
              

City, University of London Institutional Repository

Citation: Katopodis, Spyros (2015). Hybrid cloud security certification. (Submitted Masters 

thesis, City University London) 

This is the accepted version of the paper. 

This version of the publication may differ from the final published version. 

Permanent repository link:  https://openaccess.city.ac.uk/id/eprint/15070/

Link to published version: 

Copyright: City Research Online aims to make research outputs of City, 

University of London available to a wider audience. Copyright and Moral Rights 

remain with the author(s) and/or copyright holders. URLs from City Research 

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, 

educational, or not-for-profit purposes without prior permission or charge. 

Provided that the authors, title and full bibliographic details are credited, a 

hyperlink and/or URL is given for the original metadata page and the content is 

not changed in any way. 

City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

City Research Online

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


 

 

   

HYBRID CLOUD SECURITY 

CERTIFICATION 
 

 

 

SPYROS KATOPODIS 

 

 

A Thesis Submitted for the Degree of Master of Philosophy (MPhil) in 

Computer Science  

 

 

 

City University London 

Department of Computer Science 

School of Mathematics, Computer Science & Engineering 

 

 

June 2015 



 

2 
 

Table of Contents 
Acknowledgement .......................................................................................................................... 7	

Declaration ...................................................................................................................................... 8	

Abstract ........................................................................................................................................... 9	

1. Introduction ............................................................................................................................... 10	

1.1 Overview ............................................................................................................................. 10	

1.2 Motivation and definition of the research problem ............................................................. 10	

1.3 Aims and Objectives ........................................................................................................... 14	

1.4 Research Contributions ....................................................................................................... 16	

1.5 Report Outline ..................................................................................................................... 17	

2. Literature Review ...................................................................................................................... 18	

2.1 Research Methods and evaluation ....................................................................................... 18	

2.2 Overview ............................................................................................................................. 18	

2.3 Software and Service Certification ...................................................................................... 19	

2.4 Test based certification ........................................................................................................ 22	

2.5 Cloud services certification ................................................................................................. 26	

2.6 Monitoring based certification ............................................................................................ 27	

2.7 Dynamic certification .......................................................................................................... 28	

2.8 Current Approaches and comparison between traditional and dynamic certificate models 29	

2.9 Trustworthiness and security cloud certification ................................................................. 32	

3. The Hybrid Certification Approach .......................................................................................... 35	

3.1 Research methods and evaluation ....................................................................................... 35	

3.2 Overview ............................................................................................................................. 35	

3.3 Background ......................................................................................................................... 37	

3.4 Description of Hybrid Certification Models (dependent-mode & independent-mode) ...... 38	

3.5 Hybrid certification model schema description ................................................................... 40	

Test-based Certification Model Schema ............................................................................... 41	



 

3 
 

Monitoring-based Certification Model Schema .................................................................... 42	

3.5.1 Model Id element ......................................................................................................... 46	

3.5.2 Signature element ......................................................................................................... 46	

3.5.3 TOC element ................................................................................................................ 47	

3.5.4 Security property element ............................................................................................ 51	

3.5.5 Collector Evidence Aggregation element .................................................................... 71	

3.5.6 Lifecycle element ......................................................................................................... 78	

3.5.7 AssessmentScheme element ........................................................................................ 90	

3.5.8 CrosscheckScheme element ....................................................................................... 102	

3.6 Architecture of the proposed framework for implementation ........................................... 109	

3.7 Flow of Action ................................................................................................................... 116	

3.8 Hybrid, independent mode model (using EC-Assertion) .................................................. 117	

Examples of Hybrid, independent-mode model cases ........................................................ 120	

3.9 Hybrid, dependent mode model (using EC-Assertion) ..................................................... 127	

Examples of Hybrid, dependent mode model cases - Monitoring Triggers Testing .......... 131	

Example of Hybrid, dependent mode model cases - Testing Triggers Monitoring ............ 134	

4. Evaluation ............................................................................................................................... 137	

4.1 Research methods and evaluation ..................................................................................... 137	

4.2 Overview and evaluation assessment ................................................................................ 137	

4.2.1 Hybrid Certification Approach overview .................................................................. 137	

4.2.2 Comparison between the hybrid certification approach and Common Criteria ......... 138	

4.2.3 Comparison between the hybrid certification approach and ISO 27001 ................... 140	

4.2.4 Comparison between the hybrid certification approach and CSA’s OCF ................. 141	

4.2.5 Evaluation Summary .................................................................................................. 141	

4.3 Conclusions and Future work ............................................................................................ 144	

4.4 Publication of my Research ............................................................................................... 146	

References ................................................................................................................................... 147	



 

4 
 

 

Table of Figures 
 

Figure 1 - Test-based Certification Model schema ....................................................................... 41	

Figure 2 - Monitoring-based Certification Model Schema ........................................................... 42	

Figure 3 - Hybrid Certification Model Schema ............................................................................ 44	

Figure 4 - Model Id element ......................................................................................................... 46	

Figure 5 - Signature element ......................................................................................................... 47	

Figure 6 - TOC element ................................................................................................................ 48	

Figure 7 - Provides Interface sub-element .................................................................................... 49	

Figure 8 - Requires Interface sub-element .................................................................................... 50	

Figure 9 - Security Property element ............................................................................................ 52	

Figure 10 - Assertion sub-element ................................................................................................ 53	

Figure 11 - InterfaceDecl sub-element .......................................................................................... 54	

Figure 12 - VariableDeclr element ................................................................................................ 55	

Figure 13 - Guaranteed sub-element ............................................................................................. 56	

Figure 14 - Condition Types ......................................................................................................... 57	

Figure 15 - Event Condition Type ................................................................................................ 58	

Figure 16 - Operation Type ........................................................................................................... 59	

Figure 17 - stateCondition sub-element ........................................................................................ 61	

Figure 18 - relationalCondition sub-element ................................................................................ 63	

Figure 19 - operandType ............................................................................................................... 64	

Figure 20 - operationCall sub-element .......................................................................................... 65	

Figure 21 - eventSeriesExpression sub-element ........................................................................... 66	

Figure 22 - CollectorsEvidenceAggregation element ................................................................... 72	

Figure 23 - TestingCollector sub-element .................................................................................... 73	

Figure 24 - MonitoringConfigurations sub-element ..................................................................... 74	

Figure 25 - MonitoringAggregatedResultsInfo sub-element ........................................................ 75	

Figure 26 - EventSummary sub-element ...................................................................................... 76	

Figure 27 - FunctionalAggregationId sub-element ....................................................................... 76	

Figure 28 - IntermediateResults sub-element ............................................................................... 76	

Figure 29 - LifeCycleModel element ............................................................................................ 78	



 

5 
 

Figure 30 - InitialState sub-element .............................................................................................. 79	

Figure 31 - StateType sub-element ............................................................................................... 80	

Figure 32 - action sub-element ...................................................................................................... 80	

Figure 33 - transition sub-element ................................................................................................ 82	

Figure 34 - Guard Conditions ....................................................................................................... 83	

Figure 35 - Final State ................................................................................................................... 85	

Figure 36 - InterfaceDeclrType ..................................................................................................... 86	

Figure 37 - LifeCycle Model ........................................................................................................ 87	

Figure 38 - Assessment Scheme element ...................................................................................... 90	

Figure 39 - TriggerDecisionCondition sub-element ..................................................................... 91	

Figure 40 - MonitoringTriggeredConditionsType ........................................................................ 92	

Figure 41 - TestingTriggeredConditionsType .............................................................................. 94	

Figure 42 - Evidence Sufficiency Conditions sub-element .......................................................... 96	

Figure 43 - ExpectedSystemOperationModel sub-element .......................................................... 97	

Figure 44 - MonitoringPeiodCondition sub-element .................................................................... 97	

Figure 45 - MonitoringEventsCondition sub-element .................................................................. 98	

Figure 46 - TestingPeriodCondition sub-element ......................................................................... 98	

Figure 47 - TestingEventsCondition sub-element ........................................................................ 99	

Figure 48 - Expiration Conditions sub-element .......................................................................... 101	

Figure 49 - CrosscheckScheme element ..................................................................................... 102	

Figure 50 - CrossCheckDescription sub-element ....................................................................... 103	

Figure 51 - ComparePerformanceValues sub-element ............................................................... 104	

Figure 52 - SufficientMutualObservedPeriodsSatisfaction element ........................................... 105	

Figure 53 - CrossCheckStatus sub-element ................................................................................ 106	

Figure 54 - FurtherExploration element ...................................................................................... 106	

Figure 55 - AssessmentTimeExploration element ...................................................................... 107	

Figure 56 - Architecture for Hybrid Certification ....................................................................... 110	

Figure 57 - Sequence Diagram for Issuing a Hybrid Certificate ................................................ 116	

Figure 58 - Cases covered by Independent-mode Certification Models ..................................... 120	

Figure 59 - Dependent mode hybrid certification models .......................................................... 130	

 
 



 

6 
 

List of Tables 
 

Table 1- Elements of the Hybrid Certification Model Schema and correspondence with previous 

Schemas ........................................................................................................................................ 46	

Table 2 - Hybrid Manager API ................................................................................................... 112	

Table 3 - Generation API ............................................................................................................ 113	

Table 4 - Hybrid Evidences Database ......................................................................................... 114	

Table 5 - Hybrid Certification Models Database ........................................................................ 115	

Table 6 - Hybrid Certificates Database ....................................................................................... 115	

Table 7 - Evaluation Summary Table ......................................................................................... 142 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

7 
 

Acknowledgement 
 

I would like to thank my supervisors and everybody in City University London for giving me the 

opportunity to make this experience unforgettable. 

I am most grateful to my family and my friends for all their support and their belief in me. They 

are the ones who made me have faith and trust in myself and reminded me to always follow my 

dreams. 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

8 
 

Declaration 
 

“I grant powers of discretion to the University Librarian to allow this thesis to be copied in 

whole or in part without further reference to me. This permission covers only single copies made 

for study purposes, subject to normal conditions of acknowledgement.” 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 



 

9 
 

Abstract 

In this report, I introduce a hybrid approach for certifying security properties of cloud services 
that combines monitoring and testing data. This report argues about the need for hybrid 
certification and examines the basic characteristics of hybrid certification models. 

The certification of cloud service security has become a necessity due to the on-going concerns 
about cloud security and the need to increase cloud trustworthiness through rigorous assessments 
of security by trusted third parties. Unlike the certification of security in traditional software 
systems, which is based on static forms of security assessment (e.g., the Common Criteria 
model), the certification of cloud service security requires continuous assessment. This is 
because cloud services are provisioned through dynamic infrastructures operating under security 
controls and other configurations that may change dynamically introducing unforeseen 
vulnerabilities. Cloud service security can also be compromised because of attacks on co-tenant 
services. 

Recent work on cloud service certification applies dynamic forms of security assessment, 
notably dynamic testing or continuous monitoring. These overcome some of the limitations of 
traditional security certification and audits (e.g. they produce machine readable certificates 
incorporating dynamically collected evidence). However, there are cases where existing 
approaches cannot provide an adequate level of assurance. Testing, for instance, may be 
insufficient for transactional services, as it is normally performed through a special testing (as 
opposed to the operational) service interface. Monitoring-based certification may also be 
insufficient if there is conflicting or inconclusive evidence in monitoring data; such data may, 
for example, not cover all traces of system events that should be seen to assess a property. 
 
To overcome such problems, I am working on a hybrid approach for certifying cloud service 
security that can combine both monitoring and testing evidence. For that reason, I designed a 
new cloud certification approach supporting the automated and continuous certification of 
security properties of cloud services based on the combination of dynamically acquired testing 
and monitoring evidence that can deliver the high level of assurance and can overcome the 
limitations of assessments based on each of these types of evidence in isolation. My approach is 
based on the cloud certification framework of the CUMULUS EU FP7 project. 

 

 

 

 

 



 

10 
 

1. Introduction 

1.1 Overview 

In this report, my research along with my work on hybrid security certification of cloud services 

is presented. More specifically, the subject of my research, the aim, the scope and the objectives 

behind my research are described in thorough detail, in addition to the problems that I am aiming 

to solve and the solutions to existing problems that my contribution provides. Finally, a literature 

review about the current approaches on hybrid certification is provided.  

 

1.2 Motivation and definition of the research problem 

Cloud computing is a highly emerging market. However, there are numerable concerns about the 

security of cloud services and the privacy of data that resides in the cloud. For that reason, the 

cloud security needs to be increased through rigorous assessments of security by trusted third 

parties. In cloud computing, the certification of the cloud relies on dynamic forms of assessment, 

as cloud services are provisioned through dynamic infrastructures operating under security 

controls and other configurations that may change dynamically introducing vulnerabilities. 

Additionally, the potential attacks on co-tenant services can compromise the service security. 

The notion of dynamic assessment includes continuous assessment, unlike the certification of 

security in traditional systems, where the certification is based solely on static forms of 

assessment. Recent work on cloud service certification applies dynamic forms of security 

assessment, namely dynamic testing or continuous monitoring, but the existing dynamic 

certification approaches are unable to provide the required level of assurance for cloud service 

security. To overcome the problems mentioned, I am working on a hybrid approach for 

certifying cloud service security that combines both monitoring and testing evidence. My 

objective is to certify the security of cloud services by providing executable certification models 

that can be used to drive the certification process and generate certificates. The evidence that 

will be used in the certification process is collected through testing and monitoring of these 

cloud services. The approach described will cover cases where testing is triggered by monitoring 

and vice-versa, along with cases where testing and monitoring are independent and the outcomes 

from each form of assessment (i.e. testing or monitoring) do not trigger the other form of 

assessment. 



 

11 
 

Cloud computing is a model for enabling convenient, on-demand network access to a shared 

pool of configurable computing resources (e.g., networks, servers, storage, applications, and 

services) that can be rapidly provisioned and released with minimal management effort or 

service provider interaction [9]. Cloud technology refers to an Internet-based technology through 

which information is stored in servers and provided as a service (Software as a Service, or SaaS) 

and on-demand to clients (from the “clouds” indeed) and offers the opportunity for efficient 

utilisation of resources through the provision of compute, data, storage, and network capabilities 

as services on demand [1][2]. Over the past decades, several things have changed. At the 

moment, cloud computing represents a continuing evolution away from the decentralised IT 

systems of the previous decades and is already transforming providers of IT services, changing 

the way other industrial sectors provision their IT needs, as well as the way citizens interact with 

their computers and mobile devices [3]. At the same time, cloud computing is continuously 

evolving and has emerged as a popular paradigm for harnessing a large number of commodity 

machines in the cloud, increasing the capacity and adding new capabilities dynamically without 

investing in new infrastructure, training new personnel or licensing new software [4][5][6].  

Cloud computing is one of the most fast growing segments in the IT industry. But as more and 

more information is placed on the cloud, concerns about security, data privacy and protection 

start to arise. One of the main concerns is related to the physical location of data stored on the 

cloud, as cloud computing data spreads across multiple geographic areas [6][7]. Companies 

outsource the management of security to third parties that host their IT assets. The co-existence 

of assets of multiple tenants who use the same instance of service, in the same location, along 

with the lack of security guarantees in the Service Level Agreements (SLAs) between cloud 

providers and cloud consumers, poses a big threat to the security and the protection of data in the 

cloud. The probability of attacks when this set of assets is available publicly makes security 

questionable [8]. Other vulnerabilities, risks and threats associated with security in cloud 

computing contain loss of governance, data, application and service portability when it comes to 

migration of data and services, failure of mechanisms separating storage, memory, routing and 

even reputation between different tenants, compliance risks, data protection issues, information 

leakage, malicious attacks and management interface compromise, application security and 

security related to third-party resources [6][9][11][12]. 

The worldwide public cloud services reached a total market size of $45.7 billion and the 

International Data Corporation (IDC) expects this market to grow at a compound annual growth 

rate (CAGR) of 23% until 2018 [13][14]. The certification of cloud service security has become 



 

12 
 

a necessity due to on-going concerns about cloud security and the need to increase cloud security 

through rigorous assessments of security by trusted third parties [1][9]. The certification of 

security in traditional software systems is based on static forms of security assessment (e.g., the 

Common Criteria model, ISO 27001, ISAE 3402 /SSAE 16 Type II, and EuroCloud Star Audit 

[15][17]). However, the nature of cloud computing introduces certain characteristics that make 

the current certification approaches ineffective [16][17]. Cloud computing can deliver a vast 

array of IT capabilities in real time using many different types of resources. Cloud computing 

systems are on-demand, automated, elastic, location-independent, and multi-tenant, providing 

dynamic scalability, on-demand self-service and multitenancy and geographical dispersal of 

services [16][18][19][20][21]. Consequently, it is important to take into account the dynamics of 

the cloud and rely on a dynamic certification mechanism.  

The certification of cloud service security requires continuous assessment [26]. This is because 

cloud services are provisioned through dynamic infrastructures operating under security controls 

and other configurations that may change dynamically introducing unforeseen vulnerabilities 

(e.g., a zero-day vulnerability in HyperVM server virtualization was exploited to delete 100,000 

websites using it for hosting purposes [22]). Furthermore, as cloud services share the 

infrastructures they are deployed in with other services, their security can be compromised as a 

consequence of attacks on their co-tenant services (fate sharing effect). An example of this was 

the permanent data loss of all co-tenant services of Megaupload following the suspension of one 

of its services due to copyright infringement [23]. Cloud service security cannot be fully 

guaranteed, according to the existing research, as cloud providers offer different services, such 

as Software as a service (SaaS), Platform as a service (PaaS), and Infrastructure as a service 

(IaaS), and, each service has its own security issues [28]. Additionally, there is an uncertainty 

about the security of customers’ services once they are migrated to the cloud, as it is not easy for 

an organisation to control the processes and data when data is outside the perimeter of the 

company [9][29]. Assuring cloud security is a costly process and cannot be afforded by small 

enterprises. Last but not least, the introduction of vulnerabilities such as breach of integrity, 

confidentiality and customer privacy; reduced software protection, application and data 

availability; and authentication, authorization and accounting vulnerabilities, along with the 

opaque service offerings that do not allow users to monitor the systems, make the problem of 

assuring cloud security even stronger [9][29][30][31]. Under such circumstances, the desired 

security properties need to be assessed continually whilst a service is in operation [25]. 



 

13 
 

It is worth mentioning that the security verification is affected by the interference between the 

features and the behaviour of inter-dependent services at any of the layers in the cloud stack [9]. 

The privacy of the data processed by cloud software services may be affected by dynamic 

changes in them, resulting in non-regulatory compliance and absence of compliance with 

organisational security policies [1][31]. More specifically, changes in cloud services that happen 

during run-time can result in unexpected liabilities and inter-dependency issues. At the moment, 

there is no cloud provider that can guarantee no interaction between cloud features, so the final 

user of cloud services may accuse the cloud service supplier of being responsible for failing to 

withhold cloud service properties. Some of these vulnerabilities and violations, though, may be 

caused by the dependencies between the services and the cloud, that might affect to a great 

extent the performance of the cloud and the availability of the services at all layers in the cloud, 

leading to ownership problems [1][9][31]. For that reason, while traditional certification 

techniques focus on monolithic systems (e.g., the Common Criteria model [15][35][36]) there is 

the need for service-based certification, which has already been addressed, but it focuses only on 

certifying services during design-time, failing to address the certification of inter-dependent 

services, including static and monolithic proofs for services [33][34]. 

In response to this need, recent work on cloud service certification applies dynamic forms of 

security assessment, namely dynamic testing (e.g. [24]) or continuous monitoring (e.g. [27][37]), 

as the certification of different types of cloud services can be effective only if it relies on 

dynamic forms of assessment, overcoming some of the limitations of traditional security 

certification and audits (e.g. they produce machine readable certificates incorporating 

dynamically collected evidence) [38]. Unlike traditional certification approaches, in dynamic 

cloud service certification, the aim is to produce machine-readable certificates containing a 

specification of the security property that they certify and the cloud service asset that this 

property refers to (aka target of certification (TOC)), as well as evidence demonstrating the 

satisfaction of the examined security property [26][38]. 

Existing dynamic certification approaches overcome some of the limitations of the traditional 

security certification and audits. However, under certain circumstances they may also be unable 

to provide the required level of assurance for cloud service security. Testing, for instance, may 

be insufficient for transactional services, as it is typically performed through a special interface 

of the service that is being certified, rather than its normal operational interface [38][39]. 

Monitoring based certification may also turn out to be insufficient in cases where there is 



 

14 
 

conflicting evidence within the monitoring data or in cases where such data do not cover all 

potential traces of system events that should be seen in order to assess a given property [26][38]. 

In order to overcome the problems above, I have developed a hybrid approach for certifying 

cloud service security that could combine both monitoring and testing evidence. My approach is 

based on the cloud certification framework of the CUMULUS EU FP7 project that provides 

models, processes and tools supporting the certification of compliance and security properties of 

all types of cloud services, through the use of multiple types of evidence including testing and 

monitoring [1][38]. The basic idea behind a hybrid certification model is to cross-check evidence 

regarding a security property that has been gathered from testing and monitoring. If there is no 

conflict between testing and monitoring evidence, the evidence will be combined. For example, 

let us suppose that we want to certify cloud service availability. If availability is measured as the 

percentage of the calls to service operations for which a response was produced with a given time 

period d, a monitoring check should verify exactly this condition. However, the trace of service 

calls that has been examined by the monitoring process might not cover all the operations in the 

service interface or the expected peak workload periods of the underlying infrastructure. In such 

cases, before issuing a certificate for service availability, it would be necessary to test any of the 

above service usage conditions that have not been covered yet. 

 

1.3 Aims and Objectives 

The problem I face is to enable the automated and continuous certification of security properties 

of cloud services. The research objective is to design a new cloud certification approach and 

develop a framework supporting the automated and continuous certification of security 

properties of cloud services based on the combination of dynamically acquired testing and 

monitoring evidence that can deliver the high level of assurance required for trustworthy 

certificates, and can overcome the limitations of assessments based on each of these types of 

evidence in isolation, as monitoring-based approaches are insufficient when there is conflicting 

evidence, and test-based certification approaches are not effective when there are transactional 

services. The hybrid approach that I am proposing will reduce uncertainty arising from reliance 

on any of the testing and monitoring evidence in isolation.  

 



 

15 
 

The steps that will lead to the achievement of the research objective are presented below: 

 

• Literature Review 

The current security certification mechanisms will be reviewed and I will provide an analysis of 

the certification models that exist and are used in order to certify service security in the cloud. I 

will present the different test-based and monitoring-based certification models that are used for 

cloud service certification, the current approaches, the related work and the state of the art. My 

analysis will cover the description of the different frameworks, along with their strengths and 

weaknesses, focusing on the existing issues that will be resolved with my research. 

 

• Develop a schema for defining hybrid certification models 

Firstly, I will define a schema that will support the definition of executable certification models 

that can be used to drive the certification process and generate the certificates. The certification 

of security properties will be based on the collection of monitoring and testing evidence. 

Monitoring will be continuous, so that it can cover changes at any layer of the cloud that might 

affect properties already certified, and will cover any changes that might occur. The monitoring 

evidence will be combined with testing evidence to cover dynamic certification. 

	

• Develop a certification infrastructure that will enable certification based on hybrid 

models 

In order to create hybrid certificates, a hybrid certification infrastructure is essential. For that 

reason, automatic monitoring combined with testing, needs to be supported. The data collected 

from monitoring and tested need to be analysed to provide the evidence for the hybrid model. 

The data will be correlated in different ways according to the security property examined. So, I 

will develop tools and mechanisms that will support the analysis of testing and monitoring data 

that are gathered and are used as evidence in order to generate and issue the hybrid certificates, 

based on hybrid certification models. Additionally, the mechanisms integrated will support the 

management of certificates, making the certificates available to cloud customers and providers. 



 

16 
 

To achieve this, the existing CUMULUS framework will be used, but it will be amended to 

support the hybrid certification. 

 

• Evaluation of the hybrid independent approach 

Research will be accompanied with the evaluation of the hybrid certification approach that will 

confirm the reliability, trustworthiness and real applicability of the proposed model to the 

industry. 

 

 

1.4 Research Contributions 

The research presented in this report provides novel hybrid security certification models for 

certifying services in the cloud, extending the current certification approaches that exist and are 

currently used in the industry, most of which are based on monitoring or testing.  

For that reason, a schema for defining hybrid certification models will be introduced to enable 

the automatic certification of service properties based on testing and monitoring evidence. 

Additionally, certain security properties of services in the cloud will be assessed and certified 

according to the proposed model. The realisation of the above will be made with the provision of 

a hybrid infrastructure that will support hybrid certification. The proposed models aspire to 

resolve the gaps arising from current certification models that are based on testing or monitoring. 

Additionally, I will contribute to the development of a dynamic certification mechanism that will 

be able to certify cloud services in any layer of the cloud stack. My approach is based on the 

automation of collecting data through testing and monitoring, thus making the certification 

process efficient, effective and easy to be customised by the user. 

 

 

 

 



 

17 
 

1.5 Report Outline 

The rest of this report is structured as follows. 

The second chapter includes the literature review that has been used for my research. The topics 

that are covered include the software and service certification, the test-based certification, the 

monitoring-based certification, along with current dynamic certification approaches and the state 

of the art. Additionally, the strong and weak points of each method are presented, and I describe 

what issues are solved by the use of the proposed hybrid approach. Furthermore, a comparison 

between the traditional approaches and the proposed framework is presented, showing how my 

approach can add value to existing certification schemes. A distinction between trustworthiness 

and security is presented in the end of this chapter. It is worth clarifying that my research 

provides higher security in certifying services in the cloud, but advanced security does not 

always imply advanced trustworthiness, as explained in detail in the end of the second chapter. 

The third chapter includes the description of the hybrid approach. In this chapter I explain why a 

certification authority should use hybrid certification models, and I describe the different modes 

of hybrid models that exist, showing how they fill current gaps in security certification. 

Moreover, the framework of CUMULUS that is required to realise the hybrid models and the 

new capabilities of the framework, will be introduced. Also, a hybrid certification model schema 

for realising the security properties to be certified, the architecture of the certification 

infrastructure, and a number of examples of the hybrid certification of security properties, 

follow. 

In the last chapter, the evaluation of my approach is presented. In this chapter, I outline how my 

proposed approach improves certain gaps that arise from the use of popular security certification 

approaches. Also, I introduce a section of conclusions where I evaluate my project and describe 

how it answers the research questions and how it meets its aims and objectives. Finally, the areas 

for future investigation and research, along with my published work, are presented.  

 

 

 

 

 



 

18 
 

2. Literature Review 

2.1 Research Methods and evaluation 

The objective of this chapter is to present the relevant literature review and underline the need of 

a hybrid certification approach. For the purposes of this chapter, I reviewed the state of the art 

and the existing approaches in the literature and identified the existing limitations, demonstrating 

how my approach can add value and bridge the existing gaps. First of all, I grouped the 

certification approaches into distinctive categories depending on the kind of certification they 

support, their use and their nature. Additionally, I demonstrated the evolution from service and 

software certification to dynamic certification, where testing is combined with monitoring, 

paving the way for hybrid certification. A comparison between traditional approaches and my 

proposed framework is presented in the end of this chapter, underlying the need for hybrid 

certification mechanisms. The biggest strength of this approach is the fact that a well-rounded 

overview of the existing certification methods and the auditing mechanisms, is identified, giving 

the opportunity to the readers of this report to gain a good understanding about different kinds of 

certification. On the other hand, a limitation of this research method is that there might be 

approaches with limited references that have been escaped my critical review. 

 

2.2 Overview 

Cloud certification is the approach to assess security properties and check one basic set of 

security requirements of an entity, which can be a software artefact, a service or a whole system. 

Cloud service certification is a topic that has gained a lot of ground the last years, as security 

concerns of cloud services arise. The majority of cloud services are complex, making it hard and 

infeasible for individual customers to check their security requirements, so the concept behind a 

certification scheme is to have a security certification scheme check all the security requirements 

for all customers, and, provide sufficient evidence for the validity and assurance of the security 

properties of the entities to be certified, confirming security accountability and liability [41]. 

The certification process of services in the cloud supports users in their decisions coping with all 

issues related to the security and trust in the provision of cloud systems, by having an accredited 

service authority assess the security properties and the underlying security mechanisms, so that 

the users can finally select only the services that are compliant to their requirements or specific 



 

19 
 

privacy frameworks [24]. The content of each certificate depends on the software artefact and 

the security property examined for this artefact, representing all the entities that are involved in 

the certification process, such as the entity making the assertion (i.e. certification authority), the 

software artefact that is being certified (i.e. offered service/platform) and the group of properties 

that need to be certified [43].    

At the moment, there are standard contracts between the customers and the cloud service 

providers, but they do not protect the customers, as sudden and unexpected changes may arise in 

the cloud services. Additionally, the Service Level Agreements (SLAs) between the customers 

and the providers represent the contract, which captures the agreed guarantees, but the 

specifications of existing SLAs for cloud services are not designed for flexibly handling the 

performance and the technical requirements of consumer applications [42]. Additionally, SLAs 

usually offer the expected target values for the services offered without addressing the legal risks 

or the operational issues that might appear. Traditional certification schemes consider monolithic 

software components and focus on machine-readable, system-wide certificates to be used at 

deployment and installation times that do not prove to be suitable for service-oriented 

architecture environments, so there is the need for a dynamic certification scheme that manages 

the intrinsic dynamics of services [44]. However, recently, certification has moved to Service 

Oriented Architecture in order to cover the certification of both functional and non-functional 

properties and adapt to new environments [45]. 

At this chapter, I will present the current research and the literature review concerning the 

different kinds of certification and I will focus on the need for a certification-based approach for 

cloud service security. I will take into consideration the emerging audit approaches that are 

based on the logging and reporting of evidence of cloud operations, where certificates are issued 

by certification authorities, who are independent from the cloud service provider and the 

consumers. 

