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Abstract 

Static automated perimetry of the central 30˚ is the most often used 

visual field test in glaucoma patients. Short test durations are achieved 

by focusing on a central region, which constitutes ~20% of the visual 

field. However, ignoring the periphery may sacrifice information on how 

patients are affected functionally. Peripheral vision is important for 

guiding attention, balance and mobility. 

An efficient standard automated examination for the peripheral visual 

field has not been established yet. This thesis aims to lay groundwork 

for the development of such a test. I introduce a kinetic automated test, 

which estimates an isopter with three repeated presentations per 

meridian. I ask whether measuring a peripheral isopter adds information 

to central visual field test results, investigate retest reliability and 

evaluate the efficiency of test procedures with repeated presentations 

through computer simulations. Moreover, I investigate how visual field 

thresholds obtained with static and kinetic stimuli relate to each other 

and examine the influence of stimulus sizes III and V on static threshold 

estimates. I also investigate the relationship between response 

variability and contrast sensitivity in the peripheral visual field.  

Based on the results, I suggest using repeated presentations in 

automated kinetic tests. I demonstrate that data driven computer 

simulations are useful for the development of efficient automated kinetic 

perimetry. The frequency-of-seeing results suggest that response 

variability to static stimuli in the far periphery is lower than suggested by 

previous data (Henson et al., 2000). This is relevant to future computer 

simulations of peripheral visual field tests with static automated 

perimetry. As a future avenue for examining the visual field periphery I 

propose a combined static kinetic automated visual field test, which 

combines a peripheral isopter as a region of interest with static stimuli 

inside this region.  

In a separate investigation, I examine the influence of visual field 

damage on reading performance and evaluate the relationship between 

reading performance and eye movements, using a within-patient 

between-eye study design in glaucoma patients with asymmetrical 

visual field loss. Between-eye reading performance was affected by 

visual field loss and co-occurred with specific eye movement patterns. 

The within-patient between-eye design appeared to be useful for 

investigating the relationship between visual field loss and functional 

disability. 
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0. Preface 

This preface clarifies the aims and motivation of the thesis, and gives a 

short summary of the background while serving as a guide through the 

chapters ahead.  

0.1 Motivation and aims of the thesis 

Historically, perimetric techniques tended to examine the entire visual 

field (Johnson et al., 2011, Gloor, 1992, Goldmann, 1999, Lachenmayr, 

1988). However, with the automation of perimetry and static automated 

perimetry being established as the gold standard, the examination of 

the visual field in glaucoma patients focused almost exclusively on the 

central 30˚ (Lachenmayr, 1988, Bengtsson and Heijl, 1998a, Bengtsson 

et al., 1998). This focus on testing central regions only was likely driven 

by the motivation to reduce test times (Bengtsson and Heijl, 1998b, 

Bengtsson and Heijl, 1999, Artes et al., 2002, Morales et al., 2000) 

while maintaining good performance at detecting early glaucomatous 

loss (Baez et al., 1995, Sample et al., 2000, Medeiros et al., 2004, Artes 

et al., 2005, Racette et al., 2008, Mulak et al., 2012).  

Nevertheless, the focus on a small central region, which makes up less 

than 20% of the visual field, might lead to an incomplete assessment of 

the functional impact that the disease has on the patient. Therefore, this 

thesis explores the feasibility of fully automated visual field testing in the 

peripheral visual field in patients with glaucoma.  

A fully automated kinetic test that measures a single peripheral isopter 

with repeated presentations is introduced in this thesis. I investigate its 

repeatability, the necessity of repeated presentations and the relevance 

of measuring in the periphery. I further investigate the relation between 

static and kinetic visual field thresholds, by measuring frequency-of-

seeing to static stimuli on isopter locations and examine response 
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variability to static stimuli in the peripheral compared to the central 

visual field.  

I also investigate reading in glaucoma, a task requiring mostly central 

vision that patients with glaucoma often report to have trouble with 

(Mangione et al., 1998, Ramulu, 2009, Burr et al., 2007). Here I 

introduce a within-patient, between-eye study design in patients with 

substantial differences in visual field damage between eyes. This 

design could be a useful way to study the relation between visual field 

loss and functional disabilities in patients with glaucoma without 

needing to control for a range of independent variables, such as age 

and cognitive ability.  

Section I (Chapters 1-4) of the thesis summarises the most relevant 

theoretical background to my research. Section II contains my 

experimental work and suggestions for future research (Chapter 5-9) 

and supplementary information to my research is given in appendices 

(Section III). 

0.2 Overview 

I. Background 

Chapter 1 describes the group of diseases called the glaucomas and 

how they are managed in the clinical environment. Glaucoma is the 

leading cause for irreversible blindness (Casson et al., 2012, Dandona 

and Dandona, 2006, Quigley, 1996). It affects more than 70 million 

people worldwide. Approximately 10% of these are bilaterally blind 

(Weinreb et al., 2014, Quigley and Broman, 2006). In most types of 

glaucoma visual field loss progresses slowly and starts in paracentral 

and peripheral regions, rarely affecting the macula in early stages 

(Drance, 1969, Harrington, 1964, Henson and Hobley, 1986, Henson 

and Chauhan, 1985). Early detection is thought to be essential to 

prevent visual field loss from progressing into blindness. Unfortunately 
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glaucoma often remains undetected until at a late stage of the disease. 

One of the reasons why glaucoma is not easily detected is that patients 

with glaucoma are often unaware of their visual field loss until 

substantial functional damage has occurred (Crabb et al., 2013). When 

visual field loss is asymmetrical between eyes, the other eye can 

compensate for the defects. Furthermore our eyes are in constant 

motion and the adaptive capacities of our brain help to fill in “missing” 

sections of the visual field.  

Importantly, even when a person is still unaware of the visual 

impairment, visual field loss can be detected through visual field 

examinations (perimetry). Chapter 2 elaborates what the visual field is, 

how contrast sensitivity across the visual field can be estimated and 

how the visual field is affected by glaucoma.   

Chapter 3 gives an overview of the most important current perimetric 

strategies to measure the central and the peripheral visual field. A major 

step towards modern day perimetry was the work of Hans Goldmann in 

the 1940s (Goldmann, 1999, Goldmann, 1945). Goldmann perimetry 

examines the visual field with kinetic stimuli: the sensitivity across the 

visual field is determined by moving stimuli with different intensities from 

the outside of the visual field towards the fixation, while the location of 

detection is recorded. In the healthy visual field the sensitivity to stimuli 

is high in the centre and gradually becomes lower towards the 

periphery. Locations with the same sensitivity tend to lie on concentric 

ellipses around the point of fixation. This concept of a contour of the 

same sensitivity is termed “isopter”.  

The largest contribution of Goldmann perimetry was its drive towards 

standardisation. Goldmann introduced standardised stimulus sizes and 

filter sets regulating the stimulus contrasts, as well as standardised 

charts for visual field recording. A precise recording was ensured 

through the use of a pantograph that simultaneously guided the 

stimulus presentation and the recording of the examinee’s responses. 
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The Goldmann perimeter is still in use in many hospitals today. 

However, Goldmann perimetry is performed manually. Thus the 

examiner determines the speed of the stimulus and decides which 

answer will be accepted as a true positive and which areas might have 

to be retested before recording an answer. This and the analogue 

recording of results on paper, makes it difficult to compare results within 

or between patients.    

The automation of perimetry provided many improvements. It allowed a 

fast, efficient, standardised way of quantifying visual field 

measurements, largely eliminating the examiner bias. And finally, the 

digital format allowed gathering large databases of visual field results, 

which provided the basis to e.g. establish normative values of visual 

field sensitivities (Heijl et al., 1987, Hermann et al., 2008, Young et al., 

1990) or to explore progression rates of visual field loss in glaucoma 

(Broman et al., 2008, Lee et al., 2004, Viswanathan et al., 1999, Russell 

et al., 2012b).  

While standard automated perimetry provided many advantages, its 

focus on the central 30˚ of the visual field also resulted in the loss of 

information from the visual field periphery. Early glaucomatous visual 

field loss is estimated to be present further in the periphery in 15% 

percent of cases (LeBlanc and Becker, 1971), and in 7% of  cases even 

in the absence of detectable visual field loss in the central 30˚ (Miller et 

al., 1989). Furthermore, decisions on the dose and type of treatment of 

glaucoma are often based on the progression of visual field defects. 

Extending visual field measurements further in the periphery might help 

to increase the dynamic range within which progression rates can be 

estimated in later stages of the disease.  

The functional impairment caused by visual field loss is still rather 

poorly understood. In Chapter 4 I briefly summarise which types of 

visual disabilities have been linked to glaucoma and how they relate to 

different types of visual field damage. This section includes parts of a 
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published review on the risk of falling in patients with age-related eye 

diseases (Moenter et al., 2014). Problems with mobility, inability to drive 

and, surprisingly, problems with reading, which requires mostly central 

vision, have been observed in patients with glaucoma. Evidence 

suggests that especially peripheral vision is important for maintaining 

balance (Berencsi et al., 2005, Assaiante and Amblard, 1992, 

Manchester et al., 1989, Nougier et al., 1998, Amblard and Carblanc, 

1980). Kotecha et al. found only a low correlation between the balance 

impairment detected in patients with glaucoma and their visual field 

results (Kotecha et al., 2012). However, the 24-2 SITA standard test of 

the Humphrey field analyser (HFA; Carl Zeiss Meditec., Inc., Dublin, 

CA) used in the study covered only the central 24˚ of the visual field. 

Thus most of the relevant region of the visual field might not have been 

taken into account, when looking for a connection between visual field 

damage and a functional deficit in balance. Other studies (Black et al., 

2011, Freeman et al., 2007) have included peripheral visual field tests 

to understand the relation between functional deficits and visual field 

damage. However, often customised tests are used, which are not 

widely available or various versions of available tests are used in 

different studies. The availability of a standard automated test for the 

peripheral visual field would make it easier to study the relation between 

functional impairment and visual field damage.  

 

II. Experiments 

In this thesis I aim to lay groundwork for the development of an efficient 

automated test for the peripheral visual field.  In Chapter 5 I introduce a 

simple fully automated kinetic visual field test that estimates a single 

isopter. I investigate its retest variability and compare this to the 

repeatability of a static automated visual field test of the central visual 

field. In data from 30 patients with open-angle glaucoma, I explore the 

correlation between central and peripheral visual field damage. It is 
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unclear in how far the extent of damage in the central visual field 

correlates with damage in the peripheral visual field. If the two were 

relatively independent, an examination of the central visual field would 

give insufficient information on the functional impairment of a patient.  

Since peripheral vision has been suggested to be important for 

maintaining balance, I also investigate how fear of falling estimated 

through a questionnaire is related to central and peripheral visual field 

damage. A report based on the content of Chapter 5 has been 

submitted for publication to Ophthalmology. Preliminary results were 

presented in the form of a talk at the 21st International Visual Field & 

Imaging Symposium in New York, NY in 2014 (Monter VM, 2014). 

The kinetic automated test introduced in Chapter 5 is not designed to 

maximise efficiency, but rather to increase precision. Moreover, the 

repeated responses along the same meridians permit the examination 

of response behaviour to kinetic stimuli. In Chapter 6 – based on the 

data from Chapter 5 – I simulate responses to kinetic stimuli to 

investigate how many presentations per meridian are needed to reliably 

estimate the isopter. I further discuss the potential of computer 

simulations to determine the efficiency of different strategies for 

automated kinetic perimetry. 

As of yet, it is unclear whether static or kinetic automated perimetry is 

more efficient to measure the peripheral visual field. Chapter 7 

describes an experiment that measures frequency-of-seeing to static 

stimuli on previously estimated isopter locations. Recent studies 

suggested that a larger stimulus area (Goldmann size V) is more 

suitable in the peripheral visual field, as it increases the dynamic range 

and reduced response variability (Paletta Guedes and Paletta Guedes, 

2013, Wall et al., 2010, Wall et al., 2009, Wall et al., 1997). I estimated 

contrast sensitivity with both Goldmann sizes III and V stimuli and 

compared the results.  
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The response variability to static stimuli increases with decreasing 

sensitivity (Henson et al., 2000). Therefore estimates at locations with 

lower contrast sensitivity are less reliable. However, the relation 

between contrast sensitivity and response variability has mostly been 

studied in the central visual field and it is unclear whether it changes 

depending on visual field eccentricity. Chapter 7 investigates the 

relation between sensitivity and response variability to static stimuli in 

the peripheral visual field in comparison to the central visual field.  

Since repeated presentations are required to measure isopters 

precisely, a kinetic examination of the entire periphery might be too 

time-consuming. However, the number of static locations required to 

sufficiently cover the periphery might also lead to high test times. A 

potential solution is to measure a single isopter, which serves as a 

region of interest within which static test locations are placed. However, 

to combine or compare static and kinetic measures, we need to know 

how they relate. Therefore, in Chapter 7, I look into the relation between 

kinetic and static visual field measures. Preliminary results from the 

experiment in Chapter 7 have been presented in the form of a poster at 

the annual meeting of the Association for Research in Vision and 

Ophthalmology (ARVO) in 2013, and a paper presentation at the 

Applied Vision Association Meeting in Leuven in 2013.   

In the final experimental chapter, I investigate the relation between 

visual field loss and reading performance, a task that requires mostly 

central vision. The content of Chapter 8 has been published in the 

Journal of Ophthalmology. The macular region is rarely affected in 

glaucoma and, if at all, mostly in late stage glaucoma. Yet, impaired 

reading, has often been reported by patients with glaucoma (Burr et al., 

2007, Mangione et al., 1998, Ramulu, 2009). However, questionnaires 

are subjective and a more objective evaluation of reading performance 

would be helpful to test whether reading is affected in patients with 

glaucoma. Unfortunately, reading speed and performance strongly 
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varies between individuals and large, well matched groups are 

necessary to detect systematic effects in reading performance in 

patients with glaucoma. Here we take an alternative approach: We 

examine the effect of visual field damage on reading performance by 

using a within-patient design in patients with asymmetric visual field 

damage between eyes. Reading performance using the better eye is 

compared to performance using the worse eye. Simultaneously, eye 

movements were tracked to detect whether scanning paths differ 

between both eyes. 

In Chapter 9 the main conclusions from the experimental sections of the 

thesis are discussed and possibilities for future research are introduced. 

 

III. Appendix 

The appendix contains supplementary information. Appendix 1 provides 

all illustrations of kinetic and static visual field examinations of the 

participants in Chapter 5’s experiment and appendix 2 contains a copy 

of the fear of falling questionnaire (Yardley et al., 2005). Appendix 3 and 

4 provide additional information on the data analyses performed in 

Chapter 5. Appendix 5 consists of the poster presented at ARVO 2013 

(Monter VM, 2013), which describes the pilot data collected for the 

experiment described in Chapter 7. 
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I. Background 

1. The Glaucomas 

1.1 Definition 

The glaucomas are a group of ocular disorders. They are unified by an 

intraocular pressure-associated optic neuropathy, which is 

characterised by potentially progressive, clinically visible changes at the 

optic nerve head, which is typically apparent as a cupping of the optic 

disc and a focal or generalised thinning of the neuroretinal rim (Quigley, 

2011, Weinreb et al., 2014). The cupping in glaucomatous optic 

neuropathies has been connected to a deformation of the lamina 

cribrosa and a degeneration of ganglion cell axons. The optic nerve 

head damage in glaucoma is associated with potentially progressive 

diffuse and/or localised visual field loss (Casson et al., 2012, Bathija et 

al., 1998). 

   

1.2 Classification 

There are several approaches to classify glaucoma. A main 

differentiation of the glaucomas relies on the anatomical structure of the 

angle between the cornea and the iris, which contains the trabecular 

meshwork (Barkan 1938). Angle-closure glaucoma (AGC) is caused by 

a narrow angle between cornea and iris leading to an obstruction of the 

drainage pathway (Figure 1). In contrast, open-angle glaucoma (OAG) 

is connected to an increased resistance for aqueous humour drainage 

through the trabecular meshwork (Figure 1).  
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Figure 1: The drainage of aqueous humor. 
Drainage in (A) the healthy eye, (B) primary open-angle glaucoma and (C) primary 
closed-angle glaucoma. (A) In the healthy eye there is a balance between the 
secretion of aqueous humour by the ciliary body and the two independent drainage 
channels – the trabecular meshwork and the uveoscleral drainage route. (B) In 
primary open-angle glaucoma increased IOP is typically due to an increased 
resistance to aqueous humour drainage through the trabecular meshwork. (C) In 
primary closed-angle glaucoma the the iris obstructs both drainage pathways leading 
to elevated IOP  (Weinreb et al., 2014).  

 

Glaucoma can be a primary disease or a secondary disease, which 

occurs as a consequence of another condition causing IOP to rise. 

Secondary glaucoma is related to trauma, inflammation, tumors or 

conditions such as pigment dispersion or pseudo-exfoliation.  

Primary glaucoma is typically bilateral, but asymmetric, while secondary 

glaucoma is often unilateral. Both open- and angle-closure glaucoma 

can be primary or secondary diseases. Angle-closure (ACG) and all 
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secondary glaucomas are characterised by elevated intraocular 

pressure (IOP). However, primary open-angle glaucoma (POAG) can 

occur at any IOP. Patients with IOP in the normal range are typically 

referred to as having normal tension glaucoma (NTG). There is also a 

large group of patients with elevated pressures but no glaucomatous 

optic neuropathy. This condition is called ocular hypertension (OHT). 

Patients with OHT are sometimes considered to be glaucoma suspects 

(Kass et al., 2002). 

With three quarters of all glaucomas being primary open-angle 

glaucoma in caucasian people, primary open-angle glaucoma is by far 

the most common type in Europe and North America (Foster et al., 

2002). My main focus from here on will be on POAG. 

 

1.3 Epidemiology 

1.3.1 Prevalence 

The prevalence of glaucoma worldwide was estimated to be 1.96% for 

OAG and 0.69% for ACG (Quigley and Broman, 2006). According to a 

study of pooled prevalence data by Quigley et al., there were 60 million 

people with glaucoma in 2010 and this is expected to rise to 80 million 

by 2020. Of these, 10% are bilaterally blind. This makes glaucoma one 

of the leading causes of irreversible blindness (Quigley and Broman, 

2006).  

The prevalence of glaucoma and its subtypes varies with gender and 

ethnicity. Women are more likely to have glaucoma then men and 

represent 70% of angle-closure glaucoma cases, 55% of OAG, and 

59% of all glaucoma cases. However, there does not seem to be a 

gender bias for POAG. Asians are the largest group affected, with 47% 

of all glaucoma cases. They also have the highest prevalence of angle-
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closure glaucoma with 87% of all angle-closure cases (Quigley and 

Broman, 2006).  

 

1.3.2 Incidence 

The incidence of a disease is the number of new cases per population 

arising in a given time period. A study on a predominantly white 

population in Melbourne Australia found a 5-year incidence of 0.5% for 

definite open-angle glaucoma and 1.1% for definite and suspect open-

angle glaucoma (Mukesh et al., 2002). The incidence of POAG 

increased significantly with age from 0% of participants of age 40-49 to 

4.1% of participants of age 50-80. In a predominantly black population 

in Barbados an incidence of 0.5% per year was found (Leske et al., 

2007). The incidence increased from 2.2% at ages 40-49 to 7.8% at 

ages 70 or older.  

Alternatively to conducting longitudinal examinations, estimates of 

incidence have also been obtained from prevalence data. Quigley and 

Vitale estimated incidence rates of POAG based on prevalence data 

from the USA (Quigley and Vitale, 1997). They found a probability to 

develop POAG within a lifetime of 4.2% in white people and of 10.3% in 

black people.  

   

1.3.3 Risk factors 

1.3.3.1 Age 

Age is by far the strongest risk factor for glaucoma; incidence and 

prevalence of POAG rises exponentially with age in every studied 

population (see Figure 2). In patients under 30 years of age, the 

prevalence of POAG is below 0.1%, this rises to as much as 10% in 
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patients over 80 (Quigley and Vitale, 1997). The increase of POAG 

cases with age is highest in Hispanic populations (Quigley et al., 2001). 

While their prevalence is similar to that seen in Europeans up to the age 

around 40 years, at age 70 it is close to that seen in Africans (see 

Figure 2). 

 

Figure 2: Prevalence of open-angle glaucoma in the major ethnic groups (Quigley and 
Broman, 2006). 

 

1.3.3.2 Intraocular pressure 

The main modifiable risk factor for glaucoma is intraocular pressure 

(IOP). Although POAG can occur at almost any IOP, the development 

of POAG increases exponentially with IOP level (Quigley and Foster). A 

causal relation between IOP and POAG is corroborated by animal 

studies, as increasing IOP in animals causes a similar phenotype to 

human glaucoma (Gaasterland and Kupfer, 1974, Pederson and 

Gaasterland, 1984, Harwerth et al., 1997). While raised IOP is a definite 

risk factor for glaucoma, many patients with OHT never develop 
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glaucoma. The ten year incidence of glaucoma in patients with OHT is 

about 7 percent (Kass et al., 2002). 

 

1.3.3.3 Myopia 

Population studies indicate an increased risk for glaucoma in patients 

with myopia. The Blue Mountain study reported a strong relationship 

between glaucoma and myopia with an odds ratio of 2.3 for low myopia 

(-1.0 to -3.0 D) and of 3.3 for high myopia (>-3.0 D) (Mitchell et al., 

1999). The Beaver Dam Eye Study showed that persons with myopia 

were 60% more likely to have glaucoma than those with emmetropia 

(Wong et al., 2003). The higher risk is thought to be related to a higher 

susceptibility to mechanical strain due to the elongated form of the eye 

in axial myopia (Coleman and Miglior, 2008).  

1.3.3.4 Family history 

According to the Rotterdam survey, which examined all available family 

members of persons with POAG, the likelihood of having POAG rises 

by a factor of ten when having one first-degree relative with the disease 

(Wolfs, Klaver et al.1998). The Baltimore Eye Survey relying on self-

reported family history reported an odds ratio of 3.69 for siblings and 

lower ratios of 2.17 and 1.12 for parents and children respectively 

(Thielsch, Katz et al., 1995).   

1.3.3.5 Ethnicity 

People of African origin are up to four times more likely to have POAG 

compared to people from other ethnicities (Quigley and Broman, 2006). 

As described above prevalence of glaucoma differs depending on 

ethnicity. The risk for glaucoma is similar among European and most 

Asian groups and at younger ages in the Hispanic population. The 
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prevalence of POAG for the main ethnic groups depending on age is 

depicted in Figure 2. 

 

1.4 Pathophysiolgy 

Glaucomatous optic neuropathy is connected to a typical structural 

change at the optic disc called cupping that goes along with the atrophy 

of retinal ganglion and glial cells (Figure 3). Ganglion cells are located 

in the inner retina and represent the final processing stage within the 

retina receiving signals from photoreceptors via bipolar, amacrine and 

horizontal cells.  

 

Figure 3: Anatomy of the optic nerve head.  
(A) The normal optic nerve head and (B) the structural changes associated with 
glaucomatous optic neuropathy. (A) The retinal ganglion cell (RGC) axons converge at 
the optic disk and from the neuroretinal rim surrounding a depression called the cup. 
The RGC axons form the optic nerve, leave the eye through the lamina cribrosa and 
project to the lateral geniculate nucleus (LGN). (B) In glaucomatous optic neuropathy 
a thinning of the rim and deepening of the cup occurs, also referred to as cupping. 
Apoptosis of the RGCs and LGN target relay neurons occurs, which might be related to 
diminished axonal transport due to mechanical strain (Weinreb et al., 2014).  
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Ganglion cell axon damage in glaucomatous optic neuropathy is 

thought to originate at the lamina cribrosa where the axons exit the eye. 

Retinal ganglion cell survival depends on neurotrophic support, which is 

normally provided from their brain stem target cells and via retinal 

interactions. The disrupted axonal transport causes a lower 

concentration of trophic factors, which eventually leads to cell apoptosis 

(Weinreb et al., 2014).  

Traditionally there are two theories concerning the cause of ganglion 

cell axon damage in glaucomatous optic neuropathies (Quigley, 1999).  

The mechanical theory is that intraocular pressure directly impacts the 

lamina cribrosa causing it to deform and restructure the lamina plates. 

This also causes mechanical strain on the ganglion cell axons 

eventually leading to ganglion cell death.  

The vascular theory is that blood flow to ganglion cell axons at the optic 

nerve head is abnormal. This in turn leads to hypoxia, a reduced 

availability of oxygen or ischaemia, a reduced availability of nutrients 

and oxygen. In the eye perfusion pressure is dependent on local arterial 

pressure and IOP. Both raised IOP or low blood pressure may therefore 

reduce blood flow (Weinreb et al., 2014).  

 

1.5 Clinical management 

1.5.1 Detection and diagnosis 

Due to the typically slow progression in glaucoma, people often do not 

notice a change in their vision until an advanced stage of the disease 

earning it the name “the silent thief of sight”. Thus glaucoma is often 

referred to as asymptomatic. An estimated number of 50% of glaucoma 

cases remain undetected in developed countries (Quigley and Broman, 

2006). In the UK, over 95% of referrals for suspected glaucoma are for 
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people who have visited their optometrist for a routine examination (Bell 

and O'Brien, 1997b, Bell and O'Brien, 1997a).  

For a diagnosis of glaucoma, typically the structure of the optic disc, the 

intraocular pressure, and the visual field is examined. Gonioscopy or 

imaging of the angle with optical coherence tomography (OCT) and 

high resolution ultrasound permits differentiation between open-angle 

and angle-closure glaucoma. The optic nerve head is typically 

examined with ophthalmoscopy and imaging techniques such as OCT 

and confocal laser tomography. Functional damage in the visual field is 

examined with perimetry, which tests contrast sensitivity in a predefined 

pattern of locations, typically within the central 30˚ of the visual field. 

Due to variety in optic disc appearance and visual field test results in 

the healthy population, judging a cup-disc ratio or visual field test as 

abnormal is an uncertain decision. Thus there is not always a clear yes 

or no diagnosis for glaucoma. Most typically both structural and 

functional abnormalities have to be detectable for a clinical diagnosis of 

glaucoma. However, a diagnosis of glaucoma can be made in the 

absence of visual field loss, if the optic disc damage is unequivocal 

(Kass et al., 2002). 

1.5.2 Monitoring and treatment 

Once patients have been diagnosed with glaucoma or are considered 

as glaucoma suspects, they are monitored in regular visits examining 

their IOP, functional and structural loss.  

The general course of treatment for POAG is lowering IOP. Lowering 

IOP is recommended irrespective of whether intraocular pressure is 

normal (Collaborative Normal-Tension Glaucoma Study Group 1998). 

For each patient a baseline IOP before treatment and an individual 

target IOP is assessed. When baseline pressure is reduced by 20-40%, 
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the average rate of visual field loss progression is estimated to be 

reduced by half (Jampel, 1997).    

Currently, prostaglandin analogue eye drops are a first line treatment to 

decrease IOP. If the target pressure is not achieved alternative eye 

drops, laser treatment to the trabecular meshwork, or surgical 

procedures are considered (Quigley, 2011). 
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2. The visual field 

The visual field is the space a person perceives when eyes and body 

are in a fixed position (Schiefer et al., 2005). 

 

2.1 The normal visual field 

The healthy visual field expands over 100˚ temporally, 70˚ inferiorly and 

between 50˚ and 70˚ superiorly and nasally. The visual field extent was 

first reported by Thomas Young in the 1800s and later refined by 

Purkinje who used more detectable stimuli (Johnson et al., 2011). The 

size of the visual field depends on each individual’s facial anatomy and 

varies most nasally and superiorly depending on the shape and position 

of nose and eye lid. The sensitivity throughout the visual field is not 

uniform. In light-adapted conditions sensitivity is highest in the fovea – 

where cone density is highest – and decreases with eccentricity of the 

visual field.   

 

2.1.1 The hill of vision 

The relation between visual field sensitivity and eccentricity is often 

referred to as the island or hill of vision (Figure 4). Traquair coined this 

term in 1938 describing the visual field as an “island of vision in a sea of 

blindness”. 

Eccentricity in the visual field is typically expressed in degrees of visual 

angle, which is the angle between central fixation and an object’s 

position at the eye, sensitivity is usually measured in decibels (dB). 
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The sensitivity described by the hill of vision is most typically the 

contrast sensitivity, not an absolute sensitivity.  

 

Figure 4: The island or hill of vision. 
The hill of vision illustrates the extent of and the contrast sensitivity throughout the 
visual field. Contrast sensitivity is highest at fixation and decreases with eccentricity in 
the visual field. The circular hole in the hill located temporally close by the horizontal 
meridian indicates the blind spot where the optic disc is located  (Anderson, 1987). 

 

2.1.2 The decibel scale 

Contrasts are expressed on a logarithmic scale by setting the difference 

between the stimulus luminance and background luminance (ΔL) in 

relation to a reference luminance (Lref) according to the following 

formula (Lachenmayr and Vivell, 1992, Schiefer et al., 2005a): 

 

                  
              

             
 

Equation 1: Conversion of arithmetic differences in luminance into logarithmic 

scale of contrasts 
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In perimetry contrast sensitivity is typically expressed in decibels (dB). 

The decibel scales vary between perimeter types since the reference 

luminance is chosen as the maximal stimulus luminance of the 

respective instrument (Lachenmayr and Vivell, 1992, Heijl et al., 2012). 

Thus 0 dB refers to the maximal stimulus luminance and lowest 

measurable contrast sensitivity of an instrument and higher dB values 

reflect attenuated stimulus intensities and higher contrast sensitivity. 

The conversion of the decibel scale between instruments with different 

maximal stimulus intensities can be easily made by adding a constant. 

  

2.1.3 The psychometric function 

The function describing the distribution of the probabilities to detect 

different stimulus intensities is called the psychometric function 

(Schiefer et al., 2005a, Wichmann and Hill, 2001a, Wichmann and Hill, 

2001b). In a perfect observer without any false positive or negative 

answers the psychometric function would be a sigmoid function with a 

lower and upper asymptote at 0 and 1. In reality the false positive and 

the false negative response rates determine the lower and upper 

asymptote of the psychometric function respectively (see Figure 5). The 

point with a 50% probability of detection determines the threshold and 

the steepness of the curve indicates the response variability.  
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Figure 5: The psychometric function. 
Example illustrating two psychometric functions (Schiefer 2005). The x-axis gives the 
stimulus intensity the y-axis the probability to respond to stimuli. A response 
probability of 50% is defined as the threshold. The steepness of the curve indicates 
the response variability. The upper and lower asymptotes represent the false negative 
and false positive response rates, respectively. Both psychometric functions depicted 
have the same threshold. The slope of the red curve is steeper indicating a lower 
variance. 

 

2.1.4 Factors affecting contrast sensitivity  

The estimated contrast sensitivity in the healthy visual system depends 

on a variety of factors. Some factors are physiological such as a decline 

in sensitivity with age and variations due to media opacity in the eye, 

other factors are related to the estimation technique such as stimulus 

size and duration or on the constitution of the tested person, such as 

attention and fatigue. 
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2.1.4.1 Background illumination – the Weber law 

We do not perceive the world in absolute terms, but in relation to a 

current state. In any of our sensory systems the differences that we can 

perceive depend on the current state of adaptation. For example, if a 

dark room is lit by one candle the change in illumination by adding one 

more candle of the same type can be easily perceived. However, if the 

room is lit by a 1000 candles the difference in illumination by adding the 

same candle is hardly detectable. To achieve the same subjective 

change a 1000 candles would have to be added (Schiefer et al., 2005).  

