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Abstract

Recent empirical approaches in forecasting equity returns or premiums found that dynamic interactions

among the stock and bond are relevant for long term pension products. Automatic procedures to upgrade

or downgrade risk exposure could potentially improve long term performance for such products. The risk

and return of bonds is more easy to predict than the risk and return of stocks. This and the well known

stock-bond correlation motivates the inclusion of the current bond yield in a model for the prediction

of excess stock returns. Here, we take the actuarial long term view using yearly data, and focus on

nonlinear relationships between a set of covariates. We employ fully nonparametric models and apply

for estimation a local-linear kernel smoother. Since the current bond yield is not known, it is predicted

in a prior step. The structure imposed this way in the final estimation process helps to circumvent the

curse of dimensionality and reduces bias in the estimation of excess stock returns. Our validated stock

prediction results show that predicted bond returns improve stock prediction significantly.
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1. Introduction and Motivation

For a long time predicting asset returns has been a main objective in the empirical finance literature. It

started with predictive regressions of independent variables on stock market returns. Typically, valuation

ratios are used that primarily characterise the stock, for example the dividend price ratio, the dividend

yield, the earnings price ratio or the book-to-market ratio. Other variables related to the interest rate

like treasury-bill rates and the long-term bond yield, or macroeconomic indicators like inflation and the

consumption wealth ratio, are often incorporated to improve prediction. For a detailed overview we refer

to the examples and discussion in Rapach et al. (2005) or Campbell and Thompson (2008).

In this paper, we take the actuarial long term view using yearly data, and focus on nonlinear relation-

ships between a set of covariates. There are not many historical years in our records and data sparsity is

of great importance in our approach. One could also use data of higher frequency as weekly or daily data,

but one has to remember that the logistics of prediction is then very different. In our approach using

yearly data bias might be of big importance while variance becomes less of an issue. In other words, the

usual variance-bias trade-off depends on the horizon. An adequate model for monthly data might perform

worse for yearly data and vice versa. The reason for the use of yearly data is our interest in actuarial

models of long term savings and their possible econometric improvement (see e.g. Bikker et al. (2012),

Guillen et al. (2013a), Guillen et al. (2013b), Owadally et al. (2013), Guillen et al. (2014), or Gerrard et

al. (2014)). Our favored methodology of validating the fully nonparametric models that we employ for

the long term yearly data also originates from the actuarial literature (see Nielsen and Sperlich (2003)).

The apparent predictability found by many authors was controversially discussed. As Lettau and

Nieuwerburgh (2008) note, correct inference is problematic due to the high persistence of financial ratios,

which have poor out-of sample forecasting power that moreover shows significant instability over time.

Therefore, the question of whether empirical models are really able to forecast the equity premium more
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accurately than the simple historical mean was intensively debated in the finance literature. Recently,

Goyal and Welch (2008) fail to provide benefits of predictive variables compared to the historical mean. In

contrast, Rapach et al. (2010) recommend a combination of individual forecasts. Their method includes

the information provided from different variables and reduces this way the forecast volatility. Elliott et al.

(2013) suggest a new method to combine linear forecasts based on subset regressions and show improved

performance over the classical linear prediction methods. More recently, Scholz et al. (2015) propose a

simple bootstrap test about the true functional form to evidence that the null of no predictability of

returns can be rejected when using information such as earnings.

A direct comparison of stocks and bonds, mostly used by practitioners, makes the so-called FED

model. It relates yields on stocks, as ratios of dividends or earnings to stock prices, to yields on bonds.

Asness (2003) shows the empirical descriptive power of the model, but notes also that it fails in predicting

stock returns. One of his criticisms is the comparison of real numbers to nominal ones. Actually, most

studies discuss separately the predictability in stock and bond markets. However, Shiller and Beltratti

(1992) analyse the relation between stock prices and changes in long-term bond yields. Fama and French

(1993) find that stock returns have shared variation due to the stock-market factors, and they are linked

to bond returns through shared variation in the bond-market. Engsted and Tanggaard (2001) pose the

interesting question of whether expected returns on stocks and bonds are driven by the same information,

and to what extent they move together. In their empirical setting, they find that excess stock and bond

returns are positively correlated. Aslanidis and Christiansen (2014) adopt quantile regressions to

scrutinize the realized stock-bond correlation and the link to the macroeconomy. Tsai and Wu (2014)

analyse the bond and stock market responses to changes in dividends. Lee et al. (2013) find dynamic

interactions among the stock, bond, and insurance markets. For additional literature on the relation

between stock and bond returns (especially co-movements, joint distributions, or correlations), see, for

example, Lim et al. (1998), Ilmanen (2003), Guidolin and Timmermann (2006), Connolly et al. (2010),
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Baele et al. (2010), or Bekaert et al. (2010).

One overall idea of the this paper is to exploit the interrelationship of present values of stock returns

and bond returns. They are after all both discounted cash flows. Our underlying assumption implies that

expected returns are associated with variables related to longer-term aspects of business conditions, as

mentioned in Campbell (1987). Consequently, we include in a nonparametric prediction model of excess

stock returns the bond yield of the same year. This way, the bond captures a most important part of

the stock return, namely the part related to the change in long-term interest rate. Nonlinear forecasting

methods are a growing area of empirical research, see for example Guidolin and Timmermann (2006),

McMillan (2007), or Guidolin et al. (2009). Nielsen and Sperlich (2003) find a significant improvement

in the prediction power of excess stock returns due to the use of nonlinear smoothing techniques. Based

on their findings, we focus on nonlinear relationships between a set of covariates and the bond yield

of the same year. We apply for estimation a local-linear kernel smoother which nests the linear model

without bias. For the purpose of bandwidth selection and to measure the quality of prediction we use a

cross-validation measure of performance. It is a generalized version of the validated R2 of Nielsen and

Sperlich (2003) and allows for a direct comparison of the proposed model with the historical mean.

An obvious problem is that the current bond yield is unknown. Thus, we have to predict it in a

first step. Here, we also employ fully nonparametric models and use a local-linear kernel smoother.

This raises the question why it is necessary to use a two-step procedure. One could directly include

the variables used for the bond prediction when forecasting stock returns. The problem is that such a

model would suffer from the curse of dimensionality and complexity in several aspects: The dimension of

the covariates, possible over-fitting, and the interpretability. In nonparametrics it is well known that the

import of structure is an appropriate way to circumvent these problems1. Furthermore, Park et al. (1997)

1An other possibility could be the optimal choice of regressors, see Vieu (1994).
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showed that an appropriate transformation of the predictors can significantly improve nonparametric

prediction. In our approach, we utilize the additional knowledge about the structure that is inherent

in the economic process that generates the data. We find that the inclusion of the generated variable

shows notable improvement in the prediction of excess stock returns. Note that one does not achieve

computational efficiency, but rather estimation efficiency from adding information. To our knowledge we

are the first including nonparametrically generated regressors for nonparametric prediction of time series

data. Therefore we also have to develop the theoretical justification for the use of constructed variables

in nonparametric regression when the data are dependent.

