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Abstract 

Genetic factors account for up to 80% of the liability for schizophrenia and bipolar 

disorder. Genome-wide association studies (GWAS) have successfully identified several 

single nucleotide polymorphisms (SNPs) and genes associated with increased risk for 

both disorders. Single SNP analyses alone do not address the overall genomic or 

polygenic architecture of psychiatric disorders as the amount of phenotypic variation 

explained by each GWAS-supported SNP is small whereas the number of SNPs/regions 

underlying risk for illness is thought to be very large. The polygenic risk score models 

the aggregate effect of alleles associated with disease status present in each individual 

and allows us to utilize the power of large GWAS to be applied robustly in small 

samples. Here we make the case that risk prediction, intervention and personalized 

medicine can only benefit with the inclusion of polygenic risk scores in imaging 

genetics research.  

 

 

 

 

Keywords: imaging genetics; polygenic risk score; schizophrenia; bipolar disorder; 

psychiatry 



 
 

Psychiatric disorders are highly heritable, especially schizophrenia and bipolar 

disorder. Heritability is the proportion of trait variation that is accounted for by genetic 

factors, as opposed to trait variation due to environmental factors. Twin and family 

studies for schizophrenia have placed heritability around 0.8 (Sullivan et al., 2003; 

Lichtenstein et al., 2009) and between 0.6 to 0.85 for bipolar disorder (McGuffin et al., 

2003; Craddock and Sklar, 2009). After the human genome was first sequenced the 

genetics field has produced huge technological strides towards estimating heredity 

(Lander et al., 2001). The most common genetic marker is the single nucleotide 

polymorphism (SNP), a single subunit change in the DNA sequence. SNPs are located 

on a DNA chip, which is used to create a genetic profile for each individual. In turn DNA 

chips are used in genome-wide associations studies (GWAS) that estimate the 

heritability of a disorder throughout the genome by comparing healthy controls with 

patients, in a hypothesis-free way. The first disease upon which the GWAS technique 

was used was age-related macular degeneration in 2005 (Klein et al., 2005), and since 

then many genes have been implicated in macular degeneration (Fritsche et al., 2013). 

After the first GWAS studies in schizophrenia it soon became apparent there 

were no common variants that had a large influence on risk, but rather that there were 

thousands of variants of very small effect that together acted to increase or reduce 

risk. The first signs of success ins schizophrenia started to emerge in 2008 with a GWAS 



 
 

study that implicated the ZNF804A gene that almost reached the significance level 1.61 

x 10-7 (O’Donovan et al., 2008). In 2009, the SGENE consortium (Stefansson et al., 

2009) and the International Schizophrenia Consortium (Shi et al., 2009) published 

papers on other variants associated with the schizophrenia. These groups then 

combined their efforts and began publishing under the Psychiatric Genomics 

Consortium banner with papers in 2011 detailing five variants and 2013 with 13 

variants (Ripke et al., 2011; 2013). However, real progress began when the sample size 

exceeded 15,000 cases or so, with an inflection point being reached where, instead of 

discovering one variant every couple of thousand cases, variants began to be 

discovered when, on average, another 250 cases and 250 controls were added to the 

sample size. Thus, once the size of the sample had increased to >15,000 cases, the 

power to detect variants reached a point where GWAS ccould detect the effects of the 

modest size at which lots of schizophrenia-associated variants are operating. 

Then in 2014, Ripke and colleagues (Ripke et al., 2014) published 108 regions 

associated with the risk of schizophrenia. In this analysis that included over 36,989 

patients and 113,075 healthy controls, few if any candidate genes replicated; for 

example COMT, a gene implicated in the risk of schizophrenia and extensively used in 

imaging genetics had a p-value of 0.56 (Ripke et al., 2014). The same was true for the 

BDNF gene, with a p-value of 0.006. Interestingly the BDNF gene is significantly 



 
 

associated with smoking and obesity (Hallden et al., 2013), attributes with increased 

prevalence in schizophrenia (Hennekens et al., 2005). Other genes that had not been 

identified from previous schizophrenia studies were identified in the PGC2 paper and 

showed significant association with schizophrenia, such as the DRD2, a target for 

antipsychotic drugs, and the GRM3 involved in glutamatergic transmission (Ripke et al., 

2014).  

 Although genetic research in bipolar disorder is less published upon than in 

schizophrenia, susceptibility genes for bipolar disorder have also been identified 

through GWAS (Alsabban et al., 2011). The most robustly associated SNPs are located 

in the CACNA1C (Ferreira et al., 2008; Sklar et al., 2008; 2011), the ITIH3 (Sklar et al., 

2011), the TRANK1 (Chen et al., 2013), the NCAN (Cichon et al., 2011), the ANK3 

(Ferreira et al., 2008; Sklar et al., 2008; Schulze et al., 2009; Scott et al., 2009; Smith et 

al., 2009; Athanasiu et al., 2010; Tesli et al., 2011), the SYNE1 (Sklar et al., 2011; Green 

et al., 2013) and the ODZ4 gene (Sklar et al., 2011).  

