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Abstract

This paper proposes a new test that is consistent, achieves correct
asymptotic size and is locally most powerful under local misspecifica-
tion, and when any

√
n-estimator of the nuisance parameters is used.

The new test can be seen as an extension of the Bera and Yoon (1993)
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procedure that deals with non-ML estimation, while preserving its
optimality properties. Similarly, the proposed test extends Neyman’s
(1959) C(α) test to handle locally misspecified alternatives. A Monte
Carlo study investigates the finite sample performance in terms of size,
power and robustness to misspecification.

JEL classification: C12; C52
Keywords: Specification testing; Rao’s score test; Local misspecifica-
tion; Neyman’s C(α).

1 Introduction

A standard practice in applied econometrics is to start by estimating a small

model and then checking whether departures away from it are supported or

not by the data. Rao’s (1948) score (henceforth, RS) or Lagrange multiplier

tests are convenient since, unlike likelihood ratio and Wald tests, they require

estimation of only the restricted model under the null hypothesis.

The performance of RS tests depends on how the model is estimated

and on whether the alternative hypothesis is correctly specified. Consider a

model consisting of a probability distribution characterized by three vectors

of parameters: θ1, θ2 and θ3. Suppose that the primary interest is to test

H2
0 : θ2 = θ20 in a situation where θ1 can be easily estimated under the joint

null H23
0 : θ2 = θ20, θ3 = θ30. The properties of a test for H2

0 derived in

such context depend on 1) how θ1 is estimated and 2) whether H3
0 : θ3 = θ30

holds.

When θ1 is estimated by maximum likelihood (ML) under the joint null

H23
0 the RS test for H2

0 is consistent, has correct asymptotic size and is locally

most powerful when the alternative model is correctly specified, i.e., when

H3
0 holds and thus the only deviation away from the joint null is due to H2
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being false (see Rao (1948); Rao and Poti (1946), Cox and Hinkley (1974)

and Bera and Bilias (2001a)). If any other
√
n−consistent estimator of θ1

under H23
0 is used, Neyman’s (1959) C(α) test is asymptotically equivalent

to the RS and hence inherits alls its optimality properties (see Smith (1987)

and Bera and Bilias (2001b)).

When the alternative hypothesis is misspecified (H3
0 : θ3 6= θ30), both RS

and C(α) tests reject H2
0 spuriously, as shown by Davidson and MacKinnon

(1987) and Saikkonen (1989). That is, they reject H2
0 not because of being

false but due to the fact that H3
0 does not hold. For example, Bera, Sosa-

Escudero and Yoon (2001) find that the standard Breusch and Pagan (1979)

test for random effects in the error component model spuriously rejects its

null under the presence of serial correlation. Bera and Yoon (1993) (hence-

forth, BY) propose a modification of the RS test for H2
0 that is still based

on the ML estimation of θ1 under H23
0 , but unlike RS and C(α) tests, is

consistent and has correct asymptotic size under local misspecification. The

BY test can be shown to be asymptotically equivalent to a C(α) test and

hence it is also locally most powerful. The BY principle has been success-

fully implemented in many econometric ‘model search’ problems, for instance

see Anselin, Bera, Florax and Yoon (1996), Godfrey and Veall (2000), Bera,

Sosa-Escudero and Yoon (2001), Baltagi and Li (2001) and Montes-Rojas

(2010, 2011).

The use of an ML estimator is an obvious restriction on the applicability of

BY tests. Bera, Montes-Rojas and Sosa-Escudero (2010) (henceforth, BMS)

extended the BY principle to the GMM framework, proposing a test that

is consistent and has correct asymptotic size for any initial GMM estimator

and under locally misspecified alterantives.

In Box’s (1953) characterization, the C(α) and the BY tests possess the
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robustness of efficiency property (see Welsh (1996, pp. 242-243)), in the

sense that both, size and power, are preserved with respect to the original

RS test. On the contrary, the test suggested by BMS is only validity robust,

since it preserves consistency and correct asymptotic size but not necessarily

efficiency.

In this paper we propose a new test that is still based on any
√
n-

consistent estimator of θ1 and has the robustness of efficiency property under

local misspecification. Consequently, the proposed test improves upon three

existing strategies by a) allowing for non-ML estimation in the BY test, b)

allowing for locally misspecified alternatives in the classic C(α) procedure,

and c) restoring asymptotic efficiency of BMS test. Intuitively, the new test is

derived by applying a double C(α)-style correction that deals simultaneously

with the non-ML estimation and locally misspecified alternatives.

The practical relevance of the proposed tests relates to situations where

simple estimators for relevant parameters are readily available, as compared

to fully ML estimators. Linear panel data error components models are one

example of such scenario, where method-of-moments estimators of the vari-

ance components are much simpler to compute than ML estimators. For

example, Baltagi, Song and Jung (2001, 2002) consider a nested error com-

ponents model yijt = x′ijtβ + uijt with uijt = µi + νij + εijt. Normality of

the error components is assumed to develop a testing framework for the ap-

propiate nested variance structure. A RS test for the presence of the random

effect µi (or νij) being present requires the estimation of β and the variance

of νij (or µi) and εijt. Baltagi et al. (2001) suggest that, even though a

fully ML estimator is available under normality, much simpler method-of-

moments estimators of the nuisance parameters are very good competitors.

