shift ∼ 11 GHz ∼ 13 T Hz
Power scattered ∼ 15 dB ∼ 25 dB[Opalinska,1993]

To have more insight, key differences between spontaneous Brillouin and Raman scatter-
ing are listed in Table 1.1 [Al-Ahbabi, Ph.D. thesis, 2005], based on the results in silica fibre
at 1550 nm wavelength.



1.2 Numerical methods 15

1.1.7 Rayleigh Scattering (RS)

Beside SRS and SBS another type of scattering process can be observed in optical fibres. This
scattering process is known as Rayleigh scattering. In this scattering process no frequency
shift takes place, so it is some times termed as elastic scattering process and the scattering
occurs from non-propagating density fluctuations in the material. Rayleigh scattering may
be resulted from random inhomogeneities in material density and variations in composition
frozen in optical fibres during fabrication process. These disparities may cause variation in
refractive index, which results in scattering process and the scattered light is guided backward
than the incident light. Rayleigh scattering is an elastic process as in this process the frequency
in the incident and backscattered light remain same. It is an intrinsic loss mechanism and it
causes the leading loss in low-loss regime of optical fibres. Rayleigh attenuation coefficient is
proportional to λ−4

o and at 1550 nm for SMF it is αR ≈ 4.56×10−5 m−1, which is equivalent
to ∼ 0.2 dB/km fibre loss [Al-Ahbabi, Ph.D. Thesis, 2005].

In measuring fibre attenuation and detecting fibre damage, optical time domain reflec-
tometry (OTDR) systems based on Rayleigh scattering has been successfully exploited.
Distributed temperature sensing by using liquid core fibre based on Rayleigh backscat-
tered measurements was reported in [Hartog, 1983], although, the performance of Rayleigh
scattering based sensing process is very poor in measuring strain and temperature change.

1.2 Numerical methods

Numerical simulation and modelling has become important tool for analysing and compre-
hending any scientific task with the enormous growth of computing power. This growth
brings forth many numerical methods. Any good researcher should have the knowledge and
understanding about the proper uses of these methods in wherever these are applicable. Few
such methods related to the electromagnetic problem solution, such as, Finite Difference
Time Domain method, Finite Volume methods, Finite Element methods and Spectral methods
are briefly illustrated below.

1.2.1 Finite difference time domain (FDTD) method

Although, FDTD method has its advantage of being a very simple numerical method, as
the derivation of difference equation is straight forward, but before 1990s, its progress was
hindered due to lack of computing memory [Inan, 2011]. As, here, the simulation space
needs to be discretized in sub-wavelength scale with very small time steps. With the growth
of computing power FDTD method has overcome this hurdle. For a transient or broadband
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analysis the FDTD method is very useful. But it faces hardship in implementing dispersive
materials, as in this case, it either requires auxiliary equations or convolution terms. The
FDTD method has following advantages,

• Short development time: Its discretization process is very simple, needs short time of
development.

• Ease of comprehension: Simple discretization procedure leads to simplicity in under-
standing.

• Explicit in nature: No linear algebra of matrix inversion is required.

However, it faces the following disadvantages,

• Stair-stepping edges: The orthogonal grid structure of the FDTD method creates
problem in simulating curve boundaries if greater accuracy is sought, as creates stair-
case effect at the boundaries. So, it is restricted to regular structured grids.

• Computational time: In the FDTD method, the solution advancement time-step is
limited by the spatial size, which cannot be larger than a certain maximum size.

1.2.2 Finite volume Time Domain (FVTD) method

The FVTD method has extreme flexibility in simulating irregular structures. It defines any
working fields with small volume of spaces rather than nodes. These unit volumes can be
arbitrarily defined, but usually considered as triangle in 2D and tetrahedra in 3D structures.
The governing equation become very simple due to these structures and can be implemented
with ease around complex and curved structure. To conserve the field quantities, this method
uses integral forms of equations. For instance, the change in flux inside a unit volume with
a given surface area in adjacent time steps must be balanced by the moving flux across the
boundary area that moves into or out of the adjacent cells. The disadvantage of this method
is that it needs to define or create an irregular grid of tetrahedral cells.

1.2.3 Finite difference frequency Domain (FDFD) method

The FDFD method is very useful and efficient in determining steady state solution in a single
frequency, as it does not need the time stepping and the process is completed through a
simple matrix inversion. It becomes very easy to implement dispersive material by the FDFD
method, using scalar quantities (or vector quantities, for anisotropic dispersive material) for
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permittivity and permeability at particular frequency. The problems associated with single
frequency solution is suitable for this method. However, to deal with spectral response with
FDFD, multiple simulations need to be run, one for each frequency of interest, where the
resolution is limited by the number of computed simulations only. Thus it can be useful for
problems associated with dispersive media.

1.2.4 Finite element (FEM) method

The FEM method was originated based on the work of A. Hrennikoff and R. Courant around
1940s and was known as Finite Element Analysis (FEA) as it was used for airframe structural
analysis in the 1950s [Inan, 2011].

The FEM method is very suitable for complex structure. In this method the simulation
space can be divided with arbitrarily oriented, arbitrary shaped elements, commonly used
triangle for 2D and tetrahedra for 3D. Here the governing equation is approximated over
each element by some basis functions, which is a low-order polynomial. The solutions are
made continuous at the boundaries of each element, and must be fit with in the enforced
global boundary conditions. Its only disadvantage is the inherent complexity, as it requires
some level of global knowledge of the simulation space. Although the used basis functions
are local, as they are defined in each element, to enforce continuity at element boundaries a
large sparse matrix needs to be solved, which enhances the computational time a lot. FEM is
discussed in details later in Chapter 3.

For last couple of year discontinuous Galerkin methods leap forefront in the field of
electromagnetic simulations. By relaxing the continuity between elements this method
enforces strict locality rule. This idea of connecting the elements along their boundaries was
borrowed from the finite volume method. Thus it provides explicitly localized and highly
accurate algorithms.

1.2.5 Spectral methods

To ensure result accuracy each of the methods above needs to discretise space with the
resolution of 1/10 of a smallest wavelength in the simulation. This condition accumulate
complexity and increase simulation time for multiscale problem solution. Whereas, the
spectral methods only use two points per wavelength to perfectly reconstruct a wave, this
concept was borrowed from the Nyquist theorem. The spectral methods are global. Here
the simulation space are broken down to grid cells and a function, which covers the entire
simulation space and usually a Fourier decomposition, approximates the solutions in a given
time step.
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The Pseudospectral Time Domain (PSTD) method has attracted attention in Maxwell‘s
equation time domain simulation. Here, the approximation of spatial derivatives are com-
pleted by first taking the Fast Fourier Transform (FFT) of the spatial distribution of a field
along a given axis, multiplying by jko, then taking the inverse FFT. This is used in the
update equations and thus time marching proceeds. For this method, coarse grid is sufficient.
The disadvantage are, slightly strict stability criteria by a factor π/2 and minimal increased
numerical dispersion.

1.3 Aim and objectives

The main objective of this research is to develop further a full-vectorial FEM based computer
simulation code to perform rigorous characterization of acoustic waves in low and hight
index contrast optical waveguides and simultaneously study the interaction between optical
and acoustic waves, specially due to SBS process. To ensure maximum SBS gain, prudent
and effective contemplations are to be taken while considering design aspects of the optical
waveguides with low and high index contrast. To achieve these targets the aim and objectives
are stepwise illustrated below.

1. To study the essential parameters associated with acoustic wave propagation in ma-
terial, mainly the physical quantities, for instance, stress, strain, elasticity, particle
displacement and velocity etc.

2. To give emphasis in developing acoustic wave propagation model in optical waveguides
relating material stress and strain, induced by propagating acoustic waves, through
Hook’s law by considering what ever particle displacement is caused in the material is
small enough to hold the implication of this law.

3. To develop a full-vectorial FEM based computer simulation code for this model, so
that real eigenvalue solver can be used to get the modal solutions and perform rigorous
characterization and study the evolution of fundamental and higher-order acoustic
modes profiles that may exists in low and high index contrast optical waveguides,
giving prominence to the shear and longitudinal acoustics waves mainly. And compare
these results with the other published literature.

4. To exploit symmetry boundary conditions to ensure modal solution accuracy that may
be applicable for a given waveguide and thus to eliminate modal degenerations.



1.4 A brief comparison of COMSOL and in-house developed code 19

5. To incorporate denser mash topology in the developed computer simulation code to
bring further accuracy in the acoustic modal solution that may be applicable for low
and high index contrast silica waveguides.

6. To identify the fundamental and higher-order longitudinal and shear acoustic modes in
embedded low Ge-doped silica core in pure silica cladding to form low index contrast
optical waveguide and study their spatial variations to identify the mode patterns.

7. To study the variations of dispersion curves, variation of the modal hybridness with
the acoustic frequency for the the fundamental and higher-order acoustics modes and
thus find the influence of higher Ge doping in the core of silica planar waveguide. Also
investigate the variation of overlap with guide width between the fundamental and
higher-order acoustic modes and fundamental quasi-TE optical mode and calculate
SBS frequency shift for this waveguide.

8. To incorporate air as one of the cladding medium in the simulation code for the acoustic
wave.

9. To perform study on the evolution of the displacement vector profiles of the longitudinal
and shear fundamental and higher-order acoustics modes with frequency in high index
contrast silica waveguide with air cladding.

10. To investigate the light-sound interactions in an air-clad silica waveguide to study the
effect of SBS and associated frequency shift. The overlap between the highly hybrid
acoustic modes and fundamental HY

11 optical mode also need to be calculated, thus to
determine the Brillouin gain spectrum for a given bandwidth.

1.4 A brief comparison of COMSOL and in-house devel-
oped code

COMSOL Multiphysics is a finite element analysis based solver and Simulation software
package for varieties of engineering and physics based applications, particularly for coupled
phenomena. COMSOL is not an acronym, it is thought that the founder might be inspired
by the words “COMPUTER” and “SOLUTION”. COMSOL Multiphysics also permits for
entering coupled systems of partial differential equation, besides conventional physics-based
user interfaces. The PDEs can either be incorporated directly or using the weak form. Several
add-on products are also available for COMSOL Multiphysics.
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COMSOL Multiphysics software package works with electrical field while handling
optical modal analysis in waveguides using finite element method for solving electromag-
netic field problems by use of edge element, which has become very popular [Mur, 1994].
Edge elements can be used for computing electromagnetic fields in both homogeneous and
inhomogeneous domains. They are vital tool for the modelling of electromagnetic fields
along interfaces between regions with different medium properties. It can also facilitate the
modelling of the field near a singularity.

To put forward a brief comparison of available commercial Software COMSOL Multi-
physics and the in-house developed simulation code, I have no hesitation to accept the fact
that COMSOL has the upper hand, but it would be interesting if the advantages of using nodal
elements (which is used for in-house code) over edge elements in FEM can be presented that
might instigate some things to ponder upon. The discussion is strictly kept limited on the
facts revealed in the literature [Mur, 1994].

• Numerical accuracy and efficiency: For a triangular element in incorporating FEM, the
edge element has only three unknowns, one on each edge. Whereas, a nodal triangular
element has 9 unknowns, three at each of its three vertices. So, edge element yields
higher local approximation error. Nodal elements are more efficient and accurate than
edge elements, by a factor of 2 or even more.

• Advantages in practical case implementation: Nodal elements are more advantageous
than edge elements for many practical cases, due to mainly two reasons. Firstly, many
non-zero entries in the matrix turn out to be zero due to the orthogonality of the
Cartesian directions used in nodal elements that can be used for optimization of a nodal
element based code. Secondly, for imposing the continuity conditions at the interfaces
between edge elements, the connectivity of the matrices increase significantly.

• Storage requirements: For using edge elements, the storage requirements become more
than twice as expensive as linear nodal elements.

• In terms of ill-condition: Nodal elements, for the use of Cartesian coordinate system
with mutually perpendicular coordinate directions, are therefore optimum when repre-
senting a vector field even in an extremely elongated element. Whereas, edge elements
use base vectors that follow the orientation of the faces of the relevant element. When
element deviates strongly from the optimum, being extremely elongated, these orienta-
tion of the vectors no longer remain mutually perpendicular. This will generate large
error due to the resulting ill-condition of the system matrices.
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• Weakness in eliminating spurious solution: Edge element allows the normal compo-
nents of the field being represented to jump across the interfaces between adjacent
elements. So, the edge elements cannot be used to ensure the elimination of unwanted
solutions. Whereas, the in-house optical code uses a penalty function to minimise the
spurious solution.

1.5 Structure of the thesis

The structure of this thesis is organized in such a way to cover the development of the model
for the molecular displacements to depict the propagation of the acoustic waves, generation
of a full-vectorial finite element method based computer code to simulate this model and
implications of this simulation code to characterize acoustic waves, rigorously, in low and
high index contrast silica waveguides. Further to evaluate interactions of light and sound in
these optical waveguides, specially the stimulated Brillouin scattering, in terms of overlap
between the fundamental and higher order shear and longitudinal acoustics modes and
fundamental quasi-TE, HY

11, optical mode, SBS frequency shift and Brilloin gain spectrum.
Chapter: 1 commences with a categorical literature review and incorporates the brief

introduction of this research work, also highlights the aim and objectives and presents
the structure of the thesis. It also briefly illustrates the non-linearities presents in optical
waveguides, emphasizing the stimulated Brillouin scattering process. Further it provides the
introduction to the numerical methods.

Chapter: 2 will begin with the introduction to the basic concepts of acoustic waves
in isometric medium, showing that the acoustic wave propagates through a optical guide
by displacement of particles, where the guide material density and elasticity has major
roles, thus modulates the optical refractive index through variation of material density along
transverse plane and longitudinal direction, respectively. It will also discuss in greater details
the physical quantities, those are related to the acoustic wave propagation and may arises the
possibility of maximum interactions with optical waves in planar silica optical waveguides.
Also it will aid to categorize acoustic modes depending on the placements of dominating
acoustic displacement components related to the direction of propagation.

Chapter: 3 will describe the Variational approach based finite element method. More-
over, it will show the path way how to incorporate FEM formulation using real eigenvalue
solver in acoustic wave propagation, and thus generation of 2D molecular displacement
profiles of acoustic modes at end results. It will also show the introduction of symmetry
boundary conditions, used for the first time in acoustic mode profile generation, to bring
modal solution accuracy and elimination of modal degeneration. Furthermore, it will demon-
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strate the strength of this simulation code proving its solution convergence with the help
of Aitken’s formula, also will provide some comparison with the previous work done in
complex domain and with the published results of [H. -Hennion, 1996] for a 1 cm2 steel
waveguide in vacuum.

Chapter: 4 will report rigorous analysis of acoustic waves in the low index contrast silica
planar waveguide consisting of a 3% Ge-doped core and pure silica cladding. Based on the
pattern of spatial variations of displacement vector profiles of fundamental and higher order
shear and longitudinal acoustic modes, this chapter will introduce the general concept of
mode recognition in low index contrast silica planar waveguide. Furthermore, it will provide
the detail study of the variations of dispersion, birefringence and hybridness with acoustic
frequency for these acoustic modes, first considering decoupled modes, then considering
co-existence of both shear and longitudinal modes. Also, the demonstrations of the influence
of increasing doping concentration in the core will be presented here. Thus, this chapter will
mainly concentrate on characterization of acoustic waves in this waveguide.

Chapter: 5 will mainly focus on the interactions between the fundamental and higher
order shear and longitudinal acoustic modes and fundamental quasi-TE optical HY

11 mode in
terms of their coupling in phased matched condition through determining overlap between
their mode profiles by considering displacement vector for acoustic wave and full-vectorial
H-field for optical wave. This study will be performed in a moderately higher index contrast
silica planar waveguide with a 10% Ge-doped core embedded in a pure silica cladding. It will
highlight also, the displacement vector profiles, variation of modal dispersions, hybridness
and birefringence with acoustic frequency and SBS frequency shift with the guide width
variation.

Chapter: 6 will demonstrate the study of the unique feature of mode evolution in a
high index contrast optical waveguide formed by an air-clad strip silica. For the first time
it will show in details, how the highly hybrid acoustic modes in silica planar waveguide
evolves with frequency - just for the choice of index combinations with relatively higher
contrast. And the displacement vector profiles will be compared with the published results
in [Laude, 2013]. Moreover, this chapter will also provide the analysis of variations of the
modal dispersions, hybridness and birefringence with acoustic frequency for these highly
hybrid acoustic modes and will show the interactions with quasi-TE optical mode through
overlap and SBS frequency shift and thus will deliver the Brilloin gain spectrum for a specific
bandwidth for this optical waveguide.

Chapter: 7 being a conclusive chapter, will demonstrate the strength of this newly
developed full-vectorial finite element based computer simulation code in determining and
analysing acoustic wave propagation in optical waveguide and also evaluating interactions
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with the phase matched optical wave in optical waveguide of micro-meter dimension. Further,
it will present the weakness of this code in determining acousto-optical interactions in
nano-scale on-chip integrated optics, as it does not considered optical radiation pressure and
motion of boundaries while formulation. Based on the recently published paper [Aryanfar,
2014] nearly 10% of the acousto-optical interactions value in nano-scale photonic devices
could be due to radiation pressure and motion of boundaries. This chapter will conclude
providing hints, how to incorporate these two important force parameters in the existing
program to make it a strong simulation tool for on-chip nano-scale photonic devices as future
expansion of this research work.

1.6 Summary

This chapter consists of the basic introduction to the research field of light-sound interactions
in low and hight index contrast silica planar waveguide, particularly to emphasize the
detrimental effect of non-linear SBS process in high power delivery and study the acoustic
mode evolution. Also some discussions have been presented to highlight other optical non-
linearities and existing numerical methods to study their effects. A brief illustration has also
been given regarding the aims and objectives of this research. A comparison between the
commercial software package COMSOL and in-house developed code was also incorporated.
At the end the structure of the thesis also presented outlining the content of each chapter.



Chapter 2

Theory: Acoustic Wave Propagation

2.1 Introduction

Sound is a mechanical wave and generally created by object vibration. Periodic motion,
in the particles close to the vibrating object, is set and thus energy is transferred through
the medium by this mechanical vibration. Beside that acoustic wave can also be generated
by time varying deformation or displacement of particles, consisting many atoms, in the
material, where the atoms move in an accord to create the mechanical wave. Any particle
displacement from equilibrium position gives rises a restoring force with it. The particles
inertia in addition with in between elastic restoring forces lead to the oscillatory motion of
the medium.

Acoustic waves can be associated with the material properties such as density, elasticity,
Young’s modulus, and Poisson’s ratio [Auld, 1973]. The propagation of acoustic waves
is associated with the displacement of the particles of the waveguide materials along the
longitudinal direction and in the transverse plane. Modes in acoustic waveguides are complex
in nature and have been traditionally categorized as torsional, bending, flexural, rotational or
longitudinal [Thurston, 1978 and Saffaai-Jazi, 1988] type. However, the modes in acoustic
waveguides with two-dimensional confinement are also hybrid in nature [Rahman, 2014].

Acoustic wave propagations need to be expressed in terms of the tensors and interrelation
between those tensor quantities. The fact that, all solids are not isotropic, made the acoustic
wave propagation in solids more complicated to express. For the sake of simplicity in
presentation one assumption can be made, which is, the existing acoustic waves are either
pure longitudinal or shear type and the corresponding physical quantities, such as, stress
and strain, elasticity, particle velocity and displacement can be presented in one dimensional
forms. This chapter commence with the one dimensional representation of the acoustic wave
propagation, but actually, since the research works covered in this thesis, are associated
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with the acoustic wave propagation in two dimensional straight waveguides, with uniform
cross-section, 2D formulations will also be incorporated. The guided wave solutions are
considered to have e− jkz dependence, where z is the direction of wave propagation and k is
the acoustic propagation constant.

2.2 Acoustic waves in non-piezoelectric materials: one di-
mensional concept

Among the propagating acoustic wave in material, two types are considered to be important,
these are shear or transverse and longitudinal waves. In case of longitudinal wave the motion
of the propagating particles are in the direction of the wave propagation. That is why, when
longitudinal wave propagates medium is expanded and contracted periodically in the z-
direction, which is depicted in Fig. 2.1(a). Whereas, for the shear wave, the particles motion
occur in the transverse direction of the wave propagation, as shown in Fig. 2.1(b). Since the
particles along the whole cross-section do not displace with equal magnitude, shear waves
cannot be associated as merely as flexing or bending action of material, there occurs density
variation in the transverse plane. But for simplicity sake, in one dimensional theory, it can be
considered that there arises no volume or density variation with shear wave propagation, as
illustrated in Fig. 2.1(b).

(a) (b)

Fig. 2.1 (a) Longitudinal and (b) shear waves propagation [Sriratanavaree, Thesis, 2014].

Generally, when acoustic wave propagates through a material, it consists of both the shear
and longitudinal waves. For crystalline medium with anisotropic elastic properties, as the
direction of wave propagation, if one of the principle axes of the crystal lattice is considered,
then the basic waves can be of purely transverse or longitudinal. The equation of motion for
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acoustic wave propagation can be formulated considering longitudinal wave. However, if the
shear wave propagation is considered the results would be similar.

2.2.1 Single dimensional stress

In general stress is defined as the applied force per unit area of material. The material is
deformed whenever a force is applied to it. For one dimensional perspective, this deformation
is either in the form of compression or rarefaction, depending on the direction of applied
force. If we consider a material of infinitesimal length, L, the stress, T(z) would the force per
unit area on particles to the left side of the z plane, as shown in Fig. 2.2. The longitudinal
stress, as depicted in Fig. 2.2(a), is considered to be positive if the applied external stress is
on the right side of the slab, that is in the z-direction. And it is considered to be negative, if
the external stress in applied on the left, in the opposite to the z-direction. Same definitions
are applicable to the shear stress, if stress are taken to be positive in the transverse +x or
+y-directions.

(a) (b)

Fig. 2.2 For a slab of infinitesimal length L (a) stress in the longitudinal direction and (b)
stress in the transverse direction [Sriratanavaree, Thesis, 2014].

The net difference in between the externally applied stresses on each side of the infinitesi-
mal slab, if considered as L(∂T

∂ z ), then to move a unit volume of the mass relative to the mass
centre the necessary force need to applied is ∂T

∂ z .
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2.2.2 One dimensional displacement and strain

As a consequence of applied force, if due to the longitudinal stress the z-plane, in Fig. 2.1(a),
is considered to be moved in the z-direction by an amount u, and in the some other plane z′

after a distance L, if the displacement is varied to u+δu, then, the first order change in u in a
unit length of L can be found using Taylor’s expansion, as,

δu = L
∂u
∂ z

= LS (2.1)

The fractional extension of the material is called strain and can be defined as,

S =
∂u
∂ z

(2.2)

Here it is to be noted that u is merely a displacement and is a function of z. If the
displacement remained constant for all over the length it would be nothing but bulk translation,
which is out of the interest of this chapter. For transverse displacement in case of shear wave,
same concept can be applicable and shear strain can be defined as, S = ∂u

∂ z , the only difference
would be, u is transverse displacement in the x or y-directions, which is perpendicular to the
direction of propagation.

As Fig. 2.1(b) indicates, no change in area occurs as the shear motion distorts the
rectangle, but in case of longitudinal motion the change in volume can be calculated as A∂u,
here A is the area of x, y face. So, the relative change in volume is ∂

∨∨ = A∂u
LA = ∂u

L = S.
Hook’s law state that for small distortion the stress is proportional to the strain, and for

one dimensional model it can be represented as,

T =CS (2.3)

here C is the elastic constant of material, usually for a general system the terms, T and C are
tensors but for one dimensional model for longitudinal or shear wave propagation, these can
be expressed as single components. This is because of the fact that for a solid bending is
easier than stretching it and the longitudinal elastic constant is larger than the shear elastic
constant.
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2.2.3 Equation of motion

Considering the force applied to the per unit area of the material is L(∂T
∂ z ), and since this is a

small time-variable stress, following the Newton’s 2nd law the equation of motion can be
describe as a point in the material as,

F = ma = ρ
∨

a = ρ
∨

v̇

⇒ F∨ = ρ v̇

⇒ F
∂x∂y∂ z

= ρ v̇

⇒ T
∂ z

= ρ v̇ [as T =
F

∂x∂y
]

∴
∂T
∂ z

= ρ v̇ = ρ ü

(2.4)

here u is the displacement, v is velocity,
∨

is the volume, m is mass, ρ is density, a is
acceleration and (˙) indicates time derivative.

2.3 Constitutive relations and tensor notations

Here wave interactions are presented in a one dimensional form, while referring to shear or
longitudinal waves, provided that direction of wave propagation is along a symmetry axis
of a crystal. Therefore, to represent the ongoing phenomenon in a quantitative way, at first
Hooke’s law, equation of motion and crystal’s elastic parameters are to be stated and then
to be reduced to one dimensional terms. Onward tensor notations and reduced subscript
notations are introduced for simplicity of the equations, some are illustrated in Appendix A.

2.3.1 Relating displacement and strain

The displacement u consists of three components ux, uy and uz, each of which may be a
function of three Cartesian components x, y and z at a given position. So, S is a tensor
consisting nine components with variation of ui, where i is a Cartesian coordinate. For
instance,

Sxx =
∂ux

∂x
(2.5)
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and

Sxy =
1
2

[
∂ux

∂y
+

∂uy

∂x

]
(2.6)

Considering symmetry notation of the crystal form, Sxy = Syx. Similarly, Sxz, Syx, Syy,
Syz, Szx, Szy and Szz can be defined. Whereas, for one dimensional model, one component is
sufficient to represent the longitudinal strain, Sxx or Szz and the shear strain, Sxy.

2.3.2 Stress in a rectangular cube

Consider a cube with volume δx δy δ z, the developed stresses in this cube after applying
traction force, F, are presented in Fig. 2.3.

Fig. 2.3 General stress components in a cube [Auld, 1973].

The left-hand side surface of area δx δy is indicated by a shade, where the traction
force is applied. This applied force has three components, −Fx and −Fy are parallel to the
shaded plane and −Fz is perpendicular to it. The opposite side traction force has components,
Fx +δFx, Fy +δFy and Fz +δFz. The parameter L represented in Section 2.2 is equivalent to
δ z. By considering Taylor expansion to first order in δ z, in z-direction these force components
can be expressed as Fx+(∂Fx/∂ z), Fy+(∂Fy/∂ z) and Fz+(∂Fz/∂ z). The stresses developed
on the shaded plane perpendicular to the z-axis can be defined as,

Shear stress : Tzx =
Fx

δxδy
(2.7)
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Shear stress : Tzy =
Fy

δxδy
(2.8)

Longitudinal stress : Tzz =
Fz

δxδy
(2.9)

here the first subscript of the tensor T indicates the coordinate axis, which is normal to the
given plain and the second subscript indicates the axis parallel to the traction. There will be
nine stress components, among which Txx, Tyy and Tzz are longitudinal stress components and
Txy = Tyx, Txz = Tzx and Tyz = Tzy are shear stress components. Shear stress components are
shown in equal in pairs as internal stresses cannot raise any net rotation to the body of the
cube. Based on this equality, nine components reduces to six independent stress components
as,

T =

Txx Txy Txz

Tyx Tyy Tyz

Tzx Tzy Tzz

=

T1 T6 T5

T6 T2 T4

T5 T4 T3

=



T1

T2

T3

T4

T5

T6


(2.10)

The net resultant force per unit volume in z-direction applied on the infinitesimal cube is,

fz =
∂Tzx

∂x
+

∂Tzy

∂y
+

∂Tzz

∂ z
(2.11)

Using concept of Eq. (2.4) in Eq. (2.11), the equation for the motion in z-direction is,

ρ üz = ρ v̇z =
∂Tzx

∂x
+

∂Tzy

∂y
+

∂Tzz

∂ z
(2.12)

Similarly, corresponding equations for the other components of u and v can be found,
those are discussed in depth in Appendix A.

The full tensor form of the equation of motion in the z-direction, by adding all the forces
terms, can be expressed as,
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ρ
∂ 2uz

∂ t2 =
∂Tzx

∂x
+

∂Tzy

∂y
+

∂Tzz

∂ z
(2.13)

Using reduced notation Eq. (2.13) can be rewritten as,

ρ
∂ 2uz

∂ t2 =
∂T5

∂x
+

∂T4

∂y
+

∂T3

∂ z
(2.14)

Similarly, relations for the equations of motion in the x and y-directions can also be
generated. For convenience the following symbolic notation for stress is often used [Auld,
1973], which is discussed in details in Appendix A,

▽.T = x̂
(

∂Txx

∂x
+

∂Txy

∂y
+

∂Txz

∂ z

)
+ ŷ
(

∂Tyx

∂x
+

∂Tyy

∂y
+

∂Tyz

∂ z

)
+ ẑ
(

∂Tzx

∂x
+

∂Tzy

∂y
+

∂Tzz

∂ z

)
(2.15)

In compact form Eq. (2.15) can be rewritten as,

(▽.T)i = ∑
i

∂Ti j

∂u j
i, j = x,y,z. (2.16)

Using Cartesian coordinates the translational equation of motion is,

∂Ti j

∂u j
= ρ

∂ 2ui

∂ t2 −Fi (2.17)

here Fi is the external force, which for this case is considered as zero.

2.3.3 Hooke’s law and elasticity coefficients

For an elastic system the Hooke’s law, in simple form, states that the stress is proportional to
the strain when distortion or displacement is small. The generalized form of Hooke’s law, in
term of components with respect to an orthonormal basis, can be written as,

Ti j =Ci jklSkl (2.18)
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here, Ci jkl (C) is the stiffness or elastic coefficient tensor, which is consists of 81 (9×9)
components, Ti j (T) is the stress tensor and Skl (S) is the strain tensor, both consists of 9
components each.

For those materials that become electrically polarized when strained, Hooke’s law relation
does not fully describe their response under acoustic strain. It is a linear phenomenon and
when the sign of strain changes the polarization changes sign. It accompanied with another
linear phenomenon, known as converse piezoelectric effect. In piezoelectric material these
terms generates internal stress in presence of an electric field [Auld, 1973]. So, piezoelectric
materials need additional terms with Eq. (2.18) to represent these effects, which is not the
interest of present discussion.

If symmetry conditions are applied the 81 independent components of stiffness tensor
can be reduced to 36 and the 9 independent components of stress or strain can be reduced to
6 components, then Eq. (2.18) can be expressed in compact form using engineering or Voigt
notations [MIT Module 3] as,

[T] = [C][S] (2.19)

The structure of these matrices are clearly discussed at Section 2.3.5. It is to be noted
that the relation between applied strains Sxx and Syy, and stress Txx can be given as,

Txx =CxxxxSxx +CxxyySyy (2.20)

Due to symmetry as Sxz = Szx and Cxzxz = Cxzzx, the relation between Txz and Sxz can
be given as,

Txz = 2CxzxzSxz (2.21)

First two subscripts among the four subscripts of stiffness tensor represents the subscripts
of stress tensor and last two corresponds to the subscripts of strain tensor.

2.3.4 Notation for tensors

Some simple notations are adopted to denote the components of the vectors and tensors
discussed in this thesis, which are elaborated in Appendix A. The subscripts i and j are used
to denote any one of the three axes of interest in tensor components, whereas k and l are
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floating subscripts. In Eq. (2.18), since both stress, Ti j, and strain, Skl , are symmetric, this
reflects in stiffness tensor, Ci jkl , which is symmetric as well. The stiffness tensor may have
the following two symmetry conditions,

Lack of rotation : Ci jkl = C jikl = Ci jlk = C jilk (2.22)

Reciprocity : Ci jkl = Ckli j (2.23)

These symmetry conditions reduces the number of independent elements in fourth-order
stiffness tensor from 81 to 21. As strain is dimensionless, based on the Eq. (2.18), the unit for
the elastic coefficient is same as unit of stress, i.e., unit of pressure. Based on the symmetry
applicable to the crystals, the independent number of elements in stiffness tensor are listed in
Table 2.1 [Mouhat, 2014].

Table 2.1 Number of independent elastic constants in different symmetric crystals.

Applicable symmetry Number of independent elements
Anisotropic 21
Orthorhombic 9
Hexagonal (transversely isotropic) 5
Cubic 3
Isotropic 2 (Two Lame constants)

It is to be noted that for isotropic solids the number of independent elements required are
only 2. These two elements are Lame constants λ and µ , which will be introduces later in
Section 2.4.

2.3.5 Subscript notation in reduced form

As symmetry is applicable for all the components in Eq. (2.18), reduced notation can be used
to represent the subscripts in elements of stress, strain and stiffness tensors. For instance,
TR will replace the longer notation of stress tensor, Ti j, whereas, SR will replace the longer
notation of strain tensor, Skl . Table 2.2 [Sriratanavaree, Thesis, 2014] summarises the reduced
notation for the stress and strain tensors and Table 2.3 [Sriratanavaree, Thesis, 2014] presents
in brief the reduced notation of stiffness tensor including their meaning.

Based on the illustrations used in Tables 2.2 and 2.3, for any non-piezoelectric material,
Eq. (2.18) can be rewritten as,
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Table 2.2 Reduced subscript notation used for stress and strain tensors elements.