The law describing this phenomenon is called Weber’s law. It expresses 

that the relation of the difference in luminance (ΔL), called contrast, to 

the background luminance (L) is constant (c).  

 

  

 
   

Equation 2: Weber’s law 

 

2.1.4.2 Stimulus size – Ricco’s law and Piper’s law 

The sensitivity to stimuli of the same contrast increases with stimulus 

size. This is causes by an integration of the signal over an area and is 

called spatial summation. For sufficiently small stimuli (< 10’) a direct 

reciprocal relation between stimulus luminance (L) and area (A) has 

been found, where the same response will be elicited if intensity is 

increased by the same factor as the area is decreased or vice versa.  

This relation is described by Ricco’s law (Ricco, 1877) and is called 

complete spatial summation: 
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Equation 3: Ricco’s law 

 

This relationship changes if the stimulus size exceeds the critical area, 

called Ricco’s area. Piper described the relation as a direct reciprocal 

relation between stimulus luminance and the square root of the area 

(Piper, 1903).  

 

 

  
   

Equation 4: Piper’s law 

2.1.4.2.1 Ricco’s area 

Ricco’s area is the maximal stimulus area up to which complete spatial 

summation occurs. Among other factors Ricco’s area is dependent on 

the location in the visual field; it increases with visual field eccentricity. 

Wilson et al. demonstrated that the estimated contrast sensitivity 

remained constant throughout the visual field when measuring with a 

stimulus that matches Ricco’s area (Wilson, 1970) (Figure 6). Previous 

studies indicated that a constant number of retinal ganglion cells 

receive information from Ricco’s area at any location in the visual field 

(Volbrecht et al., 2000, Redmond et al., 2010, Fischer, 1973, Swanson 

et al., 2004, Anderson, 2006). Ganglion cell density decreases with 

visual field eccentricity, Ricco’s area is thought to increase with 

eccentricity to activate a constant number of retinal ganglion cells. By 

definition, spatial summation decreases when stimuli with areas larger 

than Ricco’s area are presented. Thus the number of ganglion cells 
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activated in Ricco’s area might reflect the number of cells up to which 

additional activation of ganglion cells leads to a steady increase in the 

neural signal and after which the signal starts to saturate. The size of 

Ricco’s area has also been shown to increase in glaucoma (Redmond 

et al., 2010). Glaucoma is related to a loss of retinal ganglion cells, thus 

a larger stimulus area is required to activate the same number of 

ganglion cells as in the equivalent region of the healthy retina.  

  

 

Figure 6: Ricco’s area versus visual field eccentricity for achromatic stimuli (Anderson, 
2006, Wilson, 1970).  
The upper plot with coloured filled circles indicates the increase in Ricco’s area 
diameter with eccentricity. The lower plot with unfilled black circles indicates the 
constancy of the contrast sensitivity ΔI/I when stimuli are matched to the localised 
Ricco’s area. The dotted lines indicate the eccentricity at which Goldmann stimuli (I-
III) have a similar size to Ricco’s area (in the healthy visual field).  

 

2.1.4.2.2 Goldmann stimuli 

In 1945 Hans Goldmann introduced a system for perimetry stimuli that 

is still widely used today (Goldmann, 1945, Gloor, 1992, Goldmann, 

1999). He chose a range of stimulus sizes (sizes I-V) and contrasts 



46 
 

such that the effect of an increase from one stimulus size to the next is 

equivalent to a one step increase in contrast regulated by a filter set 

(filter 1-4, 5 dB steps). Notably, since Ricco’s area is dependent on 

visual field eccentricity, it is questionable whether this relationship holds 

in the entire visual field. 

The range of Goldmann stimulus sizes is illustrated in Table 1 and the 

set of filters used to attenuate stimulus contrast is described in Table 2. 

Two different sets of filters to attenuate the stimulus contrast are 

commonly used in Goldmann perimetry. The first set of filters (1-4) 

attenuate the contrast sensitivity in steps of 5 dB from 15 to 0 dB. The 

second set of filters (a-e) attenuate the contrast in steps of 1 dB from 4 

to 0 dB. By combining both sets of filters a large range of stimulus 

contrasts can be achieved.    

Table 1: Range of Goldmann sizes with details on area in mm2 and diameter in 
degrees of visual angle. The area in mm2 is correct for the Goldmann 
perimeter with a bowl radius of 330 mm. 

Goldmann sizes Area in mm2 Diameter in degrees 

I  

  
 0.11˚ 

II 1 0.22˚ 

III 4 0.43˚ 

IV 16 0.86˚ 

V 64 1.72˚ 

 

Table 2: Sets of Goldmann filters used for attenuation of the stimulus contrast. 
The level of attenuation is given in dB. 

Goldmann 

Filter 
1 2 3 4 a b c d E 

Contrast 

in dB 
15 10 5 0 4 3 2 1 0 
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2.1.4.3 Stimulus duration – Bloch’s law 

Contrast sensitivity also depends on the duration of the stimulus as the 

visual system integrates signals over time. The maximum integration 

time up to which temporal summation is present has been estimated to 

lie at about 100 ms (Brindley, 1952, McDougall, 1904). For durations 

below 100 ms, if stimulus luminance is increased, stimulus duration 

needs to be decreased to elicit the same response (Bloch, 1885): 

 

       

Equation 5: Bloch’s law 

 

In perimetry stimulus durations typically lie between 100 and 200 ms to 

avoid temporal summation and to not exceed the latency of a saccadic 

eye movement (Schiefer et al., 2005a). 

2.1.4.4 Observer dependent factors 

With age physiological changes in the eye occur, which influence the 

contrast sensitivity throughout the visual field (Spry and Johnson, 

2001). The estimated decrease in contrast sensitivity per decade lies 

around 0.5 dB in the central visual field and increases with eccentricity 

(Heijl, 1997). Thus when interpreting the visual field age needs to be 

taken into consideration to understand whether contrast sensitivity lies 

within a normal range (see Chapter 3.3.3).  

The visual field is determined by the individual facial anatomy. The 

nasal visual field is limited by the nose and the superior visual field can 

be limited by the upper eye lid. Droopy eyelids can be taped to prevent 

artefacts in the superior visual field that might be misinterpreted as 
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visual field defects. Refractive errors can also diminish contrast 

sensitivity. Thus an appropriate refractive correction that is adjusted to 

the distance at which stimuli are presented is essential to measure the 

visual field (Lachenmayr and Vivell, 1992, Heijl et al., 2012). The pupil 

size can influence contrast sensitivity as it determines the amount of 

light that can enter the eye. The pupil should have a diameter of at least 

2 mm to prevent artefacts in visual field measures (Mikelberg et al., 

1987, Lachenmayr and Vivell, 1992).   

While factors such as droopy eye lids, refractive errors or small pupil 

size can be accounted for by ensuring that they are handled 

appropriately, other factors are more difficult to control. Increased 

medium opacity, as for example caused by cataract, leads to reduced 

light levels at the retina and scattering of the light that enters the eye. 

This can cause an effect in visual field results that looks similar to 

diffuse visual field loss as it can occur in glaucoma (see Chapter 2.2.1). 

Thus measuring medium opacity can help to interpret visual field results 

correctly (Lachenmayr and Vivell, 1992).  

Psychological factors of the examined person also affect the estimation 

of contrast sensitivity. Fatigue or low attentional capacities can lead to 

high false positive or false negative response rates that introduce noise 

and result in imprecise estimates of contrast sensitivity. Learning effects 

can play a role during the first visual field examinations. Low contrast 

sensitivities might be related to an unfamiliarity with the task and 

disappear during repeated examinations. False negative and false 

positive response rates are often estimated in automated visual field 

examinations (see Chapter 3.3.2) as indicators for test reliability. 

 



49 
 

2.2 Visual field damage in glaucoma 

Functional loss in glaucoma to date is irreversible. Typically visual field 

loss progresses slowly and people are often unaware of it until more 

advanced stages. Glaucomatous visual field loss is usually bilateral, but 

mostly asymmetric between eyes. On average, one eye presents with 

twice as much damage as the other eye (Quigley, 2011, Broman et al., 

2008). Typically the deterioration of the visual field begins in the mid-

periphery and often progresses in a centripetal manner (Weinreb et al., 

2014). Only up to 15% of patients with glaucoma were found to present 

with early damage in the far periphery (LeBlanc and Becker, 1971). 

Central and far peripheral areas of the visual field are mostly affected at 

a later stage of the disease. A variety of visual field loss patterns have 

been described in glaucoma. 

 

2.2.1 Diffuse visual field loss 

Diffuse visual field loss describes a relatively uniform reduction in 

sensitivity loss throughout the entire or a large portion of the visual field. 

Henson et al. reported diffuse loss to be present in the most sensitive 

region of the central visual field in most cases of early glaucoma 

(Henson et al., 1999). However, the prevalence of diffuse loss in 

glaucoma is a controversial topic. Since smaller regions with uniform 

low sensitivity loss are often referred to as diffuse loss, the same region 

might be classified as a localised loss at a later stage with deepening of 

the scotoma (Mutlukan, 1995). Additionally generalised sensitivity loss 

often might not be indicative of glaucomatous loss but rather of an 

uncorrected refractive error or increased media opacity (Brusini, 1997).   
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2.2.2 Localised visual field loss 

Localised visual field defects have been found to most likely occur in 

the superior hemifield and the inferior nasal quadrant (Henson and 

Chauhan, 1985, Henson and Hobley, 1986). First defects often start out 

in the paracentral region called paracentral scotoma (Figure 7e). These 

are independent of the blind spot (Drance, 1969). Paracentral scotoma 

often progress by joining with the blind spot in a circular manner (Figure 

7c, f). The form of this arc-shaped defect called arcuate scotoma or 

Bjerrum scotoma (Harrington, 1964) closely resembles the arcuate path 

of the retinal nerve fibers to the optic nerve. In later stages of glaucoma 

inferior and superior arcuate defects often merge resulting in a ring 

scotoma. Other localised defects described in glaucoma are an 

enlargement of the blind spot (Drance, 1969) and the so called nasal 

step (Figure 7a, c, f). The nasal step is an asymmetric nasal defect at 

the border between inferior and superior quadrant, which is reflected in 

a step-like appearance in kinetic perimetry. Examples of typical 

glaucomatous visual field defects can be seen in Figure 7.  

 

Figure 7: Various types of glaucomatous visual field defects as found with static 
perimetry of the central 30˚ of the visual field (Broadway, 2012).  
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3. Perimetry 

Perimetry is the examination of a person’s visual field. Conventional 

perimetry seeks to estimate contrast sensitivity throughout the visual 

field. This is typically done in one of two ways: either by moving stimuli 

from less sensitive towards more sensitive areas recording the point of 

detection, called kinetic perimetry, or by presenting stimuli of different 

contrast in the same location and recording detection, called static 

perimetry.  

3.1 A brief history of perimetry 

This section reviews some of the highlights in the history of perimetry. 

There are a number of reviews giving detailed accounts (Johnson et al., 

2011, Lachenmayr, 1988, Draeger and Hendriock, 1998, Thompson 

and Wall, 2008).  

The examination of our visual field has a long history, one of the first 

recorded accounts of the evaluation of the peripheral visual field was 

from Hippocrates in the late fifth century B.C. (Johnson et al., 2011). 

First illustrations of the visual field stem from Ulmus published in 1602. 

The blind spot was first described by Mariotte in 1668, who also related 

it to the location of the optic disc (Johnson et al., 2011, Berens, 1923, 

Justel and Mariotte, 1668). In the early 1800s Thomas Young measured 

the extent of a normal visual field (Thompson and Wall, 2008, Johnson 

et al., 2011). The step from qualitative to quantitative perimetry was 

performed by Albrecht von Graefe inspired by Helmholtz’ 

recommendation to guide the fixation (Johnson et al., 2011). Von 

Graefe introduced a screen with a fixation target and used a fixed 

examination distance (Thompson and Wall, 2008, Johnson et al., 2011). 

Visual field examinations that are performed on flat surfaces for 

stimulus presentations are often referred to as campimetry. One of the 
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best known further developments of such a screen is the tangent 

screen by Jannik Bjerrum, also referred to as Bjerrum screen (Johnson 

et al., 2011).  

A major step towards modern day perimetry was the work of Hans 

Goldmann in the 1940s (Goldmann, 1999, Goldmann, 1945). The 

largest contribution of Goldmann perimetry was its drive towards 

standardisation. Building on the work of Ferree and Rand (Ferree and 

Rand, 1930a, Ferree et al., 1926, Ferree et al., 1930b, Ferree et al., 

1931b, Ferree et al., 1929), Goldmann designed a bowl perimeter with 

a uniform background illumination, a set of standard stimulus sizes and 

a set of filters to regulate the stimulus contrast. Goldmann furthermore 

standardised the charts for visual field recording and ensured a precise 

recording through the use of a pantograph that simultaneously guided 

the stimulus presentation and the recording of the examinee’s 

responses.  

In the age of computerization the next logical step was an automation of 

perimetry. The pioneers in the automation of perimetry were F. 

Fankhauser, J. Lynn, A. Heijl, C.E.T. Krakau and S. Drance 

(Fankhauser et al., 1972, Fankhauser et al., 1977, Lynn and GW, 1972, 

Heijl and Krakau, 1975b, Heijl and Krakau, 1975a, Heijl et al., 1980, 

Thompson and Wall, 2008). The automation of perimetry focused 

mainly on static perimetry. Computer based perimetry allowed an easy 

use of adaptive techniques to determine detection thresholds in specific 

locations of the visual field (Johnson et al., 1992). Over time the 

efficiency of these techniques has been further refined from simple 

staircase methods to more complex  strategies e.g. including Bayesian 

priors (Schiefer et al., 2009, Bengtsson and Heijl, 1998a, Bengtsson et 

al., 1998, Bengtsson et al., 1997).  

In the last decades alternative perimetric techniques such as short 

wavelength automated perimetry (SWAP) (Heron et al., 1988) or 

frequency-doubling perimetry (Johnson and Samuels, 1997) have been 



53 
 

suggested that focus mostly on early detection of glaucoma by tapping 

into different visual pathways (Anderson, 2006). 

 

3.2 Statistical properties of threshold estimates 

Clinical perimetry needs to yield reliable threshold estimates, yet be 

time efficient.  

An optimal threshold estimate would be robust against patient errors, 

accurate – which means the absence of bias, precise – which means 

the absence of variance, and efficient – which means needing a 

minimal number of stimulus presentations to reach precision.  

The bias is the difference of the average estimated threshold from the 

true threshold. Since the true threshold can never be known with real 

observers, the bias can only be derived from simulations.  

Precision is the inverse of the variance of the threshold estimates. A 

distribution of threshold estimates with high variance around a mean at 

the true value is imprecise but accurate. A distribution of threshold 

estimates with low variance around a mean that differs from the true 

value is precise but inaccurate. 

 

3.3 Static automated perimetry 

Since the introduction of computer supported static perimetry 

(Fankhauser et al., 1972, Fankhauser et al., 1977, Lynn and GW, 1972, 

Heijl and Krakau, 1975b, Heijl and Krakau, 1975a, Heijl et al., 1980), 

automated static perimetry has been established as a standard in 

clinics for patients with glaucoma. Static automated perimetry most 

typically uses constant stimulus sizes and durations while varying 

stimulus contrast to estimate the detection threshold. The locations are 
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often fixed to predefined patterns. Some of the most commonly used 

test patterns are the 30-2, the 24-2, the G1 (Zulauf et al., 1994, Zulauf, 

1994) and the 10-2 pattern, consisting of grids with 76, 54, 73 and 68 

locations respectively (see Figure 8).  

 

  

Figure 8: Visual field test patterns.  
The graph on the left depicts the 30-2 pattern (all dots) compared to the 24-2 pattern 
(dots in blue)(Heijl and Patella, 2002). The middle graph shows the 10-2 pattern (red 
dots) compared to the 24-2 pattern (blue dots)(Heijl et al., 2012). The graph on the 
right represents the G1 pattern (Schiefer et al., 2006b).  

 

These test patterns can be used for suprathreshold or threshold 

perimetry. Most commonly thresholds are estimated in each location. 

Threshold perimetry is often referred to as standard or static automated 

perimetry. 

 

3.3.1 Threshold estimation procedures 

3.3.1.1 Method of constant stimuli 

One of the most accurate threshold estimation techniques is the method 

of constant stimuli (Spearman, 1908, Urban, 1910, Treutwein, 1995). 

Here, stimuli with different intensities spanning a range from detectable 

to non-detectable are presented in randomised order, and the intensity 

corresponding to the 50% point of detection is determined as the 

threshold. However, this technique needs a large number of stimulus 

presentations to get a fair estimate of the threshold and is thus too time-

consuming for clinical perimetry. 
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3.3.1.2 Adaptive procedures 

In adaptive procedures stimulus values depend on previous responses 

(Treutwein, 1995, Falmagne, 1986).  

The staircase method changes stimulus intensity by a certain step size 

depending on the response to previous stimuli. A stimulus that is 

detected would be attenuated by the specified step size in the next 

presentation until it is not seen anymore. The change from seen to not 

seen, or from not seen to seen, is referred to as a reversal, which then 

results in a change in the direction of attenuation typically with a smaller 

step size. The staircase method terminates after a certain number of 

reversals. Staircase methods tend to yield less precise threshold 

estimates than the method of constant stimuli, they are however less 

time consuming and thus more suitable for clinical perimetry. 

Bayesian and maximum likelihood procedures appear similar to 

staircase methods to the observer but differ profoundly in the estimation 

technique of the threshold (Treutwein, 1995, Bengtsson et al., 1997). In 

maximum likelihood techniques the threshold is calculated based on all 

previous responses. Bayesian procedures include a prior likelihood in 

the estimation. Bayesian procedures can be more efficient than 

staircase methods however they are also more prone to bias than 

staircase methods and the method of constant stimuli.  

 

3.3.2 Threshold estimation strategies in perimetry 

Various versions of adaptive procedures, such as full threshold and 

SITA standard on Humphrey perimeters (Carl Zeiss Meditec., Inc., 

Dublin, CA) and GATE and TOP on the Octopus 900 (Haag-Streit, 

Köniz, Switzerland), have been established in clinical perimetry, each 

aiming for an efficient trade off between test time, accuracy and 

precision of the threshold estimation.  
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Here, I will briefly introduce the full-threshold technique that served as a 

basis for many subsequently developed threshold techniques. I will also 

introduce SITA standard, the most commonly used technique for visual 

field examinations on the Humphrey Field Analyser (Carl Zeiss 

Meditec., Inc., Dublin, CA) and GATE, a threshold strategy on the 

Octopus 900 that I used as part of the study described in Chapter 5.  

3.3.2.1 Full-threshold 

The initial contrasts presented in the full threshold-technique are 

determined through normative values at each location. Depending on 

the answer stimulus contrasts are increased or decreased by 4 dB.  

 

Figure 9: Full threshold staircase technique.  
Graph illustrating a typical sequence of stimulus presentation in the full threshold 
technique. After the initial stimulus presentation stimulus contrasts of subsequent 
stimuli are changed by 4 dB. Following the first reversal, the contrasts of subsequent 
stimuli are changed by 2 dB. Stimulus presentation is terminated after two reversals 
and the contrast of the last seen stimulus is taken as the threshold estimate. The 
minimal number of stimulus presentations after which the procedure can terminate is 
three. 
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After the first reversal the step size changes to 2 dB (4-2 dB staircase). 

The stimulus presentation terminates after two reversals. The contrast 

of the last detected stimulus determines the final threshold estimate 

(Artes et al., 2002). A typical sequence of stimulus presentations for 

threshold determination with the full-threshold technique is illustrated in 

Figure 9. 

3.3.2.2 SITA Standard 

SITA Standard combines a 4-2 dB staircase method with a maximum 

likelihood procedure for estimating thresholds.  

The SITA strategy is approximately twice as fast as the full threshold 

strategy. This reduction in time is achieved through the following 

adjustments: A more efficient threshold estimation strategy; an 

estimation of false positives through responses outside expected 

response times, which eliminates catch trials; an adjustment of the 

interstimulus interval to individual response times; and repeated 

threshold estimation only from points where initial estimates differ from 

expected values by more than 12 dB, instead of 4 dB as in the full 

threshold strategy (Turpin et al., 2003). 

The first four test locations, called primary locations, are estimated with 

the full threshold strategy. Based on their thresholds the initial values 

for other test locations are calculated. As prior knowledge SITA uses a 

model incorporating distributions of age-corrected normal thresholds at 

each test point, frequency-of-seeing curves and correlations between 

threshold values at different test locations. The prior model consists of 

two prior likelihood functions, one for normal, one for abnormal points, 

describing the probability for estimated threshold values at each 

location. The model is updated with each response and eventually the 

maximum posterior estimate is chosen as the threshold estimate 

(Bengtsson et al., 1997).  
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3.3.2.3 GATE 

The German Adaptive Threshold Estimation (GATE) strategy uses a 

modified 4-2 dB staircase terminating after two reversals (Schiefer et 

al., 2009, Luithardt et al., 2015). At the outset of the initial test, 

thresholds are determined at four “seed” locations. Start contrasts at 

other locations are dependent on the thresholds at seed locations. 

Subsequent start contrasts are suprathreshold to previous test results. 

In contrast to the full threshold strategy, a non-seen initial stimulus is 

followed by a stimulus at 0 dB (maximum intensity). If this stimulus is 

not detected the procedure terminates, otherwise a stimulus 4 dB 

brighter than the initial intensity is presented. The contrast midway 

between the brightest stimulus not seen and dimmest stimulus seen is 

chosen as the threshold estimate.  

 

3.3.3 Interpretation of test results 

Perimetry is frequently performed to find whether a single visual field 

result or the change in a series of visual fields of the same patient is 

within or outside normal limits in the respective age group. The change 

in sensitivity with age in healthy subjects appears to be linear 

throughout the visual field (Heijl et al., 1987). However, the rate of 

visual field change seems to get steeper with eccentricity, which results 

in a depressed and steeper hill of vision with age.  

The response variability and retest variability of threshold estimates 

depends on the location within the visual field. Heijl et al. found 

variability to increase with eccentricity (Heijl et al., 1987). This increase 

with eccentricity appears to be related to the decrease in contrast 

sensitivity with visual field eccentricity (Henson et al., 2000) and holds 

true for inter-subject variability, intra-subject (test-retest) variability 

(Russell et al., 2012a, Artes et al., 2002), as well as intra-test variability 
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(Henson et al., 2000). Thus a given deviation from the normal average 

could be clinically significant in the central, but not in the peripheral 

visual field.  

On Humphrey perimeters the package STATPAC provides a series of 

analyses evaluating the test reliability and deviation from normal. 

Raw test results: 

On a typical printout threshold estimates are represented as numbers 

and as a greyscale. The maximal stimulus contrast is 0 dB, which is 

represented as black in the greyscale and reflects areas with lowest 

sensitivity. Higher sensitivities are represented in lighter shades of grey. 

Contrast sensitivities – even in young subjects – typically do not exceed 

40 dB (Heijl et al., 2012). 

Probability plots: 

Total deviation probability plots give the deviation from age-corrected 

normal values at each test point. Since the normal range of sensitivities 

increases with eccentricity, the same total deviation might be clinically 

significant in a central position, but not further in the periphery (Heijl et 

al., 1987). The degree of the deviation from a healthy reference group is 

indicated for sensitivities that are worse than the 5th, 2nd, 1st and 0.5th 

percentile of the healthy reference group. 

By correcting for generalised depression, the pattern deviation 

probability plots highlight localised visual field defects. In very advanced 

field loss (mean deviation worse than -15 dB) pattern deviation plots 

become unreliable because diffuse and generalised loss can no longer 

be distinguished from each other.  

Global Indices: 

Two widely used summary measures for static visual fields are mean 

deviation (MD) and pattern standard deviation (PSD), which is referred 
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to as “loss variance” on Octopus perimeters (Tonagel et al., 2012). The 

MD indicates how much the whole field differs on average from a 

healthy reference group. It is a weighted average of the deviations 

shown in the total deviation plot (Heijl et al., 2012). The PSD indicates 

local irregularities in the visual field. It is the standard deviation of the 

total deviations. Deep local defects result in higher PSD values than 

diffuse loss (Tonagel et al., 2012, Heijl et al., 2012). Compared to 

probability maps, global indices are less useful for diagnostic purposes; 

they can be within normal limits when visual field loss is clearly present 

(Heijl and Patella, Essential Perimetry).  

Glaucoma Hemifield Test (GHT): 

The Glaucoma Hemifield Test is an analysis based on the finding that 

glaucomatous loss often occurs asymmetrically in the inferior and 

superior hemifield. It directly compares pattern deviation probability 

values of five zones above the horizontal midline with five mirror image 

zones below the midline. The visual field printout indicates significantly 

different results in one or more of the upper regions from the 

corresponding lower regions as “Outside Normal Limits” at a p-value < 

0.01 and as “Borderline” at a p-value <0.03 (Åsman and Heijl, 1992, 

Heijl et al., 2012).     

Reliability indices: 

False positive (FP) rates indicate how prone a patient is to respond in 

the absence of a stimulus. False positive response rates are typically 

estimated by either introducing catch trials during which the perimeter 

produces the usual sounds, but no detectable stimulus is presented or 

by monitoring the number of responses occurring implausibly early after 

a presentation. A high number of false positive responses can 

adulterate test results and lead to unusually high threshold estimates.  

False negative (FN) rates are typically estimated by presenting supra-

threshold stimuli at already measured test locations. The interpretation 
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of false negative rates needs to be treated carefully as a high response 

variability, as present for example in defective areas, can lead to an 

overestimation of the FN rate. 

Fixation loss rates are normally estimated by presenting stimuli with 

maximal contrast in the blind spot region. Some instruments additionally 

monitor fixation via a gaze tracker. 

 

3.3.4 Suprathreshold perimetry 

Suprathreshold perimetry does not aim to estimate the threshold, but to 

indicate whether sensitivity is abnormally low in any location of the 

visual field. It is often referred to as a screening test. Suprathreshold 

perimetry is faster than threshold perimetry since there is typically only 

one stimulus presentation with an above-threshold stimulus at each 

location. While suprathreshold perimetry might indicate some visual 

field defects it has been criticised to be insensitive for early 

glaucomatous loss (Mills et al., 1994). 

 

3.4 Kinetic perimetry 

In kinetic perimetry stimuli, typically with constant area and contrast, are 

moved across the visual field. The direction of movement is from areas 

with lower to higher expected sensitivity, thus from “non-seeing” to 

“seeing”. The locations at which stimuli are first seen are recorded.  

The standard background illumination used in kinetic perimetry was 

established by the Goldmann perimeter and lies at 10 cd/m2 (31.4 asb). 

This adaptation level approximates to the minimal brightness for 

photopic vision that depends more on cone than on rod function (Heijl et 

al., 2012). The slope of the hill of vision flattens with lower background 

illumination (see Figure 10), which has an impact on the variability of 
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kinetic perimetry. In contrast to static perimetry, thresholds in kinetic 

perimetry are mapped by moving stimuli horizontally across the hill of 

vision. Thus the steepness of the hill of vision particularly influences the 

variability of responses. If the stimulus is moved across a steep hill of 

vision the contrast sensitivity of neighbouring locations changes rapidly. 

Thus the area within which a stimulus is likely to be detected is small. 

However with a shallow hill of vision the contrast sensitivity is similar 

over a wider space, thus locations of detection for a stimulus with the 

corresponding contrast might be widely spread, leading to higher 

response variability.  

 

Figure 10: Representation of background lighting effect on the hill of vision (Calixto et 
al., 2006). 
The hill of vision flattens with lower background illumination. As kinetic stimuli are 
moved horizontally across the hill of vision, its steepness affects the variability of the 
detection threshold.  With a flatter hill of vision responses are more likely to be 
spread over a larger area. 

In kinetic perimetry, locations at which the same stimulus intensity is 

detected are connected to an isopter. Similar to contour lines in 

cartography that indicate regions of equal elevation on a map, isopters 

indicate regions of the same contrast sensitivity in the visual field. Due 

to the form of the normal hill of vision, isopters have elliptic shapes. 

Distortions from this shape can indicate areas of visual field loss. 
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For a complete examination of the visual field stimuli with different 

intensities are presented to map out several isopters. The stimulus 

intensity is adjusted by either changing the stimulus size or the stimulus 

contrast, or both. Typically, stimuli are moved at speeds ranging from 1-

5˚ per second (Schiefer et al., 2005b, Lachenmayr and Vivell, 1992, 

Goldmann, 1945). The choice of the stimulus velocity can depend on 

the expected eccentricity of an isopter. In the central visual field a 

slower motion of the stimuli is recommended (1˚-2˚/second), and faster 

motion in the periphery (2˚-5˚/second) (Schiefer et al., 2005b, 

Lachenmayr and Vivell, 1992, Goldmann, 1945, Vonthein et al., 2007, 

Johnson and Keltner, 1987). 

 

3.4.1 Kinetic test strategies 

3.4.1.1 Goldmann manual kinetic perimetry 

The development of Goldmann’s bowl perimeter was an important step 

in the standardisation of quantitative perimetry as it provided a uniform 

background illumination and standardised stimuli (Goldmann, 1945) 

(Goldmann, 1999). The Goldmann perimeter (Figure 11) allows the 

examiner to monitor fixation, adjust background illumination and control 

stimulus size and contrast via a set of standardised filters. (The range of 

Goldmann stimuli is described in Chapter 2.1.4.2.2, page 45). Notably, 

the range of stimulus sizes and contrast increments were chosen such 

that a gain in visual sensitivity at a certain location in the visual field 

caused by an increase of one step size of stimulus area was equivalent 

to that caused by an increase of one step size in contrast of one of the 

filters. The visual field is recorded on standardised charts (Figure 12) 

using a pantograph, which guides the stimulus presentation (Figure 11).  



64 
 

  

Figure 11: The Goldmann Perimeter.  
Left: side facing the patient with chin rest and hemispherical bowl . Right: side facing 
the examiner with pantograph for stimulus guidance and chart for visual field 
mapping (Pollack-Rundle). 

 

 

 

Figure 12: Goldmann visual field chart. 
Isopters are drawn for a person with healthy vision from a typical examination with 
Goldmann perimetry (Haag-Streit-International). 

 

In a typical clinical examination, each eye is tested individually. 

Corrective lenses are used for the examination within the central 30˚ 
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only. In general stimuli are moved from non-seeing towards seeing 

areas at a speed around 5˚ per second.   

According to the Goldmann perimeter manual (Haag-Streit-

International) an examination is started with a I4e stimulus, followed by 

mapping a I3e, I2e and I1e isopter. If two isopters are too widely spaced 

an additional greyscale filter is introduced to achieve an intermediate 

stimulus intensity. The blind spot is examined with the stimulus of the 

isopter including the blind spot region. Normally 8-12 vectors at every 

30-45˚ are sufficient to map a single isopter. If a local abnormality is 

detected, additional test vectors are introduced. Scotomas are mapped 

by moving the stimulus perpendicularly to the expected isopter.  

