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Connectomic markers of disease expression, genetic risk and

resilience 1n bipolar disorder

D Dima'?, RE Roberts® and S Frangou?

Bipolar disorder (BD) is characterized by emotional dysregulation and cognitive deficits associated with abnormal connectivity
between subcortical—primarily emotional processing regions—and prefrontal regulatory areas. Given the significant contribution
of genetic factors to BD, studies in unaffected first-degree relatives can identify neural mechanisms of genetic risk but also
resilience, thus paving the way for preventive interventions. Dynamic causal modeling (DCM) and random-effects Bayesian model
selection were used to define and assess connectomic phenotypes linked to facial affect processing and working memory in a
demographically matched sample of first-degree relatives carefully selected for resilience (n=25), euthymic patients with BD
(n=41) and unrelated healthy controls (n=46). During facial affect processing, patients and relatives showed similarly increased
frontolimbic connectivity; resilient relatives, however, evidenced additional adaptive hyperconnectivity within the ventral visual
stream. During working memory processing, patients displayed widespread hypoconnectivity within the corresponding network. In
contrast, working memory network connectivity in resilient relatives was comparable to that of controls. Our results indicate that
frontolimbic dysfunction during affect processing could represent a marker of genetic risk to BD, and diffuse hypoconnectivity
within the working memory network a marker of disease expression. The association of hyperconnectivity within the affect-
processing network with resilience to BD suggests adaptive plasticity that allows for compensatory changes and encourages further

investigation of this phenotype in genetic and early intervention studies.
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INTRODUCTION

Bipolar disorder (BD) is characterized by mood dysregulation
resulting in recurrent episodes of depression and mania with
variable interepisode remission. BD remains one of the leading
causes of disability worldwide across all age groups' because of
our incomplete understanding of its biological basis. This
motivates efforts to characterize reliable biological markers of
risk and resilience to BD. Identification of neurobiological
mechanisms of resilience is of particular importance as it may
offer clues for preventive interventions.

There is a strong genetic contribution to the etiology of BD,
with estimated heritability between 60 and 85%.” The genetic
architecture of BD is complex and probably polygenic.® As patients
with BD and their unaffected relatives are likely to share some
susceptibility genes, shared neuroimaging abnormalities are
considered genetically driven markers of risk. Neuroimaging
abnormalities present in patients but not in their relatives are
considered markers of disease expression, whereas neuroimaging
measures that differentiate unaffected relatives both from patients
and unrelated healthy individuals are likely to represent markers
of resilience.*

Structural and functional magnetic resonance imaging (MRI)
studies have been extensively used to identify neural markers of
disease expression, risk and resilience to BD. A trend toward larger
whole-brain volumes has been observed in structural MRI studies
comparing unaffected relatives with unrelated healthy controls,>®
in contrast to BD patients who show subtle but measurable
reductions in whole-brain and regional gray matter volumes.”®

Functional MRI (fMRI) studies provide a richer source of informa-
tion as they assess the regional mean signal changes (activation)
and inter-regional interactions (connectivity) across distinct
situational demands.®'® In BD, task-dependent activation and
connectivity have been examined mostly in terms of affect
processing and executive control, based on behavioral data that
implicate dysfunction in these domains in patients and their
relatives.”'""'2 Affect processing is known to involve multiple
regions, notably the amygdala (AMG), ventral striatum and
putamen and the ventral prefrontal (VPFC), ventral anterior
cingulate (ACC) and insular cortices.'® Executive control comprises
diverse functions supported by a common network that includes
striatal structures, the dorsolateral prefrontal (DLPFC), dorsal ACC
and parietal (PAR) cortices.' In patients with BD, exaggerated
activation during affective and executive tasks has been
consistently observed in the AMG, insula and ventral ACC,
whereas in unaffected relatives it is mostly confined to the
insula.>'>'® Patients show evidence of reduced PFC engagement
during affective and non-affective tasks,">'”™2° while unaffected
relatives show a trend toward PFC hyperactivation.>?' Changes in
regional activation may reflect either inherent abnormalities or
reactive responses to deficits elsewhere in the brain. Therefore, a
network-level approach is required in order to further characterize
neural markers of disease expression, risk or resilience to BD. At
any given point, the connectomic features of a network are
defined by the nature and degree of neural network disruption,
the situational demands and the available network reserve.?
Increased situational demands within a network are typically met
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Table 1. Demographic, clinical and behavioral data