 

2.3 Software and Service Certification 

Software certification is a very popular concept in certification and contains a wide range of 

formal, semi-formal, and informal assurance techniques, requiring several dissimilar 

mechanisms [46]. Recent research has placed much importance on certifying software quality, 

although it is difficult to certify software quality without a measurement framework/environment 



 

20 
 

that simplifies the software quality measurement [47][48].  Software security certification builds 

on existing software assurance, validation, and verification techniques, but introduces the notion 

of explicit software certificates, which contain all the information that is necessary for an 

independent assessment of the certified properties [49]. 

In 1985, the first evaluation criteria appeared in the US under the name “Trusted Computer 

Systems Evaluation Criteria (TCSEC)”, which was followed by a similar standard called “The 

Information Technology Security Evaluation Criteria (ITSEC)” in Europe in 1991. The four 

countries that formed this standard were UK, Germany, France, and the Netherlands. The U.S. 

Department of Defence created the Trusted Security Evaluation Criteria (TCSEC) standard for 

software security in 1993 [50], which was followed by the Canadian Trusted Computer Product 

Evaluation Criteria (CTCPEC) security certifications standards [51], but they were both very 

costly as they were national certification schemes. At 1993, the US made an international 

standard for the security evaluation of IT products and established the Federal Criteria (FC) in 

corporation with Canada and presented it in the European Commission. Eventually in 1993, the 

Evaluation Criteria merged the Federal Criteria with its own standard ITSEC and introduced the 

Common Criteria (CC) for the first time [54]. So, the Common Criteria is considered the first 

international software certification standard that appeared, and was developed by the 

governments of Canada, France, Germany, the Netherlands, the UK, and the U.S. [52]. 

However, it is worth mentioning that the Common Criteria approach is a security standard that 

can achieve comparability between the results of independent security evaluations of IT products 

and requires a comprehensible documentation of the software product, including a detailed threat 

analysis [53]. Common Criteria has two main disadvantages. The first one is the abstraction in 

the IT product evaluation process, and, the second one is the fact that it is a time consuming 

process, so eventually it is a costly process [54]. 

More research in the area of software certification includes a Software Component Certification 

framework, with the objective of acquiring quality in software components. This framework 

adopts the Goal Question Metric (GQM) approach to track the software product proprieties, 

defining a set of metrics to track the properties of the components in a controlled fashion. These 

metrics will help to measure the component properties, the level of the efficiency of the 

certification techniques that are used to evaluate the component characteristics and the reliability 

of the software components [72][73]. 



 

21 
 

In terms of international standards, three international organizations have responsibility for a 

wide range of technology standards: the International Organization for Standardization (ISO), 

which is an independent, non-governmental membership organization giving world-class 

specifications for products, services and systems to ensure quality, safety and efficiency, the 

International Electrotechnical Commission (IEC), which is the world’s leading organization for 

the preparation and publication of International Standards for all electrical, electronic and related 

technologies and provides a platform to companies, industries and governments for meeting, 

discussing and developing the International Standards they require and, finally, the International 

Telecommunication Union (ITU), which is the United Nation’s specialized agency for 

information and communication technologies (ICT) who developed the technical standards that 

ensure the interconnection between networks and technologies and improved the access to ICTs 

to underserved communities worldwide [56][59][60][61].   

In terms of national standards of software certification, certain countries have standards bodies 

that cover part or the whole standards spectrum [55]. One example is the American National 

Standards Institute (ANSI), that developed the procedures that standard developing 

organizations (SDOs) use to develop standards, reviewing also the procedures and processes that 

the SDOs use, and finally approving the standards that SDOs develop to become ANSI standards 

[56]. The Deutsche Institut für Normung (DIN) in Germany is recognized by the German 

government as the official national standards body, representing German interests at the 

international and European levels with responsibility for all standards [56][57]. Additionally, the 

European Community has a regional standards body, which is the European Committee for 

Standardization (CEN) and supports the standardisation activities in relation to a wide range of 

fields and sectors [58].  

The previous standards and methods are focused on stable and monolithic systems and not on 

dynamic environments, which means that they fail to certify services in the cloud, but paved the 

way for service certification. The wide release of software applications as web services has 

sparked a big interest in the definition of assurance techniques for services, which mostly 

focuses on security [62]. Software certification is, thus, becoming the solution to prove security 

properties [63][64][65], as Service-Oriented Architecture (SOA) applications can support the 

dynamic environment of service-based scenarios [66][67], supporting the dynamic changes of 

applications. Each web service has functional, non-functional and behavioural characteristics 

and the three elements that describe it are the following: the Web-Service Description Language 

(WSDL), the Simple Object Access Protocol (SOAP), which is a transport protocol for exchange 



 

22 
 

of information, and the Universal Description, Discovery and Integration (UDDI), which is a 

registry used to store services [68]. An industry standard execution language that has been 

implemented for specifying the actions within business processes and web services, is the “Web 

Services Business Process Execution Language (WSBPEL)”, which is a standard executable 

language for specifying actions within business processes with web services [69]. 

In service certification, an outcome of a service security certification is a security certificate of a 

service, which is realized by a language that enables the representation of a certificate in a 

structured, machine-processable manner, that enables automated reasoning to be performed on 

them, and, makes it feasible for certified security features to be part of any Service-Oriented 

Computing scenario [74][75]. 

The Assert4SOA EU FP7 project is providing a general service certification framework, notation 

and architecture for supporting certificates in service discovery and composition [70]. The 

Assert4SOA project produces novel techniques and tools that are fully integrated within the 

SOA lifecycle for expressing, assessing and certifying security properties for complex service-

oriented applications, providing a framework for handling Advanced Security Service 

Certificates, called ASSERTs [75][76], but cannot support the certification of cloud services. 

The SERENITY EU FP7 project focuses on providing security and dependability in Ambient 

Intelligence, but the certificate outcomes fail to include information about the verification of the 

service-based systems [71]. Another project that deals with the certification of web services is 

the EU project AVANTSSAR, which proposes a rigorous technology for the formal 

specification and Automated VAlidatioN of Trust and Security of Service-oriented Architectures 

and automates this technology into an integrated toolset (AVANTSSAR Validation Platform). 

[77]. The AVANTSSAR project is a follow-up to the EU AVISPA project, which aims at 

developing a push-button, industrial-strength technology for the analysis of large-scale Internet 

security-sensitive protocols and applications [78]. 

 

2.4 Test based certification  

In service-based environments we need certification schemes that will support the dynamic 

nature of services and can be integrated within the runtime service discovery, selection, and 

composition processes [45]. A lot of research has been made on web services testing and the 

difficulties of automatically generating test cases and assessing the correct functioning of them 



 

23 
 

[79]. This topic has been considered a very popular area of research and investigation, as web 

service testing differs from standard testing, because of the interaction with the service during 

the process. Also, testing is not used for bug-fixing, but for collecting the necessary evidence to 

prove certain security properties. 

Non-functional testing is another area of research covered by several researchers who have 

focused on testing the non-functional characteristics and requirements of software systems 

[81][82][83]. Non-functional testing is used for performing automatic approach based on attack 

scenarios. In non-functional testing, search-based techniques are used to generate the test cases 

that violate the Service Level Agreements and the Quality of Service (QoS) measured when 

executing the service with the generated inputs guides the test [84]. Non-functional testing is of 

great importance, as the QoS of certain functionalities agreed between service providers and 

service consumers might not be met and, also, because the lack of service robustness, or the lack 

of proper recovery actions for unexpected behaviours can cause side effects. One more reason 

underlying the importance of non-functional testing, is the fact that the exposure of services to 

the Internet might lead to security attacks compromising the security of the services [79]. 

However, although non-functional testing is not costly (i.e. the developer does not have to pay 

when testing their own service), non-functional testing isn’t realistic, because it doesn’t account 

for the provider’s and the consumer’s infrastructure, and for the network configuration or load 

[84]. 

Specification-based testing for web services has evolved, as WSDL has been extended to foster 

web service testing, by including input-output dependency, invocation sequence, hierarchical 

functional description, and concurrent sequence specification [85]. Robust testing ensures that 

exceptional behaviour is properly handled and that the service reacts properly to such behaviour, 

but, usually, the error recovery code is not properly tested [79][84][86][87]. There are many 

works about the testing of conformance of the service implementation with its WSDL 

specification [88][89] and others based on symbolic transition system to model and test the web 

service coordination and automatically generate runtime test cases that are applicable to software 

composition [90][91][92][93][94].  

SOA shifted the development perspective from monolithic applications to applications 

composed of services, distributed over the network, developed and hosted by different 

organizations, cooperating together according to a centralized orchestration, making it crucial to 

test services for interoperability, i.e., to perform service integration testing [79]. The area of 



 

24 
 

security certification has been investigated widely, but the existing works focus on providing 

human-readable certificates used at deployment and installation time, failing to support service-

based scenarios [45]. The first attempt to assess and certify the correct functioning of SOA using 

security certificates based on signed test cases was made by Damiani [96] and, later, the U.S.-

based Software Engineering Institute (SEI) defined a web service certification and accreditation 

process for the U.S. Army [97]. The works of Papazoglou and Ryu discuss the problem of 

managing evolving services that are subject to dynamic changes and variations, introducing the 

need of continuous redesign and refinement of services, as service evolution may in fact 

invalidate the certificate awarded to a service, thus triggering recertification [66][67][84].  

The Quality of Service of web services has been researched by Al-Moayed and Hollunder [97] 

and a novel QoS model, that aims to perform flexible service selection by relaxing clients QoS 

preferences, has been proposed [84][98].  Concerning SLA testing, it is worth mentioning that 

SLA testing deals with the need for identifying conditions for which a service cannot be able to 

prove its functionality with a desired level of SLA [79]. An approach has been proposed by Di 

Penta for SLA testing of atomic and composite services using Genetic Algorithms (GAs), 

according to which GAs generate combinations of inputs and bindings for the service-centric 

system causing SLA violations [79]. 

Statistical testing has also been used for the certification of web services. In statistical testing, a 

model is developed to characterize the population of uses of the software, and the model is used 

to generate a statistically correct sample of all uses of the software [102]. In statistical testing, a 

software “usage model” characterizes the population of intended uses of the software in the 

intended environment and testing, based on a software usage model ensures that the failures that 

will occur most frequently in operational use will be found early in the testing cycle. The usage 

model is based on the software specification [102]. Statistical Testing addresses the problem of 

determining feasible sub-sets of test cases, while maintaining at the same time adequate and 

sufficient test coverage [103][104][105]. The purpose of statistical testing is to predict the 

reliability of the test object. Statistical testing is used to measure the reliability and the quality 

assurance of a software system and web services, as it helps testers prioritise testing effort based 

on usage scenarios, frequencies for individual web resources and navigation patterns to ensure 

the reliability of web applications [103]. The usage models are represented via Markov chains. 

Usage models are built from specifications of the system, by user guides and by observing the 

user interactions with the existing software. Test cases (i.e. paths through the usage models) are 

generated from the model taking into consideration the transition probabilities. The next step is 



 

25 
 

to statistically analyse the results of the tests in order to determine the expected reliability of the 

system [106]. In general, statistical testing uses a formal experimental paradigm for random 

testing according to a usage model of software [107]. The biggest advantage of statistical testing 

is that the model helps us to determine a feasible sub-set of test cases. Statistical testing also 

guarantees that the failures that occur most frequently in operational use will be found early in 

the testing cycle. However, statistical testing cannot be used for establishing confidence in 

predicting that a special failure, which has been uncovered in one service-based application 

instance, could also occur in other instances. Furthermore, it requires a very high number of test 

cases to produce statistical sound data, it may not thoroughly test the software’s ability to handle 

exceptional conditions and, on average, the most frequently used operations receive the most 

testing [104][107][108]. 

As for dynamic testing, Foster has proposed a run-time certification and compliance mechanism 

combining static and dynamic model-checking techniques with event monitoring and violation 

detection, but without reference to cloud computing, focusing only on SOA environment and not 

considering multi-tenancy, location independency and on-demand provisioning [33]. 

Additionally, Kuo et al. implemented a dynamic risk assessment mechanism using SaaS web 

service, but the proposed mechanism is designed for internal use in organizations in order to help 

security managers realise the security awareness and vulnerability assessment in end-client 

devices [100]. 

Regardless of the test method, testing a service-centric system requires the invocation of actual 

services on the provider’s machine and, this leads to several drawbacks, such as prohibitive costs 

for the users if they have to pay for services on a pay-per-use basis, massive testing that can 

cause a denial-of-service phenomenon for service providers and high bandwidth use [84]. For 

these reasons, dynamic testing of web services that will take into account the dynamic nature of 

web services combined with monitoring techniques is needed. One testing strategy that is 

suitable for testing service-based applications has been introduced [117]. According to this 

strategy, changes are captured at the service interface and the system is able to identify changes 

that occur in service operations and operational arguments in a service description of a test 

candidate, and the architecture is able to respond to responds to changes of service operation, 

operation arguments and service composition changes [117]. 

 



 

26 
 

2.5 Cloud services certification 

The certification of cloud services presents a number of challenges, related to the complexity of 

a scenario where different service delivery models are offered in dynamic environments. One 

challenge is the fact that the freedom of choice given by dynamic software provisioning on the 

cloud needs to be suitably reconciled with the apparently conflicting requirement of verifying 

that software systems have the appropriate assurance levels for the intended purpose. Also, 

influential security guidelines mandate users to check at the time of use that software systems 

hold the desired set of security properties [24]. 

In cloud services, the assurance evidence is collected by a wide range of formal, semi-formal, 

and informal evaluation methods, including formal verification of compliance to policies, system 

simulation, testing and monitoring [24]. It should be mentioned that security certification 

criteria, such as Common Criteria (ISO 15408) evaluate third-party software and provide a 

widely adopted practical solution to address the trust of cloud services [35], but these criteria are 

based only on testing and fails to certify security properties that require continuous monitoring, 

such as the data-integrity-at-rest security property, as defined in [160]. 

Also, ISO/IEC 27002 provides best practice recommendations on information security 

management for use by those responsible for initiating, implementing or maintaining 

information security management systems (ISMS) [32], but does not support the constant 

provision of information about the security of cloud services, failing to certify security properties 

that require continuous monitoring, such as the data-alteration-detection security property, as 

defined in [160]. Dhiyanesh and Thiyagarajan have focused on third party auditability in cloud 

storage systems via simultaneous integrity check in order to ensure cloud data storage security, 

but they do not mention anything about the certification process [109]. Additionally, a 

framework has been produced for secure cloud computing through IT auditing using checklists, 

but it does focus on the certification process [110]. Risk Assessment-as-a-service has been 

introduced to enable the evaluation of security risks in the cloud environment [111], but is only 

focused on the risks associated with security. A ComCert approach for automated compliance 

certification of cloud-based business processes has been proposed, but it only focuses on 

regulatory requirements and not on automated certification [112]. Providing security assurance 

through IT audits has been the norm in industrial practice, but, IT audits focus on providing 

guidelines for inspection of security controls on IT and cloud infrastructures, and, they are not 

automated [110][113]. Testing has been also used to develop a test based security certification 



 

27 
 

scheme for cloud services, but fail to certify security properties that require continuous 

monitoring such as the data-integrity-at-rest security property [39][160]. 

The TRUSTe EU Safe Harbor Seal Program is a European Program that verifies the compliance 

with the Safe Harbor Framework, including alternative dispute resolution, and helps 

organizations to get ready for self-certification with the U.S. Department of Commerce. The 

“TRUSTed Cloud Privacy Certification”, but focuses only on certifying the privacy 

functionalities supported by service providers [114]. 

 

2.6 Monitoring based certification 

Monitoring observes services or service-based applications during their actual use or operation 

[118][119]. Monitoring can provide statements about a service-based application’s current 

execution and can uncover failures which have escaped testing, because the concrete input that 

lead to the current execution trace might have not been covered by any test case [118], in 

contrast to testing which aims at providing more general statements about services or service-

based applications [120]. With monitoring, run-time verification is enabled and we can easily 

determine if the current execution preserves specified properties [118]. Generally, a monitor is a 

system that observes the behaviour of a system and determines if it is consistent with a given 

specification, by taking an executing software system and a specification of software properties 

and checking that the execution meets the properties. Monitoring is concerned with actual 

transitions between states, and not with possible transitions [118][121].  

According to existing monitoring approaches, there are different techniques used, ranging from 

monitoring service compositions and workflows to monitoring infrastructures for serviced-based 

systems, monitoring individual software services and monitoring cloud services. Concerning 

cloud monitoring, the most widely covered topic is performance monitoring 

[125][126][127][128][130][131]. A configurable cloud certification framework allowing the 

definition and realisation of different monitoring based cloud certification models, is described 

in [37], in addition to systems that support cloud security monitoring [135][136][137]. With 

monitoring, cloud incidents can be detected by different key points of cloud infrastructure such 

as VMs of cloud users and data storage components [136][137].  Additionally, systems that 

support the monitoring of network level metrics and the detection of SLA violations have been 

developed [131][132][133]. The EVEREST EU FP7 Project is an open source system supporting 



 

28 
 

the monitoring of security properties of software and cloud services, including basic security 

properties such as confidentiality, integrity, availability, and the application of appropriate 

access controls at different layers [37]. At a hypervisor level, monitoring can provide incident 

detection, even if monitoring agents are not able to communicate with monitoring systems, as 

happens in the Amazon’s CloudWatch case [138].  

According to the existing state of the art, monitoring fails to support the certification of cloud 

services, as there are vulnerabilities in the provision of cloud services that are related to breaches 

of integrity, confidentiality and privacy due to multi-tenancy of services, interference between 

security mechanisms at different layers in the cloud stack and interference between security and 

cloud virtualisation and optimisation, as well as the dependences between services at different 

layers in the cloud and their potential dynamic evolution [1][9][31]. It is necessary that 

monitoring is continuous. There are existing methods that focus on systems with a stable 

structure operating under stable conditions [15]. Dynamic configuration of the monitoring 

infrastructure have been introduced in [144] in order to provide uninterrupted monitoring 

services when the monitoring capabilities that are available in a service based system and/or 

cloud infrastructure change as a result of dynamic changes in the constituent services of such 

systems. The on-going certification of cloud services is presented in [39][44][62], where there 

are references about the certification of cloud-based systems whose conditions can change 

dynamically, but ignore platform services and the infrastructure involved in the cloud service 

provision. In terms of international standards, NIST’s SCAP specifications and Cloud Security 

Alliance’s Cloud Trust Protocol provide interfaces for extracting monitoring data from clouds 

[25][145].   

 

2.7 Dynamic certification 

The notion of dynamic certification, where testing is combined with monitoring to provide 

security certifications of cloud services, is at a very early stage. An approach based on service 

monitoring and statistical testing has been proposed for the certification of web services. In this 

approach, monitoring data is augmented with results from online testing to make failure 

predictions with confidence [108]. Kuo et al. propose and implement a dynamic risk assessment 

mechanism using Software-as-a-Service (SaaS) web services, but the proposed mechanism is 

designed for internal use in organizations in order to help security managers realize the security 



 

29 
 

awareness and vulnerability assessment in end client devices [115]. Additionally, monitoring has 

also been combined with model checking techniques to assess properties of software cloud 

services [33], by combining static and dynamic model-checking techniques with event 

monitoring and violation detection, but there is no reference to cloud computing. The only 

reference is to SOA environments. 

A dynamic approach has been proposed in [16]. This approach is based on standards like the 

Cloud Control matrix by Cloud Security Alliance (CSA CCM), the International Organisation 

for Standardisation  (ISO) 27001/27017, the National Institute for Standards and Technology 

(NIST) SP800-53 and the EuroCloud Audit questionnaire, focusing on the continuous 

monitoring of critical parameters of cloud services and data centre organization, on automation 

of the certification/evaluation process, and on appropriate technical, organizational, legal, and 

economic conditions for the integration of the dynamic certification into the regular operations 

of cloud. According to this approach, customers of cloud services can be constantly informed 

about the actual security and quality state, as well as the compliance with the requirements of the 

certification, when continuous monitoring and automation is applied to the certification process 

[116], but this approach does not include testing techniques. 

The CUMULUS EU FP7 Project has proposed one more dynamic approach. CUMULUS aims 

to address the cloud limitations by developing an integrated framework of models, processes and 

tools supporting the certification of security properties of infrastructure (IaaS), platform (PaaS) 

and software application layer (SaaS) services in cloud. CUMULUS framework brings service 

users, service providers and cloud suppliers to work together with certification authorities in 

order to ensure security certificate validity in the ever-changing cloud environment [117]. 

 

2.8 Current Approaches and comparison between traditional and dynamic 

certificate models 

There are several research works in the area of cloud security and many security certification 

schemes that are currently used. The most famous is the accepted worldwide ISO 27001 for 

security audit, which provides best practice recommendations on information security 

management for use by those responsible for initiating, implementing or maintaining 

information security management systems (ISMS) [24][57][59]. At the same time, security 

certification criteria, such as Common Criteria (CC), provide a widely adopted practical solution 



 

30 
 

to address the trust deficit when evaluating and purchasing third-party software [24]. One more 

solution proposed for certifying cloud services is the Security, Trust and Assurance Registry 

(STAR) self-assessment certification framework developed by CSA [146], which is requesting 

from solution providers, non-profit organisations and individuals to enter into discussion about 

the current and future best practices for information assurance in the cloud. This framework is 

based on the Open Certification Framework (OCF) structured by three levels of trust [27]. 

However, the STAR self-assessment certification framework is only limited to monitoring. The 

Cloud Standards web site is collecting and coordinating information about cloud-related 

standards under development by the groups [147]. The Open Web Application Security Project 

(OWASP) maintains a list of top vulnerabilities to cloud-based or SaaS models which is updated 

since the threat landscape changes [148]. The Open Grid Forum publishes documents about 

security and infrastructural specifications, along with information for grid computing developers 

and researchers [149].  

The Cloud Controls Matrix (CCM) developed by CSA contains a comprehensive set of controls 

to assess the information security assurance in clouds, and maps controls to existing frameworks.  

The CCM has been developed through the Open Certification Framework (OCM). The CCM 

provides a framework of controls that gives detailed understanding of security concepts and 

principles that are aligned to the CSA guidance in 13 domains [150]. The Cloud Audit protocol, 

also developed by CSA provides an automated query interface to cloud services for audit [151]. 

The EuroCloud Star Audit is a certification scheme for cloud providers that creates more 

transparency in the market and helps businesses find the right services for their cloud projects 

[152]. Additionally, ENISA’s Cloud Computing Information Assurance Framework [9], along 

with the Security Recommendations For Cloud Providers by German Federal Office for 

Information Security (BSI) [154] and the Committee of Sponsoring Organizations of the 

Treadway Commission (COSO) [153], represent current audit frameworks, but they offer limited 

degree of automation and do not provide continuous monitoring. Furthermore, the Operationally 

Critical Threat, Asset, and Vulnerability Evaluation (OCTAVE) method is an approach used to 

assess an organization's information security needs, focusing on information assets, where an 

organisation's important assets are identified and assessed, based on the information assets to 

which they are connected [155]. The previous certification approaches presented fail to support 

automated and continuous certification of security properties of cloud services and prove to have 

several limitations. For that reason, they cannot deliver the high level of assurance required for 

issuing certificates that guarantee the security of services. 



 

31 
 

At this point, a comparison between hybrid and traditional certification of cloud services is 

presented. Traditional approaches for certifying security properties rely on manual inspections 

and audits, proving to be static, inflexible, non-automated and unable to realise the economic 

dimension that the Cloud entails [16]. As already stated, the STAR self-assessment certification 

framework allows cloud providers to submit self-assessment reports, when fully implemented 

[27]. The CCM facilitates regulatory compliance and provides organizations with the needed 

structure, detail and clarity relating to information security tailored to the cloud industry. It is 

also specifically designed to provide fundamental security principles to guide cloud vendors and 

to assist prospective cloud customers in assessing the overall security risk of a cloud provider, 

integrating the ISO/IEC 27001 management systems standard, but CCM is human-centric, 

requiring from the companies that adopt it to address the issues that they define critical 

concerning cloud security and to pre-assess the level of maturity of their systems. The CCM 

enables the integration, monitoring and management of cloud services through a framework that 

can take care of the elementary issues regarding cloud security, but it does not support 

certification as an automated service in the cloud [27][157]. 

Traditional certification models (i.e. ISO/IEC 27001, NIST) also require manual inspections and 

are unable to provide the required level of assurance in cloud computing and to fit the dynamic 

nature of the cloud, focusing on monolithic software components and failing to address on-

demand self-service, dynamic allocation of resources and multi-tenancy [16][17][24]. 

Additionally, traditional certification models lack in trust, transparency and accuracy, as they do 

not support the constant provision of information about the security of cloud services, unlike my 

hybrid approach that relies on continuous monitoring and testing and it is focused on cloud 

services. Security auditing approaches that provide security assurance focus on providing 

guidelines and are not automated [110][113]. One more drawback is that they require that the 

consumers rely on third-party auditors for security assurance. Common Criteria (CC) 

certification uses Evaluation Technical Reports [75]. Consumers can specify their requirements 

in a document called “Protection Profile” (CC-PP), and vendors can build products that conform 

to a CC-PP, but automation is not supported [158]. A PP defines an implementation-independent 

set of IT security requirements for a category of properties [159]. However, CC has a human-

centric approach, which is not designed to support automated security certification, targeting 

static, monolithic systems and requiring a large investment of resources. Also, traditional CC 

certification does not focus on activities that can be automated, but considers analysing 

documental evidence provided by the developer.  



 

32 
 

Compared to non-hybrid models for certifying availability, the hybrid model I will introduce can 

produce availability assessments of higher confidence as the monitoring and testing evidence can 

be cross-checked before being used in an assessment (and certificate) and can both be included 

in a certificate depending on the chosen validation checks. Hybrid models offer also a more 

extended pool of evidence and possibilities to decide which data are relevant and of sufficient 

quality, so that they can be taken into consideration for issuing a hybrid certificate. Apart from 

increasing the confidence level of assessments, hybrid models are also more customisable than 

traditional certification models, since they offer the choice of deciding how test and monitoring 

evidence should be correlated, cross-checked and used in assessments. 

 

2.9 Trustworthiness and security cloud certification 

In this section, I will outline how security in cloud certification is related to trustworthiness. First 

of all, trustworthiness in cloud services is considered a very big concern, as trustworthiness is 

often compromised due to lack of control over the underlying infrastructure when data resides in 

the cloud. When it comes to selecting cloud services, cloud providers and cloud consumers do 

not have sufficient knowledge about each other, and this leads to uncertainty because of an 

implied established level of trust from the side of the cloud consumers, who expect that the 

adopted cloud services will fulfil their needs and requirements [171]. Trustworthiness represents 

the perceived level of confidence that data from a resource and, therefore, the particular resource 

itself, have not been compromised. Determining these aspects is hard due to the dependencies 

between pieces of data, potential changes in data and resources over time, and the fact that 

resources potentially conspire with each other [182].  

 

The most popular techniques for selecting cloud services include static descriptions and 

reputation of these services, not taking into consideration other trust factors, thus, making in it 

difficult to compare the trustworthiness of cloud services, as it is quite expensive and time-

consuming to evaluate trustworthiness, and, also, there is not a universally accepted standardised 

metric system for the trustworthiness evaluation [171][172]. However, the concept of 

trustworthiness is very generic and there are several aspects that need to be evaluated when we 

assess the trustworthiness of cloud services. 

 

 



 

33 
 

Transparency of providers’ practices, capacities and processes help to generate evidence-based 

confidence that everything that is claimed to be happening in the cloud is indeed happening as 

described and certifications can support this evidence-based confidence, by providing an interesting 

channel between end-users and service providers, allowing users internal observations of cloud 

service operations [179][181]. Concerning the trust evaluation models that have been developed, 

Zhou and Hwang have implemented a PowerTrust model to calculate peer reputation, based on 

trust scores and on a trust overlay network, where peers in the network rate each other after 

transactions as their local trust [173]. The PowerTrust model evolved into a GossipTrust model 

that addressed the limitations of the previous work, and is based on a gossip method to aggregate 

peers’ global reputation [174]. A4Cloud combines risk analysis risk analysis, policy 

enforcement, monitoring auditing and compliance auditing, providing methods and tools to 

enable transparency and legal, regulatory and socio-economic policy enforcement, to make 

stakeholders accountable for the privacy and confidentiality of information held in the cloud 

[171][175]. Additionally, a Trust Management Framework for differentiating trustworthy cloud 

services and for protecting cloud consumers, has been introduced by Cloud Armor. This 

framework relies on decentralized architecture and rates the credibility of cloud services, by 

using the cloud consumer’s perspective and feedback collections and by offering 

recommendations and feedback to cloud consumer about cloud services [171][176][177]. 

Moreover, there are certain existing schemes that support self-certification, such as the Cloud 

Industry Forum (CIF), IT-Grundschutz, Leet and NIST SP800-144 and others that support third-

party assessment, such as EuroCloud, Federal Information Security Management Act (FISMA), ISO, 

Leet, Service Organisation Control (SOC) 1-2-3, McAfee, and TUV, and others that support both 

self-certification and third-party assessment, such as CSA [178][179]. It is worth mentioning that 

self-certification fails to provide objective assessment-based trust judgements, as first-time service 

consumers usually do not trust the information about the attributes of a cloud service, casting doubts 

on the sources of the attribute assessment [178]. 

 

Trustworthy sources of attribute assessment include cloud auditors, accreditors or certifiers [179]. 