For the empirical part we use annual Danish stock and bond market data (also used in Lund and

Engsted (1996), Engsted and Tanggaard (2001), or Nielsen and Sperlich (2003)). We find that the

inclusion of predicted bond yields greatly improves the prediction quality of stock returns in terms of the

validated R2. With our best prediction model for one-year stock returns we not only beat the simple

historical mean but we also observe a large increase in validated R2 from 5.9% to 28.3%. To underline

our findings, we also include in our empirical analysis the prediction of the ratio of stock returns and

dividend yields getting similar results.

The paper proceeds as follows. Section 2 describes the prediction framework and the measure of

validation. The mathematical justification is introduced in Section 3. Section 4 presents our findings

from an empirical and a small simulation study. Section 5 concludes. Finally, the Appendix contains

proofs of our theoretical results.

2. The prediction framework

In the financial and actuarial literature traditional approaches like the classic R2, the adjusted R2,

goodness-of-fit or testing methods are mainly used to measure in-sample forecasting power. More recently,

out-of-sample statistics and tests are discussed, see for example Inoue and Kilian (2004), Clark and West
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(2006), Goyal and Welch (2008), or Campbell and Thompson (2008). In our study, we use a generalized

version of the validated R2 (R2
V ) of Nielsen and Sperlich (2003) based on leave-k-out cross-validation. It

measures how well a model predicts in the future compared to the historical mean. The classical R2 is

often used, easy to calculate and has a straight forward interpretation. But it can hardly be used for

prediction nor for comparison issues as it always prefers the most complex model. See also Valkanov

(2003) or Dell’Aquila and Ronchetti (2006) for more relevant arguments for disregarding the classical

R2 measure when selecting a model. For comparison often the adjusted R2 is applied, which penalises

complexity via a degree of freedom adjustment. It is well known that this correction does not work in

our case, see for example Sperlich et al. (1999).

The idea of the R2
V is to replace total variation and not explained variation by their leave-k-out cross-

validated analogs. Note that cross-validation (cv) is a quite common in the nonparametric time series

context, see Györfi et al. (1990). More formally, consider the two models

Yt = µ+ εt and Yt = g(Xt) + ζt,

where µ is estimated by the sample mean Ȳ and the unknown function g by local linear kernel regression.

The explanatory variablesXt in the fully nonparametric model can be multidimensional vectors containing

information from the past – accounting this way for a possible long term dependence. We suppress a

subscription for the chosen smoothing parameter h, since we always apply the bandwidth h that maximises

the R2
V . It is defined as

R2
V = 1−

∑
t{Yt − ĝ−t}2∑
t{Yt − Ȳ−t}2

, (1)

where leave-k-out cross-validated values ĝ−t and Ȳ−t are used, i. e. the function g and the mean Ȳ both

are computed removing k observations around the t-th point in time. Here we use k = 1, the classical

leave-one-out cross-validation estimator. We have also checked the robustness of the results for different

values of k. We found no significant differences between the validated R2
V values for k ≤ 7. Note that
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cross-validation with k = 1 is not always appropriate in a time series context, as it is a cross-validation

estimator of prediction errors. It is well known that cross-validation for time series often requires to

leave out more than one data point and possibly requires some extra correction when the leave-out

fraction of data is non-negligible (see, for example, Burman et al. (1994)). Burman and Nolan (1992)

give simulation evidence and show that under proper dependence conditions even leave-one-out cross-

validation is appropriate. Burman and Nolan (1992) further point out that for stationary processes the

test and training set need not to be independent for cross-validation to work. Bandi et al. (2016) show

in recent work that the cross-validated bandwidth continues to be optimal with respect to the average

squared error even when the data generating process is a β-recurrent Markov chain (covering stationary

as well as nonstationary processes).

A possible generalisation of our approach would be the use of the Do-validation principle to obtain

more robust validated R2-values. See Mammen et al. (2011) and Gámiz-Pérez et al. (2013) for some

recent improvement of the cross-validation approach. Since maximizing the R2
V is equivalent to minimize

the cross-validation criterion, we also use the R2
V to find the optimal prediction bandwidth for the kernel

function used (Quartic kernel). Please keep in mind that the choice of the kernel function is automatically

corrected by the (adaptive) bandwidth choice, even in small data sets. As the R2
V measures how well

a given model and estimation principle predicts compared to the historical mean, an R2
V < 0 indicates

that one predicts worse than the historical mean. Note further that cross validation (and thus the R2
V )

punishes not just underfitting but also overfitting (pretending a functional relationship that is not real,

see Györfi et al. (1990)). This would result in R2
V < 0.

In the following, we study excess stock returns defined as

St = log{(Pt +Dt)/Pt−1} − rt−1,

where Dt denotes the (nominal) dividends paid during year t, Pt the (nominal) stock price at the end of
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year t, and rt the short-term interest rate, which is rt = log(1 + Rt/100) using the discount rate Rt. In

our article, we concentrate on forecasts over the one-year horizon, but also longer periods can easily be

included with Yt =
∑T−1
i=0 St+i, the excess stock return at time t over the next T years. However, this

would pose greater statistical challenges. Based on the motivations from the introduction, we include

the same years bond yield as a single regressor or together with further lagged covariates in the model

equation, i.e. we consider the model

Yt = g(b̂t, vt−1) + εt, (2)

with the unknown function g, the constructed bond yield b̂t, a vector of further regressors vt−1 and

error terms εt, i.e. mean zero variables given the past. Note again that b̂t could be a more general

multidimensional regressor which contains elements from the past and accounts for long term dependence.

However, in our practical implementation we consider b̂t to be the constructed bond yield. In addition,

we do not assume any explicit distribution on the asset returns. An explicit understanding of this

distribution, see for example Eling (2014), could perhaps enhance efficiency of our estimation. Remember,

the problem which occurs is that the current bond yield is unknown. Therefore, we must predict them

in a prior step, i. e. we construct the bond yield with the fully nonparametric model

bt = p(wt−1) + ζt, (3)

where p is an unknown function, wt−1 is a vector of explanatory variables as for example, lagged interest

rates or bond yields, and ζt an error. In our empirical study we find evidence for the use of a first-

order auto-regression in model (3), justified by a test for long-run memory that is robust to short-range

dependence, see Lo (1991). Both, model (2) and (3), are estimated with a local linear kernel smoother

using cross validation. For the choice of the bandwidth, we basically have two possibilities. Either we

treat each model separately, determining first the best (in terms of R2
V ) bond model and using this in

the second step, or we choose the bandwidth in both steps according to the best R2
V for the stock return
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prediction.