Patients with bipolar disorder (n=41)

Demographic variables

Age 44.3 (11.9)
Sex (male/female) 20/21
1Q 117.9 (17.9)
Clinical variables
HDRS total score® 4.8 (5.3)
YMRS total score® 1.4 (3.0)
BPRS total score® 27.5 (4.0)
Age of onset (years) 24.7 (8.0)
Duration of illness (years) 20.2 (10.5)
Depressive episodes (n) 5.7 (7.5)
Manic episodes (n) 5.6 (7.7)
GAF 75 (14.9)
Facial affect-recognition task performance
Accuracy (%) 90.3 (4.1)
Response time (s) 1.4 (0.20)
Working memory task performance
3-Back accuracy (%)° 68.9 (26.7)
3-Back response time (s) 0.86 (0.34)

Unrelated healthy controls (n=46) Resilient relatives (n=25)
40.3 (13.2) 39.7 (13.7)
25/21 13/12
112.6 (14.5) 115.8 (18.5)
0.1 (0.5) 0.14 (0.4)
0.2 (0.6) 0.0 (0.0)
24.3 (0.7) 24.1 (0.4)
93.1 (4.8) 90.1 (5.2)
1.10 (0.24) 1.09 (0.14)
72.1 (25.1) 90.1 (15.4)
0.87 (0.45) 0.73 (0.22)

compared with both other groups (P < 0.003).

Abbreviations: BPRS, Brief Psychiatric Rating Scale; GAF, Global Assessment of Functioning; HDRS, Hamilton Depression Rating Scale; n, number; s, seconds;
YMRS, Young Mania Rating Scale. Unless otherwise indicated, data are expressed as mean (s.d.). *Scores for patients are significantly greater than those of both
other groups (P < 0.019). ®Patients had longer mean response times compared with both other groups (P < 0.009). “Relatives showed higher accuracy scores

with increased connectivity; however, abnormally increased
(hyper-) or decreased (hypo-) connectivity represents reactive
responses to network disruption and, respectively, depend on the
availability or loss of network reserve.??

In patients with BD, connectivity within the affect-processing
networks is abnormally increased between subcortical regions®*2*
and in forward connections from subcortical to ventral PFC
regions.'®?>~%” At the same time, regulatory input from the PFC to
subcortical and posterior cortical regions appears reduced.'®?%-3!
Within the executive control network, patients with BD show
diffuse hypoconnectivity affecting subcortical, mostly hippocam-
pal and striatal, structures and key dorsal cortical regions in the
DLPFC, ACC and PAR327” Thus, disease expression in BD appears
to be associated with (a) hyperactivation and hyperconnectivity
between affect-processing subcortical regions and (b) reduced
regulatory input from the ventral PFC and the dorsal executive
control network regions.

Studies in unaffected first-degree relatives have also found
increased connectivity of subcortical and cortical affect-processing
regions.>® However, relatives also appear to have compensatory
hyperconnectivity between the DLPFC and either the VLPFC*® or
the PAR cortex.>® These findings suggest that avoidance of overt
disease expression (that is, resilience) may be associated with
preserved network capacity that allows for compensatory
connectivity changes. We tested this hypothesis by combining
conventional statistical parametric mapping with dynamic causal
modeling (DCM)* of fMRI data to characterize activation and
connectivity patterns in resilient relatives of patients with BD,
patients wit BD and unrelated healthy participants, during facial
affect recognition and working memory, two prototypical tasks of
affect processing and executive control.