Goldmann perimetry has remained mostly unchanged and is still used 

in clinics. More recent guidelines for kinetic perimetry suggest using the 

III4e stimulus for the initial isopter or choosing the initial stimulus 

depending on the subject’s visual acuity (Pollack-Rundle, Haag-Streit-

AG, 2013). Furthermore the blind spot is typically mapped with a I4e 

stimulus. Since asymmetrical defects along the horizontal meridian, 

such as the nasal step, are common in glaucoma, additional test 

vectors temporally and nasally above and below the horizontal meridian 

are often introduced for glaucoma examinations.  

For a more thorough examination of the central 30˚, an additional static 

examination following the Armaly-Drance technique can be performed 

on the Goldmann perimeter (Rock et al., 1973, Armaly, 1971, Stewart 

and Shields, 1991). The static examination consists of 76 test locations 

and suprathrehold stimuli are presented at each location. Locations 

marked as non-seen are usually rechecked with increasing stimulus 

intensity. If the V4e stimulus is not detected the location is marked as 

an absolute scotoma (Pollack-Rundle).   

Manual kinetic perimetry requires well trained examiners and depends 

on the examiner’s judgement.  
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3.4.1.1 Semi-automated and automated kinetic perimetry 

Semi-automated and automated kinetic perimetry eliminates most of the 

examiner dependence of manual Goldmann perimetry. Target speed 

can be kept constant and a more accurate estimation of response times 

is possible.  

Semi-automated kinetic perimetry is available on the Octopus 900 by 

Haag-Streit (Koeniz, Switzerland) (Figure 13). Kinetic visual field 

examinations similar to Goldmann perimetry can be performed on the 

Octopus 900 as it provides the same range of stimuli (Haag-Streit-AG, 

2013).  

 

Figure 13: The Octopus 900 (Haag-Streit, Koeniz, Switzerland).  
The chin rest is adjustable and the gaze is monitored through a camera (small screen 
on the perimeter). Perimetric examinations are run via the EyeSuite software on an 
external computer (Haag-Streit, 2014). 

 

Additionally to semi-automated perimetry, the EyeSuite software allows 

the user to customise basic automated tests for the Octopus 900.   

No standard automated kinetic examination has been established to 

date. However, different versions of automated kinetic perimetry have 

been suggested. Johnson et al. designed an algorithm for stimulus 
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presentation that first determined the set of stimuli appropriate for the 

individual patient during an exploratory scan along four meridians 

(Johnson et al., 1987). A first scan was then performed along twelve 

meridians. Stimulus presentations were repeated where isopter 

locations fell outside of an age-matched normal range. The Allergan-

Humphrey Visual Field Analyser also provides an approach for 

technician-assisted automated kinetic perimetry (Lynn et al., 1990). The 

technique evaluates the visual field along 28 meridians, isopter 

locations are determined with one stimulus presentation along each 

meridian. An evaluation of the technique showed that spurious 

responses lead to spikes in the isopter form in 80% of visual field 

examinations (Lynn et al., 1990). Matsumoto et al.’s Program K 

overcomes this problem and is a promising attempt to simulate the 

typical decision making of a trained examiner in Goldmann perimetry in 

an automated test (Wakayama et al., 2011, Hashimoto et al., 2012, 

Hashimoto et al., 2015). Their algorithm accepts isopter locations after 

one stimulus presentation if the response is within an expected normal 

range at that location. If abnormal responses occur, additional stimuli 

are presented along the same meridian. To map abnormal regions in 

more detail additional test points are also introduced next to abnormal 

isopter locations. The additional stimuli are moved perpendicularly to 

the previously estimated isopter border. Another promising idea is the 

combination of static automated perimetry of the central visual field with 

the kinetic automated examination of peripheral isopters (Pineles et al., 

2006). 

Automated kinetic perimetry holds the advantage to allow better 

comparability between examinations due to more standardised test 

procedures and digitalised data. The automation of kinetic perimetry 

permits to establish normative isopter values (Vonthein et al., 2007) and 

standardised analyses for test results of kinetic perimetry. 
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3.4.2 Interpretation of test results 

There are no standard automated analyses of kinetic test results 

comparable to the StatPac package (evaluation of static perimetry). 

Instead results are mostly evaluated by eye or by customised programs. 

For diagnostic purposes visual field results are typically compared 

against normative values of healthy participants. The semi-automated 

kinetic perimetry program on the Octopus 900 plots estimated isopters 

against normative regions (Haag-Streit-AG, 2013). Variations from 

normal, in the form of a general constriction of an isopter or a local 

depression in an isopter, indicate abnormalities in the visual field. The 

choice of summary measures, which indicate the size of isopters, varies 

between studies (Christoforidis, 2011, Nevalainen et al., 2008). Most 

commonly the isopter area is used as a summary measure (Nevalainen 

et al., 2008, Nowomiejska et al., 2005, Ramirez et al., 2008). However, 

the choice of units is not uniform throughout studies. The isopter area is 

for example described in square degrees of visual angle in some 

studies (Nevalainen et al., 2008, Nowomiejska et al., 2005) and in cm2 

on a standard chart in other studies (Ramirez et al., 2008). An 

alternative suggested measure taking contrast sensitivity in account as 

a third dimension is visual field volume (Christoforidis, 2011). This 

provides the advantage of allowing a comparison with static perimetry 

results when applying the same calculation to static test results.    

With recent efforts to automate kinetic perimetry, kinetic perimetry test 

results are more closely examined aiming to evaluate variability of 

responses to kinetic stimuli and to establish normative isopter values. A 

model for estimating normative isopter values depending on patient age 

and stimulus parameters based on semi-automated kinetic perimetry in 

participants with healthy vision has been proposed by Vonthein and 

colleagues (Vonthein et al., 2007). Kinetic perimetry was found to yield 

reproducible results (Hirasawa and Shoji, 2014, Parrish et al., 1984, 

Nevalainen et al., 2008, Nowomiejska et al., 2012, Bjerre et al., 2014). 
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Furthermore, test results from Goldmann manual perimetry and semi-

automated kinetic perimetry appear to be similar (Nowomiejska et al., 

2005, Ramirez et al., 2008, Rowe and Rowlands, 2014). Visual field 

results from kinetic perimetry were found to add clinically relevant 

information to visual field results from static automated perimetry of the 

central 30˚ (Ballon et al., 1992, Miller et al., 1989, Nowomiejska et al., 

2014).   

 

3.5 Practical application of static and kinetic 

perimetry 

3.5.1 Statokinetic dissociation 

Having two different techniques to examine the visual field poses the 

question how results of these examinations relate. Kinetic perimetry 

keeps stimulus size and contrast constant and has visual field location 

as its variable, static perimetry keeps the location and stimulus size 

constant and uses stimulus contrast as its variable. Thus kinetic 

perimetry results describe locations in degree of visual angle while 

static perimetry results are detection thresholds in dB. In principle, both 

techniques relate points in the visual field with contrast sensitivity. 

However, the sensitivity to a moving versus a static stimulus appears to 

differ. Riddoch et al. coined the term statokinetic dissociation, 

describing the phenomenon that sensitivity appears to be higher to 

moving than to static stimuli (Riddoch, 1917). This finding was 

corroborated by various studies comparing static thresholds to locations 

determined with kinetic stimuli (Safran and Glaser, 1980, Hudson and 

Wild, 1992, Schiller et al., 2004). Hudson and Wild found sensitivity to a 

range of kinetic Goldmann stimuli to be on average 4 dB higher than to 

static stimuli. Within the range of stimuli they used this appeared to be 

largely independent of age, eccentricity, stimulus size and meridian. 
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The exact cause for the difference in sensitivity is unknown. An 

intrinsically higher sensitivity to motion by certain ganglion cell types 

could be part of the explanation. However, it is unclear as to how far 

differences in the two techniques contribute to the dissociation. The 

kinetic stimulus can travel over a wide area of the retina until it is 

detected. Responses of retinal ganglion cells that are not sufficient to 

lead to a conscious percept of the stimulus might still contribute to the 

later signal. Furthermore, the duration for which a stimulus is exposed 

to receptive fields of retinal ganglion cells is likely to differ between 

static and kinetic stimuli. Moreover, the response criterion of individual 

patients could influence statokinetic dissociation. As kinetic stimuli are 

likely to be detected at some point in the visual field, patients might tend 

to choose more conservative response criteria. 

 

3.5.2 Examination of the central versus peripheral visual 

field 

With the development of standard automated perimetry, the main focus 

was directed to the central 30˚ of the visual field (Stewart and Shields, 

1991). Since manual Goldmann perimetry requires well trained staff and 

longer test durations, it is used less and less in clinics. It is, however, 

unclear how much information is lost by not examining beyond 30˚.   

Both kinetic and static perimetry allow examining large proportions of 

the visual field. Test patterns for static perimetry going further in the 

periphery are available, such as the 60-2 pattern on the Humphrey 

perimeter and Program 07 on the Octopus 900, and using low intensity 

stimulus parameters allows kinetic examination of the central visual 

field. However, while SAP appears to be efficient for the central visual 

field, static perimetry might require too many test locations for a good 

resolution in the peripheral visual field. Which technique is more 

efficient for examining the peripheral visual field needs further 
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investigation. A combined automated approach using static perimetry 

for the central 30˚, and kinetic perimetry for the visual field beyond this 

area (Pineles et al., 2006, Miller et al., 1989) might be useful to examine 

the entire visual field. In late stage glaucoma, often only a central (close 

to fixation) and peripheral island remain (Scheuerle et al., 2012, 

Nowomiejska et al., 2014). In such cases a static macular examination 

combined with a kinetic examination of the peripheral visual field might 

be more suitable and less frustrating for the patient. 
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4. Visual disability in glaucoma 

The human being is a visual being. We rely on our sense of vision when 

navigating, remember visual landmarks for our orientation, use traffic 

signs to communicate rules, use graphs to visualise complex statistics, 

have a written visual representation of our language and a large part of 

our communication is based on visual cues through gestures and facial 

expressions. Even having lost our sense of vision, the neural capacities 

of the visual cortex still help us to perform extraordinary tasks. As such, 

fMRI and TMS studies showed that the primary visual cortex is involved 

in Braille reading in the blind (Burton et al., 2002, Ptito et al., 2008). 

Losing our ability to see makes it difficult or even impossible to perform 

many tasks of our everyday life, can isolate us and reduce participation 

in society. 

The aim of this short chapter is to briefly outline some aspects of visual 

disability that result from glaucomatous visual field loss. The focus here 

is to highlight aspects of visual function that would be better measured 

by a test that would measure the visual field in the far-periphery. After 

all, this would be a strong motivation for developing such a test. This 

section considers the impact of visual field loss on driving, reading and 

mobility. The latter is most likely to benefit from a better assessment of 

the peripheral visual field when compared to what is clinically used at 

the moment.  

Section 4.3 (Mobility, balance and risk of falling) of this chapter formed 

part of a review published in the International Journal of Ophthalmic 

Practice  (Moenter et al., 2014).  

Impairment is defined as: “any loss or abnormality of psychological, 

physiological, or anatomical structure or function” (World-Health-

Organization, 1980). In contrast the term disability entails: “a restriction 

or lack of ability to perform an activity in the manner or within the range 
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considered normal for a human being” (World-Health-Organization, 

1980). Thus, the presence of impairment does not necessarily imply 

that a person’s everyday life is affected while the presence of a 

disability does. In the context of this thesis, a person may have visual 

impairment because they have a scotoma in their peripheral visual field. 

This impairment only leads to visual disability if it impacts on that 

person’s everyday life. For instance, a person with central or peripheral 

visual field loss may have difficulty locating objects or finding the next 

line of print in a book they are reading. More visually disabling could be 

problems navigating around a room or difficulty with driving – such 

disabilities could have greater impact because they might lead to falls or 

accidents. 

A measurable functional impairment is often present in glaucoma. 

However, this might only be discernible by perimetry and simply go 

unnoticed during a patient’s daily activities. A better understanding of 

the relation between impairment and disability in glaucoma is needed. 

Establishing a link between functional loss measured in the clinic using 

perimetry with patients’ visual disability would clearly be useful. 

Moreover, this could inform clinical decisions such as when to intensify 

treatment.   

There are relatively few studies on disability and quality of life (QoL) in 

glaucoma, but the interest seems to be increasing in recent years 

(Figure 14) (Glen et al., 2011). Interestingly there are fewer QoL articles 

in glaucoma compared to some other disabling chronic conditions.  
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Figure 14: Quality of life research in glaucoma. 
Number of quality of life papers per year as a percentage of all glaucoma papers 
(Glen et al., 2011). Twenty years ago there were no published studies on QoL in 
glaucoma. QoL studies in glaucoma are increasing in number but still represent a tiny 
minority of the total publications in glaucoma research. 

 

Studies utilising questionnaires have yielded evidence that patients with 

glaucoma have difficulties with reading, mobility and driving (Ramulu, 

2009). Furthermore, glaucoma was found to be connected to increased 

levels of anxiety and higher rates of depression (Janz et al., 2001, Ross 

et al., 1984b, Skalicky and Goldberg, 2008) .  

Questionnaires are certainly a useful research tool to gain insight about 

how patients feel that the disease affects their life. However, answers 

are subjective and can depend on many factors. Another, more 

objective option is to evaluate disability by performing tasks in a lab 

environment that simulate everyday activities.  

4.1 Driving 

This section does not review all the issues associated with vision and 

driving because they are many and complex. For a more detailed 

review on the topic see Owsley et al. (Owsley et al., 2015).  
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The loss of a driver’s licence because of visual impairment can 

significantly impact on a person’s independence and well-being. Driving 

cessation has also been connected with increased rates of depression 

and a lower reported QoL (Ramulu, 2009, Marottoli et al., 1997, 

Eberhard, 1998). Questionnaire studies indicated patient problems with 

driving (Freeman et al., 2008) and several studies found an increased 

rate of motor accidents in patients with glaucoma (Haymes et al., 2007, 

McGwin et al., 2004, Szlyk et al., 2005, McGwin et al., 2015). However, 

little is known about the type of visual field defects likely to cause 

difficulties with driving. Studies using driving simulations, or on road 

driving in an experimental setup, found that a restriction of the 

peripheral visual field led to measurable decreases in driving 

performance (Szlyk et al., 2005, Bowers et al., 2005). A recent study 

demonstrated that simulated inferior and superior visual field defects 

introduced to participants with healthy vision led to a significantly worse 

performance in the Hazard Perception Test, a test that is used as part 

of the theory driving test in the UK to assess the ability to detect 

hazards in traffic scenes displayed via video clips (Glen et al., 2014). 

Interestingly, defects in the superior visual field appeared to have a 

stronger impact on the Hazard Perception Test performance. Results 

from another recent study, examining the association between visual 

field measures and self-reported driving accidents, suggest that people 

with severe impairment in the lower or left region of the driving visual 

field are more likely to have a history of at-fault collision involvement 

(Huisingh et al., 2015).  

The current test used to evaluate fitness to drive in the UK, the 

Esterman visual field test, examines the inferior visual field at a higher 

resolution. However, it is questionable whether this region is essential 

for driving. More extensive research will be important to ensure the right 

criteria are used when evaluating the visual field component of fitness 

to drive. In the context of the subject matter of this thesis, developing a 

better assessment of the visual field used for driving might be helped by 
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developing a perimetric test that can efficiently measure the visual field 

beyond the central 20-30 degrees. 

 

4.2 Reading  

Difficulty with reading is a frequent complaint among patients with eye 

diseases (Mangione et al., 1998, Ramulu, 2009, Burr et al., 2007). 

Patients with glaucoma often report difficulty with reading (Nelson et al., 

1999). This is surprising since central vision loss is uncommon in 

glaucoma apart from when it reaches end stage. While difficulty with 

near vision tasks in patients with glaucomatous visual field loss has 

been confirmed in several studies (Parrish et al., 1997, Sherwood et al., 

1998, Ringsdorf et al., 2006), data from the Salisbury Eye Evaluation 

study showed that the self-reported reading difficulty does often not 

agree with measured reading speed (Freeman et al., 2008). Few 

studies exist that study the impact of glaucoma on actual reading 

performance. Here, I highlight some of the findings on reading 

performance in glaucoma. A study by Burton et al. implied that patients 

with glaucoma have increased difficulty with reading low contrast text  

(Burton et al., 2012). Worse reading performance in both out-loud and 

silent reading has been found to be associated with lower contrast 

sensitivity and increasing visual field loss (Mathews et al., 2015, 

Nguyen et al., 2014). A recent study indicated that impact on reading 

speed in patients with binocular glaucomatous visual field loss is 

highest during sustained silent reading (Ramulu et al., 2013). Reading 

speed was found to be significantly decreased in patients with 

advanced, bilateral glaucoma (Ramulu et al., 2009, Burton et al., 2014). 

In the SEE study this effect was not present when controlling for visual 

acuity, highlighting the importance of good central vision. Similarly, 

Fujita et al. found no difference in reading speed between patients with 

glaucoma and people with normal vision unless defects were present in 
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the central 3˚ in two adjacent quadrants (Fujita et al., 2006). However, 

peripheral visual field loss might also affect aspects of reading. 

Viswanathan et al. found a relation between worse Esterman scores 

and a difficulty to find the next line during reading (Viswanathan et al., 

1999). There might also be subtle interplay between how patients move 

their eyes when reading with visual field loss. There is evidence that 

patients with advanced visual field loss make different eye movements 

to peers with healthy vision (Burton et al., 2014). A recent study 

connected binocular visual field defects in the left inferior visual field to 

difficulties with finding the next line of print in a reading task (Burton et 

al., 2015). Still, in the context of the work reported in this thesis, it is 

unlikely that a visual field measure beyond about 20-30˚ would be a 

good predictor for near tasks like reading. 

 

4.3 Mobility, Balance and risk of falling  

Measuring the peripheral visual field beyond what is currently done 

clinically might be useful in identifying patients at risk of falling. Falls are 

common and often catastrophic events in the elderly (Tinetti et al., 

1988, Hausdorff et al., 2001, Campbell et al., 1989). One in three 

people over the age of 65 fall at least once a year and this rate 

increases further for the over 75 year olds (Todd and Skelton, 2004). In 

the UK, annual costs due to falls in the elderly are estimated to be more 

than a staggering £2.3 billion (NICE, 2003). These statistics will become 

more challenging with the inevitable aging of our population.  

Risk of falling is an often overlooked side effect of visual impairment. 

Moreover, postural instability can be precipitated by impaired vision.  
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4.3.1 Balance 

Reduced postural control has been identified as an important risk factor 

for falling (Maki et al., 1994, Stalenhoef et al., 2002, Rubenstein and 

Josephson, 2002). To maintain balance people rely on several senses, 

integrating visual, somatosensory and vestibular input. Postural stability 

was found to be affected in patients with glaucoma (Kotecha et al., 

2012, Kotecha et al., 2013). Interestingly, studies showed postural 

instability among individuals with normal vision when restricting their 

visual field (Berencsi et al., 2005) or when introducing a disturbance to 

their vision (Anand et al., 2003). However, other evidence indicates 

postural stability in patients with glaucoma was equivalent to people 

with healthy vision (Shabana et al., 2005), but participants in this 

experiment were younger than those in the other studies. As glaucoma 

is a slow progressive disease, people might be able to adapt and 

compensate for visual loss by relying more on the somatosensory and 

vestibular input, yet these senses also decline with age (Sturnieks et al., 

2008).  

4.3.2 Mobility and visual field loss 

Binocular visual field loss has been indicated to be a leading visual risk 

factor for falls and fractures among the elderly (Freeman et al., 2007, 

Coleman et al., 2007, Coleman et al., 2009, Black et al., 2011) and a 

diagnosis of glaucoma is connected to a higher rate of falls and injuries 

(Ivers et al., 1998, Haymes et al., 2007, Black et al., 2011, Tanabe et 

al., 2012). Visual field loss has also been shown to be associated with 

slower walking speed and an increased number of obstacle contacts 

(Turano et al., 1999, Friedman et al., 2007) in task-based studies. 

Vision loss has also been associated with an increased fear of falling, 

which in turn can result in a lower engagement in physical activity and 

thus lower physical fitness (Arfken et al., 1994, Howland et al., 1998, 
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Scheffer et al., 2008, Ramulu et al., 2012, van Landingham et al., 2014, 

Nguyen et al., 2015).  

Some evidence suggests the location of the visual field defect is 

important, although there is debate as to which locations have the 

highest influence on risk of falling. Some studies suggest that scotoma 

in the inferior (lower half) of the visual field are related to a higher 

likelihood of falling (Coleman et al., 2007, Black et al., 2011). These 

estimates were, however, based on a relatively small sample of people. 

Freeman and colleagues found only peripheral, but not central visual 

field defects to be significantly associated with a higher fall risk 

(Freeman et al., 2007), whilst others concluded that both impaired 

central and peripheral vision predict falls (Patino et al., 2010). Both 

studies were prospective in design using fall diaries and examined large 

numbers (>2000) of participants with various visual impairments 

including glaucoma. However, the definition of peripheral and central 

visual impairment differed in these studies. Patino and colleagues used 

distance visual acuity as a measure for central vision and 24-2 SITA 

standard tests performed on the Humphrey Field Analyser (HFA; Carl 

Zeiss Meditec., Inc., Dublin, CA) as a measure for peripheral vision. In 

contrast Freeman and colleagues considered a larger portion of the 

visual field using a 81-point, single-intensity (24 dB), full-field (60°) 

screen (Humphrey Instruments; Carl Zeiss Meditec, Dublin, CA). They 

defined the central visual field as the region smaller than 20˚ and the 

peripheral visual field as the region between 20˚ and 60˚. The definition 

of central and peripheral vision often differs between studies and the 

terminology can be misleading, making it difficult to interpret the 

evidence. As of yet, no standard automated test has been established 

for the peripheral visual field. The development of such a test might 

lead to a higher number of studies that consider the far periphery, when 

exploring the relation between visual field loss and disability. 
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Impoverished depth perception has also been identified as a major 

visual risk factor for falls (Nevitt et al., 1989, Cummings et al., 1995, 

Ivers et al., 2000). In other words, patients with severe visual field loss 

in just one eye could also be at higher risk of falling as they are missing 

binocular cues for depth perception such as stereopsis, convergence 

and shadow stereopsis.  

Many patients, especially in the early stages of glaucoma, are visually 

asymptomatic or only report subtle visual symptoms (Crabb et al., 

2013). In itself this is a risk because scotoma might be more 

‘dangerous’ when people are unaware of them.  

4.3.3 Mobility and glaucoma medication 

It has been speculated that some treatments for glaucoma, such as use 

of beta-blockers might contribute to an increased risk of falls (Glynn et 

al., 1991, Ivers et al., 1998). Beta-blockers not only reduce the heart 

rate but can also cause hypoglycemia or low blood sugar, which can 

lead to instability and increased risk of falling. However, prostaglandin 

analogues are now typically the first line therapeutic treatment for 

glaucoma. Interestingly a recent study directly comparing patients 

taking beta-blockers against those taking prostaglandins failed to find 

any difference in risk of falling between both groups (Ramdas et al., 

2009) and this was supported by an analysis in a study by Black et al. 

(Black et al., 2011). Thus, evidence that specific treatment of glaucoma 

increases the risk of falling is ambiguous. However, a systematic review 

of the side effects of different treatments for glaucoma on risk of falling 

would be a very useful addition to the literature.  

4.3.4 Mobility and peripheral visual field loss  

Peripheral vision seems to be more important for postural control than 

central vision (Bardy et al., 1999, Berencsi et al., 2005). In a 

comparative study of age-related macular degeneration and glaucoma 
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patients it was shown that a disruption to the somatosensory system 

caused a significant decrease in postural control in patients with 

glaucoma compared to healthy controls (Kotecha et al., 2013). 

Interestingly patients with age-related macular degeneration were less 

affected than those with glaucoma. These findings may indicate that 

peripheral vision is more important for postural control than central 

vision. Freeman and colleagues found that only peripheral defects 

beyond 20˚, but not within, were associated with a higher fall risk 

(Freeman et al., 2007). In contrast another study did not report any 

difference between association of the different visual measurements 

covering 30˚ or 60˚ from fixation and the rate of falls (Black et al., 2011). 

They concluded that central visual field tests predict falls equally as well 

as more peripheral visual field tests. This finding might, however be 

related to the different resolutions of the test grids used in that study. 

 

4.4 Discussion 

This section of the thesis was not meant to be a review (systematic or 

otherwise) of the literature concerning visual disability in glaucoma. 

Rather the chapter highlights the areas of “measuring visual disability in 

glaucoma” that are likely to benefit from a better test of the far 

peripheral visual field.  As discussed in Chapter 1.5 and 3.3, perimetry 

testing in the glaucoma clinic only routinely assesses within the central 

30˚ of the visual field. A test that measures the visual field beyond this 

area might be useful in patients when an assessment of visual disability 

caused by their field loss is to be made. It is unlikely that this type of 

assessment would be useful for reading performance but it would likely 

have utility when assessing mobility, driving performance and risk of 

falling. Evaluating the entire visual field could allow for a better 

understanding of a patient’s true visual functioning and in turn help to 

better connect their visual impairment to potential disabilities.  
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In typical clinical visual field examinations each eye is also measured 

separately. Monocular examinations make sense to monitor the 

functional loss in each eye over time, however, in everyday life, patients 

see with both eyes. Binocular visual field measurements or integrated 

visual fields from both eyes could be more relevant to understand how a 

patient is affected (Asaoka et al., 2011). Even moderate to quite 

advanced visual field defects might not give rise to any impairment, 

when the defects are asymmetrical between eyes. Moreover, even 

when binocular defects are present patients are often unaware of their 

impaired vision. Measuring the entire visual field and reporting back to 

patients about the nature of their binocular visual impairment might 

provide help to develop coping mechanisms, such as paying more 

attention to regions in the visual field in which obstacles might go 

unnoticed otherwise. 
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II. Experiments  

5. Reclaiming the periphery: 

Automated kinetic perimetry for 

measuring the peripheral visual 

fields in patients with glaucoma.   

5.1 Introduction 

Since the advent of computerized visual field testing in the 1970s, 

almost all innovations in perimetry have focused either on improving the 

sensitivity to early visual field damage in glaucoma (Baez et al., 1995, 

Sample et al., 2000, Medeiros et al., 2004, Artes et al., 2005, Racette et 

al., 2008, Mulak et al., 2012), or on increasing either efficiency 

(Bengtsson and Heijl, 1998b, Bengtsson and Heijl, 1999, Artes et al., 

2002) or speed (Morales et al., 2000) of the tests. This drive towards 

high diagnostic performance has led to a situation where almost all 

visual field tests performed in glaucoma patients are confined to the 

central 25-30 degrees of the visual field, an area that constitutes less 

than 20% of the entire field of vision.  

Peripheral vision contributes to postural stability (Berencsi et al., 2005, 

Elliott et al., 1995, Kotecha et al., 2012, Kotecha et al., 2013) and the 

guidance of attention (Muller and Rabbitt, 1989), and is important for 

estimating motion from optical flow (Stoffregen, 1985, Stoffregen et al., 

1987, Brandt et al., 1973). Eliminating peripheral visual cues in people 

with normal vision has been shown to decrease postural stability 

(Berencsi et al., 2005), and patients with glaucoma rely more on 
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vestibular and proprioceptive cues than healthy controls to maintain 

balance (Elliott et al., 1995, Kotecha et al., 2012, Kotecha et al., 2013). 

Thus, the central visual field alone does not provide a complete picture 

of the patients’ real-world field of vision, and examinations of the 

peripheral visual field may help to more fully understand what impact 

the disease has on individuals.  

The peripheral visual field may also add information relevant to clinical 

decision-making, for example for diagnosis (Stewart, 1992, Stewart and 

Shields, 1991, Williams, 1995), phenotyping, and for monitoring 

progression (Nowomiejska et al., 2014). Demonstrable peripheral visual 

field damage has been found in 15% of glaucoma patients (LeBlanc 

and Becker, 1971). Moreover, in 7% of glaucoma patients with normal 

central visual fields, abnormalities were found in peripheral isopters 

(Miller et al., 1989). On the other end of the spectrum, in patients with 

more advanced damage in whom much of the central visual field may 

be damaged beyond the useful dynamic range of static perimetry (Wall 

et al., 2010), tracking peripheral vision may be useful to uncover further 

deterioration (Nevalainen et al., 2008, Nowomiejska et al., 2014, 

Scheuerle et al., 2012, Tonagel et al., 2012).  

A key reason why peripheral visual fields are not measured more often 

is the lack of fast, efficient, and automated tests. Manual kinetic 

Goldmann perimetry (Goldmann, 1999) was introduced in 1945 and is 

probably still the most extensively used technique for measuring the 

peripheral visual field. It is very flexible, but can only be performed by a 

highly trained examiner; it is hard to standardise, hard to quantify, and 

its results are difficult to compare between different perimetrists. Fewer 

and fewer centres possess the resources to perform this technique, and 

manufacture of the original Goldmann instrument (Haag-Streit, Köniz, 

Switzerland) has recently been discontinued. Semi-automated kinetic 

perimetry (available on the Octopus 900 perimeter, the official 

successor of the Goldmann instrument) retains much of the flexibility of 
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the manual technique but permits more precise control of stimulus 

motion. But, since it still requires an interactive examination conducted 

by an expert examiner with substantial training and experience, the 

technique in its current form is unlikely to become widely used outside 

specialist centers. Johnson et al.’s algorithm (Johnson et al., 1987), 

Matsumoto et al.’s “Program K” (Kayazawa et al., 2010, Hashimoto et 

al., 2010, Hashimoto et al., 2012, Hashimoto et al., 2015) and 

approaches to combine static and kinetic perimetry (Pineles et al., 

2006), are promising attempts to fully automate the kinetic technique, 

but the techniques are not widely available outside research settings 

and only limited data have been published so far.  

Programs for static perimetry that include the periphery are available on 

both the Humphrey Field Analyzer (HFA, Carl Zeiss Meditec) and the 

Octopus instruments (Haag-Streit, Köniz, Switzerland) (Brenton and 

Phelps, 1986, Black et al., 2011, Rowe et al., 2013, Caprioli and 

Spaeth, 1985, Young et al., 1990). Threshold examinations, for 

example with the 60-4 test of the HFA (Berezina et al., 2011, Berezina 

et al., 2012), usually take more than 10 minutes, in part because they 

still rely on the classic “Full Threshold” procedures (Bebie et al., 1976) 

rather than the more efficient techniques for threshold estimation and 

stimulus pacing introduced by the SITA-Algorithms (Bengtsson and 

Heijl, 1998b). Likewise, the supra-threshold tests of these instruments 

have scarcely evolved since the 1980s. Last, but not least, statistical 

tools for the interpretation of results (such as total- and pattern deviation 

probability maps) are not available for the peripheral visual field.  

In this chapter, I investigate a simple approach for estimating a single 

mid-peripheral isopter using a fully-automated kinetic technique that 

requires no interactive input from the examiner. I examine retest 

variability, the relationship between global measures of central and 

peripheral damage, and the relationship with patients’ fear of falling. 
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Finally, I suggest avenues for future work to improve approaches for 

efficient perimetry of the peripheral visual field. 

