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Abstract

In moments of distress downside risk measures like Lower Partial Moments (LPM) are

more appropriate than the standard variance to characterize risk. The goal of this paper is

to study how to compare portfolios in these situations. In order to do that we show the close

connection between mean-risk efficiency sets and stochastic dominance under distress episodes

of the market, and use the latter property to propose a hypothesis test to discriminate between

portfolios across risk aversion levels. Our novel family of test statistics for testing stochastic

dominance under distress makes allowance for testing orders of dominance higher than zero, for

general forms of dependence between portfolios and can be extended to residuals of regression

models. These results are illustrated in the empirical application for data from US stocks. We

show that mean-variance strategies are stochastically dominated by mean-risk efficient sets in

episodes of financial distress.
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1 Introduction

It was Markowitz (1952) who formalized the concept of portfolio diversification by showing that

investors should choose assets as if they care only about the mean and variance of the returns

on an investment portfolio and therefore should penalize equally departures from expected

wealth in both sides. Alternatively, Roy (1952) developed the concept of safety-first portfolios

where investors’ aim consisted on minimizing the likelihood of a dread event, this identified

with an outcome in the tail of the distribution of portfolio returns. Roy, as Markowitz, also

confined himself to distributions defined by the first two statistical moments. Following this

alternative interpretation of risk Markowitz (1959) proposed the semivariance, risk measure

that only focused on deviations of the return on the portfolio below a target return determined

by the expected return on the investment or the return on the risk-free asset.

Hogan and Warren (1974), Bawa (1975), Arzac and Bawa (1977), and Bawa and Lindenberg

(1977) continued on the idea of risk based on dread events introduced by Roy and proposed

different risk measures based on penalizing the chance of these events. Thus, building on Roy’s

(1952) formulation of risk and extending the semivariance of Markowitz (1959) these authors

introduced lower partial moments (LPM) of the distribution of returns to describe risk. Bawa

((1975), (1976), (1978)) provided a microeconomic foundation for these risk measures by in-

troducing a family of utility functions consistent with them that described the preferences of

downside risk averse investors. These functions take this form:

U(RP ; q, τ) = RP − k(τ −RP )qI(RP ≤ τ), (1)

where RP is the return on a portfolio P ; τ is the threshold denoting the target return; k a scale

parameter, I(·) an indicator function that takes the value one if RP ≤ τ and zero otherwise,

and q the degree of risk aversion of the investor.

Bawa and Lindenberg (1977) and Harlow and Rao (1989) showed that the optimal portfolio

choice of downside risk averse investors is the solution of the following equation,

min
w

LPMP
q (τ) =

∫ τ

−∞
(τ − x)qdF (x), (2)

where with an abuse of notation x denotes the random variable RP , with RP =
m∑

j=1

wjRj , m the

number of assets, w = (w1, . . . , wm) is the vector of weights of each asset and
m∑

j=1

wj = 1. This

minimization problem is subject to the following budget constraint
m∑

j=1

wjE[Rj ] ≤ µ∗(P ), with

µ∗(P ) some target return level. The distribution of RP is denoted F (x) and the corresponding
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curve of all efficient portfolios is called mean-risk efficient set, in contrast to the mean-variance

efficient set derived from minimizing the variance.

More recently, Granger (2002) discusses, from an econometrician point of view, lower partial

moments risk measures in the spirit of those proposed in Fishburn (1977) as an alternative to

processes concerned with describing the dynamics of the conditional variance. Fishburn (1977)

in particular, explores the close relationship between mean-risk models derived from these

downside risk measures and the concepts of mean-risk dominance and of stochastic dominance.

This author shows that the efficient sets obtained from minimizing LPMq measures are a subset

of the different efficient first, second and third stochastic dominance sets. Similar results

involving hypothesis tests for stochastic dominance between investment portfolios are found in

Post (2003), Post and Versijp (2004) or Linton, Maasoumi, and Whang (2005). Related tests

for the hypothesis in different contexts are found in McFadden (1989), Kaur, Rao and Singh

(1994), Anderson (1996), Davidson and Duclos (2000) or Barret and Donald (2003).

The concept of stochastic dominance also encompasses under general conditions the mean-

variance model. Gotoh and Konno (2000) and Manganelli (2007), among others, discuss

the existence of mean-variance portfolio allocations that are dominated in the second order

stochastic dominance sense for all risk-averse agents. This can be particularly remarkable in

distress episodes of the market where portfolio diversification really matters. In these periods it

is common to observe that uncorrelated assets co-move invalidating mean-variance strategies.

It is important, therefore, to consider alternative diversification strategies under comovement

periods.

The main aims of the paper are to extend the relationship between mean-risk and stochas-

tic dominance efficient sets shown in Fishburn (1977) to distress episodes of the market, and

to propose a hypothesis test for stochastic dominance between portfolios under distress. To

test for relative optimality of these strategies we introduce consistent test statistics for testing

the different forms of stochastic dominance and stochastic dominance under distress for orders

of dominance greater or equal than zero. Furthermore, due to a decomposition of the relevant

LPM measures introduced in this paper we are able to derive a simple and estimable form of

the asymptotic distribution of the different test statistics for each family of hypothesis tests.

Also, by a simple transformation of the test statistic our method allows to test the reverse

stochastic dominance hypotheses using the same asymptotic critical values and therefore with-

out any extra computational effort. Finally, as in Linton, Maasoumi and Whang (2005) and

unlike Barret and Donald (2003), we make allowance for dependence between portfolios when

testing for the different hypotheses, and discuss briefly the extension to testing stochastic

dominance for residuals of regression models and time series.
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In this way our study on stochastic dominance tests complements and extends the pioneer-

ing works of Barret and Donald (2003) and Linton, Maasoumi and Whang (2005) in three

directions. First, the asymptotic distribution function of our test statistics for testing the

relevant hypotheses have a close form easily estimable that allows to approximate the critical

value of the tests in small samples without the need of multiplier methods as in Barret and

Donald (2003) or subsampling methods as in Linton, Maasoumi and Whang (2005). Sec-

ond, we use the concept of stochastic dominance in portfolio theory for testing for efficiency

among investment portfolios; and finally we extend stochastic dominance tests to stochastic

dominance under distress episodes of the market.

The paper is structured as follows. Section 2 introduces the definitions of stochastic dom-

inance and conditional stochastic dominance and its relation with mean-risk efficiency under

distress. Section 3 introduces different estimators of the LPM risk measures, derives the rel-

evant hypothesis tests for testing stochastic dominance and conditional stochastic dominance,

and the asymptotic theory. In Section 4 we carry out a Monte Carlo simulation experiment to

study the size and power of the tests and compare our approximations to those obtained from

the p-value transformation advocated in related papers. Section 5 compares the mean-variance

and mean-risk efficient portfolios via stochastic and conditional stochastic dominance for real

data from US equity market. Finally Section 6 concludes with the main findings of the paper.

Proofs and tables are gathered in the appendix.

2 Mean-Risk and Stochastic Dominance Under Comove-

ments

The efficient portfolio frontier in models in which risk is measured by probability weighted

dispersions below a target is defined by those portfolios minimizing LPMq measures under

the constraints introduced in (2). Bawa and Lindenberg (1977) and Harlow and Rao (1989)

show that these measures are consistent with the maximization of preferences of downside risk

averse investors. Those portfolios in the efficient frontier satisfy the following result:

Result 1: (Fishburn (1977), page 118). Portfolio A dominates Portfolio B in the mean-risk

model defined at a τ level if and only if µ(A) ≥ µ(B) and LPMA
q (τ) ≤ LPMB

q (τ) for q ≥ 0,

with at least one strict inequality.

The proof of this result is given by observing that

E[U(Ri; q, τ)] = µ(i)− k LPM i
q(τ), (3)
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with µ(i) denoting the expected values of the random variables Ri, i = A, B, and k a scale

parameter.

Fishburn (1977) shows the existing close connection between the efficiency of LPMq portfo-

lios and their stochastic dominance over the rest of possible risky portfolios. Before elaborating

on this result we introduce stochastic dominance between portfolios as discussed by this author.

Result 2: (Fishburn (1977), page 118).

• A first stochastic dominates (FSD) B if and only if FA 6= FB and LPMA
0 (τ) ≤ LPMB

0 (τ)

for all τ ∈ <.

• A second stochastic dominates (SSD) B if and only if FA 6= FB and LPMA
1 (τ) ≤

LPMB
1 (τ) for all τ ∈ <.

• A third stochastic dominates (TSD) B if and only if FA 6= FB, µ(A) ≥ µ(B), and

LPMA
2 (τ) ≤ LPMB

2 (τ) for all τ ∈ <,

with FA and FB the distribution functions of two portfolios A and B.

In particular lemma 1 and theorem 3 in Fishburn (1977) show that if A FSD B then

µ(A) > µ(B) and E[vA(x)] ≥ E[vB(x)], for every nondecreasing real valued function v(x)

with expected value evaluated at FA and FB respectively; and therefore A dominates B in

the mean-risk model for LPMq measures for all q ≥ 0 and τ ∈ R. In the same way if A SSD B

then µ(A) ≥ µ(B) and E[vA(x)] ≥ E[vB(x)], for every nondecreasing and concave real valued

function v(x); and therefore A dominates B in the mean-risk model for LPMq measures for

all q ≥ 1, except when µ(A) = µ(B) and LPMA
q (τ) = LPMB

q (τ) for all τ . Finally, if A

TSD B then µ(A) ≥ µ(B) and E[vA(x)] ≥ E[vB(x)], for every nondecreasing and concave

real valued function v(x) for which −δv(x)/δx is concave, x ∈ R; and therefore A dominates

B in the mean-risk model for LPMq measures for all q ≥ 2, except when µ(A) = µ(B) and

LPMA
q (τ) = LPMB

q (τ) for all τ . Therefore these results show that efficient portfolio sets

corresponding to investors minimizing LPMq measures are a subset of the FSD efficient set

for q ≥ 0; of the SSD efficient set for q ≥ 1 and of the TSD efficient set for q ≥ 2; except in

the noted cases.

In what follows we extend the results on stochastic dominance shown above to a setting

characterized by periods of market distress. This phenomenon is identified in this paper with

a state of the market where the return on every risky asset is below a threshold u. This will be

measured by P (R1 ≤ u, . . . , Rm ≤ u) and denoted throughout λ(u). In this context we define

5



the following risk measure

LPMP
q,u(τ) =

∫ τ

−∞
(τ − x)qdFu(x), (4)

where Fu(x) := P
(
RP ≤ x|R1 ≤ u, . . . , Rm ≤ u

)
denotes the distribution function of the re-

turns on portfolio P conditional on being on a comovement regime.

