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ABSTRACT	
	

Diagnostic	accuracy	is	an	important	index	of	the	quality	of	health	care	service.	Missed,	

wrong	or	delayed	diagnosis	has	a	direct	effect	on	patient	safety.	Diagnostic	errors	have	been	

discussed	at	length;	however	it	still	lacks	a	systemic	research	approach.	

This	thesis	takes	the	diagnostic	process	as	a	system	and	develops	a	systemic	model	of	

diagnostic	errors	by	implementing	system	dynamics	modelling	combined	with	regression	

analysis.	It	aims	to	propose	a	better	way	of	studying	diagnostic	errors	as	well	as	a	deeper	

understanding	of	how	factors	affect	the	number	of	possible	errors	at	each	step	of	the	

diagnostic	process	and	how	factors	contribute	to	patient	outcomes	in	the	end.	

It	is	executed	following	two	parts:	

In	the	first	part,	a	qualitative	model	is	developed	to	demonstrate	how	errors	can	happen	

during	the	diagnostic	process;	in	other	words,	the	model	illustrates	the	connections	among	

key	factors	and	dependent	variables.		It	starts	from	discovering	key	factors	of	diagnostic	

errors,	producing	a	hierarchical	list	of	factors,	and	then	illustrates	interrelation	loops	that	

show	how	relevant	factors	are	linked	with	errors.	The	qualitative	model	is	based	on	the	

findings	of	a	systematic	literature	review	and	further	refined	by	experts’	reviews.	

In	the	second	part,	a	quantitative	model	is	developed	to	provide	system	behaviour	

simulations,	which	demonstrates	the	quantitative	relations	among	factors	and	errors	during	

the	diagnostic	process.	Regression	modelling	analysis	is	used	to	estimate	the	quantitative	

relationships	among	multi	factors	and	their	dependent	variables	during	the	diagnostic	phase	

of	history	taking	and	physical	examinations.	The	regression	models	are	further	applied	into	

quantitative	system	dynamics	modelling	‘stock	and	flow	diagrams’.	The	quantitative	model	

traces	error	flows	during	the	diagnostic	process,	and	simulates	how	the	change	of	one	or	

more	variables	affects	the	diagnostic	errors	and	patient	outcomes	over	time.	The	change	of	

the	variables	may	reflect	a	change	in	demand	from	policy	or	a	proposed	external	

intervention.		

The	results	suggest	the	systemic	model	has	the	potential	to	help	understand	diagnostic	

errors,	observe	model	behaviours,	and	provide	risk-free	simulation	experiments	for	possible	

strategies.	
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Chapter	1 Introduction	

1.1 Background	and	motivation	
Diagnostic	 errors	 are	 the	 incorrect	 diagnoses	 after	 clinical	 examination	 or	 technical	

diagnostic	 procedures1,	 which	 are	 widely	 recognised	 as	 missed,	 wrong	 or	 unintentionally	

delayed	diagnosis2.	Diagnostic	errors	are	taken	as	frequent	errors	with	negative	outcomes	in	

medical	care.	The	rate	of	diagnostic	errors	occurring	in	medicine	can	reach	up	to	10%	~	15%,	

which	 is	 determined	 in	 the	 relevant	 autopsy	 studies	 3 	 4 	 5 .	 At	 the	 same	 time,	 some	

researchers6	7	claim	 that	 about	 40%	 ~	 60%	 errors	 may	 be	 still	 undetected	 by	 autopsies.		

Diagnostic	errors	not	only	induce	severe	consequences	to	patient	safety,	which	sometimes	

is	irreparable,	but	also	cause	large	extra	finance	payouts.	Relevant	tort	shows	it	was	nearly	

twice	as	common	as	claims	for	other	medication	errors	and	resulted	in	the	largest	payouts8.	

It	 is	also	claimed	that	diagnostic	errors	take	the	largest	part	 in	the	ambulatory	malpractice	

claims	 and	 can	 cost	 up	 to	 $300	 000	 per	 claim	 approximately	 on	 average	 in	 the	 US.9	

According	to	the	research	done	by	CRICO10,	 it	was	discovered	that	diagnosis-related	claims	

were	 the	 highest	 in	 frequency	 and	 severity	 of	 all	 malpractice	 cases11.	 In	 terms	 of	 these	

diagnosis-related	 claims,	 cancer	 was	 the	 most	 common	 missed	 or	 misdiagnosis-	 related	

disease,	 while	 myocardial	 infarctions	 lay	 in	 the	 second	 position.11	 Meanwhile,	 diagnostic	

errors	 are	 usually	 undiscovered	 and	 easily	 unreported.	 The	 medical	 incident	 reporting	

system	 is	 still	 the	 essential	 way	 of	 reporting	 diagnostic	 errors	 6,	 although	 it	 has	 some	

limitations	and	unsatisfied	outcomes	 in	reporting	them.	The	 limitations	of	reporting	them,	

such	 as	 insufficient	 records	 and	 poor	 quality	 of	 records,	 make	 the	 further	 analysing	 or	

detecting	work	even	harder.	

Many	 researchers	 believe	 diagnostic	 errors	 could	 be	 potentially	 reduced.	12	An	 increasing	

number	of	researches	about	diagnostic	errors	were	witnessed	during	the	last	decade.	Most	

of	these	methods	focus	on	one	of	the	causes	or	a	specific	disease,	which	analyse	diagnostic	

errors	 at	 length13	14,	 and	 the	 results	 are	 diverse	 and	 limited	15	16	17	18.	 A	 systemic	 view	 of	

diagnostic	 errors	 and	 diagnostic	 process	 errors	 has	 not	 known	 and	 the	 possibility	 of	

analysing	 diagnostic	 errors	 from	 a	 system	 level	 has	 received	 little	 attention,	 although	

system-level	solution	is	suggested	by	the	Institute	of	Medicine	as	the	most	powerful	way	to	

reduce	medicine	errors19.	

Moreover,	 diagnosis	 is	 a	 complex	process	 and	 is	 commonly	multifactorial2.	 The	diagnostic	

process	 involves	 a	 series	 of	 phases	 including	 history	 taking	 and	 physical	 examinations,	

diagnostic	 tests,	 referrals	and	 follow-up	phase.	These	phases	are	connected	 together,	and	
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affect	each	other.	Errors	that	can	happen	at	any	phase	of	the	diagnostic	process	may	lead	to	

a	 diagnostic	 error	 directly	 or	 indirectly	20,	 and	 these	 errors	 are	 usually	 referred	 to	 as	

diagnostic	process	errors.	The	causes	of	 the	errors	at	each	phase	may	also	affect	 the	 final	

decision-making,	 and	 can	 be	 the	 causes	 of	 diagnostic	 errors.	 Causes	 of	 diagnostic	 errors	

bring	 about	 both	 positive	 cause-effect	 relations	 and	 negative	 cause-effect	 relations.	 A	

positive	cause-effect	relation	means	the	cause	is	positive	to	the	effect.	In	other	words,	if	the	

cause	 increases	 (decreases),	 then	 the	 effect,	 which	 is	 the	 diagnostic	 errors	 or	 diagnostic	

process	 errors,	 increases	 (decreases).	 A	 positive	 cause-effect	 relation	 means	 that	 if	 the	

cause	increases	(decreases),	then	the	effect	decreases	(increases).	

Therefore,	 diagnostic	 errors	 need	 to	 systemically	 analyse	 the	 causes,	 and	 illustrate	 the	

whole	 picture	 of	 causes	 and	 errors	 in	 the	 diagnostic	 process,	 and	 provide	 a	 way	 to	 seek	

system-level	solutions.		

1.2 Aims	
This	thesis	aims	to	take	the	diagnostic	process	as	a	system,	and	systemically	model	

diagnostic	errors.	The	qualitative	model	is	to	provide	a	structured	and	hierarchical	picture	of	

the	causes	of	diagnostic	errors.	The	quantitative	model	aims	to	study	errors	in	a	system	of	

the	diagnostic	process,	and	to	understand	interrelations	of	model	variables:	the	factors,	

which	are	the	causes	having	either	positive	effect	or	negative	effect	on	diagnostic	errors;	

the	errors,	which	are	diagnostic	errors,	diagnostic	process	errors;	and	patient	outcomes.		It	

is	to	provide	a	way	of	observing	model	response	to	the	changes	of	model	variables	using	

simulation	experiments.	The	changes	of	model	variables	could	indicate	the	effect	of	

projected	changes	in	demand	or	proposed	interventions;	thus,	it	can	present	the	guidance	

of	possible	strategies	in	terms	of	diagnostic	error	reduction.	

Specifically,	the	following	aims	are	to	be	achieved:	

• To	identify	the	key	factors	or	the	leading	causes	of	diagnostic	errors	and	to	provide	

a	structured	and	hierarchical	picture	of	the	causes/factors	of	diagnostic	errors	

• To	 represent	 errors	 in	 a	 system	 of	 diagnostic	 process	 from	 where	 errors	 initially	

occur,	 how	 errors	 are	 delivered	 out	 of	 the	 model,	 to	 error	 effect	 on	 patient	

outcomes,	and	to	identify	quantitative	interrelations	between	model	variables.	

• To	 understand	 the	 model	 behaviours	 and	 analyse	 diagnostic	 errors	 through	 the	

whole	picture	of	the	diagnostic	process.	

• To	evaluate	the	constructed	model.	



14	
	

	

1.3 Objectives	
To	achieve	the	above	aims,	this	thesis	seeks	to	accomplish	the	following	specific	objectives:	

• To	conduct	a	systematic	review	of	recent	researches	and	methods	to	reduce	

diagnostic	errors	in	order	to	identify	the	key	factors	of	diagnostic	errors.	

• To	design	a	qualitative	model	that	reflects	the	interrelations	between	factors,	as	

well	as	the	interrelations	between	factors	and	errors,	in	order	to	provide	a	

structured	and	hierarchical	picture	of	the	factors	of	diagnostic	errors.	

• To	collect	feedback	from	clinicians	to	refine	the	multifactor	model	in	order	to	

increase	the	reliability	of	the	qualitative	model.	

• To	further	represent	the	qualitative	model	into	the	structure	of	a	quantitative	

model	showing	interrelations	between	model	variables	in	order	to	quantitatively	

represent	errors	in	the	entire	diagnostic	process.	

• To	conduct	regression	analysis	and	to	apply	the	algorithms	in	the	system	dynamics	

modelling	to	determine	quantitative	interrelations	between	model	variables.	

• To	conduct	risk-free	simulation	experiments	under	different	scenarios	and	to	

observe	the	changes	of	model	outputs	when	changing	one	or	more	model	variables	

in	order	to	observe	model	behaviours	and	analyse	diagnostic	errors	through	the	

whole	picture	of	the	diagnostic	process.		

• To	adopt	a	comprehensive	evaluation	assessment	for	the	quantitative	model	in	

order	to	evaluate	the	model	and	determine	model	applicability.	

Table	1.1	shows	the	links	between	each	aim	and	its	objectives	of	this	thesis.		

Aims	 Objectives	

To	identify	factors	and	to	provide	a	structured	

picture	of	the	factors.	

• To	conduct	a	systematic	review	

• To	design	a	qualitative	model	

• To	refine	the	qualitative	model	

To	represent	errors	in	the	diagnostic	process	and	

to	identify	quantitative	interrelations.	

• To	represent	the	qualitative	model	into	a	

quantitative	model	

• To	conduct	regression	analysis	and	to	

apply	the	algorithms	

To	understand	the	model	behaviours	and	analyse	

diagnostic	errors.	

• To	conduct	simulation	experiments	

To	evaluate	the	model.	 • To	adopt	an	evaluation	assessment	

Table	1.1	Links	between	each	aim	and	its	objectives	
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1.4 Organisation	of	the	thesis	
The	rest	of	the	thesis	is	organised	as	below:	

Chapter	2	contains	the	primary	literature	review	about	the	background	of	diagnostic	errors.	

Chapter	3	introduces	the	relevant	methods,	and	summarises	all	methods	used	in	the	thesis.	

Chapter	4	starts	with	a	systematic	literature	review	of	diagnostic	errors,	and	then	enters	in	

the	discovery	of	key	factors	and	relevant	methods	reducing	diagnostic	errors.	

Chapter	5	uses	the	findings	from	the	previous	chapter	to	illustrate	a	qualitative	multi-factor	

model	by	causal	loop	diagrams.	Relevant	factors	and	cause-effect	relations	are	further	

revised	based	on	clinicians’	opinions.	

Chapter	6	shows	the	development	of	the	quantitative	model	for	diagnostic	errors.	It	

discusses	individual	phases	of	the	diagnostic	process	covering	the	phases	of	the	diagnostic	

process	as	well	as	the	phase	of	after-diagnosis,	and	maps	the	key	factors	from	the	

qualitative	model	and	errors	into	different	phases.	

Chapter	7	is	devoted	to	the	regression	analysis	of	the	interrelations	of	factors	and	the	

number	of	errors	in	the	diagnostic	hypotheses	during	the	first	diagnostic	phase:	history	

taking	and	physical	examinations.	It	first	introduces	how	to	quantify	the	non-numerical	

variables,	and	then	collects	the	relevant	data	for	the	analysis.	Regression	modelling	is	

carried	out	in	this	chapter,	and	the	results	of	the	regression	models	are	described	and	

evaluated	using	different	metrics.	The	equations	of	regression	models	are	further	applied	to	

the	system	dynamics	modelling	to	accomplish	the	quantitative	relations	between	system	

elements,	considering	that	system	dynamics	modelling	has	limitations	in	determining	the	

quantitative	relational	equations	when	it	is	implemented	alone.	

Chapter	8	presents	the	model	simulation.	The	first	part	is	to	collect	data	for	model	

simulation,	and	the	later	part	is	to	perform	simulation	experiments.	Simulation	results	of	

error	flows	and	patient	outcomes	are	discussed,	and	model	behaviours	are	observed	under	

different	scenarios.	

Chapter	9	focuses	on	model	evaluation.	It	summaries	the	evaluation	methods	for	regression	

models,	and	further	implements	a	list	of	evaluation	assessments	for	system	dynamics	

models.	The	results	of	the	assessments	are	provided	and	discussed.	

Chapter	10	discusses	the	contributions	of	the	thesis	and	the	future	work.	
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Chapter	11	concludes	the	work	of	the	thesis.	

	

The	original	work	presented	in	this	thesis	is	based	on	the	following	peer-reviewed	

publications:	

• Full	paper:	Guo,	S.,	Roudsari,	A.	and	Garcez,	A.	(May	2015)	A	System	Dynamics	

Approach	to	Analyze	Laboratory	Test	Errors.	Studies	in	health	technology	and	

informatics,	26th	European	Medical	Informatics	Conference	(MIE2015),	210,	266-

270	

• Full	paper:	Guo,	S.,	Roudsari,	A.	and	Garcez,	A.	(Jan	2015).	Modelling	clinical	

diagnostic	errors:	a	system	dynamics	approach.	Studies	in	health	technology	and	

informatics,	208,	160-164.	

• Full	paper:	Guo,	S.,	Roudsari,	A.	and	Garcez,	A.	(2014).	A	causal	loop	approach	to	the	

study	of	diagnostic	errors.	Studies	in	health	technology	and	informatics,	25th	

European	Medical	Informatics	Conference	(MIE2014),	205,	73-77.	
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Chapter	2 Preliminary	Literature	Review		

2.1 Introduction	
This	 chapter	 starts	 by	 introducing	 general	 medical	 errors	 to	 help	 understand	 the	 role	 of	

diagnostic	errors	from	the	aspect	of	patient	safety	in	healthcare.	Then,	 it	further	describes	

the	 background	 and	 characteristics	 of	 diagnostic	 errors	 in	 detail,	 which	 provides	 the	

information	about	the	current	situation	and	specific	challenges	for	researchers.	

	

2.2 Medical	errors	and	diagnostic	errors	
A	medical	 error	 is	 “the	 failure	 to	 complete	 a	 planned	 action	 as	 intended	 or	 the	 use	 of	 a	

wrong	plan	to	achieve	an	aim”,	defined	by	the	US	Institute	of	Medicine21.	In	other	words,	all	

actions	which	are	committed	by	health	professionals	and	cause	harm	to	patients	are	taken	

as	medical	errors,	including	“diagnostic	errors,	medication	errors,	errors	in	the	performance	

of	surgical	procedures,	in	the	use	of	other	types	of	therapy,	in	the	use	of	equipment,	and	in	

the	interpretation	of	laboratory	findings”22.	The	frequency	and	magnitude	of	medical	errors	

were	not	well	 known	until	 the	1990s,	and	after	 recognising	 that	medical	errors	 impact	on	

one	 in	 ten	 patients	 in	 the	 world;	 the	 World	 Health	 Organisation	 calls	 patient	 safety	 an	

endemic	 concern.23	Nevertheless,	 diagnostic	 errors,	 as	 a	 part	 of	medical	 errors,	 started	 to	

come	to	public	attention	in	the	last	decade.	Most	relevant	researches	have	been	conducted	

since	 the	 beginning	 of	 the	 21st	 century,	 and	 they	 aimed	 to	 understand	 the	 causes	 of	

diagnostic	errors	and	the	ways	of	reducing	diagnostic	errors.	However,	most	studies	are	in-

depth	partial	analysis	of	the	diagnostic	error	problem,	such	as	 improving	doctor	education	

to	 avoid	diagnostic	 errors	 and	 finding	 the	most	 efficient	 educational	methods	 in	 terms	of	

diagnostic	errors,	and	few	studies	observe	the	entire	diagnostic	process	or	patient	pathway	

in	 terms	 of	 diagnostic	 errors.	 The	 particular	 characteristics	 of	 diagnostic	 errors	make	 the	

problem	analysis	and	solution	seeking	even	harder.	

Diagnostic	errors	are	the	missed,	wrong	or	delayed	diagnosis,	based	on	a	classification	used	

by	 the	 Australian	 Patient	 Safety	 Foundation.	 It	 is	 the	 errors	 happening	 after	 clinical	

examination	 or	 technical	 diagnostic	 procedures.	 Graber	 et	 al	 in	 200213	 showed	 that	

diagnostic	errors	can	be	divided	into	three	categories	according	to	the	causes	of	the	errors:	

‘‘No-fault	errors’’,	‘‘System	errors’’	and	‘‘Cognitive	errors’’,	presented	in	Table	2.1.	
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Table	2.1	Categories	of	diagnostic	errors13	

“No-fault	errors”	are	the	cases	where	the	illness	is	silent,	or	masked,	or	presented	in	an	

atypical	presentation	such	that	the	correct	diagnosis,	with	the	current	state	of	medical	

knowledge,	would	not	be	expected.24	‘‘Cognitive	errors’’	are	the	errors	cause	by	adequate	

knowledge	or	faulty	data	gathering,	or	inaccurate	clinical	reasoning,	or	faulty	verification.13	

24	“No-fault	errors”	and	‘‘Cognitive	errors’’	are	usually	considered	as	more	harmful	errors,	

whilst	little	has	been	known	to	reduce	them79.	‘‘System	errors’’	are	related	to	the	system,	

including	faults	of	technologies	or	flaws	of	relevant	systems,	such	as	faulty	tests	or	patients	

with	abnormal	test	results	being	neglected.		

	

2.3 Diagnostic	error	characteristics	
Compared	to	other	medical	errors,	diagnostic	errors	have	their	special	characteristics,	which	

are	discussed	as	below.		

• Diagnostic	errors	indicate	severe	harm	in	relation	to	patient	safety.	Relevant	

research25	in	the	UK	shows	25%	of	diagnostic	incidents	resulted	in	death,	23%	in	

disability	and	15%	in	cognitive	impairment	and/or	disability6.	One	research	result26	

of	hospitalised	patient	samples	from	21	hospitals	in	the	Netherlands	showed	that	

23%	of	adverse	events	related	to	diagnostic	process	contributed	to	death.	But	still	it	

is	believed	that	diagnostic	errors	are	potentially	preventable.12	

• Diagnostic	errors	are	usually	undetected,	recognised	late	and	easily	unreported	to	

the	current	incident	reporting	system.		

In	the	primary	care	service,	general	practitioners	(GPs)	are	not	only	the	important	

executor	during	the	diagnosis,	but	also	have	an	essential	role	of	preventing	and	

reporting	diagnostic	errors	27.	

No-fault	errors	

• Unusual	presentaqon	of	
disease	
• Uncertainty	regarding	the	
state	of	the	world	
• Lack	of	paqent	cooperaqon	
• Limitaqons	of	medical	
knowledge	
• Failure	of	noremaqve	
precesses	

System	errors	

• Technical	failure	
• Organisaqonal	failure	

Cogniqve	errors	

• Inadequate	knowledge	
• Faulty	data	gathering	
• Faulty	informaqon	processing	
• Faulty	metacogniqon	
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Incident	reporting	systems,	such	as	the	National	Reporting	and	Learning	System	

(NRLS)	in	the	UK,	are	the	essential	tools	currently	used	for	reporting	and	detecting	

diagnostic	errors,	and	also	provide	the	main	source	of	diagnostic	errors	for	further	

analysis6.	Nevertheless,	incident	reporting	systems	have	obvious	limitations	and	

unsatisfied	outcomes	in	reporting	diagnostic	errors,	mainly	because	the	systems	are	

challenged	in	reporting	every	diagnostic	error,	and	recording	high-quality	records.	

For	the	diagnostic	error	cases	that	have	been	successfully	reported,	the	report	

quality	is	variable.	Reports	can	hardly	avoid	unintended	false	information,	and	the	

accuracy	and	clarity	of	the	reports	should	be	improved.		

The	other	ways	of	finding	diagnostic	errors	are	usually	through	clinical	follow-ups	or	

necropsies28.	Specially,	autopsy	is	considered	by	many	researchers	to	play	an	

important	role	in	providing	reliable	information	for	misdiagnosed	cases.3	4		

Thus,	poorly	reported	diagnostic	errors	and	lack	of	high-quality	records	make	the	

relevant	studies	more	challenging.	

• Diagnosis	sometimes	can	be	under	time	constraint	especially	in	emergency	

departments,	and	is	a	complex	process	involving	many	phases	and	factors.	These	

factors	have	an	impact	on	the	actions	during	the	diagnostic	process	and	then	affect	

the	diagnostic	decisions	directly	or	indirectly,	while,	at	the	same	time,	the	factors	

may	be	related	to	each	other	as	well.	The	entire	diagnostic	process	can	be	reflected	

in	the	diagnostic	process,	which	includes	initial	access	to	the	patient,	history	taking,	

physical	exams,	tests,	doctor	assessment,	consultation	and	follow-up	procedures.	

Schiff	et	al	in	2005	illustrated	where	and	what	errors	may	occur	during	the	

diagnostic	process20,	as	shown	in	Figure	2.1.		

As	we	can	see,	for	a	better	study	of	diagnostic	errors	and	finding	ways	of	error	

reduction,	it	is	important	to	interpret	the	diagnostic	process,	show	associated	

factors	at	each	step,	and	then	provide	a	systemic	view	of	relevant	factors	as	well	as	

interrelations	of	variables.	
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Figure	2.1	Where	and	what	errors	may	occur20	

• In	spite	of	many	relevant	researches	about	diagnostic	errors,	more	effort	still	needs	

to	be	made	to	find	effective	ways	of	reducing	diagnostic	errors	and	improving	

patient	safety,	especially	in	terms	of	systemic	analysis.	Many	studies	focus	on	the	

individual	health	provider	or	single	factor	for	error-improvement	strategies.	

