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Abstract

This note highlights the potential pitfalls of using an equicorre-

lation model to estimate standard errors when the true model has

arbitrary intra-cluster correlation. It derives a generalized equicorre-

lation Moulton factor that quantifies the potential biases in standard

errors for OLS estimators. As with the famous Moulton factor, the

key role is not played by the correlation of the error terms but rather

by the intra-correlation of the covariates themselves.
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1 Introduction

Statistical inference when data are grouped into clusters is an important issue

in empirical work, and failure to control for within-cluster correlation can lead

to misleadingly small standard errors (see the discussion in Cameron and

Miller, 2015). This is especially important when using aggregate variables

on micro units in which OLS standard errors are seriously underestimated.

The seminal work of Moulton (1986, 1987, 1990) allows for a quantification

of this potential pitfall, a fact that has been emphasized in the Angrist and

Pischke (2009, ch.8) textbook among many others.

The most obvious type of intra-group correlation arises when all observa-

tions within a group share an unobserved common factor, hence all observa-

tions in a group are ‘equicorrelated’ in the sense that all pairwise correlations

are the same. Beyond equicorrelation little can be said if observations within

a group do not follow a relevant ordering (i.e. time, spatial).

The goal of this note is to evaluate potential misspecification in estimat-

ing the OLS standard errors using an equicorrelation model when the true

underlying data generating process has arbitrary intra-cluster correlation, i.e.

not necessarily constant among intra-cluster observations, and where there

is no intra-cluster obvious ordering (i.e. students within a class). We then

define the equicorrelation Moulton factor as the difference between the true

variance-covariance matrix of the OLS estimator and that of an assumed

equicorrelation model.

As with the famous Moulton factor, the key role is given by the joint

consideration of the intra-cluster correlation of the error term and the co-

variates. More formally, given an intra-cluster covariance structure of the

error term and one of the covariates, the comparison of the equicorrelation

and an arbitrary intra-cluster correlation model will depend on the sample

intra-cluster covariance between the covariance factors of the error term and

the covariates.
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In most empirical settings, both covariance factors are positively corre-

lated (i.e. a high correlation between two unobservables usually corresponds

to a high correlation between the covariates), and thus this determines that

the equicorrelation model would underestimate the true variance, thus acting

in the same way as the OLS Moulton factor.

The OLS Moulton factor shows that in the special case of covariates with

no intra-cluster correlation, the standard OLS variance is correct. Our anal-

ysis also shows that in the special case of constant intra-cluster covariates

(eg. aggregate variables), the equicorrelation model is also correct. In prac-

tical terms, if the within cluster correlation of the covariates is small, OLS

standard errors are approximately correct, while if the correlation is large,

random-effects equicorrelation standard errors are appropriate.

The results determine that in an OLS model with arbitrary intra-cluster

correlation Liang and Zeger (1986) and Arellano (1987) extension of White

(1980) variance estimate for heteroskedasticity to the cluster set-up, defined

as White’s cluster-robust standard errors, should be used rather than an

equicorrelation model. In fact, as noted by Angrist and Pischke (2009,

ch.8) “The clustered variance estimator [...] is consistent as the number

of groups gets large under any within-group correlation structure.” (p.313)

Wooldridge (2010) recommends to implement the random-effects estimator,

which is likely to be more efficient than pooled OLS, even when the intra-

cluster error structure model does not follow equicorrelation and is unknown,

but “to make the variance estimator of the random effects robust to arbitrary

heteroskedasticity and within-group correlation” (p.867).

However, while cluster-robust standard errors is a safe approach, it should

be noted that its asymptotic validity crucially depends on a large number of

clusters (i.e. N → ∞). If the equicorrelation model were true, asymptotic

valid inference and efficiency can be achieved for fixed N and T → ∞ (eg.

consider the random-effects GLS estimator, see Hsiao, 2003, p.38).
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2 One-way error components model

Consider the one-way error components regression model (see Baltagi, 2013,

ch.2)

yit = xitβ + eit, (1)

eit = µi + νit,

i = 1, 2, ..., N, t = 1, 2, ..., T.