The next proposition shows a very helpful decomposition of the risk measures in (2) and

(4) that will enable us to derive the asymptotic distribution of the relevant test statistics and

that, in contrast to existing literature, can be easily estimated for any order of q. Specifically,

our decomposition improves Anderson (1996) that uses a trapezoidal approximation of the

LPM -integrals, and Davidson and Duclos (2000) and Barret and Donald (2003) that integrate

directly the empirical processes. Before introducing the different decompositions we need the

following three assumptions.

Assumption A.1: The vector of weights characterizing portfolio P satisfies that 0 ≤ wj ≤ 1,

for all j, and
m∑

j=1

wj = 1.

Assumption A.2: The distribution functions F (τ), Fu(τ), LPM c
0,u(τ) := F c

u(τ) defined by

the probability P
(
RP ≤ τ |R1 > u or R2 > u or . . . or Rm > u

)
, with the superscript c denot-

ing the complementary conditioning event, and λ(u) = P (R1 ≤ u, . . . , Rm ≤ u) are continuous

and differentiable in the R and Rm domain respectively.

Assumption A.3: Let q define the intensity of risk aversion in utility function (1). Then

E[(RP )q] < ∞ for RP the return on portfolio P .

Assumption A.1 ensures that investors can only take long positions in the assets comprising

the portfolio and implies that LPM0,u(u) = 1. This assumption is very standard in the

literature, see for instance Post (2003). Assumption A.2 and A.3 guarantee the existence of

the different LPM measures determined by q.

Proposition 1: Assume A.1-A.3 hold, and let LPMP
q (·) and LPMP

q,u(·) for q ≥ 0 be the

downside risk measures defined in (2) and (4) respectively. Then

LPMP
q (τ) = E[(τ −RP )q|RP ≤ τ ]LPMP

0 (τ), (5)

and

LPMP
q,u(τ) = E[(τ −RP )q|RP ≤ τ, R1 ≤ u, . . . , Rm ≤ u]LPMP

0,u(τ). (6)
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Proposition 1 can be used to derive a decomposition of the unconditional downside risk

measure for any order q. For example, for q = 0 the conditional probability theorem implies

that LPMP
0 (τ) can be decomposed as

LPMP
0 (τ) = λ(u)LPMP

0,u(τ) + (1− λ(u))LPM c P
0,u (τ). (7)

The following corollary extends this decomposition to higher orders of q.

Corollary 1: Let LPMP
q for q ≥ 0 be the downside risk measure defined in (2). Then

LPMP
q (τ) = λ(u)γq,u(τ)LPMP

q,u(τ) + (1− λ(u))γc
q,u(τ)LPM c P

q,u (τ), (8)

with γq,u(τ) = E[(τ−RP )q|RP≤τ ]
E[(τ−RP )q|RP≤τ,R1≤u,R2≤u,...,Rm≤u]

and

γc
q,u(τ) = E[(τ−RP )q|RP≤τ ]

E[(τ−RP )q|RP≤τ,R1>u or R2>u or...or Rm>u]
.

Furthermore, under comovements LPMP
q (τ) = γq,u(τ)LPMP

q,u(τ).

This decomposition allow us to disentangle the risk exposure of the portfolio due to the

probability λ(u) of market distress, from the risk exposure produced by the allocation of

weights in each market regime. In particular there can be two portfolios A and B consisting

of different assets and such that LPMA
q (τ) ≤ LPMB

q (τ) for every τ ∈ R, but not under

comovements. In this scenario there can be other asset allocations more efficient to diversify

risk. This is explored in the remaining of the section. Following result 2 we define first the

concept of stochastic dominance conditional on comovements.

Definition 1:

• A first conditional stochastic dominates (FCSD) B if and only if FA
u 6= FB

u and LPMA
0,u(τ) ≤

LPMB
0,u(τ) for all τ ≤ u.

• A second conditional stochastic dominates (SCSD) B if and only if FA
u 6= FB

u and

LPMA
1,u(τ) ≤ LPMB

1,u(τ) for all τ ≤ u.

• A third conditional stochastic dominates (TCSD) B if and only if FA
u 6= FB

u , µu(A) ≥
µu(B), and LPMA

2,u(τ) ≤ LPMB
2,u(τ) for all τ ≤ u,

with FA
u and FB

u the relevant conditional distribution functions introduced before, and µu(A) :=

E[RA|R1 ≤ u, . . . , Rm ≤ u] and µu(B) := E[RB |R1 ≤ u, . . . , Rm ≤ u] the corresponding

conditional expected values.
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Using lemma 1 in Fishburn (1977) we obtain that if A FCSD B then µu(A) > µu(B) and

Eu[vA(x)] ≥ Eu[vB(x)] for every nondecreasing real valued function v(x) with expected value

evaluated at FA
u and FB

u , respectively. If A SCSD B then µu(A) ≥ µu(B) and Eu[vA(x)] ≥
Eu[vB(x)] for every nondecreasing and concave real valued function v(x); and finally, if A

TCSD B then µu(A) ≥ µu(B) and Eu[vA(x)] ≥ Eu[vB(x)], for every nondecreasing and

concave real valued function v(x) for which −δv(x)/δx is concave, with x ∈ R. In the particular

case v = U , with U(·) defined in (1), the definition above allows us to extend naturally the

relationship between mean-risk and stochastic dominance efficient frontiers to a conditional

environment characterized by the occurrence of market distress.

Theorem 1:

• If A FCSD B then A dominates B in the mean-risk model defined by LPMq,u measures

for all q ≥ 0.

• If A SCSD B then A dominates B in the mean-risk model defined by LPMq,u measures

for all q ≥ 1, except when µu(A) = µu(B) and LPMA
q,u(τ) = LPMB

q,u(τ) for all τ ≤ u.

• If A TCSD B then A dominates B in the mean-risk model defined by LPMq,u measures

for all q ≥ 2, except when µu(A) = µu(B) and LPMA
q,u(τ) = LPMB

q,u(τ) for all τ ≤ u.

This result entails different optimal portfolio choices contingent on the state of the market.

In order to make the conditions for stochastic dominance in Fishburn (1977) and in theorem 1

above statistically testable we will develop in the next section hypothesis tests for unconditional

stochastic dominance and stochastic dominance under distress of different orders.

3 Estimation and Inference

Suppose we have n independent and identically distributed vectors of observations obtained

from m different random variables R1,. . . ,Rm. Then, natural estimators of LPM0(τ) and

LPM0,u(τ), for τ nonstochastic are

L̂PM0(τ) :=
1
n

n∑

i=1

I(RP
i ≤ τ), (9)

and

L̂PM0,u(τ) :=
1
nu

n∑

i=1

I(RP
i ≤ τ |R1,i ≤ u,R2,i ≤ u, . . . , Rm,i ≤ u), (10)
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with nu the number of vectors satisfying R1 ≤ u,R2 ≤ u, . . . , Rm ≤ u. The multivariate

version of these empirical estimators is employed to estimate λ(u). Thus,

λ̂(u) :=
1
n

n∑

i=1

I(R1,i ≤ u, R2,i ≤ u, . . . , Rm,i ≤ u). (11)

The different expected values necessary to compute LPMq measures of higher orders are

estimated by their corresponding empirical counterparts

Ê[(τ −RP )q|RP ≤ τ ] :=
1
np

n∑

i=1

(τ −RP
i )qI(RP

i ≤ τ), (12)

and

Ê[(τ −RP )q|RP ≤ τ, R1 ≤ u, R2 ≤ u, . . . , Rm ≤ u] :=

=
1
n′p

n∑

i=1

(τ −RP
i )qI(RP

i ≤ τ, R1,i ≤ u, . . . , Rm,i ≤ u), (13)

with np the number of observations in the sample satisfying RP ≤ τ and n′p the number of

observations satisfying RP ≤ τ and R1 ≤ u, R2 ≤ u, . . . , Rm ≤ u.

By the strong law of large numbers in the univariate and multivariate setting and by

Slutsky theorem these estimators and linear functions of them necessary to estimate LPMq

and LPMq,u are strongly consistent estimators of the population parameters for n′p → ∞.

Note that this implies np, nu →∞ since n′p ≤ np, n′p ≤ nu.

These estimators allow to construct consistent tests for the hypotheses involving different

types of stochastic dominance and for any order q. Since we are interested in a portfolio

investment environment we will concentrate on first, second and third orders of stochastic

dominance, although our results can be extended to any q.

3.1 A Hypothesis Test for Stochastic Dominance

This is an open problem widely investigated in economics and finance in general; and in partic-

ular, in the income distribution literature and more recently in portfolio theory, see McFadden

(1989), Larsen and Resnick (1993), Kaur, Rao and Singh (1994), Anderson (1996), David-

son and Duclos (2000), Barret and Donald (2003) or recently Linton, Maasoumi and Whang

(2005) and Davidson and Duclos (2006). Our approach for testing stochastic dominance differs

from these influential papers in three aspects: first, due to the decompositions of the LPM

measures in proposition 1 we can test for any order of stochastic dominance by using simple

modifications of the test statistics. Further, the critical values of the asymptotic distribution

of the tests can be approximated by uniformly consistent estimation procedures. Second, the

different tests for stochastic dominance make allowance for dependence between portfolios;
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and third, we extend these tests to scenarios of market distress, characterized by values of the

vector of random variables comprising the portfolio below a given threshold u.

Our test statistic is of Kolmogorov-Smirnov type and shares the spirit of the test statistic

proposed in McFadden (1989), Anderson (1996), Davidson and Duclos (2000) or more recently

in Barret and Donald (2003). Since the utility function (1) is increasing for q = 0 and

nondecreasing and concave for q > 0 the results in Fishburn (1977) apply, and we can focus

on the hypothesis test





H0,γ : LPMA
γ (τ) ≤ LPMB

γ (τ), for all τ ∈ R,

H1,γ : LPMA
γ (τ) > LPMB

γ (τ), for some τ ∈ R,
(14)

rather than on the strict inequality for testing first (γ = 0), second (γ = 1)1 and third

(γ = 2) stochastic dominance between two portfolios A and B. Alternatively, and following the

notation in Linton, Maasoumi and Whang (2005) we define Dγ(τ) := LPMA
γ (τ)−LPMB

γ (τ)

and write the hypothesis test above as





H0,γ : Dγ(τ) ≤ 0, for all τ ∈ R,

H1,γ : Dγ(τ) > 0, for some τ ∈ R.
(15)

Under H0,0 A dominates B in the mean-risk sense for risk-neutral and risk-averse investors,

under H0,1 A dominates B for risk-averse investors except when µ(A) = µ(B), and under H0,2

and µ(A) ≥ µ(B) A dominates B for risk-averse investors with increasing absolute risk aver-

sion levels. Other testing methods for this hypothesis reverse the roles of the hypotheses and

have the alternative hypothesis as corresponding to strong stochastic dominance. These meth-

ods are formulated using a slightly different definition of stochastic dominance that involves

strict inequality (strong stochastic dominance) in (14), and are usually based on the minimum

distance rather than on the maximum, see for example Kaur, Rao and Singh (1994).