 

5.2 Methods 

5.2.1 Participants  

Thirty patients with open-angle glaucoma were recruited from 

participants of previous studies at City University London (Smith et al., 

2014, Glen et al., 2013, Smith et al., 2012b). Patients had been 

recruited from the glaucoma clinics at Moorfields Eye Hospital, and 

inclusion criteria were a visual acuity of at least +0.30 log MAR (6/12), 

ametropia within ±5.00 D equivalent sphere and ±2.50 D cylinder, and 

no concomitant ocular or systemic disease. All patients were 

experienced in static perimetry but none had previously performed 

kinetic perimetry. The study adhered to the Helsinki declaration; the 

protocol was approved by the School of Health Sciences Research 

Ethics Committee at City University, and all patients provided written 

informed consent. 

5.2.2 Examinations 

For each participant one study eye was randomly selected, in which two 

static central and two kinetic peripheral visual field examinations were 

performed. All tests were performed during a single session that lasted 

approximately 2½ hours including breaks. At the outset, visual acuity 

(ETDRS chart, distance 4 m) and contrast sensitivity (Pelli-Robson 

chart, at 1 m) were measured in each eye. Central static visual field 

tests were performed in both eyes and repeated once in the study eye. 

In addition, 27 patients underwent a binocular kinetic test and 

completed a fear-of-falling questionnaire (FES-I) (Yardley et al., 2005) 

of 16 questions (see Appendix 2, page 211).  
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5.2.2.1 Visual Field Tests 

All visual field tests were performed on an Octopus 900 (serial number 

2249, EyeSuite software version 3.0.1, Köniz, Haag-Streit, Switzerland), 

a projection perimeter with a hemispherical bowl (radius, 300 mm) with 

a background luminance of 10 cd/m2. Stimuli were circular luminance 

increments (Goldmann size III, subtending 0.43°). For kinetic perimetry, 

the nominal maximum stimulus luminance was that of the Goldmann 

perimeter (318 cd/m2 [1000 asb]); for static perimetry it was 1273 cd/m2 

(4000 asb). Full aperture (diameter, 38 mm) trial lenses were used to 

correct refractive errors for static perimetry of the central field. To avoid 

lens rim artefacts, no refractive corrections were used for kinetic 

perimetry of the peripheral visual field.  

5.2.2.1.1 Kinetic automated perimetry of the peripheral visual field 

The entire examination was programmed as a custom test in the XML 

language of the EyeSuite software. Stimuli were circular luminance 

increments (Goldmann stimulus size III subtending 0.43˚, filter 1e). The 

“1e” designation of the Goldmann scale means that the luminance 

increment of the stimulus was 10 cd/m2 (15 dB) (ie, a 1.5 log unit 

attenuation of the 318 cd/m2 nominal maximum-intensity stimulus). In 

terms of contrast, this luminance increment would correspond to a 25 

dB stimulus with the Humphrey Field Analyzer (ΔL.max=3183 cd/m2 

[10000 asb] and to a 21 dB stimulus with the static programmes of the 

Octopus 900 (ΔL.max=1273 cd/m2 [4000 asb]).  

Stimuli started well outside the normal range of visibility (Vonthein et al., 

2007) and moved at a speed of 5°/s from the periphery towards the 

centre. The entire circumference was sampled along 16 meridians 

(Figure 15). Three repetitions were performed for each vector, and the 

final isopter was defined by the median (middle) of the three responses. 

Parts of the isopter falling within the central 10˚ were treated as 

“missing data” that would appear as a gap in the isopter (see Figure 20 
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[patient u] for an example). The mean radius of the isopter (MIR) 

provided a global summary measure, and the median absolute 

deviation (MAD) of individual responses from the isopter quantified the 

reproducibility of an individual patient’s answers. I chose the MIR as 

summary measure as this provides the same information as the isopter 

area but in a more intuitively appealing form. 

False positives catch trials (n=6) were performed by presenting stimuli 

in the far nasal periphery (see Figure 15). In addition to the stimulus 

vectors and the false positive catch trials, 16 stimuli were presented 

well within the normal III1e isopter to estimate response times. 

Altogether, each examination consisted of a total of 70 presentations 

(48 kinetic stimuli, 6 false-positive catch trials, 16 response time stimuli) 

and took approximately 11 minutes.  

 

Figure 15: Kinetic automated perimetry.  
Goldmann III1e stimuli were moved along sixteen meridians (green arrows) at a speed of 
5˚/sec. Three stimuli were shown on each meridian. Starting points of the arrows 
represent the start location of the stimuli. If not detected they moved to within 3 degrees 
of the fixation point. The dashed arrow represents the location of the 6 false positive 
catch trials. The light shaded region indicates the normative response range according to 
Vonthein et al. (Vonthein et al., 2007). 
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5.2.2.1.2 Static automated perimetry of the central visual field 

Static perimetry of the central visual field was performed with the 

German Adaptive Threshold Estimation (GATE) strategy with a 24-2 

test pattern and a stimulus duration of 200 ms. The GATE strategy has 

been described previously (Schiefer et al., 2009, Luithardt et al., 2015). 

At the outset of the initial test, thresholds are determined at four seed 

locations, and start intensities at other locations are then adjusted 

accordingly. In subsequent examinations GATE starts slightly above the 

thresholds estimated during the previous test. GATE then performs a 4-

2 dB staircase that normally terminates after two response reversals. In 

contrast to the full threshold strategy (Bebie et al., 1976), however, a 

maximally intense stimulus (0 dB) is presented if the initial stimulus had 

not been seen. If this stimulus is not detected the procedure terminates, 

otherwise a stimulus 4 dB brighter than the initial intensity is presented 

next. Finally, the threshold is estimated as the intensity midway 

between the brightest stimulus not seen and the dimmest stimulus 

seen.  

The mean deviation (MD), the mean difference of all 54 threshold 

estimates from their age-corrected expected values, served as a 

summary measure in this study. During the test ~10 false positive and 

~10 false negative catch trials were presented to estimate the 

observer’s reliability. GATE tests consisted of ~200 stimulus 

presentations and took ~6 minutes. 

5.2.3 Analyses 

The relation between central and peripheral visual field damage was 

examined via Spearman rank order correlation between MD (central 

field) and MIR (peripheral field).  

Retest variability was estimated with a modified version of Bland-Altman 

analysis (Bland and Altman, 1986) which relates the differences 
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between repeated tests to the best available estimate of the true value 

(the average of the repeated tests). The median of the retest 

differences indicates systematic changes between the first and second 

test that can arise from learning or fatigue effects, and the dispersion of 

the differences indicates the retest variability. Because the standard 

deviation of the differences is highly affected by outliers, I used the 

median absolute deviation (MAD) of the retest differences to estimate 

the limits of agreement. The limits of agreement were defined as the 

median difference ± 2.44 * MAD, which estimates the range in which 9 

out of 10 observations are expected to fall (if the data are normally 

distributed). The rational for choosing the MAD instead of the standard 

deviation as an indicator for retest variability is explained in more detail 

in the Appendix (Appendix 3, page 212). 

To explore the relation of fear of falling with visual field damage, the 

FES-I index (Yardley et al., 2005) was correlated with central and 

peripheral visual field indices, the MD of the better eye and the mean 

isopter radius of the binocular visual field. Graphical representations of 

the visual fields and all statistical analyses were performed in R (version 

2.15.1, (R-Core-Team, 2012)). 

 

5.3 Results 

A description of patients’ age, visual measures and visual field results 

can be found in Table 3, Table 4 and Table 5. Patients had mostly 

moderate to advanced visual field damage (Table 5), and only one 

patient had an MD better than -3 dB. To reduce learning effects in 

kinetic automated perimetry (KAP), three training stimuli were 

presented prior to the kinetic tests. Most patients completed the session 

without any problems, but on two occasions the kinetic tests had to be 

interrupted to re-instruct the patients to avoid frequent false-positive 

responses. Several patients commented that they found it difficult to 
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ignore the distinctly audible sound of the projection systems’ stepper 

motors.  

Obviously erratic “outlier” responses remote from the other responses 

and often outside normal values occurred in about 40 of the 60 tests 

(see single responses in case examples, Figure 20). This underscored 

the need to average several responses to achieve useful isopter 

estimates. The width of the interval around the isopters, derived from 

the MAD of repeated responses, varied by a factor of >5 between 

patients (Table 4). In nineteen patients (65%) our technique resulted in 

gaps in the isopter (for example, see Figure 20 [patient u] and [patient 

z]), because responses were only obtained close to fixation.  In one 

patient with deep and widespread visual field damage, no useful isopter 

could be estimated with these stimulus parameters because more than 

75% of responses were located within the central 10° (for illustration 

see Figure 20 [patient B]).  

In areas with little or no obvious visual field damage, the estimated 

isopters were in broad agreement with the normative model proposed 

by Vonthein (Vonthein et al., 2007) (Figure 20 [patient u]). However, this 

model is based on data obtained with a modified Octopus 101 (Haag-

Streit, Switzerland), and it is possible that there are small differences 

between these instruments. 

With an average of ~11 minutes, the test duration for the kinetic 

examinations was long. To a large degree, this was due to the fact that 

stimulus presentations started far outside the estimated normative 

limits. Our test procedure was not designed for efficiency but rather to 

explore repeatability and response behaviour. Our procedure allowed 

us to identify the frequency of erroneous responses, for example, those 

triggered by the noise of the stepper motors (see single responses in 

Figure 20). 
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Table 3: Descriptive statistics of the patient’s age, visual acuity and contrast 
sensitivity in the study eye.  

 Range Mean (SD) Median (IQR) 

Age (years) 59, 83 69 (6) 68 (67, 73) 

Visual Acuity (log MAR) -0.20, 0.30 0.10 (0.19) 0.07 (0, 0.14) 

Contrast Sensitivity (log) 0.60, 2.05 1.60 (0.30) 1.65 (1.35, 1.95) 

 

Table 4: Descriptive statistics for peripheral kinetic visual field examinations in the 
study eye. 

 Range Mean (SD) Median (IQR) 

MIR (degrees) 11.5, 48.1 33.2 (7.9) 31.7 (29.8, 38.1) 

MAD (degrees) 1.1, 7.4 2.7 (1.4) 2.2 (1.6, 3.3) 

False-positive response 

error rate 
0, 0.5 0.08 (0.13) 0 (0, 0.16) 

Test duration (min:sec) 8:00, 16:30 11:30 (1:45) 11:30 (10:15, 12:30) 

 

Table 5: Descriptive statistics for central static visual field examinations with GATE in 
the study eye. 

 Range Mean (SD) Median (IQR) 

Mean Deviation (dB) -16.3, +0.1 -8.4 (4.4) -8.1 (-11.9, -5.1) 

False-negative response 

error rate 
0, 0.63 0.09 (0.12) 0.08 (0, 0.19) 

False-positive response 

error rate 
0, 0.54 0.06 (0.11) 0 (0, 0.12) 

Test duration (min:sec) 4:44, 9:30 6:13 (0:58) 6:03 (5:30, 6:45) 

 

5.3.1 Test-retest variability of static and kinetic perimetry 

There were no clinically meaningful learning or fatigue effects in either 

the central or the peripheral visual field (median test-retest difference, 

0.25˚ and -0.1 dB, p=0.28 and 0.78 respectively). The median absolute 

differences were 1.3˚ with MIR and 0.9 dB with MD. Approximately 90% 

of test-retest differences in MIR were within ±3.1˚, and ~90% of test-
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retest differences in MD were within ±2.10 dB (Figure 16 and Figure 

17).  

 

Figure 16:  Test-retest variability of kinetic automated perimetry. 
Relationship between test-retest differences in mean isopter radius (MIR) and the 
range of peripheral visual field damage (mean of MIRs of 2 repeated tests). The 
height and width of the grey rectangle indicate the MAD scaled to a 90% range [-2.8˚, 
3.3˚] and the range of mean MIRs [11.8˚, 48.1˚], respectively. 
 

 

Figure 17: Test-retest variability of static automated perimetry. 
Relationship between test-retest differences in mean deviation (MD) and the range of 
central visual field damage (mean of MDs of 2 repeated tests). The height and width 
of the grey rectangle indicates the MAD scaled to a 90% range:  
[-2.2dB, 2.0dB] and the range of mean MDs [-16.3dB, 0.1dB], respectively. 
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A quantitative comparison of retest variability between SAP and KAP is 

problematic – after all, different regions of the visual field are measured 

with different estimation techniques and with different units of 

measurement. I therefore related the spread of the retest differences to 

the range of measures obtained in this sample (Figure 16 for peripheral 

kinetic visual field tests, Figure 17 for central static visual field tests). 

The range of the best estimate summary measures in this sample 

(Figure 16 and Figure 17, width of the grey rectangle) to the spread of 

test-retest differences (height of the rectangle) was similar for central 

and peripheral examinations. Thus, the repeatability of KAP in the 

peripheral field appears to be at least equivalent if not better than that of 

SAP in the central visual field.  

 

5.3.2 Relationship between peripheral and central visual 

fields. 

Our results confirmed the lack of a close relationship between 

peripheral and central visual fields. The Spearman rank order 

correlation between MIR and MD was rho = 0.51 (95% CI: [0.18, 0.74]). 

This correlation is considerably lower than the correlations between test 

and retest MD (rho = 0.89, 95% CI: [0.78, 0.95]) and MIR (rho = 0.92, 

95% CI: [0.84, 0.96]). This suggests that the loose relationship between 

central and peripheral visual field estimates in the data is not caused by 

poor repeatability of the tests. 

Some patients with deep central losses showed a nearly normal 

peripheral isopter (Figure 20 [patient z]) while others with similar or less 

severe central damage showed a severely constricted isopter (Figure 

20 [patient e]). Similarly, in patients with severe central visual field 

damage, the extent of the peripheral isopters varied substantially (for an 

example see Figure 20 [patient B] and [patient f]).  
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Figure 18: Central versus peripheral visual field damage. 
Relationship between global summary measures of peripheral visual field (mean 
radius of isopter, MIR) and central visual field damage (mean deviation, MD). Each 
data point shows the mean of the 2 repeated tests. The Spearman rank order 
correlation coefficient was 0.51 (95% CI: [0.18,0.74], p=0.004). 

 

5.3.3 Fear of falling 

The possible scores of the FES-I questionnaire ranged from 16 (no fear 

of falling) to 64 (severe fear of falling). The mean score in this sample 

was 23 (median: 21.5, range: [16, 39]). Correlation coefficients of visual 

indices with the fear of falling score are found in Table 6. Although both 

MIR and MD showed the expected negative relationship with FES-I 

scores, this relationship was not close with either peripheral visual field 

damage (rho = -0.35, CI: [-0.64, 0.04], p=0.08) or central visual field 

damage (rho = -0.34, CI: [-0.63,0.05], p=0.09, Figure 19).   
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Table 6: Relation of visual measures with fear of falling questionnaire (FES-I) scores 

 FES-I score 

Spearman’s rho 95% CI p-value 

Binocular MIR -0.35 -0.64, 0.04 0.08 

Better Eye MD -0.34 -0.63, 0.05 0.09 

Better Eye Visual 

Acuity 
0.17 -0.23, 0.51 0.41 

Better Eye Contrast 

Sensitivity 
-0.13 -0.49, 0.26 0.51 

 

 

Figure 19: Visual field damage and fear of falling. 
Relationship between fear of falling (FES-I score) and the mean isopter radius (MIR) of 
the binocularly measured isopter. The Spearman rank order correlation coefficient 
was -0.35 (95%CI: [-0.64,0.04], p=0.08) (left). Relationship between fear of falling 
(FES-I score) and the mean deviation (MD) in the better eye. The Spearman rank order 
correlation coefficient was -0.34 (95% CI: [-0.63,0.05], p=0.09) (right). 
 

5.3.4 Case examples 

While the comparison of summary measures over all data provided a 

general picture of the relationship between peripheral and central visual 

field defects and the repeatability of the respective tests, single case 

examples help to illustrate these results (Figure 20). A visual 

examination of the isopters and the central visual field plots indicated 

that a high agreement between summary measures of test and retest 
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was reflected in similar shapes and patterns of the visual field plots 

between test and retest (see Figure 20 [patient u, e, z and f]). Patient C 

illustrates an example of a patient with high test-retest variability in both 

the central and peripheral visual field. The high retest variability was 

also reflected in a higher scatter of responses during each kinetic test of 

patient C (MAD: test 1: 5˚, test 2: 4˚). The loose relation between the 

extent of central and peripheral visual field damage also becomes 

apparent in the visual field plots. Some patients showed a high 

agreement between central and peripheral damage (see for example 

Figure 20, patient u). Patient u’s central field showed a dense inferior 

arcuate scotoma with a nasal step. The III1e isopter (dark green) 

showed that the nasal step extended far into the periphery. Elsewhere 

the isopter did not appear to be distinctly abnormal in comparison to 

normative data. In other patients the relation was more ambiguous. 

Patients e and z give an example of two patients with a similar degree 

of central visual field loss, but very differently affected isopters. Patient 

e had deep focal damage and some moderate diffuse damage in the 

central superior visual field, but a substantially preserved peripheral 

III1e isopter. Patient z had moderate diffuse central visual field damage, 

but a substantially constricted III1e isopter (MIR: 25˚. In comparison, an 

MIR around 47˚ would be expected in a healthy person of the same 

age). Patient B shows an example of a patient with substantial central 

and peripheral visual field loss. Only a central island of vision within the 

central 5˚ appears to be preserved. A meaningful isopter could not be 

estimated for patient B as most responses occurred close to fixation 

within the central 10˚. The visual field plots for all participants of the 

study are depicted in Appendix 1, from page 200 onwards. 
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Figure 20: Case examples of test and retest of the peripheral and central examination 
in one eye of six patients [patients u, e, z, f, B and C].  
Both central and peripheral visual field examinations are depicted in one graphic by 
overlaying the greyscale representation of the GATE examination with a plot of the 
kinetic isopter. Eccentricities and test meridians are indicated by grey circles and 
dotted lines. Single responses to kinetic stimuli are shown as red dots. The measured 
isopter is plotted in dark green. Median responses < 10˚ were treated as “missing 
data” and appear as gaps in the isopter. The MAD measuring the scatter of single 
responses is shown as a green band surrounding the isopter, and normative values 
(Vonthein et al., 2007) are represented in light green.  
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5.4 Discussion 

The objective of this study was to explore the relation between central 

and peripheral visual field damage in glaucoma, and to investigate 

retest variability of isopters that are estimated from repeated stimulus 

presentations.  

The results confirmed that patients with similar central visual field loss 

may have rather different peripheral visual fields. The disparity in 

central and peripheral visual field damage in patients with moderate to 

severe glaucoma underscores that peripheral perimetry may be an 

important step towards a more complete assessment of patients’ visual 

field-related functional impairment. The results further suggest that a 

simple approach of fully automated kinetic perimetry can reliably 

estimate the extent of the peripheral visual field.  

To avoid lens rim artefacts, refractive errors were not corrected for the 

peripheral visual field test. However, both detection and resolution 

acuity in the periphery are limited, not only through the lower cell 

density in the peripheral retina, but also through optical defocus. 

Detection acuity is more affected by defocus than resolution acuity, 

which is mostly sampling-limited (Anderson, 1996). Non-corrected 

refractive errors thus influence the detection rate and might lower 

thresholds and introduce additional variability. Moreover, due to the 

spherical nature of the lens, peripheral, off-axis stimuli cause 

aberrations such as oblique astigmatism (Ferree et al., 1931a, Lotmar 

and Lotmar, 1974, Millodot and Lamont, 1974). An off-axis circular 

stimulus, for example, appears as an elliptic shape on the retina and not 

as a circle and covers a wider space than the same stimulus in a central 

region of the visual field. It should be noted that such aberrations 

introduce differences between the same stimuli in the central versus 

peripheral visual field and might influence their detection. 
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One of the pitfalls in automating kinetic perimetry is that isopter 

locations based on single responses are highly error-prone. Lynn et al. 

described the resulting phenomenon as “spurious spikes” in isopters 

(Lynn et al., 1990). As in Lynn’s data, the results of this study revealed 

obvious spurious responses in most of the automated kinetic exams. 

One solution to reducing the impact of errors is to sample more 

responses. Nowomiejska et al., for example, measured along 24 

instead of the traditionally recommended 12 meridians (Nowomiejska et 

al., 2005). In contrast, I increased the sampling by repeating 

presentations; this approach also provides information about the 

precision of the isopter estimates at each location.  

Previous studies estimated repeatability of kinetic perimetry either 

qualitatively, by comparing the classification of visual field results 

according to defect types and locations, or quantitatively by comparing 

visual field measures in test and retest (Quinn et al., 1991, Gramer et 

al., 1980, Bittner et al., 2011, Ross et al., 1984a, Pineles et al., 2006, 

Nowomiejska et al., 2005, Ramirez et al., 2008, Rowe and Rowlands, 

2014, Hirasawa and Shoji, 2014, Bjerre et al., 2014). Reproducibility of 

global estimates from SKP has previously been reported (Nevalainen et 

al., 2008, Ramirez et al., 2008, Bjerre et al., 2014). MIR retest 

differences of ±3.0˚ for III1e stimuli suggest that our approach of KAP 

provides global estimates with at least equivalent precision. The 

repeatability of this data also compare very favourably to those obtained 

by Hirasawa et al. (Hirasawa and Shoji, 2014).  

In this study the emphasis of the technique was not on efficiency, but 

rather investigating repeatability and response behaviour in kinetic 

perimetry. Large gains in efficiency may be achieved through an 

adaptive technique which presents further stimuli according to the 

already obtained responses. For example, a third presentation may not 

be required when the previous two responses were close together. This 

question is further explored in Chapter 6. This would allow for feasible 
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test durations without compromising reliability as in automated 

approaches with only one stimulus presentation per meridian. Such 

approaches are best designed with the help of simulations in which 

responses similar to those of real patients are generated. In this way, a 

large number of different scenarios with various test strategies and 

visual field defects can be systematically explored in a short time. The 

individual response data obtained as a by-product of this research will 

contribute to the empirical data necessary for such work. Ultimately, 

simulations will also be helpful for deciding in which situations kinetic 

stimuli are more efficient than static stimuli for estimating the peripheral 

visual field.  

Also, it may be not be necessary to examine the entire circumference of 

the isopter. Instead, a test could focus on those areas that are most 

informative functionally (Black et al., 2011) or clinically (LeBlanc and 

Becker, 1971). For a wider dynamic range stimulus parameters might 

have to be adjusted in patients with end-stage glaucomatous visual field 

defects (see Figure 20 [patient B]) (Nowomiejska et al., 2014, Tonagel 

et al., 2012, Scheuerle et al., 2012). An exploratory scan prior to the 

examination as suggested by Johnson et al. might be beneficial to 

choose suitable stimulus parameters (Johnson et al., 1987).  

Adaptive kinetic tests, perhaps in conjunction with static perimetry of the 

central visual field (Johnson et al., 1987, Pineles et al., 2006, Miller et 

al., 1989), might provide a fruitful avenue for further development of 

perimetry for patients with moderate and advanced visual field damage.  

While the current study was not designed to answer the question of 

whether and by how much the visual field periphery contributes to real-

world visual problems (Haymes et al., 2007, Black et al., 2011, Glen et 

al., 2014, Glen et al., 2011, Szlyk et al., 2005), such research will be 

important to conduct in the future. Considering the many risk factors for 

falls (Rubenstein and Josephson, 2002, Dhital et al., 2010, Moenter et 

al., 2014), the lack of a close relationship between the visual field 
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indices and the fear-of-falling questionnaire scores (correlation 

coefficients around -0.35) is not surprising. However, these 

relationships appeared at least as strong if not stronger than those seen 

with visual acuity (R=0.17) and contrast sensitivity (R=-0.13). Based on 

the correlation coefficients estimated in this study, I estimate that 

sample sizes of at least 100 patients would be required to investigate 

the relation between visual field indices and fear of falling with sufficient 

power, and substantially larger samples (around 300 patients) would be 

required to distinguish between central and peripheral visual field 

predictors. 
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6. Simulating response behaviour to 

kinetic stimuli 

6.1 Introduction 

In the clinical environment short test durations are essential. A strategy 

for automated kinetic perimetry in the peripheral visual field should be 

efficient, i.e. it should achieve good accuracy and precision with a 

minimal number of presentations. This chapter investigates the 

relationship between the number of presented stimuli per meridian and 

the accuracy and precision of the estimation of isopter locations with 

repeated presentations through a simulation of responses to kinetic 

stimuli.  

A key advantage of simulations over experiments with human observers 

is that the true underlying sensitivity is known, and therefore, the error 

(difference between the estimate and the true value) can be 

determined. Moreover, simulations make it possible to evaluate the 

performance of many different test strategies in a short amount of time. 

They have been extensively used to evaluate threshold estimation 

procedures in static automated perimetry to estimate accuracy 

(Spenceley and Henson, 1996) or compare the efficiency of different 

test procedures (Turpin et al., 2003). Many of the simulations rely on 

Henson et al.’s model of the relation between response variability and 

contrast sensitivity (see Chapter 7) (Gardiner and Crabb, 2002a, 

Gardiner and Crabb, 2002b, Turpin et al., 2003, Turpin et al., 2007, 

Henson et al., 2000).  

However, to my best knowledge, there is little literature on simulations 

of kinetic perimetry (Schiefer et al., 2006a, Shapiro et al., 1988, Shapiro 

and Johnson, 1990). Shapiro et al. developed a computer simulation 
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procedure for various types of perimetry including kinetic and static 

perimetry called KRAKEN (Shapiro et al., 1988). The model for 

simulating kinetic perimetry was based on data from manual Goldmann 

examinations. The isopter locations estimated with Goldmann perimetry 

were converted into contrast sensitivity values based on the size and 

intensity of the respective Goldmann stimulus. They then introduced 

variability to the contrast sensitivity in the form of a Gaussian that, as 

chosen, could depend on eccentricity, age and area of visual field loss. 

Additional noise in the form of false positive and false negative rates 

could also be added. 

However, it is unclear what the actual distribution of kinetic responses 

around the isopter location looks like. In particular, a Gaussian 

distribution might be unsuitable. In this chapter I will estimate the 

distribution of responses to kinetic stimuli around isopter locations 

based on the data from Chapter 5.  

Due to the nature of kinetic perimetry (stimuli being moved from areas 

with lower expected sensitivity to areas with higher expected sensitivity 

of the visual field), response variability manifests in distances of 

responses from the location of detection. Intrinsic variability in the 

retinal location at which the signal becomes strong enough to elicit a 

conscious percept of the stimulus is probably one part of that variability. 

But other factors likely lead to much larger variations in the responses. 

Fatigue or low attention could for example affect response times and 

lead to increased false positive and false negative rates. False positive 

responses can even occur at long distances from the true location of 

detection. Notably, in kinetic perimetry, false negative responses cannot 

simply be defined as the absence of a response to a stimulus 

presentation, but rather the absence of the response at the time of first 

detection of the stimulus. Since stimuli move across the visual field until 

they are either detected or reach an endpoint (often at fixation), a 

response is likely to still occur after a false negative at a later point of 
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the stimulus presentation. Thus even false negative responses 

indirectly add to the variability of the distribution of response around the 

location of detection.  

To simulate response behaviour to kinetic stimuli in the entire visual 

field, a model needs to be established that relates the parameters of the 

stimuli (size, contrast, speed) to respective probability distributions of 

responses around the isopter. In this chapter, only one stimulus type is 

taken into account (Goldmann III1e), and simulations of kinetic 

responses are based on the distribution of responses to Goldmann III1e 

stimuli that were moved at a speed of 5˚/sec.  

However, even when using the same stimulus parameters, several 

factors might still affect response variability. There could be a 

sequential dependency of response variability (caused by e.g. learning 

effects or fatigue). The variability of responses might also differ 

depending on the location in the visual field. It could change with visual 

field eccentricity or differ for example between the nasal and temporal 

visual field. Should these factors be closely related to response 

variability they have to be included in a model to simulate responses to 

kinetic stimuli. 

Thus, in this chapter I (1) examine the dependency of response 

variability on various factors (order of presentation, eccentricity, 

meridian) (2) investigate the probability distribution of responses to 

kinetic stimuli around the estimated isopter and (3) simulate kinetic 

responses based on the probability distribution of responses to evaluate 

how many responses are required to achieve good accuracy and 

precision of isopter estimates. 

The aim of this chapter is to demonstrate the usefulness of simulations 

to develop efficient strategies for kinetic automated perimetry. 

 

 



106 
 

6.2 Methods 

6.2.1 Kinetic visual field test: 

The kinetic response data used in this study was the same as described 

in Chapter 5. Thirty patients with glaucoma performed two automated 

kinetic perimetry tests in one eye on the same day. Single peripheral 

isopters were measured in each of the two tests along 16 meridians 

with three Goldmann III1e stimuli presented per meridian at a speed of 

5˚/sec (see Chapter 5.2.2.1.1, page 87, for further details on the 

procedure). For the purpose of evaluating patients’ response behaviour 

the response data from test and retest was pooled together resulting in 

six stimulus presentations per meridian per person, thus giving a total of 

96 presentations per person.   

6.2.2 Analyses 

The isopter location on each meridian was estimated as the median of 

six responses, i.e. the mean of the two middle responses. The kinetic 

response data was used to estimate the distribution of single responses 

around the estimated isopter location. Since the proposed application of 

automated kinetic perimetry is measuring the peripheral visual field, all 

responses that resulted in isopter locations within the central 10˚ were 

removed from the data set prior to any further analysis.  

The difference of each response from the respective estimated isopter 

location is referred to as scatter of responses. The response variability 

for each isopter location of each patient was estimated by the median 

absolute deviation (MAD) of responses from the estimated isopter 

location at the respective meridian. To investigate whether response 

behaviour changed with the time course of a test (related to fatigue or a 

learning effect) or depending on the location in the visual field, we 

tested for sequential dependencies of the scatter of responses and 
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examined the relation of response variability with eccentricity and 

meridian position in the visual field, respectively.  

Data analysis was performed in R (version 2.15.1, (R-Core-Team, 

2012)) and Matlab (MathWorks, 2008). To estimate the sequential 

dependency of scatter, the distances of each response from the isopter 

location were correlated with the ordinal numbers reflecting the 

sequence of the presentations of stimuli using a Spearman correlation. 

The relation between the eccentricity of isopter locations in the visual 

field and response variability was explored by correlating the 

eccentricity of the estimated isopter locations with the median absolute 

deviation of the responses around the respective isopter location. 

Finally, a circular linear correlation between the median absolute 

deviations and circular position in the visual field defined by the 

meridian was performed.  

The circular linear correlation was calculated with the CircStat Matlab 

toolbox (Berens, 2009). There an association between a directional 

variable α and a linear variable x is estimated by correlating x with cos α 

and sin α individually. The individual Pearson correlation coefficients rsx 

= c(sin α, x), rcx = c(cos α, x) and rcs = c(sin α, cos α) are correlated first. 