Assume that the t-ordering cannot be used to evaluate intra-cluster cor-

relation because the ordering is not known by the econometrician, that is,

we do not know the structure of network relationships among observations

within a cluster.

In matrix notation the model above can be written as y = xβ+e, where y

and e are NT × 1 matrices, x(= [x′1, ..., x
′
N ]′ = [x′11, ..., x

′
1T , ..., x

′
N1, ..., x

′
NT ]′,

xi T × K matrices, xit 1 × K vectors) and β are matrices of dimensions

NT × K and K × 1, respectively. Moreover consider the NT -dimensional

vector ν(= [ν ′1, ν
′
2, ..., ν

′
N ]′, νi T × 1 vectors) and the N -dimensional vector

µ such that e = µ ⊗ ιT + ν, where ιT is a T × 1 vector of 1s and ⊗ is

the Kronecker product. Consider the OLS estimator β̂ = (x′x)−1x′y, and

consider the goal of estimating V ar[β̂|x].

A natural concern in such models is the possibility of intra-group corre-

lation in the error term eit. Naturally, the presence of µi induces correlation

for all observations corresponding to a certain ‘group’ (class, school, country,

industry) i. As a matter of fact, due to this factor all correlations among

error terms within a group are the same, this correlation induced by the pres-

ence of the random effect µi is labelled as equicorrelation. A second source

of intra-group correlation is the possibility that the νit terms are correlated

among themselves within the group.

Consider the following assumptions.
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Assumptions

(i) E[νit|xi] = E[µi|xi] = 0,∀i, t;
(ii) V ar[µi|xi] = σ2

µ, V ar[νit|xi] = σ2
ν , ∀i, t;

(iii) Cov[µi, νit|xi] = 0, ∀i, t.
(iv) Cov[νit, νij|xi] = ρi(t, j)σ

2
ν , ρi(t, j) = ρi(j, t),∀i, t 6= j.

For simplicity we assume homoskedastic models, that the intra-cluster

correlation is the same across groups, and a balanced panel. We allow for

arbitrary within group correlation structure. We do not impose a structure to

the function ρ(., .), other than symmetry and other requirements for positive-

definiteness of the variance-covariance matrix. In the case of time-series or

spatial correlation we have additional information about the intra-cluster

correlation structure, which in turn, can be used to identify the relevant

parameters (eg. AR(1) serial correlation in which ρ(t, j) = ρ|t−j|, 0 ≤ |ρ| < 1

or spatial correlation in which ρ(t, j) = f(dist(t, j))).

Define the average ν-correlation as

ρ̄ν :=
1

σ2
ν

2

T (T − 1)

T−1∑
t=1

T∑
j=t+1

E[νitνij] =
2

T (T − 1)

T−1∑
t=1

T∑
j=t+1

ρi(t, j), (2)

and let

λ2
ν := σ2

ν(1− ρ̄ν), (3)

and

λ2
µ := σ2

µ + σ2
ν ρ̄ν . (4)

Finally define the intra-group correlation as

IC :=
2

T (T − 1)

T−1∑
t=1

T∑
j=t+1

E[eiteij]√
V ar(eit)

√
V ar(eij)

=
σ2
µ + σ2

ν ρ̄ν

σ2
µ + σ2

ν

=
λ2
µ

λ2
µ + λ2

ν

.

(5)
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The key point is that without a known error structure nothing can be

learned beyond equicorrelation. Note that an equicorrelation model with

σ2
µ > 0 and ρ̄ν = 0 may have the same IC as one with σ2

µ = 0 and ρ̄ν 6=
0. In fact, (σ2

ν , σ
2
µ, ρ̄ν) cannot be identified as separate objects: only linear

combinations of λ2
ν and λ2

µ can be estimated.1

3 Equicorrelation Moulton factor

Given the assumptions of the model, then consider

Ω := E[ee′|x] = E[diag(νiν
′
i) + diag(µ2

i (ιT ι
′
T ))|x] (6)

= E[(νiν
′
i)⊗ IN |x] + E[µ2

i (ιT ι
′
T )⊗ IN |x].