Moreover, tests for the presence of either µi or νij are also constructed as BY
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robust test for local misspecification of the random component in the level

not being tested (Baltagi, Song and Jung (2002)). This is a clear example

of a situation where the tests proposed in this paper can be very useful in

practice, since they can be based on any consistent estimate, bypassing the

need of initial ML estimation. We discuss a second example of least-squares

and quantile regression models in the context of our Monte Carlo study (in

Section 4) where the finite sample size and power of the tests are studied.

The rest of the paper is organized as follows. In Section 2, we review the

loss of efficiency associated with non-ML estimation of θ1, the C(α) approach

(that preserves size and power of RS tests) and a new intermediate ‘modified

RS’ test, that only restores size. We then show in Section 3 that, as in the

case of the RS test, though being able to accommodate non-ML estimators

of θ1, both strategies are negatively affected when the alternative hypothesis

becomes misspecified. We thus introduce the new tests, that are resistant

to non-ML estimators and locally misspecified alternatives. We complement

our theoretical analysis with a Monte Carlo experiment in Section 4, that

investigates the small sample performance of the tests. Section 5 concludes.

2 Testing with non-maximum likelihood esti-

mators

Consider the following parametric model for independent and identically dis-

tributed (iid) random samples.

Assumption 1. Parametric model:

(i) Let {zi}ni=1 be a random sample of iid random vectors zi ∈ Z ⊂ <K;

(ii) let the parametric family of models for the density of z be given by

{f(.|θ) : θ ∈ Θ} where Θ ⊂ <p is a compact set that can be partitioned
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as Θ = Θ1 ×Θ2 ×Θ3, subsets of <p1, <p2 and <p3, p = p1 + p2 + p3, respec-

tively with typical elements θ ≡ (θ′1, θ
′
2, θ
′
3)′ and f(.|θ) is a density function

to the measure v(dz) for all θ ∈ Θ;

(iii) for some θ0 ∈ int(Θ), θ0 = argmaxθ∈ΘE[l(z, θ)] is unique, where

E[·] ≡
∫
Z ·f(z, θ0)v(dz) and `(z, θ) ≡ lnf(z|θ);

(iv) for each θ ∈ Θ, `(., θ) is a Borel measureable function on Z, and for

each z ∈ Z, `(z, .) is a continous function on Θ.

Define `(θ) ≡ 1
n

∑n
i=1 `(zi, θ) as the log-likelihood. Let d(z, θ) ≡ ∂l(z, θ)/∂θ

and d(θ) ≡ ∂`(θ)/∂θ denote the score vector (we will use dj(z, θ) and dj(θ)

to denote the corresponding pj × 1 subvector ∂l(θ)/∂θj, with j = 1, 2, 3).

Moreover, let J(z, θ) ≡ −∂2l(z, θ)/∂θ∂θ′ be a p× p matrix of second partial

derivatives, and

J(θ) ≡ −E
[
∂2l(z, θ)

∂θ∂θ′

]
≡

 J11(θ) J12(θ) J13(θ)
J21(θ) J22(θ) J23(θ)
J31(θ) J32(θ) J33(θ)


denote the information matrix. For notational convenience we write J(θ0) ≡
J , i.e., we omit the dependence on θ when the functionals are evaluated at

θ0.

Assumption 2. Scores and information matrix:

(i) `(z, .) is twice continuously differentiable on int(Θ);

(ii) all elements in `(z, θ), d(z, θ), d(z, θ)d(z, θ)′, J(z, θ) are bounded in ab-

solute value by a function b(z) with E[b(z)] <∞ for all θ ∈ Θ;

(iii) J is positive definite.

Assumptions 1 and 2 provide sufficient conditions for identification,
√
n-

consistency and asymptotic normality of a ML estimator (MLE) for iid ran-
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dom samples. These correspond to the assumptions of theorems 13.1 and

13.2 in Wooldridge (2010) and assumptions 1-9 for score functions in Newey

(1985).

Consider first the problem of testing H2
0 : θ2 = θ20 under the local al-

ternative H2
A : θ2 = θ20 + δ2/

√
n, 0 < δ2 < ∞, and when H3

0 : θ3 = θ30

holds. In this case the alternative hypothesis is said to be correctly specified,

in the sense that H3
0 holds, i.e., the only departure away from the joint null

H23
0 : θ2 = θ20, θ3 = θ30 is due to θ2 being different from θ20. Under this set

up, the form of the optimal RS test statistic is given by

RS2·1(θ) = n d2(θ)′ J−1
2·1 d2(θ), (1)

where J2·1 = J2 − J21J
−1
11 J12. Let θ̂ = (θ̂′1, θ

′
20, θ

′
30)′, where θ̂1 is the restricted

MLE of θ1 under the joint null H23
0 . A standard result is that under H2

A, and

H3
0 , RS2·1(θ̂)

d→ χ2
p2

(λ2·1), as n→∞, where the non-centrality parameter is

λ2·1 = δ′2J2·1δ2. Thus under H2
0 , RS2·1(θ̂) has, asymptotically, a central chi-

squared distribution, ensuring its correct asymptotic size. Also, as mentioned

in the Introduction, RS2·1(θ̂) is locally most powerful.