Finally, the circular linear correlation ρcl is defined as:  

 

Equation 6: Circular linear correlation ((Zar, 1999), Equation 27.47 cited in Berens 
2009) 
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6.3 Results 

6.3.1 Dependencies of response variability 

To evaluate which factors need to be taken into account when 

simulating responses to kinetic stimuli, the relation of response 

variability with the order of presentation, the eccentricity in the visual 

field and the test meridian was investigated.  

6.3.1.1 Sequential dependency of scatter 

The Spearman correlation between the absolute distance of responses 

from the estimated isopter location and the ordinal stimulus 

presentation numbers was rho < 0.001 (95% CI: [-0.04, 0.04], p = 0.82). 

That means that the scatter of responses was independent of the order 

of presentation (Figure 21).  

 

Figure 21: Sequential dependency of scatter of responses to kinetic stimuli. 
This plot illustrates the scatter of kinetic responses (y-axis) in relation to the order of 
the presentation (x-axis). The dispersion of responses appears similar throughout the 
test. Negative values on the x-axis indicate responses that occurred within the isopter, 
positive values response that occurred outside of the isopter.  
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6.3.1.2 Relation between response variability and eccentricity 

The eccentricities of isopter locations of our data set ranged from ~10˚ 

to ~75˚, with a median of 35˚ (Figure 22). Response variability did not 

significantly depend on visual field eccentricity (Spearman’s rho = -0.06 

(95%CI: [-0.16, 0.04], p = 0.23) (Figure 22). That means that variability 

of responses around the estimated isopter location is similar 

independent of its eccentricity.   

 

Figure 22: Response variability versus eccentricity.  
The scatterplot illustrates the relation between response variability (y-axis) of 
responses around isopter locations and the respective eccentricity of the isopter 
locations (x-axis). There was no significant correlation between both variables. The 
Lowess curve fit (red) also indicates no relationship between response variability and 
eccentricity. 
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6.3.1.3 Relation between response variability and meridian 

There was no evidence for a dependency of response variability on the 

circular position in the visual field (linear circular correlation coefficient: 

0.079, 95% CI: [-0.018, 0.175], p = 0.276). The circular position was 

defined by the test meridians along which kinetic stimuli are moved 

(Figure 23). That means that the response variability was similar 

irrespective of the meridian in our data set. 

 

Figure 23: Scatter of responses to kinetic stimuli on each of the 16 test meridians.  
The scatter of all responses (red circles) is depicted around a location at 60˚ on all 
meridians for better visualisation. The green regions indicate the interquartile range 
and the 90% interval of the scatter of responses at each meridian. 
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6.3.2 Estimation of the distribution of responses around 

the isopter location 

Since the data revealed no significant dependencies between response 

variability and eccentricity, meridian or the order of stimulus 

presentation, the distribution of the responses around isopter locations 

was estimated independent of these factors.  

The response variability of each patient was estimated via the median 

absolute deviation of all responses around the estimated isopter 

locations. Figure 24 (left) shows the probability density function of 

response variability of all patients fitted with a Gaussian kernel with a 

smoothing bandwidth (standard deviation) of 1.6.  

  

Figure 24: Distribution of response variability over all patients. 
Left: Distribution of median absolute deviations of scatter for the 30 patients fitted 
with a Gaussian kernel with a bandwidth of 1.6. Right: The q-q plot compares the 
distribution of the response variability to a normal distribution. Data points deviating 
from the grey line indicate a non-normal distribution. The distribution has a tail to the 
right, which indicates that response variability substantially higher than average 
occasionally occurs. 

 

The median absolute deviations of responses from isopter locations in 

this data set ranged from 1˚ to 9˚ between patients with a median of 3˚. 

Thus the overall scatter of responses around the isopter locations 

ranged widely between participants (Figure 25, left). To estimate the 
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distribution of the scatter of the responses around the isopter locations, 

it was first normalised by the response variability (MAD) of each patient. 

Figure 25 shows the scatter of responses for each person before (left) 

and after (right) normalisation by individual response variability. 

  

Figure 25: Scatter of responses around the estimated isopter location for each 
participant. 
Letter identifiers for participants match the identifiers used in Chapter 5. Left: The 
distance of each response from the estimated isopter location is shown for each 
patient. Negative values represent responses within the estimated isopter, positive 
values those outside the estimated isopter. Right: the scatter of responses is 
normalised by the median absolute deviation of respective participants. 

 

Following the normalisation the data were pooled together and the 

overall distribution of responses around isopter locations was estimated 

and fitted with a Gaussian kernel (Figure 26, left). The q-q plot (right) 

emphasizes that the distribution is non-normal and positively skewed 

with long tails. The slightly longer left tail indicates that responses occur 

in larger distances outside of the isopter location than within. This could 

be caused by a higher likelihood of early (false positive) than late 

responses.  
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Figure 26: Distribution of normalised scatter of responses for all patients.  
Left: Distribution of normalised scatter of responses around isopter locations. 
Negative values on the x-axis indicate responses occurring within the estimated 
isopter and positive values indicate responses outside of the estimated isopter. The 
distribution is non-normal and has long tails and indicates that a vast majority of 
responses are closely spaced to isopter locations while occasional responses occur at 
larger distances from the isopter. The best fitting normal distribution is depicted in 
grey. Right: The q-q plot compares the distribution of the scatter of responses around 
the isopter to a normal distribution. Data points deviating from the grey line indicate 
a non-normal distribution. The distribution has long tails in both directions and is 
slightly skewed towards the right, which indicates that responses occur at larger 
distances outside than within the isopter. 

 

6.3.3 Simulating kinetic responses 

6.3.3.1 Simulating isopters based on kinetic response 

behaviour 

Since the data revealed no dependencies of response variability with 

the order of stimulus presentation or the location in the visual field, the 

same distribution of responses around the true isopter location is 

assumed independent of eccentricity, meridian or test sequence.  

Response variability differed strongly between patients. The simulation 

of kinetic responses was based on two aspects: the distribution of 

response variability present in different patients (Figure 24, left) and the 
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general distribution of the normalised scatter of responses (Figure 26, 

left). 

In the simulation the true isopter was assumed to consist of definite 

locations at which stimuli are detected. The input to the simulation 

consisted of x and y coordinates of any predefined isopter. The 

response variability of a simulated patient is picked from the response 

variability probability distribution (Figure 24). The response variability 

scales the distribution of the scatter of responses around the isopter 

(Figure 26).  

 

Figure 27: Examples for simulated isopters.  
The assumed true isopters are depicted in grey, the single simulated responses are 
small red circles and estimated isopters are in green. The number of simulated 
responses used to estimate the isopter increases from one to three per meridian from 
left to right. The first row shows examples of a simulated patient with high response 
variability (MAD: 7˚), the second row shows examples of a simulated patient with 
average response variability (MAD: 3˚) and the third an example with low response 
variability (MAD: 1˚). 
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Consequently, a simulated patient with larger response variability has a 

wider range of scatter of responses around the true isopter location 

(Figure 27). The distance of responses from isopter locations is 

determined by drawing from the scatter distribution scaled with the 

chosen response variability. The scatter is added to the true isopter 

location to determine the location of single simulated responses. 

6.3.3.2 Accuracy and precision of isopter estimation with 

increasing number of measures per meridian  

Here, I used the simulation of kinetic responses to investigate how the 

accuracy and precision of the estimation of isopter locations depends 

on the number of stimuli used to estimate said isopter.  

Isopters were simulated with increasing numbers of stimulus 

presentations per meridian ranging from one stimulus to twenty. For 

each number of stimuli, isopters were simulated 1000 times, with 16 

isopter locations per iteration and responses were drawn according to 

probability density functions of response variability (Figure 24) and 

scatter (Figure 26). The absolute distance between estimated and true 

isopter locations (error) was on average 5˚ (mean) with one response, 

3.9˚ with two responses and 2.1˚ with three responses (Figure 28, right). 

The interquartile ranges and 90% intervals illustrate a low precision of 

the isopter estimation with one or two responses (Figure 28, left). 

Adding a third stimulus decreases the 90% interval of the error by more 

than half (Figure 28), which demonstrates a large gain in precision. 

Adding further stimuli led to relatively small gains in precision. The 

mean error showed that, on average, there is a bias towards estimating 

the true isopter to be located further outside the isopter (mean error: 

1.2˚) when using only one or two stimuli. This bias is reduced when 

adding a third stimulus and is then close to zero (0.2˚) (Figure 28, left).  
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Figure 28: Precision of isopter location estimation with increasing number of 
measures per meridian. 
The deviation between estimated and true isopter locations (error) is displayed on the 
y-axis and the number of presentations per meridian on the x-axis. Left: Error versus 
number of questions: negative values of the error indicate estimated isopter locations 
within the isopter and positive values those outside. Right: Absolute error versus 
number of questions. Isopters were estimated 1000 times for each condition. Green 
dots indicate the median, green lines the interquartile range and errorbars give the 
90% interval of the distances between true and estimated isopter locations over 16 
locations and 1000 iterations. Small red dots indicate the mean error.  

 

The relation between the number of stimuli to estimate isopter locations 

and the accuracy of the locations indicates that at least three responses 

are necessary to get accurate isopter estimates in most patients. 

However, additional rules could be implemented into kinetic procedures. 

For example a third stimulus could only be presented if the distance 

between the first two responses exceeds a critical range. The accuracy 

and precision of isopter locations estimated with two responses was 

found to be similar to that of isopter locations estimated with three 

responses, when the two stimuli were maximally spaced 10˚ apart from 

each other (Figure 29). According to results of the simulation, two 

responses to a kinetic stimulus occur in a distance of less than 10˚ from 

each other in 80% of the cases. Thus a third stimulus would only be 

required in 20% of the cases.  
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Figure 29: The deviations between the estimated and true isopter locations in 
different conditions.  
Left: Isopter locations were estimated from an increasing number of stimuli per 
meridian (1-3). Right: isopter locations were estimated from two responses per 
meridian that were spaced in a maximal distance from each other (20˚, 15˚, 10˚ and 
5˚). The percentage of cases in which response were maximally spaced in the 
respective distances from each other were 90%, 86%, 79% and 60%. Isopters were 
estimated 1000 times for each condition. Symbols are explained in Figure 28. 

 

6.4 Discussion 

We found a non-normal skewed distribution with long narrow tails of 

kinetic responses. The distribution revealed responses to occur further 

outside the border of the isopter than within. Considering the nature of 

kinetic stimuli, such a distribution should not be surprising. Once a 

response has been given at a certain point of the trajectory of a kinetic 

stimulus the stimulus vanishes and no further response can be given at 

a later point. Thus, even if one would assume an equal probability to 

respond at any point in time during the stimulus presentation, fewer 
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responses would be expected at a later point time. For example, if the 

probability to respond at a certain location would be 25% (one fourth), 

this would influence the next location, since the stimulus will not be 

presented there if an answer already occurred. Thus the stimulus would 

only reach the next location three out of four times. The probability for a 

response in that location would thus be three fourth times one fourth 

and would lie at only 18.75%. While this principle will govern the 

distribution of responses to some extent the response behaviour is 

certainly more complex. The probability to give a response once a 

stimulus can be detected is certainly higher than to give a false positive 

response. Furthermore the eagerness to press the button might 

increase the longer a person waits for a stimulus to appear (change in 

response criterion).  

The scatter of responses did not depend on the order of stimulus 

presentation. Thus there was no apparent fatigue or learning effect.  

The response variability in our data set did not vary with the location in 

the visual field, be it eccentricity or orientation of the meridian. Since the 

same stimulus type (Goldmann III1e) was used, the locations of 

detection should have similar contrast sensitivities independent of 

eccentricity. Thus, the lack of a relationship between response 

variability and eccentricity might be related to a constant relation 

between contrast sensitivity and response variability. Such a constant 

relation between response variability and contrast sensitivity has been 

demonstrated for static stimuli (Henson et al., 2000).  

A previous study found response variability to kinetic stimuli to increase 

with visual field eccentricity in participants with normal vision (Parrish et 

al., 1984). Parrish et al. related this increase in response variability to a 

flattening of the hill of vision in the peripheral visual field. The similar 

response variability independent of eccentricity in patients with 

glaucoma might be related to a local flattening of the hill of vision in 

areas of visual field loss. Notably, the measures of response variability 
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differ in this and Parrish et al.’s study (median absolute deviation versus 

standard deviation).  

The simulations showed that repeated presentations are required to 

estimate isopter locations with good accuracy and precision. The 

largest gain in both accuracy and precision in the estimation of isopter 

locations is achieved when increasing the number of responses used to 

estimate isopter locations up to three. Thus a minimum of three 

responses should be used to get accurate isopter estimates. However, 

the test duration of a kinetic visual field examination with three 

repetitions per isopter location might still be too long for the clinical 

environment. The use of adaptive kinetic procedures would therefore be 

promising. For example, a third stimulus could only be presented if the 

distance between the first two responses exceeds a certain criterion. 

According to the simulation, a similar accuracy and precision to the 

three repeated presentations technique could be reached with such a 

rule. A third stimulus presentation would then only be required in an 

estimated 20% of the cases. That means, in a test strategy 

implementing such a rule, only about 75% of the stimulus presentations 

of a test with three repeated presentations are required to reach similar 

precision. 

It is clear that large gains in efficiency could be achieved through 

adaptive techniques which presents further stimuli depending on the 

already obtained responses or based on prior knowledge about the 

visual field. This could result in short test durations without 

compromising reliability. Simulations based on response data to kinetic 

stimuli, as performed in this study, could be a helpful tool to explore 

different strategies for kinetic perimetry. In this way, a large number of 

different scenarios with various test strategies and visual field defects 

could be systematically explored in a short time.   

Certain limitations of the simulation of kinetic responses in this study 

should be taken into consideration. In a true experiment the response 
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distribution would always be limited by the start and stop location of the 

trajectory of the kinetic stimulus and by the respective distance of the 

true isopter location from the start and stop location. A long distance 

between the start location and the isopter location would for example 

lead to an increased probability for responses outside of the isopter 

border, as the time during which these responses can occur increases. 

On the other end a small distance to the stop location would decrease 

the opportunity for responses within the true isopter. These factors were 

not taken into account in this model. Moreover, the probability 

distribution of response variability based on the 30 participants was 

smoothed to prevent an inordinate influence of single data points on the 

probability distribution. This led to an inclusion of response variability 

close to zero in the distribution. Notably, while these occurred at a very 

low probability, it is unlikely that such response variability would ever be 

present in actual patients. 

Furthermore, I only examined kinetic responses to one Goldmann 

stimulus type (III1e). Response variability might differ depending on the 

overall stimulus intensity (size and contrast). To simulate response 

behaviour to other Goldmann stimuli, response data to a wide range of 

stimuli would be required.  
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7. Frequency-of-Seeing for static 

perimetry on estimated isopter 

locations in the peripheral visual 

field 

7.1 Introduction 

Simulations can be a useful tool to determine efficient strategies for 

measuring the peripheral visual field (see Chapter 6). In previous 

studies simulations have been used to determine the efficiency of static 

perimetric strategies in the central visual field (Spenceley and Henson, 

1996, Turpin et al., 2003, Turpin et al., 2007, Gardiner and Crabb, 

2002a, Gardiner and Crabb, 2002b). However, for the peripheral visual 

field little data is available to base such simulations on. For automated 

kinetic perimetry this is the case, since no standard automated kinetic 

perimetry technique has been established yet. For static automated 

perimetry, this is the case since the most commonly used static tests 

concentrate on the central visual field.  

As of yet, it is unclear, whether static or kinetic automated perimetry is 

more suitable in the peripheral visual field. 

This chapter looks into the estimation of contrast sensitivity in the 

peripheral visual field with static stimuli. (1) I explore how the larger 

Goldmann V stimulus affects contrast sensitivity and response 

variability throughout the visual field in comparison to the Goldmann III 

stimulus, which is typically used in SAP. (2) I investigate the relationship 

between contrast sensitivity and response variability in the peripheral 

compared to the central visual field and (3) I examine the relationship 

between kinetic and static peripheral visual field measures. 
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7.1.1 Stimulus size in static perimetry 

It has been previously suggested that stimuli with a larger area are 

more suitable for visual field examinations in glaucoma as they are 

picked up with higher sensitivity and lower response variability (Wall et 

al., 2010, Wall et al., 2009, Wall et al., 1997, Gardiner et al., 2013). 

Standard automated perimetry with Goldmann V stimuli has been found 

to have a higher dynamic range than size III SAP by about 1 log unit 

(Wall et al., 2010). 

In this chapter we compare contrast sensitivity and response variability 

to size III (0.43˚ diameter) and size V (1.72˚ diameter) stimuli in patients 

with glaucoma and participants with normal vision throughout the visual 

field. The gain in contrast sensitivity has been estimated to lie at 5 dB 

for each increase in Goldmann stimulus size (4-fold increase in area) 

(see Chapter 2.1.4.2, page 43-47) (Goldmann, 1999, Goldmann, 1945). 

Thus the change in sensitivity from a size III to size V stimulus is 

expected to lie at 10 dB on average. However, the difference in contrast 

sensitivity to different stimulus sizes has been shown to increase with 

eccentricity (Wilson, 1970, Dannheim and Drance, 1971, Wald, 1938). 

The relationship between contrast sensitivity and stimulus size has 

been connected to the summation of ganglion cell responses (Wilson, 

1970, Swanson et al., 2004, Fischer, 1973, Anderson, 2006). 

Depending on the size of a stimulus, light covers a certain area of the 

retina. A certain number of ganglion cells receive input from that retinal 

area. The larger the stimulus is and thus the retinal area that is covered 

by the stimulus, the more ganglion cells will respond to the stimulus. 

The more ganglion cells respond, the stronger is the signal. Up to a 

certain number of ganglion cells an increase in stimulus area leads to 

an equivalent increase in contrast sensitivity. At a certain level an 

increase of the area and thus an activation of additional ganglion cells 

does not lead to a strong gain in the signal and the slope of the relation 

between area and contrast sensitivity flattens. The area at which this 
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slope starts to flatten is called Ricco’s area. Since ganglion cell density 

is high in the central visual field and decreases towards the periphery, a 

larger number of ganglion cells will respond to the same stimulus when 

it falls onto a central instead of a peripheral visual field area. 

Consequently, a larger area is required to activate the same number of 

ganglion cells in the peripheral visual field. Thus the size of Ricco’s area 

increases with eccentricity. This relationship has been found repeatedly 

in psychophysical studies (Wilson, 1970, Redmond et al., 2010). Wilson 

et al. demonstrated that contrast sensitivity remains constant 

throughout the visual field if the stimulus size is adjusted to Ricco’s area 

(see Chapter 2.1.4.2.1, page 45, Figure 6). Ganglion cell density can 

also decrease as a result of a disease, such as glaucoma. Ricco’s area 

has been found to increase in patients with glaucoma (Fellman et al., 

1988, Redmond et al., 2010). 

Since an increase in the stimulus area allows the stimulus to fall into the 

receptive field of more ganglion cells, the signal-to-noise ratio improves 

with stimulus area. This is also reflected in a lower response variability 

to larger stimuli (Vislisel et al., 2011, Wall et al., 2013, Wall et al., 1997, 

Gardiner et al., 2013). However, an increase in stimulus area only 

substantially improves the signal-to-noise ratio until Ricco’s area is 

reached after which spatial summation of the signal decreases.  

Since Ricco’s area increases in glaucoma, we expect to find a gain in 

contrast sensitivity when testing with a size V instead of size III stimulus 

throughout the visual field in patients with glaucoma. For the same 

reason we expect a reduction in response variability. In the normal 

visual field the Goldmann size III (0.43˚ diameter) matches Ricco’s area 

at about 40˚ eccentricity (see Chapter 2.1.4.2.1, page 45, Figure 6) 

(Anderson, 2006, Wilson, 1970). That means complete spatial 

summation beyond a size III stimulus only occurs beyond 40˚ of 

eccentricity. Thus we expect to find a larger difference in contrast 

sensitivity and response variability between size III and V stimuli in the 
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peripheral than in the central visual field in participants with normal 

vision.   

 

7.1.2 Response variability to static stimuli 

Previous studies suggest that response variability increases with 

decreasing sensitivity (Henson et al., 2000, Weber and Rau, 1992, 

Olsson et al., 1993, Chauhan et al., 1993, Russell et al., 2012a). That 

means that threshold estimates at locations with lower contrast 

sensitivity are less reliable. The increase in response variability with 

lower contrast sensitivity has been speculated to be connected to an 

activation of fewer ganglion cells leading to a worse signal-to-noise ratio 

(Vislisel et al., 2011, Wall et al., 2013, Wall et al., 1997, Gardiner et al., 

2013, Redmond et al., 2010). Since ganglion cell density and contrast 

sensitivity decrease with visual field eccentricity this suggests that 

response variability increases with eccentricity. Contrast sensitivities 

estimated at peripheral locations have been found to have higher 

response variability (Weber and Rau, 1992).  

In this chapter I explored how response variability changes with contrast 

sensitivity in the peripheral compared to the central visual field. I 

furthermore examined whether this relation differs between patients 

with glaucoma and participants with healthy vision. Henson et al. found 

a linear relationship between contrast sensitivity and logarithmically 

scaled response variability (Henson et al., 2000). This established 

relationship often served as a model for simulating response variability 

in static automated perimetry (Gardiner and Crabb, 2002a, Gardiner 

and Crabb, 2002b, Turpin et al., 2007, Turpin et al., 2003). Henson et 

al. found no difference in the relation between response variability and 

contrast sensitivity between normal vision, glaucoma (POAG), optic 

neuritis and ocular hypertension. This finding corroborated the theory 

that response variability increases with decreasing ganglion cell density 
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irrespective of its cause, be it visual disease or visual field eccentricity 

in the healthy visual field. However, Henson et al. only measured within 

the central 30˚ of the visual field. Thus it is unclear whether the 

relationship between contrast sensitivity and response variability 

remains the same further in the periphery. If the relationship between 

sensitivity and response variability is identical in centre and periphery, 

the peripheral points (with their lower sensitivity) may provide a model 

for damaged central locations in glaucoma. If the relationship between 

sensitivity and response variability is different in the peripheral than in 

the central visual field, it can indicate that a reduction in ganglion cell 

density caused by disease affects response variability in a different way 

from the normal physiological reduction of ganglion cell density in the 

peripheral visual field. 

 

7.1.3 Relation between static and kinetic measurements 

Both static and kinetic perimetry provide a mapping between contrast 

sensitivity and visual field locations. However, while in static perimetry a 

series of stimuli are presented for a short amount of time (200 ms each) 

at one location to estimate a detection threshold, in kinetic perimetry 

stimuli are moved across the visual field, generally from the periphery 

where they are “unseen” towards the centre until they are first detected. 

Thus the properties of the measurements are very different. Static 

perimetry provides a threshold estimate at a specific location. However, 

the estimated threshold can vary from one examination to another. 

Kinetic perimetry provides a location at which a certain stimulus 

intensity can be detected. However, the measured location can vary 

between examinations.  

Even if the location at which a kinetic stimulus is detected could be 

determined with absolute accuracy and precision, the sensitivity to a 

static stimulus might still be different. A dissociation between contrast 
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sensitivity to kinetic and static stimuli (stato-kinetic dissociation) has 

been described previously and was found to be present in normal 

vision, as well as with pre- and post lateral geniculate nucleus lesions 

(Schiller et al., 2004, Riddoch, 1917, Finkelstein and Johnson, 1989, 

Safran and Glaser, 1980, Hudson and Wild, 1992, Schiller et al., 2006, 

Casson et al., 1991). This dissociation is often referred to as the 

Riddoch phenomenon (Riddoch, 1917, Safran and Glaser, 1980) or 

statokinetic dissociation. Typically sensitivity appears to be greater to 

moving than to static stimuli. In contrast, this appears to be reversed in 

the macula, as sensitivity has been found to be higher to static stimuli at 

2˚ eccentricity (Fankhauser and Schmidt, 1960). The cause for this 

dissociation may be the activation of different visual pathways by 

moving and kinetic stimuli, the longer presentation time of the kinetic 

stimulus, the larger retinal area over which the kinetic stimulus is moved 

until it is detected (spatial summation), or the possibility that observers 

adopt different criteria in responding to static or kinetic stimuli. Given 

the dissociation between static and kinetic stimuli it is hard to directly 

compare visual field measures from static and kinetic procedures. 

Therefore, to compare results from kinetic and static examinations, one 

needs to know how to translate them into a common reference frame.   

Here, I investigate the difference between sensitivity to kinetic III1e 

stimuli and static size III stimuli. I also examine whether the difference 

between the measures changes depending on visual field eccentricity 

or test meridian.    

 

7.1.4 Study design 

 

In this study, I measured frequency-of-seeing to static Goldmann size III 

stimuli at kinetically estimated III1e isopter locations. This design allows 

a) to compare static and kinetic measurements and b) to estimate 
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sensitivity and response variability to static stimuli in peripheral 

locations that are unlikely to fall into areas of deep losses (near 0 dB) in 

patients with glaucoma.  

Additional locations for the frequency-of-seeing test were chosen at 

predefined locations in the central visual field to compare the relation 

between sensitivity and response variability in the central and peripheral 

visual field. Frequency-of-seeing was also measured with static 

Goldmann V stimuli at all locations to investigate the influence of the 

larger stimulus on contrast sensitivity and response variability in the 

central and peripheral visual field.  

The study was designed by VM Mönter and PH Artes.  All tests were 

designed to run on the Octopus 900 (Haag-Streit, Koeniz, Switzerland). 

The kinetic test was implemented in XML by VM Mönter. Frequency-of-

seeing tests were programmed in R (version 2.15.1, (R-Core-Team, 

2012)) by VM Mönter adjusting previous code by T Redmond using the 

Open Perimetry Interface (Turpin et al., 2012). 

Initially kinetic visual fields and frequency-of-seeing data to size III 

stimuli on isopter locations were collected from eight patients with 

glaucoma (median age: 60 years, MD: -7.2 dB) and eleven participants 

with normal vision (median age: 39 years) in Halifax, Nova Scotia. This 

first data set was compromised by an oversight concerning different 

settings of the Octopus 900 in the kinetic and static perimetry mode, 

which is described in more detail in the next section. The nominal 

maximum stimulus intensity of the Octopus 900 differs between kinetic 

and static perimetry. After using the instrument with kinetic settings, the 

maximum stimulus intensity is only reset to static conditions if a 

recalibration is performed prior to the frequency-of-seeing test. This was 

not noticed until after data collection of the first set of data and 

recalibrations might have occurred in some participants prior to 

frequency-of-seeing tests but not in others. Thus the maximal stimulus 

intensity might vary between different frequency-of-seeing sessions in 
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this data set. The first data set was excluded from the analysis in this 

thesis. However, the data was presented at ARVO 2013 in form of a 

poster, which can be viewed in Appendix 5. 

The set of data presented here was collected by Bachelor students 

Alexander Thal and Florian Fischl with Paul Artes in Halifax, Nova 

Scotia. Prior to each frequency-of-seeing test the Octopus 900 was 

recalibrated to ensure that the same maximum stimulus intensity was 

used in each session. 

 

7.1.5 Octopus 900: Static versus kinetic measurement 

mode 

The Octopus 900 is the official successor of the Goldmann perimeter. 

To allow comparability of semi-automated kinetic perimetry (see 

Chapter 3.4.1.1) to Goldmann perimetry (see Chapter 3.4.1), the 

maximal stimulus intensity is set to the same value as in the original 

Goldmann perimeter (318 cd/m2).  

In this study III1e stimuli were used for kinetic perimetry. The 

combination of the filters 1 and e attenuates the stimulus contrast by 1.5 

log units (see Chapter 2.1.4.2.2, page 45). To compare stimulus 

contrasts between the kinetic and static tests the equivalent contrast in 

dB in the static mode to 15 dB in the kinetic mode needs to be 

calculated. 

During the kinetic test the maximal stimulus intensity (0 dB) lies at 318 

cd/m2. Consequently, the 1e stimulus (15 dB) stimulus has a luminance 

of 10 cd/m2. The maximal stimulus intensity during the FOS tests is 

1273 cd/m2. Given this information one can calculate the respective dB 

contrast in the static perimetry mode (see Chapter 2.1.2, Equation 1, 

page 40): 
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Hence, the 15 dB stimulus in the kinetic test condition is equivalent to a 

21 dB stimulus in the FOS test condition. 

7.2 Methods 

7.2.1 Participants 

Twenty five patients with glaucoma (median age: 72 years, MD: -3.7 dB 

[range: 0.3 dB, -15.4 dB]) and fourteen participants with normal vision 

(age: 54 years) were tested.  

7.2.2 Data collection 

7.2.2.1 Frequency-of-seeing test: 

The frequency-of-seeing (FOS) test was performed on the Octopus 900 

and implemented in R using the Open Perimetry interface (OPI) (Turpin 

et al., 2012).  

Choice of test locations: 

Five test locations on the III1e isopter were chosen, one in each 

quadrant on the 30, 150, 240 and 300 meridian, and a fifth location in 

the nasal (left eyes) or the temporal visual field (right eyes) (see Figure 

30, page 132, locations A-E). The III1e isopter locations were 

determined as the median of three responses to kinetic III1e stimuli 

along each meridian, at a stimulus velocity of 5˚/sec (see Chapter 

5.2.2.1.1, page 87).  

Five locations were also chosen within the central 30 degrees. In 

healthy participants, the central test points were located as shown in 

Figure 30. In patients with glaucoma, the 5 central test locations were 

determined based on a recent 24-2 SITA Standard visual field test 
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(Humphrey, Carl Zeiss Meditec, CA, USA), to avoid visual field 

locations with deep losses (near 0 dB). 

Stimulus properties: 

Two test stimulus sizes were used, Goldmann III and V, which subtend 

0.43˚ and 1.73˚ of visual angle respectively (see Chapter 2.1.4.2.2, 

page 45). Stimuli were presented with a duration of 200 ms. Frequency-

of-seeing was tested in separate sessions for Goldmann size III and V 

stimuli with the method of constant stimuli (Urban, 1910).  

Each frequency-of-seeing test session was separated into two blocks. 

The first block was designed to optimize the distribution of the stimulus 

contrasts used in the second block. The first block took ~10 minutes 

and the second block ~20 minutes. In the second block a short break 

was given after 10 minutes.  

In the first block nine different stimulus contrasts were chosen and each 

contrast was presented 5 times.  

The results of block 1 were used to estimate an “expected contrast 

sensitivity” to determine the stimulus contrasts for block 2. The data of 

block 1 was fitted with a probit fitted cumulative normal function. For the 

second block a different set of 8 contrasts were chosen, with each 

contrast being presented 10 times. The stimulus contrasts were chosen 

to lie at the 2.5th, 22.5th, 30th, 50th, 65th, 77.5th, and 97.5th percentiles of 

the estimated normal distribution of responses measured in the first 

block. One additional contrast was chosen to be 15 dB brighter than the 

“expected contrast sensitivity” estimated in block 1 to ensure the 

presence of a stimulus with a detection rate close to 100%. 
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7.2.3 Analyses 

All data analysis was performed in R (version 2.15.1, (R-Core-Team, 

2012)). The data from the second FOS block was fitted using a probit 

cumulative normal function and a logit model, where the asymptotes 

were chosen to be at 0.01 and 0.99, reflecting false positive and false 

negative rates of 1%.  