The asymptotic theory for LPM risk measures determined by τ fixed is given in the

following proposition. In contrast to most of the existing literature this result is possible for

general orders of q due to the decompositions discussed in proposition 1.

Proposition 2: Suppose we have n independent and identically distributed observations from

a random variable R, and let L̂PMγ(τ) be a
√

n−consistent estimator of LPMγ(τ), and

1Hereafter q denotes the order of investor’s risk aversion and γ the order of stochastic dominance.
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assume A.1-A.3 hold. Then

√
n

(
L̂PMγ(τ)− LPMγ(τ)

)
d−→ N

(
0, E[(τ −R)2γ |R ≤ τ ]F (τ)− E[(τ −R)γ |R ≤ τ ]2F 2(τ)

)
,

(16)

for all fixed τ in the real line, and γ ≥ 0.

Before introducing the asymptotic theory relevant to the composite hypothesis test we need

the following notation and two further assumptions. Let A and B denote two portfolios with

returns characterized by two random variables RA and RB respectively. Denote FA,B(τ, τ) :=

P (RA ≤ τ,RB ≤ τ), ki
γ(τ) = E[(τ − Ri)γ |Ri ≤ τ ] with i = A,B, and kA,B

γ (τ, τ) = E[(τ −
RA)γ(τ − RB)γ |RA ≤ τ, RB ≤ τ ], and Σ(τ, τ) is the asymptotic covariance function of the

vector (L̂PM
A

γ (τ)− LPMA
γ (τ), L̂PM

B

γ (τ)− LPMB
γ (τ)).

Assumption A.4: inf
τ,τ∗∈R

det(Σ(τ, τ∗)) > 0.

Assumption A.5: The empirical counterparts of kA
γ (τ), kB

γ (τ) and kA,B
γ (τ, τ∗) introduced

above converge uniformly to kA
γ (τ), kB

γ (τ) and kA,B
γ (τ, τ∗), respectively, over τ, τ∗ ∈ R.

Assumption A.4 ensures that result (16) can be extended to describe the asymptotic

bivariate distribution of L̂PM
A

γ (τ) and L̂PM
B

γ (τ) for all fixed τ ∈ R. Assumption A.5 and

Glivenko-Cantelli theorem ensure the uniform convergence of the different estimators to the

parameters of interest. Now, the Cramer-Wold device guarantees that the limit distribution

of the difference between the random variables also converges to a normal distribution. Then

√
n

(
D̂γ(τ)−Dγ(τ)

)
d−→ N (0, Vγ(τ)) , (17)

with

Vγ(τ) =
(
kA
2γ(τ)FA(τ)− (kA

γ (τ)FA(τ))2
)

+
(
kB
2γ(τ)FB(τ)− (kB

γ (τ)FB(τ))2
)−

2
(
kA,B

γ (τ, τ)FA,B(τ, τ)− kA
γ (τ)FA(τ)kB

γ (τ)FB(τ)
)
.

Furthermore, this result can be extended to the associated continuous random process

indexed by τ ∈ R.
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Theorem 2: Under assumptions A.1-A.5,

√
n sup

τ∈R
(D̂γ(τ)−Dγ(τ)) d−→ sup

τ∈R
Gγ(τ), (18)

with Gγ(τ) a Gaussian process with zero mean and covariance function given by

E[Gγ(τs)Gγ(τt)] = (19)

(
kA
2γ(τs ∧ τt)FA(τs ∧ τt)− kA

γ (τs)FA(τs)kA
γ (τt)FA(τt)

)
+

(
kB
2γ(τs ∧ τt)FB(τs ∧ τt)− kB

γ (τs)FB(τs)kB
γ (τt)FB(τt)

)−
(
kA,B

γ (τs, τt)FA,B(τs, τt)− kA
γ (τs)FA(τs)kB

γ (τt)FB(τt)
)−

(
kA,B

γ (τt, τs)FA,B(τt, τs)− kA
γ (τt)FA(τt)kB

γ (τs)FB(τs)
)
,

for all τs, τt ∈ R, and 0 ≤ γ ≤ q.

Remark: For the multivariate version of (19) defined by a finite grid of points in the real line

−∞ < τ1 < τ2 < . . . < τt < ∞ we observe that Σ(τs, τt) := E[Gγ(τs)Gγ(τt)] for s, t = 1, . . .

Our family of test statistics is defined by Tn,γ :=
√

n sup
τ∈R

D̂γ(τ). The null hypothesis is the

equality of functions FA(τ) = FB(τ) for every τ ∈ R. Under A.1-A.5, and H0,γ ,

Tn,γ
d−→ sup

τ∈R
Gγ(τ). (20)

Further, the asymptotic critical values of these tests indexed by γ are given by

cγ(1− α) := inf
x∈R

{x ∣∣P
(

sup
τ∈R

Gγ(τ) ≤ x

)
≥ 1− α}, (21)

with α denoting the significance level.

Barret and Donald (2003) and particularly Linton, Maasoumi and Whang (2005) discuss

the problem of assuming equality of functions for the null hypothesis version of the test. These

authors argue that the convergence of test statistics of Kolmogorv-Smirnov and Cramér-von

Mises type is not uniform over the probabilities under the null hypothesis. More recently,

Linton, Song and Whang (2008) show that discontinuity of convergence arises precisely between

the interior points of the null hypothesis and the boundary points of the null hypothesis. In

order to solve this these authors propose bootstrap procedures to obtain stochastic dominance

tests with asymptotic coverage exactly equal to the nominal level of the test over the boundary

of points and therefore valid over the whole null hypothesis. We will not discuss this technical
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issue further in the paper and will derive asymptotic critical values with correct coverage under

the least favorable case (equality of distributions) that in our testing framework coincides with

the boundary of the null hypothesis.

Proposition 3: Given Assumptions A.1-A.5 and the test statistic Tn,γ , then:

(i) Under H0,γ ,

lim
n→∞

P (reject H0,γ) = lim
n→∞

P (Tn,γ > cγ(1− α)) ≤ α, (22)

with equality when FA(τ) = FB(τ) for every τ ∈ R.

(ii) If H0,γ is false,

lim
n→∞

P (reject H0,γ) = lim
n→∞

P (Tn,γ > cγ(1− α)) = 1. (23)

Next we determine the power of the test against a sequence of contiguous alternatives

converging to the boundary Dγ(τ) = 0 for all τ , at a rate n−1/2. We define the sequence of

local alternatives FA(τ) = FB(τ) + δ(τ)√
n

, that implies Dγ(τ) = δ(τ)√
n

for each τ ∈ R, and with

δ(τ) such that sup
τ∈R

δ(τ) > 0.

Proposition 4: Under H1,γ : Dγ(τ) = δ(τ)√
n

with sup
τ∈R

δ(τ) > 0, we have

lim
n→∞

P (reject H0,γ) = lim
n→∞

P (Tn,γ > cγ(1− α)) ≥ lim
n→∞

P

(
sup
τ∈R

Gγ(τ) > cγ(1− α)− sup
τ∈R

δ(τ)
)

.

(24)

Then, the power of the test against local alternatives is nontrivial since

lim
n→∞

P

(
sup
τ∈R

Gγ(τ) > cγ(1− α)− sup
τ∈R

δ(τ)
)

> α.

In practice, the asymptotic critical value of the different tests depends on the marginal

and joint distribution functions evaluated at the different points of a finite grid of random

points τ1 < τ2 < . . . < τt, and on the corresponding conditional expected values. This, as

acknowledged by other authors as well, implies that cγ(1−α) is not distribution-free and cannot

be universally tabulated. This value, if FA, FB and FA,B are known, can be approximated

by Monte-Carlo simulation of the asymptotic distribution function of the supremum of the

13



Gaussian process Gγ . The choice of the number of Monte-Carlo iterations and the partition

of the grid is up to the econometrician, making the accuracy of this approximation as fine as

the econometrician desires.

The interest of these tests is, however, when the nuisance parameters of the asymptotic

distribution are not known. In this case there are two alternatives explored in the literature,

namely, the p-value transformation in the spirit of Hansen (1996) or multiplier method, see

Van der Vaart and Wellner (1996) or Barret and Donald (2003); and resampling methods,

bootstrap as in Barret and Donald (2003) or subsampling as in Linton, Maasoumi and Whang

(2005). Alternatively, we propose here to exploit the parametric form of the asymptotic

distribution of the functional of Gγ , and approximate the critical values of the true sampling

distribution of the test with the critical value of the asymptotic distribution with covariance

function estimated by the
√

n−nonparametric consistent estimators introduced above. This

methodology to approximate the critical value is not new. Koul and Ossiander (1994) and

Koul and Ling (2006), for example, propose it in a context of goodness of fit tests for the

error distribution of autoregressive and heteroscedastic time series models. The choice of this

method has two main advantages over the other two standard simulation techniques. These

are now discussed.

In contrast to the multiplier method our asymptotic distribution makes allowance for de-

pendence between the random variables A and B and therefore covers a higher spectrum of

possibilities. Also, our method can be implemented very easily to higher orders of stochastic

dominance. It is not clear that this is the case, in practice, for the multiplier method since the

sequence of normal random variables have to multiply complicated functionals of the empirical

processes defining Tn,γ .

Bootstrap resampling techniques offer a good alternative to approximate the finite-sample

distribution of the test under the null hypothesis. For power studies, however, bootstrap

versions of the hypothesis tests are not consistent when the null hypothesis of stochastic

dominance is not known, that is, one does not know whether inequality LPMA
q ≤ LPMB

q

or LPMB
q ≤ LPMA

q holds and thereby whether the bootstrap for the test statistic Tn,γ

approximates the null or the alternative distribution. To solve this Linton, Maasoumi and

Whang (2005) propose the use of subsampling tests that are consistent against H1,γ , see the

monograph of Politis, Romano and Wolf (1999) for the consistency of subsampling tests. This

alternative relies heavily on the choice of an optimal subsample size and can be difficult to

implement in practice.

Like in the bootstrap and multiplier method the critical value obtained from estimating the

asymptotic distribution is data dependent. This is so because each draw from the data gener-
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ating process produces a different set of estimates of the nuisance parameters, and therefore,

a proper Monte-Carlo exercise for studying the properties of the test should generate different

critical values for each sample, all of them converging uniformly at
√

n−rate to cγ(1 − α).

Note instead that the parametric nature of our approximation and the certainty that we are

using the correct asymptotic distribution under H0,γ allows us to use universally, given the

sample size, the critical value obtained from one single iteration in the Monte-Carlo study.

This fact improves considerably, in computational terms, the efficiency of the tests with very

little sacrifice in terms of accuracy of size and power. This can be observed in the Monte-Carlo

exercises reported in Section 4. Before, we formalize this choice of critical value.

Proposition 5: Assume A.1-A.5 hold, and let x(j)
n := (x(j)

1 , x
(j)
2 , . . . , x

(j)
n )′, j = 1, . . ., be a

collection of random samples of dimension n×2 drawn from a bivariate distribution FA,B(τ, τ).