Tensor element All elements Connotations
Stress: TR T1 (where R = 1) = Txx Longitudinal stress in the x-direction

T2 (where R = 2) = Tyy Longitudinal stress in the y-direction
T3 (where R = 3) = Tzz Longitudinal stress in the z-direction
T4 (where R = 4) = Tyz shear stress about the x-axis
T5 (where R = 5) = Tzx shear stress about the y-axis
T6 (where R = 6) = Txy shear stress about the z-axis

Strain: SR S1 (where R = 1) = Sxx Longitudinal strain in the x-direction
S2 (where R = 2) = Syy Longitudinal strain in the y-direction
S3 (where R = 3) = Szz Longitudinal strain in the z-direction

S4 (where R = 4) = 2Syz shear strain: motion about x-axis,
shear in the y and z-directions

S5 (where R = 5) = 2Szx shear strain: motion about y-axis,
shear in the x and z-directions

S6 (where R = 6) = 2Sxy shear strain: motion about z-axis,
shear in the x and y-directions

Table 2.3 Reduced subscript notation used for stiffness tensor elements.

Reduced notation Standard notation Connotations
CIJ Ci jkl The ratio of the Ith stress component

to the Jth strain component
C11 C1111 The longitudinal elastic constant relating

longitudinal stress and strain elements in the x-direction
C44 C2323 The shear elastic constant relating shear stress and

strain elements in the 4-direction (motion about x-axis)
C12 = C21 C1122 = C2211 CIJ = CJI

TR =CIJSR (2.24)

For simplicity neglecting initial stress and the effect due to change in temperature, also
referring the components of strain and stress to some appropriate basis function, the Eq.
(2.24) in matrix form,
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

T1

T2

T3

T4

T5

T6


=



C11 C12 C13 C14 C15 C16

C21 C22 C23 C24 C25 C26

C31 C32 C33 C34 C35 C36

C41 C42 C43 C44 C45 C46

C51 C52 C53 C54 C55 C56

C61 C62 C63 C64 C65 C66





S1

S2

S3

S4

S5

S6


(2.25)

If reduced notation is used the original stiffness matrix consisting 9×9 elements can be
reduced to a matrix of 6×6 elements. As it can be seen in Eq. (2.25) that all the elements
in elastic coefficient matrix are not independent as CIJ = CJI . Thus only 21 elements of
the matrix [C] are independent. The number of independent terms can be reduced further
based on the symmetry conditions lies within different crystals. As an example, for a crystal
exhibiting cubic symmetry following relations among some of the elements in [C] can be
shown,

C11 =C22 =C33

C12 =C21 =C13 =C31 =C23 =C32

C14 =C15 =C16 = 0

C24 =C25 =C26 = 0

C34 =C35 =C36 = 0

(2.26)

Based on the equations set shown in Eq. (2.26), it becomes clear that there remains only
three independent components and these are, C11, C12 and C44. If the material is considered
to be isotropic, then the existing relation among these three components will be,

C11 −C12 = 2C44 (2.27)

This case is further illustrated in Section 2.4.

2.4 Lame constants and their relations with wave velocity
in isotropic material

For the reason of crystal symmetry in isotropic material, the number of the independent
elements in elastic coefficient matrix reduce to two, based on the relation shown in Eq. (2.27).
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These two independent constants are λ and µ , which are known as Lame constants. The
parameter µ is the shear modulus or modulus of rigidity. These constants are helpful in
determining total stored energy of the system. These can also be related [Royer, 2000] to the
elastic constants as,

C11 =C22 =C33 = λ +2µ (2.28)

C12 =C21 =C13 =C31 =C23 =C32 = λ (2.29)

C44 =C55 =C66 = µ =
C11 −C12

2
(2.30)

Rest of the terms are zero. Thus the elastic coefficient matrix for isotropic material becomes,

CIJ =



λ +2µ λ λ 0 0 0
λ λ +2µ λ 0 0 0
λ λ λ +2µ 0 0 0
0 0 0 µ 0 0
0 0 0 0 µ 0
0 0 0 0 0 µ


(2.31)

In general the acoustic wave velocity is related to the elastic coefficient and material
density by the following relation,

V =

√
Ci j

ρ
(2.32)

here V is the velocity of sound in the material, Ci j is the elastic constant and ρ is the material
density. Depending upon which elastic constant is used or what type of wave velocity is to
be determined, the Eq. (2.32) may take different forms. It is worthy of mentioning that the
subscripts of the elastic constant in Eq. (2.32) are used to indicate the directionality of the
elastic constant itself with respect to the type and travelling direction of the acoustic wave.
For all directions within the isotropic material the elastic constants are same. But, for each
direction within the anisotropic material the elastic constants are different.
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The relations of the shear and longitudinal wave velocities with elastic coefficients and
the Lame constants can be given as,

VL =

√
C11

ρ
(2.33)

VL

VS
=

√
C11

C44
=

√
2+

λ

µ
(2.34)

then

VS =

√
C44

ρ
(2.35)

To calculate the shear wave velocity shear modulus is commonly used and while deter-
mining longitudinal wave velocity Poisson’s ratio and Young’s modulus are used. However,
it is convenient to use Lame constants to calculate these terms. These Lame constants can be
derived from Poisson’s ratio and Young’s modulus.

On the other hand, instead of using Lame constants and elastic coefficients, an isotropic
materials can also be characterized equally well using alternative pair of the following
parameters,

• Young’s modulus (E): It is a measure of stiffness of an isotropic material and can be
expressed as a proportionality constant between uni-axial stress and strain. Unit is
Pascal.

• Bulk modulus (K): It is a measure of incompressibility of a body under hydrostatic
pressure. Its unit is also Pascal.

• Poisson’s ratio (ν): It is the ratio of transverse or radial strain to longitudinal or axial
strain. It is dimensionless.

The interrelation between these parameters [Royer, 2000] are listed in the Table 2.4.

2.5 Refraction of acoustic wave and Snell’s law

When acoustic wave passes through an interface of two materials having different refractive
indices with an oblique angle, it may both reflected and/or refracted depending upon incident
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Table 2.4 Interrelation between different moduli, elastic constant, Poisson’s ratio in isotropic
solid.

Parameters In terms of

E,ν E,µ λ ,µ C11,C12

λ
Eν

(1+ν)(1−2ν)
µ(E−2µ)

3µ−E λ C12

µ
E

2(1+ν) µ µ
C11−C12

2

E E E µ(3λ+2µ)
λ+µ

C11 −
2C2

12
C11+C12

K E
3(1−2ν)

µE
3(3µ−E) λ + 2µ

3
C11+2C12

3

ν ν
E−2µ

2µ

λ

2(λ+µ)
C12

C11+C12

angle. The effect is similar as in case of light passing through similar interfaces and that is
why objects seen through an interface seemed to be shifted relative to their actual positions.

Incident acoustic wave refracted when two materials making an interface allow different
sound velocities. The material properties, such as, material density and elastic modulus,
determine the acoustic velocity in that material. When acoustic plane wave, shown in Fig.
2.4, travelling in one material enters in another material possessing higher acoustic velocity
then a portion of the wave in the second material will move faster than the portion of the
wave in the first material and will cause the wave to bend.

Fig. 2.4 Reflected and refracted longitudinal acoustic waves [NDT Course Material].

here VL1 is the longitudinal acoustic velocity at material 1, VL2 is the longitudinal acoustic
velocity at material 2, θ1 is the incident angle and θ2 is the refracted angle.

It is to be noted in Fig. 2.4 that the reflected longitudinal wave is shown with velocity
V

′
L1. This wave is reflected at the same angle as the incident wave because the two waves

are travelling in the same material, and hence can be considered to have the same velocities.
This reflected wave is not important for this discussion.
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2.5.1 Snell’s law for acoustic wave

The Snell’s Law depicts the relationship between the incident and refracted angles and the
velocities of the waves in materials. Snell’s law states the ratio of acoustic velocities VL1 and
VL2 is equal to the ratio of the sine’s of incident angle, θ1 and refracted angle, θ2, as,

sin(θ1)

sin(θ2)
=

VL1

VL2
(2.36)

When a longitudinal wave travelling through a medium with lower acoustic velocity (VL1

= 340 m/s for air) and passes an interface to another medium having higher acoustic velocity
(VL2 = 1500 m/s for water) with an incident angle equal to the first critical angle, the wave
may be refracted with a 90◦ angle, which can be calculated from Eq. (2.36). Much of the
acoustic wave energy remains in the form of inhomogeneous compression wave at the critical
angle of incidence, travelling along the interface and decays exponentially with depth from
the interface. Some times this wave is referred as creep wave [NDT Course Material]. For
their rapid decaying and inhomogeneous nature, creep waves are not used as extensively as
Rayleigh surface waves in practical applications. However, due to their longer wavelength,
creep waves suffers less from course material micro-structure and surface irregularities, so, it
is sometimes considered to be more useful than Rayleigh waves.

2.5.2 Reflection and refraction of plane wave

Les us consider the reflection of an infinite plane wave from a free surface. When a longitudi-
nal or shear wave incidents normally on a surface, the reflected wave will be of same type and
with similar amplitude. The required boundary condition is that normal component of stress
at the surface needs to be zero. Figure 2.5 illustrates, when a longitudinal wave is incident in
the x-y plane on a free surface (y = 0) at an angle θLI , two reflected waves, longitudinal and
shear, will be generated, with an angle to the normal θLR and θSR, respectively. The reflected
shear wave’s displacement will have a vertical component, named, shear vertical wave.

Let us represent the incident longitudinal wave in terms of potential φLI with a variation
e− jkLr, where vector r represents the direction of propagation of the wave. In Fig. 2.5, the
potential of incident longitudinal wave can be presented as,

φLI = ALIe− jkL(xsinθLI+ycosφLI) (2.37)

Similarly, the potential of reflected longitudinal wave can be given as,
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θLI

θLR

θSR

y

x

u LI

uSR

u LR

Fig. 2.5 Reflected longitudinal and shear waves from incident of a longitudinal wave on a
free surface [Sriratanavaree, Thesis, 2014].

φLR = ALRe− jkL(xsinθLR+ycosφLR) (2.38)

And the potential of reflected shear wave, ΨSR in z-direction has a form,

ΨSR = ASRe− jkS(xsinθSR+ycosφSR) (2.39)

Any other components in ΨSR would give rise of additional stress and displacement com-
ponents and thus will not satisfy the boundary condition. At surface the boundary condition
requires the total normal stress component must be zero. Hence, the stress components at
surface are,

T2 = Tyy = 0

T6 = Txy = 0
(2.40)

These are the sum of the components of the longitudinal and shear waves. Therefore, at
any point of surface, y = 0, all shear and longitudinal waves components must have same
phase variation along the surface to satisfy the boundary conditions.

Using Eqs. (2.37), (2.38) and (2.39), we have,

kLsinθLI = kLsinθLR = kSsinθSR (2.41)

Similar to the reflection of electromagnetic wave, it can be concluded that the incident
angle is equal to the angle of reflection in this case,
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θLI = θLR (2.42)

It also can be concluded that,

sinθSR

sinθLI
=

kL

kS
=

VS

VL
=

√
µ

λ +2µ
(2.43)

This is nothing but the Snell’s law and similar to the electromagnetic wave reflection and
developed on the same considerations. As for all isotropic solids VS < VL, reflected shear
wave propagates at a closer angle to the normal than that of the reflected longitudinal wave.

θSI

θLR

θSR

y

x

uSI uSR

u LR

Fig. 2.6 Reflected longitudinal and shear waves from incident of a shear wave on a free
surface [Sriratanavaree, Thesis, 2014].

If the excitation is considered to be by incident shear wave, as illustrated in Fig. 2.6, it
can be concluded,

sinθLR

sinθSI
=

kS

kL
=

VL

VS
=

√
λ +2µ

µ
(2.44)

2.6 Modes of acoustic wave propagation

Acoustic wave travels through air by compression and rarefaction of air molecules in the
direction of propagation. But in solids, particles can support motions in other directions as
well. So, acoustic wave propagation in solids can be classified in different types. Waves
are characterized in space by oscillatory patterns and can propagate in a stable manner
maintaining their shapes. These specific patterns of waves are called wave modes.

Acoustic wave propagation in solids can be in four principle modes, which are based on
the manner the particles oscillate. Acoustic wave can propagate as longitudinal waves, shear
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waves, surface waves, and as plate waves in thin materials. Among these most widely used
propagation modes are longitudinal and shear modes. The particles movements associated
along the propagation of longitudinal and shear waves are depicted in Fig. 2.7.

As mentioned earlier, longitudinal and shear waves in solids are most often used in
different inspections. Moreover, various types of elliptical or complex vibrations of the
particles at interfaces and surfaces make other waves possible too. Some of these wave modes,
for instance, Rayleigh and Lamb waves also attracted attention in different inspections.

λ

Direction of 

particle motion

λ

Particles at 

rest position

Direction of 

particle motion

λ

Shear wave

Longitudinal 

wave

Direction of wave 

propagation

Direction of wave 

propagation

Fig. 2.7 Particles motion and direction of propagation for longitudinal and shear waves [NDT
Course Material].

The Table 2.5 summarizes some possible wave modes in solids.

Table 2.5 Some possible wave modes in solid [NDT Course Material].

Type of waves Particle vibrations

Longitudinal Parallel to the wave propagation direction

Shear Perpendicular to the wave propagation direction

Surface - Rayleigh symmetrical mode with elliptical orbit

Plate wave - Lamb Extensional wave - component perpendicular to surface

Plate wave - Love Perpendicular to the propagation direction
and parallel to plane layer

Leaky Rayleigh waves (Stoneley) Wave guided along interface

Sezawa Antisymmetric mode

In a thick solid material surface or Rayleigh waves travels along the surface with a
penetration depth of one wavelength. The elliptic orbit motion in surface wave is created
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by the combination of both longitudinal and transverse motions. The major elliptical axis
is perpendicular to the solid surface. Because the width of its elliptical motion decreases
with the increasing depth of an individual atom from the surface. When a longitudinal wave
intersects a surface near the second critical angle and they travel at a velocity between 0.87
and 0.95 of a shear wave then surface waves are generated. Rayleigh waves attracted interest
because of their sensitivity to surface defects and features, and they can follow the surface
around curves. Because of these features, Rayleigh waves can be used in ultrasonography to
inspect areas that other waves might have difficulty to reach. Plate waves are similar to surface
waves. But they can be generated in materials with thickness of a few wavelengths. Among
plate waves, Lamb waves are the most commonly used. Lamb waves propagate parallel to the
surface throughout the thickness of the material in a form of complex vibrational waves. On
the density and the elastic properties of material component the propagation of Lamb waves
depends. These waves are also influenced by the frequency of interest and material thickness.
Lamb waves are generated at particular incident angle when the parallel component of the
source wave velocity is equal to the wave velocity that can be persisted in the material. These
waves are useful to scan tubes, wire and plates as they can travel several meters in steel. A
number of modes of particle vibration are possible with Lamb waves, however, the two most
common are symmetrical and asymmetrical. The particles complex motion is similar to the
elliptical orbits for surface waves. About the median plane of the plate the symmetrical Lamb
waves move in a symmetrical fashion. Because the wave stretches and compresses the plate
in the wave motion direction when propagates, so, sometimes it is called the extensional
mode. The symmetrical mode of wave motion is most efficiently produced when the applied
force is parallel to the plate. Whereas, in the asymmetrical Lamb wave mode a large portion
of the movement occur in a normal direction to the plate, and a little motion occurs in the
direction parallel to the plate, so it is often called flexural mode. In this mode as the two
surfaces of the plate move in the same direction, the body of the plate bends.

2.7 Two dimensional acoustic waveguide

As the main interest of this thesis is to determine the acousto-optical interraction in waveg-
uides, this section focuses on guidance of wave in two dimensional optical waveguides. It
is already mentioned that acoustic waves propagate inside a waveguide due to the periodic
displacement of the molecules and the wave guidance is pretty complex. These propagation
properties can be characterized by the material density, elasticity, Young’s modulus, and
Poisson’s ratio [Auld, 1973]. The particle displacement can either be in the longitudinal
direction or in the transverse plane. An acoustic mode can be supported strongly in a waveg-
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uide provided that at least one of the shear or longitudinal velocities in the cladding must
exceeds that of the core. The propagation of such a mode can be classified as being of the
torsional, bending, rotational, flexural or longitudinal type [Thurston, 1978 and Saffaai-Jazi,
1988].

Two dimensional waveguide consists of two materials, core and cladding. To guide the
light through the core, the core materials must have lower wave velocity. It is equivalent to
the core acoustic index to be higher than that of the clad. The higher acoustic index causes
lower velocity in the core, so that, acoustic wave can be guided and sustained. To confine the
guided light in the core, core and clad materials of an optical waveguide, such as embedded
Ge-doped silica optical waveguide, is doped in a way that the core refractive index remains
higher than that of the clad. Depending on the requirement of higher or lower acoustic
velocity in the core, the doping materials are considered. Two different types of waveguides
are shown in Fig. 2.8.

y

x

z

(a)

y

x

z

(b)

Fig. 2.8 (a) Rectangular and (b) circular two dimensional optical waveguides with indicated
direction of propagation.

Here direction of propagation is considered to be z-direction, where the molecular
displacement in longitudinal acoustic wave will be in direction of propagation and in shear
wave it will be perpendicular to the direction of propagation.

The propagation of an acoustic wave along the axial direction, taken here as the z-axis, is
associated with the molecular displacement, Ui, and a time harmonic wave can be written in
the following form [Lagasse, 1973],

Ui = u(ux,uy, juz)exp[ j (ωt − kz)] (2.45)
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here the acoustic angular frequency, ω , identifies the time dependence; the propagation
constant, k identifies the axial dependence of the acoustic wave and ux, uy and uz are the
particle displacement vectors along the x, y and z directions, respectively. For a loss-less
system, the longitudinal component uz is 90◦ out of phase with the two transverse components,
ux and uy. In this case, by defining uz as an imaginary component, as shown in Eq. (2.45),
the system equation can be transformed to a much simpler real eigenvalue equation. A
similar approach is adopted in [Rahman, 1985] for a loss-less optical waveguide. Where a
complex eigenvalue problem has been transformed to a simpler real eigenvalue problem. The
deformation in an acoustically vibrating body can be described by the strain field, S, given
by,

S = ▽u (2.46)

The elastic restoring forces can be defined in terms of the stress field, T and the inertial
and elastic restoring forces in a freely vibrating medium are related through the translational
equation of motion as,

▽ ·T = ρ
∂ 2u
∂ t2 (2.47)

here ρ is the material density.
Hooke’s Law states that for small displacement the strain and stress are linearly propor-

tional to each other and can be given by,

Ti j =Ci jklSkl i, j,k, l = x,y,z (2.48)

here, the microscopic spring constants, Ci jkl , are called the elastic stiffness constants. The
compliance and stiffness tensors can be denoted in matrix form as,

[T ] = [C] [S] (2.49)

where the forth order tensor term, Ci jkl , obeys symmetry conditions and thus can be expressed
with two suffix notation, which has been explained in Section 2.3.5. Further it has been also
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shown in Section 2.4 that these elastic stiffness constants are related to the longitudinal and
shear velocities.

Classically, in the FEM [Zienkiewicz, 2013] for a solid structure, the displacement field,
u, can be written with the help of the interpolation shape function [N] and vector of nodal
values of the displacement field U, and its spatial derivatives and integrations can be easily
carried out over the elements. So, we have,

u = [N]U (2.50)

here [N] is the matrix for interpolation shape function

u =

 ux

uy

juz

=

 N1 0 0 N2 0 0 N3 0 0
0 N1 0 0 N2 0 0 N3 0
0 0 N1 0 0 N2 0 0 N3





ux1

uy1

juz1

ux2

uy2

juz2

ux3

uy3

juz3


(2.51)

The wave equation associated with the acoustic wave propagation can be developed by
employing powerful Variational approach and minimizing the energy functional, a corre-
sponding eigenvalue equation can be formed, which is detailed in Chapter 3 and can be given
as:

(
[A]−ω

2 [B]
)

U = F (2.52)

where [A] is the stiffness matrix, related to strain energy and [B] is the mass matrix
related to the kinetic energy. These matrices are generated for a given propagation constant,
k. The column vectors, F, contain the nodal values of the applied forces, which in this case
are taken to be equal to zero. Solving this generalized eigenvalue equation of the system
yields the eigenvalue as ω2, where ω is the acoustic angular frequency and the eigenvector
U, the displacement vector. From a given input, k, and its corresponding output, ω , the phase
velocity of the acoustic wave, v, can be calculated from,
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v = ω/k (2.53)

However, if it is necessary to calculate the propagation constant for a given frequency, a
simple iterative approach can be considered. Numerically efficient computer code has been
developed by using the sparse matrix solver along with the versatile mesh generation for
an arbitrary shaped waveguide and modal solutions of acoustic modes in practical optical
waveguides can be obtained.

To implement finite element method for this two dimensional analysis, first the waveguide
is meshed using first order triangular elements. All three node components of magnetic and
acoustic field for each element are presented by piece-wise polynomials within the element.
details discussion on finite element method is presented in Chapter 3.

2.8 Guided wave properties in waveguide

The fundamental concept of guided waves is generally based on acoustic plane waves or bulk
waves in materials, propagating through a medium, which is bounded by regular boundaries
of the structure. In general, acoustic planes waves are either longitudinal or shear in nature.
Altogether, for corresponding structural geometries, they form specific types of frequency
dependent wave motions consisting of individual propagation properties. They only exists
beyond their cut-off frequencies and have increasingly complex mode shapes with increasing
frequency. Their frequency dependency can be modelled with dispersion curves by showing
phase and group velocities.

This thesis covers weakly, strongly and leaky guidance of acoustic waves using low and
high index contrast silica optical waveguides. For each of these cases, the guided wave can be
classified into families of wave modes according to their spatial distribution and propagation
nature. Low and high index contrast was incorporated in embedded and strip silica optical
waveguides, those supported families of similar modes. To have non-degenerated modes
height and width of the waveguides were taken unequal and also waveguides symmetry were
exploited to increase modal solution accuracy.

The wave modes are either symmetric or anti-symmetric in nature, along the mid plane
throughout the thickness of the waveguides as shown in Fig. 2.9. These characteristics have
been used to categorize them into wave families. In general wave modes are divided into
three different families. The longitudinal modes have purely axially symmetric wave motion,
the flexural modes are anti-symmetric and those involve bending motion along the direction
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of propagation and a twisting motion along the centre axis is persists by the torsional modes.
The three families of guided modes are shown in Fig. 2.10. A torsional mode can be of the
radial type having motion either radially inward or outward from the central axis and the
torsional-radial type having a squeezing motion starting from the side of the core that spreads
towards the centre.

(a) (b)

Fig. 2.9 (a) Symmetric and (b) Antisymmetric modes of guided wave motion in plates [Fong,
Thesis, 2005].

Fig. 2.10 Longitudinal, flexural and torsional modes of guided wave motion in bars / pites
[Fong, Thesis, 2005].
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2.9 Summary

Reduced form of stress and stain notations have been introduced in this chapter to generate
the systems of governing equations of the acoustic wave propagation with help of strain
field related to the acoustically vibrating body, equation of motion and Hooke’s law. These
basic concepts are used in finding the governing wave equation considering the particle
displacements in the two dimensional guide are considerably small. Also, for an isotropic
solid, longitudinal and shear wave velocities relation with the various elastic constants and
material density are shown. At the end, families of acoustic wave propagation modes, for
instance, longitudinal, shear, surface and plate wave have been introduced.



Chapter 3

Finite Element Method: Implementation

3.1 Introduction

The Finite Element Method (FEM) is now broadly acknowledged and adopted as one of the
most potent and resourceful numerical solution techniques in solving complex problems in
engineering and science. FEM originated following the study performed by Courant [Courant,
1943] in 1940s, on torsional problems in structural mechanic, where a numerical solution to a
unknown function was approximated by using a collection of triangular elements. In the year
1960 the term ‘Finite Elements’ was first introduced by Clough [Clough, 1960] in defining a
new technique for plane stress analysis. Ahmed [Ahmed, 1969] first introduced this method
in the field of electromagnetic in year 1969. Afterwards, FEM has been incorporated in many
other fields like, biomedical engineering, thermodynamics, fluid mechanics, semiconductor
devices, optical waveguides, etc.

As a numerical technique finite element method provides an approximate solution of
a problem base on a set of governing equations, generally, in the algebraic, integral or
differential forms through a discretization process of the domain in interest. Its main
characteristics is to discretise the domain of the problem into a set of smaller sub-domains or
elements. Instead solving the problem as a whole in one go, in FEM solutions are formulated
in a simplistic manner by each element, expressed in terms of values at element nodes and
then is given a global form to obtain the solution of the original whole domain.

Finite element method is a systematic technique for generating the basic functions used
in the variational method (Rayleigh-Ritz) and weighted residual method (Galerkin). The
differential equation in the variational technique is first put into an equivalent variational
form, then solution is approximated by combining a given approximation functions called
trial functions. Whereas, in the weighted residual method the differential equation domain is
first discretized and then the overall solution is obtained by minimising the error residual
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of the differential equation. However, constructing approximation functions and imposing
the boundary conditions, for the problems with irregular shaped boundaries and arbitrary
domains, are very difficult by using such method.

Two well known features of finite element method may help in discriminating its domi-
nance over other methods. Firstly, in this method any geometrically complex domain can
be assumed as disintegration of simple sub-domains named finite-element, which can be
of different shapes, for instance, triangular or rectangular. Secondly, a fundamental idea
that any continuous function can be correspondent to by a linear combination of algebraic
polynomials governs the derivation of the approximation functions over each finite-element.

The FEM always follows an orderly step-by-step process in providing solution of any
problem. These steps are briefly enlisted below, but will be developed later in details.

• Discretization of the continuum: The first step is to discretize a continuous problem
into elements. Two dimensional cross-section of optical waveguides are discretized, in
this thesis, using triangular shaped elements.

• Selecting interpolation functions: Then it is important to assign nodes to each triangular
elements and selecting the type of interpolation functions to present the field variable’s
variation over the element. Because of the easiness in determining the differentiation
and integration, often polynomials are chosen as interpolation functions for field
variables. Depending on the nodes number assigned to an element, the unknowns
and nature of each node and even on the continuity requirements at nodes and along
element boundaries, the degree of polynomial is selected.

• Find the properties of element: After selecting the shape of element and the order of
the polynomial as interpolation functions, a system of equations in matrix form for
each elements are generated. They represent each individual elements. Then a global
purse matrix is formed and solved.

3.2 Boundary conditions across material interfaces

It has been illustrated before that an acoustic waveguide can support many type of acoustic
modes and these can be hybrid in nature. This thesis mainly concentrated on the shear
and longitudinal acoustic modes only. Each of these modes consists of three vectorial
displacement components with dominating vector only in any one direction, considering they
are not highly hybrid in nature. If the dominating displacement vectors are either in x or
y-direction, they are identified as transverse or shear acoustic modes. When the displacement
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vectors are dominant in z-direction, they are called longitudinal acoustic modes. These
acoustic modes may be fundamental or higher order, considering dimension and material of
choice. To ease the illustration of boundary conditions along the material interfaces, Fig. 3.1
represents displacement vector sets of shear and longitudinal acoustic modes along with a
planar waveguide. Where, the vector sets UX

mn and UY
mn represents the displacement vectors

for shear acoustic modes with dominant vector (with double arrow heads) along in the x and
y-directions, respectively. UZ

mn represents the displacement vectors for longitudinal acoustic
modes with dominant vector along in the z-direction.

U
X
mn

UXX

UXZ

UXY

U
Y
mn

UYX

UYZ

UYY

U
Z
mn

UZX

UZZ

UZY

x

y

z

Fig. 3.1 Hybrid components of shear and longitudinal acoustic modes and planar waveguide.

In the absence of external forces (F = 0) applied on the surfaces, boundary conditions can
be the following:

1. The tangential components of the displacement vectors at the boundary of materials
interface must be continuous.

• For UX
mn acoustic shear modes:

UXZ1 =UXZ2 (3.1)

where subscripts 1 and 2 represents two different materials.
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• For UY
mn acoustic shear modes:

UY Z1 =UY Z2 (3.2)

• For UZ
mn acoustic longitudinal modes:

UZZ1 =UZZ2 (3.3)

2. The normal components of the displacement vectors at the boundary of material
interfaces must also be continuous.

• For UX
mn acoustic shear modes:

UXX1 =UXX2 (3.4)

UXY 1 =UXY 2 (3.5)

• For UY
mn acoustic shear modes:

UY X1 =UY X2 (3.6)

UYY 1 =UYY 2 (3.7)

• For UZ
mn acoustic longitudinal modes:

UZX1 =UZX2 (3.8)

UZY 1 =UZY 2 (3.9)

In addition, two more boundary conditions are incorporated that are encountered in
practical waveguide problems. By which waveguide symmetry can be exploited and the
number of FEM elements and corresponding order of matrices can also be reduced. These
boundary conditions are applicable for those waveguide, which posses structural symmetry.

Perfect horizontal displacement carrier (PHDC) or horizontal sonic wall (HSW), where
the displacements along the x-axis are continuous across the symmetry boundary, which
implies,
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n×U = 0 or n ·U = 0 (where n = ŷ) (3.10)

In the absence of external force, this boundary condition requires that certain displacement
vectors must vanish.

Perfect vertical displacement carrier (PVDC) or vertical sonic wall (VSW), where the
displacements along the y-axis are continuous across the symmetry boundary, so,

n×U = 0 or n ·U = 0 (where n = x̂) (3.11)

this boundary condition ensures the continuity of some displacement vectors at the
boundary.

The classification of boundary conditions in the nomenclature of partial differential
equations are presented in the Section 3.3. This general classification describes the nature
of the displacement vector (and in some cases its derivative) values at the computational
domain boundary. Classifications of the boundary conditions aids in the choice of appropriate
solution technique for any given domain of interest.

3.3 Boundary conditions: natural and forced

Boundary conditions can be categorized based on the imposed conditions upon the formula-
tion and mathematical representation. Those boundary conditions are called natural, if the
boundaries are left free when the displacement field decays at the boundary. It is needed to
have explicitly defined field values at the boundaries for the other cases. These are the forced
boundary conditions and are classified as,

Homogeneous Dirichlet : Φ = 0 (3.12)

Inhomogeneous Dirichlet : Φ = k (3.13)

where Φ is a specific component of the displacement vector field and k is a prescribed
constant value.
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Homogeneous Neumann :
∂Φ

∂n
= 0 (3.14)

here n is the unit vector normal to the surface.
The Neumann boundary condition denotes the rate of the change of the displacement

vector field when it is heading out of the surface. This way explicit boundary conditions have
impact upon the way of formulation of FEM.

3.4 Implementation of FEM by the Variational approach

The formulation of the FEM depends on either variational method or the weighted residual
method. The weighted residual method, for instance, Galerkin method is more straight
forward to apply with the finite element method. But the variational method is more advanta-
geous, specially, when only one global parameter, the propagation constant, is required to
solve for the final solution. However, in this thesis, the variational method is considered for
implementing optical waveguides by using FEM.

After the choice of formulation method, it can be converted into a standard eigenvalue
problem by applying FEM in the form of,

[A][U ] = ω
2[B][U ] (3.15)

here [A] and [B] are real symmetric sparse matrices and [B] is also positive definite matrix.
Equation (3.1) can be rewritten as,

[A][U ]−ω
2[B][U ] = 0 (3.16)

where ω2 is the eigenvalue and ω is the acoustic angular frequency. The eigenvector [U]
represents the unknown value of nodal displacements vectors. Being of canonical form, Eq.
(3.16) allows for a more efficient solution by applying one of the standard subroutines to
obtain different eigenvectors and eigenvalues.

Once, for a given acoustic propagation constant (k), ω is obtained then, acoustic velocity,
v can be determined from,
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v = ω/k (3.17)

where v is the acoustic wave velocity in m/s.

3.4.1 Discretization of domain and generalization of an element

y

x

Approximate

boundary

Element

Nodal point

Actual

boundary

Fig. 3.2 Arbitrary two dimensional domain sub-divided into triangular elements [Leung,
Thesis, 2013].

The fundamental concept in FEM is to divide the domain of interest into a finite number
of sub-domains or elements. Some elements in the domain may share nodal points and
element boundaries. Thus the domain looks like a collection of elements as shown in Fig.
3.2. Element boundaries of an finite element are, generally straight lines. When the domain
of interest has curved or irregular boundaries, approximation at the edge is made by using
series of straight or flat segments or even by the use of isoparametric elements.

In implementation of FEM, after the domain of interest has been discretized by proper
choice of elements, the unknown field variable’s behaviour over each element is approximated
by continuous functions represented in terms of nodal values of the field variable and
sometimes by its derivatives of certain order. The function defined over each element is
named as shape function or interpolation function. The collection of the interpolation function
for the domain of interest as a whole provide a piecewise approximation of the filed variable
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for that domain. In this thesis triangular elements are used to discretize two dimensional
waveguide.

3.4.2 Shape functions

After discretization of the domain the unknown filed variable values at the vertices of the
triangular shaped element is approximated by a set of polynomial approximation named
the shape function. Because polynomials can be easily manipulated both algebraically and
computationally, furthermore, any continuous function may be arbitrarily approximated
closely by a suitable polynomial, so these are used as shape function. These shape functions
are considered to be continuous within the element and across the element boundaries as
well. It would not be possible to add separate contribution from each element to get the
final solution without inter-element continuity. The physical significance is that the shape
functions should possess continuity characteristics similar to that of the physical fields they
approximated.

Although it is preferred that interpolation elements to be isotropic or geometrically
invariant, however, shape functions may not be invariant. To ensure the solution isotropy, in
each element the polynomial expression must be complete, without any preference for either
x or y-directions. It means, if the function has an order q, the polynomial that approximating
it should contain all possible terms xa1yb1 such that,

0 ≤ a1 + b1 ≤ q (3.18)

This type of polynomial should contain l = 1
2(q+1)(q+2) terms. The polynomial to be

unique the number of terms in it should be equal to the total number of degree of freedom,
i.e., the number of nodes associated with the element. For instance, a triangular element
requires a polynomial consists of three terms. Equation 3.18 represents the relationship
between the nodes in an element and the order of the shape function. The number of terms
necessary for all possible polynomials upto the 3rd order is shown in Fig. 3.3 by Pascal
triangle.