MATERIALS AND METHODS

Participants

A demographically matched sample of euthymic patients with BD (n=41),
of their unaffected siblings (n=25) and healthy individuals (n=46),
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selected from the VIBES sample,®'929343541 participated in the present

study (Table 1). The sample included 17 patient-resilient sibling pairs, all
from separate families. The diagnostic status of all participants was
assessed using the Structured Clinical Interview for DSM-IV for Axis |
diagnoses.**** Patients fulfilled criteria for BD type | according to the
Diagnostic and Statistical Manual of Mental Disorders, 4th edition, revised
(DSM-IV).** The first-degree relatives were carefully selected based on a
strict definition of resilience detailed below. Unrelated healthy controls
were selected based on the absence of family history and personal lifetime
history of psychiatric disorders. In all participants, psychopathology was
rated using the Hamilton Depression Rating Scale (HDRS),* Young Mania
Rating Scale (YMRS)*® and Brief Psychiatric Rating Scale (BPRS);*” current IQ
was assessed using the Wechsler Adult Intelligence Scale 3rd Edition®® and
general functioning with the Global Assessment of Function® (GAF). To
ensure that the patients were in remission, their psychopathology was
assessed weekly over a period of 1 month prior to testing and at each
assessment they scored below 7 in the HDRS and YMRS. Patients were also
required to have remained on the same type and dose of medication for a
minimum of 6 months. Although the level of symptomatology was very
low, group differences were observed in HDRS (P=0.0001), YMRS
(P=0.004) and BPRS total scores (P=0.0001); patients were more sympto-
matic than the other two groups (P < 0.02). The BPRS, HDRS and YMRS
scores were highly correlated (all r>0.73, P < 0.0001). To avoid collinearity
we used the total BPRS score as a covariate in subsequent analyses because,
unlike the two other scales, it is applicable to nonclinical populations.

We employed strict criteria for resilience to minimize the likelihood of
including relatives who may appear resilient because they have yet to
manifest psychopathology or who had no evidence of expressed genetic
traits. The peak period of risk for the onset of BD is between 16 and 30
years,"g whereas conversion rates thereafter are very low.>® Therefore, in
this analysis we included relatives that (a) had passed though the peak risk
period and (b) had no lifetime history of any psychopathology, assessed
retrospectively at the time of scanning and prospectively at 4 years post-
scanning, (c) expressed predisposition to BD in terms of abnormal ventral
PFC-insula connectivity similar to that seen in patients.>®

Facial affect-recognition paradigm

Three negative facial emotions (fear, anger and sadness) were examined in
a randomized order in three event-related experiments during a
single acquisition session. In each experiment, 10 different facial identities
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Dynamic causal models (DCM) architecture for bipolar disorder (BD) patients, their resilient relatives and healthy individuals. (a) Base

model for the face affect paradigm. The model comprises four brain areas specified with bidirectional endogenous connections between all
regions (inferior occipital gyrus=10G, fusiform gyrus=FG, amygdala=AMG, ventral prefrontal cortex=VPFC; all located in the right
hemisphere) and with a driving input of ‘all faces’ into the IOG. (b) Base model for the working memory paradigm. An eight-area DCM was
specified with bidirectional endogenous connections between all brain regions (II0G, left I0G and rlOG, right I0G; IPAR, left PAR and rPAR,
right PAR; IACC, left anterior cingulate cortex and rACC, right ACC; IDLPFC, left dorsolateral prefrontal cortex and rDLPFC, right DLPFC) in each
hemisphere and lateral connections between homologous areas. Driving input of ‘1-, 2- and 3 -back’ modeled into the left and right 10G.

(www.paulekman.com) depicting 150% intensity of a negative or neutral
facial expression were presented in a pseudorandom order interspersed
with a fixation cross. Each stimulus (affective and neutral faces; fixation
cross) was displayed for 2s and repeated 20 times. Participants were
instructed to indicate whether the face had an emotional or a neutral
expression. Response time and accuracy data were collected.