The mean – or 50% of seeing threshold – was used to estimate the 

contrast sensitivity and the standard deviation – or slope – of the 

function represents response variability. For better comparability to data 

from previous studies, contrast sensitivity and response variability were 

determined with the probit model for all further data analysis. However, 

it is worth noting that the fixed asymptotes at 0 and 1 disregard the 

possibility of false positives or negatives. Fatigue, low attention, eye 

blinks or spontaneous retinal activity can lead to unpredictable 

response behaviour. As a result a stimulus much brighter than the 

detection threshold does not necessarily result in a 100% detection rate 

and responses can occur to stimuli much dimmer than the detection 

threshold, which can prevent a 0% detection rate. Forcing asymptotes 

to 0 and 1 can lead to an overestimation of the response variability 

(overly shallow slope) when false positive or negative responses are 

present (Wichmann and Hill, 2001b, Wichmann and Hill, 2001a) (see 

Figure 30, location E, stim size V). 

 

7.3 Results 

The aim of this study was to investigate contrast sensitivity estimation 

with static stimuli in the peripheral visual field. Specifically, to examine 

the influence of stimulus size on contrast sensitivity and response 

variability (size V versus III), the relation between contrast sensitivity 

and response variability in the peripheral versus central visual field and 
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the difference between static and kinetic threshold estimates. 

Frequency-of-seeing curves to size III and V stimuli at isopter locations 

and in the central visual field were estimated for patients with glaucoma 

and participants with normal vision.  A typical example for the 

frequency-of-seeing curves of an individual glaucoma patient at 

different locations in the visual field is given in Figure 30.  

 

Figure 30: Psychometric functions fitted to frequency-of-seeing data of a glaucoma 
patient.  
Test locations are indicated by letters with capital letters A-E representing the 
locations on the III1e isopter and small letter f-j representing central locations. 
Response frequencies to size III and V stimuli are depicted as filled and normal circles 
respectively. Psychometric functions belonging to the size III stimulus data are 
depicted as solid lines and as dashed lines for the size V stimulus data. Both 
psychometric functions fitted with a probit model and a logit model with fixed 
asymptotes at 0.01 and 0.99 are represented. The model with the better quality of fit 
is depicted as the thicker line.  
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Frequency-of-seeing curves to both size III and size V stimuli are 

depicted for each test location. The position of the test locations within 

the visual field is also illustrated in Figure 30. Steep slopes indicate low 

response variability. The frequency-of-seeing curves to size III stimuli at 

the peripheral locations A and E illustrate examples with higher 

response variability. At location E the 100% detection rate was not 

reached within the range of presented contrasts (Figure 30). 

In patients with glaucoma the III1e isopter locations can fall within the 

central visual field. This occurred in 11 out of 25 patients with 

glaucoma. A total of twenty out of the 250 isopter locations were located 

within the central 30˚. The data were grouped into central (≤30˚) and 

peripheral (>30˚) data according to visual field eccentricity of each test 

location. All data points with estimated thresholds <0 dB were excluded.  

Table 7: Mean contrast sensitivity (50% of seeing threshold) and response 
variability (slope) for patients with glaucoma and participants with normal 
vision to size III and size V stimuli. Values are given for central (≤ 30˚) and 
peripheral test locations (> 30˚). Standard deviations are given in brackets.  

 Glaucoma (N=25) Normal (N=14) 

  

Centre  

(≤ 30˚) 

 

Peri. 

(> 30˚) 

  

Centre 

(≤ 30˚) 

 

Peri. 

(> 30˚) 

 Total Nr of locations 137 99 69 68 

 
Eccentricity 

16.15˚  

(6.92) 

42.98˚  

(8.34) 

10.95˚ 

(3.89) 

57.20˚ 

(10.65) 

III 

50% of seeing threshold 
16.79 dB 

(6.79) 

14.08 dB 

(5.43) 

28.09 dB 

(3.54) 

17.32 dB 

(3.67) 

Slope 
5.94 dB 

(3.77) 

5.61 dB 

(3.70) 

1.65 dB 

(1.40) 

4.06 dB 

(3.19) 

V 

50% of seeing threshold 
24.69 dB 

(5.95) 

24.32 dB 

(3.48) 

33.80 dB 

(1.78) 

27.24 dB 

(2.75) 

Slope 
3.43 dB 

(3.20) 

3.25 dB 

(2.19) 

1.44 dB 

(1.26) 

2.91 dB 

(2.35) 

 



134 
 

The number of locations used in each group and the mean eccentricity 

of all locations per group are given in Table 7. On average, contrast 

sensitivity was found to be higher in the central than the peripheral 

visual field (Table 7) in participants with normal vision. Average 

response variability was lower in the central than in the peripheral visual 

field in participants with normal vision (Table 7). These differences 

between the central and peripheral visual field measures were not 

apparent in patients with glaucoma (Table 7). 

7.3.1 Frequency-of-seeing to Goldmann III versus 

Goldmann V stimuli 

7.3.1.1 Contrast sensitivity with Goldmann sizes III and V 

There was a significant difference between contrast sensitivities to size 

III and V stimuli (p < 0.001, paired Wilcoxon signed-rank test). Contrast 

sensitivity to Goldmann V stimuli was higher by on average 9.5 dB 

(IQR: [5.9 dB, 11.1 dB]) (Figure 31). This result coincides with previous 

findings (Fellman et al., 1988, Goldmann, 1945, Sloan, 1961). The 

slope of the linear model between contrast sensitivity to size III and V 

stimuli was positive but smaller than 1 (0.46), which indicates that the 

difference between contrast sensitivities to size III and V stimuli 

becomes smaller at higher contrast sensitivities (Figure 31). For 

patients with glaucoma the average difference in contrast sensitivity to 

size III and V stimuli was 10.3 dB (SD: 7.4 dB) and in participants with 

normal vision 7.7 dB (SD: 3.6 dB) (Figure 32). 

In participants with normal vision contrast sensitivity to both size III and 

V stimuli was on average higher than in participants with glaucoma 

throughout the visual field. For size III stimuli this difference between 

normal participants and glaucoma patients was ~11 dB in central 

locations and ~3 dB in peripheral locations (p < 0.001 and p < 0.001, 

Wilcoxon signed-rank). For size V stimuli the difference was ~9 dB and 

~3 dB respectively (p < 0.001 and p < 0.001, Wilcoxon signed-rank).  
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Figure 31: Contrast sensitivity for stimulus sizes III and V. 
Scatterplot of the estimated contrast sensitivity to size III (x-axis) versus size V stimuli 
(y-axis). Contrast sensitivity is higher to size V than to size III stimuli. The slope of the 
linear model is positive but smaller than 1 (0.46), which indicates that the difference 
between contrasts sensitivities to size III and V stimuli becomes smaller at higher 
contrast sensitivities. The relationship between contrast sensitivity to size III and V 
stimuli as predicted by Goldmann is indicated in grey. 

 

The difference in contrast sensitivity to size III and V stimuli (ΔCSV,III) 

correlated with visual field eccentricity in glaucoma patients 

(Spearman’s rho = 0.27, p<0.001) and normal participants (Spearman’s 

rho = 0.76, p<0.001) (Figure 32). The relationship between ΔCSV,III and 

visual field eccentricity was significantly stronger in participants with 

normal vision than in patients with glaucoma (Steiger’s z: -5.55, 

p<0.001). Furthermore the slope of the linear model between contrast 

sensitivity and eccentricity was steeper in the normal vision group than 

in the glaucoma group (Figure 32). That means the gain in contrast 

sensitivity caused by the larger stimulus area (size V) is stronger in the 

peripheral than the central visual field of participants with normal vision. 

In patients with glaucoma a similar gain is reached throughout the 
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visual field. The low r-squared (0.006) of the linear model in the 

glaucoma group further indicates that little variance was explained by 

eccentricity in the glaucoma group.  

There was a significant difference in ΔCSV,III between patients with 

glaucoma and participants with normal vision at central locations (≤30˚) 

(Two-sample Wilcoxon signed-rank, p < 0.001), but not at peripheral 

locations (>30˚) (p=0.42). This indicates that the gain in contrast 

sensitivity caused by a size V stimulus differs between the glaucoma 

and normal group in the central visual field, but not in the peripheral 

visual field.  

Table 8: Parameters of the linear models fitted to visual field eccentricity and 
the difference in contrast sensitivity to size III and size V stimuli (ΔCSV,III ) in 
patients with glaucoma and participants with normal vision. 

Group N Slope: a (SE) Intercept: b (SE) R2 (p-value) 

Glaucoma 236 0.04 (± 0.03) 9.33 (± 0.98) 0.006 (p=0.23) 

Normal 137 0.1 (± 0.01) 4.42 (± 0.4) 0.44 (p<0.001) 

  

Figure 32: Dependence of the change in contrast sensitivity for size III and V stimuli on 
visual field eccentricity.  
The difference in contrast sensitivity to size V and III stimuli ( ΔCSV,III ) (y-axis) is 
depicted against eccentricity of the test location in the visual field (x-axis). Data of 
participants with normal vision is on the left and data of glaucoma patients on the 
right. Red lines indicate the linear model fit.  ΔCSV,III  appeared to increase with 
eccentricity in both healthy participants and glaucoma patients. Parameters of the 
linear models are given in Table 8. 
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7.3.1.2 Response variability with Goldmann sizes III and V 

On average response variability was reduced by 0.7 dB in participants 

with healthy vision (p<0.001, paired Wilcoxon signed-rank) and by 3.3 

dB in patients with glaucoma (p<0.001, paired Wilcoxon signed-rank) 

when measuring with a Goldmann V instead of a Goldmann III target. 

The reduction in response variability caused by the Goldmann V 

stimulus was significantly larger in patients with glaucoma than in 

participants with normal vision (p<0.001, Wilcoxon signed-rank test). 

Correlations between the difference in response variability to Goldmann 

III and V stimuli (ΔSDIII,V) and visual field eccentricity were small and 

non-significant in both participants with healthy vision (Spearman’s rho 

= 0.16, p = 0.07) and patients with glaucoma (rho = 0.04 p = 0.49) 

(Figure 33).  

  

Figure 33: Dependence of the change in response variability for size III and V stimuli 
on visual field eccentricity.  
The difference in response variability to size V and III stimuli (ΔSDIII,V) (y-axis) is 
depicted against eccentricity of the test location in the visual field (x-axis). Data of 
participants with normal vision is on the left and data of glaucoma patients on the 
right. Red lines indicate the linear model fit. Parameters of the linear models are 
given in Table 9.  

 

In participants with normal vision the reduction in response variability 

caused by the size V stimulus appeared to be larger at peripheral 

(mean ΔSDIII,V = 1.4 dB) than at central locations (mean ΔSDIII,V = 0.04 
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dB) (Two-sample Wilcoxon signed-rank: p=0.02). This was not the case 

in patients with glaucoma (p=0.82). The mean ΔSDIII,V of glaucoma 

patients in the central and peripheral visual field was 3.4 dB and 3.2 dB 

respectively. 

Table 9: Parameters of the linear models fitted to visual field eccentricity and 
the difference in contrast sensitivity to size III and size V stimuli (ΔSDIII,V) in 
patients with glaucoma and participants with normal vision 

Group N Slope: a (SE) Intercept: b (SE) R2 (p-value) 

Glaucoma 236 -0.01 (± 0.02) 3.56 (± 0.76) -0.004 (p=0.71) 

Normal 137 0.02 (± 0.01) 0.04 (± 0.39) 0.03 (p=0.03) 

 

7.3.2 Relation between response variability and 

sensitivity in the central versus peripheral visual 

field 

Response variability (SD) was found to increase as contrast sensitivity 

decreases (Figure 34). The data collected with Goldmann size III stimuli 

was compared to previous findings by Henson et al. (Henson et al., 

2000) (Figure 34). Henson et al. measured frequency-of-seeing curves 

in participants with normal vision, glaucoma, ocular hypertension and 

optic neuritis. They found a similar relationship between response 

variability and contrast sensitivity independent of the visual disorder 

(Figure 34).  

Both our and Henson et al.’s data were fitted with a linear model 

loge(SD) = a*sensitivity + b. The slope of the models for this data set 

and Henson et al.’s data appeared similar (Figure 34) (Table 10). 

The linear model described Henson et al.’s data better than the current 

data. Residual standard errors were 0.37 and 0.63, respectively. While 

the relation between log(SD) and sensitivity appears linear in Henson’s 

data, our data appeared to asymptote at low sensitivity (Figure 34).  



139 
 

Henson et al, 2000:

Current data 

(size III):

 

 

Figure 34: Relationship between response variability and contrast sensitivity for size 
III stimuli.  
Upper graph: Response variability (y-axis) is plotted against contrast sensitivity to 
size III stimuli (x-axis). Data by Henson et al. are depicted in black, the current data 
set is depicted in red and blue. All test locations in Henson et al.’s study are positioned 
in the central 30˚. Our test locations range from 1-70˚. The black line indicates the 
model fitted to the Henson data, the purple line the model fitted to the current 
dataset, dashed lines in red and blue depict the linear fit to peripheral and central 
data respectively. The model parameters can be found in Table 10.  Lower graphs: 
The lower graphs depict data for glaucoma patients (left) and participants with 
normal vision (right) separately. Central and peripheral data are fitted separately.  

 

Notably, Henson et al. only measured in the central visual field (≤30˚). 

The contrast sensitivities in their population were on average higher 



140 
 

than in our population and were all higher than 10 dB. Thus the trend to 

asymptote at lower sensitivities might not be detectable in Henson’s 

data. Our data had a lower intercept, which hints at consistently lower 

response variability at any sensitivity compared to Henson et al.’s data. 

By tendency, peripheral locations appeared to have a slightly lower 

response variability than central locations with respect to contrast 

sensitivity, this is especially prominent in participants with normal vision 

(see Figure 34, red data points).  

Table 10: Parameters of the linear models between contrast sensitivity and 
response variability to size III stimuli in Henson et al.’s data and patients with 
glaucoma and participants with normal vision 

Group N Slope: a (SE) Intercept: b (SE) R2 (p-value) 

Henson et 

al. 
71 -0.08 (± 0.004) 3.27 (± 0.13) 0.57 (p<0.001) 

Combined  373 -0.08 (± 0.005) 2.70 (± 0.09) 0.46 (p<0.001) 

Central 

(≤30˚) 
206 -0.09 (± 0.12) 2.93 (± 0.006) 0.55 (p<0.001) 

Peripheral 

(>30˚) 
167 -0.07 (± 0.15) 2.57 (±0.009) 0.29 (p<0.001) 

Normal 137 -0.09 (± 0.007) 2.67 (± 0.17) 0.51 (p<0.001) 

Glaucoma 236 -0.06 (± 0.007) 2.528 (± 0.12) 0.28 (p<0.001) 

Normal  

(≤30˚) 
69 -0.11 (± 0.02) 3.31 (± 0.64) 0.25 (p<0.001) 

Normal 

(>30˚) 
68 -0.13 (± 0.02) 3.32 (± 0.36) 0.37 (p<0.001) 

Glaucoma 

(≤30˚) 
137 -0.07 (± 0.01) 2.72 (± 0.16) 0.32 (p<0.001) 

Glaucoma 

(>30˚) 
99 -0.06 (± 0.01) 2.33 (± 0.16) 0.21 (p<0.001) 

 

The frequency-of-seeing data set to Goldmann size V stimuli showed a 

similar overall relationship between contrast sensitivity and response 



141 
 

variability as found in the data set to Goldmann size III stimuli (Figure 

35). 

Current data 

(size V):

 

Figure 35: Relationship between response variability and contrast sensitivity for size V 
stimuli.  
Response variability (y-axis) is plotted against contrast sensitivity to size V stimuli (x-
axis). Data points from test locations within the central 30˚ are depicted in blue and 
those beyond 30˚ in red. Patients with glaucoma are represented with the star symbol 
and participants with normal vision with the letter o. The purple line indicates the 
linear model for all groups combined. The slope of the linear model was -0.09 with an 
intercept of 3.03. 

 

7.3.3 Relation between static and kinetic measurements 

As described in the introduction, maximal stimulus intensities differ in 

the kinetic and static test mode of the Octopus 900. The contrast of the 

III1e stimulus in the kinetic mode corresponds to 21 dB in the static 

mode, thus we will here refer to the kinetic stimulus as a 21 dB 

stimulus. The difference between 21 dB and the contrast sensitivity to 

Goldmann III static stimuli was called the statokinetic dissociation index 

(SKD index). There was no significant correlation between the SKD 

index and visual field eccentricity in participants with normal vision 
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(Spearman’s rho = -0.14, p = 0.24) and patients with glaucoma (rho = -

0.07, p = 0.46) (Figure 36). 

 

Figure 36: Statokinetic dissociation versus visual field eccentricity.  
Relationship between visual field eccentricity and the SKD index, which indicates the 
difference between kinetic and static contrast sensitivity at each location. There was 
no significant correlation between the SKD index and eccentricity. Interestingly, the 
three points measured within the central 5 degree (macula) had SKD indices close to 0 
dB., this is in line with findings in previous literature (Fankhauser and Schmidt, 1960).  

 

On average, contrast sensitivity to size III static stimuli was lower than 

21 dB [median (m): 16.6 dB, 90% interval: 6.2 dB, 20.9 dB]. Our data 

showed no apparent differences in the median contrast sensitivity 

depending on the test meridian (Figure 37). Differences between 

healthy observers and glaucoma patients were small (Figure 37) with 

glaucoma patients being slightly less sensitive to the static stimulus.  
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Figure 37: Estimated contrast sensitivity (probit model) on isopter locations to size III 
stimuli compared to the kinetic stimulus contrast (21 dB). 
On the left hand side the five isopter locations are represented separately. On the 
right hand side glaucoma patients and participants with healthy vision are depicted 
separately. The small circles represent single contrast sensitivities of each subject at 
each location. Box plots give the inter quartile range with whiskers representing the 
90% range.  

 

7.4 Discussion 

7.4.1 Influence of stimulus sizes (III and V) on contrast 

sensitivity and response variability 

In this chapter the following questions regarding stimulus size were 

posed: How does the choice of a stimulus V instead of III affect contrast 

sensitivity and response variability? Is this affected by the eccentricity in 

the visual field? On average, there was an increase of contrast 

sensitivity by 10 dB when using size V stimuli and a reduction in 

response variability by 2 dB. The difference in contrast sensitivity to size 

III and V stimuli increased with visual field eccentricity. These findings 

were in agreement with previous studies (Wilson, 1970, Dannheim and 

Drance, 1971, Wald, 1938, Redmond et al., 2010) and match the 

predictions of a theory that connects the change in contrast sensitivity 

caused by a change in stimulus size to ganglion cell density (Wilson, 

1970, Swanson et al., 2004, Fischer, 1973, Anderson, 2006): Density of 
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retinal ganglion cells decreases with visual field eccentricity. A larger 

area has to be covered to stimulate an equivalent number of ganglion 

cells in the peripheral visual field compared to the central field. Up to a 

certain number of responding retinal ganglion cells, and respectively up 

to a certain increase in stimulus area a constant gain in contrast 

sensitivity occurs. After that number and respective area is reached the 

gain in contrast sensitivity becomes lower. Thus, in a location with low 

ganglion cell density an increase in stimulus area can have a stronger 

effect than in a location with high ganglion cell density. In glaucoma, 

ganglion cell density is reduced. Consequently, a larger gain in contrast 

sensitivity related to an increase in stimulus area is expected 

throughout the visual field in glaucoma.     

In line with this theory, the results showed a gain in contrast sensitivity 

and a reduction in response variability in peripheral locations in 

participants with normal vision and throughout the visual field in patients 

with glaucoma. This gain in contrast sensitivity and reduction in 

response variability was considerably smaller in the central visual field 

of participants with normal vision.   

The difference in contrast sensitivity to the two stimulus sizes was found 

to increase with visual field eccentricity in participants with normal 

vision. Thus the same reduction in stimulus area required a stronger 

increase in stimulus contrast in the peripheral visual field than in the 

central visual field to still be detected. This corroborates previous 

findings that Ricco’s area increases with eccentricity (Wilson, 1970, 

Redmond et al., 2010, Swanson et al., 2004, Fischer, 1973). In the 

central visual field Ricco’s area is already covered with a size III 

stimulus. There, an increase in size results in incomplete spatial 

summation, which leads to a lower gain of contrast sensitivity. The 

further a location is in the eccentricity, the wider is the range during 

which complete spatial summation occurs and the higher is the potential 

gain in contrast sensitivity.    
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The overall increase in contrast sensitivity to size V stimuli in patients 

with glaucoma indicates that the dynamic range could be increased by 

the use of a size V stimulus in perimetric tests for patients with 

glaucoma. Wall et al. showed that the dynamic range increases by 

about 1 log unit when using size V instead of size III stimuli in standard 

automated perimetry (Wall et al., 2010, Wall et al., 2008). However, the 

use of size V stimuli in the central visual field might not be a good 

choice in tests that focus on the detection of glaucoma. In general it 

might not be advisable to use a stimulus size that is larger than Ricco’s 

area at any given location of the healthy visual field, when it comes to 

detection of glaucoma. In a healthy location the larger stimulus area 

would not lead to a strong gain in contrast sensitivity. However, in an 

abnormal location, where ganglion cell density is decreased and thus 

Ricco’s area is increased a large gain in contrast sensitivity would 

occur. Thus in central visual field tests with size V stimuli, it would be 

more difficult to distinguish abnormal from normal contrast sensitivities.  

Since the gain in contrast sensitivity to size V compared to size III 

stimuli is large in peripheral locations of the normal visual field, this 

problem would not arise to the same extent in the periphery and size V 

stimuli might be suitable in the peripheral visual field.  

While a test with stimulus size V in the central visual field might not be 

helpful for diagnosis, it could, however, be useful for monitoring of the 

disease. The increase in contrast sensitivity caused by the larger size V 

stimulus could increase the dynamic range and the lower response 

variability could yield more reliable contrast sensitivity estimates. 

Therefore it could be beneficial to have different tests for first detection 

and for monitoring in later stages of disease. For detection either stimuli 

that are consistently smaller than the respective Ricco’s area in the 

normal visual field or stimuli that match Ricco’s area at each location 

could be useful for detection. This would prevent that the gain in 

contrast sensitivity, caused by additional complete summation at low 
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RGC locations, masks visual field deficits in glaucoma. For monitoring 

of the progression of glaucoma at a later stage larger stimulus sizes 

that increase the dynamic range and reduce response variability could 

be useful (Wall et al., 2008, Wall et al., 2013, Wall et al., 1997). 

 

7.4.2 Response variability to static stimuli in the central 

versus peripheral visual field 

The results showed that response variability increases with decreasing 

contrast sensitivity. This relationship appeared similar to the relationship 

predicted by Henson et al. (Henson et al., 2000). Other studies also 

found a similar increase of response and measurement variability with 

decreasing contrast sensitivity (Weber and Rau, 1992, Chauhan et al., 

1993, Olsson et al., 1993, Russell et al., 2012a, Artes et al., 2002). 

While the slope of the relationship between contrast sensitivity and 

response variability was almost identical in our data as in Henson et 

al.’s, we found a consistent shift which suggested that response 

variability with respect to contrast sensitivity was generally lower than 

found by Henson et al. This shift could be due to due to differences in 

the settings of the perimeters used in the two studies. Henson et al.’s 

data were collected on a Henson 4000 perimeter. The Henson 4000 

perimeter has a different maximal stimulus intensity (1000 cd/m2) than 

the Octopus 900 (1237 cd/m2). A constant of 1 dB has to be added to 

achieve the same stimulus luminance on the Henson 4000 perimeter as 

on the Octopus 900. Therefore, the difference in maximal stimulus 

intensity cannot explain the shift between these data and Henson et 

al.’s data. Correcting for the maximal stimulus intensity would actually 

further increase the effect. The Henson 4000 perimeter also uses a 

lower background luminance (3.14 cd/m2) (Henson, 2007) than the 

Octopus 900 (10 cd/m2). Fellman et al. found that a decrease in 

background illumination from 10 cd/m2 to 1 cd/m2 led to an increase in 
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detection threshold by about 5 dB (Fellman et al., 1988). Thus the lower 

background luminance, which leads to higher contrasts, in Henson et 

al.’s study might contribute to the difference found between Henson et 

al.’s and our data. 

The linear fit between contrast sensitivity and the logarithmically scaled 

response variability was less suitable in this data set than in Henson et 

al.’s data. The response variability appears to asymptote at higher 

contrast sensitivities. This effect is not apparent in Henson et al.’s data. 

However, as they measured only within the central 30˚, contrast 

sensitivities were generally higher. This tendency might also have 

occurred at higher contrast sensitivities in their data.  

By tendency, response variability at peripheral locations appeared to be 

lower with respect to contrast sensitivity than at central locations. This 

was especially the case in participants with normal vision. This 

suggests that the relationship between contrast sensitivity and response 

variability depends on visual field eccentricity. Thus, measurements of 

contrast sensitivity in the peripheral field may be possible with greater 

precision than one would suggest from Henson et al.’s model.  

 

7.4.3 Relation between static and kinetic measurements 

We found a higher sensitivity to kinetic stimuli than to static stimuli. On 

average there was a difference of 4.4 dB. However, overall, the 

difference between the kinetic and static measures was highly variable. 

Thus while on average we can relate between the two measures by 

adding a constant, it has to be noted that the prediction of the shift is 

imprecise. A factor that might add to the variability in the difference 

between kinetic and static thresholds is the response criterion used. 

The level of uncertainty for detecting a stimulus may vary, leading to 

changes in the measure threshold. In contrast to forced choice tasks, 
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both the kinetic and static perimetric “yes or no” tasks do not allow 

control of the response criterion (Treutwein, 1995, Harvey, 1986). 

Moreover, the different nature of the static and kinetic tasks might 

influence the response criteria of participants. In the kinetic task a 

stimulus is moved from “non-seeing” to “seeing” areas, thus the 

probability of detection increases over time. In terms of the participant’s 

perception, this could be regarded as similar to the ascending method 

of limits in which the stimulus intensity is gradually raised, thus 

increasing the probability of detection over time. Here, a participant 

might be more inclined not to respond until he or she is more certain, 

resulting in a conservative response criterion. The static test in this 

study was performed with the method of constant stimuli. That means 

static stimuli of different intensities are presented in a random order and 

the probability of detection does not change over time. As the response 

criterion may vary between individuals, between tasks, and even within 

individuals within the same task, it might very well contribute to the 

variability of the differences between static and kinetic thresholds found 

in the current data. 

Only one kinetic stimulus was used in this study, the III1e stimulus, the 

dissociation of on average 4.4 dB might be different for other stimulus 

sizes and contrasts. However, Hudson and Wild found similar 

dissociations of between 4 and 5 dB for a wide range of Goldmann 

stimuli (size I with filters 4d, 3b, 2e, 2c, 2a, 1e and 1d; and size III with 

filters: 4e, 4c, 3e, 3d, 3c and 3b) (Hudson and Wild, 1992). 

There was no significant correlation between the difference in static and 

kinetic sensitivity and visual field eccentricity. Interestingly, the three 

points measured within the central 5 degrees (macula) had differences 

between kinetic and static sensitivity close to 0 dB, this is in line with 

findings in previous literature (Fankhauser and Schmidt, 1960, Hudson 

and Wild, 1992). The difference between kinetic and static sensitivity 

also did not seem to depend on the meridians located in different 
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quadrants of the visual field. This agrees with previous findings by 

Hudson and Wild who also found statokinetic dissociation to be largely 

independent of eccentricity and meridian (Hudson and Wild, 1992). 

The properties of kinetic and static measures differ. In one technique 

the location of detection is estimated and in the other threshold 

sensitivity is estimated at specific locations. However, on average there 

appears to be a similar difference between kinetic and static 

sensitivities independent of meridian and eccentricity. My findings and 

findings by Hudson and Wild indicated that the same constant can be 

added to relate between static and kinetic thresholds for Goldmann 

stimulus sizes I and III (Hudson and Wild, 1992). It is still unclear 

whether this also applies to larger stimulus sizes (e.g. Goldmann 

stimulus V). Moreover, it is still unknown what causes the high 

variability of the differences between static and kinetic thresholds.  

In the previous chapters I explored the feasibility of automated kinetic 

perimetry in the peripheral visual field. The results suggest that, in 

automated kinetic perimetry, repeated presentations are necessary to 

gain sufficient precision of the location estimates, thus the automated 

measurement of several isopters to examine the entire visual field, as 

e.g. done in Goldmann perimetry might be too time consuming. Static 

automated perimetry has been shown to be an efficient method in the 

central visual field. However, the large number of locations required to 

cover the entire visual field would lead to long test durations. A 

promising technique to examine the entire visual field could be a 

combination of static and kinetic perimetry, wherein the isopter 

establishes a “region of interest” within which a pattern of locations is 

tested with static perimetry. Since kinetic and static measures appear to 

be relatable to some extent, both static and kinetic visual fields could be 

compared and combined into a common test.   
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8. Using eye tracking to assess 

reading performance in patients 

with glaucoma: A within-person 

study 

8.1 Introduction 

The conventional view of vision loss in glaucoma suggests disruption of 

peripheral vision and minimal impact on tasks that require good central 

vision, like reading. However, as previously described in Chapter 4, 

patients with glaucoma regularly self-report difficulties with reading 

(Crabb et al., 2013, Nelson et al., 1999, Aspinall et al., 2008, 

Viswanathan et al., 1999, Freeman et al., 2008). Furthermore, evidence 

is emerging from experimental studies showing that patients with 

glaucoma have impaired reading performance when compared to their 

visually healthy peers. Theses impairments are particularly evident for 

patients with advanced or bilateral visual field loss (Fujita et al., 2006, 

Ramulu, 2009, Ishii et al., 2013); when reading small size text 

(Altangerel et al., 2006); when reading text at low contrast (Burton et al., 

2012); or when reading for sustained periods of time (Ramulu et al., 

2013). However, not all patients displayed reduced reading speeds in 

these studies, with some patients appearing to be much more affected 

than others. A limiting feature of the studies that have generated these 

results is that reading speed, as an experimental outcome measure, is 

subject to much between-person variability: it is very difficult to isolate 

the impact of the glaucoma visual field loss from all the other factors, 

such as age, visual acuity, and cognitive and reading ability, that might 

contribute to slower reading. Furthermore, differences in eye movement 

patterns may also influence reading speed. Eye movements 
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supplement information about how long a person takes to read, by 

giving insight into how they are reading. Previous research has 

considered eye movements in patients with glaucoma compared to 

visually healthy controls when carrying out a number of other visual 

tasks, such as visual search (Smith et al., 2012b), face recognition 

(Glen et al., 2013), viewing of photographs (Smith et al., 2012a), and 

watching of driving videos (Crabb et al., 2010). In these studies, 

patients sometimes displayed different eye movement patterns on 

average to controls, although it was suggested that some patients may 

“adapt” their eye movements in ways that enable them to function better 

in the task (Glen et al., 2013, Smith et al., 2012b). However, the case-

control design that featured in all these studies again made it difficult to 

discern the nature of the contribution of visual field loss to changes in 

eye movement behaviour. 