However,	diagnostic	errors	should	be	observed	from	the	entire	diagnostic	process	

as	a	system,	and	methods	for	changes	from	a	system	view,	which	reflect	the	impact	

of	all	key	health	providers	and	key	factors,	are	believed	to	be	a	more	effective	way	

of	seeking	solutions.29	30	Relevant	works	from	Reason31	32	reflect	that	systemic	

analysis	has	its	advantage	of	reducing	errors,	using	the	“Swiss	Cheese	model”31,	

shown	as	Figure	2.2.	The	model	illustrates	that	although	many	layers	lie	between	

hazards	and	losses,	errors	can	happen	if	flaws	in	each	layer	are	aligned.		

• Delayed	access	to	medical	service	
1.	Access	to	medical	

service	

• Inaccurate/misinterpretaqon	
• Inaccurate	informaqon	in	history	data	or	failure/
delay	of	access	to	criqcal	history	data	
• History	bias	

2.	Paqent	medical	history	
data	

• Failure/delay	in	eliciqng	criqcal	physical	exam	
finding	
• Inaccurate/misinterpreted	

3.	Physical	exams	

• Failure/delay	from	clinicians	in	ordering	
appropriate	tests	
• Errors/delay	during	the	processing	in	the	lab		
• Failure/delay	from	clinicians	in	interpretaqon	of	
test	results	

4.	Tests	

• Failure	in	subopqmal	weighing/prioriqsing	
• Failure/delay	in	hypothesis	conclusion	
• Failure/delay	in	recognising	complicaqons	

5.	Clinician	assessment	

• Failed/delayed/inappropriate	refereal	
• Subopqmal	consultaqon	diagnosqc	performance	
• Failed/delayed	communicaqon/followup	of	
consultaqon	

6.	Referral/Consultaqon	

• Failure/delay	in	qmely/close	monitoring	
• Failure/delay	in	Followup	may	occur	during	the	
above	processes	2&3.	

7.	Followup	



21	
	

	

Figure	2.2	Swiss	cheese	model31 
Additionally,	one	research33	in	2002	suggests	that	methods	of	reducing	diagnostic	

errors	from	a	view	of	the	entire	diagnostic	process,	such	as	either	avoiding	

diagnostic	errors	or	correcting	diagnostic	errors	in	the	early	stage,	represent	a	

possible	and	effective	way	of	preventing	harm	to	patients,	and	fail-safe	methods	will	

fail	to	improve	patient	outcomes.		

Thus,	the	diagnostic	error	problem	requires	the	analysis	of	the	entire	diagnostic	

process	as	a	system.		

• The	way	of	measuring	diagnostic	errors	remains	unknown.	A	more	scientific	and	

precise	method	or	magnitude	to	measure	diagnostic	errors	is	needed34.	

	

2.4 Summary	
Five	characteristics	of	diagnostic	error	are	discussed	in	this	chapter.	It	has	been	shown	that	

diagnostic	errors	have	negative	impact	on	patient	safety	and	trigger	the	demand	to	reduce	

its	occurrence	and	impact,	and	diagnosis	is	a	complex	diagnostic	process	covering	different	

factors	at	each	phase.	Although	many	researches	have	been	carried	on	seeking	ways	of	

reducing	diagnostic	errors,	most	are	either	disease-focused	or	individual	provider-focused.	

According	to	the	primary	literature	review,	few	studies	provide	systemic	analysis	of	factors	

and	errors	during	each	phase	of	diagnostic	process.	Current	ways	of	reducing	diagnostic	

error	need	to	be	further	reviewed	and	summarised.	What	is	more,	no	study	was	found	in	

terms	of	quantifying	relevant	factors	and	modelling	diagnostic	errors.	Thus,	the	diagnostic	

process	should	be	taken	as	a	system,	and	diagnostic	errors	need	to	be	studied	and	modelled	

from	the	view	of	the	entire	system,	so	that	models	of	diagnostic	error	can	represent	the	

factors	of	diagnostic	errors	and	the	interrelations	of	key	variables	in	the	system,	and	also	

provide	ways	of	seeking	possible	methods	from	a	systemic	understanding	of	the	system.	
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The	next	 chapter	 includes	 the	methods	used	 in	 this	 thesis	 to	address	 the	problems	above	

and	the	reasons	for	their	choice.		 	
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Chapter	3 Methods		

3.1 Introduction	
This	chapter	introduces	the	methods	used	in	the	thesis.	It	begins	by	comparing	models	of	

errors	in	healthcare.	Then,	it	introduces	system	dynamics	modelling	and	regression	

modelling,	including	their	application	hypotheses	of	how	they	might	help	with	the	

diagnostic	error	problem.	Data	collection	methods	are	also	presented	in	this	chapter.	

	

3.2 System	modelling		
System	modelling	is	an	essential	tool	of	analysing	the	elements	or	components	in	the	

system.	It	has	significant	benefits	in	managing	the	interactions	of	the	elements,	and	

understanding	the	functionality	of	the	system,	and	it	especially	enables	the	analyst	to	

predict	the	effect	of	changes	to	the	system.	35	

System	modelling	has	been	widely	applied,	and	can	represent	a	system	in	various	ways	with	

different	aims.	It	is	often	classified	into	the	following	types:	data	processing	model	which	

shows	how	the	data	are	processed	at	different	phases;	composition	model	showing	how	

entities	are	composed	of	other	entities;	architectural	model	showing	principal	sub-systems;	

classification	model	showing	how	entities	have	common	characteristics;	and	

stimulus/response	model	showing	the	system’s	reaction	to	events.	36	

The	downside	of	modelling	may	be	considered	as	some	types	of	modelling	may	produce	too	

much	documentation,	and	a	model	with	too	many	details	may	be	difficult	for	users	to	

understand	sometimes.	36	

A	typical	modelling	and	simulation	process	mainly	involves	developing	a	simulation	model,	

designing	a	simulation	experiment,	and	performing	simulation	analysis.	Specifically,	the	

process	covers	the	possible	steps	as	below35:	

• Identify	the	problem.	

• Formulate	the	problem.	

• Collect	and	process	real	system	data.		

• Formulate	and	develop	a	model		

• Validate	the	model,	and	iterate	between	model	refinement	and	validation.	

• Document	the	model	for	future	use.	

• Select	an	appropriate	experimental	design.		
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• Establish	experimental	conditions	for	runs.		

• Perform	simulation	runs.	

• Interpret	and	present	results.	

• Recommend	further	course	of	action.		

Diagnosis	is	a	complex	process	involving	multiple	phases	and	many	factors.	Studying	

diagnostic	errors	requires	a	way	of	showing	the	correlations	of	the	factors,	analysing	the	

problem	from	the	entire	diagnostic	process.	Modelling	errors	in	the	diagnostic	process	can	

help	analysing	root	causes	by	constructing	the	structure	of	cause	and	effect	variables.	At	the	

same	time,	it	is	a	method	of	describing	the	entire	system	and	analysing	the	problem	from	a	

system	viewpoint.		It	is	a	systemic	approach	to	discover	how	errors	happen,	as	well	as	to	

propose	better	management	policies	and	organisational	structures37.	Models	in	healthcare	

provide	a	constructive	way	of	discovering	real	causes	and	offer	theoretical	underpinnings	

for	both	researchers	and	clinicians.		

	

3.3 Comparing	models	of	errors	in	healthcare	
Based	on	the	searching	of	models	in	error	management	or	error	control	in	healthcare	and	

complex	systems,	several	models	were	found	in	the	studies	of	modelling	medical	errors;	

these	models	are	structural-equation	models	(SEM),	Bayesian	hierarchical	models,	and	

system	dynamics	models.	This	section	discusses	these	three	types	of	modelling	methods	

separately.		

a.	Structural-equation	modelling	

SEM	is	“a	comprehensive	statistical	approach	to	testing	hypotheses	about	relations”38	

among	observed	(measured)	variables	and	unobserved	(latent)	variables.	It	usually	includes	

two	parts:	a	"measurement	model"	and	a	"structural	regression	model"39	40.		A	

"measurement	model"	defines	latent	variables,	which	are	not	directly	observed	but	rather	

inferred	from	one	or	more	observed	variables.	A	"structural	regression	model"	links	latent	

variables	together,	via	statistical	methods,	to	observe	the	quantitative	impact	of	inputs	on	

the	outputs	and	to	estimate	relations	between	inputs	and	outputs.		

SEM	is	very	similar	to	traditional	statistical	methods,	which	are	based	on	linear	statistical	

models.	At	the	same	time,	it	is	an	“advantaged”	version	of	traditional	methods.	It	can	solve	

the	relational	problems	for	both	observed	and	unobserved	variables,	while	traditional	

methods	analyse	observed	variables	only.	It	applies	multiple	tests,	such	as	chi-square	or	
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Root	Mean	Squared	Error	of	Approximation	(RMSEA),	to	the	determination	of	the	model	

fit.41	

It	was	used	to	explore	the	factors	of	medical	errors	as	well	as	the	estimation	of	factor	

impact	in	a	prospective	cohort	study	in	201242.	The	study	was	designed	to	find	the	cause-

and-effect	relationship	between	potential	predictors	from	nurses,	such	as	age	and	degree	of	

depression,	and	medical	errors.	The	outputs	suggested	SEM	could	be	a	countermeasure	for	

the	factors	of	medical	errors.		

Generally	speaking,	SEM	provides	a	reliable	way	of	determining	cause-and-effect	

relationships,	especially	for	unobserved	variables.	However,	it	requires	a	good	quantity	of	

data	to	perform	and	it	is	not	applicable	to	reflecting	the	component	structure	of	a	system.	In	

addition,	the	potential	causes	have	to	be	predicted	first.	

b.	Bayesian	hierarchical	modelling	

Bayesian	hierarchical	modelling,	a	particular	type	of	Bayesian	network,	is	also	a	type	of	

statistical	model	that	represents	the	probabilistic	relationships.	One	study43	in	2010	using	a	

Bayesian	hierarchical	model	discovered	causes	of	a	type	of	medical	error,	called	“near	

misses”	which	had	the	potential	to	cause	serious	harm	but	did	not.	This	model,	using	a	

mathematical	approach,	analysed	clinical	evidence	or	data	to	find	out	the	causes	or	the	

contributing	factors	of	the	error.	

Compared	to	the	SEM	model,	the	relationships	in	the	Bayesian	hierarchical	model	are	not	

limited	to	the	cause-effect	relationship,	but	it	requires	a	much	larger	amount	of	evidence	as	

the	input	data	to	determine	the	relationships	in	a	quantitative	way.		

c.	System	dynamics	modelling	

System	dynamics	modelling	is	different	from	statistically	based	SEM	and	Bayesian	

hierarchical	modelling	methods.	It	uses	simulations	to	provide	the	relevant	data	flow	

information	in	the	system	components	over	time.	It	not	only	illustrates	complex	internal	

relationships	that	affect	system	behaviours,	but	also	reflects	the	component	structure	of	a	

system.	Thus,	it	is	an	approach	widely	employed	for	complex	systems.44	Eric	Wolstenholme	

explained	system	dynamics		as	“problem	solving	and	analysis	of	complex	real	world	systems	

by	methodological	means,	where	the	emphasis	is	on	promoting	holistic	understanding	rather	

than	piecemeal	solutions”63.	By	simulating	an	over-time	look	of	the	output	flow	under	both	

positive	and	negative	input	factors,	system	dynamics	modelling	provides	the	guidance	for	

potential	interventions	or	the	policy	for	the	problem.		
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System	dynamic	modelling	has	a	significant	advantage	in	representing	known	relations	and	

reflecting	components	in	complex	systems.	However,	as	with	SEM,	it	also	requires	the	

causes	to	be	determined	first.	Moreover,	it	has	limitations	in	identifying	the	relationship	

functions	between	multi-variables	and	their	effect	variables.	Moreover,	it	requires	real-time	

data	to	plot	real-time	simulation	outputs.	

	

3.4 System	dynamics	modelling	
This	section	introduces	the	system	dynamics	modelling	method	in	further	detail,	explains	

the	reason	to	implement	system	dynamics	modelling	in	diagnostic	error	analysis,	and	shows	

how	system	dynamics	modelling	can	perform	systemic	analysis	of	diagnostic	errors.		

3.4.1 	Introduction	of	system	dynamics	modelling	and	its	applications	

Jay	W.	Forrester	of	the	Massachusetts	Institute	of	Technology	firstly	proposed	the	system	

dynamic	modelling	during	mid-1950s,	and	published	his	work	in	the	book	Industrial	

Dynamics37,	where	system	dynamics	modelling	was	described	in	length	in	the	application	of	

helping	General	Electric	(GE)	manager	better	understand	industrial	processes.	Until	the	late	

1960s,	system	dynamics	modelling	had	been	applied	almost	exclusively	to	corporate	or	

managerial	problems.45		

Since	the	late	1960s,	Jay	W.	Forrester	had	been	working	with	John	Collins	and	they	

published	a	book	titled	Urban	Dynamics,	which	served	as	the	sign	that	system	dynamics	

started	to	broaden	its	application	into	non-corporate	areas.52	It	was	the	key	that	led	to	the	

later	two	well-known	projects	in	the	early	1970s	in	system	dynamics	area:	World	Dynamics	

and	the	Limits	to	Growth.		In	1970,	Jay	Forrester	was	invited	to	a	meeting	in	Bern	by	a	group	

called	the	Club	of	Rome,	and	the	world	problems	discussed	at	the	meeting	became	the	basis	

for	the	model	in	World	Dynamics.52	World	Dynamics	was	published	in	1971,	which	extended	

system	dynamics	application	into	modelling	important	interrelationships	between	world	

population,	industrial	production,	pollution,	resources,	and	food.45	The	model	also	predicted	

a	collapse	of	the	world	socioeconomic	system	sometime	during	the	twenty-first	century.	

The	Club	of	Rome	further	funded	Meadows	and	her	associates	to	conduct	the	Limits	to	

Growth	where	system	dynamics	modeling	was	applied	in	explaining	world	population	

growth	and	economic	growth.	It	was	published	in	1972,	and	discussed	the	growth,	

overshoot,	and	collapse	of	the	world	economy	using	system	dynamics	models.46			
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The	Fifth	Discipline	by	Peter	Senge	in	199047,	which	described	systems	thinking	in	helping	to	

convert	companies	into	learning	organizations,	popularized	the	qualitative	systems	

dynamics	in	organizational	learning	and	managerial	application.	At	about	the	same	time,	

Eric	Wolstenholme	developed	“System	Enquiry”63	and	gave	its	definition	by	combining	its	

original	definitions	and	its	later	broadening	of	applications:	“	A	rigorous	method	for	

qualitative	description,	exploration	and	analysis	of	complex	systems	in	terms	of	their	

processes,	information,	organisational	boundaries	and	strategies;	which	facilitates	

quantitative	simulation	modelling	and	analysis	for	the	design	of	system	structure	and	

control”63.	Since	1990,	a	number	of	researchers	of	system	dynamics,	including	Richardson48,	

Richmond49,	and	Vennix50,	started	to	recognize	the	issue	of	client	involvement	and	develop	

protocols	for	group	model	building	that	is	a	method	for	analyzing	data	with	a	group	of	

people.	John	Sterman	further	promoted	system	thinking	in	the	analysis	of	policy	and	

strategy	in	2000.51	

System	dynamics	modelling	can	be	applied	to	any	dynamic	system	with	any	time	and	spatial	

scale51.	System	dynamics	modelling	initially	arose	in	relation	to	corporate	or	managerial	

problems37	and	then	has	broadened	its	application	into	non-corporate	areas	since	the	late	

1960s52.	Nowadays	it	has	been	used	widely	in	real	life,	including	healthcare.	It	was	

implemented	in	healthcare	applications	since	the	1970s,	and	has	been	witnessed	in	a	large	

number	of	applications	of	healthcare	researches	in	recent	years.	These	researches	involves	

several	aspects	of	health	and	social	care53,	such	as	health	reform54,	capacity		planning55,	

older	people’s	services56,		disease		management57		and	mental	health58.	The	health	interest	

group	in	International	System	Dynamics	Society	established	in	1983,	was	organized	in	

2003.62	Its	applications	in	healthcare	and	social	care	system	aim	to	illustrate	the	structure	of	

system	resources	and	give	suggestions	on	significant	resource	that	can	be	saved,	without	

influencing	performance59.	Furthermore,	its	applications	in	disease	researches	help	to	

interpret	experimental	results	and	understand	the	dynamics	of	results,	for	example	research	

into	HIV	and	human	immune	system60.	System	dynamics	modelling	is	currently	adopted	as	

the	major	tool	in	the	modelling	kit	for	the	Operational	Research(OR)	Group	in	the	

Department	Health,	England	and	has	been	used	in	a	wide	range	of	health	policy	and	

programme	development	and	implementations61,	including:	assessing	public	health	risks;	

screening	for	disease,	such	as	screening	for	cervical	cancer	and	for	chlamydia;	managing	

waiting	lists	for	hospital	treatment;	planning	the	healthcare	workforce;	and	developing	

emergency	health	and	social	care.	
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Homer	and	Hirsch	in	2006	summarised	its	current	application	in	healthcare	into	five	

aspects62:	

1) Disease	epidemiology		

2) Substance	abuse	epidemiology	

3) Patient	flows	in	emergency	and	extended	care	

4) Health	care	capacity	and	delivery		

5) Interactions	between	health	care	or	public	health	capacity	and	disease	
epidemiology.	

The	system	dynamics	modelling	can	be	both	“solution	oriented”	and	“learning	oriented”.	It	

is	commonly	recognised	as	a	tool	for	discovering	problems	and	suggesting	solutions.	At	the	

same	time,	it	is	also	a	tool	for	learning	about	the	system61.	In	particular,	when	there	is	no	

single	optimal	solution,	it	helps	to	learn	system	behaviours	and	to	propose	possible	

strategies.	

3.4.2 Two	phases	of	system	dynamics	

System	dynamics	involves	two	phases:	“qualitative	system	dynamics”	and	“quantitative	

system	dynamics”.51	

Qualitative	system	dynamics:	

The	qualitative	system	dynamics	phase	is	the	model	construction	and	analysis.	It	defines	

how	individual	variables	are	working	in	the	system,	via	visualising	the	interrelations	among	

variables,	and	makes	clear	how	interrelated	variables	affect	each	other	using	arrow	links.	It	

can	be	implemented	in	order	to	“quickly	capture	hypotheses	about	the	causes	of	dynamics;	

elicit	and	capture	the	mental	models	of	individuals	or	teams;	and	ccommunicate	the	

important	feedbacks	which	you	believe	are	responsible	for	a	problem.”51	

A	qualitative	system	dynamics	model	is	often	known	as	a	“Causal	Loop	Diagram”(CLD),	as	it	

uses	a	“cause	and	effect	diagram”	to	illustrate	the	factors	or	causes	of	the	problem,	and	to	

represent	the	cause-effect	relationships	among	model	variables.	It	uses	nodes	and	arrows	to	

graphically	represent	the	variables	and	interrelations	in	a	system.	The	variables	of	the	

system	are	represented	as	nodes,	and	arrows	link	the	elements	together	to	represent	cause-

effect	relations.	
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Figure	3.1	A	causal	loop	diagram	example	

Figure	3.1	is	a	CLD	example.	Three	variables	A,	B,	C	are	represented	in	nodes	in	the	figure,	

and	arrows	show	cause-effect	links	or	relationships	between	the	two	linked	variables.	The	

arrow	polarities	indicate	link	polarities.	A	points	to	B	with	a	positive	polarity	at	the	end	of	

the	arrow,	which	means	A	is	the	cause	of	B	and	A	has	positive	effect	to	B.	In	other	words,	if	

A	increases,	B	would	increase.	On	the	other	hand,	C	has	an	arrow	with	a	negative	polarity	to	

B,	which	indicates	C	has	negative	effect	to	B.	Following	the	arrows,	B	also	gives	feedback	to	

A	&C	and	feedback	loops	are	formed.	By	tracing	the	effect	of	a	change	around	the	loop,	the	

loop	polarity	can	be	determined.	Loops,	such	as	loop	1,	that	can	reinforce	change	are	

named	as	positive	loops	or	reinforcing	loops,	while	loops	that	are	self-correcting	are	

negative	loops	or	balancing	loops,	such	as	loop	2.		

Quantitative	system	dynamics:	

Quantitative	system	dynamics	represents	the	system	using	“Stock	and	Flow	Diagrams”.	A	

simple	diagram	is	shown	as	Figure	3.2.	

	

Figure	3.2	A	simple	stock	and	flow	diagram	

As	we	can	see,	the	above	diagram	is	made	from	a	rectangle	with	an	input	arrow	and	an	

output	arrow.	The	rectangle,	referring	to	as	“Stock”,	indicates	a	quantitative	stock.	The	

input	arrow	indicates	the	inflow	of	the	stock,	and	it	increases	the	stock	level.	On	the	other	

hand,	output	arrow	indicates	the	outflow	of	the	stock,	and	it	decreases	the	stock	level.	63	

Mathematical	representations,	shown	as	an	integral	equation	in	Eq.	(3.1)	and	a	differential	

equation	in	Eq.	(3.2),	can	be	exploited	to	explain	level	changes	of	the	stock	over	a	period	of	

time	from	initial	time	t0	to	current	time	t.		Stocks	are	known	as	integrals	or	state	variables,	

and	flows	are	known	as	rates	or	derivatives.	

Variable A Variable B Variable C
+

+ +

-
Loop 1 Loop 2

stock
inflow outflow
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𝑠𝑡𝑜𝑐𝑘 𝑡 = 𝑖𝑛𝑓𝑙𝑜𝑤 𝑠 − 𝑜𝑢𝑡𝑓𝑙𝑜𝑤 𝑠 𝑑𝑠 + 𝑠𝑡𝑜𝑐𝑘 𝑡!

!

!!
	

(3.1)	

where	s	represents		any	time		between	the	initial	time	t0	and	the	current	time	t.	

	 𝑑 𝑠𝑡𝑜𝑐𝑘
𝑑𝑡

= 𝑖𝑛𝑓𝑙𝑜𝑤 𝑡 − 𝑜𝑢𝑡𝑓𝑙𝑜𝑤(𝑡)	
(3.2)	

3.4.3 Its	application	hypothesis	

A	 basic	 structure	 of	 decision	making	 for	 real	 world	 problems	 follows	 a	 circular	 loop,	 and	

includes	 three	 components:	 1,	 recognising	 real	world	 problems;	 2,	 collecting	 or	 retrieving	

for	decision	makers	reliable	qualitative	and	quantitative	information	from	the	real	world;	3,	

decision	 makers	 making	 decisions,	 and	 decisions	 implemented	 back	 into	 the	 real	 world	

system.	