Let T
(j)
n,γ be the test statistic associated to each sample, and c

(j)
γ (1 − α) the critical values

obtained from the corresponding estimated functional of Gγ . Then

(i) Under H0,γ ,

lim
n→∞

P (reject H0,γ) = lim
n→∞

P (T (j)
n,γ > c(1)

γ (1− α)) ≤ α, (25)

almost surely for every random sample x(j)
n , and with equality when FA(τ) = FB(τ) for every

τ ∈ R.

(ii) If H0,γ is false,

lim
n→∞

P (reject H0,γ) = lim
n→∞

P (T (j)
n,γ > c(1)

γ (1− α)) = 1, (26)

almost surely for every random sample x(j)
n .

Finally, it is worth mentioning that the spherical symmetry of the asymptotic distribution

of the different test statistics Tn,γ under H0,γ allows us to carry out the reverse hypothesis test

H∗
0,γ : LPMB

q ≤ LPMA
q without the need of extra calculations. The asymptotic critical value

of this test is also cγ(1 − α), and the relevant test statistic T ∗n,γ can be computed from Tn,γ

by exploiting that T ∗n,γ = −√n inf
τ∈R

D̂γ . In practice then we need to compute this value along

with Tn,γ to extract meaningful conclusions about the reverse test in case H0,γ is rejected.
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3.2 Stochastic Dominance Hypothesis Tests Under Distress

The results above can be easily extended to testing stochastic dominance under distress and

with it the mean-risk dominance set in episodes of market turmoil. For ease of exposition we

will assume that both portfolios have the same number of observations nu below the threshold

u, and same number of assets m. More formally, denote nA
u :=

n∑
i=1

I(RA
1,i ≤ u, . . . , RA

m,i ≤ u),

nB
u :=

n∑
i=1

I(RB
1,i ≤ u, . . . , RB

m,i ≤ u) with RA
j and RB

j , j = 1, . . . ,m the assets comprising

portfolio A and B respectively.

Assumption A.6: nu := nA
u = nB

u .

Remark: This assumption can be relaxed and use instead two threshold values uA and uB

satisfying nA
uA = nB

uB .

The relevant hypothesis test in this environment of comovements is





H0,γ,u : Dγ,u(τ) ≤ 0, for all τ ∈ R,

H1,γ,u : Dγ,u(τ) > 0, for some τ ∈ R,
(27)

where Dγ,u(τ) = LPMA
γ,u(τ)− LPMB

γ,u(τ).

The asymptotic theory follows from the previous results for the unconditional stochastic

dominance tests. Assumptions A.2-A.4 are sufficient to guarantee that the covariance function

of the corresponding conditional functional process is well defined. Assumption A.5 guarantees

the uniform convergence of the corresponding conditional moments that we introduce now.

Let FA,B
u (τs, τt) := P{RA ≤ τs, R

B ≤ τt|R1 ≤ u, . . . , Rm ≤ u}, ki
γ,u(τ) := E[(τ − Ri)γ |Ri ≤

τ,R1 ≤ u, . . . , Rm ≤ u] with i = A, B, and kA,B
γ,u (τ, τ) := E[(τ −RA)γ(τ −RB)γ |RA ≤ τ,RB ≤

τ,R1 ≤ u, . . . , Rm ≤ u].

Theorem 3: Under A.1-A.6,

√
nu sup

τ∈(−∞,u]

(D̂γ,u(τ)−Dγ,u(τ)) d−→ sup
τ∈(−∞,u]

Gγ,u(τ), (28)

with Gγ,u(τ) a Gaussian process with zero mean and covariance function given by

E[Gγ,u(τs)Gγ,u(τt)] = (29)

(
kA
2γ,u(τs ∧ τt)FA

u (τs ∧ τt)− kA
γ,u(τs)FA

u (τs)kA
γ,u(τt)FA

u (τt)
)

+
(
kB
2γ,u(τs ∧ τt)FB

u (τs ∧ τt)− kB
γ,u(τs)FB

u (τs)kB
γ,u(τt)FB

u (τt)
)−
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(
kA,B

γ,u (τs, τt)FA,B
u (τs, τt)− kA

γ,u(τs)FA
u (τs)kB

γ,u(τt)FB
u (τt)

)−
(
kA,B

γ,u (τt, τs)FA,B
u (τt, τs)− kA

γ,u(τt)FA
u (τt)kB

γ,u(τs)FB
u (τs)

)
,

for all τs, τt ≤ u, and 0 ≤ γ ≤ q.

The processes G0,u(τ) and G0(τ) are identical in distribution. For higher orders of γ

this is not the case since the asymptotic distribution depends on the conditional versions of

the different expected values entering the covariance function and on the choice of threshold

parameter.

The family of test statistics for testing stochastic dominance under distress are Tnu,γ :=
√

nu sup
τ∈(−∞,u]

D̂γ,u(τ), that under A.1-A.6, and H0,γ,u, with u ∈ R, satisfy

Tnu,γ
d−→ sup

τ∈(−∞,u]

Gγ,u(τ), (30)

with Gγ,u(τ) a Gaussian process with zero mean and covariance function given in expression

(29). Further, the asymptotic critical values of these tests are given by

cγ,u(1− α) := inf
x∈R

{x ∣∣P
(

sup
τ∈(−∞,u]

Gγ,u(τ) ≤ x

)
≥ 1− α}, (31)

with α denoting the significance level. In contrast to the unconditional case, this critical value

cannot be tabulated even for γ = 0 due to the dependence of the supremum functional process

on u. Simulation procedures as a p-value transformation or bootstrap can be proposed to

approximate the critical value of the test. Note that in this conditional context it is convenient

to make allowance for mutual tail dependence between the prospects even if A and B are

unconditionally uncorrelated. This dependence makes the p-value transformation inadequate

for testing stochastic dominance under comovements. On the other hand, the inconsistency

of bootstrap tests under the alternative hypothesis remains in this context. Alternatively, we

propose to estimate the asymptotic covariance function (29) from the data and approximate

the critical value of the test by Monte-Carlo simulation of the restricted supremum of the

estimated gaussian process. The validity of this method and the consistency of the test can

be shown applying proposition 5 to an environment of comovement periods.

The next subsection discusses the extensions of these tests to residuals of linear regression

models and time series models.
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3.3 Stochastic Dominance Hypothesis Tests for Residual Processes

In many situations of practical interest the realizations of the random variables under study

are serially dependent or depend on other observed covariates. To account for these different

forms of dependence in the tests introduced above the researcher can proceed in two ways.

One possibility is to develop hypothesis tests for stochastic dominance robust to the presence

of serial dependence. In this case the asymptotic distributions in theorems 2 and 3 need

to incorporate the presence of serial correlation and heteroscedasticity in the data, implying

more convoluted covariance structures of the respective asymptotic distributions. Appropriate

heteroscedastic and autocorrelation consistent (HAC) estimators of the conditional expected

values and distribution functions need to be used instead. The sequences under study also need

to satisfy some mixing conditions. Alternatively, one can apply filters to the data in order to

transform the observations from each random variable into iid observations and use the tests

above. This methodology is based on the residuals of regression and time series models and is

explored as follows.

Let ZT
t = {(1, RA

t−j , R
B
t−j , Xt+1−j), j = 1, . . .} be a vector of regressors, where Xt denotes

a vector of random variables different from RA
t and RB

t . The relevant regression equation is

Ri
t = ZT

t βi + ai
t, (32)

with βi the parameter vector and ai
t = hi

tε
i
t, the innovation variables corresponding to each

regression equation. These sequences consist of a volatility process hi
t and an error sequence

εi
t that satisfies E[εi|Z] = 0 for i = A,B. Consider the family of test statistics Tn,γ of the

unconditional tests above and let T̂n,γ be the family of test statistics computed from the

residual sequences ε̂i
t := Ri

t−ZT
t β̂i

ĥi
t

for i = A,B, where β̂i is the vector of parameter estimates

and ĥi
t the estimated volatility process. In what follows we show that theorems 2 and 3 still

hold for these alternative tests based on the residual sequences and for 0 ≤ γ ≤ 2.

Assumption A.7: (i)
{
(Ri

t, Zt) : t = 1, . . . , n
}

is a strictly stationary and ergodic sequence

for i = A,B. (ii) The conditional distribution of εi
t given the vector Zt has bounded density

with respect to Lebesgue measure almost sure (a.s.) for i = A,B, and t ≥ 1. (iii)
√

n(β̂i−βi) =

Op(1) and
√

n(ĥi
t − hi

t) = Op(1).

Corollary 2: Suppose assumptions A.1-A.5, and A.7, are satisfied. Then, under H0,γ for
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0 ≤ γ ≤ 2,

T̂n,γ
d−→ sup

τ∈R
Gγ(τ), (33)

with Gγ(τ) the Gaussian process introduced in (19).

This corollary can be also formulated for stochastic dominance under distress using residual

processes, and without the need of imposing more assumptions. This result is omitted for sake

of space.

The battery of tests proposed in this section extends in three ways the existing methods

for testing stochastic dominance. First, by deriving a testing framework for general degrees of

stochastic dominance that makes allowance for different forms of dependence between portfo-

lios without relying on bootstrap and subsampling techniques; second, by introducing alter-

native tests for the hypothesis of stochastic dominance under distress episodes of the market,

and third by showing the applicability of these techniques to residuals from regression and

time series models. The implications of these techniques in optimal portfolio theory are of

much interest. A simple application for financial data is described in Section 5. Next section

illustrates via simulation experiments the findings of this section.

4 Mote-Carlo Simulation Experiments

In this section we consider a small Monte Carlo experiment to gauge the extent to which

the preceding asymptotic arguments hold in finite samples. We are interested, in particular,

in comparing the approximation of the critical values given by our asymptotic theory and

the approximation offered by the multiplier method discussed in Barret and Donald (2003).

The critical values of both methods are conditional on a given sample. In our method this is

due to the estimation of the nuisance parameters in the covariance function of the Gaussian

process, and in the p-value transformation or multiplier method due to the generation of

random versions of the relevant test statistic. For comparison purposes the multiplier method

implemented in this section differs slightly from Barret and Donald procedure. In our case

we multiply the raw observations of the bivariate data generating process by two independent

vectors of standard normal random variables and use these simulated observations to compute

the modified versions of the different test statistics. This is plausible due to the linear form of

our test statistics and the continuous mapping theorem.

We study these approximations for stochastic dominance tests of first and second order; and

also, for the corresponding tests of stochastic dominance under distress. In the second block
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of simulations we carry out a small study of the power of the tests against local alternatives.

In this case we only focus on our method to derive the critical values in order to study the

power of the tests.