As discussed, not only economic intuition motivates the inclusion of the constructed bond yields but

also statistical arguments. In Theorem 3.7 we will develop the mathematical justification for the use of

constructed variables in the case of dependent data. In other words, when we estimate nonparametrically

stock returns using a generated regressor, we asymptotically obtain the same function as if we had

observed the real bond yield. Basically, the bias of the final estimate is enlarged by an additive factor

which is proportional to the bias of the predicted variable from the first step. A similar relationship holds

for the variance which is increased by an additive term proportional to the variance of the constructed

regressor. This relates the bond to the stock prediction. For simplification ignore for a moment vt−1 in

(2), and call the function containing the real bonds g̃. A closer look to the prediction error εt gives

Yt − g(b̂t) = [Yt − g̃(bt)] + [g̃(bt)− g̃(b̂t)] + [g̃(b̂t)− g(b̂t)] (4)

' ε̃t + g̃′(ξ)(bt − b̂t). (5)

The last term in (4) vanishes as we will see in Theorem 3.7 and the second term can be easily approxi-

mated. The gain in our two-step procedure comes now from the fact that the bond in the second term

in (5) is quite predictable. We confirm this fact in the empirical part 4.2 (see Table 2). In the same

vain, Lin et al. (2014) find that bond returns are more predictable then stock returns. Another idea

would be the following: first, estimate g with the available bond data bt−1, and second, evaluate ĝ at

the constructed b̂t. Since, however, this procedure did not improve the stock forecasts, we skip it from

further considerations.

One could directly use the variables in the vector wt−1 as regressors in model (2). But the model would

suffer from complexity and dimensionality in several aspects: The dimension of the covariates as well as

their interplay. In the nonparametric literature, typically two strategies are proposed to circumvent these

problems–either semiparametric modeling or additivity, both to import structure. Nielsen and Sperlich
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(2003) showed that additive models fail to improve the prediction of stock returns due to a non-ignorable

interaction between the predictors. We improve these results by providing additional structure which is

inherit by the underlying data generating process. We think of the same years bond yield as an important

factor which captures some of the relevant features for the expected stock returns. Then, the inclusion of

bond yields when predicting stock returns nonparametrically acts as a kind of complexity and dimension

reduction due to the import of more structure.

To see if it is possible to further improve the predictive power in our setting, we will also analyse the

model (2) with a different dependent variable. We consider the ratio between current stock returns and

dividend yield, i.e. Y ∗t = Yt/dt (see Section 4).

3. Mathematical justification

We prove the consistency of a function estimate which makes use of constructed variables and derive its

asymptotic properties. For the prediction in the time series context, we follow the steps from Ferraty et

al. (2001) and combine them with Sperlich (2009)2. Let us consider a sample of real random variables

{(Xi, Yi), i = 1, . . . , n} which are not necessarily independent and want to estimate the unknown function

m(x) = E(Y |X = x), x ∈ R, that should always exist. Note that for time series {(Zi), i ∈ N} a k-step

ahead forecast is included in a natural way setting Yi = Zi+k and Xi = Zi. We concentrate only on the

case of an auto-regression function of order one. Since we face constructed realisations for X, we assume

a predictor3 with an additive bias and a stochastic error:

x̂ = x+ b(x) + u(x) (6)

2For more technical details of the proofs we refer to the appendix.
3We don’t specify a particular one but we will need some assumptions on it. The used sample of size N , for instance,

consists of some instruments Z ∈ Rδ. In the following, we have N=n, since we use the same series in both the prediction
and final step.
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uniformly, where u(x) := u ·σu(x). The independent random variables u are normalised versions of u(x).

The conditional variance at point x is σu(x). This is rather general as it holds for almost all common

predictors. For technical reasons, we further assume finite higher moments for u. Then, for example the

Nadaraya-Watson estimator is

m̂NW (x) =
q̂(x)

f̂(x)
, (7)

with f̂(x) =
1

nh

n∑
i=1

K

(
X̂i − x
h

)
and q̂(x) =

1

nh

n∑
i=1

YiK

(
X̂i − x
h

)

where K denotes some kernel function with bandwidth h.

To measure the strength of dependence in the time series, we limit us to the strong- or α-mixing4

defined in Doukhan (1994) or Fan and Yao (2003) as lim
n→∞

α(n) = 0, for the mixing coefficient

α(n) = sup
A∈F0

−∞,B∈F∞n
|P (A)P (B)− P (AB)|,

where F ji is the σ-algebra generated by {Xk, i ≤ k ≤ j}. We further assume that the sequence

{(Xi, Yi), i = 1, . . . , n} is algebraic α-mixing, i.e. that for some real constants a, c > 0 we have α(n) ≤

cn−a. To get the asymptotic properties in the context of strong mixing, we make use of an exponential

inequality of the Fuk-Nagaev type, cf. Rio (2000).

Lemma 3.1. For an algebraic α-mixing sequence of random variables {(Zi), i ∈ N},
with s2n =

∑n
i=1

∑n
j=1 |cov(Zi, Zj)| and ||Zi||∞ <∞ for all i, holds for some ε > 0 and r > 1

P

(∣∣∣∣∣
n∑
i=1

Zi

∣∣∣∣∣ > 4ε

)
≤ 4

(
1 +

ε2

rs2n

)− r2
+ 2ncr−1

(
2r

ε

)a+1

.

Furthermore, we need the Billingsley inequality from Bosq (1998) to bound from above the

covariance of two elements of a strong-mixing time series.

Lemma 3.2. For an α-mixing sequence of random variables {(Zi), i ∈ N}, with ||Zi||∞ < ∞ for all
i 6= j, holds |cov(Zi, Zj)| ≤ 4||Zi||∞||Zj ||∞α(|i− j|) .

To prove the asymptotic behaviour of the kernel regression estimator (7), we make some common

4The weakest of the usually defined mixing conditions.
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assumptions. As noted above, we analyse an algebraic α-mixing sequence of real random variables

{(Xi, Yi), i = 1, . . . , n}. We suppose that for all i 6= j the joint density fij for the pair (Xi, Xj) exists

and that |Y | < C < ∞ almost surely. Also for the unobservables Xi, we assume a density function

fX which is bounded and has a continuous second derivative. At the fix x ∈ R we suppose fX(x) > 0.

Let the kernel K be integrable, bounded, with compact support and continuous second derivative. It

fulfils
∫
K(s)ds = 1 and

∫
sK(s)ds =

∫
K ′(s)ds =

∫
K ′′(s)ds = 0. For both, the deterministic and

the stochastic part of the predicted realisations x̂ in (6), we assume that b(x) and b′(x) are at least of

order O(h20) uniformly, and σ2
u(x) of order O((nhδ0)−1). Here, h0 is a smoothing parameter tending to

zero when the sample size n goes to infinity and δ refers to the dimension of the used instruments in

the prediction step. Let further be b(·) and σu(·) Lipschitz-continuous. To simplify our calculations, we

further suppose that h20h
−1 and (nhδ0h)−1 go to zero, and use the usual assumption that nh and nhδ0 go

to infinity as n→∞.