How	system	dynamics	models	are	applied	to	real	world	problems	is	illustrated	in	Figure	3.3,	

introduced	by	Sterman	in	2000	51.	System	dynamics	modelling	represents	the	dynamics	of	a	

system	in	the	second	component	“Information	Feedback”	by	discovering	and	representing	

the	feedback	process.		System	dynamics	modelling	simulation	is	the	stage	of	proposing	

possible	strategy,	structure	and	decision	rules,	which	helps	decision	makers	with	making	

decisions.		

	

Figure	3.3	How	system	dynamics	models	implement	to	real	world	problems51	

Similarly	 with	 other	 applications	 in	 complex	 systems,	 system	 dynamics	 modelling	 can	

contribute	 to	 a	 systemic	 analysis	 of	 diagnostic	 errors	 in	 many	 ways	 from	 both	 “solution	

oriented”	 and	 “learning	 oriented”	 aspects.	 The	 following	 hypotheses	 can	 be	 used	 in	

implementing	system	dynamics	modelling	in	the	context	of	diagnostic	error	analysis.	

Real	World	

Decisions	
Information	
Feedback	

Strategy,	
Structure,	Decision	

rules	

Mental	Models	

Simulation	to	infer	
dynamics	of	models	

Represent	feedback	
of	structure	and	

system	behaviours	
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• It	helps	with	learning	the	relations	between	factors	and	effect	variables,	as	well	as	

understanding	factors,	especially	for	factors	not	readily	quantified.	

Diagnostic	 errors	 involve	many	 factors	 during	 the	whole	 diagnostic	 process.	 After	

discovering	 all	 key	 factors	 of	 diagnostic	 errors,	 CLDs	 can	 help	 illustrating	 the	 links	

between	the	factors	and	relevant	effect	variables.	Also,	further	quantitative	analysis	

helps	to	understand	how	the	individual	factor	contributes	to	the	system.	

• It	provides	a	systemic	analysis	of	the	diagnostic	error	problem.		

The	diagnostic	process	can	be	used	as	a	guide	in	mapping	the	key	phases,	and	links	

phases	together.	System	dynamics	modelling	can	follow	the	process	and	provide	a	

whole	 picture	 for	 tracing	 errors	 in	 the	 process	 and	 how	 it	 is	 linked	 to	 decision-

making	errors	as	well	as	patient	outcomes.	

• System	 dynamics	 modelling,	 linking	 different	 phases	 of	 the	 system	 together,	

performs	 simulation	 of	 the	 number	 of	 errors	 in	 all	 phases	 and	 then	 suggests	

potential	strategies	for	reducing	diagnostic	errors.	

During	 each	 phase,	 new	 errors	 may	 occur	 when	 doctors	 collect	 diagnostic	

information	 or	 diagnostic	 clues.	 At	 the	 same	 time,	 errors	 may	 be	 realized	 or	

corrected	in	the	following	phases.		As	shown	in	Figure	3.4,	stock	and	flow	diagrams	

can	be	used	to	interpret	the	number	of	errors	at	each	phase	and	error	flows	in	the	

system.	The	simulation	of	the	quantitative	model	helps	to	analyse	how	the	level	will	

be	changed	by	the	changes	of	relevant	variables	over	a	period	of	time.	

	

Figure	3.4	Hypothesis	of	applying	stock	and	flow	diagrams	for	diagnostic	errors		

Chapter	5	and	Chapter	6	will	give	further	explanations	on	the	application	of	system	

dynamics	modelling	including	both	the	qualitative	model	and	the	quantitative	model.	

3.4.4 Why	use	system	dynamics	modelling	

The	reasons	to	choose	the	system	dynamics	modelling	method	is	mainly	because	of	the	

following	considerations:	

1.	Its	adaptation	to	complex	real	world	systems.	
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Diagnosis	is	a	complex	process.	Many	factors	involved	in	the	diagnostic	process	can	affect	

the	final	decision	making	directly	or	indirectly,	and	many	phases	in	the	diagnostic	process	

are	connected	and	sometimes	worked	together.	System	dynamics	modelling	is	adapted	to	

complex	systems.	It	could	help	to	analyse	the	causes,	identify	or	structure	the	internal	

relationships	of	model	elements,	and	link	all	phases	together	in	order	to	conduct	the	

analysis	and	to	observe	the	whole	system	behaviours.	

2.	Its	coverage	of	both	positive	and	negative	factors.	

System	dynamics	models	can	present	both	positive	and	negative	factors.	Specifically,	The	

factors	are	called	“causes”	in	the	CLDs,	where	the	“causes”	can	have	both	positive	effect	and	

negative	effect.	

3.	Its	both	“solution	oriented”	and	“learning	oriented”	applications.	

By	performing	simulation	experiments,	it	helps	to	discover	system	behaviours.	Especially,	

when	one	or	more	factors	of	the	system	are	changed,	it	provides	a	clear	view	of	the	changes	

in	the	relevant	key	variables.	For	the	system	with	variables	that	can	be	readily	quantified,	it	

is	known	as	a	way	of	predicting	an	optimal	solution	to	a	problem64.	If	the	system	is	closely	

associated	with	variables	that	cannot	be	readily	quantified	and	there	will	be	no	single	

optimal	solution,	system	dynamics	modelling	becomes	a	tool	for	learning.61	

4.	Its	current	application	in	healthcare.	

System	dynamics	modelling	has	been	widely	used	and	known	in	healthcare.	Extending	its	

application	to	diagnostic	errors	helps	with	learning	about	diagnostic	errors,	and	provides	an	

opportunity	of	linking	or	combining	the	model	of	diagnostic	errors	with	other	existing	

models	together.	

5.	An	economic	approach.	

System	dynamics	modelling	can	implement	computer	simulations	that	are	very	low	cost62,	

which	is	another	important	reason	why	it	has	been	largely	applied	in	both	engineering	work	

as	well	as	in	healthcare.	It	provides	risk-free	experiments,	and	then	encourages	creative	

thinking	of	possible	solutions	to	the	problem.	
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3.5 Regression	analysis	
This	section	discusses	the	hypotheses	involved	in	applying	regression	analysis	to	the	

systemic	model	of	diagnostic	error,	where	the	implementation	of	regression	analysis	mainly	

aims	to	overcome	the	limitation	of	the	system	dynamics	modelling.	

3.5.1 Introduction	of	regression	analysis	and	its	applications	

Although	system	dynamic	modelling	provides	a	method	for	looking	into	the	entire	system	

instead	of	partial	analysis,	it	has	its	limitations	at	the	same	time.	It	is	limited	to	determining	

parameters	as	well	as	relationship	functions	between	multi-variables	and	relevant	

dependent	variables.	The	initial	diagnosis	phase,	history	taking	and	physical	examinations,	is	

an	essential	phase	for	decision	making	in	the	diagnostic	process,	and	it	involves	many	key	

factors	that	affect	the	error	rate	in	the	initial	diagnostic	hypotheses.	The	quantitative	

relationship	functions	between	the	factors	and	the	number	of	errors	in	the	diagnostic	

hypotheses	are	unknown.	Thus,	a	method	is	required	to	determine	the	interrelationship	

functions	in	this	part	and	to	overcome	the	limitation	of	system	dynamics	modelling.	

Regression	analysis	is	a	statistical	method	and	is	widely	used	to	estimate	the	relationship	

functions	among	variables	based	on	observed	data,	and	regression	analysis	is	used	in	the	

thesis	regarding	the	issue	above.	It	is	applicable	for	the	relationship	between	a	dependent	

variable	and	one	or	more	independent	variables	and	the	relationship	can	be	either	linear	or	

non-linear.		

Generally,	regression	modelling	consists	of	four	parts:	

1) Cohort	construction.	This	is	to	define	aims,	targets	and,	sometimes,	time	window.	

2) Feature/factor	engineering.	It	includes	data	cleansing,	data	imputation,	feature	

construction	and	feature	selection.	The	common	methods	used	for	feature	selection	

are	using	filters,	a	wrapper	or	embedded	optimisation.	There	are	three	reasons	to	

conduct	feature	selection:	simplification	of	models	for	an	easy	interpretation;	

shorter	training	times;	and	enhancing	generalisation	and	avoiding	overfitting.		

3) Regression	modelling.	Firstly,	regression	analysis	requires	identifying	the	possible	

types	of	function.	For	example,	logistic	regression	is	often	chosen	when	the	

dependent	variable	is	dichotomous.	Secondly,	it	identifies	the	parameters	of	the	

function	using	training	data.	For	example,	a	linear	relationship	can	be	represented	

as	a	function	in	a	form	of	Y=	p	+	qX,	where	p	&	q	are	the	parameters.	The	linear	
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relationship	can	be	determined	by	identifying	the	parameters	p	&	q	using	training	

data.		

4) Model	evaluation.	The	evaluation	approaches	cover	using	cross	validation	or	

external	validation	to	compare	the	model	outputs	to	the	real	data,	or	using	metrics	

to	analyse	model	outputs,	such	as	variance	or	R2.	

3.5.2 Its	application	hypothesis	

Regression	modelling	can	be	implemented	in	estimating	the	quantitative	relationships	

between	multi	factors	and	their	dependent	variables,	such	as	the	number	of	errors,	during	

the	phase	of	history	taking	and	physical	examinations.	It	complements	system	dynamics	

modelling	by	providing	modelling	relationship	functions	between	multi-variables	and	their	

dependent	variable.	These	functions	obtained	by	regression	analysis	are	further	applied	in	

the	system	dynamics	model.	

In	order	to	accomplish	determining	the	relationship	functions,	following	the	same	recipe	for	

the	SEM	method	introduced	in	section	3.3,	there	are	two	tasks:	defining	variables	and	

determining	regression	models.	For	the	first	task,	the	results	of	the	CLDs	and	the	structure	

of	the	stock	and	flow	diagrams	in	system	dynamics	modelling	can	be	used	to	define	the	

variables	as	well	as	the	qualitative	variable	relations.	The	second	task	is	to	conduct	

regression	analysis	and	determine	the	relationship	functions.		

For	unobserved	or	non-numerical	variables	involved	in	the	system,	there	are	two	ways	of	

scaling	the	variables.	One	method	is	used	in	the	SEM,	and	it	measures	the	unobserved	

variables	by	one	or	more	observed	variables	as	indicators.	Take	a	variable	“depression”	as	

an	example.	It	can	be	measured	by	several	observed	variables	such	as	“loss	of	interest”,	

“sleep	problem”.	The	downside	of	the	method	is	that	it	requires	more	data	for	the	

indicators.	The	other	method	is	using	a	Likert	scale,	which	can	be	used	to	scale	these	

variables	into	measurable	ordinal	variables.	For	example,	“sleep	problem”	can	be	scaled	into	

three	groups:	“light”,	“moderate”	and	“severe”.	Both	methods	can	be	applied	to	measuring	

the	factors	of	diagnostic	errors.	

Regression	models	generally	use	the	goodness	of	fit	to	test	the	model	fit.	It	can	either	use	

new	observed	data	to	test	the	model-predicted	results,	or	summarise	the	discrepancy	

between	original	observed	values	and	the	values	expected	under	the	model65.	The	general	

measures	could	be	applied	to	testing	the	model	fit,	such	as	significance	testing,	chi-squared	

testing	or	the	analysis	of	variance.	
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3.5.3 Why	use	regression	analysis?	

The	main	reasons	why	regression	analysis	is	applied	to	modelling	diagnostic	errors	are	listed	

as	follows:		

• Regression	analysis	is	widely	used	in	determining	the	relationship	functions	in	

different	areas,	and	sufficient	software	and	methods	support	conducting	regression	

analysis.	

• It	fits	the	process	of	system	dynamics	modelling	well.	The	CLD	in	system	dynamics	

modelling	provides	the	information	for	its	feature-engineering	step,	and	its	

modelling	results	help	system	dynamics	modelling	provide	relationship	functions	

and	thus	overcome	the	limitations	of	system	dynamics	modelling.		

• A	Bayesian	network	is	not	applicable	because	it	requires	even	larger	amounts	of	

data	to	be	collected,	and	the	relations	in	the	problem	of	diagnostic	errors	are	

limited	to	cause-and-effect	relations.	

	

3.6 Software		
The	research	described	in	this	thesis	is	conducted	mainly	using	two	pieces	of	softwares:	

Vensim	and	SPSS.	The	software	used	for	the	system	dynamics	modelling	is	Vensim66.	Vensim	

is	a	free	software	package.	It	can	illustrate	the	CLD,	build	hieratical	cause	trees,	demonstrate	

and	simulate	quantitative	models.	The	software	used	for	the	regression	analysis	is	SPSS67,	

which	can	conduct	correlation	analysis	perform,	different	curve	estimations,	regression	

analysis	as	well	as	testing	model	fit.	

	

3.7 Data	collection	methods	
Data	used	in	the	thesis	mainly	come	from	two	sources:	public	data	from	literature	and	data	

from	experts.	For	the	variables	that	have	sufficient	data	in	the	literature,	literature	data	are	

chosen	as	a	prior	data	source.	For	the	variables	that	lack	appropriate	literature	sources,	data	

are	collected	from	experts.		

There	are	many	methods	used	to	gather	data	from	experts,	and	they	include	interviews	or	

semi-structured	interviews,	questionnaires,	participant	observation,	and	expert	elicitation.	

Questionnaires	and	expert	elicitation	are	chosen	to	collect	the	data	from	participants.	A	

questionnaire	is	a	convenient	approach	to	receive	a	large	quantities	of	feedbacks	from	a	

wide	range	of	participants.	It	is	chosen	to	collect	the	data	for	regression	analysis	because	it	
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provides	a	number	of	data	sets	for	individual	variables.	Expert	elicitation	is	a	method	used	

to	obtain	estimations	of	variables	from	expert	opinions,	and	specifically	works	for	the	

assessment	with	insufficient,	incomplete,	controversial	or	inconsistent	information.68	It	is	

chosen	in	the	thesis	to	provide	estimated	values	with	confidence	bands	for	simulation	tests.			

	

3.8 Summary	of	methods	used	in	the	thesis	
This	thesis	adopts	a	systemic	model	for	diagnostic	errors	based	on	the	system	dynamics	

modelling	approach,	and	also	combines	computer	science	regression	methods	into	the	

system	dynamics	modelling.	

The	first	part	of	this	thesis	focuses	on	the	qualitative	system	dynamics	modelling,	which	

uses	CLDs	to	qualitatively	present	the	factors	affecting	diagnosis	and	their	interrelations.		A	

systematic	literature	review	and	discussions	with	experts	are	implemented	as	the	main	

methods	in	this	part.	The	systematic	review	provides	the	source	and	evidence	to	identify	the	

key	factors	of	diagnostic	errors.	An	initial	CLD	is	designed	based	on	the	translation	of	the	

knowledge	from	the	systematic	review.	Then,	discussions	with	clinicians	about	the	initial	

CLD	are	followed	to	further	refine	the	qualitative	model	and	improve	its	reliability.	The	

second	part	is	about	quantitative	system	dynamics	modelling	which	implements	the	stock	

and	flow	diagrams	to	quantitatively	simulate	the	factors	and	diagnostic	errors.	The	

quantitative	system	dynamics	modelling	takes	the	diagnostic	process	as	a	system,	and	maps	

the	diagnostic	phases	following	the	diagnostic	process,	which	covers	all	the	phases	from	

“history	taking	and	physical	examination”	to	the	“after-diagnosis”	phase.	Based	on	the	

previous	CLD,	it	presents	the	error	flows	in	different	phases	of	diagnosis	and	relations	with	

relevant	factors.	Regression	analysis	is	used	in	this	part	to	identify	the	relationship	functions	

of	factors	and	their	dependent	variables	in	the	phase	of	history	taking	and	physical	

examinations.	After	applying	the	regression	results	to	the	quantitative	model,	simulations	

are	conducted	to	demonstrate	how	changing	one	or	more	variables	affects	diagnostic	

outputs,	where	the	variable	changing	may	indicate	the	effect	of	an	external	intervention	or	

a	policy.	The	evaluation	of	the	model	is	described	in	the	last	part	of	the	thesis.	

The	modelling	process	of	this	thesis	is	summarized	and	illustrated	in	Figure	3.5.	This	thesis	

firstly	identifies	the	problem	of	diagnostic	error	studies,	and	finds	out	that	the	study	of	

diagnostic	errors	requires	a	systemic	approach	of	representing	the	diagnostic	process	as	

well	as	the	interrelations	of	the	variables	during	the	diagnosis,	which	indicates	that	the	
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perception	of	the	problem	of	diagnostic	errors	leads	to	a	modelling	purpose.	Then,	the	

model	formulation	is	further	developed	in	order	to	understand	the	diagnosis	process	and	

the	diagnostic	errors.	During	the	modeling	process,	model	identification	is	a	key	ingredient.	

It	includes	two	aspects:	model	structure	development	and	model	parameter	identification.	

Model	identification	starts	with	identifying	key	factors	of	diagnostic	errors.	A	qualitative	

model,	as	the	essential	model	structure,	is	constructed	and	refined	after	this	process.	Based	

on	the	qualitative	model,	a	quantitative	model	is	developed,	where	model	parameters	are	

identified.	Furthermore,	simulation	experiments	are	conducted	and	the	quantitative	model	

is	evaluated.		Meanwhile,	feedback	from	model	simulation	and	evaluation	can	help	to	refine	

model	structure	and	model	parameters.69	The	process	of	between	model	developing	and	

model	evaluation	may	be	iterated	in	order	to	do	refine	the	model	based	on	the	feedback	of	

simulation	and	evaluation	results.	In	the	end,	the	model	is	documented	and	test	results	are	

presented	for	future	use.	

	

Figure	3.5	Modelling	process	of	this	thesis	
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More	specifically,	the	methods	used	in	the	research	are	listed	as	below,	following	an	order	

of	research	process:		

1) Identify	key	factors	of	diagnostic	errors	and	understand	relevant	researches	on	

diagnostic	errors:			

Purpose:	To	identify	the	key	inputs	of	the	model	and	take	a	broad	look	at	current	ways	of	

reducing	diagnostic	errors.	

Methods:	A	systematic	literature	review	of	relevant	studies	is	carried	out	in	this	step.	

Outputs:	Key	factors	of	diagnostic	errors	are	discovered.	A	summary	of	current	methods	

used	on	reducing	diagnostic	errors	is	produced.	

2) Develop	and	refine	the	qualitative	model:		

Purpose:	To	illustrate	a	qualitative	model	reflecting	the	relationships	among	the	key	factors	

and	diagnostic	errors,	and	to	modify	and	refine	the	qualitative	model	in	order	to	increase	

the	model’s	reliability.	

Methods:		

− Causal	loop	diagrams	are	constructed	as	the	qualitative	systems	dynamic	models	to	

analyse	the	diagnostic	process	and	the	key	factors	affecting	the	final	diagnosis.	

− Discussions	with	clinicians	about	the	initial	qualitative	model	are	conducted.	

Feedback	and	suggestions	of	the	clinicians	are	collected	from	the	discussions.	

Outputs:	A	causal	loop	diagram	of	diagnostic	errors	with	its	factors	is	developed,	and	the	

qualitative	model	is	further	refined	based	on	the	feedback	and	suggestions.	

3) Develop	the	quantitative	model:		

Purpose:	To	transfer	the	qualitative	model	into	a	quantitative	model	structure,	and	to	

modify	the	model	in	order	to	present	relevant	factors	as	well	as	error	flows	during	the	

diagnostic	process.	

Methods:	Stock	and	flow	diagrams	are	used	for	constructing	the	quantitative	model.		

Outputs:	A	quantitative	model	structure	that	shows	factors,	possible	patient	case	flows	and	

patient	outcomes	is	constructed	
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4) Identify	quantitative	relations:		

Purpose:	To	determine	the	unknown	relational	equations	in	the	quantitative	model.	

Methods:	

− A	Likert	scale	is	used	to	quantify	the	non-numerical	factors.		

− Questionnaires	are	conducted	at	this	step	to	provide	the	relevant	data	source	for	

regression	analysis.	

− Regression	analysis	is	used	to	model	the	relationship	function	between	multi-factors	

and	dependent	variables.	

− Significance	testing	and	the	analysis	of	variance	are	implemented	to	test	the	model	

fit	

Outputs:	Non-numerical	factors	are	quantified.	Data	from	the	questionnaires	are	collected	

and	analysed	using	regression	modelling	methods.	The	relationship	functions	between	

multi-factors	and	dependent	variables	are	identified,	evaluated	and	further	applied	into	the	

stock	and	flow	diagram.	And	finally,	the	quantitative	model	is	developed	after	this	step.	

5) Perform	model	simulation:	

Purpose:	To	visualise	how	model	elements	work	in	the	system	and	observe	model	

behaviours,	and	at	the	same	time,	to	simulate	the	changes	inside	the	model	when	changing	

one	or	more	factors.	

Methods:		

− A	literature	review	is	performed	to	collect	relevant	data	from	literature	for	the	

simulation	experience.	At	the	same	time,	expert	elicitation	is	performed	to	collect	

data	for	the	variables	that	are	not	available	from	literature	source.		

− Cook’s	classic	model181	is	used	for	the	data	gathered	from	the	expert	elicitation.	

− Scenario	analysis	is	used	for	the	model	simulation.	The	quantitative	model	is	

simulated	under	different	assumptions	or	scenarios.	

Outputs:	Relevant	data	are	retrieved	from	the	literature,	and	data	from	the	experts	are	

prepared	for	the	simulation.	Then,	the	qualitative	model	is	simulated	under	different	

scenarios.		

6) Perform	model	evaluation:		
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Purpose:	To	test	and	evaluate	the	model	outputs	

Methods:	A	list	of	assessments	for	dynamic	model	evaluation	from	Sterman	(2000)51	is	

adopted,	which	covers:	boundary	adequacy,	structure	assessment,	dimensional	consistency,	

parameter	assessment,	extreme	conditions,	integration	error,	behaviour	reproduction,	

behaviour	anomaly,	family	member,	supervised	behaviours,	sensitivity	analysis,	and	system	

improvement	

Outputs:	Evaluation	results	of	the	model	are	documented.	

	

3.9 Conclusion	
This	thesis	implements	system	dynamics	modelling	as	a	problem-solving	method	to	analyse	

root	causes	and	interrelations	among	variables	of	the	system.	It	proposes	solutions	via	the	

holistic	understanding	of	the	entire	complex	real	world	systems,	rather	than	piecemeal	

solutions.63	

Additionally,	since	system	dynamics	modelling	has	its	limitations	in	identifying	variable	

correlation	functions,	computer-based	regression	modelling	is	also	conducted	to	model	the	

correlations	between	the	factors	and	dependent	variables,	which	then	overcomes	the	

deficiency	of	implementation	of	system	dynamics	modelling.	

The	thesis	follows	a	typical	approach	to	model	development.	It	initially	identifies	the	

purpose	of	the	proposed	model.	Next,	it	identifies	organisational	variables,	and	develops	a	

qualitative	model	reflecting	the	root	causes	of	diagnostic	errors.	Afterwards,	it	develops	the	

system	into	a	quantitative	model	that	describes	the	behaviours	of	the	model.	Finally,	it	

simulates	the	system	showing	the	information	flows	or	data	flows.	