Tables 1 and 2 report empirical sizes under both methods for H0,γ for γ = 0, 1 and when

the correlation parameter between the random variables is ρ = 0, 0.4, and 0.8. The significance

levels studied are 10%, 5% and 1% and the data generating processes are bivariate Student-t

distributions with ν = 5 and ν = 10 degrees of freedom. We choose these distributions as

plausible candidates to describe the unconditional generating process for pairs of financial

returns, or more usually, to describe the sequence of innovations of the standard processes

encountered in the modeling of financial time series, see Bollerslev (1987). These distributions

belong to the elliptical family of distribution functions and are therefore completely character-

ized by the first two statistical moments and the correlation function. Nevertheless, unlike the

gaussian distribution these processes are capable of generating asymptotic tail dependence as

ρ increases. The impact of this phenomenon in the size and power of the tests can be observed

in the different simulations reported.

[INSERT TABLES 1 AND 2 ABOUT HERE]

The results for the empirical size for stochastic dominance under comovements are reported

in tables 3 and 4. Note that in order to have a simulation exercise comparable to the uncon-

ditional case we need to have conditional samples of nu = 50, 100 and 500 observations. This

can achieved for the independent case, for a threshold u = 0 and for such data generating

processes, by generating random samples of n = 200, 400 and 2000 observations. For values of

ρ greater than zero, the asymptotic tail dependence present in the data, generates subsamples

in the conditioning region with more than nu = 50, 100 and 500 observations and yield in turn

better approximations of size and power.

[INSERT TABLES 3 and 4 ABOUT HERE]

The study of the power of the tests against local alternatives is designed as follows. The

family of alternative hypotheses is defined by a random variable RA = X − c√
n
, where X, as

RB , follows an standardized mean-zero Student-t distribution with ν degrees of freedom, and

such that Cov(X, RB) = ρ. The distribution function of RA is given by FA(τ) := FB(τ + c√
n
),

that by a Taylor expansion satisfies FA(τ) = FB(τ)+ cfB(τ)√
n

+o
(

1√
n

)
with fB(τ) the density

function of the centered Student-t distribution.2 The distribution of RA can be written,

2The supremum of fB(τ) is achieved at τ = 0 and takes the value 0.380 for ν = 5 and 0.389 for ν = 10.
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therefore, as FA(τ) = FB(τ) + δ(τ)√
n

with δ(τ) = cfB(τ) and such that sup
τ∈R

δ(τ) > 0. For our

examples we consider c = 0.5, 1 and 5.

We study the power for the three dependence structures considered before. Tables 5 and 6

report the results for the unconditional tests and tables 7 and 8 the results corresponding to the

conditional tests representing financial distress. The data generating processes are Student-t

distributions with ν = 5 and 10.

[INSERT TABLES 5 - 8 ABOUT HERE]

Some remarks on the simulations:

1. Our family of test statistics shows an adequate finite sample performance in terms of

size and power when n > 50.

2. The approximation of the different critical values by the asymptotic theory that we

postulate in the paper is in general more accurate than under the p-value transformation.

This is particularly remarkable under the presence of dependence between portfolios A

and B, where the p-value method fails completely to report accurate approximations of

the asymptotic critical values.

3. The choice of the grid used for the Monte-Carlo simulation only plays an important role

for small sample sizes (n = 50). In these cases the econometrician must fine tune the

lower and upper limit of the grid to avoid simulated covariance matrices that are not

well defined. Unfortunately, the constraints imposed on the grid, and therefore on the

process, distort considerably the approximations of the size, and one should opt in these

few cases for the p-value transformation.

4. The power of the tests increases as the correlation between the random variables is higher.

5. The conclusions from the simulations for stochastic dominance under distress are very

similar and are omitted for sake of space. It is remarkable the substantial increase in

power in these cases compared to their unconditional counterparts with same sample

sizes.

In the next section we implement these tests for evaluating efficient investment portfolios

and compare them in normal and crises episodes of the market.
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5 An Empirical Study of Mean-risk Efficiency

We study a portfolio of risky and heavily traded stocks in the US economy that cover very

different and important sectors: Microsoft (MSFT), General Electric (GE), Bank of America

Corporation (BAC) and Verizon Communications (VZ). The data set we propose to use spans

the period 02/01/2000 - 30/12/2007 and are obtained from Yahoo Finance website. In contrast

to studies using financial indexes each asset in this case is not a diversified instrument per se

and can be dramatically affected by negative and positive idiosyncratic shocks. The marginal

unconditional distribution functions exhibit rather heavy tails and can invalidate, in turn,

approximations of the distribution of the portfolio given by normal distributions, and that

thereby support mean-variance efficient sets consisting of aggregation of uncorrelated assets.

We concentrate on two portfolio candidates, wo denoting the mean-risk efficient portfolio

derived from minimizing a LPM0 measure for τ = 0, and characterized by the following

weights: wo := [0.05 0.85 0.05 0.05]; and wmv := [0.20 0.15 0.30 0.35] obtained from

minimizing the corresponding unconditional variance. The left panel in figure 5.1 shows the

unconditional distribution function of returns from each strategy. A simple visual inspection

of the plot indicates the rejection of both H0,0 and the reverse hypothesis. The relevant

hypothesis test for first stochastic dominance confirms the findings of no dominance of either

portfolio. Both hypotheses are rejected at 5%. In particular the simulated critical values are

1.029, 1.158 and 1.364 at 10%, 5% and 1%, respectively. The test statistics are 2.710 and

2.377.

The test for second stochastic dominance shows a different picture. In this case the critical

values are 1.594, 1.982 and 2.813 at 10%, 5% and 1%, respectively, with test statistics 7.305 for

H0,1 and -2.480 for H∗
0,1. There is sufficient evidence to reject the null and accept the reverse

hypothesis. This test implies that risk-averse investors prefer the mean-variance strategy to

the mean-risk efficient portfolio. This order of convergence is sufficient to infer the dominance

of the mean-variance strategy over the other for higher orders of stochastic dominance.

The efficiency analysis between portfolios is repeated now under comovements defined

by a threshold u = 0. In this case the efficient portfolios under each strategy are wo,o :=

[0.05 0.05 0.05 0.85] and wmv,o := [0.05 0.05 0.50 0.40]. The critical values of the test

H0,0,0 : LPM
wo,o

0,0 ≤ LPM
wmv,o

0,0 are 0.990, 1.095 and 1.368, and the relevant test statistics

0.306 and 1.733. Therefore whereas we find no evidence to reject the null hypothesis H0,0,0 we

do to reject the reverse hypothesis. We conclude that the mean-variance strategy is dominated

under comovement episodes of the market by the mean-risk frontier for risk-neutral and risk-

averse investors. The right panel of figure 5.1 supports these findings.
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Figure 5.1. Nonparametric estimates of the conditional risk measures LPM0 (left panel)

and LPM0,0 (right panel). (♦−) describes Portfolio wo and wo,o, and (·−) Portfolio wmv

and wmv,o. The assets comprising the portfolio are (GE, MSFT, V Z,BAC) and the relevant

period 02/01/2000 - 30/12/2007.

To confirm our findings we also carry out this experiment using two more methodologies.

For the first alternative, we entertain the abnormal returns of each portfolio obtained from

removing the dependence from the market portfolio, proxied in this example by the Dow-

Jones Industrial Average Stock Index over the same period. We find, however, no statistical

significance at 5% of the systematic risk (β) parameter. Therefore, the results on stochastic

dominance obtained before do not vary now. The second experiment contemplates the residual

sequence of each time series after filtering for the presence of serial dependence in the data.

In particular, we have estimated each optimal portfolio independently using an ARMA(1,1)-

GARCH(1,1) process and a pure GARCH(1,1) process. Whereas the ARMA components are

not statistical significant at 5%, the parameters of the volatility model are highly significant.

The process for the downside risk portfolio is

Rwo
t = ho,tε

w0
t , with h2

o,t = 0.033
(0.006)

+ 0.124
(0.010)

R2
t−1 + 0.876

(0.010)
h2

o,t−1,

with εw0
t the corresponding error term, and where standard errors of the estimates are in

brackets. For the mean-variance efficient portfolio,

Rwmv
t = hmv,tε

wmv
t , with h2

mv,t = 0.006
(0.002)

+ 0.060
(0.007)

R2
mv,t−1 + 0.938

(0.007)
h2

mv,t−1,
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with εwmv
t the error term.

The results in this case are more supportive of the stochastic dominance of downside

risk strategies for the complete domain of the random variables. The test statistics for the

unconditional case are T̂n = 0.866 and T̂ ∗n = 1.577, and the critical value at 5% is 1.163. Hence

we do not reject the hypothesis of stochastic dominance of the downside risk portfolio. Finally,

the results from the hypothesis test under market distress confirm these findings. In this case

the relevant test statistics are T̂n,0 = 0.038 and T̂ ∗n,0 = 5.045, and the critical value at 5% is

1.267.

6 Conclusions

The number of articles in the financial literature postulating alternatives to the variance to

measure risk has been steadily increasing during the last thirty years. One of the main reasons

for this is the belief that financial markets are more interconnected and therefore more likely

to enjoy or collapse together. This phenomenon is particularly intense under distress episodes

of the markets. In these scenarios and under very general conditions mean-variance strategies

can fail to account for these stronger links surging between markets. Natural measures to

account properly for these comovements are lower partial moments of the distribution of the

portfolio returns. These measures have been studied in portfolio theory and asset pricing since

long ago but not for gauging risk under financial distress. We propose in this paper to refine

these measures to account explicitly for the presence of comovements in periods of distress and

more importantly, to be able to construct efficient portfolios for downside risk averse investors

independently of their specific level of risk aversion.

In order to compare the efficiency of two portfolios using lower partial moments we propose

a set of statistical tests that allow dependence between prospects and whose critical values

can be obtained without resampling methods. These tests can be easily extended to testing

stochastic dominance under financial distress. A portfolio that stochastically dominates an-

other portfolio in an scenario of financial distress is a portfolio that is in the mean-risk efficient

frontier, and therefore it should be the preferred choice by investors. Further, mean-variance

strategies designed to be efficient unconditionally can be dominated in market distress by these

alternative portfolios derived from downside risk measures.

These findings and the methodologies derived in this paper can be of much interest for

researchers and practitioners interested in the optimal portfolio choices of downside risk averse

investors. In particular for those investors where the level of risk aversion cannot be modeled

by a simple threshold level given, for example, by the return on the risk-free asset or by a zero
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return, but is within an interval of possible threshold values. In these cases tests of stochastic

dominance and of stochastic dominance under distress can be employed as valid techniques

to discriminate among portfolios. These tests can be also of much interest in portfolio theory

for economies consisting of downside risk averse heterogeneous agents with risk aversion levels

described by different thresholds across investors.

Extensions of our tests for stochastic dominance and mean-risk efficiency to more than

two risky prospects are straightforward by using the formulations for the relevant joint tests

as in Barret and Donald (2003) and Linton, Maasoumi and Whang (2005), and modifying

accordingly the asymptotic theory presented above.