Then

V ar[β̂|x] = (x′x)−1(x′Ωx)(x′x)−1.

Note that Ω acts as a selector and weighting matrix, which selects which

row and columns of x should be considered and weights them accordingly.

• In the i.i.d. case, Ω0 := (λ2
ν + λ2

µ)INT , and thus only the xs that corre-

spond to the same values of i and t are considered.

• The random-effects equicorrelation matrix would consider a different

weight for those observations (i, t) but would also weight all observa-

tions within the same i, thus producing Ωe := λ2
νINT + λ2

µ(ιT ι
′
T )⊗ IN .

1Consider a list of within cluster transformations of the residuals. Define ēi =
1
T

∑T
t=1 eit as the group-average transformation and ẽit = eit− ēi as the within-group devi-

ations. Moreover, let e2it = 1
T

∑T
t=1 e

2
it, ẽ

2
it = 1

T

∑T
t=1 ẽ

2
it, ěi = 2

T (T−1)

∑T−1
t=1

∑T
j=t+1 eiteij

and ẽi = 2
T (T−1)

∑T−1
t=1

∑T
j=t+1 ẽitẽij . Simple calculations determine that φ0 = E[e2it] =

E[e2it] = σ2
ν +σ2

µ, φ1 = E[ē2i ] = 1
T [σ2

ν(1− ρ̄ν)]+(σ2
µ+σ2

ν ρ̄ν), φ2 = E[¯̃e2it] = T−1
T [σ2

ν(1− ρ̄ν)],

φ3 = E[ěi] = (σ2
µ + σ2

ν ρ̄ν) and φ4 = E[ẽi] = − 1
T (σ2

ν(1 − ρ̄ν)). Note that by analysis of

variance decompositions φ0 = φ1 + φ2 and φ3 − φ1 = − 1
(T−1)φ2 = φ4. Thus we can only

obtain linear functions of λ2ν and λ2µ using ANOVA type analysis.
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• In an arbitrary intra-cluster correlation (ιT ι
′
T ) should be changed by

an arbitrary T × T symmetric matrix, say PT , with typical element

{ρth}T,Tt=1,h=1 with ρtt = 0, t = 1, 2, ..., T and ρth = ρht, t, h = 1, 2, ..., T ,

such that Ωw := σ2
νINT + σ2

νPT ⊗ IN + σ2
µ(ιT ι

′
T )⊗ IN .

Then for the equicorrelation model

x′Ωex =
N∑
i=1

(
λ2
νx
′
ixi + λ2

µx
′
i(ιT ι

′
T )xi

)
=

N∑
i=1

(
λ2
ν

T∑
t=1

x′itxit + λ2
µ

T∑
t=1

T∑
h=1

x′itxih

)

=
N∑
i=1

(
(λ2

ν + λ2
µ)

T∑
t=1

x′itxit + λ2
µ

T∑
t=1

T∑
h=1,h6=t

x′itxih

)
,

and for the arbitrary intra-cluster model

x′Ωwx =
N∑
i=1

(
σ2
νx
′
ixi + σ2

νx
′
iPTxi + σ2

µx
′
i(ιT ι

′
T )xi

)
=

N∑
i=1

(
σ2
ν

T∑
t=1

x′itxit + σ2
ν

T∑
t=1

T∑
h=1,h 6=t

ρthx
′
itxih + σ2

µ

T∑
t=1

T∑
h=1

x′itxih

)

=
N∑
i=1

(
(σ2

ν + σ2
µ)

T∑
t=1

x′itxit +
T∑
t=1

T∑
h=1,h6=t

(σ2
µ + σ2

νρth)x
′
itxih

)

=
N∑
i=1

(
(λ2

ν + λ2
µ)

T∑
t=1

x′itxit +
T∑
t=1

T∑
h=1,h6=t

(σ2
µ + σ2

νρth)x
′
itxih

)
.