In certain contexts it might be difficult to obtain the MLE θ̂1, while a
√
n-consistent estimator θ̃1 may be easily available. However, the use of a
√
n-consistent estimator other than the MLE affects the asymptotic proper-

ties of the RS test. Assume that an M-estimator θ̃ = (θ̃′1, θ
′
20, θ

′
30)′ is available,

defined as θ̃1 = argminθ1∈Θ1

∑n
i=1 q(zi, θ1, θ2, θ3) for q(z, θ) an objective func-

tion of the random vector z. Assume that a general estimating function

h1(θ) = 1
n

∑n
i=1 h1(zi, θ) exists, where h1(z, θ) ≡ ∂q(z, θ)/∂θ1, and that θ̃1

is the unique zero of h1(.) for all n and for all (θ2, θ3) ∈ (Θ2 × Θ3). For

example, the restricted MLE corresponds to h1(θ1, θ20, θ30) = d1(θ1, θ20, θ30),

so in this case θ̃1 = θ̂1. Define H1(θ) = E [h1(z, θ)h1(z, θ)′] and B1(θ) =

E [∂h1(z, θ)/∂θ1]. For notational convenience we omit the dependence on
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θ when the functionals are evaluated at θ0. We will consider the following

assumptions:

Assumption 3. M-estimators:

(i) θ10 = argminθ1∈Θ1E[q(z, θ1, θ20, θ30)] is unique and E[h1(z, θ1, θ20, θ30)] =

0 only if θ1 = θ10;

(ii) for each θ ∈ Θ, (q(., θ), h1(., θ)) are Borel measureable functions on Z,

and for each z ∈ Z, (q(z, .), h1(z, .)) are continous functions on Θ;

(iii) q(z, θ) is twice continuously differentiable on int(Θ);

(iv) all elements in q(z, θ), h1(z, θ), h1(z, θ)h1(z, θ)′, h1(z, θ)d(z, θ)′, ∂h1(z, θ)/∂θ

are bounded in absolute value by a function b(z) with E[b(z)] < ∞ for all

θ ∈ Θ;

(v) B1 is positive definite;

(vi) let w(z, θ) = [h1(z, θ)′ d(z, θ)′]′, E[w(z, θ0)w(z, θ0)′] is positive definite.

Assumption 3, together with 1-2, guarantees identification,
√
n-consistency

and asymptotic normality of θ̃1 underH23
0 , given by

√
n(θ̃1−θ10)

d→ N(0p1 , B
−1
1 H1B

−1
1 ),

as n → ∞. See Wooldridge (2010, ch.12) for a general discussion on M-

estimators. Assumptions 1-3 correspond to assumptions 1-9 in Newey (1985),

in which case θ̃1 is defined as a Z-estimator based on the estimating func-

tion h1(z, θ). Dependent random vectors (i.e. time-series) can be addressed

with the use of the statistical model of Newey and West (1987). Moreover,

the assumptions can be relaxed for non-smooth log-likelihood or q-objective

functions (eg. quantile regression models) following Newey and McFadden

(1994). For the sake of brevity we do not discuss the standard regularity

conditions for consistency of estimators for J , B1 and H1, and we assume

that all matrices that need to be inverted in the construction of the statistics

in this paper are non-singular.

RS2·1(θ̃) is no longer asymptotically chi-squared distributed, since it is
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based on an incorrect variance. The correct variance of d2(θ̃) is V2·1 = J2 −
J21B

−1
1 H1B

−1
1 J12, which can be easily derived as in Newey and McFadden

(1994) using the delta method. Consider the following modified RS test using

the correct variance of the score function:

R̃S2·1(θ) = n d2(θ)′ V −1
2·1 d2(θ). (2)

The following result establishes the consistency and asymptotic validity

of this test, where θ is now replaced by a non-MLE θ̃.

Theorem 1. Consider Assumptions 1-3. When H3
0 is true and H2

A holds
and n→∞,

R̃S2·1(θ̃)
d→ χ2

p2
(λ̃2·1),

with λ̃2·1 = δ′2V2·1δ2.

Proof: In the Appendix.

Though consistent and with correct asymptotic size, R̃S2·1(θ̃) is less pow-

erful than RS2·1(θ̂). Note that λ2·1− λ̃2·1 = δ′2

(
J2·1−V2·1

)
δ2. The asympotic

efficiency of the MLE of θ1 implies that J−1
1 − B−1

1 H1B
−1
1 is negative semi-

definite, thus J2·1 − V2·1 is positive semi-definite, and hence λ2·1 − λ̃2·1 ≥ 0.

An optimal test for H2
0 when any

√
n-consistent estimator of θ1 under

H23
0 is used, can be based on Neyman’s (1959) C(α) test statistic

C2·1(θ) = n d2·1(θ)′ J−1
2·1 d2·1(θ), (3)

where d2·1(θ) = d2(θ) − J21J
−1
11 d1(θ) is known as the effective score. A well

known result is that C2·1(θ̃) is asymptotically equivalent to RS2·1(θ̂), and

hence it has correct asymptotic size and is also locally most powerful. In-

tuitively, the C(α) test replaces the score of the test parameters θ2 by its

projection on the orthogonal complement of the space spanned by the score
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of the nuisance parameters θ1, evaluated at θ̃. And it does so in such way

that replacing the MLE θ̂ by θ̃ does not lead to any loss in asymptotic power.

It is relevant to remark that C2.1(θ̂) = RS2.1(θ̂), since d2.1(θ̂) = d2(θ̂) due to

d1(θ̂) = 0.