Before we state the main result of the section, we collect some important facts. First, we define the

following variables for l ∈ {0, 1}

Zi = Y liK

(
X̂i − x
h

)
− E

[
Y liK

(
X̂i − x
h

)]
(8)

and analyse the asymptotic behaviour of

s2∗n =

n∑
i=1

∑
j 6=i

|cov(Zi, Zj)|.

Proposition 3.3. Under the above assumptions holds s2∗n = o(nh) +O(n2α(∆̃)), where ∆̃ has the same

order like the slowest from
{

1
h logn ,

nhδ0h
logn ,

(nhδ0h)
2h

logn

}
.

When (nhδ0)−1 = O(h2) the above proposition reduces to s2∗n = o(nh) +O(n2α((h log n)−1)) as in the

case without any prior prediction, i.e. b(x) = σu(x) = 0.

Proposition 3.4. Under the given assumptions and if exists an ε > 0 such that

∆a−1 = O(n−1−ε), (9)
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with ∆ from {h, (nhδ0h)−1, ((nhδ0)2h3)−1}, it holds that s2∗n = o(n∆).

Proposition 3.5. Under the assumptions of Proposition 3.4 we have var(Z1) = O(∆) .

With ∆ from Proposition 3.4 we can direct conclude

s2n =

n∑
i=1

n∑
j=1

|cov(Zi, Zj)| = n · var(Z1) + s2∗n = O(n∆). (10)

Before we specify the result about the convergence of estimator (7) we need

Proposition 3.6. Under the assumptions and ∆ from Proposition 3.4, verifying

c1n
3−a
a+1+θ ≤ ∆ ≤ c2n

1
1−a−θ, (11)

with existing c1, c2, θ > 0, it holds for ν and ε > 0 with ψ = g or ψ = f

P

(∣∣∣Eψ̂(x)− ψ̂(x)
∣∣∣ > ε

√
log n

nh2
∆

)
= O(n−1−ν). (12)

Now we can state the main theorem. For continuous (around x) functions m and f we get the quasi

complete convergence5 of Nadaraya-Watson estimators with constructed regressors.

Theorem 3.7. Under the above assumptions and (11), it holds quasi completely that |m̂NW (x) −
m(x)| −→ 0.

The extension to the local linear estimator is almost straightforward. For j = 0, 1, 2

sj(x) =

n∑
i=1

K

(
X̂i − x
h

)
(X̂i − x)j and tj(x) =

n∑
i=1

K

(
X̂i − x
h

)
(X̂i − x)jYi,

we can define m̂LL(x) := (t0(x)s2(x)− t1(x)s1(x))/(s0(x)s2(x)− s21(x)) what leads to

m̂LL(x) =

n∑
i=1

C

(
X̂i − x
h

)
Yi

/
n∑
i=1

C

(
X̂i − x
h

)
, (13)

with C
(
X̂i−x
h

)
=
∑
j 6=i

K
(
X̂i−x
h

)
(X̂j − X̂i)K

(
X̂j−x
h

)
(X̂j − x) as a discretisation of C(u) =

∫
K(u −

v)vK(u)udu6. Since equation (13) is of the same form like (7) and the kernel C fulfils the same conditions

5For a sequence of real random variables Xn exists a real random variable X such that for all ε > 0 holds
∑∞
i=1 P (|Xi−

X| > ε) <∞, cf. Serfling (1980).
6Note that C is a bimodal kernel. Since it puts more weight to points close to x, except if they are too close, than to

points far from x, it is a natural choice in the case of strong mixing data, see Kim et al. (2009).
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Table 1: Danish stock and bond market data (1923-1996)

Min Max Mean Sd

CSE Stock Price Index 64.78 3177.88 511.07 662.99
Dividend Accruing to Index 2.99 44.76 15.11 11.81
Excess Stock Returns -42.44 72.10 2.10 17.19
Bond Yield -13.70 60.30 8.61 12.07
Dividend Yield 0.01 0.08 0.04 0.01
Long-term Interest Rate 3.80 19.45 8.24 4.29
Short-term Interest Rate 2.50 17.86 6.96 3.46

as K, the application of Theorem 3.7 yields

Corollary 3.8. Under the assumptions of Theorem 3.7, it holds quasi completely that |m̂LL(x)−m(x)| −→
0.

For mean square convergence, asymptotic normality and higher order polynomials, one could directly

extend the work of Masry and Fan (1997) to the case of predicted regressors.

4. Empirical evidence and simulation studies

We interpret our method presented as a two stage regression approach. Based on the idea that the bond

of the same year captures an important part of the stock return we search in the first step the optimal

prediction model for the bond. Afterwards, as we have seen in Theorem 3.7, we can consistently predict

stock returns using the predicted bond yields.

4.1. Data description

Consider the annual Danish stock and bond market data for the period 1923 – 1996 from Lund and

Engsted (1996). In the appendix of their work, a detailed description of the data can be found. We

use a stock index based on a value weighted portfolio of individual stocks chosen to obtain maximum

coverage of the market index of the Copenhagen Stock Exchange (CSE). Notice that the CSE was open

during the second world war. When constructing the data, corrections were made for stock splits and

new equity issues below market prices. Table 1 presents summary statistics of the available variables. In

14



Table 2: R2
V -values (in percent) for bond model (3)

wt−1 d S L r b d, L d, r S, L S, r L, b r, b S, L, b S, r, b L, r, b

par. 3.2 11.6 24.0 22.3 -1.3 21.9 19.4 31.9 33.1 29.2 35.2 31.9 37.4 30.9
nonpar. 5.3 16.3 24.0 26.8 -1.2 23.2 19.4 31.9 33.1 29.2 35.5 31.9 37.4 31.8

the following, we use the dividend price ratio, d, the stock return, S, the long-term interest rate, L, the

short-term interest rate, r, and the bond yields, b, as explanatory variables.

4.2. The prior step: A simple bond yield predictor

We speak of a simple predictor as in the literature quite complex models can be found for this problem.

Our main target, however, are the stock returns where bond yield prediction is just an auxiliary step in

order to reduce complexity and dimension. Therefore, the model and bandwidth selection for (3) has to

be based on the objective of maximising the R2
V of the stock return problem (2). Recognising that the

model that maximises the R2
V for bond prediction is not necessarily the one that maximises the R2

V for

stock returns, it becomes clear that it is worth to consider nonparametric alternatives for (3), even if

parametric models seem to do a very good job for bond yield prediction alone. This is the reason why

we need Theorem 3.7; for parametric predictors x̂ the consistency of (7) follows trivially.

If we just look at the bond yield prediction, then we get mostly positive R2
V for the models listed in

Table 2. We observe that only in few cases a local linear predictor does a better job than a linear model

as far as we look at the R2
V for bond yields. The interesting numbers, however, we will see only when

looking at the R2
V for stock returns in Table 3, next section.

Figure 1 shows the estimated functions p̂ for the bond yield prediction step with a single covariate wt−1

from the set {S, r, d, L} using a linear model (triangles) and a fully nonparametric model (diamonds).