Working memory paradigm

The N-back verbal working memory task was presented as an alternating
block paradigm incorporating active conditions (1-, 2- and 3-back) and a
baseline (0-back) condition. Participants were instructed to respond to
target letters by button press. In the baseline condition, participants
responded to the X letter. In the 1-, 2- and 3-back conditions participants
responded when the letter currently presented matched the one
presented in the preceding 1, 2 or 3 trials. There were 18 epochs in all,
each lasting 30s. Each letter was presented for 2s. Performance was
evaluated in terms of response time to target letters and accuracy.

Image acquisition

Both anatomical and functional imaging data were acquired during the
same session using a 1.5TGE Sigma. For the facial affect-recognition
paradigm, 450 T2*-weighted MR images reporting blood-oxygen-level-
dependent (BOLD) contrast were acquired (repetition time = 2000 ms, echo
time =40 ms, flip angle=70°, slice thickness=7mm, matrix size =64*64,
voxel dimensions = 3.75x3.75x7.7 mm). For the working memory paradigm,
a total of 180 T2*-weighted MR volumes depicting BOLD contrast were
acquired (repetition time=3000 ms, echo time=40 ms, flip angle=90°,
slice thickness=3 mm, matrix size =64%*64, voxel dimensions=3.75x
3.75x3.30 mm).

A high-resolution T1-weighted structural image was acquired for each
participant in the same session in the axial plane for co-registration
(inversion recovery prepared, spoiled gradient-echo sequence; repetition
time=18 ms, echo time =5.1 ms, flip angle =20°, slice thickness=1.5 mm,
matrix size =256*192, field of view=240x180 mm, voxel dimensions=
0.9375x0.9375x1.5 mm).

Functional image processing

Conventional and DCM analyses were implemented using SPM8 (www fil.
ion.ucl.ac.uk/spm/software/spm8/). For both paradigms, fMRI images were
realigned, normalized and smoothed using an 8-mm full-width-half-
maximum Gaussian kernel.

For the facial affect-recognition paradigm, each participant's fMRI data
from the three event-related experiments (fear, anger or sadness)
were concatenated and vectors of onset representing correct responses
were convolved with a canonical hemodynamic response function.
Six movement parameters were also entered as nuisance covariates.
The means of the three sessions as well as the transition at the end of each

session were also modeled. For each participant, contrast images of
affective > neutral faces were produced.

For the working memory paradigm, the smoothed single-participant's
images were analyzed using the linear convolution model, with vectors of
onset representing the experimental conditions (1-, 2- and 3 - back) and
the baseline condition (0-back). Six movement parameters were also
entered as nuisance covariates. Contrast images of the 3-back> baseline
condition were produced for each participant.

Conventional fMRI analysis

For each paradigm, contrast images were entered in a second-level
random-effects analysis. The effect of group (patients, relatives and
controls) was tested using a one-way analysis of variance with the BPRS
total score as covariate. Suprathreshold clusters were identified using
family-wise error correction of P < 0.05, k> 20. Stereotactic coordinates
were converted from the MNI to the Talairach and Tournoux spatial array.”’

DCM analysis

DCM tests a set of models and, through Bayesian model selection, provides
evidence in favor of one model relative to others. For each task we defined
the relevant model space (that is, the set of models that are plausible)
based on current best evidence regarding the neural circuitry that
supports facial affect recognition and working memory. For the facial
affect-recognition paradigm, previous studies implicate the inferior occipital
gyrus (I0G), fusiform gyrus (FG), AMG and VPFC, most consistently on
right>2>* We therefore produced a basic 4-node DCM in the right
hemisphere with endogenous connections between volumes of interest
specified in the I0G, FG, AMG and VPFC. The main effect of 'all faces' was
modeled as driving input to the I0G (Figure 1a). We then created all
possible models derived through permutation of condition-specific
responses (affective faces) on the forward coupling strength toward the
VPFC. For the working memory paradigm, previous studies emphasize the
bilateral involvement of the 10G, PAR, ACC and DLPFC.>>® We produced a
basic 8-node DCM with endogenous connections between volumes of
interest specified bilaterally in the I0G, PAR, ACC and DLPFC. The main
effect of 'working memory' was modeled as driving input to the 10G
(Figure 1b). We then created all possible models derived through
permutation of condition-specific responses (3-back) on the coupling
strength between nodes.