The main difference between the two models is that not all intra-cluster pairs

in xi are weighted the same. That is, in an equicorrelation model x′itxih will

receive the same weight for all t 6= h, while in an arbitrary intra-cluster model

the weights will depend on ρth.

The equicorrelation Moulton factor is defined as the K ×K matrix

Mw−e := (x′x)−1(x′Ωwx− x′Ωex)(x′x)−1.

Since x′itxih is a K ×K matrix, an element-by-element analysis is necessary.

Its diagonal elements correspond to the difference in the variance of each
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β̂k, k = 1, 2..., K, while the off-diagonal terms to the covariances of the β’s

parameter estimates. It is possible that the sign of different diagonal elements

in Mw−e are different, and then, the equicorrelation may underestimate the

variance for some coefficient estimators and overestimate for others.

Note that the sample covariance of (σ2
µ + σ2

νρth) and x′itxih across t, h =

1, 2, ..., T, t 6= h, provides additional information that is not captured by the

equicorrelation model. The following proposition compares the equicorre-

lation and the arbitrary intra-cluster correlation variances in terms of the

covariance between these two elements.

Proposition 1. (i) If the sum (or average) over i of the sample covariances

of (σ2
µ + σ2

νρth) and xk
′
itx

j
ih, where k, j = 1, 2, ..., K correspond to the k and j

columns of xit, is positive, negative or zero, then xk
′
(Ωw −Ωe)x

j is positive,

negative or zero, respectively.

(ii) If the sum (or average) over i of the sample covariances is positive,

negative or zero, for all k, j = 1, 2, ..., K, then Mw−e is positive definite,

negative definite or zero, respectively.

Proof. Note that by definition, the sample covariance is

=
∑T
t=1

∑T
h=1,h6=t(σ

2
µ+σ2

νρth)xk
′
it x

j
ih

1
2
T (T−1)

−
(
∑T
t=1

∑T
h=1,h 6=t(σ

2
µ+σ2

νρth))
(∑T

t=1

∑T
h=1,h6=t x

k′
it x

j
ih

)
1
4
T 2(T−1)2

=
∑T
t=1

∑T
h=1,h6=t(σ

2
µ+σ2

νρth)xk
′
it x

j
ih

1
2
T (T−1)

−
(σ2
µ+σ2

ν ρ̄ν)
(∑T

t=1

∑T
h=1,h6=t x

k′
it x

j
ih

)
1
2
T (T−1)

=
∑T
t=1

∑T
h=1,h6=t(σ

2
µ+σ2

νρth)xk
′
it x

j
ih

1
2
T (T−1)

−
λ2µ

(∑T
t=1

∑T
h=1,h6=t x

k′
it x

j
ih

)
1
2
T (T−1)

= 2
T (T−1)

(
xk

′
i Ωwx

j
i − xk

′
i Ωex

j
i

)
.

Note that xk
′
Ωxj =

∑N
i=1(xk

′
i Ωxji ) and then the sign of the sum of the

sample covariances determines the sign in (i). For (ii) note that if the sign is

the same for all k, j, then (x′Ωwx−x′Ωex) is a matrix whose elements have

the same corresponding sign. Then given that (x′x)−1 is positive definite the

result follows.
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A special case is when the covariates have no intra-cluster variation, as

in aggregate control variables or fixed characteristics of the individual (eg.

gender, nationality, etc.). For two covariates k, j that are constant within

cluster, the sample covariance of (σ2
µ + σ2

νρth) and xk
′
itx

j
ih is zero, and there-

fore, the equicorrelation model is correct in the presence of any intra-cluster

correlation structure.

4 Example with unknown intra-cluster cor-

relation

In order to quantify the potential consequences of estimating an equicor-

relation model when the underlying data generating process has arbitrary

intra-cluster correlation, we consider a simple regression model of the form

yit = xitβ + eit, (7)

eit = νit = εit + ρεit−1, 0 < ρ < 1, εi0 = 0,

i = 1, 2, ..., N, t = 1, 2, ..., T.

Each observation (i, t) corresponds to the observation of individual t in group

i. x is a scalar (assume for simplicity with mean 0), ε ∼ i.i.d.(0, σ2
ε ). This is of

course a simple MA(1) model, but we assume we do not know the t-ordering.