For some of the models a clear nonlinear behavior can be observed. Figure 2 displays the estimation

results of the combination of the variables r, b that gives the largest validated R2 value for 2-dim. models

in Table 2, again for the linear model (triangles) and the fully nonparametric model (diamonds). Note

that we set one variable at a certain level (25%, 50%, 75% quantile) and plot the relationship of bond
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Figure 1: Estimated function p̂ for bond yield prediction with different covariates wt−1. Upper panel:
excess stock returns, risk-free rate; Lower panel: dividend by price, long-term interest rate; Estimated
with: linear model (triangles), fully nonparametric model (diamonds)

yields with the remaining variable. For example, on the left-hand side of Fig. 2, we set the lagged bond

yield at values of 2.0, 5.7, and 12.2. The linear model and the fully nonparametric model behave very

similar (what is not surprising, since both have more or less the same validated R2 value). Only at the

boundaries a clear difference of both models is visible. Note again that we are interested in stock return

prediction and that the predicted bond used in the final step not necessarily has to be the best possible

one.
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Figure 2: Estimated function p̂ for bond yield prediction with lagged bond yield and risk-free rate as
covariates wt−1; Left: at 25%, 50%, 75% quantile level for lagged bond yield, Right: at 25%, 50%, 75%
quantile level for lagged risk-free rate; Estimated with: linear model (triangles), fully nonparametric
model (diamonds)
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4.3. Stock prediction

Now we examine the predictive relationship of excess stock returns Yt and a set of financial variables

vt−1 using different models. Results of this exercise are summarised in Table 3. First, for the sake

of illustration, we develop our strategy step by step and start with the estimation of the model Yt =

g(vt−1) + εt with a fully nonparametric kernel based method as well as the parametric counterpart

(not including the constructed bond yield b̂t). Part (a) of Table 3 reports the results and shows that all

parametric models produce negative validated R2
V values. It means that with a linear regression approach

we cannot better forecast one-year stock returns than the simple mean. A more sophisticated technique

is needed. In fact, our so far best nonparametric model7 uses actual lagged bond yields, bt−1, and gives

an R2
V of 5.9%. But even better results are possible when we include the generated bond yield b̂t in our

analysis.

Second, we follow our procedure proposed in Section 2 and generate the current bond yield with model

(3). Then we include this constructed variable as a regressor in the final step, the model for excess stock

returns as stated in equation (2). Let us do this first without any further regressor vt−1. As discussed

before, we have to choose the model and bandwidths along the largest R2
V value for predicting stock

returns8. How much the predictive power has increased by this method can be seen when comparing part

(a) with part (b) of Table 3. The best model in (b) uses as single regressor lagged bond yields in the first

step and only the predicted bond as covariate in the second step (R2
V of 10.6%). Even for the parametric

counterpart our strategy helps to improve prediction power since we can observe positive R2
V for some

models. As one can clearly see, the nonparametric version produces better results, recall our discussion

in the previous section.

7Nielsen and Sperlich (2003) report in an analog setting a R2
V value of 5.5 for a fully nonparametric two-dimensional

model with dividend-price ratio, dt−1, and lagged excess stock returns, St−1, as explanatory variables, but don’t use bond
yields in their analysis.

8If one chooses for example the bandwidth that predicts best bond yields in the prior step, then the values in Table 3
will shrink or remain the same. The best prediction model will still be g(b̂t) but with an R2

V value of 9.0% instead of 10.6%.
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Table 3: R2
V -values (in percent) for stock model (2)

vt−1 d S L r b d, S d, L d, r d, b S, L S, r S, b L, r L, b r, b

(a) Yt = g(vt−1) + εt

nonpar -1.4 1.8 -4.2 -3.6 5.9 5.5 -6.0 -7.4 3.1 -3.5 -7.1 4.6 -9.4 0.8 0.5
par -1.3 -1.8 -4.2 -5.7 -4.0 -3.5 -5.8 -7.2 -6.2 -6.8 -7.9 -6.6 -9.3 -7.5 -8.6

(b) Yt = g(b̂t) + εt with bt = p(vt−1) + ζt

nonpar 10.0 1.3 -3.5 1.4 10.6 -1.5 -3.8 2.9 10.1 -1.1 -3.1 3.9 -0.6 -0.9 -3.6
par 10.0 -2.6 -4.0 -4.2 -11.0 -4.2 -3.8 -4.1 -3.5 -3.7 -3.9 3.7 -3.7 -3.3 -3.5

(c) Yt = g(b̂t, vt−1) + εt with bt = p(vt−1) + ζt

nonpar 16.4 5.1 9.1 16.3 8.9 -1.6 28.3 21.6 10.2 1.6 13.5 -1.3 15.8 15.6 20.3
par 16.4 -23.7 3.3 -0.7 5.1 -25.2 12.0 17.3 10.2 -1.5 7.9 -13.4 -6.1 7.7 12.3

vt−1 d, S, L d, S, r d, S, b d, L, r d, L, b d, r, b S, L, r S, L, b L, r, b S, r, b

(a) Yt = g(vt−1) + εt

nonpar -2.9 -6.7 3.3 -11.2 -3.8 1.0 -11.0 0.3 -4.4 -1.6
par -8.6 -9.8 -8.8 -10.9 -9.9 -11.2 -12.5 -11.1 -13.0 -11.9

(b) Yt = g(b̂t) + εt with bt = p(vt−1) + ζt

nonpar 1.3 -3.5 8.9 -2.8 -1.0 -3.7 -2.1 1.8 -3.6 1.6
par -3.3 -3.8 -4.7 -3.4 -3.0 -3.4 -3.9 -3.6 -3.4 -3.5

(c) Yt = g(b̂t, vt−1) + εt with bt = p(vt−1) + ζt

nonpar 10.8 14.2 0.8 17.5 16.6 20.4 10.0 1.6 15.9 7.6
par -1.2 5.7 -15.5 -2.5 11.4 18.0 -1.7 -3.6 -8.0 7.6

Performance of nonparametric and parametric estimators for excess stock return predictions on different covariates: (a)

Without constructed bond b̂t; (b) With b̂t as unique regressor, constructed with variables vt−1; (c) With b̂t and the same

variables vt−1 as in the first bond prediction step. Bandwidth choice in the final step.

Third, we construct the current bond as before but accompany this regressor in model (2) by any

combination of lagged variables from the predictor set {d, S, L, r, b} as our vector vt−1. Then, the two

largest R2
V were achieved by ĝ(b̂t, dt−1, St−1, Lt−1) where b̂t = p̂(dt−1) (yielding R2

V = 30.3%) or b̂t =

p̂(dt−1, Lt−1) (yielding R2
V = 28.9%), respectively. Note that for an increasing set of regressor variables

the corresponding multidimensional bandwidth grid on which we looked for the best predicting one had

to be reduced for numerical reasons. Consequently, lower dimensional models have the tendency to be

slightly favoured in our study. The full set of results for the 25 times 25 combinations of {d, S, L, r, b}

is not shown for the sake of presentation, but available on request. We include in part (c) of Table 3
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only the ’diagonal’ of those results since the predictive power is among the best of all possible models.