Seven models were produced for the facial affect-recognition paradigm
and 32 for the working memory paradigm (Supplementary Information;
Supplementary Table S1; Supplementary Figures S1 and S2). For each
paradigm separately, models were compared using random-effects
Bayesian Model Selection in SPM8 to compute exceedance and posterior
probabilities for each group.>” To summarize the strength of effective
connectivity and quantify its modulation, we used random-effects Bayesian
Model Averaging to obtain average connectivity estimates across all
models for each participant.>® Bayesian Model Averaging connections and
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Figure 2.

Results of dynamic casual modeling (DCM) model selection for bipolar disorder (BD) patients, resilient relatives and healthy

individuals. (@) Optimal DCM model selection for the face affect paradigm. The models comprised a four-area DCM specified with bidirectional
endogenous connections between the inferior occipital gyrus (I0G), fusiform gyrus (FG), amygdala (AMG) and ventral prefrontal cortex (VPFC),
with a driving input of all faces into the I0G. Bold black arrows represent where facial affect modulation (corresponding to fearful, angry and
sad faces) was placed in the winning model for each group. (b) Optimal DCM model selection for the working memory paradigm. The models
compromised an eight-area DCM specified with bidirectional endogenous connections among the left IOG (IIOG) and right IOG (rlOG), the left
parietal cortex (IPAR) and right PAR (rPAR), the left anterior cingulate cortex (IACC) and right ACC (rACC), the left dorsolateral prefrontal cortex
(IDLPFC) and right DLPFC (rDLPFC), with a driving input of 1-, 2-, 3-back into the IOG and rlOG. Bold black arrows represent where 3-back

modulation was placed in the winning model for each group.

modulations were extracted and tested in SPSS20 using analyses of
variance or Kruskal-Wallis tests if data were not normally distributed.

RESULTS
Behavioral data

Details on task performance are shown in Table 1. For facial affect
recognition, there was a main effect of group on response time
(P=0.004), with patients being slower than the other two groups
(P <0.007), but not on accuracy (P=0.20). Conversely, in the
working memory paradigm, there was a main effect of group on
accuracy during the 3-back condition (P=0.004), with relatives
outperforming the other two groups (P < 0.003), but not on
response time (P=0.10). Patients’ medication type and dose did
not affect their performance on either task (all P> 0.40).

Conventional fMRI analysis

Facial affect recognition. A group effect in the contrast affecti-
ve > neutral faces was noted in the right ventral ACC and right
superior frontal gyrus, where patients showed, respectively,
increased and decreased activation compared with their
relatives and unrelated controls (Supplementary Information;
Supplementary Table S2).

Working memory. Group differences were noted only in the 3-
back > 0-back condition. BD patients showed reduced activation
in the bilateral middle and inferior frontal gyrus, and increased
activation in the right temporal gyrus and bilateral ACC compared
with the other two groups. Resilient relatives showed higher
activations in these areas compared with unrelated healthy
controls (Supplementary Information; Supplementary Table S2).