The question that arises is how to utilize the predictive power of GWAS 

findings. The predictive power of genetic risk prediction is not yet useful for clinical 

applications but where genetic prediction may have utility is acting as biomarkers for 

schizophrenia and bipolar disorder traits within individuals in, e.g. imaging studies. A 

key hypothesised benefit of brain imaging approaches is their ability to decipher if and 



 
 

how genetic risk factors impact brain structure and function, especially in brain regions 

associated with disease expression.  

In the last decade a substantial amount of literature has focused on the effect 

of candidate genes on brain structure and function. Most of these studies have used 

single gene variants and risk haplotypes that were found traditionally from linkage 

studies and more recently from GWAS studies.  

Rasetti and Weinberger (2011) reviewed the literature of candidate genes in 

schizophrenia in functional magnetic resonance imaging (fMRI) studies, indexed by 

cognitive task. In the working memory (WM) domain: (i) the GAD1, GRM3, COMT, 

RGS4, CACNA1C, KCNH2, DTNBP1 and MTHFR genes have shown to impact function of 

the dorso-lateral prefrontal cortex (DLPFC), (ii) the COMT, PRODH and RGS4 have been 

associated with altered engagement of the ventrolateral prefrontal cortex (VLPFC), (iii) 

the PRODH with parietal lobe function, (iv) the NRG1, G72 and DISC1 with hippocampal 

function and last (v) the DRD2 and COMT with supragenual ACC function. In the 

cognitive control domain: (i) the DTNBP1, DRD2 and MAOA have been associated with 

DLPFC function, (ii) the DRD2 with VLPFC function, (iii) the DRD2 and MAOA with 

parietal lobe function and iv) the COMT, DRD2 and MAOA with ACC function. From all 

these genes the only ones replicated or discovered in GWAS studies are GRM3, 

CACNA1C and DRD2 (Ripke et al., 2014). The CACNA1C (Paulus et al., 2014) and 



 
 

ZNF804A (Rasetti et al., 2011) GWAS schizophrenia risk SNPs were found to be 

correlated with reduced prefrontal-hippocampal coupling during WM tasks in healthy 

controls and schizophrenia patients. Tan et al. (2012) using dynamic causal modelling 

(Friston et al., 2003) on fMRI WM data in healthy participants differentiated the effects 

of the COMT, DRD2 and AKT1 genes on the prefrontal-parietal WM maintenance and 

prefrontal-striatal WM manipulation network. Specifically, the prefrontal-parietal 

circuit is influenced only by the COMT gene, while the prefrontal-striatal circuit 

populated by the dopamine D2 receptors is affected by all three genes.  

Most imaging genetics studies in bipolar disorder have focused on the effect of 

the CACNA1C risk gene, a bipolar disorder GWAS gene, on structural and functional 

neuroimaging data, in order to better understand the contribution of genetics to 

bipolar disorder. Two structural studies have found increased grey matter volume 

(Kempton et al., 2009) and increased total cortical volume (Wang et al., 2011) 

associated with the risk CACNA1C variant. Perrier et al. (2011) using a regions of 

interest approach found increased grey matter density in the right amygdala and 

hypothalamus in participants with the risk CACNA1C SNP, while another study found 

that the CACNA1C gene influences the brainstem rather than grey matter volume 

(Franke et al., 2010).  



 
 

Studies on the effect of the CACNA1C gene on brain function that included 

bipolar disorder patients, have found increased right amygdala activity during a 

negative emotional faces task in CACNA1C risk carriers (Jogia et al., 2011; Tesli et al., 

2013). In another study during an episodic memory task carrying the CACNA1C risk 

variant resulted in a stronger decrease of hippocampal and ACC activation in bipolar 

disorder relatives, indicating an additive effect of CACNA1C variation on familial risk 

(Erk et al., 2013). Using DCM connectivity analysis, two studies found that during 

emotional processing, the presence of the CACNA1C risk allele was associated with 

decreased outflow of information from the medial frontal gyrus (Radua et al., 2013) 

and decreased visual-prefrontal effective connectivity (Dima et al., 2013). In both 

studies the findings were significantly more marked in patients than in their unaffected 

relatives and healthy controls. Although all these GWAS candidate genes imaging 

genetics studies illustrate the potential usefulness of genetic imaging, single SNP 

analyses alone do not address the overall genomic or polygenic architecture of 

schizophrenia and bipolar disorder. 

 

Polygenic scores  

A typical GWAS tests millions of SNPs for association with the disease of choice, 

but this necessitates the application of a very conservative significance threshold, 



 
 

usually 5 x 10-8 for multiple testing correction. Typically, only a small number of 

SNPs/regions survive this threshold. Nevertheless, the amount of phenotypic variation 

explained by each GWAS-supported SNP is very small whereas the number of SNPs 

underlying the risk for illness is thought to be very large (Purcell et al., 2009). For that 

reason, candidate genes studies have to be treated with cautiousness since the 

possibility of a single SNP explaining a large variance of the disease expression is slim, 

whether this is in e.g. behavioural, cognitive or neuroimaging traits.  