NIST has identified a cloud auditor as a party that can conduct independent assessment of cloud 

services, information system operations, performance, and security of a cloud implementation, 

evaluating the services provided by a cloud provider in terms of security controls, privacy impact, 

performance, but, for certain end-users, even the trustworthiness of a cloud auditor, accreditor and 

certifier needs to be evaluated by looking into their own attributes and/or policies, requiring a 

certification authority to accredit and monitor the certifiers [179][180]. These transparency 



 

34 
 

mechanisms provide channels for cloud users to “observe” how cloud service providers operate and 

help to establish trust by making the cloud services more “visible”, resulting in increased confidence 

in services and providers’ competency, integrity and goodwill [179]. Monitoring SLAs and the 

quality of standards can play an important role to trust verification, as it provides additional evidence 

about the trustee’s competency, integrity, and goodwill, while testing can provide tools and 

continuous testing processes for compliance with the scheme requirements [179]. 

My research and contribution in hybrid cloud services certification focuses on providing enhanced 

security when certifying services in the cloud, and not on increasing the trustworthiness of cloud 

services. The confidence level of trust is relative and changes over time. Assessing the 

trustworthiness of cloud resources is hard because of the complexity involved in managing the 

individual resources and in determining trust relationships [182]. However, it can be implied that 

increased security can lead to increased trustworthiness in service certification. Nevertheless, as 

trustworthiness is based on several subjective factors, such as the trust of the cloud consumer to the 

services offered by the cloud provider, increased security does not always lead to increased 

trustworthiness. 

 

 

 

 

 

 

 

 

 

 

 

 



 

35 
 

3. The Hybrid Certification Approach 

3.1 Research methods and evaluation 

The objective of this chapter is to present the hybrid certification approach that I propose, 

covering the gaps that arise from the use of existing certification approaches. For that reason, 

firstly, I reviewed the existing framework that is used in the CUMULUS project and I analysed 

its strengths and limitations. This gave me the opportunity to identify the existing gaps of that 

framework. More specifically, the gaps in the testing and monitoring certification model 

schemas for realising the cloud properties led me to focus on developing a powerful hybrid 

certification model schema that will realise these properties and will be able to bridge the 

aforementioned gaps. So, a hybrid certification language was formed to cover the gaps arising 

from testing and monitoring certification. Certain elements of the framework of CUMULUS 

project that fit the hybrid purposes have been modified and redesigned, whereas other elements 

have been designed from scratch and are newly introduced in this chapter. After the description 

of the hybrid approach, I present the architecture of the certification infrastructure that is an 

extension of the CUMULUS architecture and I outline a number of examples that demonstrate 

the hybrid certification of cloud security properties. Thus, I selected certain security properties 

that fail to be certified by other certification approaches, in order to show how my hybrid 

solution certifies security properties that other approaches fail to certify. The biggest strength of 

this approach is that the existing gaps of the CUMULUS framework are identified and an 

advanced framework is proposed. However, the biggest limitation of this method is the fact that 

my approach is focused on addressing the needs of the CUMULUS EU FP7 Project, and fails to 

support multi-layer hybrid certification. Admittedly, this could be an area of investigation for 

future work.  

 

3.2 Overview 

Hybrid certification combines evidence gathered through testing and monitoring to collect the 

elements that are required to certify a security property. The hybrid approach that I present 

overcomes the limitations of each on of the individual certification processes (i.e. testing or 

monitoring in isolation).  Continuous monitoring allows the non-stop observation of the system 

without interfering with it, but can insufficient in certain cases, as it can make the verification 



 

36 
 

infeasible. For example, monitoring requires testing agents to verify signatures and inject traffic. 

On the other hand, testing can be powerful in pre-production environments, but on live systems 

it can interfere with business operations. For these reason, I decided to introduce an approach 

that will be based on the combination of testing and monitoring. 

My work on hybrid security certification is part of the CUMULUS EU FP7 Project, which 

focuses on continuous, multiple evidence and multi-layer cloud service security certification. In 

CUMULUS, certification is a process that is carried out according to a certification model [165]. 

This model defines: (i) the security property to be certified, (ii) the cloud service that this 

property applies to (aka target of certification (TOC)), (iii) the evidence that should be used to 

assess the property, (iv) the conditions that determine the sufficiency of evidence for issuing a 

certificate for the property, and (v) ways to treat conflicts in the evidence.  

In my approach, the certification process is a function that takes as input certain assertions about 

a security property and a target of certification and produces as an output a machine-readable 

certificate that contains evidence that prove the security property. The evidence is collected 

through testing and monitoring. Testing can be offline or online. In offline testing, the collected 

evidence show that a test has been performed on the cloud software and that a specific result has 

been produced. In online testing, only when a specific service is invoked, then the tests are 

carried out. Monitoring is continuous, so the monitoring evidence required for assessing the 

security properties is acquired through continuous monitoring. 

The certification process starts when a service provider makes a request to the certification 

authority. This certification process is driven by certification models that define the security 

property to be certified, the evidence that needs to be collected, the way the different bodies of 

evidence will be correlated, the lifecycle of the certificates and, finally, the involved agents that 

have the responsibility for this process. When enough evidence for verifying a security property 

is collected, then a certificate is issued. The certificate is an instance of this security property. 

More specifically, the certification model schema defines the security property that needs to be 

certified, the types and the extent of evidence that need to be collected for the certification of the 

property, the ways the consistency of the evidence is checked, the way further exploration will 

take place in the event of inconsistencies between the gathered evidence and, how the 

certification decisions will be made. It also provides an assessment scheme that is responsible 

for defining the evidence that will be used for the assessment of the security property and for 

specifying the evidence consistency conditions. When the evidence is collected, then my 



 

37 
 

proposed model will compare the different types of evidence and will perform the cross-

checking. If the results gathered from testing and monitoring comply with each other, and if 

enough evidence for issuing a certificate is collected (sufficiency conditions satisfied), then a 

hybrid certificate is issued. Certificates need to be updated, as the operational conditions of the 

cloud service might change. 

The definition of hybrid certificates is realised through an XML schema for specifying the 

elements needed for generating the hybrid certificates. The XML schema supports the definition 

of executable certification models that can be used to drive the certification process and generate 

certificates. 

 

3.3 Background 

CUMULUS offers a monitoring infrastructure for realising monitoring based certification 

models based on EVEREST [37]. EVEREST enables the monitoring of runtime events produced 

by distributed systems based on rules and assumptions expressed in an Event Calculus based 

language, called EC-Assertion [37]. Rules express conditions that must be satisfied at all times 

by runtime events, whilst assumptions express the ways of deducing information from such 

events (e.g. the state of the monitored system). Both rules and assumptions are defined in terms 

of events and fluents. An event is something that occurs at a specific instance of time and has 

instantaneous duration. Fluents represent system states and are initiated and terminated by 

events. The basic predicates used by EC-Assertion are: 

• Happens(e,t,[L,U]) – This predicate denotes that an event e of instantaneous duration 

occurs at some time point t within the time range [L,U]. An event e is specified as 

e(_id,_snd,_rcv,TP,_sig,_src) where _id is its unique id of it, _snd is its sender, _rcv is its 

receiver, _sig is its signature, and _src is the source where e was captured from.  TP is 

the event’s type. EC-Assertion offers three built-in event types: (a) captured operation 

calls (REQ), (b) captured operation responses (RES) and (c) forced operation execution 

events (EXC), i.e., operation executions triggered by the monitor itself.  

• Initiates(e,f,t) – This predicate denotes that a fluent f is initiated by an event e at time t. 

• Terminates(e,f,t) – This predicate denotes that a fluent f is terminated by an event e at 

time t. 



 

38 
 

• HoldsAt(f,t) – This is a derived predicate denoting that a fluent f holds at time t. 

HoldsAt(f,t) is true if f has been initiated by some event at some time point t’ before t and 

has not been terminated by any event within [t’,t]. 

Concerning the testing mechanisms, CUMULUS offers a distinction between offline/static 

testing when test cases are performed in a pre-production cloud environment which is a 

replication of the in production cloud and online/dynamic testing when test cases are executed in 

production environments periodically when a specific event occurs or when specific conditions 

are met. 

 

3.4 Description of Hybrid Certification Models (dependent-mode & independent-

mode) 

The key concept underpinning a hybrid certification model is the need to have both testing and 

monitoring types of evidence, as none of them would be sufficient in isolation for certifying a 

given property. One very important aspect is the cross-checking of evidence regarding the 

assessment of a security property that have been gathered from testing and monitoring and, 

provided that there is no conflict within the evidence, to combine it providing assurance for 

properties. Consider, for example, a scenario where the property to be certified is cloud service 

availability. If availability is measured as the percentage of the calls to service operations for 

which a response was produced with a given time period d, a monitoring check should verify 

that responses are produced within the required time limit. However, the trace of service calls 

that has been examined by the monitoring process might not cover all the operations in the 

service interface. In such cases, before issuing a certificate for service availability, it would be 

necessary to test any of the above service usage conditions that have not been covered yet.  

The combination of monitoring and testing can be attempted in two basic modes:  

(1) The dependent mode – In this mode, a security property is assessed for a TOC 

by a primary form of assessment (monitoring or testing) which triggers the other 

(subordinate) form in order to confirm and/or complete the evidence required for 

the assessment. More specifically, when not enough evidence is gathered by one 

form of assessment, or when we just want to confirm the evidence gathered, then 

the certification mode will trigger the collection of evidence from the other form 



 

39 
 

of assessment so that enough evidence will be acquired to proceed with the 

certification process. 

For example, let us suppose that we want to assess data integrity-at-rest security 

property. As defined in [160], this property expresses the ability to detect and 

report any alteration of stored data in a target of certification (TOC). With 

monitoring we can capture requests for an update operation and the relevant 

responses to them, along with the existence of events that show the call of an 

operation to notify the receipt and execution of the update request. However, we 

cannot capture updates of data that might have been carried out without using the 

update interface assumed. For this reason, the hybrid model will be based on 

periodic testing to detect if stored data have been modified and monitor the 

periods between the tests that revealed data modifications to check if appropriate 

notifications have also been sent. In this case, both types of evidence will be 

combined. Data modifications could be detected by obtaining the hash value of 

the relevant data file in the TOC periodically. 

(2) The independent mode – In this mode, a security property is assessed for a TOC 

by both monitoring and testing independently without any of these assessments 

being triggered by outcomes of the other. Then at specific points defined by the 

evidence sufficiency conditions of the certification model the two bodies of 

evidence are correlated and cross-checked to complete the hybrid assessment. 

The evidence is collected through independent tests and through monitoring that 

take place in parallel.  

Let us suppose that we are going to assess the availability security property. As 

defined in [160], this property expresses the percentage of successful requests 

processed by the TOC over the total number of submitted requests and is 

measured by the percentage of calls that satisfy this condition over an assessment 

period. An independent hybrid model for the certification of TOC availability 

could be based on collecting evidence regarding the availability of a TOC through 

monitoring and testing independently (i.e., without any of these activities being 

triggered by outcomes of the other) and then correlating and cross-checking the 

evidence. 

 



 

40 
 

A non-hybrid certification model includes all the elements required for the certification of a 

security property and is used to specify the security property that needs to be certified, it 

provides the formal definition of the security property (assertion) and describes the elements that 

refer to the monitoring and test-based certificates.  In addition to what a non-hybrid CUMULUS 

certification model defines, a hybrid certification model will define: (a) the mode of hybrid 

certification; (b) the way of correlating and analysing monitoring and testing evidence; (c) 

conditions for characterising these types of evidence as conflicting, and (d) the way in which a 

final overall assessment of the property can be generated based on both types of evidence. 

 

3.5 Hybrid certification model schema description 

In the following section, I will provide a more detailed description of the hybrid certification 

model schema. The schema is based on collecting evidence to certify the availability of a TOC 

through monitoring and testing, and then, on correlating and cross-checking the evidence 

collected. The hybrid certification model schema will be based on the test-based certification 

model schema and on the monitoring-based certification model schema that have been 

developed for CUMULUS and are defined in [166][167].  

For that reason, the test-based and the monitoring-based certification model schemas will be 

presented, and the elements of these schemas that have been used or refined in the hybrid 

schema will be explained. Moreover, the new elements that have been added to the hybrid 

schema will be introduced and described thoroughly. Finally, a table summarising all the 

elements of the hybrid certification model will be provided, and then, a detailed description of 

the hybrid certification model schema will follow. In this table, I explain which elements are 

new and which already-existing elements have been refined to fit the hybrid purposes. 

 

 

 

 

 



 

41 
 

Test-based Certification Model Schema 

The Test-based Certification Model Schema presented below shows the fundamental artefacts 

deriving from the model for Static/Offline and Dynamic/Online Test-based Certification (Figure 

1). This model is part of the CUMULUS project. 

 

 

 

Figure 1 - Test-based Certification Model schema 

 

 

 

 

 

 

 



 

42 
 

Monitoring-based Certification Model Schema 

The Monitoring-based Certification Model Schema is presented below (Figure 2). This model is 

part of the CUMULUS project. 

 

 

 

Figure 2 - Monitoring-based Certification Model Schema 

 

 

 



 

43 
 

 

The testing and monitoring certification model schemas developed for the CUMULUS project 

have certain limitations. More specifically, the test-based certification model schema does not 

include an element to specify explicitly the interfaces that are provided or required for the 

assessment of the TOC. Also, the test-based certification model schema does not include an 

element concerning the expiration time of the evidence collected for the assessment of the 

security properties and does not define a state transition model that can drive the mechanisms 

behind the lifecycle element that are required when the certificate moves from one state to 

another. On the other hand, the monitoring-based certification model schema defines different 

states than the ones defined in the lifecycle element in the test-based certification model schema 

and uses a different way of defining the TOC and the security properties to be certified. To 

overcome the above problems and limitations, a new certification model had to be defined that 

can be applied when certifying security properties for cloud services and evidence are collected 

through monitoring and testing. So, elements from both certification model schemas were used 

in order to have a common way of certifying security properties when monitoring and testing are 

performed. At this point, I will present the top layer of the hybrid certification model schema 

that I proposed for hybrid certification is presented below (Figure 3). The elements of the hybrid 

certification model schema will be thoroughly described below. 

 



 

44 
 

 

Figure 3 - Hybrid Certification Model Schema 

The following table summarises the elements of the hybrid certification model schema and the 

correspondences between the test-based and the monitoring-based certification model schemas 

already developed. Furthermore, the following table demonstrates which elements of the 

CUMULUS framework have been used and modified to fit the hybrid purposes and which 

elements are newly introduced.  

 

 

 

 

 



 

45 
 

Hybrid based 

Certification 

model 

Description 

Model Id Represents the unique identifier of the certification model instance. This element was 

included in the Monitoring-based certification model schema and has been used for my 

approach, as it fits the hybrid purposes. 

Signature Represents the digital signature of the certification authority that has defined or 

advocated the certification model. This element was included in the Monitoring-based 

certification model schema and has been used for my approach, as it fits the hybrid 

purposes. 

TOC Describes the cloud service to be certified by the particular instance of the certification 

model. For the hybrid schema, elements from the Test-based and the Monitoring-based 

certification model schemas have been used and refined to form this element.  

Security 

Property 

 

Defines the Security Property, which has to be certified by the Certification Model 

instance. Security properties are specified through one or more formal assertions. For 

the hybrid certification model schema, I have used the SecurityProperty element from 

the Monitoring-based certification model schema as it fits the hybrid purposes. 

Collectors 

Evidence 

Aggregation 

Defines how evidence will be collected and aggregated. This element contains sub-

elements of the Collectors element from the Test-based certification model schema and 

sub-elements of the MonitoringConfigurations element and EvidenceAggregation 

elements of the Monitoring-based certification model schema, which have been refined 

to fit the hybrid purposes. 

Lifecycle 

Model 

Defines the basic stages in the generation and management of the certificates. The 

LifecycleModel element from the Monitoring-based certification model schema has 

been used, but refined to fit the hybrid purposes. 

Assessment 

Scheme 

The core metrics and conditions regarding the assessment of the property to be 

certified are formally expressed through the assertion(s) included in the definition of 

this property. The AssessmentScheme element specifies the evidence sufficiency 

conditions, the expiration conditions and the TriggerDecisionCondition element. The 

EvidenceSufficiencyConditions and ExpirationConditions elements from the 

Monitoring-based certification model schema have been used and refined to fit the 

hybrid purposes. The TriggerDecisionCondition element is new. 

Cross-check Defines the conditions for cross-checking evidence collected from testing and 



 

46 
 

Hybrid based 

Certification 

model 

Description 

Scheme monitoring. This element also contains the deviation conditions and further exploration 

conditions when more evidence is required for issuing a certificate. This element is 

new.  

Table 1- Elements of the Hybrid Certification Model Schema and correspondence with previous 

Schemas 

 

3.5.1 Model Id element 

The Model_Id element, as shown in Figure 4, is the element in the schema that represents the 

unique identifier of the certification model instance. Model_Id is an element of type string. This 

element was included in the Monitoring-based certification model schema and has been used in 

the Hybrid Certification model schema as it fits the hybrid purposes. An example of this element 

in XML is shown below. 

<Model_Id>cumulus:cm:id:hybrid:00001</Model_Id>	

 

The identifier of the certification model is different from the identifier of an instance of the 

model that is used when the model is applied, in order to certify a given property of a particular 

TOC. 

 

Figure 4 - Model Id element 

 

3.5.2 Signature element 

The Signature element, as shown in Figure 5, is the element in the schema that represents the 

digital signature of the certification authority and is an element of type string. This element was 

included in the Monitoring-based certification model schema and has been used in the Hybrid 



 

47 
 

Certification model schema, as it fits the Hybrid purposes. An example of the Signature element 

in XML is shown below.  

<Signature>		

						<Name>CUMULUS_City</Name>								

						<Role>Certifier</Role>		

<Signature>		

 

 

Figure 5 - Signature element 

 

3.5.3 TOC element 

The TOC (TargetOfCertification) element describes the cloud service to be certified by a 

particular instance of the certification model, as shown in Figure 6. The TOC element allows the 

definition of the interfaces provided by the cloud stack that need to be further analysed. For the 

hybrid schema, elements from both testing and monitoring schemas have been used. The TOC is 

an element of type TOCType. This element includes an attribute, called “Id”, which represents 

the unique identifier of the TOC and is an attribute generated by the framework, in order to 

guarantee the alignment for Test-based and Monitoring-based Certification Model (CM) 

instances. The other sub-elements are: the ConcreteToc sub-element that contains a description 

about the specific concrete instance to be certified, the Scope sub-element that describes the 

generic cloud stack layer (i.e. SaaS, PaaS or IaaS), the TocDescription sub-element that contains 

a textual description about the TOC, the TocURI sub-element that contains a URI identifier (i.e. 

the reference to the services to be certificated) and the TocInterfaces sub-element that specify the 

operations whose execution and results are needed for the certification process. 



 

48 
 

	

Figure 6 - TOC element 

 

 

An example is given below: 

				<TOC	Id="ID001">	

								<ConcreteToc>server</ConcreteToc>			

	 <Scope>Saas</Scope>		

								<TocDescription>Application</TocDescription>				

								<TocURI>10.0.0.155</TocURI>		

								<TocInterfaces>	[.....]	</TocInterfaces>	

				</TOC>				

 

The TocInterfaces is an element of type targetOfCertificationType. This element includes an 

attribute, called “id”, which represents the unique identifier of the TOC, and is mandatory. Also, 



 

49 
 

the TocInterfaces includes a sequence of providesInterface and requiresInterface sub-elements. 

These elements specify sets of operations whose execution and results will need to be monitored 

or tested during the certification process. The providesInterface element specifies the interfaces 

that the target of certification offers itself. The requiresInterface element specifies the interfaces 

that the target of certification expects an external entity to have. 

	

The sub-elements of the TocInterfaces element specify how interfaces are described in the XML 

schema. This element is of TargetOfCertificationType and has an ID attribute specifying the 

unique identifier of the TocInterfaces element generated by the framework, and a sequence of 

providesInterface and requiresInterface elements, that are of InterfaceDeclType. 

• The providersInterface element as shown in Figure 7 is mandatory, includes a sequence 

of IDs, provider references (ProviderRef), zero or more Endpoints that indicate where the 

service will be invoked and Interfaces that define the interface that a TOC itself realises.  

 

	

Figure 7 - Provides Interface sub-element 

	

<TocInterfaces	id="id1">	

								<providesInterface>	

												[...]	

								</providesInterface>	

			<requiresInterface>	

												[…]	

								</requiresInterface>	

</TocInterfaces	>	



 

50 
 

• The requirersInterface element (Figure 8) is optional and includes a sequence of IDs, one 

or more provider references (ProviderRef) and zero or more Endpoints that indicate 

where the service will be invoked and Interfaces that the TOC requires from external 

entities.	

	

	

 

Figure 8 - Requires Interface sub-element 

 

Below is an example of the providesInterface and the requiresInterface elements in XML. In the 

following example, the security property that is certified is the data integrity-at-rest security 

property. According to that example, the interface that is provided by this entity is a set of 

operations for updating data by the service consumer to the TOC. The TOC requires one external 

interface from the certification authority concerning the authorisation of the service consumer 

who requested the update operation. 

	



 

51 
 

<providesInterface>	

												<ID>interface::update::a::1/</ID>	

												<ProviderRef>Cumulus::provider::a::1</ProviderRef>	

												<Endpoint>	

																<ID>a111</ID>	

																<Location>http://www.cumulus-project.eu</Location>	

																<Protocol>SOAP</Protocol>	

												</Endpoint>	

												<Interface>	

																<InterfaceSpec>	

																				<Name>av::update::a::1</Name>	

																				<Operation>	

																								<InterfaceId>update::data::a::1</InterfaceId>	

																								<OperationId>update::operation::a::1</OperationId>	

																								<OperationName>update</OperationName	>	

																				</Operation>	

																</InterfaceSpec>	

												</Interface>	

								</providesInterface>	

								

							<requiresInterface>	

												<ID>interface::auth::ca::1</ID>	

												<ProviderRef></ProviderRef>	

												<Endpoint>	

																<ID>b111</ID>	

																<Location>http://www.cumulus-project.eu</Location>	

																<Protocol>SOAP</Protocol>	

												</Endpoint>	

												<Interface>	

																<InterfaceRef>	

																				<InterfaceLocation>	http://www.cumulus-project.eu	</InterfaceLocation>	

																</InterfaceRef>	

												</Interface>	

								</requiresInterface>	

 

3.5.4 Security property element 

For the hybrid certification model schema, I have used the SecurityProperty element from the 

Monitoring-based certification model schema, as it fits the hybrid purposes. A description of the 

Security Property element will be presented. 

The SecurityProperty element, as shown in Figure 9, defines the security property, which has to 

be certified by the Certification Model instance and is of securityPropertyType.	

	



 

52 
 

	

Figure 9 - Security Property element 

 

The SecurityProperty element includes a SecurityPropertyId, a SecurityPropertyDefinition, a 

Vocabulary and a ShortName attribute as defined in (CSA, D2.1 Development of security 

properties specification scheme and security dependency models, 2013). Additionally, it 

contains an Assertion element, which is of AssertionType.  

An example of the Security Property element in XML is given below: 

<SecurityProperty	SecurityPropertyId="	PercentageOfProcessedRequests">	

SecurityPropertyDefinition="percentage	of	successful	requests	processed	by	the	TOC	over	the	total	number	

of	submitted	requests"	Vocabulary="	BCR:availability:percentage-of-processed-requests"	ShortName="BCR01"	

<Assertion	ID="1100">	…	</Assertion>	

The Assertion sub-element, as shown in Figure 10, is used to provide the definition of the 

security property to be certified. Assertion is an element of complex type AssertionType. 

According to this type, an assertion consists of the interface declaration that specifies the 

interfaces that must be certified, the variable declaration that specify conditions within assertions 

that specify security properties and the guaranteed terms, which define the conditions that must 

be monitored and tested to guarantee that a security property is satisfied.  

	



 

53 
 

	

Figure 10 - Assertion sub-element 

 

The element InterfaceDeclr, as shown in Figure 11, defines the interface declarations and 

provides the means to represent the details of functional interface specifications. It includes the 

mandatory sub-element ID that identifies the interface declarations, the mandatory sub-element 

ProviderRef that identifies the party that is provides the interface, the optional Endpoint sub-

element that specifies the endpoints that implement the specific interface and where the interface 

operations can be invoked, and, finally, the mandatory sub-element Interface that defines the 

required interface.  

 



 

54 
 

 

Figure 11 - InterfaceDecl sub-element 

 

The element VariableDeclr, as shown in Figure 12, is of type variableType and is used to define 

variables to describe the conditions within assertions that specify formally security properties. 

This element has two attributes:  

i) persistent, that indicates whether the value of the variable is the same throughout all 

instances and  

ii) forMatching, that distinguishes between internal and external variables  

 

and consists of the following elements:  

• varName, that is of type String signifying the name of the variable;  

• either a varType of type String and value element of type String  or a value element of object 

type; OR  

• an array element of type arrayType with elements that describe the array structure 

 



 

55 
 

 

Figure 12 - VariableDeclr element 

	

The element Guaranteed, as shown in Figure 13, is of complex type AssertionFormulaType and 

represents a guarantee that a certain state of affairs will hold. The AssertionFormulaType has 

two attributes: 

i) the attribute ID that is the unique id of the formula, and 

ii) the attribute type that signifies if the guarantee is an assertion that needs to be 

checked against information that will arise after the events that will trigger the check 

of the assertion have occurred (i.e., a “future” assertion), or an assertion that should 

be checked against information that exists at the time point when the events that 

trigger the check of it have occurred (i.e., a “past” assertion) 

 

and contains the following sub-elements: 



 

56 
 

 

i) a list of quantification elements that define the quantifiers for the variables and time 

variables, used to specify conditions of the assertion  

ii) an optional precondition element that determines the conditions under which the 

assertion should be checked (i.e., the conditions which if become true should trigger 

the checking of the assertion) 

iii) a postcondition element that and determines the conditions that are guaranteed to 

hold (i.e. they become true if the preconditions are true). 

	

 

Figure 13 - Guaranteed sub-element 

 

An atomic condition can be of three different types:  

 

• an event condition (i.e., an element of eventConditionType) , 

• a state condition (i.e., an element of type stateConditionType) or 

• a relational condition (i.e., an element of type relationalConditionType). 

 



 

57 
 

Event conditions are conditions regarding the occurrence of events related to the TOC that the 

assertion refers to (e.g., the occurrence of an invocation (call) of an operation in one of the 

TOC’s interfaces or a response to such a call). A state condition is a condition about the state of 

the system that is being monitored at a given time point (e.g., a condition stating a certain user 

has already logged in to it). A relational condition is a condition about the value of a variable 

used in an assertion (e.g., a condition requiring a variable to have a certain value or a condition 

requiring two variables to have the same value). 

 

 

Figure 14 - Condition Types 

 

An event condition is a condition regarding the occurrence of a call of an operation (i.e., a call 

event), a response to a call of an operation (i.e., a reply event), or an execution of an operation 

that must be invoked (i.e., an execute event). An event condition includes by the following sub-

elements:  

 

(i) an eventID that identifies the event of the condition 

(ii) an optional correlatedEventID which refers to another event that may be related to 

this event. This is particularly important for my hybrid model as an event 



 

58 
 

representing the execution of a test can be correlated with an event representing the 

call 

(iii) a call, reply or execute element that specifies if the event of the condition is a call, 

reply or execute event.  

(iv) an element tVar that defines the timepoint at which the event is expected to occur. A 

tVar element can be defined as either timeVar element that is useful when an event is 

expected to occur at a specific time instance or a timePeriod element that defines the 

time period. A timeVar element consists of a varName element of type string for 

specifying the name of the variable, a varType element of type string, which has a 

fixed value, and, a value element of type string for specifying the time instance when 

the relevant event occurs. A time period element consists of a time period and a time 

period unit. The TimePeriod element is used when there is an event that is associated 

with is an execution event (i.e., operation call) that must be executed periodically. 

(v) a time range within which the event must occur and is defined by an upper and a 

lower time boundary. The lower boundary of the time range of an event is defined by 

the element fromTime. The upper boundary of the time range of an event is defined 

by the element toTime.  

 

 

 

 

Figure 15 - Event Condition Type 



 

59 
 

	

The call, reply and execute elements are of operationType, as shown in Figure 16, and consist of 

the following elements: 

 

• an interfaceId element that specifies the interface that the operation belongs to 

• an operationId element that specifies the unique id of the operation within the interface 

• an operationName element that specifies the name of the operation 

• zero or more inputVariable elements that specify the input variables of the operation. 

• zero or more outputVariable elements that specify the output variables of the operation. 

 

 

Figure 16 - Operation Type 

	

The second type of atomic conditions is the state conditions, as shown in Figure 17. State 

conditions refer to the state of the system. These relations can be set up at the beginning of 

the operation of a system or initiated by events that occur at specific time. These relations 

describe also the termination of events by other events. When a state condition is initiated by 

an event, it holds until the time it is terminated by another event. 

	

	

	

	



 

60 
 

A StateCondition element consists of the following elements: 

• an initiates element that expresses the initialisation of a state by an event at some time 

point  

• a terminates element that expresses the termination of a state by an event 

• a holdsAt element that represents a system state which it holds at specific time point 

• an initially element that represents a state value at the beginning of a monitored period of 

system operation. 

 



 

61 
 

 

Figure 17 - stateCondition sub-element 

	

	



 

62 
 

The third type of atomic conditions is the relational conditions that enable the specification 

conditions concerning the values of variables used in the assertions (e.g. a condition requiring 

that one of the input variables of an operation that has been invoked by a call event has a 

particular value at the time of the invocation), as shown in Figure 18. The relationalCondition 

element can be one of the following conditions: 

• equalto (operand1, operand2) 

• notEqualTo (operand1, operand2) 

• lessThan (operand1, operand2) 

• greaterThan (operand1, operand2) 

• lessThanEqualTo (operand1, operand2) 

• greaterThanEqualTo (operand1, operand2) 

Finally, a relational condition element has also a timeVar element that expresses the time point at 

which the relational condition should hold.  