25



Mathematical appendix

Proof of proposition 1: The proof of the first result in this proposition is trivial. For the

second equality denote Fu(τ) := P (RP ≤ τ
∣∣R1 ≤ u, . . . , Rm ≤ u), and note that

∫ τ

−∞
dFu(x) =

∫ τ

−∞

dFu(x)
Fu(τ)

Fu(τ),

with Fu(x)
Fu(τ) = P{RP ≤ x|RP ≤ τ, R1 ≤ u, . . . , Rm ≤ u}. Also, by an abuse of notation we have

that

LPMP
0,u(τ) =

∫ τ

−∞
dFu(x) = Fu(τ).

Therefore

LPMP
q,u(τ) =

∫ τ

−∞
(τ − x)q dFu(x)

Fu(τ)
LPMP

0,u(τ),

that yields result (6).

Proof of theorem 1: It follows from Definition 1 that if A FCSD B then LPMA
0,u(τ) ≤

LPMB
0,u(τ) for all τ ≤ u and µu(A) > µu(B). Further, this definition also implies that FCSD

implies SCSD and so on; therefore LPMA
q,u(τ) ≤ LPMB

q,u(τ) for all τ ≤ u and q ≥ 0. Now,

given that

Eu[U(Ri; q, τ)] =
∫ u

−∞
xdF i

u(x)− k

∫ τ

−∞
(τ − x)qdF i

u(x) = µu(i)− k LPM i
q,u(τ), (34)

with i = A,B, it follows that Eu[U(RA; q, τ)] ≥ Eu[U(RB ; q, τ)] for all τ ≤ u and q ≥ 0. The

proof for higher orders of conditional stochastic dominance is analogous.

Proof of proposition 2: Suppose we have n independent and identically distributed vectors

of observations from a random variable R, and let L̂PMγ(τ) be the estimator of LPMγ(τ)

introduced in (9). This estimator can be written as:

L̂PMγ(τ) = 1
n

n∑
i=1

(τ − xi)γI(xi ≤ τ).

By the law of iterated expectations

E[L̂PMγ(τ)] = E[(τ −X)γ |X ≤ τ ]E[I(xi ≤ τ)] = E[(τ −X)γ |X ≤ τ ]F (τ),

with F (τ) the distribution function of the random variable R. Note that LPM0(τ) := F (τ)

and therefore by (2) we obtain the unbiasedness of the estimator.
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The proof of the variance is similar but more tedious. By definition we know that

V (L̂PMγ(τ)) = E[L̂PM
2

γ(τ)]− E2[(τ −X)γ |X ≤ τ ]F 2(τ).

By the serial independence between the observations and the law of iterated expectations we

can express the first term on the right as

E[L̂PM
2

γ(τ)] =

E

[
1
n

n∑
i=1

(τ − xi)2γ
∣∣X ≤ τ

]
F (τ) + E


n(n−1)

n2

n∑
i=1

n∑
j=1
j 6=i

(τ − xi)γ(τ − xj)γ
∣∣xi ≤ τ, xj ≤ τ


 F 2(τ).

After some algebra we obtain

E[L̂PM
2

γ(τ)] =

1
n

(
E

[
(τ −X)2γ |X ≤ τ

]
F (τ)− E [(τ −X)γ |X ≤ τ ]2 F 2(τ)

)
+ E [(τ −X)γ |X ≤ τ ]2 F 2(τ).

It follows then that

V [L̂PM
2

γ(τ)] = 1
n

(
E

[
(τ −X)2γ |X ≤ τ

]
F (τ)− E [(τ −X)γ |X ≤ τ ]2 F 2(τ)

)
,

implying that

√
n

L̂PMγ(τ)− LPMγ(τ)√(
E [(τ −X)2γ |X ≤ τ ] F (τ)− E [(τ −X)γ |X ≤ τ ]2 F 2(τ)

)
d−→ N(0, 1). (35)

Proof of theorem 2: The proof of this result consists of different steps. First, we need to

derive the multivariate version of (17). After this we show the tightness of the process, and

finally, by using the continuous mapping theorem we derive the asymptotic distribution of the

supremum. Thus, suppose we have a partition of the real line given by −∞ < τ1 < τ2 <

. . . < τt < ∞, and n serially independent and identically distributed observations from two

random variables RA and RB . Let D̂γ(τ) be the consistent estimator of Dγ(τ) introduced

above. Then, under A.1 -A.5,

√
n

(
D̂γ(τ1)−Dγ(τ1), . . . , D̂γ(τt)−Dγ(τt)

)
d−→ (Gγ(τ1), . . . , Gγ(τt)) , (36)

with the vector on the right following a multivariate normal distribution with mean zero and

covariance matrix given by

E[Gγ(τs)Gγ(τt)] =
(
kA
2γ(τs ∧ τt)FA(τs ∧ τt)− kA

γ (τs)FA(τs)kA
γ (τt)FA(τt)

)
+

(
kB
2γ(τs ∧ τt)FB(τs ∧ τt)− kB

γ (τs)FB(τs)kB
γ (τt)FB(τt)

)−
(
kA,B

γ (τs, τt)FA,B(τs, τt)− kA
γ (τs)FA(τs)kB

γ (τt)FB(τt)
)−

(
kA,B

γ (τt, τs)FA,B(τt, τs)− kA
γ (τt)FA(τt)kB

γ (τs)FB(τs)
)
,
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for all τs, τt ∈ R.

The proof of this result follows the same steps as in the previous proof. We will only show

the proof for Cov

(
L̂PM

A

γ (τs), L̂PM
A

γ (τt)
)

and Cov

(
L̂PM

A

γ (τs), L̂PM
B

γ (τt)
)

. The other

two terms follow the same algebra. Thus

E[L̂PM
A

γ (τs)L̂PM
A

γ (τt)] = E

[
1
n

n∑
i=1

(τs − xi)γ(τt − xi)γ
∣∣X ≤ τs ∧ τt

]
FA(τs ∧ τt) +

E


n(n−1)

n2

n∑
i=1

n∑
j=1
j 6=i

(τs − xi)γ(τt − xj)γ
∣∣xi ≤ τs, xj ≤ τt


 FA(τs)FA(τt).

By the serial independence between the observations the former expression reads as

E[L̂PM
A

γ (τs)L̂PM
A

γ (τt)] =

1
n

(
E [(τs −X)γ(τt −X)γ |X ≤ τs ∧ τt] FA(τs ∧ τt)− E [(τs −X)γ |X ≤ τs] E [(τt −X)γ |X ≤ τt]FA(τs)FA(τt)

)
+

E [(τs −X)γ |X ≤ τs]E [(τt −X)γ |X ≤ τt] FA(τs)FA(τt).

It follows then that

lim
n→∞

nCov

(
L̂PM

A

γ (τs), L̂PM
A

γ (τt)
)

= E [(τs −X)γ(τt −X)γ |X ≤ τs ∧ τt] FA(τs ∧ τt)−
E [(τs −X)γ |X ≤ τs]E [(τt −X)γ |X ≤ τt] FA(τs)FA(τt).

For the covariance term denoting cross dependence the procedure is similar. Let {yj}n
j=1

denote the sequence of observations from B. Now,

E[L̂PM
A

γ (τs)L̂PM
B

γ (τt)] = E

[
1
n

n∑
i=1

(τs − xi)γ(τt − yi)γ
∣∣X ≤ τs, Y ≤ τt

]
FA,B(τs, τt) +

E


n(n−1)

n2

n∑
i=1

n∑
j=1
j 6=i

(τs − xi)γ(τt − yj)γ
∣∣xi ≤ τs, yj ≤ τt


 FA(τs)FB(τt).

By the serial independence between the observations, and the cross independence between

xi and yj for i 6= j the former expression reads as

E[L̂PM
A

γ (τs)L̂PM
B

γ (τt)] = 1
nE [(τs −X)γ(τt −X)γ |X ≤ τs, Y ≤ τt] FA,B(τs, τt)−

1
nE [(τs −X)γ |X ≤ τs] E [(τt − Y )γ |Y ≤ τt] FA(τs)FB(τt) +

E [(τs −X)γ |X ≤ τs] E [(τt − Y )γ |Y ≤ τt] FA(τs)FB(τt).

It follows then that

lim
n→∞

nCov

(
L̂PM

A

γ (τs), L̂PM
B

γ (τt)
)

= E [(τs −X)γ(τt − Y )γ |X ≤ τs, Y ≤ τt] FA,B(τs, τt)−
E [(τs −X)γ |X ≤ τs] E [(τt − Y )γ |Y ≤ τt] FA(τs)FB(τt).

Now, we can extend this result to the sequence of empirical processes in (36). Since the

class of functions we are interested in belongs to the Donsker class, see Van der Vaart (1998,

chapter 19), this process converges in distribution in the Skorohod space D[−∞,∞], equipped

with the uniform norm, to a Gaussian process Gγ(τ) with zero mean and the above covariance
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function. Finally, by the continuous mapping theorem we obtain the weak convergence of the

supremum of the process stated in theorem 2.

Proof of proposition 3: It is similar to proof of proposition 1 in Barret and Donald (2003).

The proof of (i) involves characterizing the distribution of the test statistic and then using the

covariance structure in theorem 2 to prove an inequality between suprema of Gaussian random

variables.

Proof of proposition 4: The power of the asymptotic test in theorem 2 is defined under

H1,γ by P (Tn,γ > cγ(1 − α)). Substracting in both sides of the probability expression we

obtain

P (Tn,γ > cγ(1− α)) = P

(√
nsup

τ∈R
D̂γ(τ)− sup

τ∈R
δ(τ) > cγ(1− α)− sup

τ∈R
δ(τ)

)
≥

≥ P

(√
n sup

τ∈R

(
D̂γ(τ)− δ(τ)√

n

)
> cγ(1− α)− sup

τ∈R
δ(τ)

)
,

and

lim
n→∞

P

(√
n sup

τ∈R

(
D̂γ(τ)− δ(τ)√

n

)
> cγ(1− α)− sup

τ∈R
δ(τ)

)
> α, (37)

since
√

nsup
τ∈R

(
D̂γ(τ)− δ(τ)√

n

)
converges to sup

τ∈R
Gγ(τ), as does Tn,γ under H0. Now, by definition

of the process sup
τ∈R

δ(τ), the quantile of the asymptotic distribution in (37) is to the left of the

asymptotic critical value cγ(1 − α) and implies therefore a rejection probability greater than

α.

Proof of proposition 5: Let x(j)
n := (x(j)

1 , x
(j)
2 , . . . , x

(j)
n )′, j = 1, . . ., be a collection of

random samples of dimension n × 2 drawn from a bivariate distribution FA,B(τ, τ). Define

T
(j)
n,γ as the corresponding family of test statistics associated to x(j)

n . Under H0,γ , proposition

3 shows that this test statistic is OP (1) of the functional of the gaussian process sup
τ

Gγ(τ).