In other words, in part (c) of Table 3 holds wt−1 = vt−1, exactly the same regressors used for the

bond construction in step one accompany b̂t again in the second step. For completeness, also the results

of the parametric counterpart are included in part (c) of Table 3. We see that our new prediction

procedure improves the predictive power for stock returns. We find again convincing evidence that the

two nonparametric steps are better than the parametric counterpart. For the best model in Table 3 –

we have wt−1 = vt−1 = (dt−1, Lt−1) – we find a large increase in the R2
V value from 5.9% to 28.3%,

an about factor five improvement compared to the best model without constructed bonds. This finding

again indicates that the bond captures a quite important part of the stock return which is related to the

change in long-term interest rate.

Figure 3 shows the estimated functions ĝ for the excess stock return predictions based on a single

covariate from the set {S, r, d, b} using a fully nonparametric model (diamonds), a fully nonparametric

model with the constructed bond as single regressor in the second step (crosses), and a fully nonparametric

model based on the predicted bond together with the regressor of the first step (pluses). Again, for some

of the models a clear nonlinear pattern can be observed. Figure 4 displays the estimation results of the

combination of the variables d, L that gives the largest validated R2 value in Table 3, again for three

different models used in Figure 3. Note that we set one variable at a certain level (25%, 50%, 75%

quantile) and plot the relationship of excess stock returns with the remaining variable. For example, on

the left-hand side of Fig. 4, we set the lagged long-term interest rate at values of 5.1, 6.4, and 10.6. It

seems that the model which uses only the predicted bond as a covariate is too inflexible in its functional

form and needs the additional information which is still inherent in the covariates of the first step when

it comes to stock return prediction in step 2. This underlines the findings of Table 3 where the largest

validated R2 values can be found in part (c) for the nonparametric estimators of the models based on

the predicted bond together with the same covariates of the first step.
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Figure 3: Estimated function ĝ for excess stock return prediction with different covariates. Upper
panel: excess stock returns, risk-free rate; Lower panel: dividend by price, bond yield; Estimated with:
fully nonparametric model (diamonds), predicted bond as single regressor in the second step (crosses),
predicted bond together with the regressor of the first step (pluses)
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Figure 4: Estimated function ĝ for excess stock return prediction with lagged dividend by price
and long-term interest rate as covariates; Left: at 25%, 50%, 75% quantile level for lagged long-term
interest rate, Right: at 25%, 50%, 75% quantile level for lagged dividend by price; Estimated with:
fully nonparametric model (diamonds), predicted bond as single regressor in the second step (crosses),
predicted bond together with dividend by price and long-term interest rate in second step (pluses)
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In order to get a better view of the potential of our proposed method, we analyze the out-of-sample

mean-squared error (oos-mse) for a one-step ahead prediction with an expanding estimation sample for

the new method in comparison to the oos-mse of the corresponding fully nonparametric and linear models

as well as the historical mean. For an illustration we use dividend by price and long-term interest rate

since we observed for this combination of covariates the largest R2
V in Table 3. Figure 5 shows the

predicted annual excess stock returns of the different models in comparison to the realized annual excess

stock returns of the CSE. We observe the smallest oos-mse for the new method (0.044), followed by the

historical mean (0.049), the linear model (0.058), and the fully nonparametric model (0.059).

The last part of our empirical study concentrates on the change of the dependent variable. Up to

now, we used the excess stock return but for the following we divide this value by the dividend yield, i.e.

we use Y ∗t = Yt/dt. Table 4 summarises our findings for Y ∗.

Table 4: R2
V -values (in percent) for model (2) with Y ∗t = Yt/dt as dependent variable.

wt−1 d, L d, r L, r L, b r, b d, L, r d, r, b L, r, b

par. -8.1 -10.4 -11.2 -4.5 -6.8 -15.0 -11.2 -12.7
nonpar. -8.3 -10.5 -11.3 1.3 11.4 -15.2 2.4 12.3
final with v = w 39.9 35.4 41.4 31.3 35.8 39.5 42.6 43.5

First line: fully parametric model, second line: nonparametric estimation without constructed bond, third line: nonpara-

metric with constructed bond and bandwidth selection in the final step.

The first line refers again to the parametric version of model (2) and the second line to the fully

nonparametric method, both without constructed bonds. Almost all of the parametric models have

negative R2
V values and also only a small number of nonparametric models beat the simple mean. In

contrast, when we include the constructed bond in the nonparametric prediction, a large increase of the

validated R2
V can be observed. For example, the model which uses long- and short-term interest rate, and

lagged bond yields for both the bond generation and following stock prediction, has a R2
V value (43.5%)

that is over three and a half times larger than the value of the best model without constructed bonds

(12.3%).
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Figure 5: Predicted annual excess stock returns of different models using dividend by price and long-
term interest rate as covariates in comparison to the realized annual excess stock returns of the CSE
(upper left: new method, upper right: historical mean, lower left: fully nonparametric model, lower
right: linear model)
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Table 5: R2
V -values (in percent) for dimension reduction.

σ 0.3 0.6 0.9 0.3 0.6 0.9

s1 57.3 (10.4) 23.7 (12.7) 10.5 (11.5) 49.2 (6.2) 19.2 (5.6) 9.2 (4.4)
s2 88.1 (3.5) 66.4 (8.7) 47.0 (11.8) 85.2 (2.9) 59.6 (5.9) 39.7 (6.7)

2 step method 89.1 (3.3) 68.1 (8.5) 47.9 (11.7) 86.7 (2.4) 62.2 (5.7) 42.0 (6.6)
fully nonpar. 45.8 (11.7) 35.0 (12.9) 24.3 (13.5) 47.6 (6.6) 34.2 (6.5) 23.0 (6.1)

Note: For simplicity’s sake we use σs1 = σs2 = σm and refer to it as σ. Averaged values over 500 simulation runs with

standard errors in brackets. Left panel: n=50, right panel: n=200.

4.4. Simulation studies

A simulation study gives us the possibility to highlight the potential of our method. We first show

the effects of a dimension reduction and afterwards of a pronounced curvature.

Let us consider a four dimensional function that is separable into two terms: m(x1, . . . , x4) = m̃(s1, s2)

with s1 = s1(x1, x2) and s2 = s2(x3, x4). We simulated data from the following models: S1 = x1 +x1x2 +

εσs1 , S2 = exp(x3 + x4) + εσs2 , and Y = m(x1, . . . , x4) + εσm = m̃(s1, s2) + εσm = s1 + s2 + εσm . For

each explanatory the support is [0, 1]. An autoregressive design with φ = 0.75, 0.2, 0.02 for x1, . . . , x3 was

used; also a normal for x4. Different parameter values σ for the zero mean normal error distributions were

investigated as well as different sample sizes n. The kernel used was the Gaussian. For computational

reasons the bandwidths are chosen separately in each step of the simulation9. In step one we predict s1

and s2, used in step 2 to estimate function m̃.