 

63 
 

 

Figure 18 - relationalCondition sub-element 



 

64 
 

The operands are of OperandType and can be variables, operation calls, expressions, event series 

expressions or constants, as shown in Figure 19. 

 

Figure 19 - operandType 

An operationCall element is of type functionType, as shown in Figure 20, and includes the 

following elements: 

• a name element that specifies the name of the function; 

• a partner element that signifies the service providing the function and 

• zero or more argument elements which may be of one of  the following types: an 

eventSeriesVariable, a variable element, a constant element or a function element of 

functionType. An operation call element defines a function that needs to be executed. 

When a function operand is encountered during the evaluation of a relational condition, 

the values of its arguments are established first and then the function is executed. 

 



 

65 
 

 

Figure 20 - operationCall sub-element 

 

The eventSeriesExpression, as shown in Figure 21, specifies the computation over a series of 

values of some arguments. This element consists of the following elements: (a) an 

eventSeriesCondition element that signifies the conditions that produces the series values and (b) 

a computation element which signifies the computation that should be performed over the series 

values. The computation element contains either an execute element or a function element. The 

eventSeriesExpression element supports the cases where the execution of tests is required. 

 



 

66 
 

 

Figure 21 - eventSeriesExpression sub-element 

 

An example of the Guaranteed sub-element is given below expressed in XML. I am providing a 

rule for the data integrity-at-rest security property where requests for updates of _TOC data are 

monitored, and, for every such request that is granted by the TOC (there is a verification code 

with the value “granted”) within a specific time frame of 100 msec, the rule requests the 

execution of a test to check if the entity that requested the update had indeed the authorisation to 

update data. 

 

<Assertion	ID="AS001">	

			<InterfaceDeclr>	

	 <ID>0001</ID>	

	 <ProviderRef>proRef1</ProviderRef>	

	 <Endpoint>	

	 	 <ID>eop1</ID>	

	 	 <Location>http://</Location>	

	 	 <Protocol>SOAP</Protocol>	

	 </Endpoint>	

	 <Interface>	

	 	 <InterfaceSpec>	

	 	 			 	 <Name>update</Name>	

	 	 	 	 <Operation>	

	 	 	 	 <interfaceId>updateData</interfaceId>	

	 	 	 	 <OperationId>id0001</OperationId>	

	 	 	 	 <operationName>updateOp</operationName>	

	 	 	 	 <inputVariable	forMatching="true"	persistent="false">	

	 	 	 	 	 <varName>cred</varName>	

	 	 	 			 	 <varType>string</varType>	

	 	 	 	 </inputVariable>	

	 	 	 	 <inputVariable	forMatching="true"	persistent="false">	



 

67 
 

	 	 	 	 	 <varName>data</varName>	

	 	 	 	 	 <varType>string</varType>	

	 	 	 	 </inputVariable>	

	 	 	 	 <outputVariable>	

	 	 	 	 	 <varName>auth</varName>	

	 	 	 	 	 <varType>string</varType>	

	 	 	 	 </outputVariable>	

	 	 	 	 <outputVariable>	

	 	 	 	 	 <varName>cred</varName>	

	 	 	 	 	 <varType>string</varType>	

	 	 	 	 </outputVariable>	

	 	 	 	 <outputVariable>	

	 	 	 	 	 <varName>data</varName>	

	 	 	 	 	 <varType>string</varType>	

	 	 	 	 </outputVariable>	

																																<outputVariable>	

	 	 	 	 	 <varName>vCode</varName>	

	 	 	 	 	 <varType>string</varType>	

	 	 	 	 </outputVariable>	

	 	 	 	 </Operation>	

	 	 </InterfaceSpec>	

	 </Interface>	

					</InterfaceDeclr>	

					<InterfaceDeclr>	

	 <ID>002</ID>	

	 <ProviderRef>proRef2</ProviderRef>	

	 <Endpoint>	

	 	 <ID>eop2</ID>	

	 	 <Location>http://</Location>	

	 	 <Protocol>SOAP</Protocol>	

	 </Endpoint>	

	 <Interface>	

	 	 <InterfaceSpec>	

	 	 	 	 <Name>authorise</Name>	

	 	 	 	 <Operation>	

	 	 	 	 <interfaceId>authoriseagent</interfaceId>	

	 	 	 	 <OperationId>id0002</OperationId>	

	 	 	 	 <operationName>authop</operationName>	

	 	 	 	 <inputVariable	forMatching="true"	persistent="false">	

	 	 	 	 	 <varName>cred</varName>	

	 	 	 	 	 <varType>string</varType>	

	 	 	 	 </inputVariable>	

	 	 	 	 <inputVariable	forMatching="true"	persistent="false">	

	 	 	 	 	 <varName>data</varName>	

	 	 	 	 	 <varType>string</varType>	

	 	 	 	 </inputVariable>	

	 	 	 	 <outputVariable>	

	 	 	 	 	 <varName>auth</varName>	

	 	 	 	 	 <varType>string</varType>	

	 	 	 	 </outputVariable>	



 

68 
 

	 	 	 	 </Operation>	

	 	 </InterfaceSpec>	

	 </Interface>	

</InterfaceDeclr>	

<Guaranteed	ID="av1"	type="Future_Formula">	

	 					<quantification>	

	 	 <quantifier>forall</quantifier>	

	 	 						<timeVariable>	

	 	 							 <varName>t1</varName>	

	 	 							 <varType>TimeVariable</varType>	

	 	 						</timeVariable>	

	 	 </quantification>	

	 	 <quantification>	

	 	 						<quantifier>existential</quantifier>	

	 	 												<timeVariable>	

	 	 	 <varName>t2</varName>	

	 	 	 <varType>TimeVariable</varType>	

	 	 												</timeVariable>	

	 	 							</quantification>	

	 	 <precondition>	

	 	 						<atomicCondition	conditionID="ac0">	

	 	 											<eventCondition	unconstrained="true">	

	 	 	 <event>	

	 	 	 					<eventID	forMatching="true"	persistent="false">	

	 	 	 											<varName>VID0</varName>	

	 	 	 					</eventID>	

	 	 	 					<call>	

	 	 	 									<interfaceId>	interface::update::a::1/</interfaceId>	

	 	 	 										<OperationId>1</OperationId>	

	 	 	 										<operationName>upload</operationName>	

	 	 	 											<inputVariable	forMatching="true"	persistent="false">	

	 	 	 	 					<varName>status1</varName>	

	 	 	 	 					<varType>OpStatus</varType>	

	 	 	 	 					<value>REQ-B</value>	

	 	 	 											</inputVariable>	

	 	 	 											<inputVariable	forMatching="true"	persistent="false">	

	 	 	 	 					<varName>sender</varName>	

	 	 	 	 					<varType>Entity</varType>	

																																						<value></value>	

	 	 	 										</inputVariable>	

	 	 	 										<inputVariable	forMatching="true"	persistent="false">	

	 	 	 	 					<varName>receiver</varName>	

	 	 	 	 					<varType>Entity</varType>	

	 	 	 	 					<value></value>	

	 	 	 										</inputVariable>	

	 	 	 										<inputVariable	forMatching="true"	persistent="false">	

	 	 	 	 					<varName>source1</varName>	

	 	 	 						 					<varType>Entity</varType>	

	 	 	 	 					<value></value>	

	 	 	 										</inputVariable>	



 

69 
 

																																		<inputVariable	forMatching="true"	persistent="false">	

	 	 	 	 					<varName>serviceId</varName>	

	 	 	 	 					<varType>string</varType>	

	 	 	 	 					<value></value>	

	 	 	 											</inputVariable>	

	 	 	 										<inputVariable	forMatching="true"	persistent="false">	

	 	 	 	 					<varName>cred</varName>	

	 	 	 	 					<varType>string</varType>	

	 	 	 											</inputVariable>	

																																				<inputVariable	forMatching="true"	persistent="false">	

	 	 	 	 	 <varName>data</varName>	

	 	 	 	 	 <varType>string</varType>	

	 	 	 	 		</inputVariable>	

	 	 	 	 		<inputVariable	forMatching="true"	persistent="false">	

	 	 	 	 	 <varName>auth</varName>	

	 	 	 	 	 <varType>string</varType>	

	 	 	 	 		</inputVariable>	

	 	 	 		</call>	

	 	 	 					<tVar>	

	 	 	 								<timeVar>	

	 	 	 	 <varName>t1</varName>	

	 	 	 	 <varType>TimeVariable</varType>	

	 	 	 								</timeVar>	

	 	 	 					</tVar>	

	 	 	 					<fromTime>	

	 	 	 											<time>	

	 	 	 	 <varName>t1</varName>	

	 	 	 	 <varType>TimeVariable</varType>	

	 	 	 											</time>	

	 	 	 						</fromTime>	

	 	 	 						<toTime>	

	 	 	 												<time>	

	 	 	 	 <varName>t1</varName>	

	 	 	 	 <varType>TimeVariable</varType>	

	 	 	 													</time>	

	 	 	 						</toTime>	

	 	 	 </event>	

	 	 												</eventCondition>	

	 	 						</atomicCondition>	

																						<WrappedCondition>	

	 	 	 <operator>and</operator>	

	 	 	 								<assertionCondition>	

	 	 	 	 <atomicCondition>	

	 	 	 	 						<relationalCondition>	

	 	 	 	 	 <equal>	

	 	 	 	 	 					<operand1>	

	 	 	 	 	 													<variable>	

	 	 	 	 	 							 						<varName>vCode</varName>	

	 	 	 	 	 	 						<varType>string</varType>	

	 	 	 	 	 													</variable>	



 

70 
 

	 	 	 	 																							</operand1>	

	 	 	 	 	 					<operand2>	

	 	 	 	 	 														<constant>	

	 	 	 	 	 														<name>vcode</name>	

	 	 	 	 	 																<value>granted</value>	

	 	 	 	 	 													</constant>	

	 	 	 	 													</operand2>	

	 	 	 	 	 </equal>	

	 	 	 	 	 <timeVar>	

	 	 	 	 	 				<varName>t2</varName>	

	 	 	 	 	 				<varType>TimeVariable</varType>	

	 	 	 	 	 </timeVar>	

	 	 	 	 			</relationalCondition>	

	 	 	 	 </atomicCondition>	

																													</assertionCondition>	

	 	 												</WrappedCondition>	

	 	 </precondition>	

	 	 <postcondition>	

	 	 						<atomicCondition	conditionID="ac1">	

	 	 	 <eventCondition	unconstrained="true">	

	 	 	 						<event>	

	 	 	 										<eventID	forMatching="true"	persistent="false">	

	 	 	 	 <varName>VID1</varName>	

	 	 	 										</eventID>	

	 	 	 	 <execute>	

	 	 	 	 						<interfaceId>	interface::auth::ca::1</interfaceId>	

	 	 	 	 						<OperationId>2</OperationId>	

	 	 	 	 						<operationName>authorise</operationName>	

	 	 	 	 						<outputVariable	forMatching="true"	persistent="false">	

	 	 	 	 	 <varName>status2</varName>	

	 	 	 	 	 <varType>OpStatus</varType>	

	 	 	 	 	 <value>RES-B</value>	

	 	 	 	 					</outputVariable>	

	 	 	 	 					<outputVariable	forMatching="true"	persistent="false">	

	 	 	 	 	 <varName>receiver1</varName>	

	 	 	 	 	 <varType>Entity</varType>	

	 	 	 	 					</outputVariable>	

	 	 	 	 					<outputVariable	forMatching="true"	persistent="false">	

	 	 	 	 	 <varName>sender1</varName>	

	 	 	 	 	 <varType>Entity</varType>	

	 	 	 	 						</outputVariable>	

	 	 	 	 							<outputVariable	forMatching="true"	persistent="false">	

	 	 	 	 	 <varName>source1</varName>	

	 	 	 	 	 <varType>Entity</varType>	

	 	 	 	 					</outputVariable>	

	 	 	 	 					<outputVariable	forMatching="true"	persistent="false">	

	 	 	 	 	 <varName>serviceId</varName>	

	 	 	 	 	 <varType>string</varType>	

	 	 	 	 					</outputVariable>	

	 	 	 	 					<outputVariable	forMatching="true"	persistent="false">	



 

71 
 

	 	 	 	 	 <varName>cred</varName>	

	 	 	 	 	 <varType>string</varType>	

	 	 	 	 					</outputVariable>	

																																						<outputVariable	forMatching="true"	persistent="false">	

	 	 	 	 	 <varName>auth</varName>	

	 	 	 	 	 <varType>string</varType>	

	 	 	 	 						</outputVariable>	

																																							<outputVariable	forMatching="true"	persistent="false">	

	 	 	 	 	 <varName>vCode2</varName>	

	 	 	 	 	 <varType>string</varType>	

	 	 	 	 						</outputVariable>	

	 	 	 	 </execute>	

	 	 	 	 <tVar>	

	 	 	 	 					<timeVar>	

	 	 	 	 	 <varName>t3</varName>	

	 	 	 	 	 <varType>TimeVariable</varType>	

	 	 	 	 						</timeVar>	

	 	 	 	 </tVar>	

	 	 	 	 <fromTime>	

	 	 	 	 					<time>	

	 	 	 	 								<varName>t2</varName>	

	 	 	 	 	 <varType>TimeVariable</varType>	

	 	 	 	 						</time>	

	 	 	 	 </fromTime>	

																																	<toTime>	

	 	 	 	 					<time>	

	 	 	 	 								<varName>t3</varName>	

	 	 	 	 	 <varType>TimeVariable</varType>	

	 	 	 	 					</time>	

	 	 	 	 					<Expression>	

	 	 	 	 							<plus>100</plus>	

	 	 	 							 					</Expression>	

	 	 	 	 </toTime>	

	 	 	 			</event>	

	 	 	 </eventCondition>	

	 	 </atomicCondition>	

									</postcondition>	

</Guaranteed>	

 

3.5.5 Collector Evidence Aggregation element 

The Collector Evidence Aggregation element, as shown in Figure 22, defines how evidence will 

be collected and aggregated. This element contains the TestingCollector element that describes 

the type of testing that needs to be performed along with the frequency of periodic testing, the 

MonitoringConfigurations element that specifies the list of the monitoring configurations that 



 

72 
 

have been used to collect the evidence for generating certificates, the 

MonitoringAggregatedResultsInfo element that defines how often the monitoring evidence will 

be checked to create a new certificate, the EventSummary elemene that contains information 

about the number of violations detected in monitoring and testing, the FunctionalAggregatorId 

that defines what type of aggregation should be done in the events (e.g. min value, max value, 

standard deviation, average value), and, the IntermediateResults element which specifies if there 

is a need to aggregate evidence between two predefined aggregation periods, to check the 

validity of the certificate. This element contains elements from the Test-based certification 

model schema and the Monitoring-based certification model schema, but has been refined to fit 

the hybrid purposes. 

 

Figure 22 - CollectorsEvidenceAggregation element 

The TestingCollector, as shown in Figure 23, has a unique identifier attribute of the collector 

element and an attribute that defines if the testing required will be static or dynamic, and consists 

of the following elements: 

• a TestCategory element, that defines if the type of testing required 

• a TestDescription element that specifies the testing mechanism, describing what needs to 

be tested 

• a TestFrequencyUnit element that defines the unit concerning the frequency of testing that 

is required 



 

73 
 

• a TestFrequencyValue that defines the value of the frequency of testing that is required 

 

 

Figure 23 - TestingCollector sub-element 

	

An example of the TestingCollector element for the certification of the data integrity-at-rest 

security property is shown below. According to this example, in order to issue a certificate we 

need to perform periodic online integration testing and to send authcodes to perform the 

authorisation operation. 

	
<TestingCollector	Id="Id0"	isStatic="false">	

												<TestCategory>integration</TestCategory>	

												<TestDescription>	Send	authcodes	(with	malformed	pass)	to	perform	authorisation			

																	operation</TestDescription>	

												<TestFrequencyUnit>sec</TestFrequencyUnit>	

												<TestFrequencyValue>3</TestFrequencyValue>	

</TestingCollector>	



 

74 
 

 

The MonitoringConfigurations element, as shown in Figure 24, specifies the list of the 

monitoring configurations that have been used to collect the evidence for generating certificates 

and includes a unique Id, a list of components of the monitoring environment that can be 

sensors, which are components capable of capturing and transmitting primitive monitoring 

events or reasoners, which are the monitors that are capable of analysing events and checking 

whether monitoring conditions are satisfied. 

 

 

Figure 24 - MonitoringConfigurations sub-element 

 

In the following example, the framework is configured with a reasoner component, whose 

endpoint is: https://192.168.43.23:8888/CumulusService.wsdl. 

<MonitoringConfigurations>	

												<MonitoringConfiguration>	

																<Component>	

																				<Reasoner>	

																								<EndPoint>https://192.168.43.23:8888/CumulusService.wsdl</EndPoint>	

																								<AssertionId>av::1</AssertionId>	

																				</Reasoner>	

																</Component>	

</MonitoringConfiguration>	

 



 

75 
 

The MonitoringAggregatorResultsInfo element, as shown in Figure 25, defines how often the 

monitoring evidence will be checked to create a new certificate, with new aggregated evidence. 

This element includes the following attributes: 

• the StartDate of the first aggregation 

• the Timestamp of the monitoring event 

• the NumberOfMonitoringEvents, which is the number of the primitive monitoring events being 

aggregated 

• the intervalsTime, which specifies how often should the evidence being aggregated 

• the intervalUnit, which declares the unit used to specify the intervals. 

 

 

Figure 25 - MonitoringAggregatedResultsInfo sub-element 

 

The EventSummary element, as shown in Figure 26, defines the minimum number of satisfactions 

and the number of violations required for issuing a certificate. The evidence used to detect the 

violations and the satisfactions come from monitoring and testing evidence. This sub-element 



 

76 
 

includes the maxNumberOfMonitoringTestingEvidenceViolations and the 

minNumberOfMonitoringTestingEvidenceSatisfactions attributes, and describes the maximum 

acceptable number of violations and the minimum acceptable number of satisfactions, for a 

certificate to be issued.  

 

 

Figure 26 - EventSummary sub-element 

 

The FunctionalAggregatorId, as shown in Figure 27, is an optional element and defines what 

type of aggregation should be done in the events (e.g. min value, max value, standard 

deviation, average value). 

 

Figure 27 - FunctionalAggregationId sub-element 

 

Finally, the IntermediateResults, as shown in Figure 28, is an optional element and specifies if 

there is a need to aggregate evidence between two predefined aggregation periods, to check the 

validity of the certificate.  

 

Figure 28 - IntermediateResults sub-element 



 

77 
 

A full example of the CollectorEvidenceAggregation element in XML is given below. In this 

example, I examine the data integrity-at-rest security property. With periodic online testing 

authcodes are sent to perform the authorisation operation. The framework is configured with 

a reasoner component with a predefined endpoint. The monitoring aggregation will start on 

date “2015-01-01” and the aggregation of detailed evidence should be carried out at intervals 

of 840 hours. The number of monitoring events than need to be collected is 520. The 

maximum number of violations between testing and monitoring evidence is 100. The average 

value that will be applied for the property will be a Boolean. 

 

<CollectorEvidenceAggregation>	

<TestingCollector	Id="Id0"	isStatic="false">	

												<TestCategory>integration</TestCategory>	

												<TestDescription>	Send	authcodes	(with	malformed	pass)	to	perform	authorisation			

																	operation</TestDescription>	

												<TestFrequencyUnit>sec</TestFrequencyUnit>	

												<TestFrequencyValue>3</TestFrequencyValue>	

		 </TestingCollector>	

<MonitoringConfigurations>	

												<MonitoringConfiguration>	

																<Component>	

																				<Reasoner>	

																								<EndPoint>https://192.168.43.23:8888/CumulusService.wsdl</EndPoint>	

																								<AssertionId>av::1</AssertionId>	

																				</Reasoner>	

																</Component>	

								</MonitoringConfiguration>	

<MonitoringAggregatedResultsInfo	StartDate="2014-01-01"	Timestamp"2014-01-01"		

		 	NumberOfMonitoringEvents="520"	IntervalsTime="840"	IntervalUnit="hours"	/>	

<EventSummary	minNumberOfMonitoringTestingEvidenceViolations="100">	

<FunctionalAggregatorId>Average</FunctionalAggregatorId>	

<IntermediateResults>False</IntermediateResults>	

</CollectorEvidenceAggregation>	

 

 

 

 



 

78 
 

3.5.6 Lifecycle element 

The LifecycleModel element, as shown in Figure 29, defines the basic stages in the generation 

and management of the certificates. The LifecycleModel element from the Monitoring-based 

certification model schema has been used, but has been refined to fit the hybrid purposes. This 

element consists of an optional InitialState, an optional FinalState, a sequence of atomic states, a 

transitions element that describes the transition between the different states, zero or more 

provided interfaces and zero or more required interfaces.  

 

 

 

Figure 29 - LifeCycleModel element 

 

The InitialState element has a stateId attribute that identifies the initial state uniquely in the state 

transitional model and a name attribute, as shown in Figure 30.  



 

79 
 

 

Figure 30 - InitialState sub-element 

	

An example of the InitialState sub-element is given below in XML: 

<InitialState	stateId="stateId0"	name="Activated"/>	

 

The states element is of type StatesType, which is defined as a sequence of state elements of 

type StateType as shown in Figure 31. The possible atomic states of a certificate are “Activated” 

(Initial State), “Issued”, “Expired”, “SuspendCertificate”, “Revoke”, “Ended”, “Continuous 

MonitoringandTestExecution” and “Issuing”. A state element consists of a sequence of one or 

more atomic states that are of AtomicStateType. The definition is given below: 

 



 

80 
 

Figure 31 - StateType sub-element 

 

An atomic state element is described by the attributes includes a stateId attribute which uniquely 

identifies the state within a state transition model, a name attribute which provides the name of 

the state, a description attribute which can be used to provide a description about this state and a 

sequence of actions that must be executed, such as the execution of tests, the updating of internal 

variables, the invocation of operations or the assignment of variables. An action has an 

executionPoint attribute that defines whether the action is executed when the entity enters or 

exits the state and contains a sequence of actions, as shown in Figure 32.  

	

	

Figure 32 - action sub-element 

 



 

81 
 

	

An example of the states element is given below. This example refers to the data integrity-at-

rest security property that has been introduced earlier. According to this example, the 

“ContinuousMonitoringAndTestExecution” state requires the execution of a test to check if the 

agent who requested the update of data is authorised. 

<states>	

				<state>	

							<atomicState	stateId="stateId1"	name="ContinuousMonitoringAndTestExecution"	description="collection	

of	monitoring	and	testing	evidence">	

													<action	executionPoint="authorisation	interface">	

																			<action>	

																							<operationInvocation	interfaceId="interface::auth::ca::1">	

																														<invocation>	

																																			<execute>	

																																								<interfaceId>interface::auth::ca::1</interfaceId>	

																																								<OperationId>id0002</OperationId>	

																																								<operationName>authop</operationName>	

																																			</execute>	

																														</invocation>	

																							</operationInvocation>	

																			</action>	

													</action>	

								</atomicState>	

					</state>	

</states>		

	

 

The transitions in a LifeCycle Model are described by a Transitions element, which is of type 

TransitionsType and is shown in Figure 33. This element has one or more sub-elements, which 

are of type IndividualTransitionType. 

 



 

82 
 

 

Figure 33 - transition sub-element 

 

Each IndividualTransitionType element includes: 

• an Id attribute of type string, which refers to the identifier of the transition 

• a From attribute of type string, which refers to the identifier of the state that the transition 

starts from 

• a To attribute of type string, which refers to the identifier of the state that the transition 

ends up 

Transitions can be triggered by the following types of events: 

• a system condition whose value is changed (such conditions are described by the sub-

element WhenCondition), or 

• a call event sent to the entity  

• a reply event sent to the entity 

	



 

83 
 

• an optional GuardCondition element expressing a condition which must be true when an 

event that can trigger the transition occurs for the transition to be taken. 

 

 

Figure 34 - Guard Conditions 

	

• Action elements defining the actions that must be executed and completed before the 

transition takes place and the before the entity the destination state of the transition. The 

tests that need to be executed in order to collect evidence are part of the assertion 

language. Therefore, when additional tests are required, they are defined through the 

Action element.  

 

An example is given below. In this example, I describe the transition from “Activated” state to 

the “ContinuousMonitoringAndTestExecution” state. This transition is activated when a reply of 

an update operation in a TOC is detected at some time point t1. The GuardCondition element 

describes the authorisation condition that must be true for the transition to take place. According 

to this condition the vCode needs to have a value “granted”. The action element defines the 

execution of tests that need to take place in order to collect the testing evidence required. 



 

84 
 

<transitions>	

							<transition	Id="1011"	From="ContinuousMonitoringAndTestExecution"	To="Issued">	

																<ReplyEvent	interfaceId="interfaceId4">	

																				<invocation>	

																								<execute>	

																												<interfaceId>interface::auth::ca::1</interfaceId>	

																												<OperationId>id0002</OperationId>	

																												<operationName>authop</operationName>	

																								</execute>	

																				</invocation>	

																</ReplyEvent>	

																<GuardCondition	negated="false">	

																				<Condition	negated="false"	relation="EQUAL-TO">	

																								<Operand1>	

																												<ArithmeticExpression>	

																																<ArithmeticOperand>	

																																				<evidenceRefOperand	referencePath==	"//VariableDeclr/Var/[text()=				

																																				'vCode']"/>			

																																</ArithmeticOperand>	

																												</ArithmeticExpression>	

																								</Operand1>	

																								<Operand2>	

																												<ArithmeticExpression>	

																																<ArithmeticOperand>	

																																				<Constant	type="granted">Constant0</Constant>	

																																</ArithmeticOperand>	

																												</ArithmeticExpression>	

																								</Operand2>	

																				</Condition>	

																</GuardCondition>	

																<action>	

																				<operationInvocation	interfaceId="interfaceId6">	

																								<invocation>	

																												<execute>	

																																<interfaceId> interface::auth::ca::1</interfaceId>	
																																<OperationId>id002</OperationId>	

																																<operationName>authop</operationName>	

																												</execute>	

																								</invocation>	

																				</operationInvocation>	

															</action>		

							</transition>	

</transitions>	

 

 

 



 

85 
 

The FinalState element has a stateId attribute that identifies the final state uniquely in the state 

transitional model and a name attribute, as shown in Figure 35. 

 

 

Figure 35 - Final State 

	

An example of the FinalState sub-element is given below in XML: 

<FinalState	stateId="stateId5"	name="Ended"/>	

  

The providesInterfaces element includes a set of interfaces, which are realised by the entity 

whose behaviour is described by the model, while the requiredInterfaces element includes a set 

of operations which the entity whose behaviour is described by the model expects other external 

interacting entities to have. Both these elements are of InterfaceDeclrType (Figure 36). 



 

86 
 

 

Figure 36 - InterfaceDeclrType 

 

An example of a hybrid Lifecycle for a certificate is presented below. Initially, after the 

activation, the certificate enters the “ContinuousMonitoringAndTestExecution” state and 

evidence is gathered through monitoring and testing. When enough evidence is collected, 

according to the Sufficiency Conditions, then the certificate status is updated to “Issued”. Then, 

if the expiration conditions are reached, the status of the certificate is updated to “Expired”, 

otherwise evidence collected from monitoring and testing are cross-checked. If the evidence is 

contradictory then the status of the certificate is updated to “Suspend Certificate”, otherwise the 

certificate will enter the “Issuing” state. In this case, if violations are not resolved the status will 

be updated to “Revoke”, otherwise the certificate will enter the “Issuing” state.  

 



 

87 
 

 

Figure 37 - LifeCycle Model 

 

An XML example of the lifecycle model describing the transition from the 

“ContinuousMonitoringAndTestExecution” to the “Issued” state is given below.  