As yet no studies have considered performing a within-person, or 

between-eye, reading study to examine the impact of glaucoma visual 

field loss on reading performance: the idea here would be that a more 

damaged eye could be compared with a less affected fellow eye. An 

experimental design such as this might proffer advantages over studies 

comparing patients to controls, where large numbers of people are 

needed to demonstrate effects. In addition, experimental studies of 

reading speed in glaucoma have been constrained to those where 

reading “out loud” or timed silent reading is simply the main, or only, 

outcome measure. One recent study incorporated eye tracking when 

investigating reading performance in glaucoma (Cerulli et al., 2014): the 

findings of that case-control study, which measured the maximum and 

minimum sizes of eye movements made during a reading task by 

patients compared to controls, hinted that glaucoma may lead to some 

alterations in fixation behaviour. However, to date, no studies have 

used an eye tracker to measure more task-specific saccades (i.e., rapid 

eye movements occurring between locations on the text) to tease out 
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the effects that might result from glaucomatous visual field loss whilst 

reading short passages of text. 

In this chapter, I explore the usefulness of comparing monocular 

reading performance in patients with asymmetric glaucomatous visual 

field loss. The study measures reading performance using eye-tracking 

whilst participants silently read very short passages of text. My main 

hypothesis is that patients will take longer to read short passages of text 

in what is considered to be their worse eye (most visual field damage) 

when compared to their better eye (least visual field damage); I aimed 

to do this in just a small sample of patients in order to demonstrate the 

effectiveness of the experimental design. I also, as a secondary aim, 

tested the idea of determining different types of reading-specific 

saccadic eye movements, in an automated fashion, specifically eye 

movements that occur in a forward direction (forward saccades), 

saccades that “backtrack” over previously read text (regressions), those 

that occur between the end of one line and the beginning of the next 

(line change saccades), and eye movements that do not fit expected 

patterns (unknown saccades). Next I investigated if any of these 

measurements from this automated approach are associated with the 

size of between-eye deficits in standard measures of visual function. In 

the context of this thesis, this study illuminates the difficulty of 

assessing patient performance in everyday tasks. 

The results of this study have been previously published in the Journal 

of Ophthalmology (Smith et al., 2014). ND Smith, VM Mönter and DP 

Crabb designed the study. Patients were recruited by VM Mönter. All 

testing was done by VM Mönter. The model for classification of eye 

movement types was written by ND Smith, who also pre-processed the 

eye movement data. The data analysis was chiefly done by ND Smith. 

The final paper was written jointly by all the authors. 
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8.2 Methods 

8.2.1 Participants 

Participants were recruited from a database of patients that had taken 

part in previous studies conducted at City University London (Smith et 

al., 2012b, Glen et al., 2012). All patients had a clinical diagnosis of 

primary open angle glaucoma and had no other ocular diseases.  

Patients were contacted if they had previously presented with 

asymmetric visual field loss between eyes as measured using a central 

24-2 SITA Standard Test on the Humphrey Visual Field Analyzer (HFA, 

Carl Zeiss Meditec, CA, USA). This was quantified by considering the 

HFA mean deviation (MD); this summary measure expresses the 

average reduction in the visual field relative to a group of visually 

healthy age-matched observers (Artes et al., 2011). Participants were 

only invited into the study if the MD differed by more than 6dB between 

eyes. This value represents a clinically significant difference as used in 

staging schemes for visual field severity (Hodapp et al., 1993).  

The study was approved by the Ethics Committee for the School of 

Health Science, City University London. All participants gave their 

informed consent and the study conformed to the Declaration of 

Helsinki. 

8.2.2 Standard vision testing 

Fourteen patients were recruited and all testing was carried out on one 

day.  Visual acuity (VA) as measured with the Early Treatment Diabetic 

Retinopathy (ETDRS) chart and contrast sensitivity as measured with 

the Pelli-Robson chart (PR Log CS) were assessed monocularly. 

Astigmatic error was less than ±2.5 dioptres in all those recruited.  

Visual field tests (central 24-2 and 10-2 SITA Standard) were conducted 

in each eye using a HFA. On testing (central 24-2), two of the 14 

patients had a between eye MD difference of less than 6 dB (4.7 and 
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4.8 dB). From this point the patient’s eye with the worse visual field 

damage (worse MD) is referred to as the “worse eye” and the fellow eye 

as the “better eye”.  

8.2.3 Experimental setup and eye-tracking 

The reading experiment was performed on a 56 cm CRT computer 

monitor displaying at a resolution of 1600 by 1200 pixels and a refresh 

rate of 100 Hz (Iiyama Vision Master PRO 514, Iiyama Corporation, 

Tokyo, Japan). Participants were seated (with a head rest) in front of 

the computer screen. Each participant was fitted with a set of trial 

frames with the appropriate refractive correction. One eye was 

randomly selected then occluded by inserting a blackout lens into the 

trial frames. Participants were then presented with 50 different texts 

(trials) on the screen, one at a time, and were asked to silently read 

them, “as quickly and accurately as possible”. Once the participant had 

read the 50 texts, they had a short break before repeating the task 

using their alternate eye with 50 novel texts. Participants read the same 

100 texts but in a randomised order. Each text consisted of one 

sentence, distributed over two lines, using the “Courier New” font at size 

38 in which each letter subtended a maximum height of 0.75° visual 

angle and a constant width of 0.6°. The standardised passages of text 

had an average Flesch-Kincaid readability score of 4.6 and were the 

same as those used by Kabanarou and Rubin (Kabanarou and Rubin, 

2006). The background brightness was 33.4 cd/m2 and the text was 

displayed at 0.04 cd/m2. Each paragraph subtended 21° width and 3° in 

height.  

Eye movements were recorded simultaneously during the reading task 

using an EyeLink 1000 (SR Research Ltd., Mississauga, Ontario, 

Canada) which was set to record the participant’s eye location at 1000 

Hz. It is claimed that the EyeLink 1000 measures at an average 

accuracy of better than 0.5°. The saccade detection thresholds were 
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defined by a velocity greater than 30°/s and acceleration above 

8000°/s2. Before the study commenced, a calibration was performed 

and had to be classified as of a “good” standard as set by the 

instrument. Furthermore, between each trial (each displayed sentence) 

a drift check was performed and, if a substantial drift had occurred, a 

recalibration would be carried out. 

8.2.4 Analysis of Eye-Tracking data 

To prepare the eye movement data for analysis, a novel preprocessing 

technique was developed. These methods adjusted for calibration 

errors in the eye tracking and ensured that only those saccades 

relevant to the reading task were included. Secondly, a novel method 

was designed that automatically classifies reading-specific eye 

movements according to their saccade type, that is, whether they 

occurred from left to right (forward saccade), right to left (regression), or 

between lines (line change) or did not conform to expected reading 

patterns (unknown saccade). These methods might also be useful 

techniques in future studies using eye tracking to measure reading 

performance. The techniques described below do not require 

information about the specific content of the underlying text, such as 

details of the words and characters, but only the locations of the start 

and end of the text. 

8.2.4.1 Preprocessing 

Data from the eye-tracker was used to determine reading duration for 

each trial in addition to identifying the key eye movement patterns made 

whilst reading the texts. The eye tracker was running before the display 

of each text in order to ensure that all eye movements were recorded, 

meaning it was highly likely that some additional eye movements were 

made prior to beginning to read each sentence that were irrelevant to 

the task. Furthermore, the drift correction carried out before each trial 

meant that the participant always began the trial by fixating in the 
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middle of the screen, therefore introducing bias into subsequent eye 

movement recordings. It was therefore necessary to pinpoint the exact 

points at which the person actually began reading the sentence and the 

point at which they finished reading. Use of an automatic real-time start 

and end point has the potential to misidentify when the person started 

or finished reading, as this technique uses fixed points on the screen 

and therefore assumes perfect calibration of the eye-tracker. To 

address this issue, a novel ‘”preprocessing” method was therefore 

implemented. Some example preprocessed scanpaths are shown in 

Figure 38(a), showing additional saccades that occurred before and 

after the patient read the passage. 

The first stage of the preprocessing algorithm attempted to correct any 

rotational errors in the eye movement data. As the text was displayed 

centrally, small errors in edge calibration were not of huge concern for 

this particular task; however inspection of scanpaths revealed that data 

sometimes appeared to be rotated along the centre. To correct for this, 

it was assumed that all small saccades running ±20° along the 

horizontal (approximation of reading between words) should be 

corrected to correspond with the angle of the text (average angle of 

horizontal or 0°). Therefore, the circular median of all these ±20° angles 

of the saccades was calculated per trial, and all saccades were rotated 

(corrected) by this amount. Visual analysis of scanpaths also confirmed 

that, on being first presented with a text, participants sometimes made 

several involuntary eye movements at locations on the screen that were 

irrelevant to the task itself, before adjusting their gaze position so that 

they could start reading from the beginning of the sentence. In order 

that the analysis would only include those eye movements that were 

relevant to the task, an automated procedure was developed that 

determined which eye movements coincided with the text’s start and 

end location, thereby filtering out all other irrelevant eye movements. 

This process involved a series of steps to identify the start and end 

point locations signalling the start and end point of reading each text. 
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The standard preset SR Research EyeLink parser (edf2asc) results in 

sharp downward movements being recorded at the point just before the 

pupil disappears (i.e., during a blink). Sharp downward saccades do not 

correspond with reading, so these were identified and excluded 

specifically any saccade with an amplitude >6˚ and with an angle of 

between 250˚ and 290˚. Next, the aim was to detect the starting point of 

the saccade nearest to the first word of the text and the end point of the 

saccade closest to the final word of the text. However, this procedure 

was complicated by the fact that the text was rectangular in shape, with 

the height being substantially smaller in size than the width, a factor that 

would bias end point detection. For instance, the end point of a saccade 

made at the end of the first line of text (i.e., top right of the text) could 

be incorrectly classified as being nearer to the end of the text than a 

saccade made on the line below. Therefore the locations of the saccade 

start and end points were normalised in order to make the axes equal. 

Specifically, the Euclidian distance from (0, 0) (top left) for each 

saccade start point and the distance from (1, 1) (bottom right) for each 

saccade end point were calculated, creating two sets of distances. An 

exponential weighting was applied to these two sets of distances. As 

such, the more the distance value increases the further the point is from 

the start location. The start saccade was then selected as the minimum 

distance from (0, 0) once the weights have been applied. The purpose 

of this procedure was to “encourage” the algorithm to select the first 

element in the set as the start of the sentence; however if, for example, 

the distance of the first saccade’s start point is larger than another 

saccade, the smallest distance from (0, 0) will be selected to be the 

start point. To select the end point, the same process is applied to the 

saccade end points, except that the weights are reversed to 

“encourage” the algorithm to choose the final value. An example of this 

process can be seen by viewing Figure 38, Participant 1: when viewing 

the raw scanpath in column (a) and the processed path in column (b), it 

can be observed that two points are a similar distance from (0, 0). Using 
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the weighting, the algorithm is “encouraged” to choose the earlier point 

as the cut-off.  

The reading duration was then defined as the time between the start of 

the first saccade and the end of the final saccade (the rotation and the 

reading extraction stages are shown in Figure 38(b). Once this was 

complete, any trial shorter than 500 ms or less than 2 saccades per 

second was excluded as it is likely the trial was of poor quality. 

 

Figure 38: Four examples of reading scanpaths from four different glaucoma patients 
with their visual fields on the left.  
The start and end of each saccade are represented by a circle. Column (a) shows the 
original scanpaths made by the four participants reading the text. Column (b) shows 
the scanpath after the rotation has been corrected and reading-specific saccades 
have been extracted using the preprocessing algorithm. Column (c) shows the 
scanpath results from the clustering and classification algorithm.The number 
represents the order in which the saccades occurred, and the colours represent the 
classification that was attributed to them by the automated clustering algorithm 
(blue: forward saccade, green: between line saccade, red: regression, and brown: 
unknown). 
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8.2.5 An automated algorithm for classifying the reading 

eye movements 

Eye-tracking software typically expresses data with general measures, 

such as the size (amplitude) or location of each saccade. However, in 

tasks such as reading, the properties of each saccade will vary 

according to the demands of the task. For instance, when reading, a 

person will make small forward saccades (from left to right). It is also 

common for people to “backtrack” to reread previous sections (referred 

to as a “regression”). The properties of a saccade occurring between 

the end of one line and the beginning of the line below “line change” will 

again differ. Finally, readers may also make saccadic eye movements 

that do not conform to expected patterns (unknown). For this 

experiment an automated data analysis algorithm was developed for 

classifying the types of saccade made during the task. This method 

might also be of use in other eye-tracking experiments. At the centre of 

this technique is a Gaussian mixture model (GMM) that mines for 

clusters in the data. This approach was only possible due to the type of 

texts used, where line length was consistent throughout, giving 

predictable expected saccade angles and similar amplitudes per 

person. Specifically, the information needed to classify the eye 

movements is the amplitude (in degrees) of each saccade and the 

angle of each saccade, for all 50 sentences (trials) read by the “better 

eye” in each person. Next, it is necessary to acknowledge that the angle 

of eye movements occurring in a forward direction (from left to right) will 

occur at an average of 0˚; for example, some forward saccades could 

occur at 340˚ and others at 20˚. The discrepancy between these values, 

whilst indicating the same saccade type, will subsequently influence the 

success of the classification algorithm by yielding two separate clusters 

that actually give the same information. To avoid having to use circular 

statistics to compensate for such a scenario, all angle values were 

adjusted by −90˚, meaning that standard statistical methods could be 
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used (Figure 39 shows an example of this procedure in action, whereby 

the blue forward saccades are now located at approximately 270˚). The 

Netlab pattern analysis toolbox (Nabney, 2002) Gaussian Mixture 

Model was then used to determine four clusters with predefined start 

points and priors (approximate proportion of points each cluster 

contains). Using this method, eye movements made by the better eye 

were grouped into four clusters, representing regressions, line changes, 

forward saccades, and unknown saccades (Figure 39).  

 

Figure 39: Scatterplots showing the amplitude and angle of saccades made across the 
50 sentences for four examples of patients reading with the better eye.  
This data is used by the GMM to detect the four clusters within the data that 
represent the type of saccades made by the patients. The types of saccade are 
represented by the colours green (line change saccade), red (regression), blue 
(forward saccades), and brown (unknown). The black cross represents the start point 
for the GMM for each of the four clusters. The small circle represents the centre of the 
cluster and the surrounding larger ellipse represents a distribution of the data 
(calculated to be 2 standard deviations) captured by that cluster following the GMM 
process. Examples of outcomes from the GMM clustering are shown in Figure 38(c) 
for four different patients. 
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Data yielded when reading with the worse eye was then classified in the 

same way, so that the proportion of saccades that fell into each of the 

four clusters could be calculated and compared. 

8.2.6 Data analysis 

A linear mixed effects ANOVA was performed in R (version 2.15.1, (R-

Core-Team, 2012)) using the linear and non-linear mixed effects 

models (nlme) package to assess the reading duration per trial and 

saccade rate between patients’ worse and better eyes. A mixed effects 

model was chosen since different sentences were viewed by the worse 

and better eye. The random effect was set as the patient. The ANOVA 

was performed to test the null hypothesis, for each response, that the 

means for the patients’ worse and better eyes are the same. 

For each eye the percentage of eye movements were calculated that 

were automatically classed as the four types of saccade by the 

classification algorithm, namely, “forward saccades,” “regressions 

(backwards saccades),” “between line (line change) saccades,” and 

“unknown” across the 50 trials read by the better and worse eye, 

respectively. Statistical differences in these proportions between the 

worse and better eye were then assessed (Wilcoxon’s test). 

To investigate whether the magnitudes of the change in the key 

measured variables between eyes for each person were important, the 

difference between eyes for reading duration and saccade rate (worse 

eye minus better eye) was calculated next to create novel “change” 

variables for each person. The differences between the worse and 

better eye were also calculated for all the measured visual function 

parameters (i.e., change in visual field severity, VA, and CS between 

eyes) and then each of these resulting variables was compared to the 

changes in reading duration and saccade rate between eyes. 

Therefore, it could be determined whether larger reductions in visual 

field defect severity, contrast sensitivity, or visual acuity were related to 
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a greater change in reading duration or eye movement behaviour when 

reading with the worse eye compared to the better eye. 

Finally, differences in the median values for each of the identified eye 

movement types between the worse and better eye were calculated for 

each person; these were then compared to the change in reading 

duration per trial and saccade rate between eyes. Statistically 

significant associations were tested for using Spearman’s rank 

correlation (rho) and also using R (R-Core-Team, 2012). 

 

8.3 Results 

Fourteen patients with a median age of 69 (interquartile range [IQR] 64 

to 81) years took part in the study. All participants were Caucasian and 

50% were men. The patients had a range of visual field defects, visual 

acuity and contrast sensitivity measures (shown in Table 11). 

Participants’ worse eye and better eye were, as expected, significantly 

different in 24-2 MD, 10-2 MD, and PR Log CS but not in visual acuity 

(Wilcoxon’s test).  

Table 11: Descriptive statistics (median and interquartile range [IQR]) for key 
measured variables in the worse and better eye.  

 Better eye Worse eye Wilcoxon’s P-value 

24-2 MD (dB) 

(median, IQR) 

-3.4 

(-5.4, -1.8) 

-14.8 

(-19.5, -9.5) 
<0.001 

10-2 MD (dB) 

(median, IQR) 

-3.0 

(-5.0, -2.2) 

-13.7 

(-17.2, -9.6) 
<0.001 

CS (LogCS) 

(median, IQR) 

1.85 

(1.65, 1.95) 

1.65 

(1.38, 1.95) 
0.02 

VA (Log units) 

(median, IQR) 

0.11 

(-0.06, 0.16) 

0.13 

(0.06, 0.18) 
0.43 

Reading duration (sec) 

(median, IQR) 

2.2 

(1.9, 2.5) 

2.4 

(2.0, 2.7) 
 

Saccade rate (sac/sec) 

(median, IQR) 

4.6 

(4.4, 4.8) 

4.3 

(3.9, 4.7) 
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Table 11 also shows median (IQR) reading durations and saccade rates 

for the patients’ worse and better eyes. A linear mixed effects ANOVA 

indicated that on average patients took longer to read the sentences 

with their worse eye than with their better eye and this was statistically 

significant (F=132.3, p<0.001). Furthermore, patients made fewer 

saccades per second, on average, when reading with their worse eye 

compared to their better eye (F=84.9, p<0.001).  

When considering statistical associations for the change in reading 

duration and saccade rate between eyes, an average increase in 

reading duration in the worse eye compared to the better eye was 

closely related to an average decrease in the saccade rate in the worse 

eye compared to the better eye (rho: −0.83;   < 0.001; Figure 40). In 

other words, those who took longer to read with their worse eye than 

the better eye also had a greater reduction in saccade rate than those 

who read at a similar speed in each eye. 

 

Figure 40: Between eye differences in reading duration and saccade rate. 
Scatterplots depicting the statistically significant relationships between the 
percentage difference in reading duration between the worse eye and the better eye 
and the percentage difference in saccade rate between the worse eye and the better 
eye. 
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Associations in differences in visual function measures between the 

better and worse eye compared with reading duration and saccade rate 

are shown in Table 12.  

Table 12: Spearman’s rho correlations comparing the difference in reading 
duration between the worse eye and the better eye and the difference in 
saccade rate between the worse eye and the better eye, with key measured 
variables relating to age and vision.  

 

Difference between eyes 

24-2 MD  10-2 MD  

Mean 

central 

VF points 

CS  VA  Age 

Change in reading 

duration per trial rho 

(P-value) 

-0.20  

(0.48) 

0.13  

(0.65) 

0.01  

(0.99) 

-0.41  

(0.14) 

0.35 

(0.14) 

0.17  

(0.56) 

Change in Saccade 

rate rho (P-value) 

0.19  

(0.51) 

-0.32 

(0.26) 

0.21  

(0.47) 

0.65*  

(0.01) 

-0.56*  

(0.04) 

-0.09  

(0.76) 

 

  

Figure 41: Relationship of between eye differences in saccade rate with differences in 
contrast sensitivity and visual acuity. 
Scatterplots depicting the statistically significant relationships between (left) the 
difference in contrast sensitivity (log) and percentage difference in saccade rate 
between eyes, and (right) the difference in logMAR visual acuity and the percentage 
difference in saccade rate between eyes. 
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There was noteworthy association between changes in saccade rate 

and the extent of difference in contrast sensitivity between the better 

and worse eye. So those with a greater reduction in contrast sensitivity 

in the worse eye were more likely to have a reduced saccade rate in the 

worse eye (Figure 41 (left)). Furthermore, those patients with a greater 

drop in visual acuity in their worse eye also showed a greater reduction 

in saccade rate (Figure 41 (right)). There were no other statistically 

significant correlations (Table 12).  

Table 13 shows the proportion of saccades classified as each of the 

four eye movement types for the better and worse eyes, respectively. 

There were no statistically significant differences in these values 

between eyes. However, a larger increase in reading duration in the 

worse eye compared to the better eye was associated with an increase 

in the percentage of eye movements that were regressions in the worse 

eye compared to the better eye (rho: 0.60;   < 0.03; Figure 42 (left)). In 

addition, a greater increase in reading duration in the worse eye 

compared to the better eye was associated with making more unknown 

eye movements in the worse eye compared to the better eye (rho: 0.59; 

  < 0.03; Figure 42 (right)). 

 

Table 13: Proportion of saccades that were forward, between lines, 
regressions or unknown when reading with the best eye and worse eye, 
respectively. 

 Better eye Worse eye 

Between word (%, median, IQR) 72.0 (70.1, 73.5) 67.2 (62.4, 75.1) 

Line change (%, median, IQR) 10.6 (9.0, 11.3) 10.2 (9.0, 11.1) 

Regressions (%, median, IQR) 11.4 (9.7, 15.4) 13.8 (10.9, 19.7) 

Unknown (%, median, IQR) 5.6 (3.7, 8.4) 6.5 (4.2, 9.8) 
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Figure 42: Relationship of between eye reading duration with the proportion of 
regression and “unknown” eye movements.  
Scatterplots showing statistically significant relationships between the percentage 
difference in reading duration between the better and worse eye and the difference 
between the better and worse eye in (left) the proportion of regressions and (right) 
the proportion of “unknown” eye movements. 

 

8.4 Discussion 

For reading, it is clear that some patients are more affected by vision 

loss in glaucoma than others.  Some patients with glaucoma self-report 

difficulties with reading (Mangione et al., 1998, Ramulu, 2009, Crabb et 

al., 2013). In addition, reading speed experiments indicate that patients 

with glaucoma have more problems with reading than people with 

normal vision, but only “on average” (Altangerel et al., 2006, Burton et 

al., 2012, Fujita et al., 2008, Ramulu et al., 2013, Ramulu et al., 2009, 

Ishii et al., 2013). Reading speed can vary considerably between 

people making it difficult to make comparisons between patients and 

controls; in these studies adjustments are needed for covariates for 

reading speed such as education, cognitive ability, age, amount of day-

to-day reading, and ethnicity. Such studies also require large sample 

sizes (Ramulu, 2009). This study examined an alternative experimental 

design: comparing performance between eyes in patients with 

asymmetrical visual field loss. Principally there was a statistically 

significant difference in the time it took patients to read a short passage 
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of text in what is considered to be their worse eye (most visual field 

damage) when compared to their better eye (least visual field damage). 

This was done in a small sample of patients that carried out the reading 

task many times. The effect size was, however, small and the difference 

in reading duration between eyes was not associated with the 

magnitude of the difference between visual field loss between the two 

tested eyes. In other words there was no “dose” effect: larger 

differences in severity of visual field defect between eyes were not 

associated with worse performance. This was true for the MD from a 

standard clinical visual field test (24-2 HFA) and a visual field test of 

more central areas (10-2 HFA). It is therefore unclear if an overall 

summary measure of visual field defect severity can be predictive of 

worsening reading performance in glaucoma. There was no significant 

difference between eyes for visual acuity when considering the average 

of all patients; this finding likely reflects the fact that many patients with 

worsening glaucoma maintain relatively good visual acuity while other 

aspects of visual function decline. However, when considering within-

person differences in visual acuity in the worse versus the better eye, a 

larger decline in visual acuity was associated with a greater reduction in 

reading speed in the worse eye. This finding highlights the benefits of 

considering performance changes within each individual in addition to 

considering average effects across all participants. The magnitude of 

the difference in contrast sensitivity between eyes was also related to 

difference in reading performance between eyes. The important role of 

contrast sensitivity in reading performance in glaucoma has been 

emphasised elsewhere (Burton et al., 2012). 

This experiment was novel in comparison with most other studies 

investigating reading performance in people with glaucoma because it 

took advantage of measurements from an eye tracker. Patients had a 

reduced saccade rate (making fewer saccades per second) on average 

when reading with their worse eye compared to their better eye. 

Furthermore, average saccade rate was strongly associated with 
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reading duration. These findings imply that saccade rate, measured by 

an eye tracker, could be a useful surrogate for reading performance. A 

reduction in saccade rate in patients with visual field defects has also 

been observed in other studies involving different visual tasks (Smith et 

al., 2012b, Smith et al., 2012a) and other experimental results suggest 

that saccadic initiation in patients with glaucoma is delayed relative to 

controls with healthy vision (Kanjee et al., 2012). It may be that visual 

function loss caused by glaucoma impairs the ability of the visual 

system to process the surrounding information during each glance, 

meaning that it takes longer to initiate a saccade towards relevant 

information. Nevertheless, although reduced reading duration and 

saccade rate were observed on average for the worse eye compared to 

the better eye, the degree of change between eyes varied considerably 

across patients. For example, Figure 40 showed that certain patients 

had a much longer reading duration for the worse eye and also tended 

to show a more reduced saccade rate. However, other patients 

appeared to be less affected in terms of reading speed when reading 

with their worse eye and these people also tended to maintain a similar, 

or increased, saccade rate to the better eye. 

Typically when reading, there will be a window of information that can 

be absorbed during each fixation, referred to as the “perceptual span”. 

Visual degradation caused by visual field defects can be expected to 

reduce the number of characters that can be read with each fixation 

(Loftus et al., 1992) (Bullimore and Bailey, 1995), suggesting that more 

saccades must subsequently be made in order to process the same 

quantity of information. Therefore, some patients may have maintained 

an adequate reading speed when reading with their worse eye by 

increasing their saccadic rate in order to overcome the impairment that 

would normally be expected due to the visual degradation. This result 

coincides, in part, with a finding that suggests glaucomatous visual field 

loss restricts saccades during other tasks such as visual search, but 

that increasing saccade rate is associated with maintaining good 
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performance (Smith et al., 2012b). It is unknown whether these eye 

movements are adaptive behaviour, thus it would be worthwhile to 

study this topic in future investigations. 

Eye-tracking generates copious data that can be easily misidentified or 

misinterpreted. Eye movement analysis software for reading 

experiments typically provides scanpath data (Kabanarou and Rubin, 

2006, Crossland and Rubin, 2006, Rubin and Feely, 2009) that has to 

be manually delineated to extract specific saccades like regressions (a 

backtracking saccade sometimes observed during reading). In this 

study automated techniques were developed for identifying the different 

types of eye movements made during the reading task. In this 

experiment, there was no statistically significant difference in the types 

of eye movements identified by the algorithm made by the eye with 

more visual field damage compared to the eye with less visual field 

damage. Still, there was a relationship between increases in the 

proportion of regressions and worse reading performance. The 

algorithm also automatically identified unknown or “irregular” eye 

movements that were associated with poorer reading performance in 

the worse eye compared to the better eye. Patients who followed more 

conventional reading patterns (making a smaller proportion of 

regressions and unknown eye movements compared to ‘forward’ 

saccades between words) in both eyes appeared to read equally 

quickly in both eyes. These findings illustrate the utility of eye tracking in 

studies of reading in glaucoma and hint at the design of future studies. 

For example, recent research suggests that reading performance in 

patients with glaucoma is particularly affected during sustained reading 

as opposed to when reading short passages of text (Ramulu et al., 

2013); it might be useful to use eye tracking in future experiments of 

that type.  

There are limitations associated with our study. There was no 

assessment of comprehension of the texts and the nature of the reading 
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experiment – large font size and reading from a computer screen – 

does not mimic everyday reading. The sample size was not large 

enough to tease out any statistically significant differences in the types 

of eye movements that might be used by an eye with worse visual field 

damage compared to one with less visual field damage. The small 

sample size also did not allow to explore how reading performance is 

affected by the precise location of a visual field defect or how a similar 

visual field defect in the right eye as compared to the left eye might 

influence performance; this awaits further study. Future research may 

also wish to consider the performance of people with asymmetric visual 

field loss when reading bilaterally and whether this is comparable to 

reading monocularly with the better or worse eye. It is also important to 

point out that the methods for preprocessing the eye movement data 

and for automatically classifying their properties have not been 

validated or compared with manual methods. Nevertheless, the study 

still adds to the literature by showing the potential of eye tracking for 

understanding how patients with visual field defects function in 

everyday tasks such as reading. 

In summary, this study has shown that patients with glaucoma will take 

longer to read a short passage of text in what is considered to be their 

worse eye (most visual field damage) when compared to their better 

eye (least visual field damage). However, the effects were small. 

Unexpectedly, reading performance did not worsen in the eye with most 

visual field damage as the between-eye differences in visual field defect 

severity increased (as measured by a single summary measure of the 

visual field). The novel analytical eye movement data analysis 

presented in this chapter might be useful for other reading studies. The 

results suggest that regressions and unknown saccades result in slower 

reading speeds. In conclusion, this novel experimental design might 

help unravel the relationship between glaucomatous vision loss and 

difficulties with reading. For example, a future study comparing 

performance between eyes and using eye tracking could help 
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determine the precise location of visual field loss that inhibits reading 

performance in glaucoma. 
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9. Conclusions and Future Research 

The establishment of static automated perimetry as the gold standard 

visual field examination in patients with glaucoma brought many 

advantages: an easy operation of the test, efficient test procedures, 

examiner independent measures, the evaluation of age-related 

normative ranges of contrast sensitivity in the visual field and 

standardised analyses of the results. However, it also led to a focus on 

the central 30˚. Yet, the information that is lost regarding the peripheral 

visual field might be of value. It could help to understand how patients 

are affected in their everyday life and which disabilities might go along 

with their individual visual field loss. It could increase the dynamic range 

for monitoring progression of disease or in some cases might even help 

detection.  

The aim of this thesis was to lay groundwork for the development of a 

fully automated test of the peripheral visual field.  

 

9.1 Key findings 

9.1.1 Automated kinetic perimetry in the peripheral visual 

field 

The examination of a peripheral isopter was found to provide additional 

information about the overall visual field loss in patients with glaucoma. 

The automated estimation of isopters was repeatable. The repeatability 

of the kinetic test was similar to the repeatability of a static automated 

test (GATE, 24-2) of the central visual field (see Chapter 5, page 83 ff). 

I demonstrated that data-driven simulations can be a useful tool to 

evaluate the efficiency of kinetic procedures. I showed that the 
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response behaviour did not follow a Gaussian distribution. Instead, the 

distribution of responses was steep and positively skewed with long, 

narrow tails indicating that most responses are closely located around 

isopter locations with occasional responses in further distances. These 

distances tended to be larger outside than inside the isopter. To 

estimate isopters with good accuracy and precision, repeated 

presentations were found to be essential. A large gain in precision was 

achieved by using at least three responses per meridian to estimate the 

isopter. The use of adaptive rules was shown to reduce the required 

number of stimuli, while still achieving comparably high accuracy and 

precision (see Chapter 6, page 103 ff). 