In	the	next	chapter,	a	systematic	review	of	the	literature	is	conducted,	which	aims	to	

identify	the	relevant	factors	and	interrelations	as	model	variables,	and	further	look	at	the	

current	methods	used	to	reduce	diagnostic	errors.	
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Chapter	4 A	Systematic	Review	of	Literature		

4.1 Introduction	
A	systematic	review	of	literature	is	performed	in	this	chapter.	The	systematic	review	helps	

further	understand	diagnostic	errors	by	identifying	the	key	factors	associated	with	

diagnostic	errors,	understanding	how	these	factors	are	linked	through	diagnostic	process,	

and	analysing	current	methods	used	to	reduce	diagnostic	errors.	The	findings	of	key	factors	

are	used	for	identifying	model	variables,	and	can	also	be	found	in	the	peer-reviewed	paper	

by	GUO	et	al	(2014)70.	

The	searching	method	of	the	systematic	review	is	introduced	at	the	beginning	of	this	

chapter	together;	the	two	main	findings,	key	factors	and	current	methods	of	diagnostic	

error	reduction,	are	individually	discussed	in	the	results	part.	Relevant	papers	about	key	

factors	of	diagnostic	errors	and	current	methods	of	reducing	diagnostic	errors	are	retrieved	

from	relevant	databases.	After	further	detailed	review,	these	papers	reflect	the	key	factors	

of	diagnostic	errors	into	six	categories	according	to	different	aspect	focuses.	Also,	both	

electronic	and	non-electronic	methods	of	reducing	diagnostic	errors	are	summarised	in	

results.	

	

4.2 Searching	method	
Papers	published	in	English	between	2002	and	2012,	which	tried	to	address	diagnostic	

errors,	were	retrieved	from	PubMed	and	relevant	databases.		

4.2.1 Searching	questions	

The	review	is	to	answer	the	following	questions:	

• What	are	the	key	factors	associated	with	diagnostic	errors?	

• What	are	the	current	methods	of	reducing	diagnostic	errors?	

4.2.2 Sources	of	literature	

The	following	databases	were	covered	in	the	search:	PubMed,	CINAHL	with	Full	Text,	

EMbase,	PsycINFO,	Web	of	Science	and	IEEE	Xplore.	The	timeframe	limit	for	the	published	

literature	is	from	2002	to	2012.	The	language	filter	was	set	to	English	language	only.	

The	following	search	phrases	were	used	during	the	search	to	cover	all	research-levels	of	key	

factors	that	affect	the	number	of	diagnostic	errors.	The	effect	can	be	discussed	in	two	ways:	
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causing	errors	(positive	effect	on	the	error	number)	or	reducing	errors	(negative	effect	on	

the	error	number).	

Phrases	used	in	the	search:	

Diagnostic	Error[MeSH	terms];	

Delayed	Diagnosis[MeSH	terms];	

Misdiagnosis	[MeSH	Terms];	

Reduce	diagnostic	errors;	

Prevent	diagnostic	errors;	

Manage	diagnostic	errors;	

Cause	

Table	4.1	Search	phrases	in	the	systematic	review	

4.2.3 Literature	selection	criteria	

Papers	were	excluded	if:	(i)	the	paper	was	a	commentary	or	general	review	paper;	(ii)	the	

paper	was	used	for	a	particular	medical	disease	study	only.	In	other	words,	the	selected	

papers	should	focus	on	consequences	of	and	contributors	to	misdiagnosis	instead	of	

discussing	clinical	features.	

4.2.4 Process	of	retrieving	articles	

Name	of	databases	 Number	of	articles	

PubMed	 261	

CINAHL	with	Full	Text	 157	

EMbase	 55	

PsycINFO	 27	

Web	of	Science	 79	

IEEE	 17		

	 Total:	596	

Table	4.2	Number	of	papers	initially	retrieved	from	databases	

A	total	number	of	596	papers	are	initially	retrieved	from	databases,	and	details	are	shown	in	

Table	4.2.	Then,	the	papers	are	further	selected	using	duplication	removal,	screening	titles	

and	abstracts,	and	applying	a	number	of	criteria.	A	total	of	65	papers	are	selected	in	the	

end,	and	full	papers	are	reviewed.	The	flow	diagram	for	the	selection	of	the	relevant	articles	

is	shown	in	Figure	4.1.		
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Figure	4.1	Flow	diagram	of	study	selection	

	

4.3 Findings	
A	total	of	65	papers	are	retrieved	and	viewed	for	the	study,	among	which	35	papers	focus	

on	studies	of	factors	only,	17	papers	focus	on	solutions	only,	and	13	papers	discuss	factors	

and	provide	solutions	or	strategies	as	well.	At	the	same	time,	six	papers	discuss	multi-aspect	

factors.	A	limited	number	of	articles	focus	on	the	evaluation	of	possible	solutions.	Though	

disease	feature	studies	were	not	included,	some	17	papers	used	in	the	study	of	diagnostic	

errors	are	clinical	disease	related,	which	shows	relevant	researches	are	closely	connected	

with	clinical	disease	study.	Figure	4.2	illustrates	the	distribution	of	papers	in	terms	of	focus	

or	usage.	

	

Figure	4.2	Paper	distribution	

Findings	show	diagnostic	errors	are	closely	connected	with	other	medical	errors	occurring	

during	the	diagnostic	process.	In	particular,	biochemical	test	errors,	radiological	test	errors	

35	papers	
focusing	on	
factors		
54%	

17	papers	
focusing	on	
soluqons	
26%	

13	papers	
discussing	
both	factors	
and	soluqons	
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and	improper	referrals	may	lead	to	a	final	diagnostic	error.	It	is	also	found	that	there	are	

more	quantitative	researches	regarding	biochemical	and	radiological	test	errors	than	other	

relevant	researches,	such	as	history	taking,	physical	exams	and	clinical	reasoning.		

Factors	involved	in	diagnostic	errors	cover	many	aspects.	Factors	are	classified	according	to	

the	relevant	aspect	in	subsection	4.3.1,	and	relevant	studies	were	divided	into	groups	for	

supporting	detailed	discussions	of	the	factors.	Relevant	methods	of	error	reductions	are	

described	in	subsection	4.3.2.	

4.3.1 Factors	of	diagnostic	errors		

The	factors	that	affect	a	diagnosis	are	diverse,	and	sometimes	are	linked	to	each	other.	

These	factors	are	summarised	into	six	categories	according	to	different	foci,	shown	below.	

• Clinical	disease	features:	It	covers	two	aspects:	whether	a	disease	is	well	researched	

and	the	clarity	of	disease	symptoms	or	presentation.	When	the	clinical	findings	are	

untypical	or	unclear,	the	disease	is	more	likely	to	be	misdiagnosed.			

• Educational	background	of	patients	or	doctors:	Patient	educational	background	is	

highly	related	to	patient	health	awareness;	that	is	about	whether	proper	actions	

could	be	carried	out	after	a	symptom	was	presented.	The	educational	background	

of	doctors	indicates	the	experience	and	knowledge	of	doctors	that	are	gained	from	

the	past	education,	including	relevant	training	specifically	designed	for	avoiding	

diagnostic	errors.	Experience	and	knowledge	covers	the	abilities	of	doctors	to	

observe	clinical	signs,	understand	collected	clinical	information,	reason	with	clinical	

information	and	organise	treatment	plans.		

• Collecting	and	reasoning	with diagnostic	clues:	Diagnostic	clues	are	the	evidential	

information	used	to	make	diagnostic	decisions.	Successfully	collecting	this	clinical	

diagnostic	information	involves	gathering	correct	information	from	patient	medical	

history,	patient-doctor	communication,	initial	physical	examinations	as	well	as	

further	diagnostic	information	collected	from	tests	or	consulting	from	other	

healthcare	providers.	Also,	clinical	reasoning	plays	an	essential	role.	This	involves	

using	doctors’	knowledge	to	retrieve	the	right	key	clues	from	a	series	of	collected	

diagnostic	information.	In	other	words,	clinical	reasoning	involves	properly	

weighting	collected	diagnostic	information	to	retrieve	key	information	as	to	

diagnostic	clues.	Doctors	are	more	likely	to	make	an	error	when	they	receive	

ambiguous	or	conflicting	diagnostic	information. 
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• Psychological	factors:	This	mainly	involves	biases	and	doctor	awareness	of	an	error	

or	high-risk	cases.	

• Follow-up	after	a	diagnosis:	Close	follow-up	helps	to	discover	and correct	existing	

diagnostic	errors	before	they	can	have	a	severe	impact	on	patients. 	

• Other	factors	

	

a. Clinical	disease	features:	understanding	signs	and	symptoms		

Different	diseases	can	have	similar	or	diverse	clinical	manifestations,	and	features	of	

diseases	here	mean	the	signs	or	clinical	information,	which	help	doctors	make	a	

determination	of	one	disease	or	distinguish	one	disease	from	another.71		Thus,	whether	the	

features	of	diseases	are	well	known	by	doctors	has	a	direct	effect	on	the	accuracy	of	clinical	

diagnosis.	

Disease	features	that	may	lead	to	a	misdiagnosis	are	mainly	focused	on	two	aspects.	Table	

4.3	lists	the	keys	factors	with	relevant	examples	in	terms	of	clinical	disease	features.	

• Whether	a	disease	is	well	researched		

When	the	clinical	findings	are	rare,	the	disease	is	more	likely	to	be	misdiagnosed.		

Unsuspected	rare	causes,	or	patient	groups	that	have	a	lower	index	of	suspicion	can	

increase	the	risk	of	a	delayed	or	missed	diagnosis.	When	the	presentations	of	the	

disease	are	“too	similar	or	too	rare”,	the	disease	with	atypical	presentations	is	more	

likely	to	be	misdiagnosed.	

Also,	a	particular	disease,	though	it	can	be	caused	by	different	reasons,	usually	has	

similar	clinical	test	or	image	findings.	A	good	example	is	that	hereditary	

angioedema(HAE)	has	the	similar	clinical	picture	as	do	other	forms	of	angioedema.75	

• The	clarity	of	disease		

The	clarity	of	disease	is	related	to	the	clinical	manifestation	or	presentations	in	

individual	patients.	In	other	words,	it	is	the	clarity	of	disease	symptoms	or	signs	

presented	by	patients.	In	particular,	it	may	involve	the	early	stage	of	a	disease.	

Relevant	study	shows	that	diseases	can	be	poorly	diagnosed	in	their	early	stages	

due	to	the	low	clarity	of	disease	features	at	the	very	early	stage.	
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Main	

categories	

Factors	 Examples	 Papers	

Clinical	

disease	

features	

Whether	a	disease	is	

well	researched	

Unsuspected	rare	causes	or	

unsuspected	age	group;	

Atypical	disease	symptoms	or	signs;	

Paper	72		

Paper	73		

Clarity	of	a	disease		 Early	stage	of	a	disease;	

Different	diseases	may	have	similar	

clinical	presentation	in	patients,	or	a	

disease	may	have	a	high	variability	of	

clinical	presentation,	such	as	

anaphylaxis.	

Paper	74	

Paper	75	 
Paper	76		

Table	4.3	Key	factors	in	terms	of	features	of	diseases	

b. Educational	background	

The	education	of	both	patients	and	doctors	plays	an	important	role	in	the	diagnostic	

process.	Keys	factors	with	relevant	papers	are	described	in	Table	4.4.	

• Patient	educational	background		

A	patient’s	educational	background	concerns	the	relevant	healthcare	education	that	

is	available	to	the	public	in	order	to	increase	their	awareness	regarding	a	disease	

and	the	proper	actions	to	be	taken	when	feeling	unwell.	Research	shows	that	a	

better	educational	background	is	linked	with	a	higher	awareness	and	better	actions.	

Thus,	public	education	in	relation	to	relevant	medical	information,	especially	for	

epidemic	diseases,	is	encouraged	so	that	patients	can	be	aware	of	the	first	signs	and	

symptoms.	It	directly	affects	patient	access	to	healthcare	in	a	timely	manner.	

• Doctor’s	knowledge	and	experience	

A	doctor’s	knowledge	and	experience	can	also	be	interpreted	as	the	skills	required	

to	deliver	correct	diagnosis.	It	refers	to	the	relevant	knowledge	or	experience	from	

professional	medical	education,	training	or	work	experience.	Also,	training,	which	is	

specifically	designed	to	avoid	diagnostic	errors,	may	help	deliver	the	knowledge	or	

awareness	of	diagnostic	errors,	such	as	negative	case	studies.	The	doctor’s	abilities	

obtained	from	knowledge	and	experience	include	observing	clinical	signs,	

understanding	collected	clinical	information,	reasoning	with	clinical	information	and	

organising	treatment	plans.	
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Main	categories	 Factors	 Examples	 Papers	

Educational	

background	

Health	awareness	 	 Paper	77	

Paper	78	

Doctor’s	experience	and	

knowledge	background	

Medical	knowledge	and	

experience;	

Specifically	designed	

training	to	avoid	

diagnostic	errors		

	

Paper	79		

Paper	80		

Paper	81	

Table	4.4	Key	factors	in	terms	of	educational	background	

c. Ambiguous	or	conflicting	information	in	diagnostic	clues:	

Diagnostic	clues	are	the	evidential	information	used	to	make	diagnostic	decisions.	They	are	

affected	by	the	quality	of	the	original	information	that	is	collected	during	diagnosis.	Also,	

they	are	impacted	on	by	the	clinical	reasoning	that	is	used	to	filter	and	retrieve	key	clues	

from	original	collected	information.		

The	original	diagnostic	information	covers	the	information	that	is	collected	from	each	phase	

of	the	diagnostic	process,	such	as	patient	medical	history,	patient-doctor	communications,	

initial	physical	examinations,	as	well	as	further	information	collected	from	diagnostic	tests	

or	consultation	information	from	other	healthcare	providers.	More	specifically,	ambiguous	

information	can	result	from	poor	communication	between	healthcare	providers	and	

patients,	which	is	more	frequently	witnessed	with	patients	who	have	language	difficulty	or	

verbal	commutation	difficulty,	such	as	infants	or	mental	health	patients.		Ambiguous	

information	in	test	results	is	mainly	due	to	the	errors	in	test	management,	for	example	

missed	tests,	delayed	responses	to	abnormal	findings,	and	the	interpretation	of	test	results.	

The	most	common	errors	in	tests	are	the	interpretations	of	"faint	test	bands”	and	false-

negative	or	false-positive	test	outputs.87	In	addition	to	collecting	information,	reasoning	

with	diagnostic	information	is	also	crucial,	and	it	indicates	weighing	suboptimal	diagnostic	

information	and	choosing	leading	clues.	Table	4.5	summaries	the	keys	factors	as	well	as	

relevant	examples	in	this	category.	
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Main	categories	 Factors	 Examples	 Papers	

Collecting	and	

retrieving/reasoning	

diagnostic	clues	

Collecting	diagnostic	

information	from	

patient	medical	history		

Incomplete	medical	history	

	

Paper	82			

Paper	83		

Collecting	diagnostic	

information	from	

communications	

between	patients	and	

doctors	

Fetal	disease;	

Diagnostic	overshadowing:	

misinterpreting	some	of	

the	physical	symptoms	as	

symptoms	of	the	mental	

illness 

Paper	84		

Paper	85		

Collecting	diagnostic	

information	from	tests	

Test	data	management;	

False-negative/positive	

results;	

Interpretation	of	"faint"	

test	bands	

Paper	86		

Paper	87			

Paper	88	

Collecting	diagnostic	

information	from	

referral;	

Retrieving	and	

reasoning	regarding	

diagnostic	clues	

	 Paper	89	

Paper	90	

Paper	91	

Paper	92	

Paper	93	

Paper	94	

Paper	95			

Table	4.5	Key	factors	in	terms	of	diagnostic	clues	

d. Psychological	factors	or	bias	

Psychological	factors	closely	affect	clinical	reasoning	in	the	process	when	clinicians	seek	to	

understand	diagnostic	information	and	assess	the	probabilities	of	diseases.	The	factors	and	

related	papers	are	listed	in	Table	4.6.	

Psychological	factors	are	mainly	of	two	types:	bias	and	awareness	of	an	error.	Different	

biases	for	the	most	part	relate	to	psychological	factors.	

Biases,	often	called	as	cognitive	bias	or	cognitive	factors,	refer	to	the	cognitive	functions	of	

performance	and	learning,	such	as	attention,	memory,	and	reasoning.96	They	are	found	to	

be	an	important	cause	of	diagnostic	errors.97	98 At	least	40	types	of	bias	that	may	affect	

clinical	reasoning	have	been	found99,	such	as	conformation	bias	which	is	about	physicians'	
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desire	to	confirm	a	preliminary	diagnosis	while	failing	to	seek	contradictory	evidence,	

history	bias	which	is	related	to	misleading	information	from	patient	medical	history,	or	

selection	bias	which	is	witnessed	when	patients	are	referred	to	other	healthcare	

providers100.	

Main	

categories	

Factors	 Examples	 Papers	

Psychological	

factors	

Bias	 Over	confidence	

Conformation	bias;		

Selection	bias;		

History	bias	

Paper	101		Paper	102		

Paper	103		Paper	104	

Paper	105		Paper	106		

Paper	107		Paper	108	

Awareness	of	an	

error	

	 Paper	109	

Table	4.6	Psychological	factors	

e. Follow-up	

Follow-up	after	a	diagnosis	is	mainly	used	for	discovering	and	corresponding	errors	in	time	

so	that	further	harms	resulted	from	errors	on	patient	outcomes	can	be	prevented.	Close	

follow-up	helps	clinicians	receive	feedback	of	the	initial	diagnosis	and	revise	treatment	plans	

in	time	when	needed.	Relevant	papers	are	listed	in	Table	4.7.	

Main	categories	 Factors	 Papers	

Follow-up		 Follow-up	and	feedback	of	

previous	diagnosis	

Paper	110		Paper	111		

Paper	112		Paper	113	

Table	4.7	Follow-up	factors	

f. Other	factors:	

Two	other	factors	were	found	during	the	systematic	review,	but	these	factors	were	not	

taken	as	the	key	factors	since	they	rarely	happen	or	have	only	a	minor	effect.		

These	two	factors	are	delayed	responses	to	abnormal	clinical	findings	and	the	work	

environment.	It	has	been	stated	in	one	study	in	2009114	that	delayed	responses	to	abnormal	

findings	may	delay	the	diagnosis.	The	study	also	suggests	that	clinical	data	management,	

especially	following	up	abnormal	findings,	should	be	improved.	Another	research	in	2007115	

argues	that	the	work	environment	of	diagnostic	tests,	such	as	ambient	light	conditions	for	

viewing	radiological	images,	may	affect	the	test	results.		
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In	summary,	relevant	factors	of	diagnostic	errors	can	be	divided	into	the	six	categories	

described	above,	and	Table	4.8	summaries	the	categories	and	lists	the	related	reference	

papers.		

Key	factors	 Support	papers	

Clinical	disease	features	

	

Paper72	to	Paper76	

Educational	

background	

Paper77	to	Paper81	

Ambiguous	or	conflicting	information	

in	diagnostic	clues	

Paper82	to	Paper95		

Psychological	factors	 Paper101	to	Paper109		

Follow-up	 Paper110	to	Paper113		

Other	factors		 Paper114,	Paper115	

	

Papers	which	cover	more	than	

one	factor	

Paper	20			Paper90		Paper91		

Paper	116	Paper117	Paper	118	

Table	4.8	Six	categories	of	key	factors	and	relevant	papers	

4.3.2 Methods	for	diagnostic	error	reduction	

This	subsection	discusses	the	methods	that	were	employed	in	the	selected	papers	to	help	

reduce	diagnostic	errors.	Methods	are	divided	into	two	large	groups,	“non-electronic	

methods”	and	“electronic	methods”,	based	on	whether	they	use	computer	technology	to	

solve	the	problem.		Furthermore,	they	are	also	separated	into	small	groups	depending	on	

the	factors	they	are	working	on.	Most	of	the	methods	tried	to	assist	with	one	factor	only.	

a. Non-electronic	methods	

Non-electronic	methods	are	varied	in	terms	of	subjects.	“Improving	education”	and	

“improving	clinical	guidelines”	cover	a	large	percentage	of	relevant	research	papers.	

Creative	methods	from	other	high-risk	professions	and	other	recommendations	are	also	

found	to	solve	the	problem.	

• Improving	education	for	patients	and	doctors:	

Education	for	patients	mainly	aims	to	increase	public	awareness.	It	helps	shorten	the	time	

between	“having	symptoms”	to	“accessing	a	medical	service”,	and	thus	avoiding	late	
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diagnosis	in	the	first	step.	Education	for	doctors	is	about	improving	doctors’	study	both	

regarding	medical	knowledge	and	clinical	guidelines.	Also,	some	researches	focus	on	

training	physicians	in	relation	to	decision	thinking	and	decision	making.	

• Improving	clinical	guidelines:		

Several	papers	investigate	in	depth	the	gaps	in	clinical	guidelines	so	as	to	uncover	links	with	

diagnostic	errors.	According	to	these	papers,	the	following	processes	are	suggested	for	

improvement:	investigation	period	service,	access	to	the	patient	history	records,	analysing	

clinical	data,	and	clinical	follow-up.	

• Other	methods:	

Other	methods	include	creative	ideas,	improving	the	work	environment	and	increasing	

evidence-based	recommendations.	In	particular,	creative	ideas	can	be	adopted	from	other	

high-risk,	high-reliability	professions,	such	as	aviation.		

Table	4.9	outlines	relevant	papers.	

Non-electronic	

methods	

Support	papers	with	outlines	

Education	for	patients	 Papers	77:	education	for	public	aimed	at	increasing	high	

awareness	

Education	for	doctors	 Paper	74:	medical	education	and	public	information	about	

leprosy's	signs	and	symptoms;			

Paper	81:	calling	for	better	medical	education	in	relation	to	

cluster	headache	

Improving	clinical	

guidelines	

Paper	119:	improving	guidelines	regarding	symptoms	of	

extradigital	glomus	tumour	

Paper	120:	a	treatment	algorithm	to	avoid	missing	similar	

injuries	is	proposed.	

Refine	clinical	rules:		

Paper	121:	improving	clinical	rules	to	identify	patients	who	have	

intracerebral	haemorrhage.	

Improve	the	investigation	period	service:		

Paper	122:	better	integrating	services	during	the	investigation	

period,	before	final	diagnosis.	
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Encourage	access	to	patient	medical	history	records:		

Paper	123:	encouraging	the	access	to	patient	medical	history	

records,	including	access	to	previous	mammograms,	but	should	

avoid	“misleading	diagnostic	information	from	clinical	history”	at	

the	same	time.	

Improve	how	to	analysis	the	collected	data:			

Paper	110:	a	method	to	analyse	the	collected	data	

Close	clinical	follow-up:		

Paper	114:	improving	clinical	data	management,	focusing	on	

following	up	abnormal	findings	

Creative	ideas,	which	

come	from	other	

application	fields,	

especially	high-risk,	

high-reliability	

professions	

Paper	124:	creative	ideas	from	applications	relating	to	airline	

pilots	and	nuclear	plant	operators.	