Mathematically,

lim
n→∞

P
(
T (j)

n,γ > cγ(1− α)
)
≤ α,

with cγ(1−α) the critical value at an α significance level of the asymptotic distribution. Fur-

ther, each sample indexed by j defines a gaussian process sup
τ

Ĝγ(τ) determined by
√

n−consistent

estimates of the nuisance parameters in the covariance function (19). Glivenko-Cantelli and
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Slutsky theorems plus assumption A.5 ensure that this convergence is uniform and almost

sure. Now, the uniform continuity of the gaussian processes implies

sup
τ

∣∣Ĝ(j)
γ (τ)−Gγ(τ)

∣∣ a.s.−→ 0, for all j = 1, . . . (38)

where a.s. stands for almost surely, and denotes convergence with probability one. Now, using

the properties of the supremum functional we obtain

∣∣sup
τ

Ĝ(j)
γ (τ)− sup

τ
Gγ(τ)

∣∣ a.s.−→ 0, for all j = 1, . . . (39)

Note that the uniform convergence in (38) is a sufficient condition to show (39).

Each functional of the collection of Ĝ
(j)
γ (τ) processes defines a data dependent critical value

c
(j)
γ (1− α) satisfying

P

(
sup

τ
Ĝ(j)

γ > c(j)
γ (1− α)

)
= α, for all j = 1, . . . (40)

The uniform convergence in (39) and the fact that the distribution function of sup
τ

Gγ(τ) is

strictly increasing in τ implies that

c(j)
γ (1− α) a.s.−→ cγ(1− α), for all j = 1, . . . (41)

Note that this result is sufficient for our purpose but it also holds uniformly in α ∈ (0, 1).

Consider now a sample x(1)
n and retain the associated critical value c

(1)
γ (1 − α). By using

basic algebra in (39) it is simple to show that

∣∣sup
τ

Ĝ(j)
γ (τ)− sup

τ
Ĝ(1)

γ (τ)
∣∣ a.s.−→ 0, (42)

and therefore, using the same arguments as before, we obtain that

c(j)
γ (1− α)− c(1)

γ (1− α) a.s.−→ 0, for all j = 1, . . . (43)

Furthermore, it can be shown that this property also holds uniformly in α, that is,

sup
α∈(0,1)

∣∣c(j)
γ (1− α)− c(1)

γ (1− α)
∣∣ a.s.−→ 0, for all j = 1, . . .
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From this convergence results we obtain the desired result since

lim
n→∞

P
(
T (j)

n,γ > c(1)
γ (1− α)

)
= lim

n→∞
P

(
T (j)

n,γ > c(j)
γ (1− α)−

(
c(j)
γ (1− α)− c(1)

γ (1− α)
))

≤ α.

(44)

The proof for the consistency of the test under Hγ,1 follows from observing that whereas

the test statistic Tn,γ diverges to infinity, the collection of critical values c
(j)
γ (1−α) is simulated

from the respective estimated gaussian processes under the null hypothesis. The convergence

in (41) and (43) hold, but now

lim
n→∞

P
(
T (j)

n,γ > c(1)
γ (1− α)

)
= lim

n→∞
P

(
T (j)

n,γ > c(j)
γ (1− α)−

(
c(j)
γ (1− α)− c(1)

γ (1− α)
))

= 1.

(45)

Proof of theorem 3: Note that nu = λ(u)+oP (n) implying that
√

nu =
√

λ(u)
√

n+oP (
√

n).

The rest of the proof is then analogous to the proof of theorem 2 but replacing the relevant

unconditional distribution functions by their conditional counterparts, with the conditioning

event defined by a threshold u.

Proof of corollary 2: Let εi
t be the error sequence of a possibly heteroscedastic time series

defined in (32), and ε̂i
t be the corresponding residual sequence. The relevant test statistics are

Tn,γ and T̂n,γ respectively. The latter test statistic can be expressed as

T̂n,γ :=
√

nsup
τ

((
L̂PM

Â

γ (τ)− L̂PM
A

γ (τ)
)
−

(
L̂PM

B̂

γ (τ)− L̂PM
B

γ (τ)
)

+ D̂γ(τ)
)

, (46)

with L̂PM
î

γ denoting the downside risk measure computed from the estimated residuals of

the regression models for i = A,B, and γ = 0, 1, 2.

Now, it is sufficient to show that
√

n

(
L̂PM

î

γ(τ)− L̂PM
i

γ(τ)
)

p−→ 0 for all τ ∈ R and

i = A,B, to obtain the desired result. Without loss of generality and to ease notation we will

denote the error and residual variables without using the index i. Then, the difference above

can be written as

1√
n

n∑
t=1

(τ − ε̂t)γI(ε̂t ≤ x)− 1√
n

n∑
t=1

(τ − εt)γI(εt ≤ x), (47)

for both portfolios A and B, and with γ = 0, 1, 2.
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This expression is upper bounded by the product: 1√
n

n∑
t=1

[(τ − ε̂t)γ − (τ − εt)γ ] [I(ε̂t ≤ x)− I(εt ≤ x)].

Now, using Newton’s formula we obtain the following inequality:

1√
n

n∑
t=1

[(τ − ε̂t)γ − (τ − εt)γ ] [I(ε̂t ≤ x)− I(εt ≤ x)] ≤ (48)

≤ 1√
n

n∑
t=1

[(τ − ε̂t)γ − (τ − εt)γ ]2 +
1√
n

n∑
t=1

[I(ε̂t ≤ x)− I(εt ≤ x)]2 . (49)

Operating with the first right term and using assumption A.7. we observe that it is of order

op(1). To derive the convergence of the second term we note that 1√
n

n∑
t=1

[I(ε̂t ≤ x)− I(εt ≤ x)]2 =

1√
n

n∑
t=1

|I(ε̂t ≤ x)− I(εt ≤ x)|. Reordering the terms inside the sum operator, this expression

can be decomposed as

1√
n

n∑
t=1

|I(ε̂t ≤ x)− I(εt ≤ x)| =
√(

1− no

n

) 1√
n− no

n−n0∑
t=1

[I(ε̂t ≤ x)− I(εt ≤ x)] (50)

+
√

no

n

1√
no

n∑
t=n−n0+1

[I(εt ≤ x)− I(ε̂t ≤ x)], (51)

with no indicating the number of observations where the difference of indicators inside the

absolute value operator is negative. Now, using Koul and Ling (2006, theorem 4.1 and lemma

4.1) we note that both terms (50) and (51) converge to zero in probability, and therefore the

proof of corollary 2 follows.
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TABLES

ν = 5 Method γ = 0 γ = 1

ρ = 0 10% 5% 1% 10% 5% 1%

n = 50 Gp-value 0.080 0.046 0.000 0.170 0.100 0.036

p-value 0.100 0.064 0.012 0.078 0.044 0.016

n = 100 Gp-value 0.104 0.044 0.004 0.158 0.022 0.016

p-value 0.114 0.048 0.010 0.132 0.070 0.022

n = 500 Gp-value 0.132 0.066 0.016 0.138 0.056 0.010

p-value 0.152 0.104 0.018 0.124 0.082 0.022

ρ = 0.4 10% 5% 1% 10% 5% 1%

n = 50 Gp-value 0.126 0.044 0.012 0.128 0.080 0.030

p-value 0.046 0.008 0.000 0.036 0.022 0.002

n = 100 Gp-value 0.108 0.048 0.012 0.148 0.086 0.022

p-value 0.032 0.018 0.000 0.084 0.026 0.008

n = 500 Gp-value 0.112 0.044 0.014 0.104 0.066 0.008

p-value 0.112 0.058 0.0008 0.066 0.024 0.000

ρ = 0.8 10% 5% 1% 10% 5% 1%

n = 50 Gp-value 0.164 0.088 0.010 0.164 0.106 0.056

p-value 0.010 0.002 0.000 0.000 0.000 0.000

n = 100 Gp-value 0.092 0.052 0.006 0.158 0.072 0.022

p-value 0.022 0.0004 0.000 0.012 0.002 0.000

n = 500 Gp-value 0.120 0.068 0.012 0.104 0.050 0.014

p-value 0.020 0.002 0.000 0.000 0.000 0.000

TABLE 1. Empirical size for H0,γ , γ = 0, 1 for a standardized bivariate Student-t with

ν = 5 degrees of freedom and correlation parameter ρ. Gp : asymptotic p-value, p : Multiplier

method p-value. n sample size. B = 1000 Monte-Carlo simulations to approximate the exact

finite-sample distribution. mc = 500 Monte-Carlo iterations to approximate the nominal size.

m = 100 partitions of the real line to generate observations from the asymptotic Gaussian

process with covariance function Σ̂.
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ν = 10 Method γ = 0 γ = 1

ρ = 0 10% 5% 1% 10% 5% 1%

n = 50 Gp-value 0.027 0.024 0.008 0.208 0.136 0.050

p-value 0.110 0.074 0.114 0.072 0.052 0.014

n = 100 Gp-value 0.108 0.044 0.018 0.104 0.056 0.008

p-value 0.108 0.048 0.0006 0.134 0.074 0.014

n = 500 Gp-value 0.086 0.026 0.006 0.118 0.058 0.010

p-value 0.150 0.114 0.026 0.134 0.082 0.010

ρ = 0.4 10% 5% 1% 10% 5% 1%

n = 50 Gp-value 0.140 0.080 0.010 0.118 0.064 0.018

p-value 0.044 0.024 0.000 0.046 0.020 0.000

n = 100 Gp-value 0.090 0.040 0.018 0.128 0.068 0.010

p-value 0.034 0.016 0.000 0.076 0.024 0.006

n = 500 Gp-value 0.092 0.044 0.014 0.122 0.052 0.008

p-value 0.122 0.054 0.006 0.060 0.020 0.002

ρ = 0.8 10% 5% 1% 10% 5% 1%

n = 50 Gp-value 0.182 0.092 0.010 0.152 0.104 0.034

p-value 0.018 0.000 0.000 0.002 0.000 0.000

n = 100 Gp-value 0.086 0.050 0.012 0.118 0.066 0.022

p-value 0.024 0.004 0.000 0.004 0.000 0.000

n = 500 Gp-value 0.128 0.066 0.028 0.140 0.064 0.012

p-value 0.006 0.002 0.000 0.002 0.000 0.000

TABLE 2. Empirical size for H0,γ , γ = 0, 1 for a standardized bivariate Student-t with

ν = 10 degrees of freedom and correlation parameter ρ. Gp : asymptotic p-value, p : Multiplier

method p-value. n sample size. B = 1000 Monte-Carlo simulations to approximate the exact

finite-sample distribution. mc = 500 Monte-Carlo iterations to approximate the nominal size.

m = 100 partitions of the real line to generate observations from the asymptotic Gaussian

process with covariance function Σ̂.
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ν = 5 Method γ = 0 γ = 1