<LifeCycleModel>	

			<InitialState	stateId="stateId0"	name="Activated"/>	

							<states>	

									<state>	

											<atomicState	stateId="stateId1"	name="ContinuousMonitoringAndTestExecution"			



 

88 
 

													description="collection	of	monitoring	and	testing	evidence">	

																<action	executionPoint="authorisation	interface">	

																			<action>	

																							<operationInvocation	interfaceId="interface::auth::ca::1">	

																														<invocation>	

																																			<execute>	

																																								<interfaceId>interface::auth::ca::1</interfaceId>	

																																								<OperationId>id0002</OperationId>	

																																								<operationName>authop</operationName>	

																																			</execute>	

																														</invocation>	

																							</operationInvocation>	

																				</action>	

																</action>	

												</atomicState>	

										</state>	

								</states>		

								<transitions>	

												<transition	Id="1011"	From="ContinuousMonitoringAndTestExecution"	To="Issued">	

																<ReplyEvent	interfaceId="interfaceId4">	

																				<invocation>	

																								<execute>	

																												<interfaceId>interface::auth::ca::1</interfaceId>	

																												<OperationId>id0002</OperationId>	

																												<operationName>authop</operationName>	

																								</execute>	

																				</invocation>	

																</ReplyEvent>	

																<GuardCondition	negated="false">	

																				<Condition	negated="false"	relation="EQUAL-TO">	

																								<Operand1>	

																												<ArithmeticExpression>	

																																<ArithmeticOperand>	

																																				<evidenceRefOperand	referencePath==	"//VariableDeclr/Var/[text()=				

																																				'vCode']"/>			

																																</ArithmeticOperand>	

																												</ArithmeticExpression>	

																								</Operand1>	

																								<Operand2>	

																												<ArithmeticExpression>	

																																<ArithmeticOperand>	

																																				<Constant	type="granted">Constant0</Constant>	

																																</ArithmeticOperand>	

																												</ArithmeticExpression>	

																								</Operand2>	

																				</Condition>	

																</GuardCondition>	



 

89 
 

																<action>	

																				<operationInvocation	interfaceId="interfaceId6">	

																								<invocation>	

																												<execute>	

																																<interfaceId> interface::auth::ca::1</interfaceId>	
																																<OperationId>id002</OperationId>	

																																<operationName>authop</operationName>	

																												</execute>	

																								</invocation>	

																				</operationInvocation>	

															</action>		

										</transition>	

						</transitions>	

						<FinalState	stateId="stateId2"	name="Issued"/>	

						<providesInterface>	

												<ID>interface::update::a::1/</ID>	

												<ProviderRef>Cumulus::provider::a::1</ProviderRef>	

												<Endpoint>	

																<ID>a111</ID>	

																<Location>http://www.cumulus-project.eu</Location>	

																<Protocol>SOAP</Protocol>	

												</Endpoint>	

												<Interface>	

																<InterfaceSpec>	

																				<Name>av::update::a::1</Name>	

																				<Operation>	

																								<InterfaceId>update::data::a::1</InterfaceId>	

																								<OperationId>update::operation::a::1</OperationId>	

																								<OperationName>update</OperationName	>	

																				</Operation>	

																</InterfaceSpec>	

												</Interface>	

								</providesInterface>	

								<requiresInterface>	

												<ID>interface::auth::ca::1</ID>	

												<ProviderRef></ProviderRef>	

												<Endpoint>	

																<ID>b111</ID>	

																<Location>http://www.cumulus-project.eu</Location>	

																<Protocol>SOAP</Protocol>	

												</Endpoint>	

												<Interface>	

																<InterfaceRef>	

																				<InterfaceLocation>	http://www.cumulus-project.eu	</InterfaceLocation>	

																</InterfaceRef>	

												</Interface>	

								</requiresInterface>	

</LifeCycle	Model>	



 

90 
 

3.5.7 AssessmentScheme element 

The AssessmentScheme, as shown in Figure 38, element specifies how the evidence collected 

from testing and monitoring will be assessed in order to check if a security property is satisfied. 

This element will check if the evidence sufficiency and expiration conditions are satisfied. 

Additionally, it includes the extra conditions that will define if there are events whose execution 

is forced as part of the assertion conditions (hybrid dependent-mode certification where 

monitoring triggers testing and vice-versa), otherwise the hybrid certification will be of 

independent mode. The EvidenceSufficiencyConditions and ExpirationConditions elements of 

the Monitoring-based certification model schema have been refined and amended for my hybrid 

approach. 

 

 

Figure 38 - Assessment Scheme element 

The TriggerDecisionCondition element, as shown in Figure 39, is an optional element of 

TriggerDecisionConditionType and defines the type of hybrid dependent-mode certification, 

describing the conditions that trigger the collection of additional events when there are events 

whose execution are forced as part of the assertion conditions. This element includes a choice 

between the MonitoringTriggeredConditions sub-element that defines the triggering conditions 

when Monitoring is triggered by Testing and the TestingTriggeredConditions sub-element that 

defines the triggering conditions when Testing is triggered by Monitoring.  



 

91 
 

 

Figure 39 - TriggerDecisionCondition sub-element 

 

The MonitoringTriggeredConditions element, as shown in Figure 40, includes a sequence of the 

following sub-elements: 

o an EventId sub-element, which is of type string and specifies the Id of the testing event 

which will trigger monitoring 

o a ConditionsDescription sub-element of string type, which describes why monitoring is 

triggered by the execution of test cases  

o a TimestampOfEventFromTime sub-element, which is of timeVariabletype and specifies 

when the testing event could have started 

o a TimestampOfEventToTime sub-element, which is of timeVariabletype and specifies 

when the testing event could have terminated 

o a TimestampOfTriggeredEventFromTime sub-element, which is of timeVariabletype and 

specifies when the monitoring event could have started 

o a TimestampOfTriggeredEventToTime sub-element, which is of timeVariabletype and 

specifies when the monitoring event could have terminated 

 



 

92 
 

 

Figure 40 - MonitoringTriggeredConditionsType 

 

An example of the MonitoringTriggeredConditions sub-element is following. In this example, I 

want to certify the data integrity-at-rest security property, which expresses the ability to detect 

and report any alteration of stored data in a target of certification (TOC). I will use a hybrid 

model based on periodic testing that will detect if stored data have been modified and will 

monitor the periods between the tests that revealed data modifications to check if appropriate 

notifications have also been sent. Data modifications could be detected by obtaining the hash 

value of the relevant data file in the TOC periodically. Then, if across the execution of two 

consecutive tests, the last retrieved hash value of the file is different from the previous hash 

value, a data modification action can be deduced. In parallel with the execution of this periodic 

test, the hybrid model will also monitor the execution of notification operations. Hence, when a 

data modification action is detected by two consecutive tests, the hybrid model could also check 

whether a correlated notification operation has been executed within the period between the 

tests.  This example in XML is given below: 



 

93 
 

<TriggerDecisionCondition>	

								<MonitoringTriggeredConditions>	

												<EventId>Id1010</EventId>	

												<ConditionDescription>monitor	period	between	tests</ConditionDescription>	

												<TimestampOfEventfromTime>	

																				<time>	

																								<varName>seconds</varName>	

																								<varType>TimeVariable</varType>	

																				</time>	

												</TimestampOfEventfromTime>	

												<TimestampOfEventtoTime>	

																				<time>	

																								<varName>seconds</varName>	

																								<varType>TimeVariable</varType>	

																				</time>	

																				<Expression>	

																								<plus>2</plus>	

																				</Expression>	

												</TimestampOfEventtoTime>	

												<TimestampOfEventTriggeredfromTime>	

																				<time>	

																								<varName>seconds</varName>	

																								<varType>TimeVariable</varType>	

																				</time>	

																				<Expression>	

																								<plus>2</plus>	

																				</Expression>	

												</TimestampOfEventTriggeredfromTime>	

												<TimestampOfEventTriggeredtoTime>	

																				<time>	

																								<varName>seconds</varName>	

																								<varType>TimeVariable</varType>	

																				</time>	

																				<Expression>	

																								<plus>6</plus>	

																				</Expression>	

												</TimestampOfEventTriggeredtoTime>		

									</MonitoringTriggeredConditions>	

</TriggerDecisionCondition>	

 

The TestingTriggeredConditions element as shown in Figure 41 includes a sequence of the 

following elements: 

o an EventId sub-element, which is of type string and specifies the Id of the monitoring 

event which triggers testing 



 

94 
 

o a ConditionsDescription sub-element, which describes why testing is triggered by 

monitoring 

o a TimestampOfEventFromTime sub-element, which is of timeVariabletype and specifies 

when the monitoring event could have started 

o a TimestampOfEventToTime sub-element, which is of timeVariabletype and specifies 

when the monitoring event could have terminated 

o a TimestampOfTriggeredEventFromTime sub-element, which is of timeVariabletype and 

specifies when the testing event could have started 

o a TimestampOfTriggeredEventToTime sub-element, which is of timeVariabletype and 

specifies when the testing event could have terminated 

o an AdditionalCoverageRequired sub-element which is of type string and describes why 

monitoring triggers testing. 

o a Periodicity sub-element, which specifies the periodicity of online testing. 

 

 

Figure 41 - TestingTriggeredConditionsType 



 

95 
 

 

An example of the TestingTriggeredConditions sub-element is following. This time, I will use 

another hybrid model to certify the same security property, that will rely on testing to ensure that 

every time that an agent that requests a data alteration, it has the authorisation right to do the 

requested alteration. I will monitor requests for updates of the TOC data through the normal 

updating interface. However, for every such request that is granted by the TOC, the model will 

request the execution of a test to check if the entity that requested the update had indeed the 

authorisation to update data. This example in XML is given below: 

<TriggerDecisionCondition>	

								<TestingTriggeredConditions>	

												<EventId>Id1011</EventId>	

												<ConditionDescription>compare	hash	values	to	check	authorisation	rights</ConditionDescription>	

												<TimestampOfEventfromTime>	

																				<time>	

																								<varName>seconds</varName>	

																								<varType>TimeVariable</varType>	

																				</time>	

												</TimestampOfEventfromTime>	

												<TimestampOfEventtoTime>	

																				<time>	

																								<varName>seconds</varName>	

																								<varType>TimeVariable</varType>	

																				</time>	

																				<Expression>	

																								<plus>2</plus>	

																				</Expression>	

												</TimestampOfEventtoTime>	

												<TimestampOfEventTriggeredfromTime>	

																				<time>	

																								<varName>seconds</varName>	

																								<varType>TimeVariable</varType>	

																				</time>	

																				<Expression>	

																								<plus>2</plus>	

																				</Expression>	

												</TimestampOfEventTriggeredfromTime>	

												<TimestampOfEventTriggeredtoTime>	

																				<time>	

																								<varName>seconds</varName>	

																								<varType>TimeVariable</varType>	

																				</time>	

																				<Expression>	

																								<plus>6</plus>	

																				</Expression>	

												</TimestampOfEventTriggeredtoTime>		



 

96 
 

												<Periodicity>	

																				<time>	

																								<varName>seconds</varName>	

																								<varType>TimeVariable</varType>	

																								<value>1<value/>	

																				</time>	

												<Periodicity>	

							</TestingTriggeredConditions>	

</TriggerDecisionCondition>	

 

The evidence sufficiency conditions are conditions regarding the minimum extent and the profile 

of the monitoring and testing events. The EvidenceSufficiencyCondition element, as shown in 

Figure 42, has a unique identifier (Id) and defines the conditions of the sufficiency conditions that 

must apply to monitoring and testing evidence in order to issue a certificate.  

 

Figure 42 - Evidence Sufficiency Conditions sub-element 

 

The sub-elements are presented below: 

o ExpectedSystemOperationModelCondition (Figure 43): A condition of this type is used 

to define an expected operation model of TOC. When the StateTransitionModel is 



 

97 
 

defined, then the gathered evidence will be deemed sufficient for issuing a certificate 

only if the actual operation of TOC does not deviate from this model.  

 

Figure 43 - ExpectedSystemOperationModel sub-element 

 

o MonitoringPeriodCondition (Figure 44): A condition of this type can be used to define for 

how long the TOC should be monitored before the evidence is considered sufficient and a 

certificate can be issued. 

 

Figure 44 - MonitoringPeiodCondition sub-element 



 

98 
 

 

o MonitoringEventsCondition (Figure 45): A condition of this type can be used to define the 

minimum number of monitoring events that should be gathered before a certificate can be 

issued.  

 

Figure 45 - MonitoringEventsCondition sub-element 

 

o TestingPeriodCondition (Figure 46): A condition of this type can be used to define the 

minimum testing period required for a certificate to be issued.  

 

Figure 46 - TestingPeriodCondition sub-element 

 

o TestingEventsCondition (Figure 47): A condition of this type can be used to define the 

minimum number of test events that should be gathered before a certificate can be issued. 



 

99 
 

 

Figure 47 - TestingEventsCondition sub-element 

 

Several examples of that cover all the cases of the EvidenceSufficiencyCondition elements are 

given below. The first example refers to an expected operation model of the TOC and describes 

the expected states and transitions. 

<EvidenceSufficiencyCondition	Id="1011">	

				<ExpectedSystemOperationModel>	

							<InitialState	stateId="state1"	name="Activated"/>	

							<states>	

												<state>											 	 	 	 	 	 	 	 	

	 	 <atomicState	stateId="state2"	name="Issued"/>	

												</state>	

												<state>		 	 	 	 	 	 	 	 	 	

	 	 <atomicState	stateId="state3"	name="Expired"/>	

												</state>	

	 				<state>		 	 	 	 	 	 	 	 	 	

	 	 <atomicState	stateId="state4"	name="Suspend	Certificate"/>	

												</state>	

	 				<state>		 	 	 	 	 	 	 	 	 	

	 	 <atomicState	stateId="state5"	name="Revoke"/>	

												</state>	 	 	 	 	 	 	 	 	 	

	 				<state>		 	 	 	 	 	 	 	 	 	

	 	 <atomicState	stateId="state6"	name="End"/>	

												</state>	

								</states>	

								<transitions>	

													<transition	Id="1011"	From="state1"	To="state2">	

																<WhenCondition>	

																		<event	sufficiencyConditionSatisfied	/>	

																	</WhenCondition>	

													</transition>	

													<transition	Id="1100"	From="state2"	To="state3">	

																	<WhenCondition	ExpirationReached>	

																			<event	expirationReached/>	

																	</WhenCondition>	



 

100 
 

													</transition>	

													<transition	Id="1001"	From="state2"	To="state4">	

																	<WhenCondition>	

																			<event	violationDetected/>	

																	</WhenCondition>	

													</transition>	

													<transition	Id="1010"	From="state4"	To="state5">	

																<GuardCondition>	

																				<Condition	negated="True"	relation="NOT-EQUAL-TO">	

																						<Operand1><Operand1/>	

																						<Operand2><Operand2/>	

																</GuardCondition>	

													</transition>	

													<transition	Id="1000"	From="state4"	To="state6">	

																	<WhenCondition>	

																		<Condition>	

																			<event	violationResolved/>	

																	</Condition>	

																	</WhenCondition>	

													</transition>	

												</transitions>	

</EvidenceSufficiencyCondition>	

 

The second example refers to a monitoring period condition and states that the cloud service 

needs to be monitored for a minimum of 500 hours. 

<EvidenceSufficiencyCondition	Id="1011">	

												<MonitoringPeriodCondition	id="1011"	minMonitoredPeriod="500"	periodUnit="hours"/>	

</EvidenceSufficiencyCondition>	

 

The third example refers to a monitoring events condition and states that  a minimum of 1000 

events need to be monitored before issuing a certificate. 

<EvidenceSufficiencyCondition	Id="1001">	

												<MonitoringPeriodCondition	eventsNo="1000"/>	

</EvidenceSufficiencyCondition>	

 

The fourth example refers to a testing period condition and states that the cloud service needs to 

be tested for a minimum of 100 hours. 

<EvidenceSufficiencyCondition	Id="1011">	

												<TestingPeriodCondition	id="1010"	minTestPeriod="100"	periodUnit="hours"/>	

</EvidenceSufficiencyCondition>	



 

101 
 

The fifth example refers to a testing events condition and states that a minimum of 500 events 

need to be tested before issuing a certificate. 

<EvidenceSufficiencyCondition	Id="1001">	

												<TestingEventsCondition	eventsNo="500"/>	

</EvidenceSufficiencyCondition>	

 

The ExpirationConditions element as shown in Figure 48 defines when an issued certificate, 

which has been generated according to the given certification model, should expire and a new 

one could be issued by considering further evidence. 

	

 

Figure 48 - Expiration Conditions sub-element 

 

An expiration condition has a unique identifier (Id) and a choice of two different ways to define 

the expiration date: 

• The first way is by an absoluteDate, which is an element of type date, or 

• The second way is by an elapsedPeriod, which is an element of type ElapsedPeriodType. 

An ElapsedPeriod element can be used when a certificate needs to expire at the end of a 

specific period of time from the date that it was issued. An ElapsedPeriod element 

expresses this by defining a period of time, as the number of time units that should elapse 

following the creation of the certificate. 

 

An example of an expiration condition is given below. According to this example, the certificate 

will expire 5 months after the issuing date. 



 

102 
 

<ExpirationCondition	Id="486">	

							<elapsedPeriod	period="5"	periodUnit="months"/>	

</ExpirationCondition>	

	

3.5.8 CrosscheckScheme element 

This element defines the conditions for cross-checking evidence collected from testing and 

monitoring. This element also contains further exploration conditions. In case there are 

discrepancies between the evidence gathered from testing and monitoring, certain data 

exploration techniques will be applied in order to analyse further the evidence to be correlated 

and further assessed. This element is new. 

 

 

Figure 49 - CrosscheckScheme element 

 

The CrosscheckScheme element, as shown in Figure 49, includes a DataExploration sub-

element and an optional FurtherExploration sub-element. The DataExploration sub-element is 

mandatory and includes the conditions for cross-checking evidence collected through monitoring 

and testing. The FurtherExploration sub-element contains the conditions for exploring further 

testing and monitoring cases when violations persist, enabling the expression of sub-periods. 

These sub-elements are analysed below. 

The DataExploration element includes the following elements: 

• the CrossCheckDescription element (Figure 50) which is of string type and includes a 

general description of the evidence that needs to be cross-checked.  



 

103 
 

 

Figure 50 - CrossCheckDescription sub-element 

  

For example, if I want to certify the availability security property (i.e. the ability of a 

TOC to produce a non-faulty response within a certain period of time) I will measure the 

percentage of calls that satisfy this condition over an assessment period. An independent 

hybrid model for the certification of TOC availability could be based on collecting 

evidence regarding the availability of a TOC through monitoring and testing 

independently (i.e., without any of these activities being triggered by outcomes of the 

other). This example in XML is given below: 

<CrossCheckDescription>	compare	the	percentage	of	calls	where	a	non-faulty	response	is	produced	

throughmonitoring	and	testing	</CrossCheckDescription>												

 

• the ComparePerformanceValues element (Figure 51), which is of 

ComparePerformanceValuesType and allows the comparison of the absolute difference 

between the monitoring and the testing performance values and a value that indicates the 

maximum accepted difference between the testing and monitoring evidence, for which 

the evidence will be considered valid. 

 



 

104 
 

 

Figure 51 - ComparePerformanceValues sub-element 

 

When I want to certify the availability security property and I compare the percentage of 

calls where a non-faulty response is produced through monitoring and testing, an 

availability measure based on testing (or monitoring) evidence will be used for issuing a 

certificate only if the availability measure based on monitoring (or testing) evidence over 

the same period is no more than 1% different from it.   

<ComparePerformanceValues>	

						<ArithmeticOperator>LESS-THAN-EQUAL-TO</ArithmeticOperator>	

											<ValueComparisonExpression	relation="ABSOLUTE-VALUE">	

																	<ArithmeticOperator>MINUS</ArithmeticOperator>																										

																	<MonitoringPerformanceValue>	</MonitoringPerformanceValue>	

																	<TestingPerformanceValue>	</TestingPerformanceValue>	

												</ValueComparisonExpression>	

						<MaximumValue>0.01</MaximumValue>	

</ComparePerformanceValues>	

 

• the SufficientMutualObservedPeriodsSatisfaction sub-element (Figure 52), which 

specifies the period where testing and monitoring are performed in parallel, and 



 

105 
 

compares it with a specific value. It is of 

SufficientMutualObservedPeriodsSatisfactionType and the definition is given below. 

 

 

Figure 52 - SufficientMutualObservedPeriodsSatisfaction element 

 

An example of the sub-element above is described here. When I certify the availability 

security property and I cross-check monitoring and testing evidence, one way of 

correlating evidence is to consider the testing events as valid evidence of TOC 

availability only if they were performed during the range [tmon, tmon] and the mutual 

observed time where testing and monitoring took place in parallel was more than 5200 

seconds.  

<SufficientMutualObservedPeriodsSatisfaction	PeriodUnit="seconds">	

									<ArithmeticOperator>GREATER-THAN-EQUAL-TO</ArithmeticOperator>	

									<MutuallyObservedPeriod>	</MutuallyObservedPeriod>	

									<ComparedValue>5200.00</ComparedValue>	

</SufficientMutualObservedPeriodsSatisfaction>	

 

• the CrossCheckStatus sub-element (Figure 53), which describes if the cross-checking is 

successful or if evidence is violated and more testing and monitoring cases are required. 

The values of this element can be “CROSS-CHECKING-SUCCESSFUL” if the 

conditions above are satisfied or “EVIDENCE-VIOLATED” if the conditions above are 

not satisfied. 



 

106 
 

 

 

Figure 53 - CrossCheckStatus sub-element 

 

The FurtherExploration sub-element (Figure 54) contains the AssessmentTimeExploration sub-

element and describes the expression of sub-periods. This specific element is particularly 

important to check if there are time patterns that underpin violations and inconsistencies between 

testing and monitoring evidence. This element contains the AssessmentTimeExploration sub-

element, as shown below. 

 

 

Figure 54 - FurtherExploration element 

 

The AssessmentTimeExploration sub-element (Figure 55) contains the TestingPeriodSplit sub-

element that helps us specify the division of the testing period into smaller sub-periods, the 

MonitoringPeriodSplit sub-element that helps us specify the division of the monitoring period 

into smaller sub-periods and the checkSufficiencyConditions sub-element. The 

AssessmentTimeExploration sub-element allows different splits of the monitoring and testing 

periods. After splitting the assessment periods into smaller sub-periods, I will check the 

sufficiency conditions of the evidence in order to explore if there are time patterns underpinning 

the deviations. 



 

107 
 

 

 

Figure 55 - AssessmentTimeExploration element 

 

An example of the sub-element above is provided at this point. If I want to certify the 

availability security property and the ability of a TOC to produce a non-faulty response within a 

certain period of time and there are deviations between the percentage of calls that satisfy this 

condition over an assessment period, concerning the evidence collected through monitoring and 

testing, I can shorten the testing period by x time units, and the monitoring period by y time 

units, to check if the deviations will persist. This action will allow the discovery of time patterns. 



 

108 
 

This can be very useful when, for instance, I observe that the availability is very low at specific 

periods of time. So, in this case, by splitting the time periods I can make further explorations. It 

is very important the fact that the model allows the expression of different sub-periods for 

monitoring and testing, as at a specific time period, it might be possible to collect enough 

evidence of one mode of assessment, but the collection of evidence for the sub-ordinate form of 

assessment may be impossible. If, for example, I split the monitoring and testing period evenly, 

but with testing I collect sufficient evidence and with monitoring I do not manage to collect the 

sufficient number of monitoring evidence, then I can further split the monitoring period to check 

time patterns. According to the following example, I shorten the testing period by 5 second and 

the monitoring period by 10 seconds and then I check if the evidence sufficiency conditions are 

satisfied. 

<AssessmentTimeExploration>	

																<TestingPeriodSplit>	

																				<SplitFromTime>	

																								<time>	

																												<varName>seconds</varName>	

																												<varType>TimeVariable</varType>	

																								</time>	

																				</SplitFromTime>	

																				<SplitToTime>	

																								<time>	

																												<varName>seconds</varName>	

																												<varType>TimeVariable</varType>	

																								</time>	

																								<Expression>	

																												<minus>5</minus>	

																								</Expression>	

																				</SplitToTime>	

																</TestingPeriodSplit>	

																<MonitoringPeriodSplit>	

																				<SplitFromTime>	

																								<time>	

																												<varName>seconds</varName>	

																												<varType>TimeVariable</varType>	

																								</time>	

																				</SplitFromTime>	

																				<SplitToTime>	

																								<time>	

																												<varName>seconds</varName>	

																												<varType>TimeVariable</varType>	

																								</time>	



 

109 
 

																								<Expression>	

																												<minus>10</minus>	

																								</Expression>	

																				</SplitToTime>	

																</MonitoringPeriodSplit>	

																<checkSufficiencyConditions	Id="Id14">…</checkSufficiencyConditions>	

</AssessmentTimeExploration>	

 

 

3.6 Architecture of the proposed framework for implementation 

The architecture for hybrid certification will be an extension of the existing architecture that has 

been developed for the CUMULUS project and is defined in [168]. Below, I will present an 

overview of the architecture and I will describe the main components that are required for the 

realisation of hybrid certification. The interfaces for the Certification Manager, Certification 

Communicator, Monitoring Manager, Monitoring Module, Testing Manager and Testing Module 

are already implemented for the CUMULUS project, so these interfaces will not be presented 

here. The components that I introduce are the Hybrid Manager, the Hybrid Certification 

Generator Attestation, the Hybrid Lifecycle Manager, the Hybrid Aggregator, the Hybrid 

Evidences database, the Hybrid Certification Models database and the Hybrid Certificates 

database. These components represent my contribution concerning the architecture of the 

CUMULUS framework. The architecture for hybrid certification is shown in Figure 56, and is 

based on the CUMULUS Framework Prototype Architecture Figure 56 - Architecture for Hybrid 

Certification[168]-Figure 1. 

 

 

 

 

 

 

 



 

110 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 56 - Architecture for Hybrid Certification 

 



 

111 
 

• Certification Manager 

This component is responsible for communicating with the actors to create or modify the 

certification models and will start the certification process by delegating the appropriate 

managers. 

 

• Certificate Communicator 

This component is responsible for communicating with the actors who requested a certificate, for 

sending them the certificate and for notifying them if there is an update about changes in the 

certificate. 

 

• Monitoring Manager 

This component is responsible for detecting the availability of the monitoring infrastructure, for 

assembling and configuring the infrastructure, for initiating the monitoring process, for 

collecting the monitoring evidence and for aggregating them. 

	

• Monitoring Module 

This component is responsible for monitoring the events for a specific security property and 

Target of Certification (TOC). 

 

• Testing Manager 

This component is responsible for receiving inputs from various actors, starting the certification 

process and delegating the Testing Module to perform the tests. 

 

• Testing Module 

This component is responsible for performing tests on the TOC for a specific property and 

receiving the set of results. 



 

112 
 

• Hybrid  Manager 

This component is responsible for collecting all the evidence for hybrid certification and 

communicates with the Testing Manager and the Monitoring Manager through the Certification 

Communicator. The Hybrid Manager will decide how the different types of evidence will be 

combined and how, based on the information that is defined in the Certification Model. The 

specifications and the operations provided by this component are presented below. 

 

Hybrid Manager API 

Operation Description 

submitCertificationModel 

(String model) 

This method allows submitting a certification model to the 

Hybrid Manager 

Parametres 

model String String representation of the XML certification model 

Table 2 - Hybrid Manager API 

 

• Hybrid Certification Generator Attestation (Hybrid Generator Attestation) 

This component is responsible for generating a certificate when enough data are collected 

through monitoring and testing. More specifically, this component receives the certification 

model from the Certification Manager through the Generation API and creates the certificate if 

the sufficiency conditions are fulfilled and if the expiration and violation conditions are not 

reached. Additionally, this component stores the hybrid certificates issued in the Hybrid 

Certificates DB. The specifications and the operations provided by this component are presented 

below. 

 

Generation API 

Operation Description 

submitCertificationModel 

(String model) 

This method allows submitting a certification model to the 

Certificate Generator 



 

113 
 

Generation API 

Operation Description 

Parametres 

model String String representation of the XML certification model 

Table 3 - Generation API 

 

The Hybrid Certification Generator Attestation includes the Hybrid Lifecycle Manager that is 

described below. 

 

• Hybrid Lifecycle Manager 

This component is responsible for defining all the states and the transitions in the certification 

model. Additionally, it contains information about the conditions for lifecycle transitions, 

indicating under what conditions the states will be reached and how they will be altered. This 

Lifecycle model is different from the one used in Monitoring-based certification and the one 

used in Test-based certification as presented in the CUMULUS project, since I have introduced 

the elements for cross-checking and analysing evidence. 

 

• Hybrid Aggregator (Hybrid Aggregation Manager) 

This component is responsible for aggregating the hybrid results collected in order to issue a 

certificate. This component aggregates monitoring and testing results and stores them in the 

“Hybrid Evidences DB” of the framework, as required by the given certification model. The 

aggregation manager polls the detailed evidence at regular intervals. 

 
• Dashboard 

This component provides the user a web-based frond-end interface for requesting the generation 

of a certificate or for retrieving a specific certificate from the framework. 

 

 



 

114 
 

• Hybrid Evidences DB 

This component records the aggregated evidence according to the Hybrid Aggregator and is 

inserted in the certificates. This component is new and is based on the common structure of the 

Monitoring and Testing evidences databases. 

 

Hybrid Evidences DB 

Element Description 

AggregatedEvents_Id Id of the aggregated evidence 

CM_Instance_Id Id of the Certification model instance 

Creation_Time The time the aggregated evidence was created 

Start_Time The time the aggregation period started 

End_Time The time the aggregation period ended 

Assertion_Id The Id of the assertion of the security property 

Result The result that expresses violation or satisfaction 

Evidence_XML Aggregated evidence as XML 

Evidence_JAVA Aggregated evidence as JAVA object 

Table 4 - Hybrid Evidences Database 

 

• Hybrid Cert Models DB 

This component keeps a record of all certification models created. This component is new and is 

based on the common structure of the Monitoring and Testing certification models databases. 

Hybrid Cert Models DB 

Element Description 

CM_Id Id of the certification model 

CM_Instance_Id Id of the Certification model instance 

CA_Signature The signature of the certification authority 



 

115 
 

Hybrid Cert Models DB 

Element Description 

Security property The definition of the security property 

Assertion_Id The Id of the assertion of the security property 

Assertion The specification of the security property 

TOC_Name The name of the TOC 

Toc_Id The ID of the TOC 

Evidence_XML Aggregated evidence as XML 

Evidence_JAVA Aggregated evidence as JAVA object 

Table 5 - Hybrid Certification Models Database 

 

• Hybrid Certs DB 

This component keeps a record of all generated certificates. This component is new and is based 

on the common structure of the Monitoring and Testing certificates databases. 

Hybrid Certs DB 

Element Description 

certId Id of the certificate 

Cert_SerialNo Serial Number of the certificate 

Security property The definition of the security property 

TOC_Name The name of the TOC 

Valid_From Date when the certificate starts to be valid 

Valid_Until Date when the certificate stops to be valid 

certString The certificate as a sting represented in XML 

certObject The certificate as a JAVA object 

Table 6 - Hybrid Certificates Database 

 



 

116 
 

3.7 Flow of Action 

At this section I will present the sequence diagram for issuing a certificate. 