3 Testing under local misspecification

Suppose that H2
0 is true but the alternative hypothesis is locally misspecified,

that is, H3
A : θ3 = θ30 + δ3/

√
n, 0 < δ3 <∞ holds. Davidson and MacKinnon

(1987) and Saikkonen (1989) show that in such case RS2·1(θ̂)
d→ χ2

p2
(λ2/3·1),

where λ2/3·1 = δ′3J32·1J
−1
2·1J23·1δ3 with J23·1 ≡ J23 − J21J

−1
11 J13 = J ′32·1. That

is, even when H2
0 is true, RS2·1(θ̂) has a non-central chi-squared distribution

due to θ3 6= θ30, and hence leading to spurious rejections of H2
0 due to mis-

specification and not to its falseness. Naturally this result affects Neyman’s

C(α) test alike, since it is asymptotically equivalent to RS2·1(θ̂).

Bera and Yoon (1993) proposed the following modified test

RS∗2·1(θ) = n d∗2(θ)′ J−1
2(3)·1 d

∗
2(θ), (4)

where d∗2(θ) = d2(θ)− J23·1J
−1
3·1d3(θ) and J2(3)·1 = J2·1 − J23·1J

−1
3·1J32·1. Their

key result is that under H2
0 and when H3

A holds, RS∗2·1(θ̂)
d→ χ2

p2
(0). That is,

the BY test has asymptotic centered chi-squared distribution even when H3
0

is false (in a local sense), hence it does not led to spurious rejections induced

by misspecification. It is relevant to remark that both RS∗2·1(θ̂) and RS2·1(θ̂)

are based on θ̂, the MLE of θ under the joint null H23
0 , and hence the use of

the robustified test statistic shares all the computational advantages of the

standard RS test. See Bera, Montes-Rojas and Sosa-Escudero (2009) for a

geometrical interpretation of these results.
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A quick inspection of the expressions of the C(α) and the BY test statis-

tics respectively, in (3) and (4), suggests strong similarities between them,

specially in terms of orthogonalization, i.e., in calculating the effective score.

The most interesting fact is that the structure of orthogonalization is the

same for replacing an MLE by a
√
n−consistent estimator of θ1, and for

taking account of local misspecification relating to the parameter θ3.

Regarding power, the asymptotic distribution of RS∗2·1(θ̂) under H2
A is

non-central chi-squared with non-centrality parameter λ∗2·1 = δ′2J2(3)·1δ2. Note

that whenH2
A andH3

A are true, λ∗2·1 = λ2·13+op(1/
√
n), where λ2·13 is the non-

centrality parameter of a RS test for H2
0 when both (θ1, θ3) are estimated by

MLE. Consequently, the BY test restores consistency and correct asymptotic

size under misspecified alternatives, with no power loss compared to the

standard RS that estimates θ1 and θ3 by MLE. Similarly, note that (θ̂1, θ30)

is trivially a
√
n-consistent estimator of (θ1, θ3) under H2

0 and H3
A, hence

RS∗2·1(θ̂)
a
= C2·13(θ̂), where C2·13(θ) is defined analogously as in (3).

Nevertheless, the BY test requires the use of the MLE for θ1. A simple

modification that can handle any
√
n-consistent estimator for θ1 based on

h1(θ) is as follows. Define Bj·1 = Jj − Jj1B
−1
1 H1B

−1
1 J1j, j = 2, 3, 23, 32,

where the subindex 23 (similarly 32) is used to label the redefined param-

eter θ23 = (θ′2, θ
′
3)′. In order to account for the effect of H3

A consider the

adjusted score d̃∗2·1(θ) = d2(θ)−B23·1B
−1
3·1d3(θ). Now, following BY, consider

the adjusted RS statistic:

R̃S
∗
2·1(θ) = n d̃∗2·1(θ)′V −1

2(3)·1d̃
∗
2·1(θ), (5)

where V2(3)·1 = B2·1 −B23·1B
−1
3·1B32·1 is the variance of d̃∗2·1(θ).

The next theorem establishes the properties of a locally size-robust ‘mod-

ified’ BY test under non-MLE estimation of θ1.
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Theorem 2. Consider Assumptions 1-3.
(i) When H2

0 is true, but H3
A holds, as n→∞

R̃S2·1(θ̃)
d→ χ2

p2
(λ̃2/3·1),

with λ̃2/3·1 = δ′3
(
J23 − J21B

−1
1 H1B

−1
1 J13

)′
V −1

2·1
(
J23 − J21B

−1
1 H1B

−1
1 J13

)
δ3.

(ii) When H2
A and H3

A hold, as n→∞

R̃S
∗
2·1(θ̃)

d→ χ2
p2

(λ̃∗2·1),

where λ̃∗2·1 = δ′2V2(3)·1δ2.

Proof: In the Appendix.

The main result of this paper is that a fully modified size and power robust

test can be derived to accommodate non-ML estimators and misspecified

alternatives. Define d∗2·1(θ) = d2·1(θ)− J23·1J
−1
3·1d3·1(θ) and

C∗2·1(θ) = n d∗2·1(θ)′J−1
2(3)·1d

∗
2·1(θ), (6)

where d3.1(θ) = d3(θ) − J31J
−1
11 d1(θ) analogously as d2.1(θ) in C2.1(θ) in (3).

The asymptotic properties of this new test are established in the following

theorem.