Lines three and four of Table 5 present the results for the two-step approach for m̃ and the fully

nonparametric method estimating m in terms of R2
V values, averaged over 500 runs. The proposed two-

step procedure succeed in improving on the fully nonparametric estimator in all cases by far. The effect

of the dimension reduction is of course more pronounced for the smaller sample size and results in an

almost factor 2 improvement.

9Note that this is again suboptimal, i.e. a bandwidth choice along the final objective would give even better results for
our method than those presented in Table 5.
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Table 6: R2
V -values (in percent) for pronounced curvature.

σm 0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5

s 95.7 95.6. 95.7 85.8 85.5 85.9 69.8 70.8 70.2
(2.1) (2.3) (2.0) (4.5) (4.4) (3.7) (8.1) (7.0) (7.1)

2 step method 86.9 51.0 26.9 82.4 48.4 25.0 73.7 43.7 23.5
(5.1) (10.8) (11.6) (6.9) (10.8) (11.6) (11.4) (11.6) (12.1)

fully nonpar. 72.6 38.3 16.1 72.6 39.3 16.2 72.4 39.2 17.0
(8.7) (12.5) (12.4) (9.1) (11.8) (12.4) (10.3) (12.2) (12.1)

Note: Averaged values over 500 simulation runs with standard errors in brackets. Sample size: n=50. Left panel: σs = 0.1,

middle panel: σs = 0.3, right panel: σs = 0.5.

For the second part we consider the function composition m(x) = m̃ ◦ s(x), where the inner function

s has a pronounced curvature. We simulated data from the following models: S = sin(4π(x − 1/8)) +

cos(4/3 · π(x− 1/2)) + 1.6 + εσs and Y = m(x) + εσm = sin ◦ s(x) + εσm , i. e. m̃(x) = sin(x). Note that

s is one of the example functions used in Park et al. (1997). A uniform design was used with the support

[0, 1]. Different parameter values σ for the zero mean normal error distributions were investigated for a

sample size of n = 50. The kernel used was the Gaussian and the bandwidths are chosen separately in

each step for the two-step part. Again we are aware of the suboptimality, i.e. we could even do better

with respect to the R2
V but at the cost of computing time. Table 6 reports the results. We find that

already in this simple example the proposed two-step approach can help to obtain clearly better results,

i. e. much larger R2
V -values in all cases. Figure 6 shows the used inner function (left) and estimates of

m and m̃ (right). We see that our method can better estimate problematic regions, in particular by bias

reduction.

5. Concluding remarks and outlook

Motivated by economic theory and statistical arguments, we include the same years bond yield in the fully

nonparametric prediction approach for excess stock returns. Since the current bond yield is unknown,

we propose to construct it in a prior step using again nonparametric techniques. The bandwidths should

be chosen in such a way that they maximise the R2
V of the final step. The empirical study demonstrates

that this two-step approach can improve the stock return prediction enormously. We moreover prove the
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Figure 6: Left: Simulated Data (dots) with σs = 0.3 from inner function s (solid), first-step estimate
(dashed); Right: Simulated Data (dots) with σm = 0.3 from function composition m (solid), two-step
estimate (dashed), usual nonparametric estimate (dotted)

consistency of our method and derive the asymptotic behaviour of our final predictor. We illustrate the

improvement due to our method using annual Danish stock and bond market data which were studied

in detail in former articles by different authors. Our results confirm our motivation of including the

same years bond yield, namely that it captures the most important part of the stock return, that one

related to the change in long-term interest rate. This actually holds not only for stock returns but also

for transformed variables, as for example returns divided by dividend yields.

The statistically insights are the following. It is clear that we face a regression model that exhibits

high complexity and dimensionality. An obvious remedy would be the imposing of structure. Since it has

been shown that additive separability is inappropriate because of unknown interactions, we make use of

financial theory to exploit the inherit structure of stock returns. Alternatively, one could interpret the

first stage as an optimal nonparametric transformation that maps, for example, the long-term interest

rate to the current bond yield, Lt−1 → b̂t. The subsequent nonparametric smoother of the transformed

variable is than characterised by less bias. Here, we present a practical example in the spirit of the

somewhat theoretical method proposed by Park et al. (1997) which improves nonparametric regression
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with transformation techniques. Although we extend their method in several aspects, their paper provides

some statistical intuition for the success of our approach. Our simulations additionally underpin the key

idea of complexity and dimension reduction.

Appendix A. Proofs

Proof of Proposition 3.3. Since the variables Zi in (8) are centered, we calculate for i 6= j

|EZiZj | =
∣∣∣EY li Y ljK(X̂i − x

h

)
K
(X̂j − x

h

)
− EY liK

(X̂i − x
h

)
EY ljK

(X̂j − x
h

)∣∣∣. (A.1)

First, we analyse the second term in the last equation and use the assumption that all Yi are bounded.

EY liK
(X̂i − x

h

)
≤ C

∫ ∫
K
(u− x+ b(u) + vσ(u)

h

)
f(u, v)dudv.

A simple Taylor-expansion of the kernel leads to

C

∫ ∫ {
K
(u− x

h

)
+K ′

(u− x
h

)(b(u) + vσ(u)

h

)
+

K ′′
(u− x

h
+ κ

b(u) + vσ(u)

h

) (b(u) + vσ(u))2

2h2

}
f(u, v)dudv,

where κ ∈ (0, 1). With the common substitution s = (u− x)h−1 we get

EY liK
(X̂i − x

h

)
= O(h+ (nhδ0h)−1).

Analog steps lead to

E
[
Y li Y

l
jK
(X̂i − x

h

)
K
(X̂j − x

h

)]
= O(h2 + (nhδ0)−1 + (nhδ0h)−2),

and thus the covariance |cov(Zi, Zj)| for i 6= j is of the same rate.
On the other hand, we can directly make use of Lemma 3.2 because all Yi and K are bounded so that

||Zi||∞ <∞. It follows

|cov(Zi, Zj)| ≤ Cα(|i− j|).

The idea is now to combine both results. When the indices of the two variables Zi and Zj are close10 to
each other we use the first one, and when they are far from each other the second one. To control this,

10Since we use time series data, this means that the two events are close in time.
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we introduce a sequence of integers an and obtain

s2∗n =

n∑
i=1

∑
j 6=i

|cov(Zi, Zj)|

≤ C
[∑ ∑

0<|i−j|≤an

{h2 + (nhδ0)−1 + (nhδ0h)−2}+
∑ ∑

|i−j|>an

α(|i− j|)
]
.