The triangle is one the most commonly used elements in two dimensional structure,
although, rectangles and even quadrilaterals are also used. In this thesis triangle is used as
element and first degree polynomials are used as shape functions, which consists of three
coefficients, as stated earlier. These can be corresponded to the three nodal values of the
triangular element’s vertices.
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Fig. 3.3 The Pascal triangle [Rahman, Book, 2013].

Let us consider the continuous field function in the domain of interest is Φ(x,y), which
can be replaced by set of discrete values (Φe, where e = 1, 2 and 3) as shown in Fig. 3.4.
Such functions are considered as continuous across adjacent triangles. Field across the
elements boundaries should be continuous for these functions to be permissible. A first
degree polynomial of the type a+bx+ cy can be used to represent the field.

The field in first order element can therefore be expressed as,

Φe(x,y) = ae + bex + cey (3.19)

here ae, be and ce are constants. At each of the three vertices of the triangle we, then, have,

Φe(xi,yi) = Φi i = 1,2,3 (3.20)

Then Φi, the nodal values can be expressed as,

Φ1 = Φe(x1,y1) = ae + bex1 + cey1 (3.21)
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Fig. 3.4 A typical first order triangular element [Leung, Thesis, 2013].

Φ2 = Φe(x2,y2) = ae + bex2 + cey2 (3.22)

Φ3 = Φe(x3,y3) = ae + bex3 + cey3 (3.23)

In matrix form,

Φ1

Φ2

Φ3

=

1 x1 y1

1 x2 y2

1 x3 y3


ae

be

ce

 (3.24)

In terms of Φi the constants ae, be and ce can be found as,

ae

be

ce

=

1 x1 y1

1 x2 y2

1 x3 y3


−1Φ1

Φ2

Φ3

 (3.25)
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In expanded form we can write from Eq. (3.25),

ae =
1

2Ae
[Φ1(x2y3 − x3y2)+Φ2(x3y1 − x1y3)+Φ3(x1y2 − x2y1)] (3.26)

be =
1

2Ae
[Φ1(y2 − y3)+Φ2(y3 − y1)+Φ3(y1 − y2)] (3.27)

ce =
1

2Ae
[Φ1(x3 − x2)+Φ2(x1 − x3)+Φ3(x2 − x1)] (3.28)

here Ae is the area of the triangular element and can be presented as,

Ae =
1
2

∣∣∣∣∣∣∣
1 x1 y1

1 x2 y2

1 x3 y3

∣∣∣∣∣∣∣=
1
2
[(x2y3 − x3y2)+(x3y1 − x1y3)+(x1y2 − x2y1)] (3.29)

Substituting for ae, be, ce from Eqs. (3.25)-(3.28) into Eq. (3.19) and rearranging will
provide,

Φe(x,y) = N1(x,y) ·Φ1 +N2(x,y) ·Φ2 +N3(x,y) ·Φ3 (3.30)

or,

Φe(x,y) = [N] [Φe] (3.31)

where [N] is the shape function matrix and the column vector [Φe] is the vector corresponding
to the element nodal field values.

Therefore, after discretizing the domain by using small triangular elements, the unknown
field Φe in every element, can be written in terms of an interpolation of the field values at
each node, as given by Eq. (3.31). It can be shown that the element shape function can be
written in the matrix notation form [Davies, 1989] as,
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[N]T =

N1

N2

N3

=
1

2Ae

x2y3 − x3y2 y2 − y3 x3 − x2

x3y1 − x1y3 y3 − y1 x1 − x3

x1y2 − x2y1 y1 − y2 x2 − x1


1

x
y

 (3.32)

here T represents the transpose. This shape function matrix can also be expressed as,

[N]T =

N1

N2

N3

=
1

2Ae

ae
1 +be

1x+ ce
1y

ae
2 +be

2x+ ce
2y

ae
3 +be

3x+ ce
3y

 (3.33)

The coefficients ae
i , be

i and ce
i (for i = 1, 2, 3) can be calculated as,

ae
1 = x2y3 − x3y2 (3.34)

be
1 = y2 − y3 (3.35)

ce
1 = x3 − x2 (3.36)

with cyclic exchange of 1 → 2 → 3 in Eqs. (3.34)-(3.36), the other six coefficients can also
be found.

The shape function Ni has useful property of taking the value 1 at the node i and 0 at all
other nodes as,

Ni(x j,y j) = δi j =

{
1 for i = j
0 for i ̸= j

(3.37)

Relationship of linear shape functions with area coordinates

Let us consider an arbitrary point P(x,y) inside the bottom triangle shown in Fig. 3.4. The
area coordinates functions Li can be represented by utilizing the areas of the triangles as,
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L1 =
Area of the sub triangle P23
Area of the full triangle 123

(3.38)

in similar way L2 and L3 can also be defined. The area coordinates functions Li has the
following property,

3

∑
i=1

Li = 1 (3.39)

The perpendicular distance from P to side 23 is proportional to L1, which takes the value
of 1 at node-1 and 0 in the other nodes. So, it is a unique first degree interpolating polynomial
for node-1. Similarly, L2 and L3 can also be defined. The interpolating polynomials or
local area coordinates, Li, can be related to the global Cartesian coordinates by interpolation
polynomial properties by,

x = x1L1 + x2L2 + x3L3 (3.40)

y = y1L1 + y2L2 + y3L3 (3.41)

The Eqs. (3.40) and (3.41) can be expressed in matrix form as,

1
x
y

=

 1 1 1
x1 x2 x3

y1 y2 y3


L1

L2

L3

 (3.42)

By using inverse transformation from Eq. (3.42), we have,

L1

L2

L3

=
1

2Ae

ae
1 be

1 ce
1

ae
2 be

2 ce
2

ae
3 be

3 ce
3


1

x
y

 (3.43)

In terms of the normalized local area coordinates the operation like integration in global
coordinates can be attained, where it needs to perform only once. Most of those can be found
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in [Zienkiewicz, Book, 2005]. For instance, to obtain integration, following equation can be
used,

∫ ∫
e
Ld

1Lg
2L f

3dxdy = 2Ae
d!g! f !

(d +g+ f +2)!
(3.44)

For the first order polynomial interpolation function, both area coordinates and shape
functions are identical, i.e., Ni = Li. The area coordinates are useful in constructing higher
order shape functions.

3.5 Implementation of FEM for acoustic wave analysis

The beauty of the FEM technique lies in taking the wave equation like complex differential
equation and transforming it into a simpler eigenvalue equation matrix, which can be solved
by available standard methods to attain the required solution. So far, the basic concept of
FEM has been discussed in this chapter. In this section, the concentration is given on the
matrices arises from the choice of interpolation function and the calculation regarding those.

As the problem of interest is the analysis of the acoustic wave propagation, we need to
reduce the problem into a two dimensional problem. Let us first consider the direction of
wave propagation along the waveguide is in the z-direction. Also the waveguide is uniform
and infinite in the direction of propagation. The cross-section of the waveguide is set in xy
plane. Further, consider an acoustic wave with a propagation constant k is guided through the
optical waveguide. Then the displacement vector field u, due to the propagation of acoustic
wave can be expressed as,

u =

ux(x,y)
uy(x,y)
uz(x,y)

e j(ωt−kz) (3.45)

Using the first order triangular element in incorporating FEM the problem can be solved.
We need to apply specific phase relation between the nodes of end surfaces. The waveguide
particle displacement for the propagation of acoustic wave can be in transverse plane and
in longitudinal, i.e., in z-direction. By using bi-dimensional mesh it is possible to solve the
problem and reconstruct it. The system of equations associated with the problem concern is
stated in Eq. (3.15), which is, [A][U ] =ω2[B][U ], where [A] is the stiffness matrix corresponds
to strain energy and [B] is the mass matrix. Here, the nodal values of externally applied
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forces are considered to be zero. The attained modal solution provides ω2 as eigenvalues and
the displacement eigenvectors U.

3.5.1 Formulation of finite element

By subdividing cross-section of an waveguide into a number of triangular elements, the
solution for unknown displacement field u for each element can be approximated by,

ue =
q

∑
i=1

NiUe
i (3.46)

here q is the number of nodes, Ue
i is the displacement field at each element node and Ni is a

set of interpolation function.
In matrix form, by slightly changing Eq. (2.50), we have,

ue = [N][U ]e (3.47)

As the main interest is to have all the x, y and z components of the field, Eq. (3.47) can
be expanded as,

ue =

 N1 0 0 N2 0 0 jN3 0 0
0 N1 0 0 N2 0 0 jN3 0
0 0 N1 0 0 N2 0 0 jN3





Ux1

Uy1

Uz1

Ux2

Uy2

Uz2

Ux3

Uy3

Uz3


(3.48)

here Ux, Uy and Uz are the nodal displacement values in the x, y and z directions, respectively,
The second subscripts in the displacements indicated the node numbers. The term j in Eq.
(3.48) arises in the matrix for lossless cases, where the Uz components are 90◦ out of phase
with the corresponding transverse components.

Now, as stated earlier in Chapter 2, based on the Hooke’s law we can relate the stress and
strain for small displacements, which is presented in Eq. (2.48). Utilizing that, we can write,

▽ ·T = ▽ · (CS) (3.49)
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here T represents the stress, S is the strain and C is the elastic stiffness coefficient, which can
be affected by the crystal symmetry. Details of the elastic stiffness coefficient, its reduced
subscript notation and the affect of symmetric nature of crystal with isotropic symmetry on
the matrix of C have been presented in Sections 2.3.4, 2.3.5 and 2.4 in Chapter 2.

Next, the stiffness matrix, which incorporates strain tensor, can be expressed as [Auld,
1973],



S1

S2

S3

S4

S5

S6


=



∂Ux
∂x

∂Uy
∂y

∂Uz
∂ z

∂Uy
∂ z + ∂Uz

∂y
∂Ux
∂ z + ∂Uz

∂x
∂Ux
∂y +

∂Uy
∂x


=



∂

∂x 0 0
0 ∂

∂y 0

0 0 ∂

∂ z
0 ∂

∂ z
∂

∂y
∂

∂ z 0 ∂

∂x
∂

∂y
∂Uy
∂x 0



ue
x

ue
y

ue
z

 (3.50)

here ue
x, ue

y and ue
z are the element’s nodal displacement vectors in the x, y and z directions,

respectively.
Equation (3.50) can be written as,

Si = ▽i jue
j (3.51)

The strain-displacement relation can also be shown in symbolic notation [Auld, 1973] as,
S = ▽Sue, where the subscript s in the gradient symbol stands for symmetric. In Eq. (3.51)
the symmetric gradient operator, ▽i j = ▽S, has a matrix form of,

▽S ⇒ ▽i j =



∂

∂x 0 0
0 ∂

∂y 0

0 0 ∂

∂ z
0 ∂

∂ z
∂

∂y
∂

∂ z 0 ∂

∂x
∂

∂y
∂Uy
∂x 0


= [D] (3.52)

here for simplicity, [D] is used as symbol to represent symmetric gradient matrix. So, Eq.
(3.51) can be rewritten as,

S = [D]ue

⇒ S = [D][N][U ]e
(3.53)
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Now, the elastic restoring forces has been defined in terms of the stress field, T(uj,t) and
the inertial and elastic restoring forces, i.e. stresses, in a freely vibrating medium has also
been related through the translational equation of motion and shown by Eq. (2.47) in Chapter
2. Again, in this thesis, the stress matrix is considered to be symmetric as shown by Eq.
(2.10). So, the spatial variation of stress, T, can be determined by the divergence of T, as
shown by the left hand side of Eq. (3.49) and can be represented as,

▽ ·T =


∂

∂xTxx +
∂

∂yTxy +
∂

∂ zTxz
∂

∂xTyx +
∂

∂yTyy +
∂

∂ zTyz
∂

∂xTzx +
∂

∂yTzy +
∂

∂ zTzz

=


∂

∂x 0 0 0 ∂

∂ z
∂

∂y

0 ∂

∂y 0 ∂

∂ z 0 ∂

∂x

0 0 ∂

∂ z
∂

∂y
∂

∂x 0




T1

T2

T3

T4

T5

T6


= [D]T



T1

T2

T3

T4

T5

T6


(3.54)

here [D]T represents the transpose of symmetric gradient matrix.
Using Eqs. (3.49), (3.53), (3.54) and (2.47) it can be shown that,

▽ ·T = [D]T [C][D][N][U ]e = ρ( jω)2[N][U ]e (3.55)

Multiplying both sides of Eq. (3.55) with the conjugate transpose of the nodal displace-
ment vector of element [N][U ]e and integrating over whole domain of element, Ωe, we have,
Using Eqs. (3.49), (3.53), (3.54) and (2.47) we can conclude that,

−
∫ ∫

e
[N]∗[U ]∗e [D]T [C][D][N][U ]edΩe −ω

2
∫ ∫

e
ρ[N∗][U ]∗e [N][U ]edΩe = 0 (3.56)

here * represents the conjugate transpose.
Finally by incorporating FEM procedure with aid of acoustic translational equation of

motion as given by Eq. (2.47), stress-displacement relation as given by Eq. (3.53) and
Hooke’s law, the stress-strain relation in each element by applying variational principle can
generally be expressed as,

∫ ∫
e

(
−[N]∗[U ]∗e [D]T [C][D][N][U ]e −ω

2
ρ[N]∗[U ]∗e [N][U ]e

)
dΩe = 0 (3.57)
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The integral can be evaluated by summing over the whole region, Ωe. Furthermore, the
Eq. (3.57) can be formulated as a standard eigenvalue problem by rearranging and rewriting
it in matrix form, as,

[A][U ]−ω
2[B][U ] = 0 (3.58)

here ω2 is the eigenvalue, [U] is the eigenvector, [A] is reduce to a real symmetric form and
is known as stiffness matrix, which is related to the strain energy. [B] is real symmetric and
also positive definite matrix. It is also known as mass matrix that relates to the kinetic energy.

The matrices [A] and [B] can be defined as,

[A] =−
∫ ∫

e
([Q]∗[C][Q])dΩe (3.59)

[B] = ρ

∫ ∫
e
[N]∗[N]dΩe (3.60)

where [Q] is replaced the matrix multiplication [D][N] and ρ is the waveguide material
density.

These matrices can be generated for a provided acoustic propagation constant k. Solving
the generalize eigenvalue system equation, given by Eq. (3.58), yields eigenvalue ω2, where
ω is acoustic angular frequency and eigenvector [U] as the displacement vector. For a
provided input k and generated output ω , using Eq. (3.17) acoustic velocity, v, can be
determined. Beside that if for a given acoustic frequency, the propagation constant is to be
determined, then a simple iteration process needs to be considered.

3.6 Formulation for optical analysis

In this thesis, for optical mode analysis, a FEM approach based on the vector H-field
formulation is used. This is one of the most numerically efficient and accurate approaches
to obtain the modal field profiles and the propagation constants of the fundamental and
higher order quasi-TE and quasi-TM modes. The full-vectorial formulation is based on the
minimization of the full H-field energy functional [Rahman, 1985],

ω
2
o =

∫ [
(∇×H)∗.ε̂−1(∇×H)+ p(∇.H)∗(∇.H)

]
dxdy∫

H∗.µ̂Hdxdy
(3.61)
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here ωo
2 is the eigenvalue for optical system of equations and ωo is the angular frequency of

the optical wave, H is the full-vectorial magnetic field and ∗ represents the complex conjugate
transpose. To eliminate spurious solutions, p, the weighing factor for the penalty term is
considered. ε̂ and µ̂ are the permittivity and permeability, respectively.

3.7 Convergence test and benchmarking with steel wave-
guide

A numerically efficient computer simulation code has been generated based on the methodol-
ogy discussed in Section 3.5 and eigenvector [U] and eigenvalue ω2 are obtained by using real
eigenvalue solver computer programme. The solution convergence test for this programme
has been studied, using a Ge-doped silica planar waveguide of structural dimension 2 µm ×
1 µm embedded in un-doped silica, on the fundamental acoustic shear wave. Furthermore,
numerical analysis has been performed on a steel rod of square cross-section with dimension
1 cm2 being exposed in air and the modal solutions are compared with the results found for
the analysis performed with the similar waveguide exposed in Xenon gas [Sriratanavaree,
Thesis, 2014] and also in vacuum [Hennion, 1996].

3.7.1 Convergence test

At the beginning, for convergence test a 3% Ge-doped silica core with dimension 2 µm × 1
µm embedded in un-doped silica has been considered. The longitudinal and shear acoustic
wave velocities of the un-doped silica cladding are taken as, VLC = 5933 m/s and VSC = 3764
m/s, respectively. Similarly, the longitudinal and shear wave velocities for 3% Ge-doped
core are taken as VLG = 5806 m/s and VSG = 3677 m/s, respectively [Jen, 1986]. In this study,
to get pure shear wave both the longitudinal velocities of core and cladding are set to 5933
m/s. The densities of the both doped and un-doped silica are taken as 2202 kg/m3. The
values of the elastic coefficients are calculated using Eqs. (2.30), (2.33) and (2.35) given in
Chapter 2. This waveguide supports both the longitudinal and shear modes. In this section,
however, the convergence test of the modal solution for the fundamental acoustic shear mode
has been focused only. These modes are more complex, details of which will be discussed in
Chapter 4. The data presented above along with the values of the elastic coefficients for both
the materials are listed in the Table 3.1.

Aitken’s extrapolation [Rahman, 1985] technique can be used to improve the solution
accuracy. To use this technique, the structure needs be refined in a fixed geometric ratio.
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Table 3.1 Material properties of the Ge-doped planar silica waveguide used for convergence
testing

Material Velocity (m/s) Density (kg/m3) Elastic Coefficient (GPa)

VL VS ρ C11 C12 C44

3% Ge-doped 5933 3677 2202 77.5115 17.9680 29.7718

Un-doped silica 5933 3764 2202 77.5115 15.1170 31.1972

From three successive mesh refinements, final solutions can be extrapolated for a possible
infinite mesh refinement as given below,

ω∞ = ω3 −
(ω3 −ω2)

2

ω3 −2ω2 +ω1
(3.62)

where, ω1, ω2, and ω3 are results obtained by successively using higher mesh divisions and
ω∞ is the extrapolated result equivalent to infinite mesh divisions. Here, this geometric ratio
does not have to be 1:2:4 but other ratio can also be used, but it should be noted that mesh
divisions can only be of integer value and in all the regions the same mesh refinement ratio
must be maintained.

Variations of the acoustic frequency of the fundamental shear Ux
11 mode for k = 17 µm−1

with the mesh division are shown in Fig. 3.5. In this case, equal mesh divisions are used
in both the transverse directions. It can be noted that as the number of the mesh division
is increased, these solutions rapidly converge to their exact solutions. However, it can be
easily observed that modal solutions convergence with increasing mesh division when the
full structure is simulated as shown by a dashed blue line. Besides that, when Aitken’s
extrapolation is used, the solution accuracy is much improved. For the full structure, when
the geometric ratio 1:2:4 and 1:1.5:2.25 (or 4:6:9) are used, as identified as ATF(1:2:4) and
ATF(4:6:9), and shown by the red dashed and yellow solid lines, respectively, it can be
observed that better solution accuracy can be obtained. However, it can be noted that 4:6:9
geometric ratio, shown by a yellow solid line, converges better than use of 1:2:4 (dashed red
line). To show this region more clearly, an expanded version of this region is shown as an
inset. Along with its displacement profiles the details of this shear mode will be discussed in
Chapter 4.



3.7 Convergence test and benchmarking with steel wave-guide 70

50 100 150 200 250 300 350 400 450 500
10.0440

10.0445

10.0450

10.0455

10.0460

10.0465

10.0470
Full
ATF (1:2:4)
ATF (4:6:9)

Core:  3% Ge-doped silica
Clad: Pure silica

W = 2 μm
H = 1 μm

450 455 460 465 470 475 480
10.044790

10.044800

10.044810

10.044820

10.044830

Mesh Division

A
co

us
tic

 F
ru

eq
ue

n
cy

 (
G

H
z)

Fig. 3.5 Variation of eigen frequency with the mesh division for the Ux
11 mode at k = 17

µm−1.

3.7.2 Benchmarking with steel waveguide

Initially, a steel waveguide of square cross-section (1 cm2) has been selected to benchmark
the developed FEM based computer simulation code. The modal solutions are compared with
two of the research works, where both the researcher used similar waveguide but different
environments as cladding. In one steel waveguide was exposed in Xenon gas [Sriratanavaree,
Thesis, 2014] and in the other steel waveguide was placed in vacuum [Hennion, 1996].

It is well known that the air surrounded steel waveguide can carry acoustic waves. In
this section the acoustic longitudinal and shear wave velocities and density of mild steel are
taken as VLG = 5797.4978 m/s, VSG = 3098.8923 m/s and ρG = 7850 kg/m3, respectively
[Sriratanavaree, Thesis, 2014]. Air does not support any shear wave. For the air cladding,
these are considered to be VLC = 340 m/s and ρC = 1.29 kg/m3, respectively [Jiang, 2011].
The required acoustic properties of mild steel and air are listed in Table 3.2.

Table 3.2 Acoustic properties of steel and air

Material Velocity (m/s) Density (kg/m3) Elastic Coefficient (GPa)

VL VS ρ C11 C12 C44

Steel 5797.4978 3098.8923 7850 263.8462 113.0770 75.3846

Air 340 0.0 1.29 149.124 ×10−6 149.124 ×10−6 0.0
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This steel waveguide supports many acoustic modes, among which we have considered
one of the shear acoustic mode, UX

21, to benchmark the work as it closely resembles with the
eigenvalues reported in [Hennion, 1996] where the guide is in vacuum. Also the results are
compared with the eigenvalues reported in [Sriratanavaree, Thesis, 2014] where the guide is
exposed in Xenon gas. All results found are in close proximity.

Table 3.3 Compared results for the eigen frequencies of steel waveguide.

k (m−1) Acoustic frequency (kHz)

Steel in air Steel in Xenon Steel in vacuum

200 94.8 98.9221 94.66

400 194.08 188.6422 189.43

600 293.45 279.3516 285.23

Table 3.3 listed the eigenfrequencies obtained by using 250 × 250 mesh division for
different values of propagation constants, k. This table also includes its comparison with
the previously reported works [Sriratanavaree, Thesis, 2014 and Hennion, 1996], where the
same propagation constants are considered.

3.7.3 Few acoustic modes in steel waveguide

The displacement mode profiles along with the displacement vectors variations of the fun-
damental and second-order shear acoustic modes in the steel waveguide is presented in this
section. It is found that both of these shear modes are highly hybrid modes.
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Fig. 3.6 Displacement vector profile of the dominant UX component of fundamental Ux
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acoustic mode at k = 400 m−1.
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The acoustic frequency of the UX
11 mode was found to be 197.29 kHz and with a group

velocity of 3098.98 m/s. Figure 3.6 shows the displacement vector profile of UX component
of the fundamental UX

11 acoustic shear mode at a propagation constant of k = 400 m−1. The
black square boundary at the centre represents the steel waveguide boundaries. It is to be
noted that this component is confined in the core and maximum displacement occurs at the
centre. The UY component of this mode is shown in Fig. 3.7.
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Fig. 3.7 Displacement vector profile of the non-dominant UY component of fundamental Ux
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acoustic mode at k = 400 m−1.

The displacement vectors of the resultant transverse UT mode, found by vectorial addition
of both the transverse components UX and UY is presented in Fig. 3.8. It is obvious that at
the propagation constant k = 400 m−1 the fundamental shear mode tends to bend the steel
waveguide.
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Fig. 3.8 Displacement vectors of UT mode at k = 400 m−1.
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Figure 3.8 shows the displacement vector profile of UZ component of the fundamental
UX

11 acoustic shear mode at a propagation constant of k = 400 m−1.
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Fig. 3.9 Displacement vector profile of the non-dominant UZ component of fundamental Ux
11

acoustic mode at k = 400 m−1.

The acoustic mode, which eigenvalue is compared at different propagation constant in
Table 3.3, attains a group velocity of 2979.83 m/s at a propagation constant of k = 200 m−1.
Although it is named as UX

21 mode due to its spatial variation, this acoustic mode is also
highly hybrid and propagate as a surface wave with a frequency of 94.8 kHz at the stated
propagation constant. The displacement vector profiles of the components UX , UY and UZ of
this acoustic mode are shown in Figs. 3.10, 3.11 and 3.12, respectively.
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21 acoustic mode at k = 200

m−1.

The displacement vectors of the resultant transverse UT mode for this surface acoustic
mode is presented in Fig. 3.13. It is clear that this surface acoustic mode appeared to
compress the waveguide at the propagation constant k = 200 m−1.
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Fig. 3.13 Displacement vectors of UT mode at k = 200 m−1 of the surface acoustic mode UX
21.

3.8 Summary

The theoretical formulation of two dimensional optical waveguide with FEM has been
presented in this chapter. Where the concerned problem is converted to a two dimensional
problem and domain discretisazion is performed only upon the cross-section of the waveguide
by meshing with triangular finite elements. After testing method validation for convergence
using Aitken’s extrapolation, the end results for a simple case of 1cm2 cross-section steel rod
exposed in air are compared with available literature to demonstrate the model accuracy. At
the end displacement vector profiles of two highly hybrid acoustic modes that may exist in
the steel waveguide were presented.



Chapter 4

Low Index Contrast Silica Planar
Waveguide

4.1 Introduction

Silica optical fibers are the most extensively used optical waveguides because of their wide
availability and extremely low optical loss, but their planar versions are also widely used for
the fabrication of various planar photonic integrated circuits (PICs).

In this chapter weakly guided acoustic waves in a low index contrast silica planar
waveguide have been studied by using a full-vectorial FEM based numerical method. To
keep the index contrast low a lightly doped silica rectangular core is used being embedded
in un-doped silica cladding. The shear and longitudinal acoustic waves in this waveguide
are obtained, firstly by ensuring any one type of acoustic waves, either shear or longitudinal,
exists and then considering their co-existence. The effect of dopant concentration on such
waves are also observed and presented.

4.2 Structure, materials and their acoustic properties

Silica fibers are the most commonly used optical waveguides due to their property of having
the lowest loss so far shown by any optical waveguide and millions of kilometers have been
laid down for long-distance communication networks. However, when various photonic
components are considered for modern communication systems, often planar forms are used
as functionality of a PIC can be increased for a compact, reliable and yet low-cost systems.
Although, in the fabrication of PICs, semiconductor materials like InP or GaAs have the
advantages of allowing the incorporation of active components such as semiconductor lasers
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or alternatively electro-optic dielectric materials such as lithium niobate for high-speed
modulators, however, for many passive devices such as power splitters and AWG filters, often
planar silica guides are used as they have lower loss and cost less and also they provides
lower coupling loss to a silica fibre.

Planar silica waveguide can be fabricated by using flame hydrolysis deposition (FHD)
technique [Marques, 2002] or by using plasma enhanced chemical vapour deposition
(PECVD) [Bellman, 2004]. Silica can be doped by Ge to increase the refractive index
to form a waveguide core, and this process also increases equivalent acoustic index of the
doped region compared to un-doped silica cladding and as a result, this optical waveguide
will also supports acoustic waves. The longitudinal and shear acoustic wave velocities of
the un-doped silica cladding are taken as, VLC = 5933 m/s and VSC = 3764 m/s, respectively.
Similarly, the longitudinal and shear wave velocities in for 3% Ge-doped core are taken as
VLG = 5806 m/s and VSG = 3677 m/s, respectively [Jen, 1986]. Although the material density
of 3% Ge-doped silica is 2244 kg/m3, here, for simplicity, the densities of the both doped and
un-doped silica are taken as 2202 kg/m3. These values along with the elastic coefficients are
listed in Table 4.1 in Section 4.4. This waveguide will support both the longitudinal modes
and shear modes. The acoustic waveguide is illustrated in Fig. 4.1, and its height and width
are shown as H and W. For this chapter the height is considered as 1µm and width as 2µm.
It can be observed here that this waveguide has a two-fold symmetry and this symmetry can
be exploited, as is discussed later in Section 4.3.

W

HGe:SiO2

SiO2

Fig. 4.1 Ge-doped planar silica waveguide.
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4.3 Symmetry boundary conditions

Symmetry conditions of optical waveguides have been extensively exploited [Rahman, Book,
2013], whenever they exist, for the modal solutions of optical waveguides. This not only
can avoid mode degeneration by separating two interacting modes, but also allow much
improved solutions, with a given computer resource. Since this structure has a two-fold
symmetry, only one-quarter of the waveguide needs to be considered, which will allow a
much finer mesh division to be used. The combinations of n×U and n.U at the vertical and
horizontal symmetry lines can be used, and there are 4 combinations, which will give all
the shear acoustic UX

mn and UY
mn modes, and longitudinal acoustic UZ

mn modes with various
combinations of m and n values, being them even or odd, illustrated in Appendix B. The
possible symmetry boundary conditions are shown in Fig. 4.2.

Fig. 4.2 Symmetry boundary conditions for planar silica waveguide.

4.4 Characterizing acoustic waves in silica planar wave-
guide

Initially, for this weakly guided Ge-doped silica planar waveguide, the analyses are performed
assuming (Option I) the longitudinal acoustic velocities of Ge-doped silica core and un-doped
silica cladding are equal, i.e., VLG = VLC, and then considering (Option II) the shear acoustic
velocities of both the core and cladding are equal, i.e., VSG = VSC. The first option will ensure
only shear acoustic waves exists in the guide, thus it will be decoupled from the longitudinal
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acoustic modes, and the second option will ensure the longitudinal modes remain decoupled.
At the end, a more realistic approach (Option III) is also considered, where all longitudinal
and shear velocities are taken as unequal. All the longitudinal and shear velocities, densities
and elastic coefficients for core and cladding materials are listed in the Table 4.1.

Table 4.1 Procedural options and acoustic properties of materials for the Ge-doped planar
silica waveguide

Options Velocity (m/s) Density (kg/m3) Elastic Coefficient (GPa)

VL VS ρ C11 C12 C44

Option I Core 5933 3677 2202 77.5115 17.9680 29.7718
Clad 5933 3764 2202 77.5115 15.1170 31.1972

Option II Core 5806 3764 2202 74.2286 11.8341 31.1973
Clad 5933 3764 2202 77.5115 15.1170 31.1972

Option III Core 5806 3677 2202 74.2286 14.6851 29.7718
Clad 5933 3764 2202 77.5115 15.1170 31.1972

4.4.1 Option I: Shear acoustic modes for 3% Ge-doped core

The core is doped with GeO2, thus both the longitudinal and shear velocities of the doped
core are less than those of silica cladding. As shown in Table 4.1, for Option I, both the
longitudinal velocities in core and cladding are considered to be equal to have decoupled
shear acoustic modes. For this case, △VS

VS
= 0.0231, the material contrast is small and therefore

this waveguide will act as a weakly guiding for the shear modes.
This waveguide supports two near degenerate fundamental shear modes. In a way similar

to that for optical modes, one of the modes has dominant UX component and other has a
dominant UY component and these will be identified as UX

mn and UY
mn modes, respectively,

where m and n will identify their spatial variations. However, these modes also have other
two non-dominant components, such as the UX

mn mode, which will also have UY and UZ

displacement vectors. This confirms that even for a shear mode, there will be a material
displacement along the axial direction also. So, any scalar approach would be unsuitable to
find acoustic modes in such a waveguide. The UX , UY and UZ displacement vector profiles
of the fundamental UX

11 mode at k = 17.0 µm−1 are shown in Fig.4.3 when the waveguide
width, W = 2 µm and its height, H = 1 µm. The outline of the waveguide is shown by solid
black lines in the figure.

It can be observed that the dominant UX profile of this mode, shown in Fig. 4.3(a),
is nearly Gaussian in shape with its peak value at the center of the waveguide. On the
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Fig. 4.3 UX , UY and UZ displacement vectors of the UX
11 mode.

other hand, the non-dominant UY vector as shown in Fig. 4.3(b), shows a higher order
spatial variation with alternative positive and negative peaks at the adjacent corners of the
waveguide where its peak value is about 2 orders of magnitude lower than that of the dominant
displacement vector, UX . The UZ profile is shown in Fig. 4.3(c), which illustrates its positive
and negative peaks along the two vertical side walls. Its maximum magnitude is about 5% of
the fundamental displacement vector, UX . In this case 200 × 200 mesh divisions were used
for the full structure and the corresponding acoustic frequency was 10.0449 GHz.

It was observed that the Gaussian profile of the dominant UX component of the funda-
mental UX

11 mode got more confine in the core with the increase in frequency, as well as their
magnitude increases along with the reduction of full width half maxima (FWHM). Figure
4.4 depicts clearly its magnitude variation with the three steps of frequency changes as 4, 8
and 16 GHz. The FWHM of the displacement vectors has been calculated. The FWHM for
the Ux

11 mode in the x-direction was 2.9 µm at f = 4 GHz and this value reduces to 1.5 µm
when the frequency increases to 16 GHz.
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4 GHz
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Fig. 4.4 The dominant UX component of the UX
11 mode at 4, 8 and 16 GHz acoustic frequen-

cies.