Theorem 3. Consider Assumptions 1-3. When H2
A and H3

A hold and n→∞

C∗2·1(θ̃)
d→ χ2

p2
(λ∗2·1).

Proof: In the Appendix.

The optimality of the new procedure is due to the fact the theorem implies

that C∗2·1(θ̃) is asymptotically equivalent to RS∗2·1(θ̂). This equivalence is

analog to that between RS2·1(θ̂) and C2·1(θ̃) in Section 2 when the alternative
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hypothesis is correctly specified. Consequently, this new test has both the

robustness of validity and efficiency properties when a non-MLE of θ1 is used

and when the alternative hypothesis is locally misspecified. Also note that

C∗2·1(θ̂) = RS∗2.1(θ̂). The improvement from RS∗2·1(θ) to C∗2·1(θ) is achieved

by starting with d2·1(θ) and d3·1(θ) instead of d2(θ) and d3(θ), respectively,

to take account of the fact that for the non-MLE d1(θ̃) 6= 0. We can also

view C∗2·1(θ) as a modification of our initial C(α) statistic C2·1(θ) in (3), by

further orthogonalizing d2.1(θ), now with respect to d3.1(θ) to incorporate the

fact that d3(θ̃) 6= 0. This duality goes back to our earlier observation that

two orthogonalizations for taking care of the
√
n-consistent estimation of θ1

(as in C(α)) and for allowing for the possible local presence of θ3 (as in BY)

are structurally the same.

4 Monte Carlo experiments

We present the results of a simple but illustrative empirical exploration of

the costs and benefits of the alternative robustification strategies discussed

earlier. Consider the following regression model:

yi = θ1x1i + θ2x2i + θ3x3i + ui, i = 1, 2, ..., n (7)

with

x1i = ai + e1i, x2i = ai + e2i, x3i = ai + e3i,

and

ui, ai, e1i, e2i, e3i ∼ iid N(0, 1).

We use θ1 = 1, n = 100 and, we consider 1000 replications. Results for

other sample sizes are very similar qualitatively, and are available from the

authors. All tests are based on a nominal size of 0.05.
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Using the framework discussed in the previous sections, the joint null

H23
0 : θ2 = 0, θ3 = 0 corresponds to a simple regression model, i.e. yi =

θ1x1i + ui. The restricted MLE, θ̂ = (θ̂1, 0, 0), is the ordinary least-squares

(OLS) estimator of θ1 that regresses y on x1. In order to evaluate the per-

formance of the tests under alternative consistent estimators, we have con-

sidered the 0.1 quantile regression estimator of θ1, θ̃ = (θ̃1, 0, 0). The error

term u is generated independently of x1, x2 and x3, and identically across all

observations, which implies a simple location-shift model. Consequently, the

quantile regression estimator for any quantile is consistent for θ1. We use the

0.1 quantile in order to produce a consistent though inefficient non-MLE.

Note that any quantile could have been selected, and that this particular

estimator will be asymptotically efficient if u follows an asymmetric Laplace

distribution with location parameter at the 0.1 quantile of its distribution.

In fact the reverse analysis can be implemented, that is, when the data is

generated using the asymmetric Laplace distribution and then a consistent

but inefficient estimator would be the OLS estimator. The score functions

and the tests implemented below would then be based on the influence func-

tion of the quantile regression estimator at 0.1-quantile. The availability of

a multitude of
√
n-consistent estimators can be viewed as a drawback of the

C(α) test. While all will lead to asymptotic equivalent tests, their finite

sample behavior could be quite different.

In this setup, the correlation between any pair of explanatory variables is

0.5, therefore, a test for H2
0 : θ2 = 0 based on either θ̂ or θ̃ will be affected by

misspecification in θ3 (i.e. θ3 6= 0). This is a simple omitted variable setup,

where leaving x3 out of the model affects both the estimate of θ1 and the test

for θ2. A simple way to see this is to consider a Wald test statistic for H2
0 ,

which is based on the OLS estimate of θ2. This non-robustness can also be
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seen from the non-singularity of the matrix J23·1.

The results that evaluate the performance of alternative tests, for differ-

ent estimators and values of θ2 and θ3, are presented in Table 1. For part (a)

we generated data using the joint null θ2 = θ3 = 0; for part (b) we considered

θ2 > 0, θ3 = 0, and finally, part (c) is based on data with θ2 = 0, θ3 > 0.

The first four columns present tests for the single hypothesis H2
0 without any

correction for whether H3
0 is valid or not. RS2·1(θ̂) is constructed using the

restricted MLE; RS2·1(θ̃) and R̃S2·1(θ̃) use a non-MLE; and C2·1(θ̃) is the

C(α) test using a non-MLE. Note that C2·1(θ̂) = RS2·1(θ̂) by definition of

MLE. The last four columns present tests for the single hypothesis H2
0 but

correcting for local departures from H3
0 . RS∗2·1(θ̂) is the BY test using the re-

stricted MLE; RS∗2·1(θ̃) and R̃S
∗
2·1(θ̃) are the BY tests using a non-MLE; and

C∗2·1(θ̃) is our proposed fully robust test using a non-MLE. All test statistics

are based on the score functions derived from the Gaussian log-likelihood.