 

 

Figure 57 - Sequence Diagram for Issuing a Hybrid Certificate 

 

When the user of the tool requests a certificate, then the Certificate Manager starts the 

certification process and delegates the Hybrid Manager to communicate with the Testing 

Manager and the Monitoring Manager in order to collect all the information for hybrid 

certification. The Hybrid Manager sends a request to the Testing Manager to collect the testing 

evidence. When it receives the testing evidence, the Hybrid Manager sends a request to the 

Hybrid Aggregation Manager to store the testing evidence and also sends a request to the 

Monitoring Manager to collect the monitoring evidence. When the Monitoring Manager 

responds to the Hybrid Manager, then, the Hybrid Manager sends a request to the Hybrid 

Aggregation Manager to store the monitoring evidence. The Hybrid Aggregation Manager will 

send a request to the Hybrid Lifecycle Manager, which defines the status of the certificate. 

Finally, if a certificate can be issued, the Certificate Generator Attestation will issue a certificate. 



 

117 
 

3.8 Hybrid, independent mode model (using EC-Assertion) 

The following example shows the use of a hybrid approach in certifying cloud service 

availability using EC-Assertion. As defined in [160], this property expresses the ability of a TOC 

to produce a non-faulty response within a certain period of time and is measured by the 

percentage of calls that satisfy this condition over an assessment period. An independent hybrid 

model for the certification of TOC availability could be based on collecting evidence regarding 

the availability of a TOC through monitoring and testing independently (i.e., without any of 

these activities being triggered by outcomes of the other) and then correlating and cross-

checking the collected pools of evidence to produce a hybrid assessment of the property. More 

specifically, the hybrid model could include monitoring formulas to record instances of 

invocation of TOC operators where TOC produced a response within the acceptable time limit 

and the instances where it did not, and keep a record of counters of these instances from which 

an overall availability measure could be drawn. The formulas that could be used to collect this 

monitoring evidence are as follows: 

 

Assumption	A1	(monitoring	evidence):	

Happens(e(_e1,_CA,_TOC,REQ,_OP(_data),_TOC),t1,[t1,t1])^		

Happens(e(_e2,_TOC,_CA,RES,_OP(_data),_TOC),	t2,[t1,t1+tav])	^	

HoldsAt(MCounterA(_TOC,_MCA),t2)	

⇒	

Terminates(_e1,MCounterA(_TOC,	_MCA),	t2)	^			

Initiates(_e1,MCounterA(_TOC,	_MCA+1),	t2)^		

Initiates(_e1,MAvail(_TOC,_OP(_data),t2–t1),	t2)		

	

Assumption	A2	(monitoring	evidence):	

Happens(e(_e1,_CA,_TOC,REQ,_OP(_data),_TOC),t1,[t1,t1])^	

¬	Happens(e(_e2,_TOC,_CA,RES,_OP(_data),_TOC),t2,[t1,t1+tav]))^	

HoldsAt(MCounterU(_TOC,_MCU),	t2)		



 

118 
 

⇒	

Terminates(_e1,MCounterU(_TOC,_MCU),	t2)	^	

Initiates(_e1,MCounterU(_TOC,	_MCU+1),	t2)	^	

Initiates(_e1,MUnav(_TOC,_OP(_data),t2–t1),t2)		

 

The first of the above monitoring formulas (i.e., assumption A1) monitors calls to any operation 

in a _TOC and the responses to them (see events Happens(e(_e1,	 _CA,	 _TOC,	 REQ,	

_OP(_data),_TOC),	t1,	R(t1,t1)) and Happens(e(_e2,	_CA,	_TOC,	RES,	_OP(_data),	_TOC),	

t2,[t1,t1+tav])) and if a response is within the required period (tav), it updates the counter of 

instances where _TOC was available and records the related call (in fluents 

MCounterA(_TOC,_MCA,t2) and MAvail(_TOC,_OP(_data),t2–t1), respectively). The second 

formula (i.e., assumption A2) monitors calls to _TOC operations that did not produce a response 

within the required time, and keeps an overall counter of unavailability and the related calls in 

fluents MCounterU(_TOC,_MCU,t2) and	MUnav(_TOC,_OP(_data),t2–t1). 

The hybrid model for the certification of availability could also incorporate a test-based 

availability assessment sub-model. This sub-model can execute a randomly selected operation in 

the interface of _TOC periodically to check its availability, and keep a record of instances of test-

triggered invocations of operations of the TOC in which a response was produced within the 

required time period, and instances of test-triggered invocations where it was not. 

This sub-model is expressed by the following formulas for collecting testing evidence: 

 

Assumption	A3	(testing	evidence):	

Happens(e(_e1,_CA,_TOC,	EXC(Tper),	_x=random(interface(_TOC)),_TOC),t1,[t1,t1])	

^	

Happens(e(_e2,_TOC,	_CA	RES,_x,_TOC),t2,[t1,t1+tav])^	

HoldsAt(TCounterA(_TOC,_TCA),t2)	

⇒		

Terminates(_e1,TCounterA(_TOC,_TCA),t2)	^			



 

119 
 

Initiates(_e1,TCounterA(_TOC,_TCA+1),t2)^		

Initiates(_e1,TAvail(_TOC,_x,t2–t1),t2)		

	

Assumption	A4	(testing	evidence):	

Happens(e(_e1,_CA,_TOC,	EXC(Tper),	_x=random(interface(_TOC)),_TOC),t1,[t1,t1])	

^	

¬	Happens(e(_e2,	_TOC,	_CA,	RES,_x,_TOC),t2,	[t1,t1+tav])^	

HoldsAt(TCounterU(_TOC,_TCU),t2)		

⇒	

Terminates(_e1,TCounterU(_TOC,_TCU),t2)	^	

Initiates(_e1,TCounterU(_TOC,_TCU+1),t2)	^	

Initiates(_e1,TUnav(_TOC,_x,	t2–t1),t2)		

 

A3 and A4 are similar to assumptions A1 and A2 respectively except that, instead of monitoring 

real operation calls, they execute a randomly selected operation in the interface of _TOC 

periodically (see the event Happens	 (e	 (_e1,	 _CA,	 _TOC,	 EXC(Tper),	 _x=random	

(interface(_TOC)),	_TOC),t1,[t1,t1])) to check its availability, and update fluents recording 

the overall counters of availability and unavailability of _TOC	and the test executions that revealed 

them.  

In the hybrid model, the assumption pairs (A1, A2), and (A3, A4) are used to collect evidence 

independently without any monitoring events triggering tests or vice versa. However, it might 

still be desirable to correlate the testing and monitoring evidence, according to the hybrid 

certification model schema I have introduced. The overall availability measure may be computed 

on the basis of combining both test and monitoring evidence as A = (_MCA + _TCA)/(_MCA+ 

_TCA+_MCU+ _TCU), so an aggregate assessment is formulated from both monitoring and 

testing evidence.  Concerning the evidence sufficiency conditions, I will check if the monitoring 

period is greater than the minimum monitoring period required and if the testing period is greater 

than the minimum testing period required. Additionally, I will check if the number of the 

monitoring and testing events is greater than the minimum number of monitoring and testing 



 

120 
 

events. Concerning the cross-check conditions, I will compare the monitoring and testing 

assessment period against the minimum assessment period required for this property and I will 

check if the absolute value of the difference between the _MCA and _TCA is greater than a 

minimum value defined for this property. If the above conditions are not satisfied then I will 

revoke the certificate.  If violations persist, I will consider extending the assessment period and 

collecting more testing and monitoring events. Furthermore, I can split the monitoring and testing 

periods into smaller sub-periods and I can check again the sufficiency conditions of the evidence 

in order to understand if there are time patterns underpinning the deviations. 

It becomes clear that in this example of independent hybrid certification, where testing and 

monitoring take place independently, without having one form of assessment triggered by the 

outcomes of the other form, I will capture more cases than performing only testing or only 

monitoring (Figure 58). Consequently, with testing I can discover cases that might have escaped 

monitoring and vice versa.  

 

 
 

 

 

 

 

Figure 58 - Cases covered by Independent-mode Certification Models 

 

Examples of Hybrid, independent-mode model cases 

Below I will present the hybrid independent-mode certification models of certain security 

properties as defined in [160]. These hybrid models will verify either the completeness or the 

trustworthiness of the assessment. 

 

  

Monitoring Testing 



 

121 
 

HTTP to HTTPS redirection  

This security property corresponds to the AIS:authentication:network-authenticated-server-

access security property in [160]. The TOC provides a communication channel between a client 

and itself, which offers the following guarantees: 

(1) The client receives assurance that he is communicating with the TOC. 

(2) The integrity of the exchange of data between the client and the TOC is protected with 

guarantees between exchanged messages. 

The property is considered as verified if the client communicates with a webserver (TOC) using 

SSL/TLS and verifies the authenticity of the webserver with a certificate, providing adequate 

encryption. This security property guarantees that HTTP requests are redirected to HTTPS and 

that the network channel is confidential, verifying the authenticity of the user and the web 

server. Every time there is a request call from a client to a webserver (HTTPserver) and the 

request for data transmission is to port 80 which indicates an unsecure communication, then the 

monitor will check for the existence of another event that will contain the response of the web 

server back to the client, notifying the execution of the redirection to the HTTPS port (port 443). 

The “location” attribute contains the location header which is a string that indicates if there is 

redirection to the HTTPS port, the “HTTPStatus” attribute which includes the status code of the 

response and the “serverAddress” attribute which indicates the number of the port.  

HTTPS (HTTP over SSL or HTTP Secure) is the use of Secure Socket Layer (SSL) or Transport 

Layer Security (TLS) as a sublayer under regular HTTP application layering. HTTPS encrypts 

and decrypts user page requests as well as the pages that are returned by the web server. The use 

of HTTPS protects against eavesdropping and man-in-the-middle attacks. HTTPS and SSL 

support the use of X.509 digital certificates from the server so that, if necessary, a user can 

authenticate the sender. Unless a different port is specified, HTTPS uses port 443 instead of 

HTTP port 80 in its interactions with the lower layer, TCP/IP. The security of HTTPS is 

therefore that of the underlying TLS, which uses long-term public and secret keys to exchange a 

short-term session key to encrypt the data flow between client and server [169]. 

The monitoring rules below will demonstrate that the TOC redirects every HTTP request to 

HTTPS every time I see a response from the webserver to the client where (_location2	 =	

locationHTTPS)	and	(_HTTPStatus2	=	RedirectStatus).	Also, the rule demonstrates that the 

TOC provides a secure communication (SSL/TLS connection) between the client and the server 



 

122 
 

of the communication. The SSL/TLS encryption validation will verify the presence of SSL/TSL 

channel encryption.  

	

	

Rule	R1	(monitoring	evidence):	

Happens	 (e(_e1,	 _client,	 _webserver,	 REQ,	 _httpCall(location,	 _serverAddress,	

_HTTPStatus),	_webserver),t1,	[t1,t1])		^	

	

(_serverAddress	=	port80)	

		

⇒	

	

Happens	 (e(_e2,	 _webserver,	 _client,	 RES,	 _httpCall(_location2,	

_serverAddress2,	_HTTPStatus2),	_webserver),t2,	[t1,t1+tav])		^	

	

(_location2	=	locationHTTPS)	^	

	

(_HTTPStatus2	=	RedirectStatus)	^	

	

(_serverAddress	=	port443)	

	

	

With testing, I will verify that every time I force data transmission to a webserver through port 

80, the TOC provides secure communication by redirecting to the HTTPS port (port 443) and by 

verifying the presence and the robustness of the SSL/TSL channel encryption (by executing the 

_dataTransmit operation). 

	

Rule	R2	(testing	evidence):	

Happens	 (e(_e1,	 _AI,	 _webserver,	 EXC(Tper),	 _dataTransmit(_encrCode,	

_serverAddress	),	_webserver)	,t1,	[t1,t1])		^	

	

(_serverAddress	=	port80)	

	

⇒	

	



 

123 
 

Happens	 (e(_e2,	 _webserver,	 _AI,	 RES,	 _dataTransmit(_encrCodeVerified,	 _	

serverAddress2),	_webserver),t2,	[t1,t1+tav])		^	
	

(_encrCodeVerified	≠Nil)	^	

	

(_serverAddress2	=	port443)	

 

If with testing I cannot confirm the redirection to the HTTPS port (port 443), then the hybrid 

certificate will be revoked and I will proceed to data exploration. If violations persist, I will 

proceed to further exploration. This means that I can extend the assessment period or I can split 

the monitoring and testing periods into smaller sub-periods to check if there are time patterns 

underpinning these deviations. 

 

Percentage of timely incident reports 	

This security property corresponds to the SEF:incident-management-quality:percentage-of-

timely-incident-reports security property in [160]. This security property describes the 

percentage of incidents that are reported within a predefined time limit after their discovery, over 

the total number of incidents discovered. The independent hybrid model will prove the 

trustworthiness of outcomes from testing and monitoring. The attribute “maxtime” indicates the 

maximum reporting time limit. This security property is based on the Protection Profile (PP) 

developed by Common Criteria and applies to encrypted personal storage devices used for 

temporary storage of data whilst the data is in transit between two trusted host computers 

[164][170]. The test-based sub-model will execute periodically the _uploadData operation, and 

keep a record of instances of test-triggered invocations of operations of TOE in which a response 

was produced within the required time period, and instances of test-triggered invocations where 

it was not. 

	

Assumption	A5	(testing	evidence):	

Happens	(e(_e1,_CA,_TOE,	EXC(Tper),	_uploadData(_username,_usersecret,_data,	

_startTime,	_endTime),_TOE),	t1,	[t1,t1])		^		

Happens	(e(_e2,_TOE,_CA,	RES,	_uploadData(_vusername,_vusersecret,_data,	

_startTime,	_endTime),_TOE),	t2,	[t1,t2])		^	



 

124 
 

(	t2-t1	<=_maxtime)	^	

HoldsAt	(TCounterTimelyInc(_TOE,_TCTI),t2)		

⇒	

Terminates	(_e1,	TCounterTimelyInc(_TOE,_TCTI),t2)	^	

Initiates	(_e1,	TCounterTimelyInc(_TOE,_TCTI+1),t2)	

 

and 

Assumption	A6	(testing	evidence):	

Happens	(e(_e1,_CA,_TOE,	EXC(Tper),	_uploadData(_username,_usersecret,_data,	

_startTime,	_endTime),_TOE),	t1,	[t1,t1])		^		

Happens	(e(_e2,_TOE,_CA,	RES,	_uploadData(_vusername,_vusersecret,_data,	

_startTime,	_endTime),_TOE),	t2,	[t1,t2])		^	

(	t2-t1	>_maxtime)	^	

HoldsAt	(TCounterNotTimelyInc(_TOE,_TCNTI),t2)		

⇒	

Terminates	(_e1,	TCounterNotTimelyInc(_TOE,_TCNTI),t2)	^	

Initiates	(_e1,	TCounterNotTimelyInc(_TOE,_TCNTI+1),t2)	

 

The percentage of timely incidents using testing evidence will be calculated using the following 

formula: 

Percentage of Timely Incidents (Testing) = TCTI/(TCTI +TCNTI) 

The hybrid model will include monitoring formulas to record instances of invocation of TOE 

operators where TOE produced a response within the acceptable time limit and the instances 

where it did not, and will keep a record of counters of these instances from which an overall 

availability measure could be drawn. 

 

 



 

125 
 

Assumption	A7	(monitoring	evidence):	

Happens	(e(_e1,_sc,_TOE,REQ,	_uploadData	_username,	_usersecret,	_verCode1,	

_data,	_startTime,	_endTime),_TOE),t1,[t1,t1])	^	

Happens	(e(_e2,_TOE,_sc,	RES,	_uploadData(_vusername,	_vusersecret,	_verCode2,	

_data,	_startTime,	_endTime),_TOE),	t2,[t1,t2])	^		

(	t2-t1	<=_maxtime)	^	

HoldsAt	(MCounterTimelyInc(_TOE,_MCTI),t2)	

⇒	

Terminates	(_e1,MCounterTimelyInc(_TOE,	_MCTI),	t2)	^			

Initiates	(_e1,MCounterTimelyInc(_TOE,	_MCTI+1),	t2)		

	

And 

Assumption	A8	(monitoring	evidence):	

Happens	(e(_e1,_sc,_TOC,REQ,	_uploadData(_username,	_usersecret,	_verCode1,	

_data,	_startTime,	_endTime),_TOE),t1,[t1,t1])	^	

Happens	(e(_e2,_TOC,_sc,	RES,	_uploadData(_vusername,	_vusersecret,	_verCode2,	

_data,	_startTime,	_endTime),_TOE),	t2,[t1,t2])	^		

(	t2-t1	>_maxtime)	^	

HoldsAt	(MCounterNotTimelyInc(_TOE,_MCNTI),t2)	

⇒	

Terminates	(_e1,MCounterNotTimelyInc(_TOE,	_MCNTI),	t2)	^			

Initiates	(_e1,MCounterNotTimelyInc(_TOE,	_MCNTI+1),	t2)		

 
The percentage of timely incidents using monitoring evidence will be calculated using the 

following formula: 

 

Percentage of Timely Incidents (Monitoring) = MCTI/(MCTI +MCNTI) 



 

126 
 

After calculating the percentage of timely incident reports based on monitoring data and the 

percentage of timely incident reports based on testing data, I will use the two different 

percentages and I will compare the absolute value of their difference with a predefined 

performance value for this security property. Additionally, the monitoring period along with the 

testing period will be compared with the minimum assessment period required. If the following 

conditions are not satisfied or if the ratio of violations to satisfactions of testing or monitoring 

data is bigger than a specific percentage, then I will revoke the certificate.   

It is worth mentioning that in the event of conflicts, the tool provides the option of retrieving the 

events that raised the conflicts so that the user can decide if they want to proceed with conflicts 

resolution when these can be resolved. After the evidence polling, the user can analyse the 

evidence from monitoring and testing to check which ones are conflicting. The overall 

percentage of timely incidents can be computed on the basis of both test and monitoring evidence 

as Hybrid Percentage = [ Percentage of Timely Incidents (Monitoring) + Percentage of Timely 

Incidents (Testing) ] / 2, so aggregate assessments based on each type of evidence may be 

validated against an aggregate assessment based on the other type before issuing a certificate. A 

measure based on testing evidence can be used for issuing a certificate only if the availability 

measure based on monitoring evidence over the same period is no more than 1% different from it. 

If violations persist, I will consider extending the assessment period and collecting more testing 

and monitoring events. Furthermore, I can split the monitoring and testing periods into smaller 

sub-periods and I can check again the sufficiency conditions of the evidence in order to check if 

there are time patterns underpinning the deviations. 

The above hybrid formulas guarantee incident management quality by enabling the calculation 

of the percentage of timely incidents for a given target of evaluation. In this example the 

contribution of the independent-mode hybrid approach to the Protection Profile is of great 

importance, as the results of testing will confirm and complement the results from monitoring. 

 

 



 

127 
 

3.9 Hybrid, dependent mode model (using EC-Assertion) 

The following example shows the use of a hybrid approach in certifying data integrity-at-rest 

using EC-Assertion. As defined in [160], this property expresses the ability to detect and report 

any alteration of stored data in a target of certification (TOC).  

To demonstrate the difference between monitoring and hybrid certification models, I first 

present the monitoring certification model for data integrity-at-rest, expressed by the 

EC_Assertion monitoring rule R3 that is listed below. The specification of this rule as well as all 

models in the paper, assumes the following agents and variables denoting them: service 

consumers (_sc), target of certification (_TOC), authentication infrastructure (_AI), certification 

authority (_CA). 

 

Rule	R3:	

Happens	(e(_e1,_sc,_TOC,REQ,	_updOp(_cred,_data,_auth),_TOC),t1,[t1,t1])	^		

Happens	(e(_e2,_TOC,_AI,RES,	_updOp(_cred,_data,_vCode),_TOC),t2,[t1,t1+d1])	^		

(_vCode	≠	Nil)		

⇒	

Happens	(e(_e3,_TOC,_AI,REQ,	_notifO(_cred,_data,_auth,_h),_TOC),t3,[t2,t2+d2])	

	

According to R3 when a call of an update operation in a _TOC is detected at some time point t1 

(see event Happens(e(_e1,_sc,_TOC,REQ,	 _updOp	 (_cred,_data,_auth),	 _TOC),t1,[t1,t1])) 

and a response to this call occurs after it (see event Happens(e(_e2,_TOC,_AI,RES,	

_updOp(_cred,_data,_vCode),	 _TOC),	 t2,	 [t1,t1+d1])) indicating that the request has been 

granted (see condition (_vCode	 ≠	 Nil) in the rule), the monitor should also check for the 

existence of another event showing the call of an operation in some authorisation agent _A to 

notify the receipt and execution of the update request (see Happens(e(_e3,_TOC,_AI,REQ,	

_notifO(_cred,_data,_auth,_h),_TOC),t3,[t2,t2+d2])).  

The above model has two limitations in providing assurance for the integrity-at-rest property: (1) 

it cannot capture updates of data that might have been carried out without using the update 

interface assumed of _TOC (i.e., _updOp(_cred,_data,_vCode)), and (2) it cannot check that the 

operation _updOp has checked authorisation rights before updating data. 



 

128 
 

A hybrid model could be used in this case to overcome partially the first of these limitations. 

More specifically, a hybrid model in this case could be based on periodic testing to detect if 

stored data have been modified and monitor the periods between the tests that revealed data 

modifications to check if appropriate notifications have also been sent. Data modifications could 

be detected by obtaining the hash value of the relevant data file in the TOC periodically. Then, if 

across the execution of two consecutive tests, the last retrieved hash value of the file is different 

from the previous hash value, a data modification action can be deduced. In parallel with the 

execution of this periodic test, the hybrid model will also monitor the execution of notification 

operations. Hence, when a data modification action is detected by two consecutive tests, the 

hybrid model could also check whether a correlated notification operation has been executed 

within the period between the tests.  

 

Testing triggers Monitoring  

This hybrid model for this instantaneous property that will cover the trustworthiness of outcomes 

can be expressed using the following monitoring rule and assumption: 

	

Rule	R4:	

Happens	(e(_e1,_CA,_TOC,EXC(Tper),	_getHash(_TOC,_file,_h1),_CA),	t1,	[t1,t1])	^		

HoldsAt	(LastHash(_file,_h2,t2),t1)	^		

(_h1	≠	_h2)		

⇒		

Happens	(e(_e3,_TOC,_CA,REQ,	_notifO(_cred,_data,	_auth,_h1),_TOC),t3,[t2,t1])	

Assumption	A9:	

Happens	(e(_e1,_CA,_TOC,REQ,	_getHash(_TOC,_file,_h1),_TOC),t1,[t1,t1])		^		

HoldsAt	(LastHash(_file,_h2,t2),t1)	^		

(_h1	≠	_h2)		

⇒	

Terminates	(_e1,LastHash(_file,_h2,t2),t1)	^	

	

Initiates	(_e1,LastHash(_file,_h1,t1),t1)	



 

129 
 

	

Rule R4 is “hybrid” as it includes normal monitoring events (i.e., REQ and RES events) and 

events that trigger the execution of tests (i.e., EXC events). R6 expresses a hybrid dependent 

mode model where evidence arising from testing triggers the acquisition of monitoring evidence. 

Hence, testing is the primary form of assessment. In particular, R4 forces the execution of the 

event Happens	(e	(_e1,	_CA	,	_TOC,	EXC	(Tper),	_getHash	(_TOC,	_file,	_h1),	_CA),	t1,	

[t1,t1])	 periodically every Tper time units to invoke the operation _getHash in the testing 

interface of _TOC and obtain the current hash value (_h1) of the data file (_file) of _TOC. If this 

value is different from the hash value recorded by a previous test at some t2 (i.e., the value 

recorded in the fluent LastHash(_file,_h2,t2),t1), rule R6 checks if an update notification has 

also occurred between t2 and t1, as expressed by the monitoring event Happens(e	(_e3,	_TOC,	

_CA,REQ,	_notifO	(_cred,	_data,	_auth,	_h1),	_TOC),	t3,	[t2,t1]). The hybrid model uses 

also a monitoring assumption (i.e., A9). This assumption is used in the model to update the hash 

value recorded in the fluent LastHash, if a test retrieves a hash value that is different from the last 

recorded one. 

Although the above model can capture data updates that have taken place without the invocation 

of the file updating interface, it cannot guarantee that it can capture all possible updates that 

might have taken place. In particular, it won't be able to detect if more than one updates have 

taken place between two consecutive executions of the periodic test. Hence, it addresses the first 

of the limitations of the monitoring problem (i.e., limitation (1)) only partially. 

 

Monitoring triggers Testing  

To address the second limitation of the monitoring model (i.e. it cannot check that the operation 

_updOp has checked authorisation rights before updating data), it is possible to construct a 

different hybrid model. This model could rely on testing to ensure that every time that an agent 

that requests a data alteration, it has the authorisation right to do the requested alteration. This 

model can be expressed by the monitoring rule below:  

Rule	R5:	

Happens	(e(_e1,_sc,_TOC,REQ,	_updOp(_cred,_data,	_auth),_TOC),t1,[t1,t1])		^		

Happens	(e(_e2,_TOC,_AI,RES,_updOp(_cred,_data,_vCode1),_TOC),t2,[t1,t1+d1])	^	

(_vCode1	≠	Nil)		



 

130 
 

⇒	

Happens	(e(_e3,_CA,_AI,EXC,_authorO(_cred,_auth,_vCode2),_TOC),t3,[t2,t2+d2])^	

(_vCode2≠Nil)	

 

Rule R5 monitors requests for updates of _TOC data through its normal updating interface. 

However, for every such request that is granted by _TOC, it requests the execution of a test to 

check if the entity that requested the update had indeed the authorisation to update data. This is 

expressed by the EXC event Happens(e	 (_e3,	 _CA,	 _AI,	 EXC,	 _authorO	 (_cred,	 _auth,	

_verCode2),	 _TOC)	 ,t3,	 [t2,t2+d2])) and the condition (_verCode2	 ≠	 Nil). In R3, the 

monitoring evidence triggers the execution of tests. Hence, the rule expresses a dependent hybrid 

model where monitoring is the primary form of assessment. Rules R4 and R5 are examples of 

general time correlation structures that may arise in dependent hybrid certification model and 

which are shown in Figure 58. 

Part (a) of the figure shows dependent hybrid certification models where testing is the dominant 

form of assessment. In such models, test plans each consisting of a series of tests (i.e., 

{Testn1,…,TestnL}) are executed according to some periodic schedule. Assuming that the 

execution of a test plan starts at ts
(n) and ends at te

(n), the hybrid model may also check for 

monitoring events that occurred within the interval [ts
(n)–d1, te

(n)+d2] in order to provide an 

assessment of the security property of interest. Note that the length of the execution of each test 

plan and the monitoring events found within [ts
(n)–d1, te

(n)+d2]  may vary. 

 

 

 

Figure 59 - Dependent mode hybrid certification models 



 

131 
 

Part (b) of the figure shows the timelines of evidence collection in dependent hybrid certification 

models where monitoring is the dominant form of assessment. In such models following the 

collection of monitoring evidence (events), tests plans are executed to cross-check/complete it. 

The execution of these plans starts within the range [tm(n) , tm(n) +d] where tm(n) is the time of 

occurrence of the last event in a pattern of events that should trigger the execution of the plan 

and d is a period set by the model. The length of the execution of each test plan may vary. 

 

Examples of Hybrid, dependent mode model cases - Monitoring Triggers Testing  

Below, I will present the hybrid dependent-mode certification models of certain security 

properties from [160] where monitoring triggers testing. The hybrid models that will be used to 

assess the security properties will confirm the completeness of data collected or the 

trustworthiness of assessment. 

 

Percentage of timely incident reports	

This security property corresponds to SEF:incident-management-quality:percentage-of-timely-

incident-reports as defined in [160] and describes the percentage of incidents that are reported 

within a predefined time limit, over the total number of incidents discovered. In my example, I 

will monitor calls to upload data in the TOC and I will check which of the responses are timely, 

keeping a counter of the responses. The dependent hybrid model will prove the trustworthiness 

of outcomes from testing and monitoring. More specifically, testing will complement monitoring 

as it will check the authorisation rights of the agent who requested the uploadData operation. 

This security property has been also covered above by an independent hybrid certification 

model, but at this point I will show how it can be assessed with a hybrid dependent-mode model 

where monitoring is the dominant form of assessment. This security property is based on the 

Protection Profile (PP) developed by Common Criteria and applies to encrypted personal storage 

devices used for temporary storage of data whilst the data is in transit between two trusted host 

computers [164][170].  