Paper	125:	situational	awareness	is	a	model	that	is	primarily	

used	in	aviation	human	factors	research	that	can	encompass	

both	the	cognitive	and	the	systems	roots	of	such	errors.	

Work	environment		 Paper	115:	different	light	conditions	for	viewing	radiological	

images	

Increasing	evidence-

based	

recommendations	

Paper	126:	increasing	evidence-based	recommendations	for	

clinical	decisions.			

Paper	127:	encouraging	evidence-based	medicine		

Table	4.9	Non-electronic	methods	and	relevant	papers	

b. Electronic	methods	

Electronic	methods	used	in	solving	this	problem	are	mainly	concerned	with	the	following	

two	aspects:	

• Solutions	focusing	on	laboratory	tests	

These	solutions	focus	on	the	mistakes	or	delays	during	laboratory	tests,	and	are	divided	into	

two	parts.	First,	advanced	electronic	laboratory	equipment	or	intervention	can	help	prevent	

errors	from	laboratory	test	results,	such	as	false	positive	or	false	negative	test	results,	which	

will	directly	affect	the	process	of	making	a	diagnosis.	Secondly,	electronic	laboratory	

systems	or	interventions	for	test	workflow	can	counteract	leaks	for	potential	workflow	

errors.	For	example,	missed	tests	or	wrongly	labelled	patient	names	on	test	samples	can	

cause	delays	or	mistakes,	which	can	be	prevented	by	electronic	systems	or	interventions.	
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• Solutions	focusing	on	decision	making	

These	solutions	implement	Internet	technologies	or	computing	knowledge	into	clinical	

decision	support	systems	or	interventions	that	help	clinicians	make	decisions.	Specifically,	

they	contribute	to	reducing	diagnostic	errors	in	three	ways:	predicting	high-risk	patient	

cases,	providing	diagnostic	information	for	doctors,	and	detecting	errors	in	time	after	a	

diagnosis.		

Table	4.10	summaries	the	electronic	methods	described	above	and	relevant	papers.	

Electronic	methods	 Support	papers	with	outlines	

Advanced	equipment	

for	laboratory	test	

results	

Paper	128:	Advanced	imaging	technology	

Electronic	laboratory	

system	or	interventions	

for	laboratory	test	

workflow		

Paper	129:		encouraging	interventions	for	the	workflow	

management	of	tests.	The	workflow	of	tests	includes:	

presentation	and	management	test	data,	as	well	as	insuring	

oppropriate	follow-up	of	tests.	

Paper	130:	e-Chasqui	laboratory	information	system	

Paper	108:	blinded	review	may	reduce	errors	in	the	

interpretation	of	skin	biopsies		

Clinical	decision	support	

systems	or	

interventions	in	helping	

make	a	diagnosis	

Using	computing	knowledge	to	work	as	a	reminder	by	

identifying	high	risk	diagnosis:	

Paper	131:	using	"affinity	set	by	topology	concept"	to	find,	

obtain	and	classify	key	attributes.	

Paper	94:	using	“a	knowledge	base”	from	a	diagnostic	decision	

support	system	to	identify	“high-information	clinical	findings”	

of	a	certain	disease	which	may	be	related	to	a	high-risk	

diagnosis,	such	as	colon	or	breast	carcinomas	

Computer-assisted	diagnostic	database	(extending	clinical	

criteria	from	an	expert	system):		

Paper	132:	a	computer-assisted	diagnosis	database	for	

headache	

Web-based	search	engine	helping	diagnosis:		

Paper	133:	discussing	Google	in	helping	diagnosis	
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Using	“ontology”	to	classify	diagnostic	criteria:		

Paper	134:	updating	existing	description	logic	ontology;	new	

ontology	will	classify	a	patient’s	characteristics	or	diagnostic	

criteria	under	a	particular	disease.					

Clinical	decision	support	

systems	or	system	

interventions	in	

detecting	diagnostic	

errors	

Electronic	health	records:	

Paper	14:	detecting	diagnostic	errors	by	finding	information	

patterns	in	electronic	health	records.	

System-related	interventions:	

Paper	135:	encouraging	system-related	interventions	

Systematic	re-examination:		

Paper	95:	suggesting	systematic	re-examination	of	leading	

diagnostic	clues.	

Paper	109:	querying	an	initial	diagnostic	hypothesis	may	help	

to	reduce	diagnostic	errors.	

Paper	111:	correcting	an	initial	error	before	it	affects	patients	

Paper	112:	modifying	the	initial	diagnosis	during	the	follow-up	

of	a	patient	is	important	in	diagnosing	epilepsy.	

Table	4.10	Electronic	methods	and	relevant	papers	

Overall,	most	methods	aim	to	promote	Internet	Technology	(IT)	support,	clinical	guidelines	

and	evidence-based	medicine,	and	acknowledge	the	fact	that	a	single	method	may	have	

multiple	effects	on	outcomes.	Taking	electronic	health	records	(EHR)	as	an	example,	EHR	

provides	an	electronic	source	of	medical	evidence,	which	benefits	to	both	clinicians	and	

researchers.	Clinicians	can	benefit	from	easy	access	to	the	individual	patient	medical	history.	

At	the	same	time,	clinicians	are	able	to	search	records	horizontally,	such	as	checking	

previous	patient	records	with	similar	symptoms.	Similarly,	researchers	are	also	able	to	

conveniently	retrieve	relevant	data	from	a	large	quantity	of	data	based	on	clinical	evidence.		

Figure	4.3	further	develops	Figure	2.1	in	terms	of	where	and	what	errors	may	occur,	and	

then	maps	the	methods	above	into	the	process.	
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Figure	4.3	What	can	be	done	during	diagnostic	process	

	

4.4 Summary		
The	factors	that	affect	a	diagnosis	cover	several	different	aspects,	and	can	be	divided	into	six	

main	categories:	clinical	disease	features,	educational	background,	ambiguous	or	conflicting	

information	in	diagnostic	clues,	psychological	factors	or	bias,	follow-up,	and	other	factors.	

Specifically,	clinical	disease	features	explain	diagnosis	from	a	standpoint	of	disease	related	

factors,	including	“whether	a	disease	is	well	researched”	and	the	“clarity	of	a	disease”.	The	

factor	of	educational	background	indicates	both	“public	health	awareness”	and	“doctor’s	

experience	and	knowledge”.		In	addition,	diagnosis	also	depends	on	gathering	sufficient	

correct	diagnostic	information	and	weighing	suboptimal	diagnostic	clues.	Moreover,	

psychological	factors,	such	as	bias,	and	close	follow-up	also	have	an	influence	on	patient	

outcomes.	

Current	methods	of	reducing	diagnostic	errors	are	also	reviewed.	Depending	on	whether	

internet	technology	is	applied,	the	methods	can	be	divided	into	non-electronic	methods	and	

electronic	methods.		Non-electronic	methods	cover	education	in	relation	to	patients	and	

doctors,	improving	clinical	guidelines,	a	proper	work	environment	and	encouraging	

• improve	educaqon	to	raise	public	
awareness	

1.	Access	to	medical	
service	

• improveEHR	
• improve	guidelines	to	manage	access	
to	paqent	medical	history	records	

2.	Paqent	medical	history	

• IT	assitance	for	criqcal	findings			3.	Paqent	physical	exams	

• IT	equipment	to	improve	test	results	
• Refine	clinical	guidelines;	Improve	
computer-assisted	laboratory	systems	
or	intervenqons		to	improve	guidelines	

4.	Lab	tests	

• IT	system	to	improve	diagnosqc	criteria;	
• educaqon	on	relevant	medical	researches	
• computer-assisted	intervenqons	to	help	weigh	
diagnosqc	clues	and	decide	on	leading	diagnosqc	
clues	
• Systemaqc	re-examinaqon	to	change	
inapproprate	diagnosis	in	qme	
• Improved	guidelines	on	how	to	analyse	the	
collected	data			

5.	Clinician	assessment	

• Refine	clinical	rules;	improve	guidelines		6.	Referral/Consultaqon	

• close	clinical	follow-up,	especially	for	
abnormal	findings	7.	Followup	
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evidence-based	medicine.	Electronic	methods	include	advanced	equipment	and	IT	

interventions	which	help	to	reduce	diagnostic	errors	in	three	ways:	predicting	high-risk	

patient	cases,	providing	diagnostic	information	for	doctors,	or	detecting	errors	in	time.		

However,	the	methods	still	need	to	be	evaluated	through	the	whole	diagnostic	system	

behaviour.	Few	methods	have	demonstrated	their	influence	on	the	phases	of	the	entire	

diagnostic	system,	as	well	as	effect	on	final	patient	outcomes,	so	the	results	are	limited	and	

sometimes	diverse.	When	providing	an	intervention	or	changing	one	factor,	a	series	of	

influences	on	different	diagnostic	phases	and	their	final	effect	on	patient	outcomes	would	

be	hard	to	evaluate	without	viewing	the	whole	picture.	Since	diagnosis	links	several	phases	

together	and	involves	a	range	of	factors,	it	requires	a	systemic	structure	showing	the	

connections	among	phases,	factors	and	patient	cases.		What	is	more,	a	systemic	model	can	

provide	a	quantitative	simulation,	which	shows	a	series	of	changes	of	the	error	numbers	in	

each	phase	while	the	values	of	factors	are	varying.	

The	next	chapter	will	illustrate	a	systemic	qualitative	model	to	present	interrelations	among	

key	factors,	based	on	the	findings	from	the	systematic	review.	The	qualitative	model	links	

different	phases	as	a	whole	diagnostic	system,	and	provides	a	systemic	look	at	the	root	

causes	and	cause-effect	relationships	between	model	variables.	Both	structured	causal	loop	

diagrams	and	hierarchical	cause	trees	are	generated	in	the	next	chapter.	 	
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Chapter	5 Qualitative	System	Dynamics	Modelling	

5.1 Introduction		
To	provide	a	systemic	view	and	better	understanding	of	diagnostic	errors	with	their	factors,	

a	qualitative	model	of	system	dynamics	is	developed	in	this	chapter.	This	qualitative	system	

dynamics	model,	reflecting	the	findings	of	the	systematic	literature	review,	links	model	

variables	together,	graphically	presents	variable	interrelations,	and	provides	clear	traces	of	

different	hierarchical	causes.		

The	chapter	starts	with	introductions	of	how	the	qualitative	system	dynamics	model	using	

causal	loop	diagrams	presents	variables	and	relations,	and	explaining	the	meanings	of	

presentations	used	in	the	diagram.	After	identifying	the	purpose	and	the	boundary	of	the	

model,	the	details	of	how	to	develop	the	causal	loop	diagrams	for	diagnostic	errors	are	

described.	Finally,	the	qualitative	model	in	the	form	of	a	causal	loop	diagram	is	illustrated	

based	on	the	systematic	reviews	and	expert	feedbacks,	and	the	model	is	explained	and	

discussed	in	detail.		The	results	of	the	model	can	also	be	found	in	paper	70.	

	

5.2 Introducing	the	qualitative	model	
A	qualitative	system	dynamics	model,	also	referred	as	to	a	“Causal	Loop	Diagram”(CLD),	

graphically	presents	a	system	using	two	components:	nodes	and	arrows.	The	model	

variables	are	represented	by	a	collection	of	nodes,	and	arrows	are	used	to	link	the	nodes	

together	and	to	represent	the	qualitative	relationships	of	the	variables,	particularly	the	

cause-effect	relationships.			

Furthermore,	because	of	the	cause-effect	relationships,	variables	of	the	system	can	be	

called	as	cause	variables	and	effect	variables.	The	“effect	variable”	is	adjacent	to	the	

arrowhead,	and	the	“cause	variable”	is	at	the	opposite	end	of	the	arrowhead.	Arrows	also	

use	a	positive	polarity	or	a	negative	polarity	at	the	arrowhead	to	indicate	that	the	cause	has	

positive	effect	or	negative	effect.	A	positive	polarity	indicates	the	“effect	variable”	changes	

in	the	same	direction	with	“cause	variable”;	while	a	negative	polarity	indicates	the	variables	

move	in	an	opposite	direction.	51	

Theoretically,	a	CLD	is	created	following	the	below	outline:	1,	identifying	the	purpose	of	the	

model;	2,	identifying	the	key	variables	of	the	model;	3,	developing	the	reference	modes,	in	
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other	words,	identifying	the	arrows	with	the	polarity;	4	developing	the	causal	map	of	the	

processes.51			

	

5.3 The	purpose	and	the	boundary	of	the	qualitative	model	
The	aim	of	the	qualitative	model	is	to	illustrate	a	systemic	list	of	factors	of	diagnostic	errors	

and	show	all	possible	routes	of	how	these	factors	affect	diagnosis,	as	well	as	the	hierarchical	

structure	of	cause-effect	relationships.		

A	CLD	model	can	help	to	understand	causes	of	diagnostic	errors	and	visualise	the	

interrelations	of	relevant	factors.	It	provides	the	routes	to	observe	how	diagnostic	accuracy	

is	affected	by	the	change	of	one	variable.	It	also	helps	quickly	capture	hypthotheses	of	

possible	solutions	by	analysing	causal	arrows	and	loops.	

The	qualitative	model	focuses	on	diagnosis	in	primary	care	only,	reflects	research-level	

factors	of	diagnostic	errors	from	literature,	and	presents	the	process	covering	access	to	

healthcare	service,	diagnostic	process	as	well	as	after-diagnosis.		

	

5.4 Developing	the	initial	qualitative	model	based	on	systematic	

review	
The	qualitative	model	is	constructed	based	on	two	sources:	literature	and	clinicians.	Figure	

5.1	shows	the	steps	used	in	the	thesis	to	develop	the	qualitative	model.		

	

Figure	5.1	Process	of	developing	the	qualitative	model	

A	systematic	review	of	literature	was	conducted	in	the	previous	chapter.	Relevant	papers	

published	between	2002	and	2012	were	viewed	and	these	papers	provided	the	information	
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for	model	variables	and	relationships.	According	to	the	findings	shown	in	the	section	4.3,	

the	following	list	of	factors	were	identified:	disease	well	researched;	disease	presentations;	

doctor’s	experience	and	knowledge	background;	collecting	and	reasoning	diagnostic	clues;	

public	health	awareness;	patient	medical	history;	patient-doctor	communication;	initial	

physical	examinations;	further	diagnostic	information	collected	from	tests	or	consulting	

from	other	healthcare	providers;	bias;	doctor	awareness	of	high	risk	cases;	close	follow-up.	

Both	causal	variables	and	effect	variables	were	further	mapped	into	the	patient	pathway	

that	includes	access	to	healthcare	service,	diagnostic	process	as	well	as	after-diagnosis,	and	

the	initial	qualitative	model	is	illustrated.		The	patient	pathway	and	the	initial	qualitative	

model	are	shown	in	APPENDIX	I.	Following	the	arrows	in	the	model,	a	4-level-depth	causes	

of	diagnostic	errors	was	displayed	in	APPENDIX	I	as	well.	

	

5.5 Amending	the	initial	qualitative	model	
In	this	section,	the	initial	model	in	APPENDIX	I	is	further	amended	based	on	experts’	

feedback.	The	model	is	shown	and	explained	to	the	clinicians,	then	clinicians’	opinions	and	

suggestions	of	the	model	are	asked	and	discussed.	The	discussion	covers	two	aspects:	the	

suitability	of	variables	in	the	model	and	the	applicability	of	cause-effect	interrelations.	

Feedbacks	and	suggestions	from	experts	are	collected	to	refine	the	model	and	increase	the	

model	acceptability	and	reliability.	The	initial	model	is	amended	in	the	end.	

5.5.1 The	process	of	discussions	with	experts	

A	total	number	of	seven	clinicians	reviewed	the	model	and	provided	feedback.	Since	it	is	an	

informal	discussion	instead	of	a	formal	study	approach,	all	participants	are	clinicians	who	

are	independent	clinicians	and	randomly	selected	from	people	with	contacts	from	UK	and	

Canada.	

The	discussion	is	carried	out	with	one	individual	clinician	at	one	time,	and	whole	process	

mainly	includes	the	following	parts:	presenting	the	initial	model	and	giving	an	introduction	

of	the	model;	explaining	the	model	while	asking	relevant	questions	to	the	clinician;	and	

collecting	clinician	opinions	and	suggestions.	During	the	process,	a	step-by-step	explanation	

of	the	model	is	given	while	relevant	questions	are	asked,	and	the	clinician	can	provide	

opinions	and	feedback	anytime	during	the	discussion	process.		

The	discussions	with	clinicians	mainly	cover	two	aspects:	the	suitability	of	the	variables	

which	is	to	check	whether	factors	included	in	the	model	were	effective	and	reasonable,	and	
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the	applicability	of	cause-effect	interrelations	which	is	to	check	whether	the	arrows	show	

correct	relationships	between	variables.	Questions,	such	as	“Do	you	think	this	model	covers	

all	the	key	factors	of	diagnostic	errors?”,	are	asked	and	more	details	of	the	process	can	be	

found	in	APPENDIX	II.	

5.5.2 Feedback	from	experts	

Clinicians	provided	an	overall	positive	feedback	on	the	initial	model,	and	believed	the	model	

covers	most	of	the	factors	that	may	affect	errors	in	diagnostic	decisions	and	arrows	show	

clear	cause-effect	relationships.	

At	the	same	time,	several	factors	are	proposed	to	be	added	into	the	model,	and	relevant	

loops	are	amended.	The	new	factors	are	as	below:		

• Continuity	of	care:	Continuity	of	care	indicates	whether	the	patient	sees	the	same	

doctor	every	time,	and	it	will	affect	the	quality	of	the	outputs	from	the	history	

taking	and	physical	examinations,	especially	in	primary	care	service.	

• Workload	for	healthcare	providers.136	

• Easy	access	to	medical	service	

• Patient	trust	to	the	healthcare	provider:	Diagnostic	errors	can	reduce	patient	trust	

and	affect	patient	choosing	the	same	healthcare	provider.	

• Detected	errors.	It	is	the	consequence	of	factors:	“doctor	awareness	of	an	error”	

and	“follow-up	and	feedback	of	previous	diagnosis’.	It	contributes	to	a	better	

understanding	of	how	the	two	factors	affect	the	diagnostic	errors.	

Relevant	relationships	were	discussed	and	amended	based	on	the	initial	model.	

5.5.3 Final	causal	loop	diagram	for	diagnostic	errors	

After	amendment	of	the	initial	diagram,	the	final	CLD is	illustrated	as	Figure	5.2.	Both	

variables	and	relations	rely	on	the	findings	from	the	systematic	literature	review	in	Chapter	

4	and	expert	reviews	in	Chapter	5.		
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Figure	5.2	The	causal	loop	diagram	for	diagnostic	errors 

a. Descriptions	

The	qualitative	model	illustrates	a	systemic	look	of	key	factors	of	diagnostic	errors	from	a	

view	of	the	entire	healthcare	system,	which	covers	medical	service	access,	diagnosis,	and	

after-diagnosis.		

The	model	shows	key	factors	of	diagnostic	errors	clearly	and	links	the	causal	variables	and	

effect	variables	together	using	arrows.	By	tracing	the	arrows,	the	model	can	help	to	discover	

the	root	causes	and	provide	a	structured	and	hierarchical	view	of	the	causes.	Variables	

without	boxes	are	internal	variables	in	the	process	of	diagnostic	errors,	and	variables	

marked	with	boxes	are	the	external	variables.	Following	the	input	arrows	of	a	variable	can	

discover	different	levels	of	causes	of	the	variable.	The	diagnostic	errors	are	presented	as	the	

variable	“Number	of	existing	diagnostic	errors”	in	the	diagram.	The	input	arrows	of	the	

variable	“Number	of	existing	diagnostic	errors”	link	with	two	variables,	and	the	two	variables	

are	the	first-level	causes	that	have	direct	causal	effect	on	diagnostic	errors.	Further	tracing	

back	the	input	arrows	of	the	first-level	causes,	the	second-level	causes	can	be	found.	

Similarly,	different	levels	of	causes	can	be	discovered	via	tracing	the	input	arrows,	and	
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finally	form	a	“causes	tree”	that	hierarchically	shows	the	different	levels	of	causes	of	

diagnostic	errors.	

b. Causes	trees	

Causes	trees	help	to	summarise	all	causes	of	different	levels	and	show	the	paths	from	the	

initial	cause	to	the	final	effect.	To	get	a	clear	view	of	the	causal	variables	and	effect	variable	

of	the	diagnostic	errors	in	the	system,	the	cause	trees	of	“Number	of	existing	diagnostic	

errors”,	showing	hierarchical	structure	of	causes	of	diagnostic	errors,	are	illustrated	as	

Figure	5.3,	Figure	5.4,	Figure	5.5	and	Figure	5.6.	More	details	of	Figure	5.3	can	be	found	in	

APPENDIX	III.		

The	causes	of	the	variable	“Number	of	existing	diagnostic	errors”	can	be	found	from	its	input	

arrows.	The	variable	has	two	main	causal	factors	that	are	the	“On-time	diagnostic	accuracy”	

and	the	“Detected	errors”.	These	two	variables	are	also	affected	by	their	input	factors.	The	

“On-time	diagnostic	accuracy”	depends	on	bias,	doctor’s	experience	and	medical	knowledge,	

and	retrieval	accuracy	of	key	diagnostic	clues.	The	“Detected	errors”	is	influenced	by	doctor	

awareness	of	an	error	and	possibility	to	carry	re-exams	on	time.		

	

Figure	5.3	3-level	of	causes	tree	of	diagnostic	errors	
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Figure	5.4	Causes	tree	1	of	the	3rd	level	factors	

	

	

Figure	5.5	Causes	tree	2	of	the	3rd	level	factors	

	

	

Figure	5.6	Causes	tree	3	of	the	3rd	level	factors	

	

c. Uses	tree	

Similar	to	the	causes	trees,	the	“uses	tree”	of	a	variable	shows	how	this	variable	affects	

other	variables.	Figure	5.7	describes	how	the	diagnostic	errors,	“Number	of	existing	

diagnostic	errors”,	works	as	a	cause	in	the	system.	

	

Figure	5.7	Uses	tree	of	diagnostic	errors	
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d. Loops	

Following	the	arrows	in	the	qualitative	model,	loops	which	are	constructed	by	arrows	can	be	

found.	Each	loop	indicates	a	loop	of	cause	and	effect	relationships.	Twelve	loops	that	

include	the	variable	“Number	of	existing	diagnostic	errors”	are	figured	out.	To	have	a	clear	

view	of	the	causal	loops,	individual	loops	are	retrieved	out	from	the	qualitative	model,	and	

are	described	in	APPENDIX	V.		

	

5.6 Discussion	of	how	to	map	possible	strategies	into	the	qualitative	

model	
The	qualitative	model	not	only	provides	a	systemic	understanding	of	the	cause-effect	

relationships,	but	also	encourages	the	creative	thinking	of	possible	strategies.	When	the	

relevant	strategies	or	interventions	are	mapped	into	the	model	and	linked	with	relevant	

variables,	the	model	can	help	to	discover	how	the	system	can	be	affected.		