Therefore each score is of the form dj(θ) = 1
n

∑n
i=1 x

′
jiui(θ), j = 1, 2, 3, where

ui(θ) = yi − θ1x1i − θ2x2i − θ3x3i. Each element in Jjh, j, h = 1, 2, 3 is es-

timated by the outer product of gradients 1
n

∑n
i=1 dji(zi, θ)dhi(zi, θ)

′ where

dji(zi, θ) = x′jiui(θ), j = 1, 2, 3, zi = (yi, x1i, x2i, x3i). Finally, B−1
1 H1B

−1
1 is

given by the variance of the 0.1-quantile regression estimator.

When θ2 = θ3 = 0 holds (part (a)), as expected, RS2·1(θ̂), R̃S2·1(θ̃)

and C2·1(θ̃) have correct empirical size, while RS2·1(θ̃) has an empirical size

that is more than twice of the nominal size and much larger than that of

its counterparts implemented with the correct variance. Similar results are

found for the BY statistics. That is, the size of RS∗2·1(θ̃) is also quite high

while that of RS∗2·1(θ̂), R̃S
∗
2·1(θ̃) and C∗2·1(θ̃) is approximately correct.

Under correctly specified alternatives (part (b)), the highest power is

achieved by the optimal RS test, RS2·1(θ̂), followed very closely by Neyman’s
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C2·1(θ̃). The tests robust to misspecification of θ3, RS∗2·1(θ̂) and C∗2·1(θ̃),

show less power than those of RS2·1(θ̂) and C2·1(θ̃), consistent with the fact

that λ2·1 ≥ λ∗2·1. This is the ‘robustification cost’ for unnecesarily using a

modified test. Nevertheless, it is interesting to highlight that, in this case,

the power loss is minimal. A comparison of RS∗2·1(θ̂) and C∗2·1(θ̃) shows that,

as predicted by the theory, they have very similar power, suggesting that the

power of the BY procedure can be successfully restored through a properly

modified test based on a consistent, non-MLE. Moreover, R̃S
∗
2·1(θ̃) has less

power than C∗2·1(θ̃).

Part (c) studies the effects of misspecification through θ3. As expected,

all the non-robust versions, RS2·1(θ̂), RS2·1(θ̃), R̃S2·1(θ̃) and C2·1(θ̃), have

unwanted rejection for H2
0 , as θ3 increases, which is compatible with λ2/3·1 >

0. Nevertheless, the robustified versions (RS∗2·1(θ̂), R̃S
∗
2·1(θ̂) and C∗2·1(θ̃)) have

rejection probabilities close to 0.05 or less. The empirical size of RS∗2·1(θ̂)

and C∗2·1(θ̃) reduce gradually as θ3 increases, possibly due to the fact that

adjustments are designed only for local misspecifications, i.e., for θ3 values

close to 0. We offer some intuitive explanation. In our set up θ3 = δ3/
√
n.

For n = 100, choosing θ3 between 0.1 and 1.0, δ3 is allowed to vary from

1.0 to 10.0. Let us consider the case of our suggested test C∗2·1(θ) which

takes account of the presence of θ3 by indirectly estimating it through d3(θ),

evaluated at θ̃. Since in our Monte Carlo design the explanatory variables

have positive correlation (0.5), the components of the information matrix

J(θ) will be positive. Thus the effective score d∗2·1(θ) can be expected to be

lower than d2·1(θ) which again can be expected to be lower than the raw score

d2(θ). Thus for non-local misspecification there could be some overcorrection

for our Monte Carlo set up.
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5 Final remarks

This paper proposes a new test that is consistent, achieves correct asymp-

totic size and is locally most powerful under local misspecification, and when

any
√
n-estimator of the nuisance parameters is used. The new test can be

seen as an extension of the Bera and Yoon (1993) procedure in order to deal

with non-ML estimation, while preserving its optimality properties. Simi-

larly, the procedure can be viewed as extending the standard C(α) test (that

by construction admits non-ML estimators) to handle locally misspecified

alternatives. In many practical situations non-ML strategies are favored to

handle initial, restricted models, such as the case of dynamic panels and

spatial panel models, where GMM estimators are usually preferred.

Appendix

Proof of Theorem 1

The asymptotic distribution follows from an application of Newey (1985,

theorem 2.3). Note that Assumptions 1-3 correspond to assumptions 1-9 in

Newey (1985). Define the vector of functions w(z, θ) = [h1(z, θ)′ d2(z, θ)′]′

and w(θ) = [h1(θ)′ d2(θ)′]′. Also define the matrices Γ = [ιp1 0p2 ] and

Π = [0p1 ιp2 ], where ι· is a vector of 1s and 0· a vector of 0s. The estimating

equations for θ1 can then be rewritten as

ΓE [w(z, θ1, θ20, θ30)] = 0 only if θ1 = θ10.

The specification test can be based on the testing equations

ΠE [w(z, θ10, θ2, θ30)] = 0 only if θ2 = θ20.

We follow the notation in Bera, Montes-Rojas and Sosa-Escudero (2010).

LetK = E [∂w(z, θ)/∂θ1]θ=θ0 = [B′1 −J ′21]′, where the equality E [∂d2(z, θ)/∂θ1]θ=θ0 =
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−J21 follows from the information matrix equality,

V = E [w(z, θ0) w(z, θ0)′] =

[
H1 V12

V21 J22

]
,

where V12 = E[h1(z, θ0)d2(z, θ0)′] = V ′21, D = E [w(z, θ0)d2(z, θ0)′] = [V ′12 J
′
22]′,

and P = I −K(ΓK)−1Γ.