9.1.2 Threshold estimation with static stimuli in the 

peripheral visual field 

Size V stimuli were found to be more suitable for threshold estimation 

with static stimuli in the peripheral visual field than size III stimuli, as 

they yielded higher contrast sensitivity and lower response variability. 

The overall relation between response variability and contrast sensitivity 

was in line with previous studies (Henson et al., 2000, Russell et al., 

2012a). Predictably, estimates with high contrast sensitivity were more 

reliable than those with low contrast sensitivity. However, there was a 

trend for response variability with respect to contrast sensitivity to be 

slightly lower in the peripheral (beyond 30˚) than in the central visual 

field (≤30˚). Thus static threshold estimation in the peripheral visual field 

might be more reliable than predicted by a previous model between 

response variability and contrast sensitivity (Henson et al., 2000). 

I found contrast sensitivity to be lower for static than for kinetic III1e 

stimuli. In accordance with a previous study, which examined the 

dissociation of static and kinetic contrast sensitivity for a range of other 

stimulus parameters, this difference was on average about 5 dB 

(Hudson and Wild, 1992) (see Chapter 7, page 121 ff). There was large 
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variability in the difference between static and kinetic contrast 

sensitivity. The cause of this variability is still unknown. 

9.1.3 Reading performance in patients with glaucoma 

I demonstrated that an intra-patient between-eye design in glaucoma 

patients with greater visual field loss in one eye than the other permits 

the investigation of the relationship between disability and visual field 

loss even in small samples. There was a significant decrease in reading 

performance when reading with the eye with greater visual field loss 

compared to reading with the better eye. Worse reading performance 

was found to be related to changes in eye movement patterns. A lower 

reading speed was associated with a decreased rate of saccades in the 

worse eye. A decrease in reading speed in the worse eye was also 

associated with a relative increase in regressions (saccades that 

backtrack to previous parts of text) (see Chapter 8, page 150 ff).  

 

9.2 Implications of findings and future research 

9.2.1 Development of a fully automated test strategy for 

the peripheral visual field 

9.2.1.1 Kinetic perimetry in the peripheral visual field 

As part of this thesis, I designed an automated kinetic test that 

examines a peripheral isopter with three repeated stimuli along each 

meridian. I suggested the mean isopter radius as a summary measure, 

as it provides a more intuitive idea of the size of the isopter than the 

often used isopter area without compromising information. As several 

responses were sampled per meridian in each test, I introduced an 

estimate of response variability within single tests (median absolute 

deviation of single responses) that can be used as an indicator of test 



175 
 

variability. I showed that isopters could be estimated with good 

repeatability with this test. A data-driven simulation of responses to 

kinetic stimuli revealed that at least three responses are required to 

estimate isopters with good precision and accuracy.  

However, tests with three repeated presentations per meridian are of 

too long duration for a clinical application. Automated kinetic perimetry 

with adaptive procedures has previously been suggested (Hashimoto et 

al., 2015, Johnson et al., 1987). I therefore asked whether adaptive 

rules could deliver a comparable information gain at smaller costs of 

testing time. Indeed I found that such rules permit the estimation of 

isopters more efficiently, while not compromising on accuracy or 

precision. Using a computer simulation, I evaluated a simple adaptive 

rule in which the presentation of a third stimulus per isopter depends on 

the distance between the two previous responses. With this rule 

isopters could be estimated with equal precision and accuracy as 

provided by a test with three repetitions per isopter while reducing the 

required stimulus number by about 25%.  

A rule that is used in both Johnson’s strategy and Matsumoto et al.’s 

Program K is that if responses occur within a normal range, the first 

response is accepted as the isopter location (Hashimoto et al., 2015, 

Johnson et al., 1987). Computer simulations, as performed in Chapter 

6, could be used to estimate how likely it is that responses occur within 

a normal range when the true isopter location is actually abnormal. To 

establish automated kinetic tests as a standard test for the examination 

of peripheral visual fields, the efficiency of test procedures needs to be 

optimised. I propose to use simulations to evaluate the efficiency of 

different strategies, as it permits the comparison of the performance of 

many different versions of test procedures in a short amount of time. 

Notably, in this thesis, I investigate responses to kinetic stimuli with only 

one stimulus type (Goldmann III1e moved at 5˚/sec). However response 

variability might vary depending on stimulus parameters (size, contrast, 
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speed). In Chapter 6 I found that response variability was independent 

of eccentricity for III1e stimuli and speculated that it could be indicative 

of a constant relationship between contrast sensitivity and response 

variability as similarly found for static stimuli. Understanding the relation 

between different stimulus parameters and response variability would 

help to formulate models for response behaviour in kinetic perimetry. 

Moreover, investigating the relationship between stimulus size and 

response variability could help to determine what the most suitable 

stimulus size is for kinetic perimetry of the peripheral visual field. For 

example, in static perimetry, size V (diameter: 1.72˚) stimuli appear to 

be more suitable in the far periphery. The kinetic automated test to 

measure a peripheral isopter with repeated presentations introduced in 

this thesis uses Goldmann size III stimuli (diameter: 0.43˚). 

Traditionally, in Goldmann perimetry the smallest stimuli (size I, 

diameter: 0.11˚) are used to examine the entire visual field and larger 

sizes are only introduced when advanced visual field loss is present 

and an increase of stimulus intensity through an increase in contrast is 

not sufficient.  

9.2.1.2 Threshold estimation with static stimuli in the 

peripheral visual field 

In Chapter 7 I investigated threshold estimation with static stimuli in the 

peripheral visual field. Size V stimuli were shown to be most suitable for 

static perimetry in the peripheral visual field as compared to size III 

stimuli: Contrast sensitivity was higher and response variability lower 

when measuring with size V stimuli in the peripheral visual field. Thus 

they provide a larger dynamic range in which the visual field can be 

measured reliably. My findings agreed with previous findings evaluating 

the influence of stimulus size on contrast sensitivity and response 

variability (Redmond et al., 2010, Fellman et al., 1988, Dannheim and 

Drance, 1971, Wilson, 1970, Wald, 1938, Gardiner et al., 2013, Wall et 
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al., 2013, Wall et al., 1997) and corroborate the theory that response 

variability and contrast sensitivity depend on the number of ganglion 

cells that respond to a specific stimulus (Wilson, 1970, Swanson et al., 

2004, Fischer, 1973, Anderson, 2006). Since ganglion cell density is 

lower in the peripheral visual field than in the central visual field, the 

stimulus area needs to be increased in the peripheral field to activate 

the same number of ganglion cells and thus to result in equivalent 

contrast sensitivity. This is equally true in areas of visual field loss. 

Crucially, this kind of spatial summation of the signal is thought to be 

constant up to a certain area in the visual field in which is covered by 

the receptive fields of a specific number of ganglion cells (Ricco’s area) 

(see Chapter 2.1.4.2.1, page 44). When exceeding this area the 

additional gain in signal decreases. Crucially, these properties predict 

that increasing the stimulus area would lead to a larger gain in contrast 

sensitivity in areas with lower ganglion cell density. In line with this 

biologically inspired prediction, I found a smaller difference in contrast 

sensitivity to size III and V stimuli in the central than the peripheral 

visual field. But a similar increase in contrast sensitivity throughout the 

visual field in patients with glaucoma. Therefore the optimal stimulus 

size to achieve a good dynamic range without losing the power to 

detect abnormal contrast sensitivities might be to match the stimulus 

size to the size of Ricco’s area in the respective location of a normal 

visual field.  

On average, I found a similar relation between response variability and 

contrast sensitivity for size III stimuli as in previous studies. However, 

by tendency, the ratio of response variability over contrast sensitivity 

was smaller in peripheral than central locations. To my best knowledge, 

this has not been shown to date. If this difference in the relation 

between contrast sensitivity and response variability in the periphery 

holds true it implies that static threshold estimation is more reliable in 

the periphery than expected. It also indicates that reduced central 

ganglion cell density related to disease has a different effect on 
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response variability than physiologically low ganglion cell density in the 

peripheral visual field. Further research here could lead to important 

findings to conclusively study the relationship between response 

variability and contrast sensitivity in the peripheral visual field.   

9.2.1.3 Combined static kinetic automated perimetry  

My findings in Chapter 7 indicated that results between kinetic and 

static stimuli are different. On average, a simple constant could be 

added to translate kinetic and static stimuli into the same reference 

frame. However, the difference between kinetic and static contrast 

sensitivity is strongly variable and the cause for this variability is still 

unknown. Here, I only examined the relation for one stimulus type 

(III1e), but a previous study found similar average differences for a 

range of stimulus contrasts and sizes I and III.  

A combined kinetic and static test might be an efficient way to examine 

the entire visual field. Here, an isopter could be estimated first and 

establish a region of interest within which thresholds are estimated with 

static perimetry. The estimated isopter could provide prior information 

about expected contrast sensitivities at nearby locations. This 

information could be integrated as a prior into combined static kinetic 

procedures to increase the efficiency of threshold estimation at such 

locations. Moreover, such a test would eliminate static test locations in 

regions with low contrast sensitivity near 0 dB. Static thresholds 

estimated in such regions have high variability and thus do not provide 

reliable information. Furthermore, in many procedures more stimuli are 

required to estimate contrast sensitivities in regions with highly 

abnormal contrast sensitivities. Thus time consuming threshold 

estimation in regions of the peripheral visual field that do not provide 

much information could be prevented by estimating a peripheral isopter 

first. Further work might lead to a test that could save time when 

examining the visual field in patients with advanced glaucomatous 

damage. 
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9.2.2 Functional relevance of measuring the peripheral 

visual field 

9.2.2.1 Does an examination of the peripheral visual field 

beyond 30˚ add information? 

An examination beyond 30˚ in patients with glaucoma is only useful if it 

adds valuable information. This could be clinically useful information for 

glaucoma diagnosis or monitoring of disease progression. It may also 

be relevant information about how an individual is affected by his or her 

visual field loss. Simply put, if peripheral visual field loss cannot be 

predicted based on information from the central visual field, then this 

space might be clinically useful. 

Indeed, I found that measuring the peripheral visual field added 

information to results of static tests of the central visual field. There was 

only a loose relationship between central and peripheral field loss and 

the extent of peripheral loss could vary widely in patients with a similar 

extent of central loss. Several patients with advanced central visual field 

loss were found to have preserved areas in the peripheral visual field. 

The examination of such preserved peripheral areas in addition to the 

central visual field can improve the monitoring of disease progression in 

advanced glaucoma (Nowomiejska et al., 2014). In the study presented 

in Chapter 5 patients with various stages of central visual field loss were 

recruited. In the range of patients with moderate to advanced central 

visual field loss, central and peripheral visual field damage was loosely 

related. Only one of the glaucoma patients in this study had little or no 

central visual field loss. The specific recruitment of a group of patients 

with no or low central visual field loss (e.g. patients with ocular 

hypertension) would be useful to further investigate the relation 

between central and peripheral visual field loss in early glaucoma. 

Previous studies examining such groups found peripheral visual field 
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damage in the absence of central visual field loss in 7% and 4% of 

patients respectively (Miller et al., 1989, Ballon et al., 1992). 

The aim in this study was to investigate the relationship between central 

and peripheral visual field damage based on commonly used summary 

measures indicating the overall extent of visual field loss. An interesting 

question that went beyond the scope of this thesis would be how the 

exact patterns of central and peripheral visual field loss are related. A 

detailed shape analysis of isopters and the topography of the central 

visual field would be required to examine this topic further.  

9.2.2.1 Which functional abilities are related to peripheral 

vision? 

I found that investigating the peripheral visual field adds information to 

central visual field results. The question remains how peripheral visual 

field loss affects a patient. Peripheral vision might be especially 

essential when it comes to mobility. Peripheral vision has been shown 

to contribute to postural control, which in turn when impaired can 

increase the risk for falls. In Chapter 5 I found a relationship between 

both, central (≤30˚) and peripheral (>30˚) visual field loss and self 

reported fear of falling. However, the confidence intervals of the 

correlation coefficients varied substantially. Larger sample sizes of at 

least 100 participants would be needed to conclusively study this 

relationship. In Chapter 8, in a departure from the central themes of the 

thesis, I demonstrated that a between-eye, intra-subject design in 

patients with greater visual field loss in one eye than the other is a 

promising way to investigate the relationship between visual field loss 

and reading performance even in small samples. Such a design could 

also be utilised to examine the relationship between peripheral visual 

field loss and other functional abilities such as postural control.  

However, not just balance, but also other mechanisms that indirectly 

influence mobility could be disturbed through peripheral visual field loss. 
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Peripheral vision is, for example, important to guide attention to salient 

stimuli in the visual field. An orientation towards a salient stimulus in 

extra-foveal regions occurs in an involuntary reflexive manner (Muller 

and Rabbitt, 1989). The failure to detect such cues in the peripheral 

visual field could lead to an increased risk for accidents. Indeed, 

simulated visual field defects have been shown to significantly impair 

hazard detection (Glen et al., 2014). Moreover, glaucoma was found to 

be connected to a higher risk for car accidents (Haymes et al., 2007). 

An investigation of the relation between visual field damage and the 

guidance of attention to salient cues in different eccentricities in the 

visual field could help to understand which decrease in contrast 

sensitivity in specific locations of the visual field leads to a disturbance 

of involuntary attention orienting mechanisms. 

Peripheral vision has also been shown to be involved in differentiating 

between egocentric versus exocentric motion in the absence of 

vestibular input (Brandt et al., 1973). When stimuli could only be 

perceived in the central 30˚ optokinetic stimuli were perceived as the 

environment appearing to move, while optokinetic stimuli presented in 

the entire or peripheral visual field led to a perception of self-motion. 

The judgement of the velocity of self-motion matched the velocity of 

optokinetic stimuli. When looking in the direction of our path of motion, 

optic flow allows us to estimate motion speed. Optic flow is stronger the 

further away visual input is from fixation, meaning that the effect of optic 

flow is higher in the visual field periphery than in the central visual field. 

Thus the judgement of self-motion and estimation of velocity might be 

affected by peripheral visual field loss. 

Vision loss in the periphery might have detrimental effects on functional 

abilities, especially affecting mobility in various ways (disturbed postural 

control, hazard detection and motion perception). Thus, a closer 

examination of visual disabilities in patients with glaucoma and 

peripheral visual field loss is needed. The availability of an efficient 
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automated standard examination of the peripheral visual field would 

help such studies and would increase comparability between studies. 

The findings in this thesis are an important step towards the 

development of an efficient automated test for the peripheral visual 

field.   
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III. Appendix 

1. Visual field results (Chapter 5) 

For each of the 30 glaucoma patients at least two tests in the same eye 

are available. The other eye was additionally tested in 21 patients and 

27 patients also performed a binocular peripheral visual field test. Visual 

field plots of each patient are identified with the same letter identifier as 

used in Chapter 5. The visual fields results of the left eye (OS), right 

eye (OD) and both eyes (OU) of each patient are depicted form left to 

right, second examinations are in a second row at the respective 

location. Central and peripheral visual field examinations are depicted in 

a common graphic by overlaying the EyeSuite printout of the GATE 

examination with a plot of the kinetic isopter. Eccentricities and test 

meridians are indicated by grey circles and dotted lines. Single 

responses to kinetic stimuli are shown as red dots. The measured 

isopter is plotted in dark green. Median responses < 10˚ were treated as 

“missing data” and appear as gaps in the isopter. The MAD is shown as 

a green band surrounding the isopter, and normative values (Vonthein 

et al., 2007) are represented in light green.  

Visual fields with a similar extent of central damage were connected to 

various sizes and shapes of III1e isopters (compare e.g. patient c, e, g 

and z). I found that nasal steps tended to extend into the peripheral 

visual field. I found this effect in 40% of the eyes (see e.g. patients d, f, 

h, j, p, u, and A). In several patients with end stage glaucomatous 

damage, peripheral islands of visions were still preserved (see e.g. 

patient i, w (right eye) and D). In patients with a central island vision 

close to fixation and peripheral islands of vision (see e.g. patient k and 

m (right eye)) a combined macula and peripheral visual field 
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examination might be most suitable. The binocular isopter appeared to 

coincide with the respective outer border of the isopters from both eyes, 

but stimuli appeared to be detected even slightly further in the periphery 

with both than with individual eyes (see e.g. patient a, c, d, m, n and z).  
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3. How to estimate Bland-Altman 

retest intervals in long-tailed 

distributions 

3.1 Purpose 

For clinically useful visual field examinations, it is important that results 

are consistent between tests. Thus I investigated the test-retest 

variability for a kinetic and static visual field examination (see Chapter 

5, page 83). To get a precise estimate of test-retest variability despite 

the small sample size, an efficient measure of statistical dispersion 

needs to be chosen for the test-retest data. On the other hand, patient 

errors occurred that, with a kinetic automatic strategy, are prone to 

cause extreme data points, leading to a distribution of test-retest 

differences that has long tails. In the kinetic automated procedure three 

repeated presentations along each meridian are performed, and the 

median is eventually chosen as the isopter position. However, obvious 

“outlier” responses occurred in almost all tests of all participants. These 

are responses that can be outside normal expected locations and are 

often widely spaced away from the true isopter position (see Figure 43).  
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Figure 43: Example of kinetic automatic perimetry illustrating response behaviour. 
The single responses are marked by red circles. “Outlier” responses are highlighted by 
arrows. 

 

One of the causes for these false positive responses might be the 

audible onset of the projection system’s stepper motors, as many 

participants reported to find these noises hard to ignore. If several of 

these “outlier” responses occur along the same meridian, the estimated 

isopter position can differ substantially from the actual position. This in 

turn can lead to extreme differences in test and retest results that are 

much stronger than normal response variability. Thus, I wish to use a 

measure of dispersion that is representative of the main body of the 

data and less sensitive to extreme observations (outliers).  

One of the standard techniques to investigate test-retest variability is 

Bland-Altman analysis (Bland and Altman, 1986). It analyses the 

differences between repeated tests in relation to the true value 

(estimated by the average between tests). As an indicator of the 

dispersion the 95% limits of agreement give the range within which 19 

out of 20 test-retest differences would fall. The 95% range in a Bland-

Altman analysis is defined by ±1.96 standard deviations. In a normal 

distribution the standard deviation would be the most efficient measure 
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of statistical dispersion. However, this is not necessarily the case in 

distributions that differ from normal. Furthermore using the standard 

deviation in a distribution with long tails or outliers could lead to an 

overestimation of the sample dispersion that is no longer characteristic 

for the majority of observations. Neither the test-retest differences of the 

MDs from the static field examinations, nor those of the MIRs from the 

kinetic field examinations appear to follow a normal distribution (Figure 

44).  

 

  

Figure 44: Q-Q plots of test-retest distribution for central (MD) and peripheral test 
(MIR) respectively. Data points deviating from the grey line indicate a non-normal 
distribution. 

 

The objective of this chapter is to explore, which measure of dispersion 

– the standard deviation or the median absolute deviation – is more 

efficient for the data in question.  

Efficiency measures how precise a measure is depending on sample 

size. Robustness of efficiency is precision in the presence of outliers 

(Ripley, 2004). To achieve a precise estimate of test-retest variability in 

our data, we want to use a measure that is robust. The mean for 

example is the most efficient measure of central tendency in a normal 

distribution. In samples of the same size the standard error of the mean 
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is lower than that of the median (Figure 45). However, this picture 

changes quickly in the presence of outliers. In samples that have as few 

as one outlier, the median becomes the more efficient measure of 

central tendency. An indicator for the robustness of a measure is the 

breakdown point. The breakdown point estimates which proportion of 

data points in a distribution may approach infinity without causing the 

statistical measure to approach infinity (Ripley, 2004). The breakdown 

point for the mean is 0% compared to 50% for the median.  

The relative efficiency (RE) of a statistical measure is determined by 

comparing the variance of one estimate    to the variance of a second 

estimate   . Unless otherwise stated,    is typically assumed to be the 

optimal estimator (Ripley, 2004).  

  

           
              

              
 

Equation 7: Relative efficiency of estimates 

The asymptotic relative efficiency (ARE) is the relative efficiency as the 

sample size approaches infinity. The asymptotic relative efficiency of 

the median is 0.64, which means that the mean is as precise as the 

median with only 64% of the data points present (Ripley, 2004).  
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Figure 45: Standard error of mean and median and relative efficiency of median 
depending on sample size in a normal distribution. 

 

Here, we want to compare efficiency and robustness of two measures 

of statistical dispersion: the standard deviation (SD) and the median 

absolute deviation (MAD). The standard deviation is defined as the 

square root of the mean of the squared differences from the mean. The 

median absolute deviation is the median of the absolute deviations from 

the median. To compare the variance of standard deviation and median 

absolute deviation, they need to be consistent. In normal distributions 

the MAD can be scaled by a constant factor of 1.483 to correspond to 

the same range as the standard deviation (Figure 46). The scaled MAD 

will be referred to as MADsc from here on. 
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Figure 46: Example of normal distribution with SD and MAD and scaling factor to 
scale the MAD to the same range as one standard deviation.  

 

 

3.2 Methods 

Random samples with varying sample size and outlier proportion were 

created in R (version 2.15.1, (R-Core-Team, 2012)) to explore the 

efficiency of SD and MADsc  through a simulation. Each type of sample 

was created 10000 times and the standard error of the measures was 

calculated. Normal and long-tailed distributions were specified with a 

modified version of the rnorm() function:  

rnorm.outl <- function (n=100, a.mean=0, a.sd=1, b.mean=0, b.sd=5,perc=10){    

     samp <- rnorm(n,0,a.sd)              # Creates random normal distribution 1 (samp). 

     if (perc > 0) {                                   # If percentage of outliers is larger than 0, 

            samp2 <- rnorm(n,0,b.sd)     # creates random normal distribution 2(samp2) 

            outl <- (n*perc)/100              # and calculates nr of outliers for samp 

            if (outl%%1 >0) outl <- floor(outl) + rbinom(1,n=1,p=outl-floor(outl))    

                                                               # with a probabilistic aspect for a non-integer outlier nr. 

            if (outl >0) samp[1:outl] <- sample(samp2,outl)                  

                                                               # Draws outliers in samp2 and replaces points in samp. 

     } 

     return(samp)                                  #return sample 

} 
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Long-tailed distributions were created by randomly replacing k data 

points of a Gaussian distribution with mean = 0 and sd = 1 with data 

points of a Gaussian distribution with mean = 0 and sd = 5. The variable 

k is the outlier proportion. Q-Q plots of samples (n=30) with outlier 

proportions of 0%, 10% and 20% are given in Figure 47.  

   

Figure 47: Q-Q plots of samples with n = 30 and 0%, 10% and 20% of outliers.  

 

The standard deviation and MADsc were calculated for each sample. 

The standard error and relative efficiency of SD and MADsc were 

estimated for increasing sample sizes (n = 1:200, step size=5) and 

outlier rates (k = 0:15, step size =1). 

 

3.3 Results 

3.3.1 Efficiency in normal distributions 

The standard deviation is the more efficient measure in the normal 

distribution (Figure 48). The standard error of both SD and MADsc 

decreases with sample size. Furthermore it is noteworthy that both SD 

and MADsc are rather imprecise in small samples with numbers smaller 

than approximately 25 data points. Due to the different calculation of the 

median with even and uneven sample sizes, the relative efficiency of 

the median oscillates, being slightly better for even numbers. This is 
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especially prominent in small data sets. The asymptotic relative 

efficiency of MADsc is 37%.  

 

 

 Figure 48: Standard error of SD and MADsc (upper plot) and relative efficiency of the 
MADsc in relation to SD (lower plot) with increasing sample size of normally 
distributed data. The standard deviation is more efficient than the MADsc. In small 
samples both SD and MAD have large standard errors.  

 

3.3.2 Robustness of efficiency depending on sample size 

and outlier proportion  

While the standard deviation is the more efficient measure in normally 

distributed data, the scaled median absolute deviation is more robust. In 

samples with outlier rates larger than 0% the MADsc becomes more 

efficient than the SD. The precision of both measures increases with 

sample size, however the relative efficiency stays approximately the 

same independent of sample size (Figure 49 and Figure 50).  
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Figure 49: Standard error of SD and MADsc  depending on outlier rates for sample 
sizes n = 30 (left) and n = 200 (right). The percentage of outliers ranged from 0 to 
20%. 

 

  

Figure 50: Relative efficiency of SD and MADsc  depending on outlier rate for sample 
sizes of n = 30 (left) and n=90 (right). The percentage of outliers ranged from 0 to 
20%. 

 

3.4 Conclusions 

While the standard deviation is more efficient in normally distributed 

samples, the median absolute deviation is more robust. The MADsc 

becomes the more efficient measure of the two as soon as just one 

outlier is present in a sample. Since the standard deviation depends on 

the mean, which is quite susceptible to extreme values in data sets, it 

becomes less precise in data with long tails or outliers and easily 

overestimates the statistical dispersion of the data. In contrast, the 

median absolute deviation – looking at the differences from the median 

– is much more robust. Thus the MAD appears to be the better choice 

as a measure of dispersion for our test-retest distributions. One might 

argue that the larger test-retest differences in the distributions are not 

outliers, but part of the true distribution, thus the MAD would 

underestimate dispersion. However, for the clinical relevance of visual 
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field tests, the SD scaled to a 95% range might be too conservative and 

might lead to rejecting a test, that still gives valuable information for a 

large part of the population.  

Based on these findings the MAD was chosen as a measure of 

dispersion to fit a 90% range in the Bland-Altman plot for our visual field 

test-retest data.  
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4. Power to detect a difference in 

dependent correlations 

4.1 Purpose 

In Chapter 5, I explored the relationship between self reported fear of 

falling and summary measures of central and peripheral visual field 

results. I found a small but significant relationship between fear of falling 

with both central visual field and peripheral visual field test results. The 

Spearman correlation coefficients were similar (-0.34 and -0.35 

respectively) yet both had large confidence intervals ([-0.65, -0.04] and 

[-0.63, -0.05] respectively). For a conclusive study of the relationship 

between peripheral and central visual field results and fear of falling 

larger samples would be required. Moreover, if one were to study 

whether fear of falling is more closely related to one visual field 

measure than the other even larger samples are necessary. The two 

correlations of peripheral and central measures with fear of falling have 

one common variable, here: the fear of falling index. Thus the two 

correlations are dependent. This needs to be taken into account when 

examining whether the correlations differ. This section is a small 

excursion that illustrates this problem through a simulation. I assume 

several underlying correlations of samples and evaluate the power of 

detecting a significant correlation depending on the number of data 

points. I also evaluate the power to detect a significant difference 

between two dependent correlations assuming several underlying 

correlations. Additionally, I illustrate the effect of noise in samples on 

the power to detect a significant difference between dependent 

correlations. 
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4.2 Methods 

Simulations were programmed in R. To evaluate the power to detect 

correlations samples from underlying normal distributions with specified 

correlations were drawn with increasing sample sizes from n = 5 to n= 

200. For each sample size 500 samples were created. Noise was 

introduced by replacing data points of each sample by data points from 

random samples with an underlying normal distribution with a standard 

deviation of 5 and a mean of 0. 

The power to detect a significant correlation or a significant difference 

between two correlations was estimated as the percentage of significant 

outcomes for each sample size. As a significance test for the difference 

between dependent correlations (r12 and r13) Steiger’s z was used. The 

equation for Steiger’s z is given below:  

 

            
    

            
 

               ;                   ;     
      

    ;       
     

        
;       

   
         

    

 
; 

Equation 8: Significance test for dependent correlations: Steiger’s z 

 

4.3 Results 

4.3.1 Power to detect a correlation between two samples 

Samples with underlying correlation coefficients of 0.25, 0.3, 0.5 and 

0.7 were created. The power to detect such correlations depending on 

sample size is illustrated in Figure 51. High correlations can be detected 

even with relatively small sample sizes while large numbers are needed 

to detect small correlations with equivalent power. 
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Figure 51: Power to detect significant correlations with increasing sample size 
using Spearman correlations. 
The significance level was chosen as α=0.05, the underlying correlation 
coefficients of the samples were 0.25, 0.3, 0.5 and 0.75.  

 

4.3.2 Power to detect a difference between two 

dependent correlations 

Samples 1, 2 and 3 with different underlying dependent correlations (r12 

and r13) were created. The correlation coefficients are given in Figure 

52. The underlying correlation between sample 2 and 3 (r23) was kept 

constant at 0.5. The power to detect a significant correlation depended 

on various factors. The power decreased when a lower underlying 

difference between the dependent correlations was present or when the 

single underlying correlations r12 and r23 were low.  

Additionally, the dependent correlations were kept constant and the 

underlying correlation between sample 2 and 3 (r23) was varied. The 

power to detect a difference between dependent correlations r12 and r13 

increased with an increasing underlying correlation r23 (Figure 53).  
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Figure 52: Power of finding a significant difference between two dependent 
correlation r12 and r13 (with α=0.05) depending on sample size.  
Samples with various underlying dependent correlation coefficients were 
created with a constant underlying correlation in r23 of 0.5. 

 

Figure 53: Power of finding a significant difference between two dependent 
correlation r12 and r13 (with α=0.05) depending on sample size.  
The samples were chosen to have a 100% increase in the underlying 
correlations r12 and r13 from 0.25 to 0.5. The  underlying correlations in r23 
were 0.25, 0.5 and 0.75. 
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4.3.3 Influence of noise in samples on power of detecting 

a difference between two dependent correlations 

Introducing outliers to the correlated samples expectedly further 

decreased the power to detect a significant difference between two 

dependent correlations. Figure 54 illustrates adding noise levels of 5% 

or 10% has a strong impact on the performance of Spearman 

correlations to detect significant correlations.  

 

Figure 54: Influence of noise on detecting the difference between two dependent 
correlations with increasing sample size. 
Samples with constant underlying correlations were created and outliers were 
introduced depicted is the power to detect differences between the dependent 
correlations in samples without noise and with 5% and 10% outlier rates. 

 

4.4 Conclusions 

The results of the simulations demonstrated that the power to detect a 

difference between dependent correlations is affected by various 

factors. Larger sample sizes are required to have sufficient power when 

the difference between the dependent correlations is low or when the 
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single correlation coefficients r12 and r13 are low and even a low 

correlation between samples 2 and 3 r23 decreases the power. 

Moreover noisy data further reduces the power to detect differences 

between dependent correlations. Thus, should there be a difference 

between the correlation of central or peripheral visual field summary 

measures and fear of falling, large sample sizes would be required to 

study such an effect. The correlation coefficients in our small sample 

were r12= -0.34 and r13= -0.35 for central and peripheral measures 

versus fear of falling respectively. The correlation between central and 

peripheral measures was r23 = 0.56. Assuming fear of falling was 

actually related more strongly to one visual field measure than the other 

with say a difference of 0.2, sample sizes of at least about 250 would be 

required for a power of 90%. This is assuming the data has no outliers 

and is normally distributed. The sample size of 30 described in Chapter 

5 is not sufficient to conclusively study the relation between self 

reported fear of falling and central and peripheral visual results. 
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5. ARVO Poster (Pilot data to 

Chapter 7) 
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