As this waveguide has a two-fold symmetry and this symmetry can be exploited by
incorporating symmetry boundary conditions as discussed in Section 4.3. The displacement
vector profiles of UX , UY and UZ components in UX

11 acoustic shear mode after applying for
two-fold symmetry are shown in Fig. 4.5. By incorporating two-fold symmetry we can not
only eliminate the modal degeneration but also can improve the accuracy of modal solution
for a given computer resource. The core-clad interfaces are shown by the black lines in Fig.
4.5

However, for the fundamental UY
11 mode, its acoustic frequency was 10.048 GHz for the

same wavenumber, k = 17 µm−1. As the waveguide width and height were not the same,
eigenfrequencies of UX

11 and UY
11 modes were not exactly the same but yet very close. For UY

11

mode, the dominant UY displacement vector was Gaussian in shape with its spatial variation
was similar to the dominant UX of the UX

11 mode. For this UY
11 mode, its non-dominant UX

displacement has four peaks at the four corners of the waveguide and UZ shows its maximum
values at the upper and lower horizontal interfaces. The displacement vector profiles of UX ,
UY and UZ components of the UY

11 mode are shown in Fig. 4.6.
The displacement vectors of the resultant transverse UT mode, found by vectorial ad-

dition of both the transverse components UX and UY for UX
11 and UY

11 modes separately
are presented in Fig. 4.7 for propagation constant k = 17 µm−1. For both the cases the
material displacements are dominating by the dominant components of each fundamental
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Fig. 4.5 UX , UY and UZ displacement vectors of the UZ
11 mode exploiting two-fold symmetry.

shear modes. Although their frequencies are much closer but not the same, total displacement
in the transverse plane for these two modes are shown separately in Fig. 4.7.

The close proximity of two fundamental shear modes allows these modes to interact and
eigenvectors become mixed - this cannot be avoided when the whole structures is simulated
as both the eigenmodes appear in close proximity. If a finer mesh division can be used then
this mode degeneration will reduce.

Dispersion curves of the fundamental shear acoustic UX
11 and UY

11 modes are shown in
Fig. 4.8. The variations of their phase velocities with the acoustic frequencies are shown
here. For the fundamental UX

11 mode, as shown by a dashed blue line, it can be observed
that when the frequency is reduced the phase velocity increases monotonically and reaches
that of the cladding shear velocity, VCS, as the mode approaches its effective cutoff near 3.59
GHz. It was shown earlier in Fig. 4.4, as the frequency is increased the mode becomes more
confined within the core. It is to be noted that for whole range of acoustic frequencies the
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Fig. 4.6 UX , UY and UZ displacement vectors of the UY
11 mode at k = 17 µm−1.
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Fig. 4.7 Total displacement vectors, UT , in the transverse plane at k = 17 µm−1 for (a) UX
11

and (b) UY
11 modes.
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phase velocity of the UY
11 mode, represented by the solid red line, is higher than that of the

UX
11 mode. The effective cutoff frequency of the UY

11 mode was found near 3.593 GHz.
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Fig. 4.8 Dispersion curves of acoustic shear UX
11 and UY

11 modes.

Dispersion curves for several shear UX
mn modes are calculated for a 2 µm × 1 µm Ge-

doped silica waveguide and shown in Fig. 4.9. It represents the variations of their phase
velocities with the acoustic frequencies. Here the solid blue line represents the fundamental
UX

11 mode. For this waveguide, the cutoff frequency of the second mode, UX
21, shown by a red

line is 7.19 GHz, so this waveguide will support only one shear mode (with the dominant UX

displacement) between 3.6-7.2 GHz. It should also be noted that the dispersion curves for
the UX

12 and UX
21 are different as the height and width of the waveguide were not the same.

Even when the height and width of a waveguide are equal (the waveguide has a 90◦ rotational
symmetry), the UX

21 and UX
12 modes would be degenerated but by exploiting the symmetry

conditions, as shown here, they can be isolated. It should be noted that similar dispersion
curves for all the UY

mn modes can also be obtained. However, it should be noted that for
identical height and width, UX

12 and UY
21 will have the same eigenfrequency and as they also

require the same symmetry conditions they cannot be isolated.
Dispersion curves of all the shear UY

mn modes are also calculated for this waveguide and
shown in Fig. 4.10, which shows the variations of their phase velocities with the acoustic
frequencies. The solid blue line represents the fundamental shear UY

11 mode. It should be
noted here also that the dispersion curves for the UY

12 and UY
21 are different as the height and

width of the waveguide were different. The cutoff frequency of the second UY
21 mode, shown

by a red line was found as 7.191 GHz.
To get any point in the dispersion curve of any specific acoustic mode, such as in Fig. 4.9

in Chapter 4, for a given value of the acoustic propagation constant (k), the eigenvalue (ω2)
was determined by running the simulation code. Then the mode was checked, if it is spurious
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Fig. 4.9 Dispersion curves of acoustic shear UX
mn modes.
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Fig. 4.10 Dispersion curves of acoustic shear UY
mn modes.

mode the code was again used to detect a proper acoustic mode. From the resulted eigenvalue,
acoustic frequency (f) was calculated. Using Eq. (3.17) the value of the acoustic phase
velocity was calculated and plotted. Whenever an acoustic mode at a particular frequency
was to be viewed, its corresponding acoustic propagation constant, wherever presented, could
have fractional values that can be seen in following chapters as well.

Although, the spatial variation of the dominant displacement vector can be easily iden-
tified or visualized, however these has not been much reported on the spatial variations of
the other two non-dominant displacement vectors for the same mode. Rather, in many cases,
a simpler scalar formulation has been used [Yoo, 2010] to find the modal solutions of the
acoustic modes, where the non-dominant components are totally neglected, which is not the
case here. By using full-vectorial FEM based numerical analysis it is possible to observe the
non-dominant displacement components and their spatial variations.
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At this point we will try to establish a relation between the spatial variations of the
non-dominant displacement components with the dominant displacement component of the
UX

mn modes. If we observe the displacement vector profiles of the fundamental shear UX
11

acoustic mode, shown in Fig. 4.3, it would be clear that the dominant UX component has half
sine-wave spatial variation of (m = 1, n = 1). Here m and n represents the number of half
sine-wave spatial variation in the x and y directions, respectively. But, its non-dominant UY

components has spatial variations of (2, 2) that is shown in Fig. 4.3(b). Its non-dominant UZ

components, shown in Fig. 4.3(c) has spatial variations of (2, 1).
For a higher order UX

21 mode the spatial variations of the dominant component UX and two
non-dominant components, UY and UZ are shown in Fig. 4.11. The UX profile for this mode
has two well defined half-wave variations (m = 2) along the x-direction and one half-wave
variation (n = 1) along the y-direction. The UY profile for the same mode is shown in Fig.
4.11(b), which identifies 3 half-wave (m + 1) variations along the x-direction, and 2 half-wave
(n + 1) variations along the y-direction. Similarly the UZ profile for the UX

21 mode, shown in
Fig. 4.11(c), shows 3 (= m + 1) and 1 (= n) half-wave variations along the x and y directions,
respectively.
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Fig. 4.11 UX , UY and UZ displacement vectors of the UX
21 mode.

Similarly, Fig. 4.12 shows all the displacement vector profiles of shear UX
12 mode. Here

the dominant component UX shows a spatial variation of (m = 1, n = 2), its non-dominant
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UY components has a spatial variation of (2, 3), i.e. (m + 1, n + 1), and its another non-
dominant component UZ has a spatial variation of (2, 2), i.e. (m + 1, n). It is to be noted that
although for modal degeneration it becomes difficult to identify the number of half sine-wave
spatial variations in the non-dominating UY component shown in Fig. 4.12(b), but it is not
impossible.
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Fig. 4.12 UX , UY and UZ displacement vectors of the UX
12 mode.

This similarity in the pattern of spatial variation can be seen for all the dominant UX

components in higher order shear UX
mn modes. It has also been verified that the relation for the

spatial variation of the non-dominant shear UY component holds true for all the UX
mn modes

with (m + 1) and (n + 1) half-wave variations along the x and y-directions. For non-dominant
UZ component the spatial variation is (m + 1) and (n) half-wave variations along the x and
y-directions, and the same relations has been checked to be true for all Ux

mn modes. Just
to support the concept we are presenting few other dominant UX components along with
non-dominant UZ components for some higher order modes of this category at k = 30 µm−1

in Fig. 4.13.
It can be concluded based on the observation that for any shear acoustic UX

mn mode with a
dominant UX component, have half sine-wave spatial variation of (m, n), but its non-dominant
UY and UZ components have spatial variations of (m + 1, n + 1) and (m + 1, n), respectively.
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Fig. 4.13 UX and UZ displacement vectors of the UX
31 (a, b), UX

22 (c, d), UX
41 (e, f) and UX

32 (g,
h) modes.
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However, if we study the displacement vector profiles of the fundamental shear UY
11

acoustic mode, as shown in Fig. 4.6, we can find that when the dominant UY component
has half sine-wave spatial variation of (m = 1, n = 1), its non-dominant UX mode has half
sine-wave spatial variation of (2, 2), i.e. (m + 1, n + 1). But for this mode its non-dominant
UZ mode has half sine-wave spatial variation of (1, 2), i.e. (m, n + 1). It would be interesting
to observe the spatial relation for the higher order shear modes with dominant UY component.

Figure 4.14 shows the dominant and non-dominant displacement vector profiles of the
shear UY

21 mode. For this set, when the dominant component UY exhibits a spatial variation
of (m = 2, n = 1), its non-dominant UX components shows a spatial variation of (3, 2), i.e. (m
+ 1, n + 1). But, its another non-dominant component UZ has a spatial variation of (2, 2), i.e.
(m, n + 1).

(a) (b)

(c)

Fig. 4.14 UX , UY and UZ displacement vectors of the UY
21 mode.

Similarly, in Fig. 4.15, all the displacement vector profiles of shear UY
12 mode are shown.

For this set of displacement profiles, the dominant component UY shows a spatial variation
of (m = 1, n = 2), its non-dominant UX components has a spatial variation of (2, 3), i.e. (m +
1, n + 1), and its another non-dominant component UZ has a spatial variation of (1, 3), i.e.
(m, n + 1).

In Fig. 4.16, all components of the displacement vector profiles of shear UY
31 mode are

shown. Here, the dominant component UY shows a spatial variation of (m = 3, n = 1), its
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(a) (b)

(c)

Fig. 4.15 UX , UY and UZ displacement vectors of the UY
12 mode.

(a) (b)

(c)

Fig. 4.16 UX , UY and UZ displacement vectors of the UY
31 mode.
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non-dominant UX components has a spatial variation of (4, 2), i.e. (m + 1, n + 1), and its
another non-dominant component UZ has a spatial variation of (3, 2), i.e. (m, n + 1).

We have observed that these patterns of spatial variations are common for all the higher
order shear modes with dominant UY components. Based on the observations it can be
concluded that for any shear acoustic UY

mn mode with a dominant UY component that has
half sine-wave spatial variation of (m, n), then its non-dominant UX component has spatial
variations of (m + 1, n + 1) and its another non-dominant UZ component has (m, n + 1) half
sine-wave spatial variation, which is different than that was identified for the shear modes
with UX dominant component.

Effects of mesh density, aspect ratio and frequency on mode degeneration

It is mentioned earlier that for modes with close proximity eigenvalues finer mesh division
can play a role in reduction of mode degeneration. Which will be clear if we see the Fig.
4.17. In Fig. 4.3(b) indicates a trace of mode degeneration, where mesh division is taken as
200 × 200. The spatial variation of the UY vector for the same UX

11 mode, at k = 17 µm−1,
but when mesh division is increased to 500 × 500 is shown in Fig. 4.17(a). This shows the
degeneration has reduced, as four peaks at four corners of the waveguide are more clearly
visible. It can also be observed that their peak magnitudes are nearly equal. Their exact
values cannot be identified here, though, but from the numerical data obtained, they have
been identified as +1.2619× 10−4 and −1.2156× 10−4, respectively. However, when a
lower mesh is used, the four peaks begin to mix and the positive and negative peaks become
unequal and the UY profile transforms to show its peak at the center, as shown in Fig. 4.17(b),
when the mesh division was reduced to 80 × 80.
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Fig. 4.17 UY displacement vectors of the UX
11 mode, when (a) 500 × 500 and (b) 80 × 80

mesh divisions.

To quantify this mode degeneration, next, the ratio of the minimum peaks with the
maximum peaks is shown in Fig.18 with the mesh division used. It can be observed that
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when a higher mesh division is used, in this case 500 × 500, the positive and negative peaks
were almost equal in magnitude, and their ratio was 0.9633. On the other hand, when a
smaller mesh is used, in this case 80 × 80, the larger peak becomes 8.47 times bigger than
the smaller peak, and the profile shows a nearly Gaussian shape with its peak value now at the
center of the waveguide as shown in Fig. 4.17(b). It can be stated that the Ux

11 and Uy
11 modes

are mixing up at a progressive rate and non-dominant Uy vector of the Ux
11 mode is being

influenced by the dominant Uy vector of the Uy
11 mode. However, this modal degeneration

between two similar shear modes cannot be avoided, unless the symmetry of the structures is
exploited, as discussed earlier in Section 4.3.
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Fig. 4.18 Degeneration ratio against the mesh division for Uy displacement vectors of the
Ux

11 mode at k = 17 µm.

Further analyses have been performed to quantify the mode degeneration with the aspect
ratio of the guide at propagation constant, k = 17 µm−1, shown in Fig. 4.19. Here, the mesh
division was kept same as 250 × 250 for a range of aspect ratio. To vary the aspect ratio the
width of the guide was varied keeping the height constant at, H = 1 µm. It can be noted that
at lower aspect ratio, W/H = 1.25, i.e. with guide width as W = 1.25 µm, the degeneration
was worse and found to be 0.6031. It improved with the increase in guide width. At the
beginning this change was rapid. At the guide with of W = 2 µm the degeneration improved
further and the degeneration ratio was 0.8643. Afterwards, for further increase in aspect ratio
the degeneration improved gradually, at guide width of W = 4 µm the ratio was calculated as
0.9458. When the aspect ratio of the waveguide is increased then this degeneration is reduced
as the modal birefringence of the waveguide becomes higher and the non-dominant Uy vector
of the Ux

11 mode is being less influenced by the dominant Uy vector of the Uy
11 mode.
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11 mode.
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Fig. 4.20 Degeneration ratio against the acoustic frequency for Uy displacement vectors of
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11 mode.

At constant mesh density (250 × 250) with the guide width and height as W = 2 µm
and H = 1 µm, respectively, further analyses have been performed to observe the effect of
acoustic frequency variation on the mode degeneration and shown in Fig. 4.20. It was noted
that at f = 20 GHz the degeneration ratio was less and it was calculated as 0.7968. With
the decrease in frequency this degeneration improves gradually and near f = 6 GHz the
degeneration ratio was determined as 0.8838. After that the variation of the degeneration ratio
with the reducing frequency was rapid. At near 3.55 GHz the degeneration ratio improved
a lot and was calculated as 0.9864. It is to be noted that when the acoustic frequency is
reduced, this degeneration is reduced, as the difference between the two similar eigenvalues
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is increased and lower frequency range the difference between the eigenvalues being larger
the reduction in degeneration was observed to be rapid.

Modal solution accuracy using Aitken’s extrapolation

Besides the exploitation of the symmetry condition, if it exists, Aitken’s extrapolation
[Rahman, 1985] technique can also be used to improve the solution accuracy, as discussed in
Section 3.7.1. To exploit this, the structure must be refined in a fixed geometric ratio. From
three successive mesh refinements, final solutions can be extrapolated for a possible infinite
mesh refinement as shown by Eq. (3.62). The geometric ratio does not have to be 1:2:4 but
other ratio can also be used, but it should be noted that mesh divisions can only be of integer
value and in all the regions the same mesh refinement ratio must be maintained.

Variations of the acoustic frequency of the fundamental Ux
11 mode for k = 17 µm−1 with

the mesh division for full structure, although were shown in Fig. 3.5 to test the convergence,
here it is repeated with the quarter structure exploiting the two-fold symmetry in Fig. 4.21.
Equal mesh divisions are used in both the transverse directions. When the number of the
mesh division is increased, these solutions rapidly converge to their exact solutions. However,
it can be easily observed that when 2-fold symmetry is used, as shown by a dotted green line,
convergence is much faster than when the full structure is simulated as shown by a dashed
blue line. The solution accuracy which can be obtained by a 50 × 50 mesh divisions for
2-fold symmetry will have the similar accuracy as that of using a 100 × 100 mesh for the
full structure, but requiring a much higher computational resources.
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µm−1 for both full and quarter structures.
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Besides that, when Aitken’s extrapolation is used, the solution accuracy is much improved
as shown by dashed red line. For the full structure, when the geometric ratio 1:2:4 and
1:1.5:2.25 (or 4:6:9) are used, as identified as ATF(1:2:4) and ATF(4:6:9), and shown by
the red dashed and yellow solid lines, respectively, it can be observed that better solution
accuracy can be obtained. However, it can be noted that 4:6:9 geometric ratio, shown by a
yellow solid line, converges better than use of 1:2:4 (dashed red line). On the other hand,
when the 4:6:9 geometric ratio for the quarter structure exploiting 2-fold symmetry, as shown
by a dashed cyan line [ATT(4:6:9)], the best solution convergence can be obtained, for a
given mesh division as here both symmetry and extrapolation have been used. To show this
region more clearly, an expanded version of this region is shown as an inset.

Modal hybridness when VLG = VLC

It is shown here that the acoustic modes are fully vectorial in nature and for a shear mode,
although its dominant displacement is along one of the transverse direction, however, other
two non-dominant (another one transverse and one longitudinal) are also present. This makes
the modes fully hybrid in nature. Similarly, modes in optical waveguides with 2-dimensional
confinements are also fully hybrid in nature and this hybridness increases when the index
contrast between core and cladding is increased. A study of modal hybridness is important
for the calculation of polarization cross-talk [Somasiri, 2003] or in the design of polarization
rotators [Rahman, 2001]. Hybridness can be defined as the ratio of the maximum value of the
non-dominant component with the maximum value of the dominant components. As for each
mode, there are two non-dominant components, so there will be two different hybridness
values for each of the modes; however, the ratio between the longitudinal and transverse
components is of greatest interest.

For the UX
11 and UY

11 modes, the variations of the hybridness with the acoustic frequency
are shown in Fig. 4.22. Here the hybridness for the shear modes has been defined as the ratio
of the maximum UZ vector to the maximum transverse displacement, which are UX and UY

for the UX
11 and UY

11 modes, respectively. It can be observed that as the frequency is decreased
modal hybridness increases and reaches its maximum value and then reduces as the modes
approach their effective cutoff frequencies.

The modal hybridness of the UX
11, UX

21, and UX
31 modes are shown in Fig. 4.23. It can

be observed that modal hybridness of the higher order modes are higher than that of the
fundamental UX

11 mode, which is shown by the solid blue line. At acoustic frequency f = 13
GHz the hybridness of UX

11 mode was calculated as 0.053 and for higher order UX
21, and UX

31

modes hybridness found to be 0.119 and 0.172, respectively. With the increase in frequency
hybridness for all these modes decrease and at acoustic frequency f = 20 GHz the hybridness
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Fig. 4.22 Variation of modal hybridness of two fundamental shear modes with the frequency.

were found to be 0.0386, 0.0824 and 0.123 for UX
11, UX

21, and UX
31 modes, respectively. Based

on these data it is clear that the rate of change of hybridness with frequency in less in the
fundamental UX

11 mode and highest in the second order UX
21 mode.
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Fig. 4.23 Variation of the modal hybridness for the higher order modes with dominant UX
component.

The variation of the modal hybridness of the fundamental UX
11 mode with frequency

for two different guide widths are shown in Fig. 4.24. The solid blue line represents the
hybridness for a guide dimension of 2 µm × 1 µm (W2H1) and the solid red line, that lies
below, shows the variation in hybridness for a guide dimension of 4 µm × 1 µm (W4H1).
Because with the double width of the guide the dominant UX component gets more space to
spread in W4H1 dimension comparing the non-dominant UZ component, where it localizes
at the vertical left and right interfaces and there ratio is less than the hybridness in W2H1
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dimension for a given higher frequency. For the W2H1 guide, at f = 4 GHz the hybridness
was calculated as 0.628, it then increased with the frequency and attained its maximum value
of 0.0716 near 6 GHz. After that it dropped down with the increased frequency and reached
at a value of 0.0386 at 20 GHz. Where as the maximum hybridness for W4H1 guide was
0.0609 near 4 GHz that fell comparatively in a rapid way than that of W2H1 and reached a
value of 0.0213 at 20 GHz.
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Fig. 4.24 Variation of the modal hybridness of UX
11 for different width.
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Fig. 4.25 Variation of the modal hybridness of UX
11 for different doping concentration.

The variation of the modal hybridness of the same UX
11 mode with frequency for two

different doping concentration are shown in Fig. 4.25. Initially the hybridness for 6% doping
concentration, shown by solid red line that lies above the hybridness for the 3% doping
concentration, increased with the frequency and reached its maximum value of 0.0943 at
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4.77 GHz and rapidly fell down with increasing frequency and at 20 GHz it was calculated
as 0.0407.

Modal birefringence

As the waveguide under consideration, with W = 2 µm and H= 1 µm, does not have a 90◦

rotational symmetry so the propagation velocities of the fundamental UX
11 and UY

11 modes
were although close but not identical. For an optical waveguide the difference between the
effective indices of the 2 polarized quasi-TE and quasi-TM modes is known as the modal
birefringence. Similarly, here the phase velocities of the UX

11 and UY
11 modes are slightly

different. The variation of this modal birefringence (but defined in terms of their phase
velocity difference) with the acoustic frequency is shown in Fig. 4.26 by a blue line for
this waveguide. As the frequency is reduced, difference in their phase velocity increases,
reaches a maxima, and then decreases. Subsequently another waveguide is studied where
Ge-doping is increased to 6%, so that the difference between the shear velocities in the core
and cladding, △VS =VSG −VSC, is now doubled. The variation of phase velocity difference
for this guide is shown by a solid red line. In a way similar to that seen in optical waveguides,
the modal birefringence is increased as the equivalent acoustic index contrast between core
and cladding is increased. The peak birefringence appears at a lower frequency as with higher
index contrast the modal cutoff point is also shifted to a lower frequency.

2 4 6 8 10 12 14 16 18 20

0

1

2

3

4

5

6

6% Ge

3% Ge

Frequency (GHz)

B
ir

e
fr

in
g
e
n
c
e
 (

  
 V

S
)

Fig. 4.26 Variation of modal birefringence with frequency for different Ge doped waveguides.

Phase velocity variation with frequency for increased doping and guide width

The variation of the phase velocity of the UX
11 mode with frequency for two different guide

width are shown in Fig. 4.27. It is to be noted that the phase velocity variation for doubled
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width guide that is denoted by the solid red line, lies below the solid blue line for all the
range of frequencies. This is because with the increased guide width the acoustic mode gets
more confined and the the phase velocity dropped down (equivalent effective acoustic index
increases). At lower frequency this difference is much more than that at the higher frequency.
Near 4 GHz frequency the phase velocities were found to be 3756.46 m/s and 3745.85 m/s
for W2H1 and W4H1 guide dimensions, respectively. Where the difference is below 11 m/s.
Near 20 GHz frequency the phase velocities were found to be 3689.91 m/s and 3687.65 m/s
for W2H1 and W4H1 guide dimensions, respectively. Here the difference is more than 2
m/s.
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Fig. 4.27 Variation of the phase velocity of UX
11 mode for different width.
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Fig. 4.28 Variation of the phase velocity of UX
11 mode for different doping concentration.

For any given acoustic frequency with the increased doping concentration the phase
velocity of the UX

11 mode became much less. Figure 4.28 depicts the variation of phase



4.4 Characterizing acoustic waves in silica planar wave-guide 100

velocities for this mode at two different doping concentrations. At 20 GHz frequency the
phase velocity for 6% Ge-doped silica waveguide was found as 3604.37 m/s and near 4 GHz
frequency it was 3719.03 m/s. For higher doping concentration the acoustic mode gets more
confined, so, phase velocity remains close to velocity of the core. Further, it is to be noted
that the phase velocity changed more rapidly with frequency for higher doping concentration.

4.4.2 Option II: Longitudinal acoustic modes for 3% Ge-doped core

To obtain the longitudinal acoustic modes in their pure form without being influenced by the
shear acoustic modes, the Option II in Table 4.1 is considered in this section. Here, both the
shear velocities in core and cladding are considered to be equal and taken as 3764 m/s. For
such case as △VL

VL
= 0.0214, i.e., the material contrast is being small, this waveguide will act

as a weakly guiding for the longitudinal modes as well.
Like the shear modes this waveguide also supports longitudinal acoustic UZ

mn modes.
These longitudinal modes are also hybrid in nature. For these UZ

mn modes the UZ components
are dominant modes. The other two non-dominant components are UY and UX displacement
vectors. The fundamental longitudinal UZ

11 mode is shown in Fig. 4.29. It can be observed
that the dominant UZ profile of this mode, exhibits nearly Gaussian in shape with its peak
value at the center of the waveguide, which in shown in Fig. 4.29(c) . However, the non-
dominant UX vector as shown in Fig. 4.29(a), possesses a higher order spatial variation near
the vertical left and right interfaces, where its peak value is about 2 orders of magnitude
lower than that of the dominant displacement vector, UZ . The UY profile is shown in Fig.
4.29(b), which illustrates its positive and negative peaks along the two horizontal side walls.
Its maximum magnitude is about 7.5% of the fundamental displacement vector, UZ . At
propagation constant k = 17 µm−1, the acoustic frequency was found to be 15.8517 GHz,
phase velocity was about 5858.76 m/s.

The displacement vector of the resultant transverse UT mode, found by vectorial addition
of both the non-dominant components UX and UY for UZ

11 mode is shown in Fig. 4.30 for
propagation constant k = 17 µm−1. It is to be noted that in the transverse plane the resultant
displacement is formed can be classified as radial.

The dispersion curves of the longitudinal acoustic modes are shown in Fig. 4.31. When
frequency is reduced the phase velocity of each mode increases nonlinearly. Although, UZ

12

(represented by a solid yellow line) and UZ
21 (represented by a solid red line) modes had near

identical eigenvalues, however, it was possible to separate these modes as we have used the
symmetrical boundary conditions, which were different for them. In this case the lower and



4.4 Characterizing acoustic waves in silica planar wave-guide 101

(a) (b)

(c)

Fig. 4.29 UX , UY and UZ displacement vectors of the UZ
11 mode.
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Fig. 4.30 Transverse plane displacement vector, UT , at k = 17 µm−1 for UZ
11 mode.

upper velocity limits are the longitudinal acoustic wave velocities of the core and cladding,
respectively.
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Fig. 4.31 Dispersion curves of acoustic longitudinal UZ
mn modes.
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Fig. 4.32 UX , UY and UZ displacement vectors of the UZ
21 mode.

Now, let us establish the spatial variations pattern for the dominant and non-dominant
displacement components of the UZ

mn modes. The dominant UZ component’s displacement
vector profile of the fundamental longitudinal UZ

11 acoustic mode, shown in Fig. 4.29(c), has
a half sine-wave spatial variation of m = 1 and n = 1 in the x and y directions, respectively.
However, its non-dominant UX component, shown in Fig. 4.29(a), has spatial variations
of (2, 1), i.e., (m + 1) = 2 and n = 1 in the x and y directions, respectively. Whereas, its



4.4 Characterizing acoustic waves in silica planar wave-guide 103

non-dominant UY component, shown in Fig. 4.29(b) has spatial variations of (1, 2), i.e., m =
1 and (n + 1) = 2 in the x and y directions, respectively.

Another higher order mode was also checked for this pattern conformity. For a higher
order UZ

21 mode, shown in Fig. 4.32, the spatial variation of the dominant component UZ

profile for this mode has two well defined half-wave variations (m = 2) along the x-direction
and one half-wave variation (n = 1) along the y-direction. The non-dominant UX profile is
shown in Fig. 4.32(a), which shows three half-wave (m + 1) variations along the x-direction,
and one half-wave (n = 1) variations along the y-direction. Whereas, the UY profile for the
UZ

21 mode, shown in Fig. 4.32(b), has 2 (= m) and 2 (= n + 1) half-wave variations along the
x and y directions, respectively.

(a) (b)

(c)

Fig. 4.33 UX , UY and UZ displacement vectors of the UZ
12 mode.

This similarity in spatial variation pattern can also be observed for longitudinal UZ
12 mode

shown in Fig. 4.33. Where the dominant component UZ shows a spatial variation of (m = 1,
n = 2), its non-dominant UX components has a spatial variation of (2, 2), i.e. (m + 1, n), and
its another non-dominant component UY has a spatial variation of (1, 3), i.e. (m, n + 1).

We can come to a conclusion based on the observations that for any longitudinal acoustic
UZ

mn mode with a dominant UZ component, which has half sine-wave spatial variations of (m,
n), has two other non-dominant UX and UY components having spatial variations of (m + 1,
n) and (m, n + 1), respectively.
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Modal hybridness for longitudinal modes

The variations of the hybridness with the acoustic frequency for the UZ
11 mode is shown

in Fig. 4.34. As this fundamental longitudinal mode has two non-dominant components,
hybridnessess for both are shown. Here the hybridness, HbX , for the longitudinal mode
has been defined as the ratio of the maximum UX vector to the maximum longitudinal
displacement UZ , shown by the solid blue line. The hybridness, HbY , has been defined as the
ratio of the maximum UY vector to the maximum longitudinal displacement UZ , shown by
the solid red line. It is to be noted that as the magnitude of the non-dominant UY component
is higher than that of UX component, the red line lies above the blue line for all the acoustic
frequencies in consideration. It can be observed that as the frequency is decreased both the
modal hybridness increase and reach their maximum values and then reduce as the modes
approach there respected effective cutoff frequencies.
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Fig. 4.34 Variation of modal hybridness of the fundamental longitudinal mode with the
frequency.

The modal hybridness of the UZ
11, UZ

21, and UZ
31 modes are shown in Fig. 4.35. For the

higher order modes the modal hybridness are higher than that of the fundamental UZ
11 mode

that is shown by the solid blue line. Near the acoustic frequency of f = 30 GHz the hybridness
of UZ

11 mode was calculated as 0.0414. For UZ
21 and UZ

31 higher order modes the hybridness
were found to be 0.085 and 0.1269, respectively. With the decrease in acoustic frequency the
hybridness for all these modes increased.

The variation of the modal hybridness of the fundamental UZ
11 mode with the acoustic

frequency for two different guide widths are shown in Fig. 4.36. The solid blue line represents
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Fig. 4.35 Variation of the modal hybridness for the higher order modes with dominant UZ
component.

the hybridness for a guide dimension of 2 µm × 1 µm (W2H1) and the solid red line, that
lies below for all the range of acoustic frequencies, shows the variation in hybridness for a
guide dimension of 4 µm × 1 µm (W4H1). The maximum value of hybridness for W2H1
was recorded as 0.088, which occurs near 8.46 GHz and for W4H1 it was 0.0729 near 6.58
GHz. With the increase in frequency both of these hybridness start to decrease. Near 30
GHz the hybridness for W4H1 was calculated as 0.023. For the guide of dimension W4H1,
with the double width the dominant UZ component gets more space to spread, whereas the
non-dominant UX component localizes at the vertical left and right interfaces, so, there ratio
becomes less than the hybridness in W2H1 dimension for a given frequency, this the reason
the red line lies below the blue line.
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Fig. 4.36 Variation of the modal hybridness of UZ
11 for different width.
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4.4.3 Option III: Quasi acoustic modes for 3% Ge-doped core

A different approach has been incorporated in analysing the acoustic modes for the Option III
mentioned in Table 4.1. Instead of considering the provided longitudinal and shear velocities
for the core and cladding, one set of analyses have been performed by allowing longitudinal
velocities difference in Option I with a step of 10 m/s and another set of analyses have been
evaluated by allowing shear velocities difference in Option II using same step size as before.
In Option III the acoustic modes are formed not purely shear or longitudinal, rather they
are known as quasi-shear or quasi-longitudinal acoustic modes. For a low index contrast
waveguide like this, it is difficult to detect any distinguishable variation in the modes of this
category comparing pure acoustic modes, those are analysed for Options I and II. Rather
we have chosen a different approach to analyse the influence of pure longitudinal modes
on quasi-shear acoustic modes and the influence of pure shear modes on quasi-longitudinal
acoustic modes.

Quasi-shear acoustic modes
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Fig. 4.37 UX , UY and UZ displacement vectors of the fundamental quasi-shear mode.

Considering the set of data given in the Option III of Table 4.1, as it is, UX , UY and UZ

displacement components of fundamental quasi-shear mode at 16 GHz are shown in Fig.
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4.37. It is clear that for this low index contrast waveguide the difference between the pure
fundamental shear mode, shown in Fig. 4.3, and quasi-shear mode is very minor to be stated.
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Fig. 4.38 The dominant UX component of the fundamental quasi-shear mode along x-axis at
16 GHz.

To verify this the variation of the UX components of both the pure shear and quasi-shear
modes along x-axis at 16 GHz are shown in Fig. 4.38. As inset the tip of these profiles are
given, where the red circles denotes the quasi-shear mode variation and the dashed blue line
represent the variation of the pure shear mode. There is hardy distinguishable reduction in
magnitude for the quasi-shear mode that can be noticed.

Let us now, consider a set of analyses by allowing longitudinal velocities difference
in core and cladding with a step of 10 m/s in Option I of Table 4.1. The variations in the
differences of phase shear velocities with the incorporated differences in cladding and core
longitudinal velocities are shown in Fig. 4.39. It is to be noted that to be a weak guide
for the acoustic mode the core longitudinal velocity needs to be smaller than the cladding
longitudinal velocity. A gradual variation in the difference of the shear velocities are noticed,
which is not linear.