Since i 6= j, the largest possible term for an is 0 < |i− j| ≤ an ∼= n− 1 and the smallest |i− j| > an ∼= 1.
Furthermore, the maximum number of elements in s2∗n is n2−n, and we obtain for ∆ that is of the same
order like the slowest term in O(h2 + (nhδ0)−1 + (nhδ0h)−2)∑ ∑

0<|i−j|≤an
∆

∆nan
≤ n2 − n
n(n− 1)

⇐⇒
∑ ∑

0<|i−j|≤an

∆ = O(∆nan)

and ∑ ∑
|i−j|>an

α(|i− j|)

n2α(an)
≤ n2 − n

n2
⇐⇒

∑ ∑
|i−j|>an

α(|i− j|) = O(n2α(an)).

This means that

s2∗n = O({h2 + (nhδ0)−1 + (nhδ0h)−2}nan + n2α(an)).

Choosing an from { 1
h logn ,

nhδ0h
logn ,

(nhδ0)
2h3

logn } proves the Proposition.

Proof of Proposition 3.4. Using the algebraic mixing condition and Proposition 3.3

s2∗n = o(nh) +O(n2∆̃−a),

with ∆̃ from {
1

h log n
,
nhδ0h

log n
,

(nhδ0h)2h

log n

}
.

Using the assumption (9) and noting that (logn)a

nε → 0 for n→∞ closes the proof.

Proof of Proposition 3.5. We use again that Y1 is bounded so that remains to analyse

E
[
K
(X̂1 − x

h

)]2
=

∫ ∫
K
(u− x+ b(u) + vσ(u)

h

)2
f(u, v)dudv.

With a Taylor-expansion and analog steps like in the proof of Proposition 3.3 we get

=

∫ ∫ {
K
(u− x

h

)
+K ′

(u− x
h

)(b(u) + vσ(u)

h

)
+

K ′′
(u− x

h
+ κ

b(u) + vσ(u)

h

) (b(u) + vσ(u))2

2h2

}2

f(u, v)dudv,
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where κ ∈ (0, 1), and find that

E
[
K
(X̂1 − x

h

)]2
= O(h+ (nhδ0h)−1 + (nhδ0)2h3)−1)

what proves the Proposition.

Proof of Proposition 3.6. Using l = 0 for ψ = f and l = 1 for ψ = q, respectively, we directly get with
(8)

|Eψ̂(x)− ψ̂(x)| =

∣∣∣∣∣ E
(

1

nh

n∑
i=1

Y liK

(
X̂i − x
h

))
− 1

nh

n∑
i=1

Y liK

(
X̂i − x
h

) ∣∣∣∣∣
=

1

nh

∣∣∣∣∣
n∑
i=1

{
Y liK

(
X̂i − x
h

)
− E

(
Y liK

(
X̂i − x
h

))} ∣∣∣∣∣ =
1

nh

∣∣∣∣∣
n∑
i=1

Zi

∣∣∣∣∣ .
Therefore, applying Lemma 3.1 we obtain

P
(
|Eψ̂(x)− ψ̂(x)| > δ

)
= P

(∣∣∣ n∑
i=1

Zi

∣∣∣ > nhδ

)

≤ 4

(
1 +

δ2n2h2

16rs2n

)− r2
+ 2ncr−1

(
8r

nhδ

)a+1

.

Since we have seen in (10) that s2n = O(n∆), with ∆ from Proposition 3.4, with δ = ε
√

logn
nh2 ∆ we get

P
(
|Eψ̂(x)− ψ̂(x)| > ε

√
log n

nh2
∆
)

≤ 4

(
1 +

ε2 log n

16r

)− r2
+ 2ncr−1

(
8r

ε

)a+1

(n∆ log n)
− a+1

2 . (A.2)

Now, we can choose r > 1 such that log n = o(r), and use the limit definition

exp(x) = lim
z→∞

(
1 +

x

z

)z
,

with z = −r/2. For the first term of the right hand side of (A.2), we obtain for z →∞(
1 +

ε2 log n

16r

)− r2
=

(
1− ε2 log n

32z

)z
−→ exp

(
−ε

2 log n

32

)
= n−

ε2

32 .

Noting that C(log n)−(a+1)/2 ≤ C for n > 2 and a constant C, (A.2) can be expressed as

P
(
|Eψ̂(x)− ψ̂(x)| > ε

√
log n

nh2
∆
)

≤ Cn− ε
2

32 + Cε−(a+1)n1−
a+1
2 ra∆−

a+1
2 .
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With r = nb for b > 0, i.e. log n = o(r), and the left hand side of the assumption (11),

n1+ab−
a+1
2 ∆−

a+1
2 ≤ n1+ab−

a+1
2 −

3−a
2 −θ

a+1
2 = n−1−θ

a+1
2 +ab = n−1−ν .

Thus, we obtain for a sufficiently small b that

P
(
|Eψ̂(x)− ψ̂(x)| > ε

√
log n

nh2
∆
)
≤ Cn− ε

2

32 + Cε−(a+1)n−1−ν .

Finally, for a sufficiently large ε, we get that exist ν, ε > 0 such that

P
(
|Eψ̂(x)− ψ̂(x)| > ε

√
log n

nh2
∆
)
≤ Cn−1−ν ,

what proves the assertion.

Proof of Theorem 3.7. From Proposition 3.6 follows directly

Eq̂(x)− q̂(x) −→ 0, and Ef̂(x)− f̂(x) −→ 0, (A.3)

both quasi completely. With the first part of the proof of Proposition 3.3 we obtain11

Ef̂(x) =
1

h
EK

(
X̂ − x
h

)
= f(x) +Bf (x) + o(h20 + h),

with Bf (x) = h2/2f ′′(x)µ2(K) + {b(x)f ′(x) + b′(x)f(x)}µ1(K ′), and thus

Ef̂(x)− f(x) −→ 0. (A.4)

The analog can be shown for Eq̂(x). With

Eq̂(x) =
1

h
EY K

(
X̂ − x
h

)
,

and taking the conditional expectation for X = x, we get

Eq̂(x) =
1

h

∫ ∫
m(u)K

(
u− x+ b(u) + vσ(u)

h

)
f(u, v)dudv.

Repeating the same steps as in the first part of the proof of Proposition 3.3, using q = m · f as well as
that the function q is continuous over the compact support of the kernel K, i.e. that q(x+ hs) −→ q(x)
uniformly in s, we obtain

Eq̂(x)− q(x) −→ 0. (A.5)

Furthermore, from (A.4) and (12) follows the quasi complete convergence of f̂(x) to f(x), i.e. for all

11A similar result can be found in Theorem 2.1 (i) in Sperlich (2009).
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ε > 0, it holds that
∞∑
n=1

P (|f̂(x)− f(x)| > ε) <∞.

Since f(x) > 0, we can define δ = ε = f(x)/2 and get for δ > 0

∞∑
n=1

P (f̂(x) ≤ δ) <∞. (A.6)

Note, that with (7) and q = f ·m we can state

m̂NW (x)−m(x) =
q̂(x)− q(x)

f̂(x)
+ (f(x)− f̂(x))

m(x)

f̂(x)
, (A.7)

and thus with (A.3) – (A.7) follows the assertion.
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