Then under H2
A,
√
nΠw(θ̃)

d−→ N (ΠPDδ2,ΠPV P
′Π′), as n → ∞,

hence

n w(θ̃)′Π′(ΠPV P ′Π′)−1Πw(θ̃)
d−→ χ2

p2
(λ̃2·1),

as n→∞ with λ̃2·1 = (ΠPDδ2)′(ΠPV P ′Π′)−1(ΠPDδ2).

After some matrix algebra we obtain

ΠP =
[
J21 B

−1
1 ιp2

]
,

ΠPV =
[
J21B

−1
1 H1 + V21 J21B

−1
1 V12 + J22

]
,

ΠPV P ′Π = J2 + J21B
−1
1 V12 + V21B

−1
1 J12 + J21B

−1
1 H1B

−1
1 J12.

Thus, ΠPV P ′Π′ = V2·1. Moreover, ΠPD = J22+J21B
−1
1 V12. Then, λ̃2·1 =

δ′2(J22 +J21B
−1
1 V12)′V −1

2·1 (J22 +J21B
−1
1 V12)δ2. Finally note that by an applica-

tion fo the the generalized information matrix equality (Newey and McFad-

den, 1994, p. 2163) V12 = E[h1(z, θ0)d2(z, θ0)′] = −E[∂h1(z, θ)/∂θ′2]θ=θ0 =

−E[h1(z, θ0)h1(z, θ0)′]E[∂h1(z, θ)/θ1]−1
θ=θ0

E[d1(z, θ0)d2(z, θ0)′] = −H1B
−1
1 J12 =

V ′21. Thus, λ̃2·1 = δ′2V2·1δ2. Finally, note that R̃S2·1(θ̃) = n w(θ̃)′Π′(ΠPV P ′Π′)−1Πw(θ̃).QED

Proof of Theorem 2

(i) The proofs follows from a modification of the proof of Theorem 1 where

d2 is replaced by d23 = [d′2 d
′
3]′. Consider a new partition of a three parameter

space (θ1, θ2, θ3) into (θ1, (θ2, θ3)). This is only notation to emphasize that
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the “block” (θ2, θ3) is taken together. Thus 23 denotes this new redefined

parameter θ23 = (θ′2, θ
′
3)′. Define the matrix

J =

[
J11 J1,23

J23,1 J23

]
and the vector of functions w(z, θ) = [h1(z, θ)′ d23(z, θ)′]′ and w(θ) = [h1(θ)′ d23(θ)′]′.

Also define the matrices Γ = [ιp1 0p2 0p3 ] and Π = [0p1 ιp2 0p3 ]. Moreover,

define V1,23 = E[h1(z, θ0) d23(z, θ0)′] = V ′23,1.

Following the notation in Bera, Montes-Rojas and Sosa-Escudero (2010),

let K = E [∂w(z, θ)/∂θ1]θ=θ0 = [B1 − J23,1],

V = E [w(z, θ0)w(z, θ0)′] =

[
H1 V1,23

V23,1 J23,23

]
,

D = E [w(z, θ0) d23(z, θ0)′] = [V23,1 J23,23], and P = I −K(ΓK)−1Γ.

Then under H2
0 and H3

A,
√
nΠw(θ̃)

d−→ N (ΠPD[0p2δ3],ΠPV P ′Π′), as

n→∞, hence

n w(θ̃)′Π′(ΠPV P ′Π′)−1Πw(θ̃)
d−→ χ2

p2
(λ̃2/3·1),

as n→∞ with λ̃2/3·1 = (ΠPDδ3)′(ΠPV P ′Π′)−1(ΠPDδ3).

After some algebra we obtain ΠPD = J23 + J21B
−1
1 V13 and ΠPV P ′Π′ =

V2·1. Thus, λ̃2/3·1 = δ′3
(
J23 + J21B

−1
1 V13

)′
V −1

2·1
(
J23 + J21B

−1
1 V13

)
δ3. More-

over, note that by an application fo the the generalized information ma-

trix equality (Newey and McFadden, 1994, p. 2163) V13 = E[h1d
′
3] =

−E[∂h1/∂θ
′
3]θ=θ0 = −H1B

−1
1 J13 = V ′31. Finally, note that R̃S2·1(θ̃) = w(θ̃)′Π′(ΠPV P ′Π′)−1Πw(θ̃).

(ii) The result follows from part (i) and Bera, Montes-Rojas and Sosa-

Escudero (2010, Theorem 3). We need to modify the score function for

θ2, d2, to account for the local misspecification in θ3. This is done by
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considering the adjusted score for the score d2 in the function: w(z, θ) =

[h1(z, θ)′ d̃∗2·1(z, θ)′ d3(z, θ)′]′ where d̃∗2·1(z, θ) = d2(z, θ) − B23·1B
−1
3·1d3(z, θ),

and w(θ) = [h1(θ)′ d̃∗2·1(θ)′ d3(θ)′]′ where d̃∗2·1(θ) = d2(θ) − B23·1B
−1
3·1d3(θ).