The modal hybridness variation of the fundamental quasi-shear mode with the inserted
difference in longitudinal velocities of core and caldding is presented in Fig. 40, where the
hybridness is determined by the ratio of the maximum value of the UX component to the
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Fig. 4.39 Variation in the shear phase velocities difference with the incorporated difference
in longitudinal velocities.

maximum value of the UZ . It is to be noted that the hybridness is exponentially varied for
this case and at △VL = 127, i.e. for the Option III in Table 4.1, the hybridness was measured
as 0.0457.
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Fig. 4.40 Modal hybridness variation with the incorporated difference in longitudinal veloci-
ties.

Quasi-longitudinal acoustic modes

This set of analyses have been chosen by allowing shear velocities difference in core and
cladding of Option II with a step of 10 m/s. The variations in the differences of phase
longitudinal velocities with the incorporated differences in cladding and core shear velocities
are shown in Fig. 4.41. A linear variation in the difference of the longitudinal velocities
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are noticed for this case. But the change in longitudinal velocities was found more than the
change in shear velocities was observed in Fig. 4.39.
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Fig. 4.41 Variation in the longitudinal phase velocities difference with the incorporated
difference in shear velocities.

The modal hybridness variation of the fundamental quasi-longitudinal mode with the
difference in shear velocities of core and cladding incorporated, is presented in Fig. 42,
where the hybridness is determined by the ratio of the maximum value of the UX component
to the maximum value of the UZ . It is to be noted that there is no significant variation in
hybridness upto △VS = 60. After that the change is rapid but almost linear. At △VS = 87, i.e.
for the Option III in Table 4.1, the hybridness for this case was calculated as 0.14658. All the
measurements are made at f = 16 GHz. For this case the increase in hybridness is higher
than that shown in Fig. 4.40.
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Fig. 4.42 Modal hybridness variation with the incorporated difference in shear velocities.
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4.5 Summary

A rigorous analysis of acoustic modes is performed with the help of a full-vectorial acoustic
mode solver by using computationally efficient finite element method. In this chapter, the
advantages of using the symmetry conditions and the type of symmetry walls which can be
used are discussed. It is also shown that by using Aitken’s extrapolation the solution accuracy
can also be improved with the use of finite computer resources. The spatial variations of
the dominant and non-dominant displacement vectors of the longitudinal and shear acoustic
modes are also shown here.

It is shown here that Ge:doped planar silica waveguide can support shear and longitudinal
acoustic modes. Both the longitudinal and shear acoustic modes for a 3% Ge-doped silica
waveguide with dimension 2 µm × 1 µm are regorously studied in this chapter. All these
modes may have either dominant transverse or longitudinal component but also two other non-
dominant components. The optical modes in a waveguide with two-dimensional confinement
are also hybrid in nature, and the modal hybridness increases when index contrast is increased.
To study the complex interaction between the fully hybrid acoustic modes and optical modes,
a full vectorial approach needs to be used, as shown here. The numerical approach presented
here can be used for a wide range of practical optical waveguides with either co- or anti-
guiding acoustic modes to study their acousto-optical interactions.



Chapter 5

Light-sound Interaction in Ge-doped
Planar Silica Waveguide of Moderate
Contrast

5.1 Introduction

Light-sound interaction in Ge-doped silica fibres attracted interest for a very long time due
to their extensive use as SMF [Nikles, 1997; Koyamada, 2004; McCurdy, 2005; Dragic,
2009 and Beugnot, 2012]. Beside the SMF, researcher also concentrated on acousto-optical
interaction in the Ge-doped silica dispersion decreasing fibres (DDF) [Li, 2006], solid core
and Micro-structured fibres [Dasgupta, 2011]. For most of literatures the main concentration
was given in finding the Brillouin gain spectrum (BGS) of these fibres.

In [Koyamada, 2004], the authors use a parabolic profiled Ge-doped silica core of radius
1.2 µm, where the maximum dopant concentration was 22%. The silica cladding radius was
62.5 µm. The BGS measurements were carried out at wavelength, λo = 1.55 µm using a
Brillouin optical time domain reflectometer (ANDO: AQ8603). The authors reported a BGS
with three significant peaks at 9.72 GHz, 10.44 GHz and 11.17 GHz respectively when the
total considered spectral range was from 9.2 to 11.6 GHz.

In [Dasgupta, 2011], a FEM based analysis technique was carried out through a commer-
cial FEM solver (COMSOL, Multiphysics) to investigate the BGS in a step index Ge-doped
silica fibre of radius 2 µm with 9% Ge-doping, to make it a optically single-moded fibre
at wavelength, λo = 1.55 µm. The full width half maxima (FWHM) of the Lorntzian cures
in BGS were arbitrarily considered as 50 MHz. The spectrum range was 9.4 to 11.6 GHz.
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The BGS showed three significant peaks at 10 GHz, 10.5 GHz and 11.11 GHz, which were
identified as spectrum due to acoustic longitudinal modes L01, L02 and L03, respectively.

It is amazingly noticeable that in the literature the contribution of shear acoustic waves
in the Brillouin spectrum have not been mentioned or studied. According to [McCurdy,
2005], the radial material displacement plays a significant role in the SBS interaction in
fibres with a complex radial index profile. Recently, it has been reported [Fernandes, 2015]
to exhibit optical signal switching by the use of flexural acoustic mode generated by the
use of two stacked piezoelectric transducers (PZTs) with orthogonal vibration directions,
which can generate and adjust the spatial orientation of the acoustic flexural mode in a
in-line wavelength selective core switch for multicore fibre. In this case, the transverse plane
material displacements contributed by the flexural acoustic mode was used to achieve the
switching goal. So, it is worthy to investigate the contributions of shear acoustic modes in
Brillouin spectrum. Here, in this chapter, light-sound interactions in a 10% Ge-doped silica
optical waveguide with a dimension of 6 µm × 3 µm embedded in a silica cladding have
been evaluated. The BGS is also determined considering contributions of both shear and
longitudinal acoustic modes.

5.2 Acoustic properties of the core and cladding

The Ge-doping reduces the light velocity in the silica core and increases the refractive
index, as well as, it also reduces the acoustic velocity [Koyamada, 2004]. In a silica planar
waveguide the core is doped with 10% Ge to increase the refractive index. This also increases
the acoustic index of the core when compared to the undoped silica cladding [Li, 2007],
thus this optical waveguide also confines both longitudinal and shear acoustic waves. The
acoustic longitudinal and shear wave velocities and density of the 10% Ge-doped core are
taken as VLG = 5509.67 m/s, VSG = 3474 m/s and ρG = 2342 kg/m3, respectively [Jen, 1986
and Dragic, 2010]. By contrast, for the un-doped pure silica cladding, these are considered
to be VLC = 5933 m/s, VSC = 3764 m/s and ρC = 2202 kg/m3, respectively [Jen, 1986]. As
the velocity of the longitudinal and shear acoustic modes are different, the materials are
effectively ‘anisotropic’ and the resultant acoustic index contrast between core and cladding
are also different. In this case if the cladding acoustic index is taken as 1.0, then the core
acoustic index would be 1.071 and 1.077 for longitudinal and shear modes, respectively. The
height (H) and width (W) of the core are taken as H = 3 µm and W = 6 µm, respectively,
to ensure that optical mode is guided in this waveguide at the operating wavelength (λo) of
1550 nm. For this waveguide a two-fold symmetry is available and this has been exploited
here to obtain better accuracy in their modal solutions for a give computer resource.
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As considered in Chapter 4, here, for this strongly guided Ge-doped silica planar waveg-
uide, the analyses are performed assuming (Option I) the longitudinal acoustic velocities
of Ge-doped silica core and un-doped silica cladding are equal, i.e., VLG = VLC, and then
considering (Option II) the shear acoustic velocities of both the core and cladding are equal,
i.e., VSG = VSC. The first option will ensure only shear acoustic waves exists in the guide,
thus it will be decoupled from the longitudinal acoustic modes, and the second option will
ensure the longitudinal modes remain decoupled, i.e. will remain un-influenced by the shear
modes. Based on the investigation presented in the Section 4.4.3, in Chapter 4, Option III is
not considered for this waveguide. All the longitudinal and shear velocities, densities and
elastic coefficients for core and cladding materials are listed in the Table 5.1.

Table 5.1 Procedural options and acoustic properties of materials for the 10% Ge-doped
planar silica waveguide

Options Velocity (m/s) Density (kg/m3) Elastic Coefficient (GPa)

VL VS ρ C11 C12 C44

Option I Core 5933 3474 2342 82.4395 25.9099 28.2648
Clad 5933 3764 2202 77.5115 15.1170 31.1972

Option II Core 5509.67 3764 2342 71.0948 4.7333 33.1807
Clad 5933 3764 2202 77.5115 15.1170 31.1972

5.3 Option I: Shear acoustic modes for 10% Ge-doped core

As shown in Table 5.1, for Option I, here both the longitudinal velocities in core and cladding
are considered to be equal to have decoupled shear acoustic modes. For this case, △VS

VS
=

0.0770, the material contrast is larger than 3% Ge-doped core. Therefore this waveguide will
act as a better guide for the shear modes.

The displacement vector profiles of the fundamental shear UX
11 acoustic mode, for 10%

Ge-doped core, are shown in Fig. 5.1. Here, the UX component, dominant displacement
vector profile in Fig. 5.1(a) has a Gaussian like shape with maximum material displacement
at the core centre. But, the UY component in Fig. 5.1(b), non-dominant displacement vector
profile, has four peaks near four corners of the cross-section of the waveguide. For the UZ

component in Fig. 5.1(c), another non-dominant displacement vector profile, opposite peaks
are formed near the left and right vertical interfaces with a peak height of 2.77% of the
dominating field profile.
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As it is discussed in Section 4.4.1, here also, it can be observed that for any shear acoustic
UX

mn mode with a dominant UX component, have half sine-wave spatial variation of (m, n),
but its non-dominant UY and UZ components have spatial variations of (m+1, n+1) and (m+1,
n), respectively.
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Fig. 5.1 Displacement vector profiles (a) UX , (b) UY and (c) UZ of the fundamental shear UX
11

acoustic mode.

As it is mentioned earlier, Ge-doping concentration can reduce the acoustic velocity
of the core, which can be verified by observing the Fig. 5.2, where the variation of shear
phase velocity with acoustic frequency for fundamental shear mode UX

11 for both 3% and
10% doping concentrations are shown. Here the solid blue line represents the phase velocity
variation for UX

11 mode in 3% Ge-doped 2 µm × 1 µm dimension core. The solid red
line represents the phase velocity variation for UX

11 mode in 10% Ge-doped 6 µm × 3 µm
dimension core. It can be noted that the phase velocity variation in 10% Ge-doping is more
monotonous at higher frequency range comparing that of the 3% Ge-doped core.

Due to higher doping concentration (10% in this case) of Ge, the acoustic index of the
core is increased sufficiently and thus this waveguide supports higher order longitudinal
and shear acoustic modes. Variations of the phase velocities with the acoustic frequency
for several shear modes are shown in Fig. 5.3. When the frequency is reduced, the phase
velocities of the different shear modes gradually increased. However, at a lower frequency
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11.

this change is rapid as the modes reach their cut-off conditions and their phase velocities
approach those of the cladding velocities, VSC, and beyond that no acoustic mode is guided.
It can be noted that the effective cut-off frequency of a higher order mode appears at a
higher frequency. The variation of the phase velocity of the fundamental shear mode, UX

11,
is shown by a blue line. The higher order longitudinal modes UX

21 and UX
12 are distinct and

are depicted by red and yellow solid lines, respectively. They were different as the height
(H) and width (W) of the guide were not equal. In case of H = W, they would have the same
modal solution and it would be impossible to isolate these degenerate modes. This guide
also supports two near degenerate fundamental shear modes UX

11 and UY
11, but however, as

the symmetry conditions were exploited, these two modes were isolated (as they require
different combinations of the symmetry walls).
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Fig. 5.3 Variations of the phase velocities with the acoustic frequencies for the shear modes.

Dispersion curves of the fundamental shear acoustic UX
11 and UY

11 modes are shown in
Fig. 5.4. Here, the variations of their phase velocities with the acoustic frequencies are
shown. The solid blue line represents the fundamental UX

11 mode. It can be observed that
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when the frequency is reduced the phase velocity increases monotonically and reaches that
of the cladding shear velocity, VCS, as the mode approaches its effective cutoff near 1.167
GHz. It is to be noted that for whole range of acoustic frequencies the phase velocity of the
UY

11 mode, represented by the solid red line, is slightly higher than that of the UX
11 mode. The

effective cutoff frequency of the UY
11 mode was found near 1.71 GHz. As the shear modes

with UY dominant components were discussed in details in Chapter 4 for 3% Ge doped core,
to avoid redundancy, these are not discussed for 10% Ge-doped core.
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Fig. 5.4 Dispersion curves of acoustic shear UX
11 and UY

11 modes in 10% Ge-doped core.

The variations of phase velocities of UX
11 and UY

11 modes with the changing guide width
are shown in Fig. 5.5. As the guide width increases for both modes the phase velocities
decreases, but at the lower range of guide width the change in phase velocities are more
rapid for the change in width. It can be noted that as the guide width increases the difference
between the phase velocities of the two shear modes increases. Here, this difference is termed
as birefringence. Since the importance was given to determine light-sound interactions, while
finding out the acoustic modes for different guide widths the phase matched condition was
ensured.

Figure 5.6 shows this birefringence against the guide width. It clearly shows that the
birefringence increases with the width, but at higher width this birefringence reaches near its
maximum value, it can be concluded that at guide with more than 10 µm, this change will
become insignificant. In Fig. 5.6, the propagation constant for each guide width was chosen
to maintain the phase match with the optical signal.
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5.3.1 Variation of the modal hybridness

The variations of the hybridness with the acoustic frequency for two non-dominant compo-
nents UY and UZ of fundamental shear UX

11 mode are shown in Fig. 5.7. Here the hybridness
for the UZ component has been defined as the ratio of the maximum UZ vector to the maxi-
mum dominant transverse displacement UX for the UX

11 mode, which is shown by the solid
blue line. For the non-dominant UY component, the hybridness has been defined as the ratio
of the maximum UY vector to the maximum dominant displacement UX and shown by a solid
red line. It can be observed that as the frequency is decreased modal hybridness increases for
both the components, but the hybridness of the UZ component is higher, as the UZ component
displacement occupied more space than that of the UY component, which were shown in the
Figs. 5.1(b) and 5.1(c). Near f = 20 GHz the hybridness of UZ component was calculated as
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0.0142 and for UY component it was 0.0003. The increase of hybridness for UY component
after 4 GHz was more rapid and near 2 GHz it was 0.0085, whereas for UZ component it was
0.0928.
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Fig. 5.7 Variations of hybridness with frequency for UX
11 mode in 10% Ge-doped core.

Figure 5.8 compares the variation of the hybridness with frequency for fundamental and
higher order shear acoustic modes for 10% Ge-doped core. The solid red line represents the
hybridness variations for UX

21 mode. Here both the cases the hybridness was measured by the
ratio of the maximum value of UZ component to the maximum value of UX component. It
was found that the hybridness for the higher order mode was higher for the tested range of
frequencies. Near f = 20 GHz the hybridness for UX

21 mode was determined as 0.0286 and
near 2 GHz it was 0.2244.
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The variation of the hybridness in non-dominant components UY and UZ of UX
21 mode

shown in Fig. 5.9, which vary similar way, i.e. the hybridness of UZ component is higher
than that of the UY component, similar as that of the UX

11 mode shown in Fig. 5.7. Near f =
20 GHz the hybridness of UY component was calculated as 0.0227 and near f = 2 GHz it
was 0.0005.
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Fig. 5.9 Variations of hybridness with frequency for UX
21 mode in 10% Ge-doped core.

5.3.2 Spotsize Variation of shear mode

The UX vector profile of the acoustic UX
11 mode varies with the waveguide width, it will

be more clear by comparing the mode profiles for the core dimension of 2 µm × 1 µm in
Fig. 4.3 and that for 6 µm × 3 µm core in Fig. 5.1, although the dopant concentrations and
core hight were different. The variations of the spotsizes along the x and y directions with
the width, W, for the UX profile of UX

11 mode, when propagation constant k = 12 µm−1, are
shown in Fig. 5.10. Here, the acoustic spotsize is considered as the distance along the x and
y-axes where the acoustic displacement profile is approximately equal to the 1/e times of the
maximum value of a given acoustic mode. Here, the guide height is kept constant at H = 3
µm. The spotsize, σX , denoted by a blue line, decreases as the width is decreased but near
the effective cut-off this value start increasing. Whereas, The spotsize, σY , remains almost
constant (as the height was kept constant) as guide width decreases but only near the cut-off,
where the spotsize, σY , increases.
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Fig. 5.10 Variations of spotsizes with width for UX
11 mode in 10% Ge-doped core.

5.4 Option II: Longitudinal acoustic modes for 10% Ge-
doped core

In this section the Option II in Table 5.1 is considered to obtain the longitudinal acoustic
modes in their pure form without being influenced by the shear acoustic modes. Here,
both the shear velocities in core and cladding are considered to be equal and taken as 3764
m/s. For such case as △VL

VL
= 0.0714, i.e., the material contrast is larger than that of the

3% Ge-doped core. It is expected that this waveguide will act as a stronger guide for the
longitudinal modes as well.

This waveguide can guide longitudinal acoustic modes as the cladding longitudinal
velocity is higher than that of the core. It was observed that the spatial variations of the
displacement vector profiles of the longitudinal acoustic modes are different from those of
the shear modes, as observed in Chapter 4. The dominant and non-dominant displacement
vector profiles of the fundamental longitudinal, UZ

11 mode are shown in Fig. 5.11. It can
be observed that its UZ profile has one (m = 1) half-sine variation along the x and similarly
one (n = 1) half-sine variation along the y-directions. On the other hand, the UX profile of
this UZ

11 mode has one additional spatial variation along the x-direction (m = 2) and its UY

profile has one additional variation along the y-direction (n = 2). For a general UZ
mn mode, its

dominant component UZ has (m, n) spatial variations; however its non-dominant UX and UY

components have (m+1, n) and (m, n+1) spatial variations, respectively.
The variations of the phase velocities of the fundamental and higher order longitudinal

modes with the frequency are shown in Fig. 5.12. When frequency is decreased gradually,
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Fig. 5.11 Displacement vector profiles (a) UX , (b) UY and (c) UZ of the UZ
11 acoustic mode.

the velocities of the modes increase from near core velocity to cladding longitudinal wave
velocity until they reaches to their cut-off when changes are rapid. The variations of the
phase velocities of the UZ

21 and UZ
12 modes are shown by a red and a yellow lines, respectively

and they are distinct. It can be observed that the red line lies below the yellow line for the
whole range of the acoustic frequency considered here as the guide width was larger than the
height. Here it can also be observed that a higher order mode reaches its cut-off at a higher
frequency.
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Figure 5.13 shows the variation of the phase velocity of the fundamental longitudinal
mode UZ

11 mode with the change in guide width, at phase matched condition. As the guide
width decreases the phase velocity of the UZ

11 mode gradually increases, at 10 µm guide
width the velocity was calculated as 5527.62 m/s, whereas, at 4 µm it was 5535.67 m/s.

2 3 4 5 6 7 8 9 10
5525

5530

5535

5540

5545

5550

W (µm)

L
o

n
g

it
u

d
in

a
l 
P

h
a

s
e

 V
e

lo
c
it
y
 (

m
/s

)

Fig. 5.13 Variation of phase velocity of UZ
11 mode with width.

5.4.1 Spotsize Variation of longitudinal mode

The acoustic UZ vector profile of the fundamental acoustic longitudinal UZ
11 mode also varies

with the waveguide width. To evaluate this, the propagation constant was not kept the same.
The variations of the spotsizes along the x and y directions with the width, W, for the UZ

profile of UZ
11 mode are shown in Fig. 5.14. Here, the guide height is also kept constant at H

= 3 µm. The spotsize, σX , denoted by a blue line, decreases as the width is decreased but
the spotsize, σY , remains almost constant as the guide height was constant. For Fig. 5.14,
instead of considering fixed propagation constant, phase matched condition was ensured.
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5.5 Optical modes in 10% Ge-doped core

Optical modes are categorised as quasi-TE (quasi transverse electric) or quasi-TM (quasi
transverse magnetic) modes, because those have all the six components of the H and E fields.

A Ge-doped silica planar waveguide can also guide optical signals. A FEM approach
based on the vector H-field formulation can be used for the analysis of the optical modes.
This approach is one of the most numerically efficient and accurate approaches to obtain
the modal field profiles and the propagation constants of the fundamental and higher order
quasi-TE and quasi-TM modes.

Modal solutions of the optical waves in 10% Ge-doped silica planar waveguide, for
a wavelength λo = 1550 nm, are obtained by using a full-vectorial H-field formulation
[Rahman, 1984]. Here refractive indices of core and cladding are taken as 1.459 and 1.444,
respectively. Both quasi-TE and quasi-TM modes can exist in this waveguide, but they have
similar propagation constants and the profiles of their dominant H-fields are also similar.
Although, in this section, some properties of the quasi-TM mode is briefly highlighted, in
this thesis mainly the interaction of the shear and longitudinal acoustic modes with the
fundamental quasi-TE, HY

11 mode are studied.
All three components of the field profiles for the fundamental quasi-TE, HY

11, mode are
shown in Fig. 5.15. The dominant magnetic HY field profile, shown in Fig. 5.15(b), exhibits
a Gaussian like shape with maximum field strength at the centre of the core. Whereas, the
non-dominant HX field profile in Fig. 5.15(a) shows clearly four peaks near four corners of
the transverse plane of the waveguide with the similar peaks (positive or negative) at the
diagonal corner, with a peak height of 4× 10−4. Figure 5.15(c) shows another non-dominant
field HZ profile, where the opposite peaks are formed at the upper and lower horizontal
interfaces with a peak value of 6% of the dominating HY field profile.

With the waveguide width the optical HY field vector profile of the quasi-TE HY
11 mode

varies. The variations of the spotsizes along the x and y directions with the width, W, are
shown in Fig. 5.16. For the optical spotsize, the distance is considered along the x and y-axes
where the optical field vector profile is approximately equal to or higher than the 1/e times
of the maximum value of a given optical field. The spotsize, σOX , denoted by a blue line is
found to decreases as the width is decreased but near the cut-off this value start increasing as
the profile spreads out. Whereas, The spotsize, σOY , increase very slowly, but at lower guide
width, this increment enhances a bit more, due to the spreads out of the profile near cutoff.
Here also, the guide height is kept constant at H = 3 µm.

For optical modes the effective index, ne f f , is defined as,
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Fig. 5.15 HX , HY and HZ field profiles of the fundamental quasi-TE optical mode.
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Fig. 5.16 Variations of spotsizes with width for HY
11 mode in 10% Ge-doped core.

ne f f =
βo

ko
(5.1)

here βo is the optical propagation constant, ko is the optical wavenumber in free space.



5.5 Optical modes in 10% Ge-doped core 125

The optical wavenumber in free space can be defined as,

ko = ωo(εoµo)
1
2 (5.2)

here εo is the permittivity in free space, µo is the permeability in free space and ωo is the
optical angular frequency.

Variations of effective index for both the quasi-TE and quasi-TM modes with guide width
are shown in the Fig. 5.17. The dashed blue line represents the effective index (ne f f ) for the
quasi-TE HY

11 mode and the solid red line represents the ne f f for the quasi-TM HX
11 mode.

With the increase in guide width, both effective indices increases. It can be noted that the
blue dashed line lies slightly above the red solid beyond guide width of 3 µm, as in this
region the guide width is higher than the height of it.
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Fig. 5.17 Variations of ne f f with the guide width for the optical quasi-TE and quasi-TM
modes.

The spotsize area variations for both the quasi-TM, HX
11, and quasi-TE, HY

11, modes with
guide width are shown in the Fig. 5.18. Here the spotsize area is defined as the accumulated
areas of the elements for which the field values are equal or greater than 1/e times the
maximum field value for that mode. It can be noted that for increasing guide width more
after 3 µm, the soptsize area of the quasi-TM mode is higher, as the width of the guide is
higher than the height, which is constant at H = 3 µm. The spotsize areas for both the modes
increase with the increasing guide width. For both the modes the spotsize areas are minimum
at W = 3.2 µm width and calculated as 22.132 µm2 and 22.093 µm2 for HX

11 and HY
11 modes,

respectively. Below 3 µm guide width the spotsize areas for both the modes tends to increase
as the modes reach their respective cutoff frequencies and spread out.
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The variations of the effective index (ne f f ) and effective area (Ae f f ) of the HY
11 mode

with the guide width (W) are presented in Fig. 5.19 by a dashed blue and a red solid lines,
respectively. The mode size area or the effective area (Ae f f ) can be given [Uthman, 2012]
by,

Ae f f =

(∫ ∫
Ωw

|Et |2dxdy
)2∫ ∫

Ωw
|Et |4dxdy

(5.3)

here Et represents the transverse electric field vector and the surface integration is carried out
over the whole cross section, Ωw, of the waveguide.
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Fig. 5.19 Variations of the ne f f and Ae f f of the HY
11 mode with the guide width, W.
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It can be observed that as the waveguide width, W, is reduced, initially the effective area,
Ae f f , reduces and reaches its minimum value of 26.37 µm2 when W = 4 µm. However, if
W is reduced further, its effective area increases rapidly as the optical mode approaches its
effective cut-off condition. Moreover, when the guide width reduces, ne f f gradually falls
from the effective index of a slab with height (H) 3 µm, to the cladding refractive index value.
Below a width of 4 µm, the optical mode spreads out before reaching its cut-off. It should be
noted that as modes spreads out more from the core into the cladding, the scattering loss at
the core-cladding interface, leakage loss, and bending loss (if bent), increase rapidly and it
cannot be used as an effective waveguide.

5.6 Light-sound interaction in 10% Ge-doped silica waveg-
uide

In an optical waveguide, a guided optical signal can be scattered by the nonlinear interaction
between the pump and Stokes fields and an acoustic wave through the SBS process. In such
an event, since both the momentum and energy must be conserved, for a given propagation
constant, βo, of an existing optical mode, the propagation constant, k, of an acoustic mode
can be found [Boyd, 2008] by using,

k = 2βo (5.4)

The SBS gain can be calculated from the overlap integral of the optical field with the
displacement vector profile, U(x,y) [Rakich 2012 and Tartara, 2009], or with the density
variation profile [Pant, 2011]. The density variation profile also holds strong correlation with
the displacement vector profile and this normalized overlap [Rakich 2012 and Tartara, 2009]
can be calculated as:

Γi j =

(∫
|Him|2u jndxdy

)2

∫
|Him|4dxdy

∫
|u jn|2dxdy

; m,n = x,y,z (5.5)

here Him is the mth component of the magnetic field profile (where m may be x, y or z) of the
ith optical mode and u jn is the nth component of the acoustic displacement profile (where n
may be x, y or z) of the phase matched jth acoustic mode. The SBS gain is directly related to
this overlap integral through the elasto-optic coefficient, p12.
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The frequency and the intensity of the backward flow of the pump signal, termed the
Stokes wave, depends essentially on the phase and momentum matching and the overlap
between, respectively, the acoustic and optical waves. This phenomenon is further stimulated
when interference occurs between the Stokes wave and the laser signal and this strengthens
the acoustic wave through electrostriction. Since the scattered light undergoes a Doppler
frequency shift, the SBS frequency, fSBS, depends on the acoustic velocity and this can be
calculated [Agrawal, Book, 2013 and Nikles, 1997] from,

fSBS =
2ne f fV

λo
(5.6)

here, V is the acoustic velocity, λo is optical wavelength and ne f f is the effective index of the
optical mode.

The dominant HY field profile of the quasi-TE mode has similar profile to that of the
dominant UX , UY and UZ vector fields of the fundamental UX

11, UY
11 and UZ

11 acoustic modes,
respectively. The normalized amplitude variations of these profiles along x-axis for W =
6 µm, H = 3 µm, λo = 1.55 µm and k = 11.75 µm−1 are shown in Fig. 5.20. The k value
selected here is the required propagation constant of the acoustic modes phase matched to
quasi-TE optical mode at λo = 1.55 µm. The UX , UY and UZ displacement vector profiles
are almost identical and they were difficult to identify individually. The HY profile of the
quasi-TE mode at λo = 1550 nm is also shown by a solid black line in Fig. 5.20, which
spreads more into the cladding region, compared to the acoustic mode profiles for this specific
case.

Next, the overlap between the fundamental longitudinal, UZ
11 acoustic mode and the

HY
11 optical mode is calculated when varying the waveguide width and this is shown in Fig.

5.21 by the dashed blue line. When the guide width increases, the overlap increases more
prominently at the beginning then reaches near to its maximum overlap value, after which it
increases slowly. The overlap found at 10 µm width was 94%.

As expected, the overlap of UZ displacement vector of the UZ
21 mode (with odd profile)

with the HY field of HY
11 mode (with even profile) was calculated to be zero. Following this,

the overlaps of the dominant HY
11 optical field with the higher order longitudinal UZ

31 acoustic
mode but with symmetric (or even) displacement profiles is also determined and the overlap
variation with the width is shown by a solid (red) line in Fig. 5.21. With the increase in the
guide width, as the mode profile becomes more confined, the overlap decreases. It can be
noted that, for this mode, the maximum overlap was found to be near 2.5%, at the lower
guide width.
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11 mode with the UZ displacement vector of the UZ
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and UZ

31 modes with W.

After determining the propagation constant, βo, of the interacting HY
11 mode, the prop-

agation constant of the acoustic mode can be found using Eq. (5.4). The corresponding
phase velocity, v, of the acoustic mode can then be determined and thus Eq. (5.6) can yield
the SBS frequency. In Fig. 5.22, the SBS frequency shifts with the guide width for the
fundamental longitudinal acoustic mode, UZ

11, and the third order longitudinal, UZ
31 mode are

shown by a solid red and a dashed blue lines, respectively. Here the dashed blue line falls
with the increasing guide width, whereas the solid red line reaches its minimum near the 4



5.6 Light-sound interaction in 10% Ge-doped silica waveguide 130

µm width and rises again with the increase of width, although this variation is, very small,
when compared to the variation for the higher order longitudinal UZ

31 mode.
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Fig. 5.22 SBS frequency shifts for the UZ
11 and UZ

31 modes with waveguide width.

The axial displacement of the material for the longitudinal mode causes a z-dependent
density variation which produces an optical grating and influences the propagation of optical
modes. Alternatively, if the transverse movement of materials is constant then it can cause
bending of the guide. However, as the material displacement in the transverse plane is
not constant, as shown in Fig. 5.1(a), this would also cause a density variation along the
transverse plane. This would create a refractive index gradient with an axial periodicity
related to its wavelength and this may also interact with the optical modes. As the field
profiles of both the dominating fields of the acoustic shear modes are similar to the HY field
profile of the HY

11 mode, their overlap was found to be quite high. Such overlaps can be
calculated by using the normalized form of Eq. (5.5) and shown in Fig. 5.23. It can be
observed from this figure that the overlap of the UX field profile of dominant fundamental
acoustic shear mode UX

11 with the HY field profile of quasi-TE mode becomes higher when
the guide width is wider. At a larger guide width, the UX field profile of UX

11 becomes more
elongated and this profile becomes closer in shape to the optical profile. Furthermore, it can
be noted that the change of the overlap between the UY displacement profile of the UY

11 mode
and HY field profile with the guide width is slightly less than the overlap for the UX

11 mode as
shown here and both of them are considerably lower than that of the UZ

11 mode, which was
shown in Fig. 5.21.

Figure 5.24 shows the value of fSBS for the both fundamental acoustic UX
11 and UY

11 shear
modes. The SBS frequency shift for the UX

11 mode shown by a dashed blue line in Fig. 5.24 is
slightly lower than the SBS frequency shift denoted by red solid line for the UY

11 mode. When
the width increases from 2.8 µm to 10 µm, its optical effective index increases by 0.266%,
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with the width.

while its phase matched acoustic velocity reduces by 0.337%. However, as the dispersion
curves are not linear, this yield a minimum SBS frequency shift between 4-5 µm. In general,
the total ranges of variation of the values of fSBS for both the fundamental shear modes are
quite small (as the numerical values of the changes are only seen in the third digit after the
decimal point).
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Fig. 5.24 Shear SBS Frequency shift with guide width.

For further investigation of the reason of curvature of the SBS frequency shift curve
of both the shear acoustic modes three points on the SBS frequency shift curve of UX

11 at
three different values of width were chosen and shown in Fig. 5.25. These three points are
identified with small red circles and the corresponding acoustic propagation constants were
determined as k1 = 11.7327 µm−1, k2 = 11.7441 µm−1 and k3 = 11.764 µm−1, respectively.
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At these three propagation constants (k1, k2 and k3), the variations of acoustic frequencies
with guide width were determined for UX

11 mode and shown in Fig. 5.26. It can be noted that
the solid blue line represents the frequency variation with the width for constant k1 and it
lies at bottom for the full range of the width, as it is less than both k2 and k3. Figure 5.26
indicates that for any constant k acoustic frequency decreases with increasing guide width.
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It can be noted that for any existing optical mode, when the guide width (W) increases
the optical propagation constant (βo) also increases, Fig. 5.17 would provide an idea about
it following Eq. (5.1). As βo increases, to maintain the phase matching, the acoustic
propagation constant (k) also increases according to Eq. (5.4). Moreover, for any given
waveguide the acoustic frequency increases with the increase of k. However, as the width also
increases, due to these cumulative variations the result is the profile of the SBS frequency
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with the width which was shown in Fig. 5.24. The SBS frequencies shown here are lower
compared to those for the longitudinal modes, shown in Fig. 5.21, as the shear velocity of
the doped SiO2 was lower than that of the longitudinal velocity in the same material.