Rule	R6:	

Happens	(e(_e1,	_sc,	_TOC,	REQ,	_uploadData	(_username,	_usersecret,	_data,	

_auth),	_TOC),	t1,	[t1,t1])	^	



 

132 
 

Happens	(e(_e2,	_TOC,	_AI,	RES,	_uploadData	(_vusername,	_vusersecret,	_data,	

_vCode),	_TOC),	t2,[t1,t2])	^		

(	_vCode	≠	Nil	)	^	

(t2-t1	<=_maxtime)	^	

HoldsAt	(MCounterTimelyInc(_TOC,_MCTI),t2)	

⇒	

Terminates	(_e1,MCounterTimelyInc(_TOC,	_MCTI),	t2)	^			

Initiates	(_e1,MCounterTimelyInc(_TOE,	_MCTI+1),	t2)	^	

Happens	(e(_e3,	_AI,	_TOC,	EXC	(Tper),	_checkAuthor	(_username,	_usersecret,	

_auth,	_vCode2),	_TOE),	t3,[t2,t2+d1])	^	

(	_vCode2	≠	Nil	)	

and 

Rule	R7:	

Happens	(e(_e1,	_sc,	_TOC,	REQ,	_uploadData	(_username,	_usersecret,	_data,	

_auth),	_TOC),	t1,	[t1,t1])	^	

Happens	(e(_e2,	_TOC,	_AI,	RES,	_uploadData	(_vusername,	_vusersecret,	_data,	

_vCode),	_TOC),	t2,[t1,t2])	^		

(	_vCode	≠	Nil	)	^	

(t2-t1	>_maxtime)	^	

HoldsAt	(MCounterNotTimelyInc(_TOE,_MCNTI),t2)	

⇒	

Terminates	(_e1,MCounterNotTimelyInc(_TOE,	_MCNTI),	t2)	^			

Initiates	(_e1,MCounterNotTimelyInc(_TOE,	_MCNTI+1),	t2)	^	

Happens	(e(_e3,	_AI,	_TOC,	EXC	(Tper),	_checkAuthor	(_username,	_usersecret,	

_authcode,	_vCode2),	_TOE),	t3,[t2,t2+d1])	^	

(	_vCode2	≠	Nil	)	



 

133 
 

Rule R6 monitors calls to the _uploadData operation in the TOC and the responses to them, and 

if the time required for a response is less that the maxtime	and the fluent that keeps a counter of 

the responses that were produced on time holds, then it updates the counter of instances where 

the responses were timely and executes periodic testing to check that the agent who quested the 

data upload has the authorisation rights to do the operation. The second rule (Rule R7) keeps an 

overall counter of the non-timely incidents and executes periodic testing to check if the login 

operation has checked authorisation rights. The percentage of timely incidents using monitoring 

evidence will be calculated using the following formula: 

Percentage of Timely Incidents  = MCTI/(MCTI +MCNTI) 

The above hybrid formulas guarantee incident management quality by allowing the calculation 

of the hybrid percentage of the timely incidents for a given target of evaluation. In this example 

the contribution of the dependent-mode hybrid approach to the Protection Profile is of great 

importance, as the hybrid rules enable the authorisation of the agent who requested the 

_uploadData operation, providing a higher level of security. 

 

Authentication of data origin 

This security property corresponds to the AIS:authentication:authentication-of-data-origin 

security property as defined in [160] and describes a data authentication mechanism which 

assures that data produced by the TOE (Target of Evaluation) can be verified to originate from 

the TOE. The dependent hybrid model will prove the completeness of data from testing and 

monitoring. The property will be considered “verified” if the data produced by the TOC is 

associated with an Authentication Code (_authcode). If ((_authcode)≠ Nil) I can assume that 

data originates from the TOE. The TOE will be the “upgrade Web Interface”. The following rule 

R9, for every request to upgrade the TOE data (request granted by TOE), through the normal 

upgrade interface, it requests the execution of a test to check if the entity that requested the 

update had indeed the authorisation to upgrade data and that the data that originate from the TOE 

is associated with an _authcode whose value is not Nil. This security property is based on the 

Protection Profile (PP) developed by Common Criteria and applies to encrypted personal storage 

devices used for temporary storage of data whilst the data is in transit between two trusted host 

computers [164][170]. The hybrid formulas will certify the authentication of the TOE by using 

both testing and monitoring evidence. More specifically, evidence gathered from testing will 

complete the monitoring evidence gathered. 



 

134 
 

Rule	R9:	

Happens	(e(_e1,_sc,_TOE,REQ,	_upgradeOp(_username,	_usersecret,	_data,	

vCode),_TOE),t1,[t1,t1])		^		

Happens	(e(_e2,_TOE,_sc,	RES,	_upgradeOp(_vusername,	_vusersecret,	_data,	

_authcode),_TOE),t2,[t1,t1+d1])	^	

	(_authcode	≠	Nil)		

⇒	

Happens	(e(_e3,_CA,_AI,EXC,	_authenticateOp(_username,_usersecret,	_vCode,		

_authcode2),_TOE),t3,[t2,t2+d2])^	

(_authcode2≠Nil)	

In this dependent hybrid certification model, monitoring is the dominant form of assessment and 

the test plans are executed to check the authorisation rights of the entity who requested the 

upgrade. The execution of these plans starts within the range [t2,t2+d2] where t2 is the time of 

occurrence of the last event in a pattern of events that should trigger the execution of the plan 

and d2 is a period set by the model.  

	

Example of Hybrid, dependent mode model cases - Testing Triggers Monitoring 

Below, I will present the hybrid dependent-mode certification model for the Storage freshness 

security property from [160]. In this model testing is the primary form of assessment and triggers 

monitoring.  

Storage freshness  

This security property corresponds to the DSI:durability:storage-freshness security property as 

defined in [160] and assures that any attempt to retrieve a data object from storage in the TOC is 

guaranteed to return the updated version of the data object, reporting any alteration of the  data 

object. The dependent hybrid model will prove the trustworthiness of data. First of all, I will 

execute the update operation in the interface of the TOC and if a response is produced within a 

required time period, then the counter of instances where the data in the TOC were altered, is 

updated. Additionally, the fluent concerning the test executions that revealed the data alteration 

in the TOC is recorded. 



 

135 
 

Assumption	A10:	

Happens	 (e(_e1,_CA,_TOC,	 EXC(Tper),	 _update(_TOC,	 _object,	 _h1)	 ,	 _TOC),	 t1,	

[t1,t1])	^	

Happens	(e(_e2,_TOC,	_CA	RES,	_update(_TOC,_object,	_h2),_TOC),t2,[t1,t1+tav])^	

HoldsAt	(TCounterUpdate(_TOC,_TCU),t2)	

⇒		

Terminates	(_e1,TCounterUpdate(_TOC,_TCU),t2)	^			

Initiates	(_e1,TCounterUpdqate(_TOC,_TCU+1),t2)^		

Initiates	(_e1,TUpdate(_TOC,_x,t2–t1),t2)		

 

Also, with testing I will detect if data stored in the TOC have been modified and I will monitor 

the periods between the tests that revealed data modifications to check if appropriate 

notifications have also been sent. Data modifications could be detected by obtaining the hash 

value of the relevant data file in the TOC periodically. Then, if across the execution of two 

consecutive tests, the last retrieved hash value of the file is different from the previous hash 

value, a data modification action can be deduced. In parallel with the execution of this periodic 

test, the hybrid model will also monitor the execution of notification operations. 

	

Rule	R10:	

Happens	(e(_e1,_CA,_TOC,	EXC(Tper),	_update(_TOC,_object,_h1),_CA),	t1,	

[t1,t1])		^		

HoldsAt	(LastHash(_object,_h2,t2),t1)	^		

(_h1	≠	_h2)	^		

(t2	<=	t1)	

⇒		

Happens	(e(_e3,_TOC,_CA,REQ,	_notifUpdate(_cred,_data,_auth,_h1),	_TOC),	t3,	

[t2,t1])	

 



 

136 
 

Rule R10 expresses a hybrid dependent mode model where evidence arising from testing 

triggers the acquisition of monitoring evidence. Hence, testing is the primary form of 

assessment. R10 forces the execution of the event Happens(e(_e1,_CA,_TOC,EXC(Tper),	

_update(_TOC,_object,_h1),_CA),	 t1,	 [t1,t1])  periodically to invoke the operation 

_update(_TOC,_object,_h1) in the testing interface of _TOC and obtain the current hash value 

(_h1) of the data object of the _TOC. If this value is different from the hash value recorded by a 

previous test at some t2 (i.e., the value recorded in the fluent	LastHash(_object,_h2,t2),t1),  

rule R11 checks if an update notification has also occurred between t2 and t1, as expressed by 

the monitoring event Happens(e(_e3,_TOC,_CA,REQ,	 _notifUpdate(_cred,_data,_auth,_h1),	

_TOC),	t3,	[t2,t1]). 

	

 

 

 

 

 

 

 

 

 

 

 

 



 

137 
 

4. Evaluation 

4.1 Research methods and evaluation 

The objective of this chapter is to evaluate critically the hybrid approach that I have introduced 

and to provide the reader with conclusions about the hybrid certification. The qualitative 

evaluation of my approach is based on comparing my hybrid model against other approaches 

that have extended industrial applicability, in terms of certain criteria that I am defining. The 

biggest strength of this method is the fact that my approach is compared against other popular 

approaches, so the advantages and the limitations of my hybrid solution are easily identified and 

revealed. However, this method is limited to a finite number of comparisons and, thus, entails a 

degree of subjectivity. 

 

4.2 Overview and evaluation assessment 

At this point, I will provide an evaluation of the hybrid certification approach that has been 

introduced. For the purposes of the evaluation, I will firstly present the hybrid certification 

process, along with the certification processes of other approaches and, then, I will proceed with 

comparing the hybrid approach with the Common Criteria approach, which is based on third-

party certification. Common Criteria (CC) is recognised as one of the most popular and 

distinguished approaches for third party certification, representing a good real-world example of 

third party certification approaches. Also, I will compare my approach with the ISO 27001 

approach, which is based on third-party audit certification and with the CSA Open Certification 

Framework, which is based on self-attestation and third-party audit certification. The 

comparison that follows is based on the certification process of each of the previous approaches. 

Finally, I will outline how my approach for certifying cloud services proves to be more effective 

than the aforementioned certification processes. 

 

4.2.1 Hybrid Certification Approach overview 

First of all, concerning my hybrid certification approach, it is worth mentioning that the entities 

involved in the certification process include a cloud service provider who provides the cloud 

service to be certified and request its certification for a specific security property, a certification 

authority who issues and manages the certificate for the given security property and cloud 



 

138 
 

service, an issuer of the certification model instance who issues and manages the certification 

model instance for the defined certification process, and the executor of the instance who is 

responsible for collecting the evidence. The certification model instance executor and the issuer 

are covered by an accredited Lab. The inputs of the hybrid certification process include the cloud 

service that is requested to be certified and a certification model instance that includes 

information about the TOC, the security property, the conditions for the collection of evidence 

and for the lifecycle of the certificate, while the output of the hybrid certification process is the 

hybrid certificate.  

 

4.2.2 Comparison between the hybrid certification approach and Common Criteria 

Concerning the Common Criteria (CC) approach, it has to be mentioned that the certification 

process is applied to a product and generates certificates that are recognised within the Common 

Criteria Recognition Arrangement. After the product application, the CC approach checks that 

the product implements all the security measures claimed to the level claimed, using penetration 

and functional testing. The entities involved in the certification process include a developer who 

produces the object to be certified, the evaluation laboratory who performs the evaluation 

activities to the entities provided by the developer and the certification body who issues the 

certificates. The inputs of the CC certification process include the product that needs to be 

certified (TOE or Target of Evaluation), the security target which is a document uniquely 

associated to the TOE containing information about the TOE, its functionalities and the 

evaluation activities required, and, finally, additional inputs that involve further documentation 

(development documentation, guidance documentation, testing documentation). The output of 

the CC process is a CC certificate and a certification report that is associated to the CC 

certificate. 

The hybrid certification approach is suitable for certifying services in cloud environments, as it 

provides machine-readable certificates and focuses on automated activities. On the contrary, the 

CC approach is not suitable for certifying services in the cloud, as it is based on costly manual 

actions and activities, such as analysing documentation provided by the developer, thus having a 

human-centric approach. The CC aims at certifying that the product implements a specific set of 

technical security measures. Additionally, the hybrid certification model introduced is based on 

collecting evidence from the service operational environment through testing and monitoring, 



 

139 
 

thus, covering cases where one form of assessment does not provide the sufficient evidence 

required, and also, cases where I just want to confirm the results from one form of assessment 

with the results from the other form of assessment, while the CC approach is based on collecting 

evidence through functional and penetration testing of the interfaces of the object in a controlled 

testing environment.  

My hybrid independent approach supports continuous monitoring, which means that evidence is 

continuously collected through the service lifecycle, providing a continuous assurance, while CC 

approach does not consider new potential vulnerabilities, as testing is performed at regular 

intervals and assurance is restored at fixed moments specified by the certification body. For that 

reason, the lifecycle of the certificate in the hybrid certification model is more complex, but 

proves to be more dynamic, addressing more cases than the ones that can be addressed by the 

CC approach. Finally, my hybrid approach supports the provision of digital signatures, enabling 

the dynamic and automatic processing of the certificates. 

Additionally, the hybrid model enables the certification of security properties from the 

Protection Profiles of the CC that could not be certified without it (such as the authorisation of 

agents who request update of data), as evidence that comes from both testing and monitoring is 

combined. In the previous sections, it became obvious how the hybrid formulas can be used to 

certify the authentication and the incident management quality in an Encrypted Storage Device. 

The CC evaluation process is abstract and the approach is not designed to support automated 

security certification, targeting static, monolithic systems and requiring a large investment of 

resources and time. Consequently, the hybrid model can extend the number of security 

properties that can be certified, and the number of cases that are covered by the Common 

Criteria approach. 

Summarising, the hybrid model introduced can produce availability assessments of higher 

confidence as the monitoring and testing evidence can be cross-checked before being used in an 

assessment (and certificate). Also, hybrid models offer an extended pool of evidence and are 

more customisable than traditional certification models, since they offer the choice of deciding 

how test and monitoring evidence should be correlated, cross-checked and used in assessments. 

Finally, in terms of efficiency, effectiveness and cost, it is obvious that the hybrid approach I 

introduced is a better solution concerning the certification of cloud services. 

  



 

140 
 

4.2.3 Comparison between the hybrid certification approach and ISO 27001 

The ISO 27001 approach is a third-party audit certification approach and includes technical, 

physical and procedural security measures, providing a wide variety of control and 

implementation of these controls. Concerning the certification process, the ISO 27001 approach 

includes an auditing process where an auditor checks if all security measures in an organisation 

are implemented correctly. The entities involved in the certification process include the 

organisation who requests to be certified and is responsible for providing the inputs of the 

certification process, the certified auditor who is accredited by the Certification Body (CB) and 

performs the auditing and the CB that certifies the organisation as compliant with ISO 27001 

and generates the output of the certification process. The final outcome of the ISO 27001 

approach is either a certification or a failure. Additionally, the auditing process takes place 

twice, as firstly, a pre-certification auditing is performed and then, the organisation acts on the 

recommendations and the final auditing is performed. The ISO 27001 certification lasts for three 

years, before the renewal process begins. 

In the ISO 27001 approach the target of certification focuses on the Information Security 

Management System of an organisation and not on a specific cloud service as my hybrid 

approach does. That means that the ISO 27001 approach audits all the procedures for the 

services and does not perform actions directly on cloud services and their underlying cloud 

stack, as my hybrid approach does. Moreover, the ISO 27001 approach is focused on analysing 

reports and documentation provided by the service provider, has a human-centric nature and 

cannot be automated easily, as opposed to the hybrid certification approach I introduced that 

produces machine-readable certificates and supports automation. Concerning the lifecycle of the 

certificate, both my hybrid approach and ISO 2007 are capable of covering occurring changes 

without requiring re-certification from scratch. Finally, in terms of efficiency, effectiveness and 

cost, it is obvious that the hybrid approach I introduced is a better solution concerning the 

certification of cloud services, since my approach consists of an automatic approach without 

requiring a certified auditor to certify the whole certification process. 

 
 



 

141 
 

4.2.4 Comparison between the hybrid certification approach and CSA’s OCF 

The Open Certification Framework (OCF) developed by CSA is based on self-attestation and 

third-party audit certification, aiming to certify the use of the best practice information security 

management for the cloud. The OCF focuses on the organisational dimension of security and 

translates it to technical measures. The OCF includes the Cloud Control matrix (CCM), which 

comprises of a list of 133 controls that are grouped in 16 domains. Additionally, it allows cloud 

providers to self-assess their adherence to the CCM in two ways. The first way is directly, and 

the second one is through the Consensus Assessment Initiative Questionnaire. The OCF supports 

real-time monitoring, by collecting events and other auditing evince, but this functionality is 

under development.  

While my hybrid approach supports the automatic certification of security properties of the 

cloud services providing machine-readable certificates, the OCF certifies information systems as 

whole entities and includes risk, governance and compliance processes, usually requiring human 

auditing intervention. The OCF can certify qualitative controls that the hybrid approach 

introduced cannot. One example is the certification of the control concerning the compliance 

obligations of an organisation to maintain and update regularly the infrastructure network and 

system components based on the business needs. However, it cannot certify security properties 

that require testing, such as the provision of digital signatures. Concerning the continuous 

monitoring supported by the OCF, it is difficult to evaluate it against my hybrid approach, as this 

component is still under development. Finally, in terms of efficiency, effectiveness and cost, it is 

obvious that the hybrid approach I introduced is a better solution concerning the certification of 

cloud services, as it dos not require the intervention of an external certified auditor. 

 

4.2.5 Evaluation Summary 

The following table summarises the findings from the qualitative evaluation, of the comparison 

of the certification process between my hybrid approach and the CC approach, the ISO 27001 

approach and the OCF approach. The evaluation criteria used for the comparison are the nature 

of the approach, the focus of the approach, the validity of the certification outcome, the 

automation of the certification, the need for human auditing intervention, the ability to cover 

potential changes without having to recertify from scratch and the cost efficiency.  



 

142 
 

Criteria Hybrid Approach Common Criteria ISO 27001 OCF 

Nature of the 

approach 

Machine-centric 

approach 

Human-centric 

approach 

Human-centric 

approach 

Human-centric 

approach 

Focus of the 

approach 

Cloud Services Software products Organisations Information 

Systems 

Validity of 

certificate 

Dynamic validity Assurance is 

restored at fixed 

moments 

Needs to be 

renewed every 3 

years 

Not known (as not 

fully developed 

yet) 

Automation of 

certification 

Enabled Not enabled Not enabled Not enabled 

Need for human 

auditing 

intervention 

Not Applicable Applicable Applicable Applicable 

Ability to cover 

potential changes  

Enabled Not enabled Enabled Will be enabled 

 

 

Cost efficiency 

Does not require a 

large investment of 

time and money 

Requires a 

sufficient 

investment of time 

and money 

Requires a 

sufficient 

investment of time 

and money 

Not known (as not 

fully developed 

yet) 

Table 7 - Evaluation Summary Table 

 

Concerning the nature of each certification approach, it needs to be said that my hybrid approach 

is the only certification approach of the ones analysed and examined, that provides machine-

readable certificates and has a machine-centric approach. This means that it does not rely on 

human evaluation, auditing and analysis of documents and reports. The CC approach, along with 

the ISO 27001 approach and the OCF approach have a human-centric nature and provide 

certificates that are not machine-readable. Additionally, the hybrid approach is the only approach 

that is automated. This is a strong advantage of the hybrid approach that I developed, as it can 

have broader applicability. At this point, it is worth mentioning that the hybrid approach for the 

certification of cloud services does not require human auditing intervention, as opposed to the 

other certification approaches, and, as a result, it is free of any subjectivity that could be 

introduced with human intervention. Concerning the ability to cover potential changes that may 

occur, the hybrid certification approach, along with the ISO 27001 approach, do not require re-



 

143 
 

certification from scratch, as opposed to the Common Criteria approach that is unable to cover 

changes without repeating the certification process again. The OCF approach enables the ability 

to cover potential changes, but it has not been fully implemented yet. In terms of the validity of 

the certificates produced, the hybrid approach is the most dynamic approach of the ones 

analysed, because of its ability to be automated and to cover potential changes without the need 

of human intervention. The assurance in the CC approach is restored at specific points of time, 

making the approach quite flexible and, thus, satisfactory, in terms of validity of the certificates. 

The duration of the OCF approach is not known yet, as it is under development. Finally, when it 

comes to cost efficiency, the hybrid approach is the only approach that does not require a large 

investment of money and time and does not require any external auditing entities. 

At this point, I will present the major drawbacks of the certification approaches analysed above. 

First of all, the CC approach is not suitable for certifying services in the cloud and uses only 

testing to assess and certify security properties, providing abstract certificates. Moreover, as it 

was demonstrated earlier, it fails to certify the percentage of timely incidents reports security 

property and the authentication of data origin, failing to certify the authentication and the 

incident management quality in an Encrypted Storage Device and, thus, proving to be quite 

limited. The ISO 27001 approach is focused on the Information Security Management System of 

an organisation and not on a specific cloud service and requires pre-certification. The OCF 

approach is not fully developed and certifies information systems as whole entities focusing on 

risk, governance and compliance processes. Additionally, the above approaches are not fully 

customisable, as opposed to my hybrid approach for certification, where the user can select the 

elements that will consist the certification model schema for realising the security properties. For 

these reasons, it can be concluded that the hybrid certification approach is the most ideal 

approach for cloud service certification. 

 

 

 

 



 

144 
 

4.3 Conclusions and Future work 

Hybrid certification combines evidence gathered through testing and monitoring to collect the 

elements that are required to certify a security property. The hybrid approach that I introduced, 

overcomes the limitations of each on of the individual certification processes (i.e. testing or 

monitoring in isolation). Continuous monitoring allows the non-stop observation of the system 

without interfering with it. However, monitoring is insufficient in certain cases, as it can make 

the verification infeasible. More specifically, monitoring requires testing agents to verify 

signatures and inject traffic. On the other hand, testing can be powerful in pre-production 

environments, but on live systems it can interfere with business operations. According to the 

hybrid approach for certifying services in the cloud, monitoring and testing can take place in 

parallel, so that testing can complement monitoring and vice-versa. Monitoring can force the 

execution of testing in order receive the evidence required for assessing security properties, and, 

testing can force the collection of monitoring evidence to compete the assessment. This is 

particularly useful when we want to certify security properties, such as data-integrity-at-rest. 

Additionally, monitoring and testing can take place independently from each other, and the 

evidence from each form of assessment can help to verify the evidence collected from the other 

form of assessment. This is obvious when assessing security properties, such as availability. In 

this way, hybrid security certification provides high confidence in certifying security properties, 

compared to certification schemes based solely on testing or monitoring. The testing and 

monitoring certification model schemas developed for the CUMULUS project include certain 

limitations. More specifically, the test-based certification model schema does not include an 

element for specifying explicitly the interfaces that are provided or required for the certification 

of the TOC. Also, the test-based certification model schema does not include an element 

concerning the expiration period of the evidence collected for the assessment of security 

properties and does not define a state transition model that can drive the mechanisms behind the 

lifecycle element. On the other hand, the monitoring-based certification model schema defines 

different states than the ones defined in the lifecycle element in the test-based certification model 

schema, and, uses a different way of defining the TOC and the security properties to be certified. 

That means, that there were a lot of inconsistencies and incompatibilities between these two 

certification model schemas. 

To overcome the above problems and limitations, a new certification model had to be defined 

that can be applied when certifying security properties for cloud services and evidence are 



 

145 
 

collected through monitoring and testing. So, elements from both certification model schemas 

were used in order to have a universal way of certifying security properties when monitoring and 

testing are performed. Moreover, the hybrid certification model schema was developed taking 

into consideration the gaps of the previous schemas and their incapability of certifying certain 

security properties. As a result, I came up with the idea of a hybrid concept that can lead to the 

certification of a bigger number of security properties and that can provide higher security. My 

hybrid approach was compared with popular third-party certification and auditing approaches. 

After a comparison with the CC approach, the Open Certification Framework and the ISO 27001 

approach, it is clearly obvious that the hybrid approach introduced is the most cost-effective, 

automated and dynamic cloud certification approach, being able, at the same time, to cover 

potential changes and provide dynamically valid certificates. Moreover, it can certify security 

properties that the other approaches fail, such as the authentication and the incident management 

quality in an Encrypted Storage Device, offering an extensive pool of evidence.  

The hybrid approach I introduced, successfully meets the aims and the objectives of my 

research, as it enables the automated and continuous certification of security properties of cloud 

services with high level of assurance, overcoming the limitations of assessments based on testing 

and monitoring, and, reduces the uncertainty arising from reliance on any of the testing and 

monitoring evidence in isolation. The certification of security properties is based on the dynamic 

collection of monitoring and testing evidence. Monitoring is continuous, so that it can cover 

changes at any layer of the cloud that might affect properties already certified, without requiring 

recertification from scratch. Also, a schema has been defined to support the definition of 

executable certification models. This hybrid schema can be used to drive the certification 

process and generate the certificates. Additionally, the certification infrastructure required for 

hybrid certification is presented in my work. For my research, I developed the tools and 

mechanisms that support the management of certificates and the analysis of testing and 

monitoring data that are gathered and are used as evidence in order to generate and issue the 

hybrid certificates, based on hybrid certification models. The examples of hybrid certification of 

security properties provided, demonstrate how the hybrid approach certifies security properties 

that other existing certification models fail to do so. 
 

The evaluation of my approach proves that the hybrid approach presented can confirm the 

reliability, security and potential applicability of the proposed model to the industry. The 

proposed model provides advanced security in cloud service certification and not 



 

146 
 

trustworthiness, as trustworthiness is a generic concept that includes a high degree of 

subjectivity, as already described in Chapter 2. 
 

The biggest strength of my work is that a hybrid certification model was formed to cover the 

gaps arising from testing and monitoring certification. My approach bridges the gaps arising 

from the use of the CUMULUS framework and provides an advanced framework to overcome 

the existing limitations. Additionally, the examples I provided show a potential industrial use 

and applicability of the hybrid certification approach. The biggest limitation of the hybrid 

approach is the fact that it was mostly focused on addressing the needs of the CUMULUS EU 

FP7 Project. Additionally, the certificate authority needs to specify how to correlate the retrieved 

evidence on the basis of a hybrid lifecycle, where the certificate status changes depending on 

conditions triggered by combination of evidence of different types, making the hybrid approach 

complex and less flexible. Another limitation of the hybrid approach is the fact that it cannot 

certify qualitative controls. One example is the certification of the control concerning the 

compliance obligations of an organisation to maintain and update regularly the infrastructure 

network and system components based on the business needs.  

Concerning the future work of my research, I have identified certain areas of investigation for 

future improvements. First of all, it will be helpful for the hybrid approach to be extended so that 

it can support multi-layer certification and can certify cloud services that reside in more than one 

layers of the cloud stack. As a result, in that way, it can become more applicable in the industry. 

In addition, the hybrid certification model defined, could potentially become simpler in order to 

enable higher flexibility and reusability, so that the certification authority does not have to 

specify how the retrieved evidence will be correlated on the basis of a hybrid lifecycle. 

 

4.4 Publication of my Research 

A part of my research on Hybrid Certification Models has been presented in a conference paper 

under the title "Towards Hybrid Cloud Service Certification Models" at the 11th IEEE 

International Conference on Services Computing (IEEE SCC 2014) in Anchorage, Alaska [38]. 

This paper has been published at the CPS Online system for SCC2014 and at the IEEE digital 

library. This publication includes an early version of the hybrid approach for certifying security 

properties of cloud services that combines monitoring and testing data and argues about the need 

for hybrid certification, examining some basic characteristics of hybrid certification models. 



 

147 
 

References 
 

[1] G. Spanoudakis, E. Damiani, A. Mana, “Certifying Services in Cloud: The Case for a Hybrid, Incremental and Multi-layer 

Approach,” IEEE 14th Int. Symp. On High-Assurance Systems Engineering, 2012. 

[2] F.Etro, “The Economic Impact of Cloud Computing on Business Creation, Employment and Output in Europe”, Review of Business 

and Economics, 2009. 

[3] Industry Recommendations to Vice President Neelie Kroes on the orientation of a European Cloud Computing Startegy, November 

2011 

[4] S. Ibrahim, B. He, H. Jin, “Towards Pay-As-You-Consume Cloud Computing”, 2011 IEEE International Conference on Services 

Computing 

[5] A. Bisong, S. M. Rahman, “An Ovewrview of the security concerns in Enterprise Cloud Computing” 

[6] S. Subashini, V.Kavitha, “A survey on security issues in service delivery models of cloud computing”, 2011  

[7] R. Smith Computing in the cloud. “Research Technology Management”, ABI/INFORM Global., 2010 

[8] M. Al Morsy, J. Grundy, I. Mülle, “An Analysis of The Cloud Computing Security Problem”, 2010 

[9] D. Catteddu, G. Hogben, “Cloud Computing: Benefits, Risks and Recommendations for Information Security,” European Network 

and Information Security Agency (ENISA), 2009 

[10] P. Meller, T. Grance “The NIST Definition of Cloud Computing”, 2011 

[11] U. Somani, K. Lakhani, M. Mundra, “Implementing Digital Signature with RSA Encryption Algorithm to Enhance the Data Security 

of Cloud in Cloud Computing”. 2010 

[12] T. Ristenpart, E. Tromer, H. Shacham, S. Savage, “Hey, You, Get Off of My Cloud: Exploring Information Leakage in Third-Party 

Compute Clouds”, 2009 

[13] IDC, http://www.idc.com/getdoc.jsp?containerId=prUS24977214 

[14] Gartner, http://www.gartner.com/newsroom/id/2352816 

[15] D. S. Herrmann, Using the Common Criteria for IT Security Evaluation, CRC Press, Inc., Boca Raton, FL, USA, 2002 

[16] I. Windhorst, A. Sunyaev, “Dynamic Certification of Cloud Services”, Eighth International Conference on Availability, Reliability 

and Security (ARES) 2013, pp.412,417, 2-6 Sept. 2013 

[17] B. Jr. Kaliski and W. Pauley, Toward Risk Assessment as a Service in Cloud Environments. Proceeding HotCloud'10 Proceedings of 

the 2nd USENIX conference on Hot topics in cloud computing, 2010 

[18] S. Ramgovind, M. Eloff, E. Smith, “The Management of Security in Cloud Computing”, 2010 

[19] P. Mell, T. Grance, “The NIST Definition of Cloud Computing, Recommendations of the National Institute of Standards and 

Technology”. Special Publication 800-145, September 2011.  