Define Γ and Π as in part (i) and obtain K, V , D and P with the same proce-

dure for the newly defined w(z, θ). Then under H2
0 and H3

A,
√
nΠw(θ̃)

d−→
N (0p2 ,ΠPV P

′Π′), that is, it recovers the zero mean of the testing func-

tion. Finally, after some algebra ΠPV P ′Π′ = V2(3)·1, where V2(3)·1 accounts

for the variance of d̃∗2·1(θ̃), and is given by V2(3)·1 = B2·1 − B23·1B
−1
3·1B32·1,

and the chi-squared distribution follows. Under H2
A and H3

A,
√
nΠw(θ̃)

d−→
N (ΠPDδ2,ΠPV P

′Π′), as n→∞, hence, n w(θ̃)′Π′(ΠPV P ′Π′)−1Πw(θ̃)
d−→

χ2
p2

(λ̃∗2·1), with

λ̃∗2·1 = (ΠPDδ2)′(ΠPV P ′Π′)−1(ΠPDδ2) = δ′2V2(3)·1δ2. Finally, note that

R̃S
∗
2·1(θ̃) = n w(θ̃)′Π′(ΠPV P ′Π′)−1Πw(θ̃).QED

Proof of Theorem 3

Define d∗2·1(z, θ) = d2·1(z, θ)−J23·1J
−1
3·1d3·1(z, θ), w(z, θ) = [h1(z, θ)′ d∗2·1(z, θ)′ d3(z, θ)′]′,

d∗2·1(θ) = d2·1(θ) − J23·1J
−1
3·1d3·1(θ), w(θ) = [h1(θ)′ d∗2·1(θ)′ d3(θ)′]′. Define Γ

and Π as in Theorem 2, part (i), and obtain K, V , D and P with the same

procedure for the newly defined w(θ).

Then under H2
0 and H3

A,
√
nΠw(θ̃)

d−→ N (0p2 ,ΠPV P
′Π′), as n→∞,

that is, it recovers the asymptotic zero mean of the testing function. Moreover

under H2
A and H3

A,
√
nΠw(θ̃)

d−→ N (ΠPDδ2,ΠPV P
′Π′), as n→∞, hence,

n w(θ̃)′Π′(ΠPV P ′Π′)−1Πw(θ̃)
d−→ χ2

p2
(λ∗2·1), as n→∞ with

λ∗2·1 = (ΠPDδ2)′(ΠPV P ′Π′)−1(ΠPDδ2) = δ′2J2(3)·1δ2, where J2(3)·1 accounts

for the variance of d∗2·1(θ̃), and is given by J2(3)·1 = J2·1−J23·1J
−1
3·1J32·1. Finally,

note that C∗2·1(θ̃) = n w(θ̃)′Π′(ΠPV P ′Π′)−1Πw(θ̃).QED
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Table 1: Monte Carlo simulations

θ2 θ3 RS2·1(θ̂) RS2·1(θ̃) R̃S2·1(θ̃) C2·1(θ̃) RS∗2·1(θ̂) RS∗2·1(θ̃) R̃S
∗
2·1(θ̃) C∗2·1(θ̃)

(a) Size
0.00 0.0 0.051 0.120 0.059 0.043 0.043 0.083 0.046 0.038

(b) Power in the θ2-direction
0.05 0.0 0.112 0.167 0.103 0.105 0.108 0.150 0.085 0.097
0.10 0.0 0.221 0.280 0.183 0.204 0.196 0.232 0.146 0.180
0.15 0.0 0.458 0.462 0.362 0.411 0.397 0.402 0.321 0.370
0.20 0.0 0.651 0.623 0.527 0.612 0.562 0.563 0.470 0.521
0.25 0.0 0.824 0.774 0.699 0.801 0.750 0.716 0.628 0.714
0.30 0.0 0.925 0.856 0.799 0.903 0.866 0.827 0.760 0.827
0.40 0.0 0.997 0.972 0.956 0.991 0.984 0.971 0.947 0.972
0.50 0.0 1.000 0.997 0.989 0.999 0.996 0.991 0.982 0.992
0.60 0.0 1.000 1.000 0.998 1.000 0.998 0.998 0.995 0.998
0.70 0.0 1.000 1.000 1.000 1.000 1.000 1.000 0.997 0.999

(c) Robustness to θ3-misspecification
0.00 0.1 0.082 0.153 0.094 0.075 0.051 0.099 0.067 0.053
0.00 0.2 0.132 0.212 0.123 0.121 0.041 0.088 0.047 0.033
0.00 0.3 0.209 0.275 0.181 0.187 0.037 0.069 0.060 0.033
0.00 0.4 0.323 0.355 0.258 0.296 0.017 0.044 0.048 0.011
0.00 0.5 0.399 0.408 0.304 0.354 0.012 0.050 0.049 0.012
0.00 0.6 0.483 0.483 0.396 0.442 0.009 0.042 0.047 0.008
0.00 0.7 0.543 0.563 0.461 0.514 0.008 0.042 0.062 0.005
0.00 0.8 0.632 0.613 0.535 0.588 0.009 0.039 0.041 0.007
0.00 0.9 0.690 0.635 0.553 0.634 0.015 0.058 0.053 0.013
0.00 1.0 0.715 0.670 0.591 0.665 0.009 0.037 0.043 0.007

Notes: Tests for H2
0 : θ2 = 0. Robust tests consider potential local departures

from H3
0 : θ3 = 0. Empirical rejection rates based on a nominal size of 0.05.

Sample size = 100, number of replications = 1000.
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