As the dominant HY field profile of the HY
11 mode and the dominant displacement profiles

of the fundamental acoustic modes are similar, their overlaps would be significant, as shown
in Fig. 5.23. On the other hand, the overlap of this HY field profile of the quasi-TE mode
with the non-dominant displacement vector profiles of the fundamental acoustic longitudinal
and shear modes, which have odd symmetry, will cancel out and the resulting acousto-optical
interactions would be negligible. However, it is expected that the maximum overlap of the
HY field profile with the dominant UX profile of the UX

31 mode will be small, and this was
observed to be around 3.5%, shown in Fig. 5.27.
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SBS frequency shift for the shear and longitudinal third order UX
31, UY

31 and UZ
31 modes

with varying guide width are shown in Fig. 5.28. Although the SBS frequency shift for
the UZ

31 mode was shown in Fig. 5.22, it is again shown here for better comparison. It can
be noted that the SBS frequencies for these third order modes gradually reduces with the
increasing guide width and at W = 6 µm the SBS frequencies for UX

31, UY
31 modes were

calculated as 6.5708 GHz and 6.5705 GHz, respectively.
However, it should be noted that although the overlap of UX profile of the UX

21 mode
with the optical field is zero as the former has odd symmetry, however the non-dominant UZ

profile of this mode may have a considerable overlap, as this displacement vector profile has
an even symmetry. The variations of the overlap of UZ field profile of UX

21 mode with the
width is shown in Fig. 5.29 by a red solid line, where it increases along with the guide width.
It is observed that the non-dominant UZ field profile of UX

21 mode has a near 20% overlap
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31 modes with varying guide width.

with the dominant profile of the quasi-TE mode and this is much higher than the overlap of
the dominant displacement vector of the higher order mode. The SBS frequency shift for this
shear mode is shown by the blue line, and this drops with the increasing width. Previously
it was also observed, in Fig. 5.22, that for the UZ

31 longitudinal mode the value of fSBS also
reduces with the width, but had higher values as its longitudinal and shear velocities were
higher.
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Before calculation of the Brillouin gain coefficients, it is important to have the values of
some parameters for 10% Ge-doped silica waveguide to be established. Among those, △vB,
the Brillouin gain linewidth, which is related to the lifetime (TB) of phonon, i.e. the quanta
of acoustic vibration, in the material. It is the full-width at half-maximum (FWHM) of the
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Lorentzian gain profile [Dasgupta, 2011]. This spectral width can be related to the damping
time of acoustic wave by [Ogusu, 2004] △vB = 1

πTB
. For 10% Ge-doped silica the acoustic

wave damping time can be determined by [Koyamada, 2004],

TB =
10−6

2π (17.5+0.71×w%)
(5.7)

For w = 10, which is the doping concentration in percentage, the phonon decay time can
be calculated as TB = 6.469 ns and that provides △vB = 49.205 MHz. For a given structure,
it is a common practice to assume that △vB to be equal for all acoustic modes and is often
assumed to be around 30-50 MHz for all silica based fibers [Dasgupta, 2011]. The value
49.205 MHz is used as the Brillouin gain linewidth for all acoustic modes for this structure.

The another important parameter is p12, the elasto-optic coefficient. Its value for 3.6%
Ge-doped silica with refractive index, n = 1.4492, was considered to be 0.27 [Beugnot,
2012] for optical wavelength λo = 1550 nm. For silica, the value of p12 = 0.286 [Eggleton,
2013]. It is well known that for binary SiO2 - GeO2 glass the refractive index has a nearly
linear relationship with its molar composition. It was also reported [Dragic, 2013] that for
aluminosilicate optical fiber p12 shows a linear relation with the concentration of alumina in
silica, which is shown in Fig. 5.30.

Fig. 5.30 Photoelastic constant, p12, as a function of alumina concentration in silica [Dragic,
2013].

Considering these, the value of elasto-optic coefficient for 10% Ge-doped silica can be
calculated. From the un-doped and 3.6% Ge-doped silica with the p12 values of 0.286 and
0.27, respectively, the value of photoelastic coefficient, p12, for 10% Ge-doped silica can be
extrapolated as 0.2416, which is shown in Fig. 5.31.
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Fig. 5.31 Photoelastic constant, p12, as a function of GeO2 concentration in silica.

The peak Brillouin gain, gB, can be calculated according to [Eggleton, 2013]:

gB = Γ
4πn8 p2

12
λ 3

o cρ fSBS △ vB
(5.8)

here, Γ is acousto-optical overlap, n is refractive index of the core, p12 is elasto-optic
coefficient, λo is wavelength of the pump, ρ is density of silica, fSBS is Brillouin frequency
shift, c is speed of light at free space and △vB is Brillouin gain linewidth.

At the phase matched condition Γ and fSBS can be calculated from Eqs. (5.5) and (5.6),
respectively as shown earlier. Subsequently using Eq. (5.8), the Brillouin gain coefficient for
the 10% Ge-doped silica waveguide can also be calculated for fundamental and higher order
acoustic waves. Among the fundamental and higher order acoustic shear and longitudinal
modes, which have considerable contributions in Brillouin gain spectrum are only considered
here. Other acoustic modes for being odd symmetric will either cancel out or may have
negligible gain.

At the phase matched condition the value of the acoustic propagation constant can be
calculated as k = 11.7537 µm−1 using Eg. (5.4). The overlap of UZ component of the acoustic
longitudinal UZ

11 mode with the HY field vector of quasi-TE, HY
11, mode was determined

using Eq. (5.5) as 0.9329. It was the highest overlap calculated among all the overlaps with
all other modes at this phase matched condition. The corresponding SBS frequency and
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longitudinal phase velocity were calculated as fSBS = 10.3457 GHz and V = 5530.53 m/s,
respectively. Using Eq. (5.8) the Brillouin gain peak for UZ

11 mode was found as 1.0554 ×
10−11 m/W .

At phase matched condition the SBS frequency and shear phase velocity for the UX
11 mode

were found as fSBS = 6.5245 GHz and V = 3487.81 m/s, respectively. The overlap between
the dominating UX component of the acoustic UX

11 mode with the HY field vector of quasi-TE,
HY

11, mode was found as 0.9228 and the contributed Brillouin gain was calculated as 1.6554
× 10−11 m/W , which is higher than that of the UZ

11 mode, as the acoustic frequency of UZ
11

being higher resulted in lower Brillouin gain peak, following the Eq. (5.8).
The overlap of UY component of the acoustic UY

11 mode with the HY field vector of
quasi-TE, HY

11, mode was found as 0.9193 at fSBS = 6.5255 GHz with a shear phase velocity
of V = 3488.37 m/s. The Brillouin gain peak contributed by this component was calculated
as 1.6487 × 10−11 m/W .

Table 5.2 provides the overlaps, Brillouin gain coefficients, SBS frequencies and corre-
sponding acoustic velocities of the shear and longitudinal acoustic modes at k = 11.7537
µm−1.

Table 5.2 Overlaps and Brillouin gain coefficients for shear and longitudinal fundamental
and higher order acoustic modes.

Mode Component fSBS (GHz) V (m/s) Overlap (Γ) gB (m/W )

UX
11 UX 6.5245 3487.8198 0.9228 1.6554 × 10−11

UY
11 UY 6.5255 3488.3785 0.9193 1.6487 × 10−11

UZ
11 UZ 10.3457 5530.5325 0.9329 1.0554 × 10−11

UX
21 UZ 6.5419 3497.1469 0.143 2.5591 × 10−12

UZ
21 UX 10.3719 5544.5186 0.1459 1.6463 × 10−12

UX
31 UX 6.5708 3512.5854 0.0014 2.6690 × 10−14

UY
31 UY 6.5705 3512.3999 0.0008 1.4065 × 10−14

UZ
31 UZ 10.4153 5567.7168 0.0004 5.3017 × 10−15

The Brillouin gain spectrum (BGS) for 10% Ge-dopoed silica will now be determined
considering the gain spectra due to various acoustic modes are statistically independent
[Dasgupta, 2011]. The frequency dependent Brillouin gain, gB( f ), has a Lorentzian spectral
profile and can be given as [Nikles, 1997]:
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gB( f ) = gB
(△vB/2)2

( f − fSBS)2 +(△vB/2)2 (5.9)

where, gB is the Brillouin gain peak, fSBS is Brillouin frequency shift, and △vB is Brillouin
gain linewidth.

The BGS for the 10% Ge-doped silica waveguide in between 6 to 10.5 GHz is shown in
Fig. 5.32. There are two significant peaks observed, the first peak is due to the contribution
of UX

11, UY
11 modes, and the second peak caused by UZ

11 and UZ
21 modes. Due to compar-

atively larger value of linewidth the peaks of two shear fundamental components are not
distinguishable.
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Fig. 5.32 Brillouin gain spectrum of 10% Ge-doped silica waveguide between 6 GHz to 10.5
GHz.

5.7 Summary

Modal solutions of the fundamental and higher order longitudinal and shear acoustic modes of
a 10% Ge-doped planar silica waveguide are presented in this chapter. These are obtained by
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using a full-vectorial finite element method. The dominant and non-dominant displacement
vector profiles of both the shear and longitudinal acoustic modes are presented. Here existing
symmetries of the waveguide have been exploited, not only to improve the solution accuracy
but also to avoid degeneration of some of these modes. An H-field based full-vectorial
program has also been used to find the optical modes of this waveguide.

Subsequently, as the same finite element mesh topology is used for both the acoustic and
optical modal solutions, the overlap between the acoustic and optical modes were obtained
accurately and more efficiently. Variations of the fSBS and overlaps are shown for the
fundamental and higher order longitudinal and shear acoustic modes with the fundamental
quasi-TE optical mode.

It was observed that all the acoustic modes are hybrid in nature with all the three
components of the displacement vectors being present. It was also shown that the non-
dominant displacement vectors have smaller magnitudes but also have higher order spatial
variations. Further, it was observed that for the fundamental acoustic modes (for both
longitudinal and shear modes) the overlap of the non-dominant displacement vectors (being
anti-symmetric) with the dominant HY profile (of the fundamental quasi-TE mode) is zero.

It was also shown that the non-dominant displacement vector of higher order acoustic
modes can have a symmetric profile and also a considerably higher overlap with the optical
mode. Although the overlap of the dominant displacement vector of a mode with odd spatial
variations was zero with the fundamental quasi-TE mode, but the overlap of its non-dominant
displacement vector was significantly high and cannot be ignored. Shown here that the
overlap of UZ component for the UX

21 is higher than the overlap of UZ component for the UX
31.

Also Brillouin gain coefficients of shear UX
11, UY

11, UX
21, UX

31, UY
31 modes and longitudinal

UZ
11, UZ

21, UZ
31 modes were calculated and presented. Along with these the Brillouin gain

spectrum from 6 GHz to 10.5 GHz is provided, which shows significant two peaks around
6.5245 GHz and 10.3457 GHz.

A rigorous study of light-sound interactions in optical waveguide can be useful in the
development of novel SBS sensors or in the design of optical waveguide to deliver high
power. Thus the results presented have shown that to study light-sound interaction in an
effective way, the use of full-vectorial acoustic and optical modal approaches are necessary.



Chapter 6

High Index Contrast Air-clad Silica
Waveguide

6.1 Introduction

Light-sound interactions in small optical waveguides are considerably complex. The fasci-
nating dynamics of these interactions were realizable in some key areas of modern physics
[Maldovan, 2013], which attracted interests of many researchers recently. Micro and nano-
structured photonic crystal fibres (PCF) could be presented as examples, where tight con-
finement of both light and sound in subwavelength-scale lolid silica glass core provided new
characteristics for Brillouin scattering, these are basically different from those of the stan-
dard optical fibres, which include generation of strongly localized multiple high-frequency
hybrid acoustic shear and longitudinal modes with in the tiny core and five-fold increase in
threshold power [Dainese, 2006]. Another example would be the concept of cavity or surface
optomechanics [Matsko, 2009], which came in highlight after finding the strong light-sound
coupling in optical micro-cavities and these could find applications in many temperature
sensors.

Silica based subwavelength-diameter optical fibres are yet under utilized. Such hair-like
slivers of silica glass can be fabricated by tapering optical fibres. Where the non-linear
effects are enhanced and can find the implications in some areas of sensing where bulky
optical fibres are not that much suitable [Beugnot, 2014, Oct.]. Brillouin scattering in such
small optical waveguides were remain unexplored until recently [Beugnot, 2014, Oct.]. In
that work, the authors presented numerical results incorporating elastodynamics based on
electrostrictive stress on Brillouin scattering in photonic silica microwires (diameter varies
from 1 µm to 1.35 µm), which showed well conformity with the experimental results as well.
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Moreover they claimed first to report the surface acoustic wave Brillouin scattering (SAWBS)
in the backward direction, where the pump wavelength was λo = 1550 nm and showed that
silica photonic microwires reveals many widely spaced Brillouin frequencies (in the range of
near 6 GHz to 10 GHz) which are from hybrid shear and longitudinal waves, as observed in
small-core photonic crystal fibres (PCFs) [Dainese, 2006].

The same group earlier reported [Laude, 2013] elastic energy spectrum of the range
1 GHz to 45 GHz for both forward and backward Brillouin scattering in 1.5 µm × 1 µm
dimension of silica and silicon waveguides separately. Although they presented some selected
acoustic mode profiles, but did not highlight Brillouin gain spectrum at all.

In this chapter, details mode evolution of highly hybrid surface acoustic wave, shear and
longitudinal waves in a 1.5 µm × 1 µm air cladded silica strip optical waveguide is presented.
Along with this, the variation of Brillouin gain coefficient with guide width for each of these
waves and Brillouin gain spectrum from 5 GHz to 10 GHz for this optical waveguide is
presented.

6.2 Waveguide and acoustic properties

A silica strip waveguide having rectangular cross-section with width 1.5 µm and height 1
µm was chosen to ensure the guidance of single optical mode at a wavelength of 1.55 µm.
Figure 6.1 shows the optical waveguide.

W = 1.5 µm

H = 1 µm

Fig. 6.1 An air cladded silica optical waveguide.

This strip waveguide surrounded by air also confines acoustic waves. In this chapter,
acoustic longitudinal and shear wave velocities and density of core are taken as VLG = 5970
m/s, VSG = 3760 m/s and ρG = 2201 kg/m3, respectively [Littler, 2006]. Since air does
not support any shear wave, for the air cladding, its longitudinal velocity and density are
considered to be VLC = 340 m/s and ρC = 1.29 kg/m3, respectively [Jiang, 2011]. For this
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waveguide a two-fold symmetry is available, which has been exploited here to obtain better
accuracy for their modal solutions for a given computer resource.

Table 6.1 presents the list of these acoustic properties used along with the calculated
elastic coefficients for silica and air.

Table 6.1 Material properties of the air cladded silica waveguide

Material Velocity (m/s) Density (kg/m3) Elastic Coefficient (GPa)

VL VS ρ C11 C12 C44

Silica 5970 3760 2201 78.4456 16.2119 31.1169

Air 340 0.0 1.29 149.124 ×10−6 149.124 ×10−6 0.0

6.3 HY
11: Fundamental quasi-TE optical mode

Modal solutions of the optical waves in this air-clad strip silica waveguide, at a wavelength
λo = 1550 nm, are obtained by using a full-vectorial H-field formulation [Rahman, 1985].
Here refractive indices of core and cladding are taken as 1.444 and 1.0, respectively, which
represent a high index contrast optical waveguide. Both quasi-TE and quasi-TM modes can
exist in this waveguide, but they have similar propagation constants and the profiles of their
dominant H-fields are also similar. In this chapter the interaction of the shear and highly
hybrid acoustic modes with the fundamental quasi-TE, HY

11 mode are studied. The HX , HY

and HZ vector field profiles of the quasi-TE optical mode, after exploiting two-fold symmetry
of this waveguide, are presented in Fig. 6.2. The black lines indicates the interfaces between
the air and silica. The non-dominant HX vector quarter field profile is shown in Fig. 6.2(a).
It clearly shows that HX field is near the corner with a peak height of 0.12. This suggests
there will be four peak in the full waveguide. Another non-dominant vector HZ quarter field
profile is shown in Fig. 6.2(c), where half of the upper horizontal interface profile with a
peak value of 0.7 is shown. The dominant magnetic HY quarter field vector profile, which
originally exhibits a Gaussian shape with maximum field strength at the centre of the core, is
shown in Fig. 6.2(b). Its peak magnitude was calculated as close to 2.

The variations of the effective index (ne f f ) and effective area (Ae f f ) of the fundamental
HY

11 mode with the guide width (W) are presented in Fig. 6.3 by a solid blue and a dashed
red lines, respectively.

As the waveguide width (W) reduces, keeping the height constant (H = 1 µm), initially,
the effective area Ae f f reduces and reaches its minimum value of 1.025 µm2 at W = 0.9
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Fig. 6.2 HX , HY and HZ field profiles of the fundamental quasi-TE optical mode (only the
quarter of the waveguide is shown).
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Fig. 6.3 Variation of effective index and effective area of the HY field profile of quasi-TE
optical mode with width, W.
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µm. When W is further reduced, its effective area increases rapidly as the optical mode
approaches its effective cut-off condition. On the other hand, when the guide width reduces,
ne f f gradually falls from the refractive index of the core, to the cladding refractive index
value. Below a width of 0.9 µm, the optical mode spreads out before reaching its effective
cut-off.

After observing the variation of effective area with width in Fig. 6.3, it is obvious that
with the waveguide width the optical HY field vector profile of the quasi-TE HY

11 mode varies.
With the width, W, the variations of the spotsizes along the x and y directions are shown in
Fig. 6.4, where the guide height is kept constant at H = 1 µm. Along the x and y-axes where
the optical field vector profile is approximately equal to or higher than the 1/e times of the
maximum value of a given optical field, that distance is considered as a measurement of
the spotsize. The spotsize, σOX , denoted by a dot-dash blue line in Fig. 6.4. It is found to
decrease as the width is decreased but near the cut-off this value start increasing as the mode
profile spreads out. The minimum spotsize value for it was measured as 1.5 µm at the guide
width of 0.9 µm. Whereas, along the y-axis, the spotsize σOY , remains almost constant with
the decreasing guide width at a magnitude of 1.7714 µm. Below the guide width of 1.1 µm
it starts to increase very slowly. This is due to the spreads out of the profile near cutoff.
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Fig. 6.4 Variations of spotsizes with width for HY
11 mode in air caldded silica strip waveguide.

6.4 Highly hybrid acoustic modes and their evolutions

As stated earlier, acoustic modes in waveguide with two-dimensional confinement are hybrid
in nature. However, the modal hybridness of the acoustic modes found in the high-index
contrast air-clad silica strip waveguide is much higher than that of the acoustic modes in
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embedded Ge-doped silica waveguide, discussed earlier in Chapter 5. The acoustic modes of
this guide are difficult to categorize as pure shear or longitudinal modes. The quasi-shear and
quasi-longitudinal modes may have dominant transverse or longitudinal displacements but
also have displacements in other directions. This is because the air cladding acoustic velocity
is much less than the corresponding core velocities.

6.4.1 Quasi-shear acoustic UX
mn and UY

mn modes

The dispersion curves of acoustic UX
mn modes are shown in Fig. 6.5, they mainly have UX

dominant components. On wards these modes are termed as quasi-shear acoustic modes.
For such quasi-shear acoustic modes the variations of the phase velocities with the acoustic
frequency are shown in Fig. 6.5. The phase velocities of the different quasi-shear modes
gradually increase when the frequency is reduced. However, this change becomes rapid at
a lower frequency, as the modes reach their cut-off conditions and their phase velocities
approach the acoustic longitudinal velocity of the silica. It can be clearly observed that the
cut-off frequency of a higher order mode appears at a higher frequency. The blue solid line
in Fig. 6.5 represents the variation of the phase velocity of the fundamental shear UX

11 mode.
The higher order shear modes UX

12 and UX
21 are distinct and are depicted by red and green

solid lines, respectively. As the height (H) and width (W) of the guide were not equal, these
modes were different. In case of H = W, it would be impossible to isolate these degenerate
modes, as they would have the same modal solution, unless we exploit structural symmetry
boundary conditions.
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Fig. 6.5 Variation of the phase velocities with the acoustic frequencies for the fundamental
and higher order acoustic quasi-shear modes.
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The acoustic mode profile in a high index contrast silica waveguide is complex and this
also transforms with the frequency. The displacement vector profiles of the fundamental
acoustic quasi-shear mode, UX

11, has quite different displacement distribution and their spatial
variations along the x or y-directions inside the core. To illustrate it clearly, both the contour
and coloured vector displacement profiles of UX component of the fundamental quasi-shear
UX

11 acoustic mode at 21 GHz are shown in Fig. 6.6.
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Fig. 6.6 (a) Contour and (b) coloured, vector displacement profiles of UX component of the
fundamental quasi-shear UX

11 acoustic mode at 21 GHz.

Its dominant component, UX , has nearly Gaussian distribution along the x-axis, but with
damped oscillations at the core-cladding interfaces. To illustrate this clearly, its variation
along the x-direction is shown in Fig. 6.7(a). The damped oscillation, shown here, starts
with a slightly deep displacement with sign opposite of the Gaussian peak. Along y-axis
this displacement is nearly constant inside the core, reduced sharply at the upper and lower
interfaces and similar damped oscillations at the interfaces were observed, which is shown in
Fig. 6.7(b).
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Fig. 6.7 Variations of the of UX component of the fundamental quasi-shear acoustic UX
11

mode along (a) the x-axis and (b) the y-axis at 21 GHz.
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At higher frequencies, this displacement at the interfaces are much more spreaded along
the vertical boundaries. But, when the frequency starts to decrease, the magnitude of the
damped oscillatory peaks start increasing and also start localizing near the left and right
vertical interfaces inside the core, as shown in Fig. 6.8(a). Near 8 GHz frequency the positive
and negative amplitudes of displacements along x-axis become almost equal and it is shown
in Fig. 6.8(b).
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Fig. 6.8 (a) Vector displacement profile and (b) variations of amplitude along x-axis of UX
component of the fundamental quasi-shear acoustic mode UX

11 at 8 GHz.

Whereas, along y-axis, magnitude of the negative displacement reaches one-third of the
positive peak and the earlier near flat peak, shown in Fig. 6.7(b), ends up with a sag of 12.5%
of the peak amplitude at the center, as shown in Fig. 6.9.
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Fig. 6.9 Variations of amplitude along y-axis of UX component of the fundamental quasi-shear
acoustic mode UX

11 at 8 GHz.

The evolution of the fundamental acoustic quasi-shear mode, UX
11, continues further down

the frequency until it reaches its effective cutoff. Figure 6.10(a) shows the displacement
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vector profile of the UX component of the UX
11 mode near 4 GHz frequency. It can be observed

that the displacement depth at the vertical interfaces decreased, spreaded again and localized
at the corner of the interfaces, while it losses its sharpness, but still it maintains its Gaussian
like peak, which is shown in Fig. 6.10(b). Along the y-axis, the sag at the center of the
peak reduces further by 2% of the peak amplitude and forms a wavy shape, as shown in
Fig. 6.10(c). It was observed that at the higher mesh density, in few cases, some noise was
generated and speckle of noise patterns were present outside the core with the acoustics
mode profiles, as can be seen in Figs. 6.8(a) and 6.10(a), respectively. In these cases, while
plotting magnitude variation along y-direction, the natural damped oscillation of the acoustic
vibration those were present beyond the core-cladding interfaces were overshadowed with
these noise speckles and resulted in unequal damping patterns in right and left side of the
displacement magnitude variation plots shown in Fig. 6.9 and Fig. 6.10(c).
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Fig. 6.10 (a) Vector displacement profile, variations of amplitude (b) along x-axis and (c)
along y-axis of UX component of the fundamental quasi-shear acoustic mode UX

11 at 4 GHz.
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On the other hand, displacement profile of non-dominant UY component of the fundamen-
tal quasi-shear acoustic UX

11 mode shows multiple peaks at the upper and lower interfaces
unlike that of the distribution profile observed in low index contrast Ge-doped silica waveg-
uide, discussed Chapter 4. The displacement vector profile of UY component of the UX

11

mode at 21 GHz is shown in Fig. 6.11. Where eight peaks of half-sine spatial variations
with consecutive maxima and minima are formed both in the upper and lower horizontal
interfaces.
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Fig. 6.11 Vector displacement profile of UY component of the fundamental quasi-shear
acoustic mode UX

11 at 21 GHz.

The variations of amplitude of this UY component of the fundamental quasi-shear acoustic
mode UX

11 along x-axis and y-axis are shown in Figs. 6.12(a) and 6.12(b), respectively. The
positions of the lines were selected in the middle along x-axis and through the peaks along
y-axis. Where the Fig. 6.12(a) reveals that there are significant amount of displacement
present at the left and right vertical interfaces as well and at the core centre the displacement
is near zero.

Figures 6.13(a) and 6.13(b) show the UY component vector displacement profiles of the
UX

11 mode at 20 GHz and 10 GHz, respectively. The hybridness of the UY component with
respect to the dominant UX component was observed to be 0.032 at near 20 GHz, which
increases with the decreasing frequency. It can be observed that at 20 GHz, the number of
half-sine spatial variations at the upper and lower interfaces was 8 as shown in Fig. 6.13(a),
but slightly increased in width comparing those shown in Fig. 6.11. When the frequency
decreases this number reduces to 4 at 10 GHz, shown in Fig. 6.13(b), where the width of the
half-sine peaks spreads more. These can be seen clearly in Fig. 6.14, where the variations
of amplitude along y-axis of UY component of the UX

11 mode are shown at 20 GHz, in Fig.
6.14(a) and at 10 GHz, in Fig. 6.14(b).



6.4 Highly hybrid acoustic modes and their evolutions 150

(a) (b)

Fig. 6.12 Variations of amplitude (a) along x-axis and (b) along y-axis of UY component of
the fundamental quasi-shear acoustic mode UX

11 at 21 GHz.

(a) (b)

Fig. 6.13 Non-dominant UY displacement profiles of the fundamental quasi-shear UX
11 acoustic

mode (a) at 20 GHz and (b) 10 GHz.

If the frequency is reduced further, the half-sine peaks at center stretched out and push
the peaks at the interface corner, making them smaller, that is starts visible at 8 GHz [as
shown in Fig. 6.15(a)], where the hybridness increases to 0.11. Central four-peaks are pushed
further down to the corner of the interface with further decrease of frequency, which is quite
visible near 4 GHz [as shown in Fig. 6.15(b)], while their half-sine width spread further
more and near cutoff there remains only four half-sine variations in the core. Near 4 GHz the
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(a) (b)

Fig. 6.14 Variations of amplitude along y-axis of UY component of the fundamental quasi-
shear acoustic mode UX

11 at (a) 20 GHz and (b) 10 GHz.

hybridness was found to be 0.14. Only at lower frequencies, it may have only 4 peaks at four
corners similar to that shown earlier, in Chapter 4, for a small-index contrast Ge-doped silica
guide. However, as discussed here, the evolution of displacement profile with frequency is
more complex for a high-index contrast acoustic waveguide.
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Fig. 6.15 Vector displacement profiles of UY component of the fundamental quasi-shear UX
11

acoustic mode (a) at 8 GHz and (b) 4 GHz.

Unlike the UY component, the displacement profile of the other non-dominant UZ compo-
nent of the fundamental quasi-shear acoustic mode, UX

11, partially resembles the displacement
profile of the dominant component, except that the number of spatial variation is two. Here,
also, the damped oscillation is present at the core-cladding interfaces. The depth of displace-
ments at the interfaces are small and much more spreaded along the interfaces at the higher
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frequency (at 21 GHz), as shown in Figs. 6.16(a) and 6.16(b). Figure 6.16(c) shows the
amplitude variation of the UZ component of the UX

11 mode along the x-axis at 21 GHz.
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Fig. 6.16 (a) Coloured, (b) contour of the vector displacement profile and (c) variations of
amplitude along x-axis of UZ component of the UX

11 mode at 21 GHz.
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Figure 6.17(a) shows the coloured displacement profile of the UZ component of the
fundamental quasi-shear mode, UX

11, at a lower frequency, 10 GHz. When the frequency
decreases further, with the increase in depth of the first peaks of oscillations at the interfaces,
as observed in the dominant component, these are also start to become localized near the
centres of vertical interfaces as shown in Fig. 6.17(b), which is at 8 GHz. However, two
peaks of spatial variation at centre of the core reduce further and become less than the spiky
peaks at vertical interfaces with the further more decrease in frequency. In addition, sharp
displacements at the four corners of the guide become more noticeable around 4 GHz. Both
the displacement vector profile of the of the UZ component of the UX

11 mode and its variation
along x-axis at 4 GHz frequency are shown in Fig. 6.18.
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Fig. 6.17 Vector displacement profiles of UZ component of the fundamental quasi-shear UX
11

acoustic mode (a) at 10 GHz and (b) at 8 GHz.
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Fig. 6.18 (a) Vector displacement profile and (b) variations of amplitude along x-axis of UZ
component of the UX

11 mode at 4 GHz.

Vector displacement profiles of the UX , UY and UZ components of the higher order
acoustic UX

21 mode at 21.137 GHz for propagation constant k = 35 µm−1 are shown in
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Fig. 6.19. The dominant UX component of this hybrid mode has 2 consecutive maxima
and minima along the x-axis, each spreads vertically with almost constant amplitude of ±
0.025, as shown in Fig. 19(a), but has significant displacements along the left and right
vertical interfaces, as seen earlier in Fig. 6.7(b) for the fundamental UX

11 mode. Whereas,
the non-dominant UY component, as shown in Fig. 6.19(b), has 9 consecutive maxima and
minima peaks along both upper and lower horizontal interfaces, this number was 8 at higher
frequency for the UY component of the fundamental quasi-shear mode as shown in Fig.
6.13(a). The another non-dominant UZ component in Fig. 6.19(c) has 3 spatial variation
along the x-axis with peak height of 20% of that of the dominant displacement field and also
has significant displacements along the left and right vertical interfaces .
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Fig. 6.19 Vector displacement profiles of (a) UX , (b) UY and (c) UZ components of the UX
21

mode at 21.137 GHz.

This pattern of the spatial variations in the components of the higher order acoustic
modes were found similar for those modes having higher variations along the x-axis in their
fundamental components. This can be verified observing the Fig. 6.20, which shows all
three displacement components of the UX

31 mode at 21.37 GHz frequency and at propagation
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constant of k = 35 µm−1. It can noticed that for this mode, the dominant UX component,
shown in Fig. 6.20(a), has 3 consecutive minima and maxima, where as the non-dominant
UZ component, shown in Fig. 6.20(c), has 4 consecutive minima and maxima. The another
non-dominant UY component, as shown in Fig. 6.20(b), has 10 consecutive maxima and
minima peaks along both upper and lower horizontal interfaces.
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Fig. 6.20 Vector displacement profiles of (a) UX , (b) UY and (c) UZ components of the UX
31

mode at 21.37 GHz.

Figure 6.21 shows the dominant UX and non-dominant UZ components of the acoustic
UX

41 mode at 21.69 GHz, here also the propagation constant was k = 35 µm−1. Here also the
similarity in the spatial variation patterns can be noticeable.

But, for the higher order quasi-shear modes, those have larger spatial variation along
the y-axis instead of the the x-axis in their dominant components, show a little different
variations in mode spreading pattern. Here, the maximum or minimum peak has tendency to
localize at the centre instead of spreading with constant amplitude horizontally. It would be
more clear by observing Fig. 6.22(a) that shows the dominant UX component of the acoustic
UX

12 mode at propagation constant k = 35 µm−1. The non-dominant UY component, as shown
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Fig. 6.21 Vector displacement profiles of (a) UX and (b) UZ components of the UX
41 mode at

21.69 GHz.
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Fig. 6.22 Vector displacement profiles of (a) UX , (b) UY and (c) UZ components of the UX
12

mode at 21.0766 GHz.
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in Fig. 6.22(b), has 9 consecutive maxima and minima peaks along both upper and lower
horizontal interfaces, as it is seen in the UY component of the acoustic UX

21 mode in Fig.
6.19(b). Whereas, the UZ component has four peaks at the four corners of the interfaces.

Figure 6.23, shows the displacement vector profiles for the UX , UY and UZ components
of the higher order acoustic UX

13 mode at 21.3266 GHz for propagation constant k = 35 µm−1.
The UX component in Fig. 6.23(a) shows one half sine wave variation along x-direction and
along y-direction the variation is three. The non-dominant UY component, as shown in Fig.
6.23(b), has 10 consecutive maxima and minima peaks along both upper and lower horizontal
interfaces. Whereas, the non-dominant UZ component has three consecutive minima and
maxima along y-direction and two along x-direction with significant displacements at the left
and right interface boundaries, as shown in Fig. 6.23(c).
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Fig. 6.23 Vector displacement profiles of (a) UX , (b) UY and (c) UZ components of the UX
13

mode at 21.3266 GHz.

This guide also supports two near degenerate fundamental shear modes, UX
11 and UY

11.
By using the symmetry conditions these two modes were isolated as they require different
boundary combinations at the symmetry walls. The variation of the phase velocities with
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acoustic frequency for the two fundamental acoustic shear modes, UX
11 and UY

11, are shown
together in Fig. 6.24. Phase velocity of any UX

mn mode is different than that of the UY
mn mode

as for this guide W ̸= H. This introduces modal birefringence, here they can be denoted by
the difference between their phase velocities. It was observed that the modal birefringence
increases with the reduction of frequency.