Patients’ medication type and dose did not affect any of the
above results.
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DCM analysis

Facial affect recognition. The exceedance probabilities of all
models are shown in Supplementary Table S3. The optimal models
are shown in Figure 2a. In unrelated healthy individuals, the
optimal model, with an exceedance probability of 41%, was the
model that allowed facial affect to increase the strength of the
forward connection from the 10G to the VPFC. In patients with BD,
the optimal model, with an exceedance probability of 32%,
allowed facial affect to increase the strength of the forward
connection from the AMG to the VPFC. In resilient relatives, the
optimal model, with an exceedance probability of 33%, allowed
facial affect to increase the strength of the forward connections to
the VPFC from the 10G, the FG and the AMG. Across all models,
affect processing in patients compared with unrelated controls
was associated with reduced connectivity between I0G and VPFC
(P=0.02) but increased between AMG and VPFC (P=0.03). Across
all models, there was a significant effect of group on the reciprocal
endogenous connectivity between the 10G and the FG (P < 0.04),
which was higher in resilient relatives compared with both other
groups (Figure 3a).

Working memory. The exceedance probabilities of all models are
shown in Supplementary Table S3. The optimal models are shown
in Figure 2b. Unrelated healthy individuals and relatives had the
same optimal model with respective exceedance probabilities of
57 and 20%. This model allowed for the working memory load to
increase the strength of the connection from the right 10G to
the right DLPFC. No optimal model was identified in BD patients.
The best model, but with an exceedance probability of 8%, was
the same as that identified for relatives and controls. The second
and third best models, with exceedance probabilities of 7% and
6%, respectively, allowed for the working memory load to increase
the strength of the connection from the IOG to the PAR, either on
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Figure 3.

Group differences in effective connectivity within facial processing and working memory networks. (a) Alterations in effective

connectivity within the facial processing network established by Bayesian model averaging across all models. The red arrows indicate
significantly increased connectivity in resilient relatives of patients compared with patients and healthy individuals. (b) Alterations in effective
connectivity within the working memory-processing network established by Bayesian model averaging across all models. The blue arrows
indicate significantly reduced connectivity in BD patients compared with resilient relatives and healthy individuals.

the right or the left hemisphere. In these three models, duration of
illness was negatively correlated with the memory load modula-
tion of the forward connections from IOG to the DLPFC (r=-0.48;
P=0.004) or to the PAR (left: r=-0.37; right: r=—0.42; P < 0.01).
Conversely, higher GAF scores were associated with greater
working memory modulation of the forward connections from the
right 10G to the right PAR (r=0.45, P=0.01) and to the right DLPFC
(r=0.52, P=0.003). Across all working memory models, there was
a significant effect of group in seven endogenous connectivity
parameters (all P <0.03), which was driven by the difference
between patients and the other two groups. Patients showed
reduced strength in the reciprocal connections between the right
and left DLPFC, in the forward connections from the left and
right PAR to the left ACC and right DLPFC, respectively, as well as
the connection from the right to the left PAR. Finally, the
backward connectivity from the PFC was reduced between left
DLPFC and left ACC and between the right DLPFC and right PAR
(Figure 3b).

No significant effect of the medication type or dose was found
on any connectivity parameters (P>0.42) in either paradigm.

DISCUSSION

In the present study we compared endogenous and modulated
connectivity parameters in patients with BD, resilient relatives and
unrelated healthy controls during facial affect processing and
working memory to identify connectomic markers of genetic risk,
resilience and disease expression.

Connectomic markers of shared genetic risk for BD

In line with previous neuroimaging studies of facial affect
processing, we found significantly increased connectivity between
the AMG and the VPFC in patients with BD and their unaffected
relatives,'®?°"27385960  This  finding therefore represents a
connectomic marker of shared genetic vulnerability to the
disorder. However, it is not sufficient for disease expression as it
was present in relatives who had remained free of any clinical
psychopathology. The presence of this shared genetic connec-
tomic abnormality confirms that resilience in the relatives must
arise from adaptive neural responses that can overcome their
expressed genetic risk.