ρ = 0 10% 5% 1% 10% 5% 1%

n = 200 Gp-value 0.048 0.024 0.000 0.324 0.234 0.128

(nu ≈ 50) p-value 0.120 0.050 0.014 0.092 0.048 0.014

n = 400 Gp-value 0.106 0.036 0.002 0.102 0.048 0.006

(nu ≈ 100) p-value 0.086 0.045 0.008 0.050 0.022 0.002

n = 2000 Gp-value 0.074 0.042 0.010 0.116 0.068 0.020

(nu ≈ 500) p-value 0.094 0.056 0.008 0.050 0.022 0.002

ρ = 0.4 10% 5% 1% 10% 5% 1%

n = 200 Gp-value 0.118 0.066 0.010 0.136 0.052 0.018

(nu ≈ 50) p-value 0.142 0.074 0.022 0.088 0.040 0.006

n = 400 Gp-value 0.162 0.056 0.024 0.170 0.098 0.032

(nu ≈ 100) p-value 0.078 0.040 0.004 0.040 0.010 0.004

n = 2000 Gp-value 0.088 0.026 0.0004 0.066 0.020 0.000

(nu ≈ 500) p-value 0.114 0.050 0.010 0.072 0.026 0.002

ρ = 0.8 10% 5% 1% 10% 5% 1%

n = 200 Gp-value 0.104 0.042 0.012 0.156 0.086 0.024

(nu ≈ 50) p-value 0.074 0.032 0.006 0.024 0.010 0.002

n = 400 Gp-value 0.096 0.048 0.008 0.128 0.066 0.018

(nu ≈ 100) p-value 0.070 0.038 0.006 0.014 0.002 0.000

n = 2000 Gp-value 0.104 0.034 0.014 0.092 0.054 0.016

(nu ≈ 500) p-value 0.176 0.094 0.008 0.038 0.012 0.000

TABLE 3. Empirical size for H0,γ,u, γ = 0, 1, u = 0, for a standardized bivariate Student-t

with ν = 5 degrees of freedom and correlation parameter ρ. Gp : asymptotic p-value, p :

Multiplier method p-value. n is length of original sample (nu observations available for the

tests). B = 1000 Monte-Carlo simulations to approximate the exact finite-sample distribution.

mc = 500 Monte-Carlo iterations to approximate the nominal size. m = 100 partitions of

the real line to generate observations from the asymptotic Gaussian process with covariance

function Σ̂.
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ν = 10 Method γ = 0 γ = 1

ρ = 0 10% 5% 1% 10% 5% 1%

n = 200 Gp-value 0.106 0.036 0.008 0.058 0.020 0.008

(nu ≈ 50) p-value 0.106 0.054 0.006 0.068 0.026 0.014

n = 400 Gp-value 0.098 0.046 0.001 0.098 0.052 0.006

(nu ≈ 100) p-value 0.082 0.054 0.016 0.044 0.018 0.002

n = 2000 Gp-value 0.090 0.034 0.006 0.074 0.028 0.000

(nu ≈ 500) p-value 0.086 0.038 0.012 0.052 0.016 0.002

ρ = 0.4 10% 5% 1% 10% 5% 1%

n = 200 Gp-value 0.124 0.052 0.004 0.118 0.066 0.020

(nu ≈ 50) p-value 0.144 0.074 0.012 0.072 0.026 0.004

n = 400 Gp-value 0.108 0.062 0.014 0.120 0.060 0.014

(nu ≈ 100) p-value 0.100 0.034 0.004 0.032 0.018 0.002

n = 2000 Gp-value 0.104 0.046 0.008 0.074 0.044 0.010

(nu ≈ 100) p-value 0.116 0.060 0.014 0.048 0.018 0.002

ρ = 0.8 10% 5% 1% 10% 5% 1%

n = 200 Gp-value 0.102 0.050 0.008 0.103 0.046 0.012

(nu ≈ 50) p-value 0.080 0.036 0.006 0.014 0.002 0.000

n = 400 Gp-value 0.134 0.068 0.022 0.108 0.056 0.082

(nu ≈ 100) p-value 0.068 0.032 0.002 0.004 0.000 0.000

n = 2000 Gp-value 0.118 0.074 0.024 0.076 0.038 0.010

(nu ≈ 500) p-value 0.156 0.068 0.018 0.030 0.004 0.000

TABLE 4. Empirical size for H0,γ,u, γ = 0, 1, u = 0, for a standardized bivariate Student-t

with ν = 10 degrees of freedom and correlation parameter ρ. Gp : asymptotic p-value, p :

Multiplier method p-value. n is length of original sample (nu observations available for the

tests). B = 1000 Monte-Carlo simulations to approximate the exact finite-sample distribution.

mc = 500 Monte-Carlo iterations to approximate the nominal size. m = 100 partitions of

the real line to generate observations from the asymptotic Gaussian process with covariance

function Σ̂.
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ν = 5, α = 0.05 γ = 0 γ = 1

ρ = 0 / c = 0.5 1 5 0.5 1 5

n = 50 0.102 0.172 0.980 0.162 0.230 0.912

n = 100 0.136 0.300 1.000 0.178 0.286 0.988

n = 500 0.336 0.768 1.000 0.240 0.522 1.000

ρ = 0.4 / c = 0.5 1 5 0.5 1 5

n = 50 0.110 0.196 0.996 0.134 0.216 0.978

n = 100 0.136 0.332 1.000 0.182 0.344 1.000

n = 500 0.408 0.890 1.000 0.290 0.692 0.618

ρ = 0.8 / c = 0.5 1 5 0.5 1 5

n = 50 0.226 0.448 1.000 0.264 0.464 1.000

n = 100 0.232 0.554 1.000 0.284 0.570 1.000

n = 500 0.714 0.998 1.000 0.578 0.986 1.000

TABLE 5. Empirical power for H0,γ , γ = 0, 1. The family of alternative hypotheses are

FA(τ) = FB(τ) + cfB(τ)√
n

with FB and fB a Student-t distribution and density function with

ν = 5 and c = 0.5, 1, 5. The correlation parameter is ρ, α denotes significance level and

n sample size. B = 1000 Monte-Carlo simulations to approximate the exact finite-sample

distribution. mc = 500 Monte-Carlo iterations to approximate the nominal size. m = 100

partitions of the real line to generate observations from the asymptotic Gaussian process with

covariance function Σ̂.
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ν = 10, α = 0.05 γ = 0 γ = 1

ρ = 0 / c = 0.5 1 5 0.5 1 5

n = 50 0.056 0.106 0.926 0.198 0.268 0.988

n = 100 0.134 0.276 0.798 0.108 0.218 0.980

n = 500 0.070 0.150 0.952 0.074 0.168 0.984

ρ = 0.4 / c = 0.5 1 5 0.5 1 5

n = 50 0.166 0.276 0.990 0.114 0.192 0.974

n = 100 0.132 0.290 1.000 0.164 0.308 0.996

n = 500 0.324 0.792 1.000 0.274 0.662 1.000

ρ = 0.8 / c = 0.5 1 5 0.5 1 5

n = 50 0.212 0.406 1.000 0.226 0.430 1.000

n = 100 0.202 0.480 1.000 0.244 0.528 1.000

n = 500 0.580 0.990 1.000 0.570 0.986 1.000

TABLE 6. Empirical power for H0,γ , γ = 0, 1. The family of alternative hypotheses are

FA(τ) = FB(τ) + cfB(τ)√
n

with FB and fB a Student-t distribution and density function with

ν = 10 and c = 0.5, 1, 5. The correlation parameter is ρ, α denotes significance level and

n sample size. B = 1000 Monte-Carlo simulations to approximate the exact finite-sample

distribution. mc = 500 Monte-Carlo iterations to approximate the nominal size. m = 100

partitions of the real line to generate observations from the asymptotic Gaussian process with

covariance function Σ̂.
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ν = 5, α = 0.05 γ = 0 γ = 1

ρ = 0 / c = 0.5 1 5 0.5 1 5

n = 200 0.100 0.282 1.000 0.386 0.548 0.996

n = 400 0.044 0.052 0.230 0.070 0.040 0.070

n = 2000 0.826 1.000 1.000 0.492 0.870 1.000

ρ = 0.4 / c = 0.5 1 5 0.5 1 5

n = 200 0.246 0.556 1.000 0.178 0.360 1.000

n = 400 0.302 0.722 1.000 0.218 0.472 1.000

n = 2000 0.864 1.000 1.000 0.526 0.950 1.000

ρ = 0.8 / c = 0.5 1 5 0.5 1 5

n = 200 0.328 0.752 1.000 0.246 0.536 1.000

n = 400 0.470 0.954 1.000 0.284 0.704 1.000

n = 2000 0.984 1.000 1.000 0.852 1.000 1.000

TABLE 7. Empirical power for H0,γ,u, γ = 0, 1, u = 0. The family of alternative hypotheses

are FA(τ) = FB(τ) + cfB(τ)√
n

with FB and fB a Student-t distribution and density function

with ν = 5 and c = 0.5, 1, 5. The correlation parameter is ρ, α denotes significance level and n

is length of original sample (nu ≈ n/4 observations available for the tests). B = 1000 Monte-

Carlo simulations to approximate the exact finite-sample distribution. mc = 500 Monte-Carlo

iterations to approximate the nominal size. m = 100 partitions of the real line to generate

observations from the relevant asymptotic Gaussian process.
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ν = 10, α = 0.05 γ = 0 γ = 1

ρ = 0 / c = 0.5 1 5 0.5 1 5

n = 200 0.144 0.350 1.000 0.046 0.124 0.968

n = 400 0.200 0.606 1.000 0.152 0.338 1.000

n = 2000 0.684 1.000 1.000 0.318 0.834 1.000

ρ = 0.4 / c = 0.5 1 5 0.5 1 5

n = 200 0.150 0.372 1.000 0.164 0.294 1.000

n = 400 0.236 0.610 1.000 0.142 0.378 1.000

n = 2000 0.766 1.000 1.000 0.532 0.944 1.000

ρ = 0.8 / c = 0.5 1 5 0.5 1 5

n = 200 0.296 0.714 1.000 0.264 0.566 1.000

n = 400 0.406 0.920 1.000 0.256 0.712 1.000

n = 2000 0.944 1.000 1.000 0.808 1.000 1.000

TABLE 8. Empirical power for H0,γ,u, γ = 0, 1, u = 0. The family of alternative hypotheses

are FA(τ) = FB(τ) + cfB(τ)√
n

with FB and fB a Student-t distribution and density function

with ν = 10 and c = 0.5, 1, 5. The correlation parameter is ρ, α denotes significance level and

n is length of original sample (nu ≈ n/4 observations available for the tests). B = 1000 Monte-

Carlo simulations to approximate the exact finite-sample distribution. mc = 500 Monte-Carlo

iterations to approximate the nominal size. m = 100 partitions of the real line to generate

observations from the relevant asymptotic Gaussian process.
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