2 4 6 8 10 12 14 16 18 20
3700

3900

4100

4300

4500

4700

4900

5100

5300

5500

5700

U
X
11

U
Y
11

Frequency (GHz)

P
h
a
s
e
 V

e
lo

c
it
y
 (

m
/s

)

Fig. 6.24 Variations of the velocities with the acoustic frequencies for the two near degenerate
fundamental acoustic quasi-shear UX

11 and UY
11 modes.

The vector displacement profiles of UY
11 mode are similar to that of UX

11 modes, except,
the directions are reversed. The displacement profile of dominant UY component of the UY

11

mode is constant along the x-axis and near Gaussian along the y-axis. These are shown in
Fig. 6.25.

As the frequency starts to decrease, the constant horizontally distribution of displacement
of the UY component of the UY

11 mode along the x-axis takes wavy shape at lower frequencies.
It can be noticeable in Fig. 6.26(a) at propagation constant k = 13 µm−1 and f = 8.38
GHz. Whereas, along the y-axis the displacement along the upper and lower interfaces
increases significantly, almost more than double, and at the core centre the peak magnitude
remain same as it maintains its Gaussian like shape, but with damped oscillation beyond the
interfaces, as shown in Fig. 6.26(b).

For the non-dominant UX component the spatial variations appeared along the vertical
side walls. Since, for the core, H is less than W, the number of half-sine spatial variations at
both vertical interfaces, for UX component, was found to be 6 at higher frequency and shown
in Fig. 6.27.

This number of half-sine spatial variations at both vertical interfaces, for UX component
reduces to 4 as mode approaches towards its cutoff frequency. Figure 6.28 shows the
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Fig. 6.25 (a) Vector displacement profile and variations of amplitude along (b) x-axis and (c)
y-axis of UY component of the UY

11 mode at 21.0686 GHz.

displacement vector profile of the UX component of the UY
11 mode at 8.38 GHz when the

propagation constant was calculated as k = 13 µm−1.
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Fig. 6.26 (a) Vector displacement profile and variations of amplitude along (b) x-axis and (c)
y-axis of UY component of the UY

11 mode at 8.38 GHz.

X (µm)

Y
 (

µ
m

)

 

 

5.5 6 6.5 7 7.5 8
5.5

6

6.5

7

7.5

−1

−0.5

0

0.5

1

1.5
x 10

−3

Fig. 6.27 Vector displacement profile of UX component of the UY
11 mode at 21.0686 GHz.
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Fig. 6.28 Vector displacement profile of UX component of the UY
11 mode at 8.38 GHz.
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Whereas for the non-dominant UZ component the spatial variations appeared along the
horizontal side walls, shown in Fig. 6.29(a), with significant displacements spread along the
upper and lower horizontal interfaces, as shown in Fig. 6.29(b), at the higher frequency.
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Fig. 6.29 (a) Vector displacement profile and (b) variations of amplitude along y-axis of UZ
component of the UY

11 mode at 21.0686 GHz.

When the frequency starts to reduced, both the interfaces displacements along with the
positive and negative peaks along the horizontal side walls start to increase in magnitude. As
shown in Fig. 6.30(a), at 8.38 GHz frequency the magnitudes of the interface displacements
were found to be more than three times as seen in Fig. 6.29(b) and the magnitudes of the
positive and negative peaks along the horizontal side walls increased by 2.7 times comparing
those at higher frequency 21.0686 GHz. As the frequency starts to decrease further, the
interfaces displacements start to decrease but the magnitudes of the positive and negative
peaks along the horizontal side walls keep increasing and near cutoff frequency around 5.1957
GHz, the interfaces displacements disappear, whereas the positive and negative peaks reaches
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Fig. 6.30 Vector displacement profile of UZ component of the UY
11 mode at (a) 8.38 GHz and

(b) 5.1957 GHz.
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Fig. 6.31 Vector displacement profiles of (a) UX , (b) UY and (c) UZ components of the UY
21

mode at 21.4262 GHz.
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a magnitude of ten times higher as seen in higher frequency. The variation of displacement
along the y-axis of the UZ component at 5.1957 GHz shown in Fig. 6.30(b).

For the higher order UY
mn modes with dominant UY components the displacement profiles

are different when m < n then those where n < m, unlike those were seen in case of
UX

mn modes, as the displacement profiles in Figs. 6.19, 6.20 and 6.21 are different than in
Figs. 6.22 and 6.23, where it varies in opposite manner. For any UY

mn mode with n < m,
the displacement profiles of the dominant UY field and non-dominant UZ field will vary as
seen earlier in dominant UX and non-dominant UZ fields in Figs. 6.22 and 6.23, except, the
directions are reversed. Similarly, in Fig. 6.31(b), which shows the displacement profile
UY of the UY

21 mode at 21.4262 GHz and k = 35 µm−1, are differently distributed. Here,
the dominant displacement field has a tendency to localize at centre, instead distributing
vertically with constant magnitude. For the UZ displacement vector field profile the positive
and negative peaks formed at the corner of interfaces, which is shown in Fig. 6.31(c).

Hybridness of the fundamental quasi-shear modes

As stated earlier, the hybridness for the component along the direction of propagation of any
mode is considered to be important. The hybridness of the both fundamental quasi-shear
acoustic UX

11 and UY
11 are shown in Fig. 6.32, where the hybridness are calculated from the

ratio of non-dominant UZ field’s maximum displacement value to the values of corresponding
dominants fields maximum displacements. It can be noticed that the hybridness for the UY

11

mode, which is represented by the dashed red line, is higher than that of the UX
11 mode, shown

by the solid blue line, for any given acoustic frequency between 20 GHz to cutoff.
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11 modes.
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Figure 6.33 shows the variation of the modal hybridness of the UZ component of the
acoustic UX

11 mode with respect to its dominant field profile with the varying silica guide
width. Although in Fig. 6.32 the hybridness for both the transverse components were shown,
but it was at a fixed guide width, whereas at a fixed propagation constant, k = 10 µm−1, the
hybridness of the UZ component of the acoustic UX

11 mode is shown in Fig. 6.33. At 2.5µm
width, the hybridness was near 0.19, which increases with the reduction in guide width and
at 1.5µm the hybridness is 0.32. It rises further with the reduction of the width of the guide
and at 0.7µm the hybridness is 0.81.
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Fig. 6.33 Variation of hybridness of the UX
11 acoustic mode with W at k = 10 µm−1.

6.4.2 Surface acoustic mode UHZ
11

In this chapter, the emphasis are given to analyses of those acoustic modes, which may have
significant contribution towards Brillouin gain spectrum in air-clad strip silica waveguide. In
addition to the quasi-shear modes, this air-clad silica strip waveguide also supports another
set of hybrid modes, having comparative larger hybridness with different spatial distribution
and evolution pattern. Among which, at lower frequency range, one mode was particularly
observed to have spatial variations similar to that of the UZ

11 mode discussed in Ge-doped
silica waveguide in Chapters 4 and 5, except that, rather its UY component was found
dominant. Subsequently, this highly hybrid mode is identified here as the UHZ

11 mode, which
appeared as surface acoustic wave at higher acoustic frequency.

In general, in the standard optical fibres light is sensitive solely to longitudinal and shear
bulk acoustic waves, which leads to well-known common non-linear effects like stimulated
Brillouin scattering (SBS) and guided acoustic wave Brillouin scattering (GAWBS). Whereas,
in sub-wavelength optical waveguides the situation changes dramatically [Beugnot, 2014,
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Oct.]. Because the guided light and the evanescent field see the outer surface, thus the guided
light can shake the waveguide by the process of electrostriction that generates the surface
acoustic waves (SAW). Thus the associated propagating surface ripples will then lead to
small periodic changes of the effective refractive index along the optical waveguide. Then
guided light undergoes Bragg scattering according to the phase matching condition in the
backward direction when passing through the moving refractive index surface grating, as link
the SBS in optical fibres due to the longitudinal acoustic waves. This backscattered light also
experience a small shift in its frequency due to Doppler effect according to the light-sound
energy conservation. The velocity of the surface acoustic waves significantly differs from
those of the shear and longitudinal acoustic modes. Surface acoustic wave travels between
0.87 and 0.95 times the velocity of a shear acoustic wave [Beugnot, 2014, Oct.]. It is to be
noted that for this waveguide the shear acoustic velocity was considered as 3760 m/s for
silica.

The dispersion curve of the highly hybrid acoustic UHZ
11 mode is shown in Fig. 6.34. It

can be observed that the phase velocity of this mode around 20 GHz frequency was found
near 3419 m/s, whereas the shear acoustic velocity of silica is 3760 m/s. So, its velocity was
found between the values, as stated earlier. In an optical microwire of 1 µm dia, this valocity
was reported [Beugnot, 2014, Oct.] as 3400 m/s. In the air-clad strip waveguide, with the
decrease in frequency the change in phase velocity of this mode was found insignificant,
whereas after 6 GHz acoustic frequency the phase velocity started to change gradually and
the change become notably rapid after 4 GHz of acoustic frequency. This rapid change in
velocity enhances the evolution of the modal displacement profiles. In the lower range of
acoustic frequencies this wave was found to be as bulk wave rather than surface acoustic
wave.

The spatial profile of the vector UY displacement of UHZ
11 mode at 3.24 GHz is shown in

Fig. 6.35(a). It can be observed that this component possesses damped oscillations starting
from the upper and lower horizontal interfaces. Its spatial variation in the core along the
y-direction was observed to have an odd-symmetry with zero displacement at the center and
maximum, with a magnitude about 0.02, at the horizontal interfaces. As if, both peaks are
clipped from the maximum points, as shown in Fig. 6.35(b). The ratio of the first peak of the
damped oscillation to the main peak (peak ratio) was calculated to be 0.5 at frequency 3.24
GHz, which reduces as the frequency increases.

Similarly, the UX component of this highly hybrid mode have a similar pattern as UY

component, but with an odd symmetry along the x-direction. The spatial profile of the vector
UX displacement of UHZ

11 mode at 5.71 GHz is shown in Fig. 6.36(a). This component also
possesses damped oscillations at the left and right vertical air-silica interfaces. Figure 6.36(b)
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Fig. 6.34 Variations of phase velocity with acoustic frequencies for the highly hybrid acoustic
mode UHZ

11 .
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Fig. 6.35 (a) Vector displacement profile and (b) amplitude variations along the y-axis of UY
component of the highly hybrid acoustic mode UHZ

11 at 3.24 GHz.

shows the variation of the displacement of this component along x-direction, where the ratio
of the first peak of the damped oscillation to the main peak (peak ratio) was calculated to be
0.3429. Whereas, at 3.24 GHz frequency the peak ratio was observed to be 0.46 with main
peak amplitude of 0.005.

The spatial variation of UY component of UHZ
11 mode starts to localize at the centre of

upper and lower horizontal interfaces when frequency increases. At f = 5.71 GHz the vector
displacement profile of UY component is shown in Fig. 6.37(a), where it has peak amplitude
of 0.025 with the peak ratio of 0.3125. The resultant vector displacement profile at transverse
plane, UT , of this mode at 5.71 GHz frequency is shown in Fig. 6.37(b), which matches
exactly with the transverse displacement profile in an air-clad silica strip waveguide of the
same dimension at the same frequency reported in [Laude, 2013] that is shown in Fig. 6.38.
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(a) (b)

Fig. 6.36 (a) Vector displacement profile and (b) amplitude variations along the x-axis of UX
component of the highly hybrid acoustic mode UHZ

11 at 5.71 GHz.

Here UT is the resultant transverse vector was found by vectorically adding UX and UY

displacement profiles.
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Fig. 6.37 Vector displacement profiles of (a) UY component and (b) transverse plane compo-
nent UT of the highly hybrid acoustic mode UHZ

11 at 5.71 GHz.

As frequency increases further, at 20.13 GHz the peaks of UY , with amplitude 0.6,
become more localized at the centers of upper and lower horizontal interfaces, as shown in
Fig. 6.39(a), and get narrower with a near zero displacement value at the center, as can be
seen in Fig. 6.39(b). Where, the peak ratio reached a value of 0.3.

But for the UX of the UHZ
11 mode with the increase of frequency, the tendency of its

displacement profiles were found to be concentrated along the both left and right vertical
interfaces instead localizing at the centre that was observed for the UY component. Near f =
10.355 GHz, the displacement profile of the UX component is shown in Fig. 6.40(a) and its
variation along the x-direction is shown in Fig. 6.40(b).
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Fig. 6.38 Transverse plane displacement component of the highly hybrid acoustic mode at
5.71 GHz [Laude, 2013].
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Fig. 6.39 (a) Vector displacement profile and (b) amplitude variations along the y-axis of UY
component of the highly hybrid acoustic mode, UHZ

11 at 20.13 GHz.

With the further increase of frequency the displacement profiles of the UX component get
more compact along the left and right vertical interfaces and the peak ratio started to drop
but the peak amplitude increases. At 20.13 GHz, when the main peak amplitude was 0.018,
the peak ratio was found 0.28. Near f = 20.13 GHz, with propagation constant k = 37 µm−1,
the displacement profile of the UX component is shown in Fig. 6.41(a) and its variation along
the x-direction is shown in Fig. 6.41(b).

The coloured vector displacement profile of UZ component of UHZ
11 mode at frequency

3.24 GHz is shown in Fig. 6.42(a). It has the most interesting evolution pattern among all the
components of the UHZ

11 acoustic mode. At 3.24 GHz frequency, its amplitude variation along
the x-direction through the center of the waveguide, shown in Fig. 6.42(b), has a ‘U’ shaped
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Fig. 6.40 (a) Vector displacement profile and (b) amplitude variations along the x-axis of UX
component of the highly hybrid acoustic mode UHZ

11 at 10.355 GHz.
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Fig. 6.41 (a) Vector displacement profile and (b) amplitude variations along the x-axis of UX
component of the highly hybrid acoustic mode UHZ

11 at 20.13 GHz.

peak of amplitude 0.0125 with damped oscillations at the left and right interfaces, having
peak ratio of 0.12. Whereas the amplitude variation along y-direction showed a similar
damped oscillation but with a very high peak ratio of 0.8.

At a higher frequency, 4.53 GHz, the peak starts to become flat along the x-direction
but with a reduced amplitude of 0.0082 and a higher damped oscillation peak, where the
peak ratio was found as 0.244. The variation of amplitude of the UZ component along the
x-direction is shown in Fig. 6.43(a). Along y-direction, shown in Fig. 6.43(b), the shape of
the peak remain similar but the height of the damped oscillation increased significantly with
a peak ratio of 1.585.

Af f = 5.71 GHz, the peak of the amplitude variation of UZ component along y-direction
started to flatten, whereas along x-direction it had a sag of 6.4% of the peak amplitude, as
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Fig. 6.42 (a) Vector displacement coloured profile and (b) variations of amplitude along
x-axis of UZ component of the highly hybrid acoustic mode UHZ

11 at 3.24 GHz.
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Fig. 6.43 Variations of amplitude along (a) x-axis (b) y-axis of UZ component of the highly
hybrid acoustic mode UHZ

11 at 4.53 GHz.

shown in the Fig. 6.44(b). The peak ratio was found to be 1.29 and 2.42 along horizontal
and vertical interfaces, respectively. Figure 6.44(a) represents the colour displacement vector
profile of this UZ component, which matches very well with the axial displacement profile of
the mode reported in [Laude, 2013] at the same frequency, which is shown in Fig. 6.45.

For further increase in frequency, the peak of UZ component starts to decrease, whereas
the first peak of the damped oscillation increases in magnitude significantly. The peak along
y-direction started to have sag around 7.12 GHz. Figure 6.46 shows the variation of amplitude
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Fig. 6.44 (a) Vector displacement coloured profile and (b) variations of amplitude along
x-axis of UZ component of the highly hybrid acoustic mode UHZ

11 at 5.71 GHz.

Fig. 6.45 Axial displacement component of the highly hybrid acoustic mode at 5.71 GHz
[Laude, 2013].

of the UZ component along the x and y-directions at 7.12 GHz frequency. These changes
continue further when frequency is increased.

At 20.13 GHz, the earlier peak of UZ component become almost zero inside the core,
whereas the first peak of the damped oscillation attained a magnitude of 0.0122 and 0.045
along horizontal and vertical interfaces, respectively. It become evident that at the higher
frequency, shown in Fig. 6.47(b), the molecular displacement contributed by UZ component
of UHZ

11 mode localized at the boundary of the core rather than at the centre. Figure 6.47(a)
shows the magnitude of the spatial variation of this UZ component along the x-direction.
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Fig. 6.46 Variations of amplitude along (a) x-axis (b) y-axis of UZ component of the highly
hybrid acoustic mode UHZ

11 at 7.12 GHz.
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Fig. 6.47 (a) Variations of amplitude along x-axis and (b) vector displacement coloured
profile of UZ component of the highly hybrid acoustic mode UHZ

11 at 20.13 GHz.

6.4.3 Complex highly hybrid acoustic mode (CHHM)

At f = 9.81 GHz, another highly hybrid acoustic mode was observed with comparatively large
dominant UZ component, having almost 8.3 times larger peak amplitude than that of those in
other non-dominant displacement components UX and UY . The non-dominant UX component
of this highly hybrid mode has 6 consecutive maxima and minima, as shown in Fig. 6.48(a),
like a sixth lateral (along x) order mode. It is almost constant along the y-direction inside the
core with damped oscillations at the boundary edges of both vertical interfaces. The peak
ratio for this component was measured 0.143. Whereas, another non-dominant component
UY , had 4 consecutive maxima and minima like a forth order vertical mode, as shown in Fig.
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6.48(b), with horizontal flat profile inside the core. It has similar damped oscillations, with
peak ratio of 0.086, at the both horizontal boundary edges.
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Fig. 6.48 Vector displacement profiles (a) of UX component and (b) of UY component of the
complex highly hybrid acoustic mode (CHHM) at 9.81 GHz.

Figure 6.49(a) shows the amplitude variation along the x-direction of the non-dominant
UX component and the amplitude variation along the y-direction of the non-dominant UY

component of this CHHM mode is shown in Fig. 6.49(b), both obtained at 9.81 GHz
frequency at the phase matched condition where propagation constant was k = 10.33346
µm−1.
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Fig. 6.49 Amplitude variations along the (a) x-axis of UX component and (b) y-axis of UY
component of the CHHM mode at 9.81 GHz.

The resultant vector displacement profile at transverse plane, UT , vectorically calculated
from these non-dominant components of this complex highly hybrid acoustic mode (CHHM)
and shown in Fig. 6.50, matches very well with the transverse displacement profile of a mode
reported in [Laude, 2013] at 9.81 GHz, which is shown in Fig. 6.51.
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Fig. 6.50 Transverse plane component UT of the complex highly hybrid acoustic mode
(CHHM) at 9.81 GHz.

Fig. 6.51 Transverse plane displacement component of the highly hybrid acoustic mode at
9.81 GHz [Laude, 2013].

The dominant UZ displacement vector profile of this CHHM mode is also shown in Fig.
6.52(a), which matches again with the axial displacement profile reported in [Laude, 2013]
and shown in Fig. 6.53. However, from the contour profile it is difficult to visualize its
transverse variations. For this reason its variation along the x-direction (through the center of
the core) is shown in Fig. 52(b).

The phase velocity of this complex highly hybrid mode was calculated 5965.38 m/s. It
was observed that this UZ component had a wavy peak, shown in Fig. 6.52(b), with depth of
oscillation at peak around 0.08 and damped oscillations at boundary edges with magnitude of
peak ratio as 0.28 and 0.265 along x and y-directions, respectively. Which indicates, the first
peak of the damped oscillation in the vertical left and right interfaces were slightly higher to
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Fig. 6.52 (a) Vector displacement profile and (b) variations of amplitude along x-axis of the
UZ component of the CHHM mode at 9.81 GHz.

those of in the horizontal upper and lower interfaces. So, overall the UZ component of the
complex highly hybrid mode has a nearly flat profile along both the x and y directions, but
with ripples, as shown in Fig. 6.52(a).

Fig. 6.53 Axial displacement component of the highly hybrid acoustic mode at 9.81 GHz
[Laude, 2013].

6.5 Light-sound interaction in air cladded silica waveguide

When phase and momentum of acoustic and optical waves match, the grating induced by the
acoustic wave reflects back the optical signal as Stokes wave, while its frequency is being
down shifted. Since the scattered light undergoes a Doppler frequency shift, as it is reflected
back from the acoustic wave induced moving grating, the SBS frequency, fSBS, depends on
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the acoustic velocity and this can be calculated using Eq. (5.6), discussed in Chapter 5. To
understand the light-sound interaction in a air-clad strip silica waveguide properly, in this
section, overlaps of the most of the acoustic modes discussed so far with the HY dominant
field component of optical quasi-TE mode, their corresponding Brillouin gain coefficients,
other few parameters are calculated.

It has been shown earlier that the acoustic UX vector profile of the acoustic UX
11 mode

varies with the waveguide width. The variation of the UX component spotsize area with the
width, W, for the UX

11 mode, when propagation constant k = 10µm−1, is shown in Fig. 6.54
by a dashed blue line. Here, the acoustic spotsize area is considered as the summation of
elements area for which the acoustic displacement profile is equal or more than 1/e times of
the maximum value of a given acoustic mode. Here, the guide height is kept constant at H =
1 µm. It can be observed here that the spotsize area increases as the width is increased.

It has been shown earlier in Fig. 6.3 that effective area of the optical field profile increases
with the increases of guide width. As the acoustic spotsize area also increases with width,
the value of overlap between these two modes also increases. The overlap between these
two phase-matched optical and acoustic modes, is also calculated by using Eq. (5.5) while
varying the waveguide width and is shown in Fig. 6.54 by a solid red line. As the guide
width increases, the overlap, at the beginning, increases more rapidly after which it increases
slowly. The overlap found at W = 2.5 µm was more than 84%.
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Fig. 6.54 Acoustic spotsize area (at k = 10 µm−1) and Overlap between UX component of
UX

11 acoustic mode and HY field of quasi-TE optical mode with W.

Next, after determining the optical propagation constant, βo, of the interacting HY
11 mode,

the propagation constant of the interacting acoustic modes were found using Eq. (5.4). The
corresponding phase velocity, v, of the acoustic mode can then be determined and thus Eq.
(5.6) can yield the resulting SBS frequency. The dashed red line in Fig. 6.55 shows the SBS
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frequency shifts with the guide width for the fundamental shear acoustic mode, UX
11. Here

the SBS frequency falls with the increasing guide width and reaches its minimum 6.456 GHz
near the 1.9 µm width and rises only slightly with the further increase of width.
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Fig. 6.55 SBS frequency shift and variations of Brillouin gain peak (gB) of UX displacement
vector of the UX

11 mode with W.

For silica, the value of the opto-elastic coefficient can be considered as p12 = 0.286
[Eggleton, 2013] and the linewidth is considered as △vB = 26.97 MHz [Eggleton, 2013]. At
the phase matched condition Γ and fSBS can also be calculated from Eqs. (5.5) and (5.6),
respectively as shown earlier in Chapter 5. Subsequently using Eq. (5.8), the Brillouin gain
coefficient for strip silica waveguide can also be calculated. The solid blue line in Fig. 6.55,
represents the gB with varying width, W. As overlap of UX component of UX

11 with HY field
profile of quasi-TE mode increases with width, as seen in Fig. 6.54, the peak Brillouin gain
also increases with the width. It attains a value of 2.9 ×10−11m/W at the guide width of 1.5
µm, which agrees with the peak Brillouing gain reported for silica in [Faris, 1993] at 532
nm optical wavelength, and increases to 3.82×10−11m/W at the guide width of 2.5 µm. As
the Brillouin gain coefficient at 2.5 µm width reaches near saturation, for further increase in
width its value can attain 4.52×10−11m/W , which is Brillouin gain peak for silica reported
in [Eggleton, 2013].

It was mentioned that modes in the high index contrast acoustic guide are hybrid in nature.
The parameter hybridness is defined as the ratio of the maximum non-dominant displacement
with the maximum dominant displacement. Earlier, evolution of the displacement profiles for
the quasi-shear UX

11 and highly hybrid UHZ
11 and CHHM modes were shown. Their relative

magnitudes were also mentioned.
As the fundamental acoustic shear mode displacement profile spreads in all over the

core, its overlap with the dominant HY field profile of the HY
11 mode is significant. On the
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other hand, the overlap of this HY field profile of the quasi-TE mode with the non-dominant
displacement vector profiles of the fundamental acoustic shear modes, which have odd
symmetry, will cancel out and the resulting acousto-optical interactions would be negligible.
It is expected, the overlap of the HY field profile with the dominant UX profile of the UX

31

mode will be small, and this was calculated to be around 0.28%. Further, it should be
noted that although the overlap of UX profile of the UX

21 mode with the optical field is zero
as the former has odd symmetry, however the non-dominant UZ profile of this mode may
have a considerable overlap, as this displacement vector profile has an even symmetry. It is
calculated that the non-dominant UZ field profile of UX

21 mode has a nearly 3.9% overlap with
the dominant profile of the quasi-TE mode at guide width of 1.5µm. The variations of the
overlap of UZ field profile of UX

21 mode with the width is shown in Fig. 6.56 by a blue solid
line, which increases with the guide width. Beside this, the contribution of this displacement
profile in Brillouin gain peak with varying width is shown by a dashed red line in Fig. 6.56.
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Fig. 6.56 Variations of Brillouin gain peak (gB) of UX
21 acoustic mode and variations of

overlap between its UZ component and HY field of quasi-TE optical mode with the guide
width.

Unlike the Brillouin gain peak variation of UZ component of acoustic UX
21 mode with

width, as shown in Fig. 6.56, the Brillouin gain peak variation of UZ component of the highly
hybrid acoustic UHZ

11 mode drops with the increase in width, as shown by the red solid line
in Fig. 6.57. It is due the nature of overlap variation with width between UZ component of
UHZ

11 and HY component of fundamental quasi-TE mode, HY
11, shown by the dashed blue line.

It can be easily understood with displacement profile evolution of UZ component of UHZ
11 ,

which was discussed earlier. At phase matched condition and at 5.71 GHz the overlap of UZ

component of UHZ
11 was found 0.2947 and the Brillouin gain peak at 1.5 µm core width was
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1.51 ×10−11m/W . For odd symmetry, the overlaps of the UX and UY components of UHZ
11

were zero.
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Fig. 6.57 Variations of Brillouin gain peak (gB) of highly hybrid acoustic mode UHZ
11 and

variations of overlap between its UZ component and HY field of quasi-TE optical mode with
the guide width.

Whereas, for phase matched condition at 9.81 GHz the overlap of the UZ component
of the CHHM mode was found 0.6029 and its contribution towards the Brillouin gain peak
at 1.5 µm core width for this component was 1.8 ×10−11m/W . However, because of odd
symmetry overlaps of the UX and UY components of the CHHM mode, respectively, were
also zero, as expected.

The Brillouin gain spectrum (BGS) for silica is determined by the strong attenuation of
sound wave in it. Due to the exponential decay of acoustic waves, the frequency dependent
Brillouin gain, gB( f ), has a Lorentzian spectral profile and can be calculated using Eq. (5.9),
as discussed in Chapter 5.

Figure 6.58 shows the Brillouin gain spectrum (BGS) for air-clad strip silica waveguide
in between 5 to 10 GHz. There are three significant peaks observed, the fist peak is the
contribution of UHZ

11 mode, the second peak caused by UX
11 mode and the last one contributed

by the complex highly hybrid mode (CHHM).
Since the Brillouin gain peak contributed by UX

11 and CHHM modes are found most
significant, onward, in evaluating all parameters values quasi-shear UX

11 mode along with the
CHHM mode will be considered.

The figure of merit can be used to determine the diffraction efficiency of acousto-optical
devices, but few of them are independent of device configuration. In this regard, the most
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Fig. 6.58 Brillouin gain spectrum of strip silica waveguide surrounded by air between 5 GHz
to 10 GHz.

suitable figure of merit is given [Ogusu, 2004] by:

M =
n7 p2

12
ρv

(6.1)

here, n is refractive index of the core, p12 is elasto-optic coefficient, ρ is density of silica
and v is phase velocity of the phase matched acoustic mode. For silica it was calculated
as 1.2344×10−7 sm2/kg considering phase velocity of quasi-shear UX

11 mode and 8.156×
10−8 sm2/kg for the CHHM mode.

Now, phonon is termed as a quanta of the material vibration caused by acoustic wave in
optical waveguides. The phonon life time for silica can be found [Ogusu, 2004] by:

TB =
1

αAv
(6.2)

here, αA is the acoustic attenuation coefficient and v phase velocity of acoustic mode. For
silica TB = 4.57 ns [Ogusu, 2004].

If we consider the phase velocity of quasi-shear UX
11 mode in phase matched condition

at 6.48 GHz, which was 3941.05 m/s, αA was calculated as 555.23 cm−1, where as for
CHHM mode, it was, 366.84 cm−1. These are equal to loss value of 24.114 dB/cm and
15.932 dB/cm, respectively.
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The strength of acoustic wave induced index grating can be calculated [Eggleton, 2013]
from:

G = gB
PthL
Ae f f

(6.3)

where, Ae f f is optical mode effective area at phase matched condition, gB is the Brillouin
gain peak, L is the length of the waveguide and Pth is the threshold power for stimulated
Brillouin scattering.

Finally, we calculate the threshold power for stimulated Brillouin scattering in an one
centimetre long air-clad strip silica optical waveguide, by using the formula [Pant, 2011]:

Pth = 21
Ae f f

KgBLe f f
(6.4)

where, Ae f f is optical mode effective area at phase matched condition, K is used to consider
the polarization variation, gB is the Brillouin gain peak and Le f f is the effective length of the
waveguide. For small length L ∼= Le f f .

If we consider Ae f f = 1.3050326 µm2, K = 1, L = 1 cm and gB = 2.908×10−11 m/W for
quasi-shear UX

11 mode, the threshold power for stimulated Brillouin scattering is 94.24 W . For
gB = 1.8008×10−11 m/W for CHHM mode, the threshold power for stimulated Brillouin
scattering is 152.1862 W , which are quite high, but rapidly decreases with the increase of
wageguide length. For both the modes the strength of acoustic wave induced index grating is
21. All the values calculated so far for the modes UX

11 and CHHM are listed in Table 6.2 for
better referencing.

Table 6.2 Calculated parameter values for 1 cm long air-clad strip silica waveguide.

Parameters For UX
11 mode For CHHM mode

Z (Acoustic impedance) 8.674×106 kg/(m2s) 1.313×107 kg/(m2s)
v (Phase velocity) 3941.05 m/s 5964.95 m/s

gB (Brillouin gain peak) 2.908×10−11 m/W 1.8008×10−11 m/W
Pth (SBS threshold power) 94.24 W 152.1862 W

αA (Acoustic attenuation coefficient) 24.114 dB/cm 15.932 dB/cm
M (Figure of merit) 1.2344×10−7 sm2/kg 8.156×10−8 sm2/kg

G (strength of grating) 21 21

All the parameters values presented in Table 6.2 for UX
11 and CHHM modes are also

calculated for the high hybrid surface acoustic mode UHZ
11 and listed in Table 6.3.
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Table 6.3 Calculated parameter values for UHZ
11 mode in 1 cm long air-clad strip silica

waveguide.

Parameters For UHZ
11 mode

Z (Acoustic impedance) 8.1309×106 kg/(m2s)
v (Phase velocity) 3471.75 m/s
gB (Brillouin gain peak) 6.0383×10−12 m/W
Pth (SBS threshold power) 453.86 W
αA (Acoustic attenuation coefficient) 27.354 dB/cm
M (Figure of merit) 1.0103×10−7 sm2/kg
G (strength of grating) 21

Beside these the SBS frequency, phase velocity and overlap for some of the modes in this
waveguide are also listed below in Table 6.4.

Table 6.4 SBS frequency, phase velocity and overlaps for shear and highly hybrid acoustic
modes in 1 cm long air-clad strip silica waveguide.

Mode Component fSBS (GHz) V (m/s) Overlap (Γ)

UHZ
11 UZ 5.71 3471.75 0.2947

UX
11 UX 6.4815 3941.05 0.6416

UY
11 UY 7.053 4288.52 0.0346

UX
21 UZ 7.122 4330.5 0.0391

UX
31 UX 7.9284 4820.84 0.0028

UX
41 UZ 8.8056 5354.21 0.00001

CHHM UZ 9.81 5964.95 0.6029

6.6 Summary

Modal solutions of the fundamental and higher order acoustic shear modes of a strip silica
waveguide exposed to air are presented, obtained by using a full-vectorial finite element
method. For the first time, the evolution of fundamental dominant and non-dominant
displacement vector profiles of acoustic shear mode are presented here. Existing symmetries
of the waveguide have been exploited, which aided in not only to improve the solution
accuracy but also to avoid degeneration of some of these modes. An H-field based full-
vectorial program has also been used to find the optical modes of this waveguide.
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Subsequently, as the same finite element mesh topology is used for both the acoustic and
optical modal solutions, the overlap between the acoustic and optical modes were obtained
accurately and more efficiently. Variations of the overlaps are shown for the fundamental and
higher order acoustic modes with the fundamental quasi-TE optical mode.

It was observed for the air-clad strip silica waveguide that all the acoustic modes are
highly hybrid in nature with all the three components of the displacement vectors. It was also
shown that the non-dominant displacement vectors have smaller magnitudes but also have
higher order spatial variations. Further, it was observed that for the fundamental acoustic
modes the overlap of the non-dominant displacement vectors (being anti-symmetric) with
the dominant HY profile (of the fundamental quasi-TE mode) is zero.