Adaptive hyperconnectivity as a marker of resilience to BD

At any given point in time, the connectomic features of a network
are defined by the nature and degree of neural network
disruption, the demands placed on the network by internal or

external context and by the availability of network reserve.?
Across all brain disorders, the presence of neural dysfunction
results in reduced or lost network connectivity when network
reserves are depleted. However, when network resources are still
available, increased connectivity is considered the most common
response.?? Within this framework, the presence of frontolimbic
hyperactivation in patients and relatives confirms a shared genetic
response to facial affect-processing network dysfunction. However,
the additional hyperconnectivity observed only in relatives
can be viewed as an adaptive network response-associated
greater network reserve. The adaptive nature of this response
can be inferred by its association with preserved mental well
being in the relatives. Additional support is provided by long-
itudinal studies in patients with BD where successful treatment
is associated with increased connectivity throughout the facial
affect-processing network.’' Of further significance is the
increased endogenous connectivity within the ventral visual
stream in resilient relatives who showed increased reciprocal
coupling between the I0G and FG. The FG is involved in early
perceptual visual processing where it contributes to the categor-
ization of facial identity and valence.®%* In patients with BD there
is reduced FG engagement from very early disease expression®”®*
and exaggerated volume loss during disease progression.®® It
would therefore appear that resilient relatives have adapted their
neural responses to emotional faces via additional recruitment
throughout the affect-processing network, which is suggestive of
increased plasticity between lower and higher visual areas that
may increase functional network efficiency.

Hypoconnectivity as a connectomic marker of disease expression
in BD

Our results show that healthy individuals and resilient relatives
engaged the same optimal DCM for working memory and did not
differ in any connectomic parameter in terms of endogenous
connections or modulations. In contrast, no single DCM appeared
to explain the working memory network architecture in patients.
Moreover, patients showed widespread hypoconnectivity within
the entire working memory network. This is consistent with
convergent reports of prior neuropsychological and functional
neuroimaging studies of working memory dysfunction in
patients.”'#?° Further, in our study hypoconnectivity within the
working memory network was linked to disease severity and
functional impairment. Hypoconnectivity between visual and
prefrontal regions declined further with increasing illness duration
and was associated with lower everyday functioning level.
Working memory dysfunction is considered a major contributor
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to patients’ inability to regain a premorbid level of functioning and
to ongoing psychosocial impairment.®%” Although patients were
medicated, it is unlikely that medication contributed to this
widespread hypoconnectivity as successful treatment with
medication has been shown to promote normalization of
connectivity deficits across disorders.%%°

Our results with regards to working memory are not dissimilar
to findings within the field of schizophrenia where hypoconnec-
tivity is generally observed within the executive control network.”
Such an overlap between schizophrenia and BD is often
considered in terms of their overlap in polygenic risk scores.”’
However, recent findings suggest that the working memory
network may be particularly sensitive to a diagnosis-independent
psychopathology, for example, hypoconnectivity in dorsal
prefrontal and parietal regions seems to index higher levels of
neuroticism,”? a known transdiagnostic risk factor for psychiatric
disorders.”®

Methodological considerations

A particular strength of the study was the inclusion of a carefully
selected group of resilient relatives. Resilience, or health for that
matter, cannot be considered immutable traits. It is theoretically
possible that the relatives selected may present with psychiatric
pathology in some future time. However, this likelihood is
generally statistically small and we took steps to ensure that
none of the relatives showed any signs of imminent conversion. A
conservative view of our results is that the adaptive connectomic
signature identified in resilient relatives is, at the very least,
associated with very delayed disease onset. We did not examine
the polygenic score of relatives because it represents a summary
measure of genetic risk to BD that is mechanistically not more
informative than family history as it does not allow us to make
direct inferences about its association with specific phenotypic
and connectomic traits. However, this is an interesting avenue for
further research.

CONCLUSIONS

Our findings suggest that resilience to genetic risk of BD may
reflect the capacity to adapt network connectivity to ameliorate
the effects of underlying network dysfunction. Further neuroima-
ging studies on adaptive connectivity features to avert the
manifestation of BD have the potential to assist in formulating
biologically informed preventative strategies and aid in the
development of future studies on high-risk populations.”*”>
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