Specifically,	CLD	helps	to	demonstrate	the	related	variables	that	can	be	influenced,	and	

explain	the	routes	of	how	the	intervention	will	directly	or	indirectly	affect	diagnostic	errors	

via	arrows.	Figure	5.8	takes	an	electronic	follow-up	system	or	other	close	follow-up	

intervention	as	an	example.	After	adding	the	intervention	shown	in	the	red	box	in	the	figure,	

red	arrows	can	explain	the	routes	of	how	the	intervention	affects	the	factor	of	“Number	of	

existing	diagnostic	errors”.	At	the	same	time,	the	model	variables	that	are	linked	by	the	red	

arrows	are	the	affected	variables.	
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Figure	5.8	CLD	of	diagnostic	errors	adding	an	intervention	

	

5.7 Summary	
The	qualitative	model	is	constructed	in	this	chapter.	Based	on	the	finding	of	the	systematic	

review,	an	initial	qualitative	model	is	illustrated	at	first,	and	it	is	further	revised	according	to	

the	suggestions	from	seven	clinicians.	The	qualitative	model,	using	a	causal	loop	diagram,	

links	all	relevant	factors	of	diagnostic	error	together	as	a	system,	and	arrows	indicate	

interrelations	among	model	variables.	Using	this	model,	the	hierarchical	structure	of	causes	

of	diagnostic	errors	is	illustrated.	Furthermore,	the	qualitative	model	is	also	able	to	reflect	

possible	strategies	or	interventions	into	the	system	by	analysing	the	relevant	loops,	which	

will	help	to	encourage	possible	solution	thinking.	

However,	the	qualitative	model	does	not	present	the	data	flows	of	the	system,	and	cannot	

reflect	the	quantitative	changes	of	the	system	when	changing	model	variables	or	mapping	

possible	strategies	into	the	system.	In	other	words,	it	can	only	demonstrate	which	are	the	

affected	variables	and	routes,	and	it	does	not	show	how	much	the	affected	variables	can	

change.	Thus,	a	quantitative	model	is	required	to	be	developed	to	present	the	data	flow	of	

the	system,	then	make	up	for	the	disadvantage	of	the	qualitative	model	for	deeper	
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understanding	the	system	behaviours.	Next	chapter	explains	how	to	develop	the	

quantitative	model	using	system	dynamics	modelling,	and	then	develops	the	quantitative	

model	structure.		 	
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Chapter	6 Quantitative	System	Dynamics	Model	Development	

6.1 Introduction		
The	qualitative	model,	the	CLD,	helps	to	understand	the	interrelations	of	the	variables	of	the	

diagnostic	system.	By	observing	these	factors	and	loops,	it	encourages	thinking	regarding	

possible	strategies.	However,	causal	loop	diagrams	cannot	show	quantitative	changes	of	the	

variables	of	the	system.	To	observe	quantitative	system	behaviours	and	have	a	deeper	look	

into	system	response	to	the	changes	of	variables,	a	quantitative	model	is	required	to	be	

developed.	In	order	to	present	the	error	cases,	patient	cases	and	patient	outcomes,	which	

are	all	not	included	in	the	CLD,	the	quantitative	model	structure	is	designed	in	this	chapter.	

This	chapter	starts	with	the	introduction	of	how	to	use	“stock	and	flow	diagrams”	to	

quantitatively	present	variables	in	the	diagnostic	process,	and	lists	the	steps	of	developing	a	

quantitative	model.	Then,	it	discusses	each	phase	of	the	diagnostic	process	separately	and	

constructs	model	structures	for	each	phase.	Relevant	factors	and	interrelations	from	the	

CLD	are	mapped	into	the	model	structures.	Variables	in	the	model	structures	are	explained	

in	each	section.	In	the	end,	the	structure	of	the	quantitative	model	is	developed,	by	

combining	all	phases	together.	The	quantitative	model	structure	result	has	been	published	

in	paper	137.	

	

6.2 How	quantitative	system	dynamics	works	in	terms	of	diagnostic	

errors	
In	this	section,	how	to	use	system	dynamics	to	present	diagnostic	errors	is	explained	in	

detail.	System	dynamics	generally	uses	“stocks”	to	represent	the	quantity	of	a	variable	and	

uses	“inflows”/“outflows”	to	represent	the	flows	of	quantities	into/out	of	the	stock	at	every	

time	unit,	which	is	referred	to	as	“a	stock	and	flow	diagram”	in	system	dynamics.	

The	flow	chart	below	shows	the	basic	theory	of	how	system	dynamics	quantitatively	

presents	diagnostic	errors.	

	

Figure	6.1	Interpreting	diagnostic	errors	in	a	system	dynamics	model	

The number of
existing diagnostic

errors detected errorsnew errors
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The	stock,	namely	“the	number	of	existing	diagnostic	errors”,	in	Figure	6.1	denotes	the	

quantity	of	diagnostic	errors	or	the	number	of	diagnostic	errors	in	the	system.	Also,	the	

stock	presents	the	accumulated	results	of	its	inflows	and	outflows	over	time.	

The	input	arrow	“new	errors”	means	the	newly	happening	diagnostic	errors	per	time	unit.	It	

is	the	inflow	that	increases	the	level	of	the	stock.	The	output	arrow	“detected	errors”	means	

the	diagnostic	errors	being	detected	after	diagnosis	per	time	unit,	and	it	is	the	outflow	

which	reduces	the	level	of	stock.		

The	level	of	“the	number	of	existing	diagnostic	errors”	from	time	t0	to	time	t	can	be	

explained	using	an	integral	equation	in	Eq.	(6.1)	and	a	differential	equation	in	Eq.	(6.2).	

	 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔 𝑑𝑖𝑎𝑔𝑛𝑜𝑠𝑡𝑖𝑐 𝑒𝑟𝑟𝑜𝑟𝑠 𝑡

= 𝑛𝑒𝑤 𝑒𝑟𝑟𝑜𝑟𝑠 𝑠 − 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑  𝑒𝑟𝑟𝑜𝑟𝑠 𝑠 𝑑𝑠
!

!!

+ 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑥𝑖𝑠𝑖𝑡𝑖𝑛𝑔 𝑑𝑖𝑎𝑔𝑛𝑜𝑠𝑡𝑖𝑐 𝑒𝑟𝑟𝑜𝑟𝑠 𝑡! 	

	

	

(6.1)	

where	s	represents		any	time		between	the	initial	time	t0	and	the	current	time	t.	

	 𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔 𝑑𝑖𝑎𝑔𝑛𝑜𝑠𝑡𝑖𝑐 𝑒𝑟𝑟𝑜𝑟𝑠
𝑑𝑡

= 𝐼𝑛𝑓𝑙𝑜𝑤: 𝑛𝑒𝑤 𝑒𝑟𝑟𝑜𝑟𝑠 𝑡 − 𝑂𝑢𝑡𝑓𝑙𝑜𝑤: 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑  𝑒𝑟𝑟𝑜𝑟𝑠(𝑡)	

	

(6.2)	

Generally	speaking,	stocks	represent	the	number	of	patient	cases.	Flow	arrows	are	related	

to	relevant	actions	of	processing	patient	cases	during	the	diagnostic	process.	

Considering	the	whole	picture	of	the	diagnostic	system,	the	number	of	diagnostic	errors	

could	be	taken	as	a	stock,	which	remained	at	a	certain	level	in	the	current	clinical	system.	

The	factors	with	positive	links	with	diagnostic	errors,	which	were	found	in	the	CLDs,	worked	

like	input	flows	to	the	stock,	and	they	would	increase	the	level	inside	the	stock,	which	

means	the	number	of	the	diagnostic	errors	would	increase	because	of	the	input	flows.		

Meanwhile,	the	negative	factors	for	the	diagnostic	errors	could	be	linked	to	the	output	

flows	or	discharges.	They	helped	to	decrease	the	level	of	the	stock,	which	means	they	

helped	to	decrease	the	number	of	diagnostic	errors.	If	it	could	be	shown	that	the	stock	level	

decreases	after	an	external	intervention	or	a	strategy	is	implemented,	that	would	indicate	

an	intervention	or	strategy	which	could	reduce	diagnostic	errors.	
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6.3 Steps	
The	steps	of	creating	a	system	dynamic	model	are	as	follows:		

1. Identify	the	purpose	of	the	model:		

This	quantitative	model	aims	to	quantitatively	model	the	relations	among	the	diagnostic	

errors,	diagnostic	process	errors	and	relevant	factors.	

2. Identify	boundaries	and	variables:		

The	quantitative	model	focuses	on	the	diagnostic	process	and	patient	outcomes	in	the	

primary	care	service	only.	Compared	to	the	previous	qualitative	model,	the	quantitative	

model	only	concentrates	on	the	clinical	diagnostic	process	in	healthcare	service.	Thus,	

factors	outside	the	system	such	as	public	health	awareness	are	not	included.		

Besides	the	factors	outside	the	system,	the	factor	“bias”	is	not	discussed	in	the	

quantitative	model.	This	factor	refers	to	many	types	of	bias	and	each	type	requires	to	be	

studied	individually.	Therefore,	it	is	not	included	in	the	quantitative	model	due	to	the	

time	constraint.	

Overall,	the	model	is	limited	to	mapping	the	diagnostic	process	in	general	practice	as	a	

system	and	it	shows	the	relevant	internal	factors,	errors	as	well	as	patient	outcomes.	

Factors	and	their	relations	in	the	quantitative	model	are	developed	from	the	previous	

qualitative	model,	and	the	quantitative	model	also	combines	the	phases	of	the	

diagnostic	process	in	order	to	show	the	error	flows	at	each	stage	of	the	diagnosis.	

3. Develop	the	structure	of	the	quantitative	model:	

This	step	includes	mapping	the	CLD	into	stock-flow	diagrams	and	further	constructing	

model	structure.	Because	the	previous	CLD	does	not	present	the	diagnostic	process	

errors,	patient	case	flows	and	patient	outcomes,	simply	transferring	the	CLD	into	stock-

flow	diagrams	is	not	enough.	Thus,	the	quantitative	model	structure	is	required	to	be	

designed	so	that	the	model	can	describe	patient	outcomes,	all	possible	error	flows	and	

patient	flows	during	the	diagnostic	process.	

4. Identify	equations	of	the	stock	and	flow	diagrams.	

5. Run	the	model	simulations	and	observe	the	behaviours	of	the	diagnostic	system.	
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6.4 Develop	the	structure	of	the	quantitative	model		
The	quantitative	model	follows	the	diagnostic	process	as	a	frame.	The	diagnostic	process,	

diagnostic	reasoning	and	diagnostic	sensitivity	are	introduced	in	this	section	to	better	

understand	diagnosis	and	the	model.	

6.4.1 Model	frame	

When	a	patient	is	seeing	a	doctor,	the	doctor	will	take	the	following	actions	to	conduct	a	

diagnostic	decision.136	It	starts	with	“taking	a	history”,	which	refers	to	reviewing	patient	

history,	communicating	with	the	patient,	performing	physical	examinations	and	taking	

notes.		All	information	is	gathered	as	diagnostic	information.	Then	more	clinical	

examinations	and	tests	may	be	ordered	to	gather	additional	information.		

At	some	stage	the	clinician	develops	a	list	of	some	diagnostic	possibilities,	which	are	called	

the	differential	diagnosis.	Then	the	clinician	gathers	more	information	to	refine	the	list,	

maybe	via	asking	more	questions	or	undertaking	more	examinations.	Finally,	he	or	she	

arrives	at	a	provisional	diagnosis.	

Generally,	when	clinicians	face	each	new	clinical	situation	in	real	life,	they	match	the	new	

situation	to	the	past	experience	and	act	in	accordance	with	what	to	do	in	that	situation	from	

past	training	and	experience.	Figure	6.2	uses	a	recognition-primed	decision	(RPD)	model,	

illustrated	by	Klein	in	1999	138,	to	explain	how	expert	clinicians	make	decisions	in	medicine.		

	

Figure	6.2	Recognition-primed	decision	model138	
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It	is	shown	in	Figure	6.3	that	the	whole	diagnostic	process	can	be	divided	into:	pre-decision	

making,	decision	making	and	after-decision	making.	Pre-decision	making	is	the	only	period	

when	new	errors	in	diagnostic	clues	happen.	It	is	further	divided	into	three	phases	for	an	

insight	view	of	where	new	errors	may	happen	during	this	period,	which	are	“phase1	history	

taking	and	physical	examination”,	“phase2	tests”	and	“phase3	referring	to	other	healthcare	

providers”.		

When	a	patient	visits	a	clinician,	the	first	and	essential	phase	for	the	clinician	to	initiate	is	

the	phase1	history	and	physical	examinations.	It	includes	taking	a	full	history	of	patient	and	

conducting	physical	examinations	if	necessary.	The	second	phase	is	assessment	tests	which	

cover	all	relevant	diagnostic	tests,	both	biochemical	and	radiological,	to	confirm	or	establish	

the	diagnosis139,	for	example,	a	laboratory	test	or	a	computed	tomography	(CT)	scan.	The	

third	phase	is	about	referring	the	patient	to	other	healthcare	providers,	which	is	to	hand	

over	the	patient’s	care	to	other	healthcare	providers.		

	

Figure	6.3	Diagnostic	phases	

However,	all	of	these	three	phases	may	or	may	not	be	conducted	to	make	a	diagnosis	during	

a	patient	visit.	Figure	6.4	shows	a	total	of	four	possible	routes	of	patient	flows	during	the	

diagnostic	system,	which	is	used	as	the	frame	for	the	quantitative	model	structure.	The	

same	numbered	arrows	with	the	same	colour	indicates	the	four	different	routes	for	patient	

flows.	The	route	marked	with	number	1	means	that	the	patient	case	begin	from	phase	1	and	

then	directly	goes	to	decision-making	phase	“Treatment	plan;	patient	discharged”.	The	

route	marked	with	number	2	represents	that	the	patient	case	starts	from	phase	1	and	then	

experience	phase	2	before	finally	reaching	the	decision-making	phase.	Similarly,	the	route	

marked	with	number	3	show	the	patient	flow	that	passes	phase	1,	phase	2	and	phase	3	

before	arriving	at	the	decision-making	phase.	Also,	the	route	marked	with	number	4	implies	

that	the	patient	flow	goes	to	phase	3	directly	after	experiencing	phase	1.	

Phase1 history and
physical examinations Phase2 assessment tests Phase3 referring to other

healthcare providers

pre-decision making after-decision makingdecision making
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Figure	6.4	The	frame	of	the	quantitative	model	structure	

6.4.2 How	diagnostic	reasoning	works	

Clinical	diagnostic	reasoning,	sometimes	referred	to	as	clinical	cognitive	modelling,	helps	to	

understand	how	clinicians	arrive	at	a	diagnosis.	They	mainly	have	three	types136:	pattern	

recognition	or	feature	matching,	hypothetic	deductive	reasoning,	which	is	either	to	confirm	

or	to	exclude	the	hypothesised	diagnosis,	information	gathering	which	is	used	when	

information	is	not	sufficient	to	generate	a	hypothesis.	

In	general,	information	gathering	run	through	the	entire	pre-diagnosis	period,	and	

diagnostic	reasoning	is	being	conducted	while	the	clinician	is	gathering	the	diagnostic	

information	in	every	step.	During	each	step,	diagnostic	information	is	collected	and	it	is	used	

to	support	pattern	recognition,	and	then	one	or	more	hypothesis	is	generated	when	the	

information	is	sufficient.	Furthermore,	more	information	is	needed	if	deductive	reasoning	is	

required	in	order	to	confirm	or	exclude	the	hypothesised	diagnosis.	

6.4.3 Diagnostic	sensitivity	

Sensitivity	is	commonly	applied	to	the	measurement	of	the	results	of	diagnostic	

assessments,	particularly	including	laboratory	tests	and	history	taking	and	physical	

examinations.	It	can	directly	affect	diagnostic	performance.	Although	more	researches	

about	laboratory	test	sensitivity	are	observed,	rather	than	the	sensitivity	of	history	taking	

and	physical	examinations,	both	types	of	assessment	have	the	same	methods	of	

representing	the	sensitivity	and	assessment	performance.	
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Diagnostic	results	use	“positive”	or	“negative”	to	interpret	the	diseased	or	non-diseased	

subjects.	However,	test	results	sometimes	do	not	represent	the	true	disease	state.	A	

positive	result	does	not	always	represent	a	true	positive	for	a	diseased	subject,	and	a	

negative	result	sometimes	does	not	indicate	a	non-diseased	subject.	The	relations	of	test	

results	and	disease	state	are	listed	in	Table	6.1.	Sometimes,	the	disease	subject	can	still	be	

shown	as	“negative”,	which	is	called	as	“false	negative”.	It	is	the	same	with	the	non-disease	

subjects	shown	as	“positive”,	which	is	called	“false	positive”.		

	 Disease	State	

Present	

Disease	State	

Absent	

Test	Outcome	

Positive	

True	Positives	

(TP)	

False	Positives	

(FP)	

Test	Outcome	

Negative	

False	Negatives	

(FN)	

True	Negatives	

(TN)	

Table	6.1	Relations	of	test	outcome	and	disease	state	

False	positive	or	false	negative	are	associated	with	in	most	tests.		This	can	be	explained	in	

Figure	6.5	adopted	from	Shapiro	in	1999	140,	where	X	indicates	diseased	and	non-diseased	

subjects.	The	vertical	line	at	X=	γ	indicates	the	decision	limit	for	a	positive	test.	The	shaded	

area	to	the	right	of	γ	is	the	False	Positive	Rate	(FPR),	and	the	shaded	area	to	the	left	of	γ	

is	the	False	Negative	Rate	(FNR).140		

	

Figure	6.5	Hypothetical	distributions	of	diagnostic	test	results140	

Thus,	diagnostic	performance	or	diagnostic	accuracy	is	usually	analysed	using	the	following	

terms:	prevalence,	sensitivity,	specificity,	efficiency,	and	predictive	value.	They	are	

summarised	by	Wians	in	2009	141,	shown	as	below:	

Prevalence	(p)	=	No.	of	individuals	with	disease/No.	of	individuals	in	population	to	be	tested		
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Sensitivity	=	percentage	of	individuals	with	disease	who	have	a	positive	test	result	=	TP/(TP	+	

FN)		

Specificity	=	percentage	of	individuals	without	disease	who	have	a	negative	test	result	=	

TN/(TN	+	FP)		

Efficiency	=percentage	of	individuals	correctly	classified	by	test	results	as	being	either	

positive	or	negative	for	the	disease	=	(TP	+	TN)/(TP	+	FP	+	FN	+	TN)		

Positive	Predictive	Value	(PPV)	=	percentage	of	individuals	with	a	positive	test	result	who	

truly	have	the	disease	=	TP/(TP	+	FP),	or	PPV	=	(sensitivity)(p)/[(sensitivity)(p)	+	(1	-	

specificity)(1	–	p)	

Negative	Predictive	Value	(NPV)	=	percentage	of	individuals	with	a	negative	test	result	who	

do	not	have	the	disease	=	TN/(TN	+	FN),	or	NPV	=(specificity)(1	-	p)/[(specificity)(1	-	p)	+	(1	-	

sensitivity)(p)]	

In	general,	assessment	tests	have	requirements	for	both	sensitivity	and	specificity,	thus,	

receiver-	(or	relative-)	operator	characteristic	(ROC)	curves	are	commonly	used	as	a	useful	

graphical	tool	in	assessing	diagnostic	test	or	examination	accuracy,	shown	in	Figure	6.6	140.	

The	ROC	curve	illustrates	FPR	(False	Positive	Rate)	and	TPR	(True	Positive	Rate)	in	pairs,	

where	actually	FPR	(False	Positive	Rate)	=1	–	specificity;	TPR	(True	Positive	Rate)	=	

sensitivity.		

However,	diagnostic	errors	only	concern	cases	with	disease	instead	of	cases	without	

disease.	The	percentage	of	cases	with	disease	who	have	a	negative	assessment	result	can	be	

represented	as	FN/(TP+FN)	=	1-	sensitivity.	Thus,	sensitivity	is	selected	to	represent	the	

performance	of	diagnostic	assessments.			

	

Figure	6.6	Receiver-Operator	Characteristic	(ROC)	Curve140	
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6.5 Model	for	Phase1	history	taking	and	physical	examination	
According	to	the	stage	where	initial	errors	happen	during	pre-decision	making,	relevant	

errors	are	divided	into	three	groups	in	this	thesis,	and	separately	discussed	in	three	similar	

models	for	a	clear	explanation.	

Phase	1	is	an	essential	phase,	which	includes	history	taking	and	physical	examination.	Initial	

diagnostic	hypotheses	may	be	obtained	after	this	phase.	History	taking	covers	the	history	of	

the	presenting	complaint	and	review	of	systems.	It	starts	with	the	history	of	the	presenting	

complaint,	which	is	about	patient	presenting	complains.	The	next	step	is	called	the	review	of	

systems.	During	this	step,	the	clinician	asks	the	patient	questions	which	may	or	may	not	be	

related	to	the	presenting	problem,	although	the	final	aim	of	this	step	is	to	collect	more	

information	to	find	out	what	may	be	related	to	the	patient	problem.136	A	relevant	study142	

shows	the	history	taking	contributes	more	to	diagnosis	than	physical	examinations	and	

laboratory	tests.	Physical	examination	follows	a	standard	order:	inspect,	palpate,	percuss	

and	auscultate.	It	has	the	same	aim,	which	is	to	gather	more	information	to	make	a	

diagnosis	of	patient’s	problem.	At	the	end	of	this	phase,	the	clinician	arrives	at	a	provisional	

diagnosis	or	a	hypothesis	list,	or	it	has	yet	to	be	generated.	

The	errors	occurring	in	this	phase	are	referred	to	as	the	“missed	or	wrong	diagnostic	clues”	

that	are	information	of	patient	symptoms	and	signs	collected	during	history	taking	and	

physical	examinations.	The	missed	or	wrong	diagnostic	clues	can	directly	impact	on	the	

hypotheses	that	are	named	as	“missed	or	wrongly	hypothesised	diagnosis”.	In	particular,	

“missed	or	wrongly	hypothesised	diagnosis”	indicates	that	the	patient’s	health	condition	is	

not	the	doctor’s	hypotheses	as	a	result	of	either	not	yet	generating	a	diagnosis	or	wrong	

diagnosis.		

According	to	the	qualitative	CLD	model	results	shown	by	Figure	5.2	in	Chapter	5,	the	

relevant	key	factors	that	contribute	to	the	missed	or	wrong	diagnostic	clues	and	missed	or	

wrongly	hypothesised	diagnosis	are	illustrated	in	Figure	6.7.		

	

Figure	6.7	Factors	and	errors	in	diagnostic	hypotheses	
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Continuity	of	care	means	seeing	the	same	individual	doctor	which	allows	the	doctor	to	know	

the	patient,	their	environment	and	their	family	which	contributes	to	the	better	

understanding	of	health	priorities	and	values136.	Communications	between	doctors	and	

patients	should	be	treated	as	a	factor.	It	affects	data	collection	from	patients143.	It	is	

suggested	that	it	should	be	a	two-way	understanding	and	patients	should	feel	that	their	

concerns	have	been	addressed136.	At	the	same	time,	records	of	patient	medical	history	are	

also	important	ways	of	providing	patient	information	to	different	healthcare	providers.	