[20] T. Singleton, IT-Audits of Cloud and SaaS. ISACA Journal(Volume 3), 2010. 

[21] Wikibon, Audit and the cloud. Wikibon Blog, 26.02.2010. 

[22] D. Goodin, “Web Host Hack Wipes Out Data for 100,000 Sites.” http://www.theregister.co.uk/2009/06/08/webhost_attack/. 

[23] J. Brodkin, “Megaupload data in Europe wiped out by hosting company.” http://arstechnica.com/tech-policy/2013/06/kim-dotcom-

megaupload-data-in-europe-wiped-out-by-hosting-company/. 

[24] S. Cimato, E.Damiani, F.Zavatarelli, R.Menicocci, "Towards the Certification of Cloud Services," Services (SERVICES), 2013 IEEE 

Ninth World Congress on , vol., no., pp.92,97, June 28 2013-July 3 2013 

[25] NIST, Guide for Applying the Risk Management Framework to Federal Information Systems: A Security Life Cycle Approach, 

(NIST Special Publication 800-37), Feb. 2010 

[26] M. Krotsiani, G.Spanoudakis, K. Mahbub, “Incremental Certification of Cloud Services”. In SECURWARE 2013, The Seventh 

International Conference on Emerging Security Information, Systems and Technologies (pp. 72-80), August 2013 

[27] J. Reavis, D.Catteddu, “Open Certification Framework. Vision Statement. Cloud Security Alliance,” August 2012. 

[28] B. R. Kandukuri, R. Paturi, A., “Cloud Security Issues”, 2010 

[29] A. Haeberlen. “A case for the accountable cloud.”, SIGOPS Oper. Syst. Rev. 44(2): 52-57, April 2010. 

[30] L. Kaufman. “Data Security in the World of Cloud Computing,” IEEE Security and Privacy 7(4): 61-64, July 2009. 



 

148 
 

[31] M. Jensen, J. Schwenk, N. Gruschka, L.L. Iacono, "On Technical Security Issues in Cloud Computing," Cloud Computing, 2009. 

CLOUD '09. IEEE International Conference on , vol., no., pp.109,116, 21-25 Sept. 2009 

[32] Cloud Security Alliance, “Security Guidance for Critical Areas of Focus in Cloud Computing v2.1,” available from: 

http://www.cloudsecurityalliance.org/guidance/csaguide.v2.1.pdf 

[33] H. Foster, G. Spanoudakis, K. Mahbub, “Formal Certification and Compliance for Runtime Service Environments”, Proc. of 9th IEEE 

Int. Conf. on Service Computing, 2012 

[34]  J.C. Pazzaglia, et al., Advanced Security Service cERTificate for SOA: Certified Services go Digital!, Proc. of Information Security 

Solutions for Europe, 2011 

[35] CESG - UK IT Security Evaluation and Certification body, “CC - Common Criteria Certification in the UK - UK IT security 

evaluation & certification scheme” 

[36] M. Montenegro, A. Mana. "Improving Interoperability of Digital Certificates for Software & Services". in Proc. of the IEEE 2013 

International Workshop on Services Discovery and Composition (SDC 2013). 2013. 

[37] G. Spanoudakis, C.Kloukinas, K. Mahbub, “The SERENITY Runtime Monitoring Framework”, in Spyros Kokolakis; Antonio Maña 

Gómez & George Spanoudakis, ed., 'Security and Dependability for Ambient Intelligence' , Springer, , pp. 213-237, 2009 . 

[38] S. Katopodis, G. Spanoudakis, K. Mahbub, "Towards Hybrid Cloud Service Certification Models," Services Computing (SCC), 2014 

IEEE International Conference on , vol., no., pp.394,399, June 27 2014-July 2 2014 

[39] Anisetti M.; Ardagna C.A.;.Damiani A.; Saonara A.,“A test-based security certification scheme for web services.” ACM Trans. Web 

7, 2, Article 5, May 2013.  

[40] K. Dempsey et al., Information Security Continuous Monitoring (ISCM) for Federal Systems and Organisations, NIST 800-137, 

2011, available from: http://csrc.nist.gov/publications/nistpubs/800-137/SP800-137-Final.pdf 

[41] https://resilience.enisa.europa.eu/cloud-computing-certification 

[42] S. Sakr, A. Liu, "SLA-Based and Consumer-centric Dynamic Provisioning for Cloud Databases," Cloud Computing (CLOUD), 2012 

IEEE 5th International Conference on , vol., no., pp.360,367, 24-29 June 2012 

[43] CUMULUS consortium, “cumulus Framework Architecture v1,” Deliverable D5.1. 

[44] M. Anisetti, C.A. Ardagna, and E. Damiani. “Fine-grained modeling of web services for test-based security certification”. In Proc.of 

the 8th International Conference on Service Computing (SCC 2011), Washington, DC, USA, July 2011. 

[45] E. Damiani, and A. Mana, “Toward WS-Certificate”, In Proc. of the ACM Workshop on Secure Web Services (SWS 2009), 2009 

[46] E. Denney and B. Fischer, “Software Certification and Software Certificate Management Systems”, NASA, USA, 2005.  

[47] D.N. Christodoulakis, C. Tsalidis, C.J.M. van Gogh, and V.W. Stinesen, “Towards an automated tool for software certification”, 

IEEE Software, 1989.  

[48] A. Alhussein, H. Zedan; H. Janicke; O. Alshathry, "Software Certification through Quality Profiling," New Trends in Information and 

Service Science, 2009. NISS '09. International Conference on , vol., no., pp.444,446, June 30 2009-July 2 2009 

[49] A. Munoz, A. Mana, "Bridging the GAP between Software Certification and Trusted Computing for Securing Cloud Computing," 

Services (SERVICES), 2013 IEEE Ninth World Congress on , vol., no., pp.103,110, June 28 2013-July 3 2013 

[50] E. Damiani, C.A. Ardagna, and N. El Ioini, "Open Source Security Certification". Springer, December 2008. 

[51] C. Jahl. “The information technology security evaluation criteria”. In Proccedings of the 13th International Conference on Software 

Engineering, Austin, TX, USA, May 1991, pp. 306 – 312 

[52] D.S. Herrmann. Using the Common Criteria for IT security evaluation. Auerbach Publications, 2002. 

[53] K. Beckers; D. Hatebur, M. Heisel, "A Problem-Based Threat Analysis in Compliance with Common Criteria," Availability, 

Reliability and Security (ARES), 2013 Eighth International Conference on , vol., no., pp.111,120, 2-6 Sept. 2013 

[54] M. Razzazi1, M. Jafari, S. Moradi2, H.Sharifipanah, M.Damanafshan, K. Fayazbakhsh2, A. Nickabadi2, “Common Criteria Security 

Evaluation: A Time and Cost Effective Approach”, 2006 

[55] S.B. Seidman, "Software Engineering Certification Schemes," Computer , vol.41, no.5, pp.87,89, May 2008 

[56] G.S. Robinson, "ANSI's role in standards development," Micro, IEEE , vol.17, no.6, pp.84,85, Nov/Dec 1997 

[57] http://www.iso.org/iso/about/iso_members/iso_member_body.htm?member_id=1511 

[58] https://www.cen.eu/about/Pages/default.aspx 

[59] http://www.iso.org/iso/home/about.htm 

[60] http://www.iec.ch/about/?ref=menu 

[61] http://www.itu.int/en/Pages/default.aspx 



 

149 
 

[62] M. Anisetti, C. A. Ardagna and E. Damiani. "A Low-Cost Security Certification Scheme for Evolving Services". in Proc. of the 19th 

IEEE International Conference on Web Services (ICWS 2012). 2012. 

[63] “A security certification scheme for SOA and web services,” Note del Polo - Ricerca 135, Universit`a degli Studi di Milano, Polo 

didattico e di ricerca di Crema, Tech. Rep., January 2012, http://www.crema.unimi.it/Biblioteca/Note pdf/163.pdf. 

[64] “Securing Web services for army SOA,” http://www.sei.cmu.edu/solutions/softwaredev/securingweb-services.cfm. 

[65] M. Serhani, R. Dssouli, A. Hafid, and H. Sahraoui, “A QoS broker based architecture for efficient web services selection,” in Proc. of 

ICWS 2005, Orlando, FL, USA, July 2005. 

[66] S. Ryu, F. Casati, H. Skogsrud, B. Betanallah, and R. Saint- Paul, “Supporting the dynamic evolution of Web service protocols in 

service-oriented architectures,” ACM Transactions on the Web, vol. 2, no. 2, April 2008. 

[67] M. Papazoglou, V. Andrikopoulos, and S. Benbernou, “Managing evolving services,” IEEE Software, vol. 28, no. 3, pp. 49–55, May-

June 2011. 

[68] N. Parimala, A. Saini, "Web service with criteria: Extending WSDL," Digital Information Management (ICDIM), 2011 Sixth 

International Conference on , vol., no., pp.205,210, 26-28 Sept. 2011 

[69] H. Roth, J. Schiefer, A. Schatten, "Probing and Monitoring of WSBPEL Processes with Web Services," E-Commerce Technology, 

2006. The 8th IEEE International Conference on and Enterprise Computing, E-Commerce, and E-Services, The 3rd IEEE 

International Conference on , vol., no., pp.30,30, 26-29 June 2006 

[70] H. Foster, G. Spanoudakis, “Taming the cloud: Safety, certification and compliance for software services” - Keynote at the Workshop 

on Engineering Service-Oriented Applications (WESOA) 2011. In: Lecture Notes in Computer Science. (pp. 3-8). Springer. ISBN 

9783642318757, 2011 

[71] SERENITY Project. Serenity, system engineering for security & dependability. www.serenity–project.org, 2006. 

[72] A. Alvaro, E.S. de Almeida, S.L. Meira, "Component Quality Assurance: Towards a Software Component Certification Process," 

Information Reuse and Integration, 2007. IRI 2007. IEEE International Conference on , vol., no., pp.134,139, 13-15 Aug. 2007 

[73] V. Basili, J. Heidrich, M. Lindvall, J. Munch, M. Regardie, A. Trendowicz,  "GQM^+ Strategies -- Aligning Business Strategies with 

Software Measurement," Empirical Software Engineering and Measurement, 2007. ESEM 2007. First International Symposium on , 

vol., no., pp.488,490, 20-21 Sept. 2007 

[74]  A. Sunyaev, S. Schneider, : Cloud Services Certification. In: Communications of the ACM (CACM), Volume 56, Number 2, pp. 33-

36, 2013 

[75] S.P. Kaluvuri, H. Koshutanski, F.D. Cerbo, A.Mana, “Security assurance of services through digital security certificates”, 20th IEEE 

International Conference on Web Services (ICWS-2013), 2013 

[76] M. Anisetti, C.A. Ardagna, F. Guida, “ASSERT4SOA: Toward security certification of service-oriented applications”, OTM 

Workshops, 2010 

[77] http://www.avantssar.eu/ 

[78] http://www.avispa-project.org/ 

[79] G. Canfora, M. Di Penta,”Service-oriented architectures testing: A survey”, Softw. Engin Int.Summer Schools 1, 78–105, 2009 

[80] L. Baresi and E. Di Nitto. Test and Analysis of Web Services. Springer, New York, USA, 2007 

[81] R. Chandramouli, M. Blackburn, “Automated testing of security functions using a combined model and interface-driven approach”,  

In Proceedings of the 37th Annual Hawaii International Conference on System Sciences (HICSS’04), 2004. 

[82] J. Jurjens, “Model-based security testing using UMLsec: A case study”, Electron. Not. Theor. Comput.Sci. 220, 1, 93–104, 2008 

[83] M. Zulkernine, M.F. Raihan, M.G.Uddin, “Towards model-based automatic testing of attack scenarios”, In Proceedings of the 28th 

International Conference on Computer Safety, Reliability and Security (SAFECOMP’09, 2009). 

[84] G. Canfora, M. Di Penta, "Testing services and service-centric systems: challenges and opportunities," IT Professional , vol.8, no.2, 

pp.10,17, March-April 2006 

[85] W.T. Tsai, R.Paul, W. Yamin, F.Chun, W. Domg, “Extending WSDL to facilitate web services testing”, In Proceedings of the 7th 

IEEE International Symposium on High Assurance Systems Engineering(HASE’02), 2002 

[86] E. Martin, S. Basu, T. Xie, “WebSob: A tool for robustness testing of web services”, In: 29th International Conference on Software 

Engineering (ICSE 2007), Minneapolis, MN, USA, May 20-26, 2007, pp. 65–66 (2007) 

[87] E. Martin, S. Basu, T. Xie, T., “Automated testing and response analysis ofweb services”, In International Conference on web 

Services (ICWS 2007), Salt Lake City, Utah, USA, July 9-13, 2007, pp. 647–654 (2007) 

[88] M.S. Jokhio, G. Dobbie, J. Sun, “ Towards specification based testing for semantic web services”,  In Proceedings of the 20th 

Australian Software Engineering Conference (ASWEC’09), 2009 



 

150 
 

[89] R. Heckel, M. Lohmann, “Towards contract-based testing of web services”, In Proceedings of the International Workshop on Test and 

Analysis of Component Based Systems (TACoS’04), 2004 

[90] L. Fratzen, J.Tretmans, R. De Vries “Towards model-based testing of web services”, In Proceedings of the International Workshop on 

Web Services - Modeling and Testing (WS-MaTe’06), 2006 

[91] C.S. Keum, S.Kang, I.-Y. KO, J. Baik, Y.I. Choi, “Generating test cases for web services using extended finite state machine”. In 

Proceedings of the 18th IFIP International Conference on Testing Communicating Systems (TestCom’06), 2006. 

[92] A.Tarhini, H. Fouchal, N. Mansour, “A simple approach for testing web service based applications”, In Proceedings of the 5th 

International Workshop on Innovative Internet Community Systems (IICS’05), 2005 

[93] L.Bentakouk, P. Poizat, F. Zaidi, “Checking the behavioral conformance of web services with symbolic testing and an SMT solver”, 

In Proceedings of the 5th International Conference on Tests and Proofs (TAP’11), 2011 

[94] A. T. Endo, A. SIMAO, “Model-based testing of service-oriented applications via state models”, In Proceedings of the 8th IEEE 

International Conference of Service Computing (SCC’11), 2011 

[95] J. Tretmans, “Model-based testing and some steps towards test-based modelling”, In Proceedings of the 11th International School on 

Formal Methods for Eternal Networked Software Systems (SFM’11), 2011 

[96] E. Damiani, N.El Ioini, A. Sillitti, G. Succi, “WS-certificate”, In Proceedings of the IEEE Congress on Services (SERVICESI’09), 

2009 

[97] SEI, “Securing web services for army SOA”, 2011. http://www.sei.cmu.edu/solutions/softwaredev/securingwebservices.cfm. 

[98] A. Al-Moyaed, B. Hollunder, “Quality of service attributes in web services”. In Proceedings of the 5th International Conference on 

Software Engineering Advances (ICSEA’10), 2010 

[99] Y. Hao, Y. Zhang, J. Cao, “A novel QoS model and computation framework in web service selection”,World Wide Web 15, 5-6, 

663–684. 

[100] C.-T. Kuo, H.-M. Ruan, C.-L. Lei, S.-J. Chen, “A mechanism on risk analysis of information security with dynamic assessment”, 

Third International Conference on Intelligent Networking and Collaborative Systems, p. 643-646, 2011 

[101] http://www.assert4soa.eu/ 

[102] H.W. Gwendolyn , J. H. Poore, C. J. Trammell, “Statistical testing of software based on a usage model”. Softw. Pract. Exper. 25, 1 

(January 1995), 97-108, 1995 

[103] C. Kallepalli, J. Tian, "Measuring and modeling usage and reliability for statistical Web testing," Software Engineering, IEEE 

Transactions on , vol.27, no.11, pp.1023,1036, Nov 2001 

[104] C. Trammell, “Quantifying the reliability of software: Statistical testing based on a usage model”, Proceedings of the 2nd IEEE 

Software Engineering Standards Symposium, 1995. 

[105] J.H. Poore, and C.J. Trammell, "Engineering Practices for Statistical Testing", Crosstalk: The Journal of Defense Software 

Engineering, Vol. 11, No. 4, April 1998 

[106] James A. Whittaker and Michael G. Thomason. 1994. A Markov Chain Model for Statistical Software Testing. IEEE Trans. Softw. 

Eng. 20, 10 (October 1994), 812-824. 

[107] G. H. Walton, Jesse H. Poore, Carmen J. Trammell: Statistical Testing of Software Based on a Usage Model. Softw., Pract. Exper. 

25(1): 97-108 (1995) 

[108] A. Metzger, O. Sammodi, K. Pohl, M. Rzepka, “Towards pro-active adaptation with confidence: augmenting service monitoring with 

online testing”. In Proceedings of the 2010 ICSE Workshop on Software Engineering for Adaptive and Self-Managing Systems 

(SEAMS '10), 2010 

[109] B. Dhiyanesh and A. Thiyagarajan, A novel third party auditability and dynamic based security in cloud computing. International 

Journal of Advanced Research in Technology, 2011, Vol. 1(Issue 1), pp. 29-33. 

[110] Z. Chen and J. Yoon, IT Auditing to assure a secure cloud computing. 2010 IEEE 6th World Congress on Services, 2010 

[111] B. Jr. Kaliski and W. Pauley, Toward Risk Assessment as a Service in Cloud Environments. Proceeding HotCloud'10 Proceedings of 

the 2nd USENIX conference on Hot topics in cloud computing, 2010. 

[112] R. Accorsi and L. Lowis, ComCert: Automated Certification of cloud-based Business Processes. ERCIM News(83), October 2010 

[113] Cloud Security Alliance, “Security Guidance for Critical Areas of Focus in Cloud Computing v2.1,” 

http://www.cloudsecurityalliance.org/guidance/csaguide.v2.1.pdf . 

[114] http://www.truste.com/ 

[115] C.-T. Kuo, H.-M. Ruan, C.-L. Lei, and S.-J. Chen, A mechanism on risk analysis of information security with dynamic assessment. 

2011 Third International Conference on Intelligent Networking and Collaborative Systems, 2011, pp. 643-646 



 

151 
 

[116] I. Windhorst, A. Sunyaev, "Dynamic Certification of Cloud Services," Availability, Reliability and Security (ARES), 2013 Eighth 

International Conference on , vol., no., pp.412,417, 2-6 Sept. 2013 

[117] http://www.cumulus-project.eu/ 

[118]  M. Cooray,  J. Hamlyn-Harris, R. Merkel, "Dynamic Test Reconfiguration for Composite Web Services," Services Computing, IEEE 

Transactions on , vol.PP, no.99, pp.1,1, 2014 

[119] N.Delgado, A.Q. Gates, S. Roach, “A taxonomy and catalog of runtime software-fault monitoring tools”, IEEE Trans. Software Eng. 

30 (2004) 859–872, 2004 

[120] S. Benbernou, “State of the art report, gap analysis of knowledge on principles, techniques and methodologies for monitoring and 

adaptation of sbas. Deliverable PO-JRA-1.2.1, S-Cube Consortium (2008), http://www.s-cube-network.eu/ 

[121] A. Metzger, O. Sammodi, K. Pohl, M. Rzepka, “Towards pro-active adaptation with confidence: augmenting service monitoring with 

online testing”, In Proceedings of the 2010 ICSE Workshop on Software Engineering for Adaptive and Self-Managing Systems 

(SEAMS '10). 2010 

[122] D. Peters, “Automated Testing of Real-Time Systems,” technical report, Memorial Univ. of Newfoundland, Nov. 1999. 

[123] K. Mahbub and G. Spanoudakis. "A framework for Requirements Monitoring of Service Based Systems", 2nd International 

Conference on Service Oriented Computing (ICSOC 2004), November 2004, pp 84 – 93. 

[124] D. Bianculli, C. Ghezzi, “Monitoring Conversational Web Services”, in IWSOSWE’ 07, 2007. 

[125] A. Grabner, “Challenges of Monitoring, Tracing and Profiling your Applications running in The Cloud”, SYS-CON Media, Inc., 2009 

[126] A. Grabner, “Proof of Concept:dynaTrace provides Cloud Service Monitoring and Root Cause Analysis for GigaSpaces”, SYS-CON 

Media, Inc., 2009 

[127] E. Novikoff, “The role of remote monitoring in Cloud Computing”. Retrieved 09 25, 2013 from enki: http://www.enki.co/Enki-

Blog/reliability-and-cloud-computing.html 

[128] Ganglia System, Ganglia Monitoring Sourceforge page. Retrieved 09 25, 2013 from Ganglia: http://ganglia.sourceforge.net 

[129] W. Gilani, “SLA-aware Service Management, Deliverable DA3.a”, M38, F7 SLA@SOI Project. Retrieved 09 25, 2013 from 

SLA@SOI: http://sla-at-soi.eu/wp-content/uploads/2011/08/D.A3a-M38-SLA-aware-service-management.pdf 

[130] G.B. Aceto, “Cloud Monitoring: definitions, issues and future directions”. 1st IEEE International Conference on Cloud Networking 

(IEEE CloudNet'12), 2012  

[131] V.C. Emeakaroha, T. Ferreto, M. Netto, I. Brandic, C. De Rose, “CASViD: Application Level Monitoring for SLA Violation 

Detection in Clouds”. IEEE Computer Software and Applications Conference (COMPSAC 2012). 

[132] V.C.Emeakaroha, “DeSVi:An Architecture for Detecting SLA Violations in Cloud Computing Infrastructures.”, 2nd International 

ICST Conference on Cloud Computing (CloudComp 2010).  

[133] V.N. Emeakaroha, “Towards autonomic detection of SLA violations in Cloud infrastructures”, Future Generation Comp. Syst. , 28(7), 

pp. 1017-1029, 2012 

[134] Nagios. (2011). Nagios Is The Industry Standard In IT Infrastructure Monitoring. Retrieved 09 25, 2013 from Nagios: 

http://www.nagios.org 

[135] D. Abramowski, “Monitoring Applications in the Cloud”, Retrieved 09 25, 2013 from SYS-CON Media, Inc.: http://abramowski.sys-

con.com/node/870088 

[136] F.R.C. Doelitzscher, “An Agent Based business aware incident detection system for cloud environments”, Journal of Cloud 

Computing: Advances, Systems and Applications , 2012 

[137] F.R.C. Doelitzscher, “Incident detection for cloud environments”, Third International Conference on Emerging Network Intelligence 

(EMERGING 2011), 2011 .  

[138] CloudWatch, A. (2013). Amazon CloudWatch. Retrieved 09 25, 2013 from Amazon Web Services: 

http://aws.amazon.com/cloudwatch/ 

[139] F. Sabahi, “Secure Virtualization for Cloud Environment Using Hypervisor-based Technology”, International Journal of Machine 

Learning and Computing , 2011 

[140] J. Szefer, “Architectural Support for Hypervisor-Secure Virtualization”, Proceedings of the seventeenth international conference on 

Architectural Support for Programming Languages and Operating Systems. New York, 2012 

[141] H. Jong, S. Weidong, Z. Xinwen, H. Woo, “Architectural support of multiple hypervisors over single platform for enhancing cloud 

computing security”. Conf. Computing Frontiers, (pp. 75-84), 2012 

[142] E. Keller, “Eliminating the Hypervisor Attack Surface for a More Secure Cloud”. ACM Conference on Computer and 

Communications Security , 2011 



 

152 
 

[143] S. Jin, Architectural Support for Secure Virtualization under a Vulnerable Hypervisor. The 44th Annual IEEE/ACM International 

Symposium on Microarchitecture (MICRO-44), 2011 

[144] H. Foster , G. Spanoudakis, “Advanced Service Monitoring Configurations with SLA Decomposition and Selection” 26th ACM 

Symposium Applied Computing – Track on Service Oriented Architecture and Programming.  

[145] CSA. (2013). CSA Cloud Security Alliance. Retrieved 09 25, 2013 from Introduction to CloudTrust Protocol: 

https://cloudsecurityalliance.org/research/ctp/ 

[146] https://cloudsecurityalliance.org/star/self-assessment/ 

[147] http://cloud-standards.org/wiki/index.php?title=Main_Page 

[148] https://www.owasp.org/index.php/Main_Page 

[149] https://www.ogf.org/ogf/doku.php 

[150] Cloud Security Alliance, Cloud Audit, Available from: https://cloudsecurityalliance.org/research/cloudaudit/ 

[151]  Cloud Security Alliance, Cloud Controls Matrix, Available from: https://cloudsecurityalliance.org/research/ccm/ 

[152] https://eurocloud-staraudit.eu/ 

[153] http://www.coso.org/ 

[154] http://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/Minimum_information/SecurityRecommendationsCloudComp

utingProviders.pdf?__blob=publicationFile 

[155] http://www.cert.org/resilience/products-services/octave/ 

[156] http://www.cesg.gov.uk/servicecatalogue/product-assurance/cpa/Pages/CPA.aspx 

[157] https://cloudsecurityalliance.org/research/ccm/ 

[158] M. Montenegro, A. Mana and H. Koshutanski. "Improving Security Assurance of Services Through Certificate Profiles". in Proc. of 

the 3rd International Workshop on Adaptive Services for the Future Internet. 

[159] M. Razzazi, M. Jafari,  S. Moradi, H. Sharifipanah, M. Damanafshan, K. Fayazbakhsh, A. Nickabadi, "Common Criteria Security 

Evaluation: A Time and Cost Effective Approach," Information and Communication Technologies, 2006. ICTTA '06. 

[160] CUMULUS consortium, “Security-aware SLA specification language and cloud security dependency model,” Deliverable D2.1, Sep 

2013. 

[161] K.t. Kearney, F. Torelli, C. Kotsokalis, C., "SLA★: An abstract syntax for Service Level Agreements,"  11th IEEE/ACM 

International Conference on Grid Computing (GRID), 2010, vol., no., pp.217,224, 25-28 Oct. 2010. 

[162] K. Mahbub, G.E. Spanoudakis, T. Tsigkritis, “Translation of SLAs into Monitoring Specifications, In Service Level Agreements for 

Cloud Computing”, Weider P. et al. (eds), Part 2, pp. 79-101, 2011 

[163] ANTLR, http://www.antlr.org/ 

[164] https://www.commoncriteriaportal.org/pps/ 

[165] CUMULUS consortium, “Certification models”, Deliverable D2.2, Sep 2013. 

[166] CUMULUS consortium, “Certification Models v.2”, Deliverable D2.3 

[167] CUMULUS consortium, “Core Certification Mechanisms v.2”, Deliverable D3.2 

[168] CUMULUS consortium, “CUMULUS Infrastructure v.2”, Deliverable D5.2 

[169] http://searchsoftwarequality.techtarget.com/definition/HTTPS 

[170] https://www.commoncriteriaportal.org/files/ppfiles/FMV-PP-ESD.pdf 

[171] L. Wang, Zhengping Wu, "A Trustworthiness Evaluation Framework in Cloud Computing for Service Selection," Cloud Computing 

Technology and Science (CloudCom), 2014 IEEE 6th International Conference on , vol., no., pp.101,106, 15-18 Dec. 2014 

[172] A. Jøsang, “Trust and Reputation Systems” In A. Aldini and R. Gorrieri (Eds.), Foundations of Security Analysis and Design IV, 

FOSAD 2006/2007 Tutorial Lectures. Springer, Italy, September 2007. 

[173] R. Zhou and K. Hwang, “PowerTrust: A Robust and Scalable Reputation System for Trusted P2P Computing,” IEEE Trans. Parallel and 

Distributed Systems, vol. 18, no. 4, pp. 460-473, Apr. 2007. 

[174]  R. Zhou, K. Hwang and Min Cai “GossipTrust for Fast Reputation Aggregation in Peer-to-Peer Networks,” IEEE Trans. Knowledge and Data 

Engineering, vol. 20, no. 9, pp. 1282-1295, Sep. 2008. 

[175] D, Nuñez., F. C. Gago., S. Pearson, M. Felici, “A Metamodel for Measuring Accountability Attributes in the Cloud,” Proceedings of the 2013 

IEEE International Conference on Cloud Computing Technology and Science (CloudCom 2013), pp. 355-362. 



 

153 
 

[176] T. H. Noor, Q. Z. Sheng, A. H. Ngu, A. Alfazi, “CloudArmor: A Platform for Credibility-based Trust Management of Cloud Services,” The 

22nd ACM Conference on Information and Knowledge Management, pp. 2509-2512, October 2013. 
[177] T. H. Noor, Q. Z. Sheng, S. Zeadally, J. Yu, “Trust Management for Services in Cloud Environments: Obstacles and Solutions,” ACM 

Computing surveys Journal, Vol 46, No 1, p12, 2013. 

[178]  J. Huang, D. M Nicol, “Trust mechanisms for cloud computing”, Journal of cloud computing, Springer, 2013. 

[179] “Certidication Schemes for Cloud Computing”, A study prepared for the European Commission, DG Communications Networks, Content & 

Technology, Trilateral Research and Consulting, https://ec.europa.eu/digital-agenda/en/news/certification-schemes-cloud-computing 

[180] “NIST cloud computing standards roadmap, first edition”, NIST Gaithersburg, MD, USA, 2011, 

http://www.nist.gov/itl/cloud/upload/NIST_SP-500-291_Jul5A.pdf  

[181] R. Knode and D. Egan, “Digital trust in the cloud – A precis for the CloudTrust protocol (V2.0)”, CSC, July 2010. 

[182] M. Kuehnhausen, V.S. Frost, G.J. Minden, "Framework for assessing the trustworthiness of cloud resources," Cognitive Methods in Situation 

Awareness and Decision Support (CogSIMA), 2012 IEEE International Multi-Disciplinary Conference on , vol., no., pp.142,145, 6-8 March 

2012 

 