By utilizing the vast amount data created by GWAS studies (current sample size 

in schizophrenia > 150,000) we can calculate polygenic risk scores (PRS) for each 

individual associated with a specific disorder, e.g. schizophrenia or bipolar disorder. A 

PRS incorporates information from GWAS-SNPs and SNPs that are not genome-wide 

significant. These non significant genome-wide GWAS SNPs are meeting nominal 

significance criteria, even though it is accepted that some of them are false positives. 

The PRS thus models the aggregate effect of SNPs (alleles) associated with disease 

status present in each individual and allows us to utilize the power of large GWAS to be 

applied robustly in small samples (Ferreira et al., 2008; Purcell et al., 2009; Sklar et al., 

2011; Dudbridge et al., 2013). For example the variance explained by the current 

schizophrenia PRS is 18%, while the variance explained by the CACNA1C gene is around 

0.005% (Ripke et al., 2014). In Figure 1 we show that even with a sample size of 



 
 

>150,000 we only have 60% power to detect the impact of the CACNA1C gene. With 

the statistical power of the PRS being exponentially better than that of a single SNP it 

points to a paradigm shift in the field of imaging genetics.  

The first application of the PRS method was in schizophrenia, a study that 

supported the polygenic component of schizophrenia and its similarities with bipolar 

disorder (Purcell et al., 2009). These results were replicated in a second larger sample 

that doubled the proportion of variance explained by common variants to 6% in 

schizophrenia (Ripke et al., 2011). The polygenic model has also been successfully used 

in other traits like the body mass index (BMI; Speliotes et al., 2010), where the BMI 

PRS has shown positive association with disease expression (Peterson et al., 2011). 

Furthermore, the PRS method has been used successfully for the association of 

personality traits and mood disorders (Middeldorp et al., 2011; Luciano et al., 2012), 

depression and anxiety (Demirkan et al., 2011) and the five major psychiatric disorders 

(GROUP et al., 2013). It has also been used to differentiate genetically, for example, 

schizophrenia and autism (Vorstman et al., 2013) or schizophrenia and intelligence 

(van Scheltinga et al., 2013). The schizophrenia PRS has been correlated with 

quantitative measures of psychosis in terms of symptoms scales (Derks et al., 2012) 

and neuroimaging measures (Walton et al., 2013). Specifically the PRS for 



 
 

schizophrenia was associated positively with reduced left DLPFC during a WM 

processing paradigm (Walton et al., 2013). 

Recently, the bipolar disorder PRS has been used to examine its relationship 

with brain function and structure in individuals at familial risk for a mood disorder 

(Whalley et al., 2012; 2013). Whalley et al. (2012) showed a positive correlation 

between bipolar disorder PRS and activation of the ACC, amygdala and other limbic 

regions of the brain, areas that have been impaired in bipolar disorder expression. In 

the same cohort, the bipolar disorder PRS was significantly associated with decreased 

white matter integrity in the right superior longitudinal fasciculus (Whalley et al., 

2013). Lastly, a study found an association between the PRS for major depressive 

disorder and reduced cortical thickness in the left amygdala-medial prefrontal circuitry 

in healthy young adults (Holmes et al., 2012).  

 

Clinical relevance 

Where does the PRS fit in clinical practice? In a large Swedish population-based 

study research showed that adding a PRS on a prediction model for prostate biopsies, 

would cut the biopsies from 12% to 5%, without missing less than 1% of the aggressive 

cancers in the population (Aly et al., 2011). Marking SNPs in patients have advantages 

that other biological tests currently lack: they are cheap, easy to analyse and most 



 
 

importantly stay stable throughout the lifespan of someone life. As sample sizes 

increase exponentially in the field of psychiatry one can assume that more genetic risk 

variants will be identified in the near future, thus adding to the usefulness of genetic 

profiles substantially. The hope is that through polygenic scoring, especially in common 

diseases that seem to be affected by a large number of genes with small effects sizes, 

as is the case with schizophrenia and bipolar disorder, the road will lead to 

personalized medicine. Personalized genetics information is hopefully going to lead 

from interventional medicine to preventive medicine, which will help cut down health 

care costs. Another area of medicine where genetic information can influence greatly 

is pharmacogenomics, by keeping in mind that around 100,000 people die each year in 

the USA due to adverse drug reactions (Lazarou et al., 1998) and despite efforts to 

improve patient safety in the past few years it has not been successful (Landrigan et 

al., 2010; Phillips and Barker, 2010). Although until now there have been no robust 

findings of common genetic variants associated to drug response that could be 

translated in clinical practice in psychiatry the road has been paved for the 

identification of genetic determinants to personalized psychiatric treatment 

(Kirchheiner et al., 2005; Kim et al., 2006; Kato et al., 2010; Mrazek et al., 2011; Tansey 

et al., 2012). The efficacy of polygenic models for risk prediction, intervention and 



 
 

personalized medicine can only benefit with the inclusion of other traditional risk 

factors such as family history and age of onset (Chatterjee et al., 2013).  
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Figure 1. Power calculations for sample size for the CACNA1C gene and the 

schizophrenia PRS according to variance explained.  
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