Factors,	including	communications	between	doctors	and	patients,	patient	medical	history	

and	clarity	of	a	disease,	contribute	to	the	dependent	variable	“missed	or	wrong	diagnostic	

clues	or	diagnostic	information”.		This	dependent	variable	means	the	diagnostic	information	

errors	and	indicates	that	symptoms	or	signs	are	not	observed	or	found	during	phase1.		After	

phase	1,	clinicians	arrive	at	a	diagnosis	or	a	hypothesis	list,	or	clinicians	are	still	not	yet	able	

to	generate	a	hypothesis.	The	errors	of	the	diagnostic	outputs	are	named	as	the	“missed	or	

wrongly	hypothesised	diagnosis”. 

To	describe	the	error	flows	of	the	cases “missed	or	wrongly	hypothesised	diagnosis”,	the	

stock	and	flow	diagram	is	further	developed	as	shown	in	Figure	6.8.	The	initial	input	arrow	is	

the	patient	cases	accessing	the	healthcare	service,	and	after	the	phase1,	patient	cases	

become	two	types:	cases	with	phase1	errors	and	cases	without	phase1	errors.	Cases	

without	phase1	errors	proceed	to	next	step	via	three	types	of	outflows:		cases	proceeding	to	

decision	making	directly,	cases	proceeding	to	phase2(tests),	and	cases	proceeding	to	

phase3(referrals).	In	terms	of	cases	with	phase1	errors,	cases	also	have	the	same	three	

types	of	outflows.	However,	it	is	believed	that	all	cases	with	error	can	potentially	be	

detected	in	the	next	phases	before	they	proceed	into	decision-making.	Thus,	the	model,	

instead	of	directly	illustrating	the	three	types	of	outflows	for	the	error	cases,	shows	that	all	

of	the	error	cases	potentially	go	through	phase2	and	phase3.	In	particular,	those	error	cases,	

discharged	directly	without	being	sent	to	phase2	or	phase3,	are	considered	to	fail	to	order	

tests	or	referrals.	The	system	reflects	this	type	of	outflows	by	showing	that	the	error	

detection	rate	in	phase2	or	phase3	is	zero.	In	the	end,	the	missed	or	wrong	hypotheses	are	

shown	as	three	types	of	outflows:	errors	detected	in	phase2,	errors	detected	in	phase3,	and	

errors	not	detected	which	covers	cases	neither	experiencing	or	failing	to	be	detected	in	the	

phase2	or/and	phase3.	Moreover,	percentages	shown	as	the	variables	with	brackets	in	

Figure	6.8	indicate	the	administration’s	rates	of	processing	the	patient	cases	from	one	step	

to	the	next	step.	
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Figure	6.8	Model	for	errors	from	phase1	history	taking	and	physical	examination	

In	summary,	the	phase1	error	model	transfers	relevant	key	factors	from	the	previous	CLD	
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randomly	caused	by	instruments	or	by	analytical	inaccuracy.	Post-analytical	errors	refer	to	

the	errors	from	the	post-test	management,	such	as	result	from	communication	breakdown.	

Errors	in	radiology	are	generally	classified	as:	observer	errors,	errors	in	interpretation,	

failure	to	suggest	the	next	appropriate	procedure	and	failure	to	communicate	in	a	timely	

and	clinically	appropriate	manner.	144	145		

Therefore,	according	to	the	factors	in	the	previous	CLD	model,	the	factors	during	the	period	

of	biochemical	tests	and	radiological	tests	can	be	summarised	as	ordering	tests,	test	process	

management	and	test	result	interpretation.	Ordering	tests	is	an	action	where	failure	in	

ordering	proper	tests	may	happen.	At	least	10%	of	all	diagnoses	are	not	considered	final	

until	clinical	laboratory	testing	is	complete.146	At	the	same	time,	the	clinician’s	confidence	in	

their	diagnosis	is	not	reflected	in	their	use	of	tests.142	In	other	words,	the	ordering	of	tests	

by	the	clinician	will	not	be	affected	by	whether	the	clinician	feels	confident	about	their	

diagnosis	hypothesis	or	not.	Test	process	management	is	another	factor	that	affects	

diagnosis.	It	covers	the	management	of	test	data	and	test	workflow,	such	as	post-analytical	

errors	in	the	laboratory	tests.	Test	result	interpretations	directly	affect	test	outcomes	and	

then	impact	on	the	diagnostic	decision-making.		

Figure	6.9	illustrates	the	stock	and	diagram	model	showing	factors	and	cases	in	phase2.	

	

Figure	6.9.	Model	for	errors	from	Phase2	tests	
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happens	when	clinicians	are	aware	that	errors	may	occur	in	the	test	results.	Input	cases	are	

delivered	out	of	phse2	and	proceed	into	the	next	step,	via	three	types	of	outflows:	cases	

with	errors	having	no	effect	on	decision	making	(or	no	effect	on	patient	outcomes),	cases	

with	errors	having	effect	on	decision	making,	and	cases	without	errors.	

In	summary,	the	error	model	for	phase2	shows	the	case	flows	and	maps	the	factors	related	

to	diagnostic	tests	from	the	CLD	to	the	stock	and	flow	diagram.	Still,	the	model	can	be	

further	developed	to	discuss	the	deeper	level	of	factors	during	this	phase,	and	can	be	used	

to	describe	laboratory	tests	and	radiology	tests	separately	for	a	more	specific	analysis.	

	

6.7 Model	for	Phase3	referrals	
Phase3	is	the	stage	of	referring	patients	to	specialists	or	other	healthcare	providers,	and	it	is	

the	last	possible	phase	before	decision-making.	The	errors	of	this	phase	mainly	come	from	

improper	referrals	and	decision-making	errors	from	other	healthcare	providers.	However,	

improper	referrals	can	be	found	and	corrected	when	patients	are	delivered	to	the	specialists.	

Similarly	as	the	other	two	phases,	phase	3	has	two	routes	of	patient	case	flows,	which	

represent	cases	with	errors	from	phase3	and	cases	without	errors.	Figure	6.10	shows	the	

model	of	errors	from	phase3,	and	displays	the	case	flows	as	well	as	factors.	

	

Figure	6.10	Model	for	errors	from	phase3	referrals	
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Combining	the	outflows	of	the	three	phases	shown	in	the	last	three	sections,	there	are	in	

total	three	patient	case	flows	from	the	three	phases	coming	into	this	error-effect	model:		

• Case	flow	from	phase	1,	which	are	the	cases	with	missed	or	wrong	hypothesis	from	

the	initial	diagnosis.	In	other	words,	the	cases	are	the	diagnostic	error	cases	from	

the	diagnosis	of	phase	1.	

• Case	flow	from	phase	2,	which	are	the	phase2	error	cases	with	effect	on	decision-

making.	During	the	period	of	phase	2,	error	cases	are	divided	into	two	flows,	

representing	errors	with	effect	on	decision-making	and	errors	with	no	effect	on	

decision-making	respectively.	In	particular,	only	error	cases	with	effect	on	decision-

making	are	represented	in	this	error-effect	model.	

• Case	flow	from	phase	3,	which	are	the	error	cases	from	clinical	referral	stage.	

The	three	case	flows	are	the	input	flows	and	these	proceed	to	clinical	decisions	such	as	

treatment	plans.	As	we	can	see,	all	of	the	three	types	of	errors	indicates	errors	in	decision-

making,	so	the	sum	of	these	three	types	of	errors	forms	the	diagnostic	errors.	However,	in	

order	to	represent	the	current	number	of	diagnostic	errors	in	the	system,	a	stock	should	be	

used	to	represent	the	current	diagnostic	errors	in	the	system	and	the	outflows	have	to	be	

identified.	

Figure	6.11	shows	the	stock	and	flow	diagram	for	error	effects.	The	three	case	flows	are	

represented	as	a	single	input	arrow	named	as	“cases	with	errors	proceeding	to	decision	

making”	in	the	figure.	The	input	arrow	goes	into	the	stock	“cases	with	decision-making	

errors”	that	represents	current	diagnostic	errors.	Three	output	arrows	emerge	from	the	

error	case	stock.	Among	these,	two	arrows	indicate	the	negative	patient	outcomes,	and	they	

are	cases	with	unplanned	hospitalisation	and	cases	with	unscheduled	visits.	The	third	output	

arrow	indicates	the	control	cases.	The	control	cases	are	either	recovering	cases	or	the	cases	

with	follow-up,	which	are	the	remaining	cases	without	unplanned	hospitalisation	or	

unscheduled	visits.	Cases	with	error	can	take	scheduled	revisits	suggested	by	follow-up	

service.	During	the	revisiting	period,	the	error	detection	rate	is	related	to	whether	clinicians	

get	discordant	data	with	the	initial	visit	that	is	also	named	as	the	index	visit.	Patients	with	no	

revisit	in	the	control	patient	group	are	taken	as	the	recovering	patients.	
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Figure	6.11	Model	for	error	effects	
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representing	the	case	flows.		
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Still,	a	few	factors	from	the	CLD	are	not	included	in	the	quantitative	model,	which	are	

“whether	the	disease	is	well	research”,	“bias”,	“workload”,	“easy	access	to	medical	service”	

and	“public	health	awareness”.	Specifically,	“whether	the	disease	is	well	research”	is	highly	

related	to	the	clinician’s	subjective	recognition	of	another	factor	“the	clarity	of	disease	

symptoms/signs”.	At	the	same	time,	different	diseases	show	distinct	values	in	term	of	this	

factor,	and	the	model	does	not	aim	for	a	specific	medical	disease	area.	Bias	is	also	diverse	

and	different	in	different	situations,	and	a	significant	number	of	types	of	bias	can	is	

associated	with	the	level	of	the	factor	of	“doctor’s	knowledge	and	experience”.	Workloads	

require	relevant	data	and	need	to	further	expand	the	current	model.	“Easy	access	to	

medical	service”	and	“public	health	awareness”	are	factors	related	to	the	stage	before	the	

patient	accesses	to	the	healthcare	service,	and	they	are	not	included	because	of	where	the	

model	boundary	is	located.	
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Figure	6.12	Quantitative	model	structure	for	diagnostic	errors	 	
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6.10 Summary	
This	chapter	further	transfers	the	factors	and	relations	in	the	CLD	into	the	structure	for	the	

quantitative	model.	In	order	to	present	the	number	of	cases	with	or	without	errors	during	

diagnosis	and	to	keep	the	consistency	of	quantitative	variables,	it	modified	the	relations	and	

factors	in	the	CLD	according	to	the	diagnostic	process.	In	the	end,	the	quantitative	model	

structure	presents	different	case	numbers	at	each	phase	as	well	as	relevant	factors.	It	

illustrates	the	phases	of	the	diagnostic	process,	and	provides	patient	case	flows	during	the	

diagnostic	process	as	well	as	different	patient	outcomes.	It	applies	inflow	cases	and	outflow	

cases	to	present	current	system	case	numbers.	Moreover,	relevant	key	factors	linked	with	

the	number	of	cases	are	mapped	into	the	model.	It	helps	to	understand	where	errors	occur	

and	the	corresponding	relevant	factors.	Also,	error	case	flows	can	be	observed,	and	their	

outcomes	are	also	presented.	

However,	every	arrow	in	the	model	indicates	a	relationship	function	and	represents	the	

quantitative	relationship	between	the	variables	from	each	end	of	the	arrow.	Although,	most	

of	the	relationship	functions	can	be	either	identified	easily	or	represented	using	the	

accumulation	of	the	inflow	cases	and	out	flow	cases	over	time,	there	are	several	

interrelations	whose	quantitative	functions	are	still	unclear.	Specifically,	the	functions	

between	the	factors	in	phase1	and	their	dependent	variables	remain	unclear.	Therefore,	the	

next	chapter	implements	regression	analysis	to	determine	the	unclear	relationship	functions	

for	relevant	variables.	
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Chapter	7 Regression	Modelling	
	

7.1 Introduction	
System	dynamics	modelling	requires	that	the	interrelations	of	system	variables	are	known	

or	identified.	However,	unlike	the	simple	interrelations	in	the	remaining	parts	of	diagnostic	

process,	the	correlations	between	relevant	factors	and	dependent	variables	remain	unclear	

in	phase1.	To	present	how	the	factors	quantitatively	affect	the	dependent	variables,	this	

chapter	adopts	regression	analysis	to	identify	their	relationship	functions.		

This	chapter	firstly	prepares	the	variables	by	quantifying	non-numerical	variables.	Then,	it	

uses	data	collection	from	questionnaires	for	the	regression	analysis.	Afterwards,	regression	

analysis	is	carried	out,	and	relationship	functions	are	identified	and	evaluated.	

	

7.2 Steps	of	regression	modelling	
The	regression	modelling	process	follows	four	main	steps:	cohort	construction,	where	aims	

and	targets	are	defined;	feature	engineering,	which	includes	data	preparation,	feature	

construction	and	feature	selection;	regression	modelling;	and	model	evaluation.		

Specifically,	the	aim	of	the	model	is	to	identify	relationship	functions	between	the	factors	in	

phase1	and	their	dependent	variables.	The	relevant	variables	are	originally	from	the	

selected	literature,	which	includes	non-numerical	variables.	Thus,	this	chapter	continues	to	

prepare	the	variables.	Relevant	non-numerical	variables	are	quantified.	Also,	questionnaires	

are	used	to	collect	data	for	the	regression	analysis.	Afterwards,	regression	analysis	is	carried	

out.	Relationship	functions	are	identified	and	evaluated.	

	

7.3 Methods	used	to	quantify	non-numerical	variables	
Regression	analysis	using	data	of	relevant	variables	identifies	correlation	functions,	and	all	

variables	should	be	able	to	be	quantitatively	presented.		This	section	prepares	the	relevant	

variables	to	make	sure	that	all	variables	can	be	quantitatively	presented.		

There	are	two	types	of	variables	involved	in	phase1:	numerical	variables	and	non-numerical	

variables.	Numerical	variables	can	be	quantitatively	represented	using	numbers,	and	

numerical	variables	in	phase1	are:	history	and	physical	examination	sensitivity,	missed	or	

wrong	diagnostic	clues	from	phase1,	and	missed	or	wrongly	hypothesised	diagnosis.	Also,	
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there	are	several	non-numerical	variables,	and	these	variables	require	to	be	quantified	first	

so	that	they	can	be	used	as	model	input	variables.	The	non-numerical	variables	in	phase1	

and	their	relevant	dependent	variables	are	listed	in	Table	7.1.	

Non-numerical	variables:	

1. Continuity	of	care	

2. Communications	between	doctors	and	patients		

3. Patient	medical	history	

4. Clarity	of	disease	symptoms/signs	 	

5. Doctor’s	knowledge	and	experience	

Relevant	dependent	variables:	

6. Missed	or	wrong	diagnostic	clues	from	phase1	

7. Missed	or	wrongly	hypothesised	diagnosis	

Table	7.1	List	of	the	non-numerical	variables	and	relevant	dependent	variables	

	

7.3.1 Likert	scaling	of	non-numerical	variables	

Quantifying	variables	involves	finding	a	way	of	measuring	the	variables.	In	this	section,	non-

numerical	variables	are	taken	as	ordinal	variables,	so	that	they	can	be	applied	by	many	

methods	in	terms	of	measurement.	The	Likert	scale,	which	was	developed	in	1932	and	

initially	used	for	measuring	attitudes,	is	widely	applied	in	scaling	ordinal	variables.	This	

section	adopts	Likert	scales	as	the	scaling	method,	and	measures	each	non-numerical	

variable	using	three	levels,	namely,	three	categories.	Moreover,	each	category	is	given	a	

score	to	quantify	the	variables.	

Likert	scaling	uses	several	levels/categories	to	measure	the	variable,	and	Table	7.2	shows	

how	to	use	scales	to	present	non-numerical	variables	by	measurable	ordinal	variables.	For	

convenience,	all	non-numerical	variables	are	given	a	unique	variable	number.	Likert	scaling	

measures	each	variable	into	three	levels,	namely,	categories	c1,	c2	and	c3	to	represent	

three	different	levels	respectively.	Each	category	indicates	a	“good”,	“average”	or	“bad”	

level	or	an	“expert”,	“senior”	or	“junior”	level.	

Variable	number	 Variable	name	(Likert	item)	 Scaling	_	level/categories(c)	

Variable	1	(v1)	 Continuity	of	care	 c1.Good—c2.Average—c3.Poor	

Variable	2	(v2)	 Communications	between	doctors	

and	patients		

c1.Good—	c2.Average—	c3.Poor	
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Variable	3	(v3)	 (Access	to)	patient	medical	history	 c1.Good—c2.Average—c3.Poor	

Variable	4	(v4)	 Clarity	of	disease	symptoms/signs	 c1.Good—c2.Average—c3.Poor	

Variable	5	(v5)	 Doctor’s	knowledge	and	

experience	

c1.Level	3—c2.Level	2—c3.Level	1	

Table	7.2	Non-numerical	variables	and	scales	

The	dependent	variables	of	the	non-numerical	variables	are	the	number	of	“missed	or	

wrong	diagnostic	clues	from	phase1”	that	indicates	the	number	of	clues	or	information	

collected	from	patients,	and	the	number	of	cases	with	“missed	or	wrongly	hypothesised	

diagnosis”	that	means	the	initial	hypothesised	diagnosis	after	phase1,	as	shown	in	Table	7.3.	

Variable	number		 Variable	name	

Variable	6	(y1)	 Missed	or	wrong	diagnostic	clues	from	phase1	

Variable	7	(y2)	 Missed	or	wrongly	hypothesised	diagnosis	

Table	7.3	Correlated	dependent	variables	

7.3.2 Data	representation	of	categories	

Theoretically,	for	an	individual	doctor,	a	descriptive	table	of	patient	cases	can	display	the	

category	(c1,	c2	or	c3)	of	the	individual	case	for	each	variable.	Taking	variable1	(v1)	as	an	

example,	the	descriptive	table	should	look	similar	to	Table	7.4,	where	“1”	indicates	the	

patient	case	is	in	the	corresponding	category	and	“0”	means	the	patient	case	is	not	in	the	

corresponding	category.	Similarly,	the	descriptive	table	can	be	built	for	v2,	v3,	v4,	and	v5	as	

well.		

Patient	Case	No.		 Variable1	(v1)	

c1	 c2	 c3	

PatientCase	1	 1	 0	 0	

PatientCase2	 0	 0	 1	

PatientCase	3	 0	 1	 0	

:	

:	

	 	 	

PatientCase	n	 1	 0	 0	

Table	7.4	A	descriptive	table	format	showing	patient	cases	and	its	category	

However,	building	these	descriptive	tables	is	based	on	the	information	regarding	to	

individual	patient	case,	which	requires	access	to	the	details	of	each	patient	case.	This	study	

does	not	have	access	to	the	information	of	individual	patient	cases	due	to	time	and	resource	
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limitations.	Thus,	this	study	is	designed	to	ask	doctors	to	do	relevant	estimations.	Each	

doctor	is	asked	to	estimate	the	case	distribution	of	an	individual	variable	within	the	three	

categories.	Again,	taking	variable1	as	an	example,	doctors	are	asked	to	estimate	how	many	

patient	cases	are	under	the	category1	for	v1,	based	on	the	100	patient	cases	they	receive,	

how	many	patient	cases	are	under	the	category2,	and	how	many	patient	cases	are	under	

the	category3.	After	the	estimations	from	individual	doctors	are	obtained,	a	table	similar	to	

Table	7.5	can	be	built.	

Doctor	No.		 Variable1	(v1)	

c1	 c2	 c3	

Doctor	1	 80(out	of	100)	 10(out	of	100)	 10	(out	of	100)	

Doctor	2	 70	 10	 20	

Doctor	3	 70	 30	 0	

…	 …	 …	 …	

Doctor	n	 60	 10	 30	

Table	7.5	A	table	format	showing	individual	doctors	and	his	patient	distribution	within	3	categories	

The	numbers	that	the	doctors	provide	are	actually	the	accumulation	of	the	100	patient	

cases	in	Table	7.4.		

7.3.3 Weighted	scores	

To	quantify	the	ordinal	variables,	each	category	is	assigned	a	score.	The	score	weights	the	

effect	of	the	individual	category	on	the	overall	score	of	an	individual	variable,	or	implies	

their	relative	importance	to	the	overall	score	of	a	variable.	By	assigning	the	weighted	score,	

each	doctor	can	obtain	the	overall	score	of	the	individual	variable,	which	is	the	outcome	of	

the	doctor’s	performance	of	the	variable.	

Categories	 c1		 c2		 c3		

Weighted	Score	 β!	 β!	 β!	

Table	7.6	The	categories	and	its	weighted	score	

The	categories	and	the	weighted	scores	can	be	represented	by	Table	7.6,	where	β!	is	the	

score	for	c1,	β!	is	the	score	for	c2,	and	β!	is	for	c3.	For	an	individual	variable,	the	overall	

gained	score	of	individual	doctors	can	be	represented	as	follows:	

overall  score =  β1× 𝑐1 + β2× 𝑐2 +  β3×(𝑐3) 
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where β!, β!, β!	are	the	weighted	scores	or	the	impact	parameters	of	the	overall	gained	

score.	

During	this	study,	it	is	assumed	that	“good”	cases	are	equally	as	important	as	“poor”	cases,	

which	means	that	|β! −  β! = β! − β!|.	At	the	same	time,	the	“good”	cases	increase	the	

overall	score	of	the	variable,	“poor”	cases	decrease	the	score	with	equal	effort,	and	

“average”	cases	neither	increase	nor	decrease	the	score.	Therefore,	for	v1,	v2,	v3	and	v4,	it	

can	be	assumed	that	β! = 1, β! = 0.5, β! = 0	during	this	experiment,	so	that	the	range	of	

the	overall	score	of	variable	can	lie	between	0	and	1.	And	v5	is	discussed	separately,	since	its	

categories	measure	the	level	of	clinicians	instead	of	patient	cases.	It	is	assumed	that	

β! = 3, β! = 2, β! = 1	in	this	experiment,	because	the	three	categories	of	v5	indicates	level	

3,	level	2	and	level	1	respectively	and	this	assumption	can	make	the	score	for	v5	is	1,	2	or	3.	

Variable	number	 Variable	name	(Likert	item)	 Categories(c)	with	scores	

Variable	1	(v1)	 Continuity	of	care	 c1.Good—c2.Average—c3.Poor	

												1				—				0.5				—		0	

Variable	2	(v2)	 Communications	between	doctors	

and	patients		

c1.Good—	c2.Average—	c3.Poor	

												1				—				0.5				—		0	

Variable	3	(v3)	 Patient	medical	history	 c1.Good—c2.Average—c3.Poor	

												1				—				0.5				—		0	

Variable	4	(v4)	 Clarity	of	disease	symptoms/signs	 c1.Good—c2.Average—c3.Poor	

												1				—				0.5				—		0	

Variable	5	(v5)	 Doctor’s	knowledge	and	

experience	

c1.Level	3—c2.Level	2—c3.Level	1	

													3				—					2							—		1	

Table	7.7	Non-numerical	variables	with	assigned	categories	and	scores.	