Consider the objects defined in eqs. (2)-(4) λ2
ν = σ2

ν(1− ρ̄ν), λ2
µ = σ2

ν ρ̄ν =

2/Tρσ2
ε , ρ̄ν = 2/Tρ

1+ρ2
(note the factor 1/T ), and λ2

µ + λ2
ν = σ2

ν = (1 + ρ2)σ2
ε .

Then define IC =
λ2µ

λ2µ+λ2ν
= 2/Tρ

(1+ρ2)
as the intra-cluster correlation (as in eq.

(5)).

Consider now three different estimators of the variance of the OLS esti-

mator β̂ =
∑N
i=1

∑T
t=1 yitxit∑N

i=1

∑T
t=1 x

2
it

.
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V0 := V0(β̂|x) is the standard OLS variance estimate given by

V0 =
(1 + ρ2)σ2

ε

∑N
i=1

∑T
t=1 x

2
it(∑N

i=1

∑T
t=1 x

2
it

)2 =
(λ2

µ + λ2
ν)
∑N

i=1

∑T
t=1 x

2
it(∑N

i=1

∑T
t=1 x

2
it

)2 .

V1 := V1(β̂|x) is the correct variance given by

V1 =
(1 + ρ2)σ2

ε

∑N
i=1

∑T
t=1 x

2
it + 2ρσ2

ε

∑N
i=1

∑T
t=2 xitxit−1(∑N

i=1

∑T
t=1 x

2
it

)2

=
(λ2

µ + λ2
ν)
∑N

i=1

∑T
t=1 x

2
it + λ2

µT
∑N

i=1

∑T
t=2 xitxit−1(∑N

i=1

∑T
t=1 x

2
it

)2 .

Consider now the variance assuming equicorrelation, V2 := V2(β̂|x),

V2 =
(λ2

µ + λ2
ν)
∑N

i=1

∑T
t=1 x

2
it + 2λ2

µ

∑N
i=1

∑T−1
t=1

∑T
j=t+1 xitxij(∑N

i=1

∑T
t=1 x

2
it

)2 .

Define ρ
(1)
x = 1

N(T−1)

∑N
i=1

∑T
t=2 xitxit−1 as the average of the intra-cluster

x sample autocovariance of order 1, and ρ
(T )
x = 2

NT (T−1)

∑N
i=1

∑T−1
t=1

∑T
j=t+1 xitxij

is the average of the intra-cluster sample covariance of the xs that uses are

intra-cluster observations.

The Moulton (1986,1987,1990) factor naturally arises as

V1

V0

= 1 + IC(T − 1)ρ(1)
x .

If we assume that both IC > 0 and ρ
(1)
x > 0 then the standard OLS variance

wrongly underestimates the true variance.

A generalization of the Moulton factor allows comparing it with other

different models, such as the equicorrelation model. In this case,
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V1

V2

=
1 + IC(T − 1)ρ

(1)
x

1 + IC(T − 1)ρ
(T )
x

.

As a result, the only difference between the two is in the appropriate

correlation of the xs that needs to be used. The equicorrelation model as-

sumes that all potential interactions among the xs are needed to calculate

the OLS variance, while the correct MA(1) uses only those that are one t

apart. Given that we have a MA(1) structure in the error terms, such that

the unobservable term in t is correlated with t− 1 only, it is also likely that

the x component follows a similar pattern of intra-cluster correlation. Then,

we could assume that ρ
(1)
x > ρ

(T )
x , that is, the correlation between the t and

t − 1 xs is higher than the average correlation among all the xs within the

cluster. In this case the equicorrelation model would be unde-estimating the

true variance. Note that, although less likely, it may also be the case that

ρ
(1)
x < ρ

(T )
x , in which case the equicorrelation model would be overestimating

the true variance. Note that if aggregate covariates are used (i.e. with no

intra-cluster variation), then ρ
(1)
x = ρ

(T )
x = 1, and thus, the equicorrelation

model is appropriate.
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