It was also shown here that the non-dominant displacement vector of higher order acoustic
modes can have a symmetric profile, which can yield a considerable overlap with the optical
mode. It has also been shown the Brillouin gain peak with varying width for the fundamental
and higher order hybrid acoustic modes.

For nano-structured waveguides to incorporate the enhancement of the SBS process due
to forces exerted by the radiation pressure of the guided optical wave and the waveguide
boundary vibration may need to be considered. The value of the force, which in this chapter
considered as zero, in the right hand side of Eq. (3.58), can be formulated from the spatial
derivatives of Poynting vectors resulting from H-field, and also, the force due to the boundary
element displacement can also be included in the program if necessary. Their incorporation
will make the program a strong tool for analysing light-sound interaction in on-chip nano-
structured waveguides.



Chapter 7

Conclusion and Future Aspects

7.1 Conclusion

As a conclusive chapter, the strength of this newly developed full-vectorial finite element
based computer simulation code in determining and analysing acoustic wave propagation in
optical waveguide and also evaluating interactions with the phase matched optical wave in
optical waveguide of micro-meter dimension have been demonstrated here. Further, it will
present the weakness of this code in determining acousto-optical interactions in nano-scale
on-chip integrated optics, as it does not considered optical radiation pressure and motion
of boundaries in formulation. Based on the recently published literature nearly 10% of the
acousto-optical interactions value in nano-scale photonic devices could be due to radiation
pressure and motion of boundaries. This chapter will conclude providing hints, how to
incorporate these two important force parameters in the existing program to make it a strong
simulation tool for on-chip nano-scale photonic devices as future expansion of this research
work.

The main objective of this research was to develop further a full-vectorial FEM based
computer simulation code to perform rigorous characterization of acoustic waves in low and
hight index contrast optical waveguides and simultaneously study the interaction between
optical and acoustic waves, specially due to SBS process. The achievements are stepwise
illustrated below.

• A full-vectorial FEM based computer simulation code has been developed that can use
real eigenvalue solver to get the modal solutions and perform rigorous characterization
and study the evolution of fundamental and higher-order acoustic modes profiles that
may exists in low and high contrast silica optical waveguides, especially giving prefer-
ences to the shear and longitudinal acoustics waves. The use of real eigenvalue solver
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opened the possibility of increasing the mesh density in simulation that previously was
limited to 100 × 100, when complex eigenvalue solver was used.

• The program is further developed to exploit symmetry boundary conditions that can be
applicable at the symmetry axes of the generated modes to enhance strongly the modal
solution accuracy and thus to eliminate modal degenerations, which were not possible
at all before.

• Incorporate denser mash topology in the developed computer simulation code to bring
further accuracy in the modal solutions that may be applicable for low and high index
contrast silica waveguides. Now it is possible to use mesh density upto 1000 × 1000,
which can be helpful in simulating efficiently the complex structures of different
microfibres and photonic crystal fibres, which enables to detect minute variation in
acoustic mode profile at the interfaces.

• Air has been incorporated as one of the guide medium in the simulation code for the
acoustic wave, which made it possible to study on the evolution of the displacement
vector profiles of the longitudinal and shear fundamental and higher-order acoustics
modes with frequency in high index contrast silica waveguide with air cladding. Further,
it aided to investigate the light-sound interactions in an air-clad silica waveguide to
study the effect of SBS and associated frequency shift. The overlap between the
highly hybrid acoustic modes and fundamental HY

11 optical mode, thus to determine
the Brillouin gain spectrum for a given bandwidth.

The structure of this thesis is organized in such a way to cover the development of the
model for the molecular displacements to depict the propagation of the acoustic waves,
generation of a full-vectorial finite element method based computer code to simulate this
model and implications of this simulation code to characterize acoustic waves, rigorously, in
low, moderate and high index contrast silica waveguides. Further to evaluate interactions of
light and sound in these optical waveguides, specially the stimulated Brillouin scattering, in
terms of overlap between the fundamental and higher order shear and longitudinal acoustics
modes and fundamental quasi-TE, HY

11, optical mode, SBS frequency shift and Brilloin gain
spectrum.

A categorical literature review has been presented in Chapter 1, which discussed the basic
introduction to the research field of light-sound interactions in low and hight index contrast
silica planar waveguide, particularly highlighting the detrimental effect of non-linear SBS
process in high power delivery. It covered briefly, other optical non-linearities and existing
numerical methods to study their effects. A short illustration was given regarding the aims
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and objectives of this research. At the end the structure of the thesis also presented outlining
the content of each chapter. Further it highlighted the aim and objectives.

The Chapter 2 began with the introduction to the basic concepts of acoustic waves in
isometric medium, showing that the acoustic wave propagates through a optical guide by
displacement of particles, where the guide material density and elasticity has major roles
to play, thus modulates the optical refractive index through variation of material density
along transverse plane and longitudinal direction, respectively. It also discussed in greater
details the physical quantities, those are related to the acoustic wave propagation and may
arise the possibility of maximum interactions with optical waves in planar silica optical
waveguides. Also it will aid to categorize acoustic modes depending on the placements
of dominating acoustic displacement components related to the direction of propagation.
Moreover, reduced form of stress and strain notations were introduced to generate the systems
of governing equations of the acoustic wave propagation with help of strain field related to
the acoustically vibrating body, equation of motion and Hooke’s law. These were used to find
the governing wave equation considering the particle displacements in the two dimensional
guide, considered to be small. Also, for an isotropic solid, longitudinal and shear wave
velocities relation with the various elastic constants and material density were provided.
At the end, families of acoustic wave propagation modes, for instance, longitudinal, shear,
surface and plate wave also were introduced.

The Variational approach based finite element method were provided in Chapter 3. More-
over, it presented the path way to incorporate FEM formulation using real eigenvalue solver
in acoustic wave propagation, and thus generation of 2D molecular displacement profiles
of acoustic modes as end results. Here domain discretisazion was performed only upon the
cross-section of the waveguide by meshing with triangular finite elements. It introduced
symmetry boundary conditions, used for the first time in acoustic mode profile generation,
to increase modal solution accuracy and eliminate modal degeneration. Furthermore, it
demonstrated the strength of this simulation code proving its solution convergence with the
help of Aitken’s formula, also provided some comparison with the previous work done in
complex domain and with the published results for a 1 cm2 steel waveguide in vacuum. At
the end displacement vector profiles of two highly hybrid acoustic modes that may exist in
the steel waveguide were presented.

A rigorous analysis of acoustic modes in the low index contrast silica planar waveguide
consisting of a 3% Ge-doped core and pure silica as cladding was performed with the help of
the developed full-vectorial acoustic mode solver by using computationally efficient finite
element method in Chapter 4, also the advantages of using the symmetry conditions and
the type of symmetry walls which can be used were discussed. In this chapter, the general
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concept of mode pattern recognition was introduced for a low index contrast silica planar
waveguide, based on the pattern of spatial variations of displacement vector profiles of the
fundamental and higher order shear and longitudinal acoustic modes. The spatial variations of
the dominant and non-dominant displacement vectors of the longitudinal and shear acoustic
modes were also shown. It was shown that by using Aitken’s extrapolation the solution
accuracy can also be improved with the use of finite computer resources. Furthermore,
it provided the detail study of the variations of dispersion, birefringence and hybridness
with acoustic frequency for these acoustic modes, first considering decoupled modes, then
considering co-existing shear and longitudinal modes. Also, the the influence of increasing
doping concentration in the core was presented here. Thus, this chapter mainly concentrated
on characterization of both the longitudinal and shear acoustic modes for a 3% Ge-doped
silica planar waveguide with dimension 2 µm × 1 µm and were regorously studied in this
chapter. All these modes may have either dominant transverse or longitudinal component
but also two other non-dominant components. As 3% Ge:doped planar silica waveguide can
support shear and longitudinal acoustic modes, this can also support optical wave but at a
shorter visible wavelength. However, for a silica waveguide operating at 1550 nm wavelength,
waveguide dimension or Ge doping needs to be increased. In such cases the co-guidance of
the acoustic and optical mode will give rise to SBS above a certain threshold power.

The Chapter 5 mainly focused on the interactions between the fundamental and higher
order shear and longitudinal acoustic modes and fundamental quasi-TE optical HY

11 mode in
terms of their coupling in phased matched condition through determining overlap between
their mode profiles by considering displacement vector for acoustic wave and full-vectorial
H-field for optical wave. This study was performed in a moderately higher index contrast
silica planar waveguide with a 10% Ge-doped core with a dimension of 6 µm × 3 µm,
embedded in a pure silica cladding. It discussed also the displacement vector profiles,
variation of modal dispersions, hybridness and birefringence with acoustic frequency and
SBS frequency shift with the guide width variation. Modal solutions of the fundamental
and higher order longitudinal and shear acoustic modes including the dominant and non-
dominant displacement vector profiles of the both acoustic modes were presented in details.
The existing symmetries of the waveguide were being exploited for not only to improve the
solution accuracy but also to avoid degeneration in some of these modes. Further, an H-field
based full-vectorial program was used to find the optical modes of this waveguide. Since
the same finite element mesh topology were used for both the acoustic and optical modal
solutions, the overlap between the acoustic and optical modes were obtained accurately and
more efficiently. Variations of the fSBS and overlaps were shown for the fundamental and
higher order longitudinal and shear acoustic modes with the fundamental quasi-TE optical
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mode. It was observed that all the acoustic modes are hybrid in nature with all the three
components of the displacement vectors and the non-dominant displacement vectors have
smaller magnitudes but with higher order spatial variations. Moreover, it was shown that
for the fundamental longitudinal and shear acoustic modes the overlap of the non-dominant
displacement vectors, being anti-symmetric, with the dominant HY profile of the fundamental
quasi-TE mode was zero. It was also shown that the non-dominant displacement vector of
higher order acoustic modes can have a symmetric profile and also a considerably higher
overlap with the optical mode. Although the overlap of the dominant displacement vector of
a mode with odd spatial variations was zero with the fundamental quasi-TE mode, but the
overlap of its non-dominant displacement vector was shown significantly high, which cannot
be ignored. In this chapter, also Brillouin gain coefficients of some shear and longitudinal
modes were calculated and presented. Along with these the Brillouin gain spectrum from 6
GHz to 10.5 GHz was provided, which showed significant two peaks around 6.5245 GHz
and 10.3457 GHz.

The study of the unique features of the mode evolution in a high index contrast optical
waveguide formed by an air-clad strip silica core of dimension 1.5 µm × 1 µm were
demonstrated in Chapter 6. For the first time it showed in details that the evolution of
the highly hybrid acoustic modes in silica planar waveguide with frequency for this index
combinations with relatively higher contrast. The displacement vector profiles were compared
with the published results. Moreover, this chapter also provided the analysis of variations of
the modal dispersions, hybridness and birefringence with acoustic frequency for these highly
hybrid acoustic modes and showed the interactions with quasi-TE optical mode through
overlap and SBS frequency shift and thus delivered the Brilloin gain spectrum from 5.5
GHz to 10 GHz for this optical waveguide. The modal solutions of the fundamental and
higher order acoustic shear modes and highly hybrid modes were obtained by using a full-
vectorial finite element method. Existing symmetries of the waveguide were also exploited
and an H-field based full-vectorial program was used to find the optical modes. To improve
efficiency and accuracy in finding the overlap between the acoustic and optical modes, same
finite element mesh topology were used for both the acoustic and optical modal solutions.
Variations of the overlaps for the fundamental and higher order acoustic modes with the
fundamental quasi-TE optical mode were shown. The Brillouin gain peak with varying width
for the fundamental and higher order hybrid acoustic modes were also shown. The strength
of Bragg gratings, threshold SBS power for this air-clad silica guide were also evaluated and
further comments were added on figure of merit (FOM) and acoustic attenuation coefficient.

For nano-structured waveguides to incorporate the enhancement of the SBS process due
to forces exerted by the radiation pressure of the guided optical wave and the waveguide
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boundary vibration may need to be considered. The value of the force, which in this thesis
considered as zero, in the right hand side of Eq. (3.58), can be formulated from the spatial
derivatives of Poynting vectors resulting from H-field, and also, the force due to the boundary
element displacement can also be included in the program if necessary. Their incorporation
will make the program a strong tool for analysing light-sound interaction in on-chip nano-
structured waveguides.

A rigorous study of light-sound interactions in optical waveguide can be useful in the
development of novel SBS sensors or in the design of optical waveguide to deliver high
power. Thus the results presented in this thesis shown that to study light-sound interaction
in an effective way, the use of full-vectorial acoustic and optical modal approaches are very
much necessary.

7.2 Future works

It is hard to explore and investigate all arena of SBS in such a short period of time. The
potential the developed program has, can be considered only paved the path for future, which
opened a door for researcher to explore for higher Brillouin gain in different combinations of
materials, incorporating different complex structures and so on. Few are illustrated below,
those were in mind, to be completed in future.

To attain large Brillouin gain in a very short distance of centimetre scale with moderate
pump power of 100 mW , faces challenges that can be overcome in two ways. Either, to
construct devices by using materials with high refractive index and elasto-optic coefficient to
highly confine optical and acoustic modes, or, by using multiple pass structure. Soft glasses
like chalcogenide have large elasto-optic coefficient and refractive index, which based on Eq.
(5.8) may suggest that the devices constructed with such glasses, arsenic selenide (As2Se3)
and arsenic sulphide (As2S3), may exhibits large Brillouin gain that are commonly used in
nonlinear optics. The large refractive index and elasto-optic coefficient of these materials
will also provide nonlinear index of refraction (n2), resulting in a large Kerr effect. Although,
in chatcogenide fibres to excite SBS by using moderate level of optical power of tens of
milliwatts requires large length of several meters due to its large mode area. If, by keeping
the average pump power at milliwatt level, pump is pulsed to attain a peak power of several
watts, SBS can be induced even for a length of tens of centimeters. A SBS ring laser was
recently reported that used a continuous wave pump power of 37 mW in a 3 m long suspended
core. In As2Se3 fibre slow- and fast-light have been demonstrated recently using average
pump power (tens of milliwatts) in with much shorter length than silica. Hence, chalcogenide
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glasses are highly efficient for exiting SBS and other nonlinear effects in shorter lengths.
Chalcogenide based on Tellurium (Te) can be investigated to harness higher SBS gain.

Surface plasmon polaritons are electromagnetic waves of infrated or visible frequency
that travel along a metal-air or metal-dielectric interfaces, which involves with charge motion
in the metal and electromagnetic waves in the dielectric or air. These are categorize as a type
of surface wave and the guidance along the interfaces is much similar in the way the light
can be guided in optical fibre. If a silicon microwire is considered with thin layer of gold on
it, which can be potential guide structure to exploit the interaction of guided surface acoustic
wave with surface plasmon polaritons. This can be a strong candidate in SBS harnessing,
which is not yet reported in literature.



Appendix A

Stress, Strain and Reduction of Notations

Stress and strain vectors

The stress and strain tensors were briefly covered in Sections 2.2 and 2.3 of the thesis. These
are derived in three dimensional forms and given in more details in this section. The common
forms of the notations after reduction are used based on the symmetry of stress and strain
tensors.

Strain tensor

Due to the applying stress, consider, a point R in the material is displaced to point R′. The
distances of these points from the reference point O, as shown in Fig. A1, are r and r + u,
respectively. Here, u is the displacement vector. Considering the material distance between
points R and W is ℓ. The distance of point W from reference is r + δ r. Due to displacement
after applying stress the material distance changed to ℓ′. Now it can be shown that,

ℓ2 = (δ r)2 = (δx1)
2 +(δx2)

2 +(δx3)
2 (A.1)

and

ℓ′
2
= (δ r+δu)2 = ℓ2 +2δ rδu+(δu)2 (A.2)

The displacement component along the x-direction, δux can be expressed as,
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Fig. A.1 Material displacement due to stress [Sriratanavaree, Thesis, 2014].

δux =
∂ux

∂x
δx+

∂ux

∂y
δy+

∂ux

∂ z
δ z (A.3)

Similar notations can be used for δuy and δuz, the displacement components along y
and z-directions, respectively. For convenient summarization of these relations by tensor
notations, we can write,

δui = ∑
j

∂ui

∂x j
δx j (A.4)

where i can be x, y, z and the summation over j is easily understood for a given i.
Using this concept and applying Taylor expansion for Eq. (A.2), allowing upto second

order term of δxi, we have,

ℓ′
2
= ℓ2 +2

∂ui

∂x j
δxiδx j +

∂ui

∂xi

∂ui

∂xk
δxiδxk (A.5)

here, as discussed in Section 2.3, the notation implies the double summations over the three
independent suffixes i, j and k on the right hand side of Eq. (A.5). It can be noted that vector
δ r is replaced by δxi and the scalar product I.J is shown by IiJ j.

The true measure of the material deformation is the change occurred in ℓ2. In case the
change in δ r were used instead, the change would end up in rotation rather than the change
in length ℓ, that is why δ r is not used as a measure of deformation.



193

Now, the second term in Eq. (A.5) can be written as,

∂ui

∂x j
δxiδx j =

1
2

(
∂ui

∂x j
+

∂u j

∂xi

)
δxiδx j (A.6)

Also changing the suffix k in the third term of Eq. (A.5) with suffix j and rewriting the
Eq. (A.5), we have,

ℓ′
2
= ℓ2 +2Si jδxiδx j (A.7)

here the strain tensor Si j can be expressed as,

Si j =
1
2

(
∂ui

∂x j
+

∂u j

∂xi
+

∂ui

∂xi

∂ui

∂x j

)
(A.8)

Since Si j is symmetric, which can be implied from its definition, for small deformation,
being of second order neglecting the last term of Eq. (A.8), we have,

Si j =
1
2

(
∂ui

∂x j
+

∂u j

∂xi

)
(A.9)

henceforth this term will be used.
Now, alternatively, we can use a vector symbol S and define the strain Si j as,

S =

S11 S12 S13

S21 S22 S23

S31 S32 S33

=

Sxx Sxy Sxz

Syx Syy Syz

Szx Szy Szz

 (A.10)

here the subscripts 1, 2 and 3 are equivalent to x, y and z, respectively, which are common in
literature.

Again, differentiating Eq. (A.9) with respect to time, t, we have,

∂Si j

∂ t
=

1
2

(
∂vi

∂x j
+

∂v j

∂xi

)
(A.11)
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here v = ∂u
∂ t is the particle velocity in the material, which is equivalent to the one-dimensional

equation of mass conservation that can be given as, ∂

∂ zρmv+ ∂

∂ t ρm = 0, but provides more
information. If only the diagonal terms are taken, it can be seen that ▽.v = ∂vi

∂xi
and the mass

conservation equation can be written as,

ρm0▽.v+
∂ρml

∂ t
= 0 (A.12)

Considering non-zero ρm0 and we can use the following relation from Eq. (A.11),

▽.v =
∂

∂ t
(S11 +S22 +S33) (A.13)

Which is equivalent to ∂

∂ zρmv+ ∂

∂ t ρm = 0 and will be verified in different way. The
diagonal terms are associated with the longitudinal strain and the off-diagonal terms are
associated with the shear strain.

It can be noted that the volume of a small portion δ
∨

of the material is δx1δx2δx3 and
after deformation it becomes δ

∨′, where,

δ
∨ ′ = (δx1 +δu1)(δx2 +δu2)(δx3 +δu3)

= δ
∨(

1+
∂u1

∂x1

)(
1+

∂u2

∂x2

)(
1+

∂u3

∂x3

)
≈
(

1+
∂u1

∂x1
+

∂u2

∂x2
+

∂u3

∂x3

) (A.14)

The change in volume,

δ
∨ ′−δ

∨
= δ

∨
(S11 +S22 +S33) (A.15)

It can be notice from Eq. (A.15), that the sum of the diagonal components of the strain
tensor is the relative change in volume, δ

∨ ′−δ
∨

δ
∨ . The shear term do not contribute to a

change in volume, which can be realize by placing Eq. (A.13) in Eq. (A.12). From this the
following results can be found,

ρml =−ρm0(S11 +S22 +S33) (A.16)
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which is similar to Eq. (A.13) when,

ρml

ρm0
=−(δ

∨ ′−δ
∨
)

δ
∨ (A.17)

Stress tensor

If
∨

is the volume of a body, the force in x-direction on the body can be given as,
∫

Fxd
∨

,
here Fx is a scalar quantity. A scalar quantity can be expressed as the divergence of a vector.
Thus it can be written,

Fx = ▽.A

Fy = ▽.B

Fz = ▽.C

(A.18)

From the Gauss’s theorem, it can be written as,

∫
∨Fxd

∨
=
∫
∨▽.Ad

∨
=
∫

S
AdS (A.19)

here the surface integral is taken around the enclosing volume
∨

.
To express volume integration of each force component, three components are needed,

so, it will total nine components, Ax, Ay, Az, Bx, By, Bz, Cx, Cy and Cz to represent
∫

Fxd
∨

,∫
Fyd

∨
and

∫
Fzd

∨
. In tensor notation, Fi =

∂Ti j
∂x j

, which is the brief form of,

Fi = ∑
j

∂Ti j

∂x j

∴ Fx =
∂Txx

∂x
+

∂Txy

∂y
+

∂Txz

∂ z

(A.20)

this is similar for other components as well. Here Ti j is the stress tensor, its relation to the
previously mentioned notations are, Ax = Txx = T11, Ay = Txy = T12, Az = Txz = T13,
so and so forth.

Now, the average force on an element of volume d
∨

can be given as,
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1
d
∨ ∫ ▽.Td

∨
⇒ 1

d
∨ ∫ ∂Ti j

∂x j
d
∨

⇒ 1
d
∨ ∫ Ti jdS j

⇒ 1
d
∨ ∮ T.n dS

(A.21)

where ▽.T is defined as ∂Ti j
∂x j

and dS j is the surface element vector directed along the outward
normal.

Considering the force on the surface is in the z-direction, which has, therefore, three
normal components in its surface that may compromise the vector C in Eq. (A.18) and these
are Txz, Tyz and Tzz. As shown in Fig. A.2(b), the first two terms are shear stress and tend to
distort the surface of an isotropic material. The last term is the longitudinal stress, as shown
in Fig. A.2(a). As illustrated in Fig. 2.3, all stress component are applied to a cube. Again, as∫

Ti jdS j =
∫

TjidSi, it can be shown that Ti j = Tji, which implies T is a symmetric tensor.
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Fig. A.2 Effacts of (a) longitudinal and (b) shear stresses normal to the surface [Sriratanavaree,
Thesis, 2014].
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Equation of motion

Due to internal stresses, the force on an element of volume d
∨

is
∫

T.n dS. Hence, if only
the internal stresses are applied, the equation of motion for the first-order displacement can
be written as,

ρm0
∂ 2ue

∂ t2 = limd
∨
→0

(∫
T.n dS
d
∨ )

(A.22)

Hence,

ρm0
∂ 2ue

∂ t2 = ▽.T

⇒ ρm0
∂ 2ue

∂ t2 =
∂Ti j

∂x j

(A.23)

where ρm0 is the density of material.

Abbreviated subscripts and symbolic notation

In order to minimise the complexity of the strain and stress tensors, it is worthy to apply
symmetry and as well to use abbreviated subscripts. Here, in this section, abbreviated
subscript notations are illustrated and there uses are highlighted.

For strain tensor

It has been mentioned earlier that the strain tensor can be defined as,

Si j =
1
2

(
∂ue

i
∂x j

+
∂ue

j

∂xi

)
(A.24)

Since, the strain is a symmetric tensor, it can be shown that Sxy = Syx, so and so forth.
Thus, it is possible to use reduced notation with showing lesser subscripts. In Eq. (A.24),
superscript ’e’ is used to indicate in element. The standard reduce notation of the strain can
be expressed in matrix form as,
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S =

S11 S12 S13

S21 S22 S23

S31 S32 S33

=

S1
S6
2

S5
2

S6
2 S2

S4
2

S5
2

S4
2 S3

 (A.25)

It can be noted that the notations follows a cyclic order, where, the longitudinal strains
corresponding to subscripts 1, 2 and 3, respectively, and the shear strains corresponding to
the subscripts 4, 5 and 6, respectively. Which is summarized in Table A.1, below.

Table A.1 Reduced tensor notation.

Tensor notation Reduced notation Corresponding Strain
xx 1 Longitudinal in the x-direction
yy 2 Longitudinal in the y-direction
zz 3 Longitudinal in the z-direction
yz = zy 4 Shear y - z
zx = xz 5 Shear z - x
xy = yx 6 Shear x - y

The strain tensor can be expressed in the form of column matrix as shown below,



S1

S2

S3

S4

S5

S6


=



∂

∂x 0 0
0 ∂

∂y 0

0 0 ∂

∂ z
0 ∂

∂ z
∂

∂y
∂

∂ z 0 ∂

∂x
∂

∂y
∂Uy
∂x 0



ue
x

ue
y

ue
z

 (A.26)

This was only possible due to the terms 1
2 used in Eq. (A.25), it is suitable to define the

matrix in Eq. (A.26) with symbolic notation as below [Auld, 1973],

S = ▽Sue (A.27)

here ▽Sue is defined as the symmetric part of ▽ue for an element. ▽Sue is actually the first
matrix of the right hand side of Eq. (A.26). While unreduced, the symmetric ▽S is apparent
because of Eq. (A.24).
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From Eq. (A.26) it is obvious that for longitudinal motion and propagation both in the
x-direction can be expressed by the relation S1 =

∂ue
x

∂x , which depicts a longitudinal wave
passing through a flat plate. Whereas, for a plane shear wave that has propagation in the
z-direction but the particle displacement occurs in the y-direction, can be defined by the
relation ue

x = ue
z = 0 and S4 =

∂ue
y

∂ z . For this case, all other strain components are zero.
This corresponds to the flexural motion of a thin strip.

For stress tensor

Reduced notation can also be used for stress tensor. It can be written as,

T =

Txx Txy Txz

Tyx Tyy Tyz

Tzx Tzy Tzz

=

T1 T6 T5

T6 T2 T4

T5 T4 T3

=



T1

T2

T3

T4

T5

T6


(A.28)

here the convention is to omit the
(1

2

)
terms [Auld, 1973].

Now the equation of motion relating the stress terms is,

▽.T = ρm0
∂v
∂ t

(A.29)

This can be related to the reduced notation as,

ρm0
∂

∂ t

vx

vy

vz

= ▽.T =


∂

∂x 0 0 0 ∂

∂ z
∂

∂y

0 ∂

∂y 0 ∂

∂ z 0 ∂

∂x

0 0 ∂

∂ z
∂

∂y
∂

∂x 0




T1

T2

T3

T4

T5

T6


(A.30)

For instance, if the stress field has only one component, a shear stress T5 = Txz prop-
agating in z-direction, then ▽.T becomes ∂T5

∂ z and it corresponds to an acceleration in the
x-direction.
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For elasticity

The elasticity tensor Ci jkl can also be represented using reduced notation. Since, Si j = S ji

and Ti j = Tji, it follows that Ci jkl = C jikl = Ci jlk = C jilk. As discussed earlier in Section
2.3.4, this reduced the total number of independent elements in elasticity matrix from 81 to
36. Thus it can be written as,



T1

T2

T3

T4

T5

T6


=



C11 C12 C13 C14 C15 C16

C21 C22 C23 C24 C25 C26

C31 C32 C33 C34 C35 C36

C41 C42 C43 C44 C45 C46

C51 C52 C53 C54 C55 C56

C61 C62 C63 C64 C65 C66





S1

S2

S3

S4

S5

S6


(A.31)

T =C.S (A.32)

where the general terms is CIJ , capital subscripts are used to denote the reduced notation
and considering CIJ = CJI , thus, further due to symmetry, the total number of independent
elements in elasticity matrix reduces to 21.

For instance: Cubic crystal

Certain symmetric conditions possessed by most of the crystals can reduce the required
number of elements in elastic coefficient matrix. For example, material having cubic crystal
lattice, seems similar in ±x, ±y and ±z directions. Which implies, among the elements of
the elastic matrix, C11 = C22 = C33, C44 = C55 = C66 and C12 = C13 = C23. All other
diagonal terms are zero due to the mirror symmetry. Hence for a cubic crystal, the elastic
coefficient matrix can be like,

C =



C11 C12 C13 0 0 0
C21 C22 C23 0 0 0
C31 C32 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66


(A.33)
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When, a shear wave is propagating along the z-axis having motion in the x-direction, it
can be written based on the Eq. (A.26),

S5 =
∂ue

x
∂ z

(A.34)

Again, using Eqs. (A.31) and (A.33), it can be shown,

T5 =C44S5 (A.35)

Further, assuming that the RF components vary as e jωt , then it can be written, vx = jωue
x,

based on Eqs. (A.29) and (A.30), we have,

∂T5

∂ z
= jωρm0vx (A.36)

However, from Eqs. (A.34) and (A.35), we have,

C44
∂vx

∂ z
= jωT5 (A.37)

For the shear wave propagation, Eqs. (A.36) and (A.37) are the transmission-line
equations. Further assuming that wave propagates as e± jkSz, it can be noticed that for
shear wave in cubic crystal, we have,

k2
S = ω

2
(

ρm0

C44

)
(A.38)

On the other hand, if we consider longitudinal wave in the z-direction having only ue
x or

vx finite, the longitudinal propagation constant, kL, can be given as,

k2
L = ω

2
(

ρm0

C11

)
(A.39)
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For instance: isotropic material

For isotropic material the elastic coefficient matrix form is the same as given in Eq. (A.33) for
cubic crystal. The additional applied condition for the isotropic symmetry is C11 − C12 = 2C44.
It can be noted that the term C12 corresponds to the ratio longitudinal stress and longitudinal
strain in the x and y-directions, respectively. such terms occur, when the material is com-
pressed in one direction, in perpendicular direction it tends to expand. The relation given
came form the requirement that the tensor C keeps the same from. However, the axes are
rotated from their original position. It follow that for isotropic material, there are only two
independent elastic constants. These are the Lame constants and can be defined as,

λ =C12

µ =C44
(A.40)

Which provides,

C11 =C12 +2C44 = λ +2µ (A.41)



Appendix B

Boundary Conditions in Symmetry Axes

Categorising symmetry axes boundary conditions

If the structure of the waveguide exhibits a two-fold symmetry, only considering one-quarter
of the waveguide will allow a much finer mesh division to be used. This not only can avoid
mode degeneration by separating two interacting modes, but also allow much improved
solutions for a given computer resource. The combinations of n×U and n.U at the vertical
and horizontal symmetry lines can be used, and these will provide 4 combinations, thus all
the shear acoustic UX

mn and UY
mn modes, and longitudinal acoustic UZ

mn modes with various
combinations of m and n values, being them even or odd, can be extracted. The possible
symmetry boundary conditions were shown in Fig. 4.2.

In the Table B.1, all of these 4 combinations based on the presence of the displacement
profile on the symmetric vertical and horizontal axes are listed. If displacement profiles
exists, ’✓’ is provided, other wise ’X’ is given.

Table B.1 Detecting presence of displacement fields at the symmetry boundary walls

Categories Horizontal Symmetry Wall Vertical Symmetry Wall

UX UY UZ UX UY UZ

1 ✓ X ✓ ✓ X X

2 X ✓ X X ✓ ✓

3 ✓ X ✓ X ✓ ✓

4 X ✓ X ✓ X X

Figs. B.1, B.2, B.3 and B.4 further illustrate the physical meaning of the existence of the
displacement profiles in the horizontal and vertical symmetry walls.
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X

(a) (b)

X

X

(c)

Fig. B.1 Drawn two-fold symmetric displacement profile of (a) UX , (b) UY and (c) UZ
components of UX

11 mode fall in category 1.

X

(a) (b)

X

X

(c)

Fig. B.2 Drawn two-fold symmetric displacement profile of (a) UX , (b) UY and (c) UZ
components of UY

11 mode fall in category 2.

X

(a) (b) (c)

X

X

Fig. B.3 Drawn two-fold symmetric displacement profile of (a) UX , (b) UY and (c) UZ
components of UX

21 mode fall in category 3.

X

(a) (b)

X

X

(c)

Fig. B.4 Drawn two-fold symmetric displacement profile of (a) UX , (b) UY and (c) UZ
components of UX

12 mode fall in category 4.

In general, the category 1 includes all shear acoustic UX
mn modes with m and n both odd,

all shear acoustic UY
mn modes with m and n both even and all longitudinal acoustic UZ

mn modes
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with m being even and n being odd. Whereas, the category 2 consists of all shear acoustic
UX

mn modes with m and n both even, all shear acoustic UY
mn modes with m being even and n

being odd and all longitudinal acoustic UZ
mn modes with m being odd and n being even. But,

the category 3 can be used for all shear acoustic UX
mn modes with m being even and n being

odd, all shear acoustic UY
mn modes with m being odd and n being even and all longitudinal

acoustic UZ
mn modes with m and n both odd. Finally, the category 4 covers all shear acoustic

UX
mn modes with m being odd and n being even, all shear acoustic UY

mn modes with m being
even and n being odd and all longitudinal acoustic UZ

mn modes with m and n both even.
The possible selection of categories for the most of the acoustic mode profiles which

are discussed in the text of this thesis, are listed in the Table B.2 below. To extract two-fold
symmetry profile of the listed modes, the choice of category in the left column will be
applicable.

Table B.2 Four categories applicable to symmetry boundary walls

Categories Acoustic Modes

1 UZ
21, UZ

41, UX
11, UX

31, UY
22 etc.

2 UZ
32, UY

41, UX
22, UY

31 etc.

3 UZ
11, UZ

31, UY
12, UX

21, UX
41 etc.

4 UZ
22, UX

12, UY
21, UY

41 etc.
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