Table	7.7	summarises	the	variables	with	categories	and	scores	used	in	the	experiments,	and	

the	definitions	of	the	categories	are	further	discussed	in	detail.		

The	v1,	v2,	v3	and	v4	use	the	same	three	categories.	The	category	1	(c1)	means	a	group	of	

cases	with	“Good”	performance	in	the	relevant	variable,	category	2	(c2)	indicates	case	group	

with	“Average”	performance	in	the	relevant	variable	and	category	3	(c3)	refers	to	relevant	

“Poor”	performance,	where	the	weighted	score	for	c1	is	1,		for	c2	is	0.5	and		for	c3	is	0.	The	

“continuity	of	care”	is	scaled	according	to	the	frequency	of	the	patient’s	visit	to	the	same	

doctor.	If	a	patient	often	sees	the	same	general	practitioner	(GP),	it	is	considered	as	a	

“Good”	case,	on	the	other	hand,	if	the	patient	rarely	visits	the	same	GP,	it	is	measured	
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“Poor".	Neither	“Good”	or	“Poor”	cases	are	in	the	middle	level	“Average”.	“Communications	

between	doctors	and	patients”	is	divided	on	the	basis	of	the	quality	of	the	communications.	

Good	communications	during	the	visit	are	“Good”	cases,	and	if	doctor	and	patient	hardly	or	

rarely	have	communications	during	the	visit,	it	is	considered	as	“Poor”.	The	“patient	medical	

history	“	is	scaled	according	to	whether	the	GP	can	effectively	access	and	review	patient	

medical	history.	An	effective	access	and	review	of	patient	medical	history	is	“Good”,	while,	if	

the	GP	can	not	access	and	review	medical	history	or	can	only	review	very	limited	history	

information,	it	is	considered	as	“Poor”.	The	“clarity	of	disease	symptoms/signs”	shows	the	

clarity	level	of	disease	symptoms/signs	presented	by	patients.	“Good”	cases	are	for	patients	

who	present	clear	typical	symptoms/signs,	and	“Poor”	cases	are	for	patients	whose	

symptoms/signs	are	unclear.	For	example,	an	early	stage	of	disease	may	affect	the	clarity	of	

disease	symptoms.	

For	the	better	understanding	and	explanation	of	the	variable	v5,	“Doctor’s	knowledge	and	

experience”,	is	discussed	separately.	It	is	scaled	according	to	the	doctor’s	title,	and	is	divided	

as	“Level	1”	“Level	2”	and	“Level	3”.	The	standard	for	dividing	each	level	is	identified	

according	to	the	qualifications	of	the	three	titles	of	health	physicians:	resident	physician,	

attending	physician	and	professor.		Resident	physicians	are	taken	as	“Level	1”,	who	usually	

have	less	than	5	years	of	relevant	work	experience.	Attending	physicians	taken	as	“Level	2”,	

which	are	related	to	a	5-10	year	work	experience	and	relevant	training	qualifications.	

Professors	including	associate	professors	are	in	“Level	3”,	which	indicates	an	over	10-year	

work	experience	with	relevant	qualifications.	Matching	details	are	listed	in	Table	7.8.	

Variable	5	(v5):	Doctor’s	knowledge	and	experience	

Doctor	title	 Resident	physician	 Attending	

physician	

Professor	

Category	 Level	1	 Level	2	 Level	3	

Score	 1	 2	 3	

Table	7.8	Doctor’s	knowledge	and	experience	scales	and	scores	

7.3.4 Computing	the	non-numerical	variables		

The	overall	scores	of	the	variables	for	each	clinician	can	be	computed,	after	the	clinician	

provides	the	numbers	of	the	cases	under	different	categories	and	the	weighted	scores	of	

each	category	are	known.	For	each	variable,	the	individual	clinician	is	asked	to	provide	the	

case	numbers	under	the	different	categories,	which	actually	represents	the	case	

distributions	of	the	clinician	for	the	variable.	Furthermore,	using	the	case	distribution	and	

combining	category	scale	score	in	Table	7.7,	new	data	can	be	generated	for	each	non-
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numerical	variable.	The	generated	data	presents	the	actual	overall	score	of	the	non-

numerical	variable	from	the	corresponding	clinician.	Take	variable	1	as	an	example.	Figure	

7.1	illustrates	the	process	of	quantifying	the	variables.	Table	7.9	demonstrates	the	

transformation	of	the	data	from	the	original	data	table	to	the	computed	data,	where	some	

extreme	examples	are	tested.	Variables	v1,	v2,	v3,	v4	are	generated	from	the	data	of	the	

categories,	while	v5	remains	as	the	ordinal	format	“1,	2	or	3”,	since	v5	represents	the	level	

of	doctor’s	knowledge	and	experience.	Overall,	a	higher	final	score	of	a	factor,	v1,	v2,	v3,	v4	

or	v5,	indicates	a	better	performance	on	the	past	of	the	clinician	on	the	variable.	

	

	

Figure	7.1	Process	flow	of	quantifying	non-numerical	variables	

	

	

	

	

	

Individual	clinican	score/value	for	the	variable	
is	the	percentage	of	the	score	dmes	the	data	
distribudon,	which	is:		
(	ni1*s1	+	n2*s2+	n3*s3	+...+nn*sn	)%	

An	individual	clinician	provides	relevant	data	
perentage	from	the	quesdonnaire:		
n1	for	c1;	n2	for	c2;	n3	for	c3....nn	for	cn.		

category	scale	score	for	a	variable:			
category1(c1)	with	score1(s1);		
category2(c2)	with	score2(s2);		
category3(c3)	with	score3(s3).....		
category	n(cn)	with	score	n(sn).					

	
	
The	clinican	gets	his/her	score	for	
variable	1:	
(	60	*	1	+	30	*	0.5	+	10	*	0	)%	=0.75		

	

A	clinician	provides:	
Good	(1):	60(cases	out	of	100,	is	
good	)	
Average(0.5):	30	(cases	out	of	100,	is	
average)	
Bad	(0):	10(cases	out	of	100,	is	bad)				

Variable	1	example:	
	
Category:Good	—Average—Bad	
	Score:									1				—				0.5				—		0			
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Original	data	table	after	collecting	data	from	clinicians:	

Doctor		

No.		

Variable1	(v1)	 Variable2	(v2)	

c1	 c2	 c3	 c1	 c2	 c3	

Dr.1	 60	

(out	of	100)	

30	

	

10	

	

…	

	

…	

	

…	

	

Dr.2	 70	 10	 20	 …	 …	 …	

Dr.3	 99	 0	 1	 …	 …	 …	

Dr.4	 0	 100	 0	 …	 …	 …	

…	 	 	 	 	 	 	

Dr.n	 50	 0	 50	 …	 …	 …	

	

	

7.3.5 Further	discussion	

Three	points	in	the	process	of	quantifying	the	non-numerical	variables	are	further	discussed	

in	this	subsection.		

• Scaling	method:	

The	three-point	scale	method	implemented	in	this	study	properly	reflects	the	

overall	level	of	patient	distribution,	although	more	accurate	measurement	may	

require	either	dividing	the	patients	into	more	groups,	or	reviewing	and	tracing	the	

patient	history	medical	records	which	can	not	be	performed	due	to	time	and	access	

limitations.		

• The	definition	for	different	categories	or	levels:	

During	the	study,	relevant	categories	are	divided	depending	on	the	description	of	

“often”,	“hardly”	or	”rarely”	for	the	variable,	without	providing	an	exact	number	to	

classify	the	cases.	It	mainly	relates	to	the	fact	that	the	data	of	each	category	will	be	

further	collected	from	the	clinician	estimates,	rather	than	from	reviewing	individual	

patient	medical	record.	The	more	accurate	the	implemented	measurement	is,	the	

harder	it	is	for	the	clinicians	to	make	the	estimates.	

• Weighted	scores:	

Computed	data	table	by	combining	scores:	

Doctor		

No.		

Variable1	(v1)	 Variable2	(v2)	

Total	score	 Total	score	

Dr.1	 75%	

=(60*1+30*0.5+10*0)%	

…	

	

Dr.2	 75%	 …	

Dr.3	 99%	 …	

Dr.4	 50%	 …	

…	 	 …	

Dr.n	 50%	 …	

Table	7.9	Data	transformation	
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Weighted	scores	provide	the	relation	between	clinician	estimates	of	the	categories	

and	the	overall	score	obtained.	However,	the	study	can	also	be	conducted	without	

assigning	weighted	scores	to	categories.	

Assuming	that	the	estimated	data	for	the	three	categories	of	v1	are	n1,	n2,	n3,	and	

the	y	is	the	dependent	variable	of	v1,	instead	of	finding	the	relationship	function	of	

y	and	v1,	the	study	can	obtain	the	relationship	function	between	y	and	n1,	n2,	n3	

using	the	same	statistical	method.	The	parameters	of	n1,	n2,	n3	in	the	relationship	

function	indicate	the	impact	of	each	category	on	y.	

However,	this	method	is	not	implemented	in	the	thesis	for	two	reasons.	Firstly,	this	

method	cannot	explain	the	direct	relations	of	the	variables/factors	and	their	

dependent	variables.	Secondly,	this	method	covers	more	dependent	variables,	and	

it	requires	more	data	in	order	to	obtain	the	relationship	functions.	Thus,	the	

weighted	score	method	is	applied	in	the	thesis	to	provide	a	clear	explanation	of	the	

experiment	results.	

	

7.4 Data	for	regression	modelling	

7.4.1 Data	acquisition	

Questionnaires	are	chosen	as	the	method	to	collect	the	relevant	data	in	this	step.	Using	

questionnaires,	a	wide	range	of	participants	can	be	conveniently	approached	and	a	large	

enough	quantity	of	feedback	can	be	received.	This	is	the	main	reason	of	choosing	

questionnaires.		

The	steps	below	provide	a	detailed	description	of	how	the	questionnaire	study	is	conducted:	

1) Definition	of	study	objectives:	

This	questionnaire	is	designed	to	collect	the	quantitative	data	under	each	of	the	

scales	or	categories	of	each	ordinal	variable	and	the	quantitative	data	of	their	

correlated	variables.	Data	collected	from	the	questionnaires	are	used	for	the	further	

regression	analysis.		

Objective	variables:	Categories	of	five	non-numerical	variables	shown	in	Table	7.7	

need	to	be	quantified,	and	their	correlated	variables	shown	in	Table	7.3	also	are	

required	to	provide	the	corresponding	value	to	observe	the	inter-relations	and	build	

relationship	functions.	

2) Identify	participants:	
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General	practitioners	are	the	participants	for	the	data	collection.	A	minimum	

number	of	50	participants	are	required,	because	there	are	five	independent	factors	

to	be	analysed	in	this	study.	Due	to	ethical	issues,	all	participants	are	clinicians	

based	in	Beijing,	China.	Participants	are	from	two	sources:	hospitals	and	participants	

in	medical	meetings,	and	are	randomly	chosen	according	to	the	availability	and	

interest	in	the	study.	To	ensure	a	balance	of	views,	there	is	no	criterion	relating	to	

gender	and	levels.	The	intention	is	to	have	50%	female	and	50%	male	paticipants,	

and	the	numbers	of	the	three	different	levels	of	clinicians	are	equal.	

3) Design	questionnaire	documents:		

According	to	the	objective	variables	to	be	assessed,	questionnaires	show	a	list	of	

relevant	questions.	For	each	question,	clinicians	are	asked	to	provide	a	number	or	a	

percentage	under	different	scale	categories	for	each	variable.		The	names	of	

categories	remove	all	subjective	words,	such	as	“good”,	or	“poor”,	and	are	named	

as	“group	1	“,	“group	2”	or	“group	3”,	which	is	designed	to	help	participants	provide	

more	objective	answers.	

4) Pilot	test:		

One	doctor	was	chosen	to	engage	in	a	face-to-face	discussion	to	test	the	

questionnaire	and	to	provide	comments	and	feedback	in	relation	to	the	

questionnaire.	The	feedback	mainly	focuses	on	whether	the	given	questions	can	be	

easily	understood	and	whether	the	given	questions	have	an	accurate	or	proper	

word	description.	

5) Revised	questionnaire	according	to	the	feedback:	

The	questionnaire	is	further	revised	based	on	the	feedback	from	the	pilot	test.	The	

original	questionnaire	and	its	English	translation	are	attached	in	APPENDIX	VI.	

6) Sending	and	collecting	questionnaires:	

A	total	of	60	questionnaires	were	printed	out	and	sent	to	the	doctors	in	the	

hospitals	and	the	doctors	attending	the	medical	meetings.	All	questionnaires	are	

anonymous.	In	the	end,	all	60	questionnaires	were	collected.	

7) Data	analysis	and	documentation:	

A	total	of	60	sets	of	data	from	questionnaires	are	recorded	in	Excel	documents	for	

further	analysis.			
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7.4.2 Data	preparation	

This	step	is	to	prepare	the	collected	data	for	analysis.	This	part	contains	two	aspects	of	data	

preparation:	data	cleansing	and	imputation,	and	data	computing	for	non-numerical	

variables.	

1) Data	cleansing	and	imputation:	

After	data	are	collected	from	the	questionnaires,	original	collected	data	may	contain	

unclear	data	or	missing	data,	and	this	step	is	to	process	the	unclear	or	missing	data	

and	to	prepare	the	datasets	for	the	analysis.	Unclear	data	or	“dirty”	data	are	very	

likely	to	happen	in	the	manually	input	data,	such	as	questionnaire	data.	Generally	

speaking,	the	common	problems	of	the	“dirty”	data	include:	non-standard	data	

format,	out	of	range	values,	multiple	units	for	one	variable,	or	unstructured	content.	

At	the	same	time,	besides	the	“dirty”	data,	the	datasets	may	contain	missing	values.	

There	are	three	methods	below	that	can	be	used	for	data	imputation.	Table	7.10	

summarises	the	three	common	methods	for	data	imputation.	

Common	methods	for	data	imputation:	

1) Fill	the	value	by	inferring	from	other	variables	if	possible.		

This	method	is	particularly	appropriate	for	dependent	or	overlapping	variables	so	

that	the	value	can	be	inferred	from	other	variables.	

2) Fill	the	value	with	the	mean	of	the	remaining	data	for	numerical	variables,	median	

for	ordinary	variables	or	mode	for	nominal	variables.		

This	method	can	reduce	the	impact	of	the	missing	values.	

3) Discard	the	entire	dataset	with	many	missing	instances,	such	as	any	with	over	40%	

data	missing.	

Table	7.10	Methods	for	data	imputation	

During	this	study,	a	total	of	60	datasets	are	reviewed,	and	overall	data	information	

is	clear	and	readable.	

During	the	data	cleansing	process,	a	model	is	built	for	systematically	cleansing	the	

data	using	SPSS	modeler147.	Although	the	quantity	of	data	in	this	study	is	small	and	

the	data	can	be	cleaned	manually,	this	model	provides	a	way	of	using	SPSS	modeler	

to	systemically	clean	the	data,	which	is	helpful	in	analysing	a	large	quantity	of	data.	
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Figure	7.2	Data	cleansing	using	SPSS	modeler	

Figure	7.2	is	the	data-cleansing	model	created	by	SPSS	modeler.	At	the	beginning,	

the	original	data	table	can	be	divided	into	several	threads,	and	each	thread	contains	

different	variables.	This	step	is	to	separate	variables	and	to	process	different	

variables	separately.		Figure	7.2	shows	that	the	original	data	are	separated	into	two	

threads,	which	represent	independent	variables	and	dependent	variables	

respectively.	Secondly,	the	common	patterns	of	the	improper	data	should	be	found,	

and	cleansing	patterns	are	performed	to	process	the	data.	For	example,	

independent	variables	are	the	number	of	cases,	but	several	values	with	the	percent	

symbol	“%”appear	many	times	in	the	collected	data.	This	is	a	common	pattern,	so	

cleansing	pattern	“Pattern	1”	should	be	removing	the	“%”	symbol.	The	cleansing	

pattern	uses	a	relevant	formula	to	implement	the	data	cleansing,	and	the	codes	of	

the	formula	for	Pattern	1	can	be:	replace	(“%”,	“”,	@FIELD),	which	means	using	“”	

replaces	all	“%”	in	the	current	input	data.	Finally,	different	threads	are	merged	

together	into	one	data	table	“Cleansed	Data”	again,	after	being	processed	

separately.	

Besides	data	cleansing,	data	imputation	is	also	conducted,	because	four	

questionnaires	contain	improper	data	that	are	out	of	range	data	and	missing	data.	

The	entire	data	sets	from	the	questionnaire	with	out	of	range	values	or	missing	

values	are	discarded,	since	the	values	are	the	information	for	key	factors	and	

related	with	other	variables.	This	method	does	not	result	in	any	negative	impact	of	

the	improper	values	on	the	analysis	of	relationship	models,	and	it	is	the	cleanest	

and	simplest	way.		

In	the	end,	a	total	of	56	sets	of	data	from	the	questionnaires	are	ready	for	analysis	

after	four	sets	with	improper	values	were	discarded.	
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2) Computing	data	for	non-numerical	variables:	

The	reason	and	the	method	for	computing	data	are	introduced	in	subsection	7.3.4.	

Questionnaires	do	not	directly	provide	data	for	the	non-numerical	variables.	For	

each	variable,	questionnaires	ask	clinicians	to	individually	estimate	the	case	

numbers	under	the	three	categories.	The	case	numbers	require	to	be	further	

computed	to	generate	the	data	for	the	non-numerical	variables.	Thus,	after	the	step	

of	data	preparation,	the	datasets	from	questionnaires	are	transformed	into	a	new	

data	table	for	non-numerical	variables	using	the	method	introduced	in	subsection	

7.3.4.	The	new	table	shows	the	computed	data	for	v1,	v2,	v3,	v4,	v5	with	y1,	y2	

being	unchanged.	The	new	data	table	is	ready	for	further	analysis	of	determining	

the	relationship	functions	at	the	end	of	this	step.		

	

7.5 Methods	used	to	build	relationship	functions	
Relevant	factors	were	selected	from	the	literature	review	and	from	clinical	feedback,	which	

have	been	reported	in	the	previous	two	chapters.	Then,	relevant	variables	were	quantified	

to	make	sure	variables	can	be	measured	in	a	quantitative	way.	Also,	data	collection	using	

questionnaires	was	undertaken.	After	data	preparation,	data	analysis	is	carried	out	in	this	

section	in	order	to	identify	the	relationship	functions.	

Regression	analysis	is	implemented	as	the	method	for	building	the	relationship	functions	in	

this	section,	because	the	dependent	variables	are	numerical	variables	and	the	values	are	all	

continuous.	Regression	modelling	determines	the	relationship	functions	by	finding	the	best-

fit	curve	for	sample	data.	Also,	this	thesis	implements	regression	analysis	with	system	

dynamics	modelling.	The	first	part	of	system	dynamics	modelling	has	selected	the	

theoretical	features/factors	and	potential	qualitative	interrelations	using	literature	

knowledge	and	clinical	experience,	while	regression	modelling	depends	totally	on	the	

collected	data.	Thus,	regression	analysis	in	this	thesis,	based	on	the	data,	will	test	and	

modify	the	factors	and	interrelations	again.	

Specifically,	this	thesis	conducts	regression	modelling	following	the	steps	below:	

1) Variable	correlation	analysis:	

After	the	previous	system	dynamics	model	provides	theoretical	factors	and	

potential	cause-effect	qualitative	interrelations	among	variables,	this	step	conducts	

correlation	analysis	to	verify	the	theoretical	factors	and	interrelations.	It	tests	the	
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factors	and	correlations,	and	at	the	same	time	it	works	as	a	filter	factor/feature	

selection	method,	and	modifies	factors.	

2) Univariate	regression	analysis	using	curve	estimations:	

If	the	relationship	function	is	between	a	single	factor	and	its	dependent	variable,	

univariate	analysis	is	conducted	to	seek	the	best	curve	by	testing	different	possible	

curves.	

3) Multiple	regression	analysis:	

If	the	relationship	function	has	more	than	one	factor,	multiple	regression	analysis	is	

implemented.	It	starts	with	linear	regression.		Results	are	evaluated.	

Models	are	evaluated	using	evaluation	metrics.	Because	of	limited	data	resources,	modela	

are	evaluated	using	several	metrics	such	as	p	value,	standard	error	and	R2,	so	that	the	

predicted	values	from	regression	models	can	be	compared	with	the	observed	values	from	

sample	data.	

Relevant	experiments	of	data	analysis	are	conducted	using	SPSS	as	the	tool.	

	

7.6 Variable	correlation	analysis	
Correlation	analysis	is	used	to	identify	the	association	between	two	variables	and	measures	

the	strength	of	the	association.	It	is	widely	used	as	a	filter	in	order	to	do	feature/factor	

selection.	There	are	total	seven	variables	from	phase1	for	regression	analysis,	and	the	

variables	with	their	data	types	are	listed	in	Table	7.11.	

Variable	ID	 Variable	Name	 Data	Type	

v1	 Continuity	of	care	 Interval	

v2	 Communications	between	doctors	and	patients		 Interval	

v3	 Patient	medical	history	 Interval	

v4	 Clarity	of	disease	symptoms/signs	 Interval	

v5	 Doctor’s	knowledge	and	experience	 Ordinal	

y1	 Missed	or	wrong	diagnostic	clues	from	phase1	 Interval	

y2	 Missed	or	wrongly	hypothesised	diagnosis	 Interval	

Table	7.11	Summary	of	the	variables	for	the	regression	analysis	

There	are	two	data	types:	interval	and	ordinal.	The	variable	v5	is	on	an	ordinal	scale	and	

indicates	the	level	number	of	the	“doctor’s	knowledge	and	experience”,	such	as	1,	2	or	3.		
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The	remaining	variables	are	on	an	interval	scale	with	the	value	between	0	to	1.	Also,	the	

previous	qualitative	model,	using	arrows,	provides	the	correlation	links	among	these	

variables,	which	indicates	that	there	exists	a	cause-effect	correlation	among	the	variables	as	

follows:		

− v1	and	v5	are	causes	of	v2.	

− v2,	v3,	v4	and	v5	are	causes	of	y1.		

− y1	is	a	cause	of	y2.	

Correlation	analysis	further	verifies	these	hypotheses,	which	specifically	represents	cause-

effect	relations	in	the	model.	

There	are	two	methods	that	are	widely	used	to	do	the	correlation	analysis:	Pearson's	

correlation	and	non-parametric	measures	such	as	Spearman's	correlation	or	Kendall's	

correlation.		

The	Pearson’s	correlation	coefficient,	represented	by	“r”,	is	a	measure	of	the	strength	of	a	

linear	association	between	two	variables,	which	is	specifically	for	a	linear	correlation.	It	

requires	the	assumption	that	the	relationship	between	the	variables	is	linear	and	the	

variables	to	be	measured	are	on	interval	scales.149	

Non-linear	correlations	can	be	assessed	using	Spearman's	correlation	or	Kendall's	

correlation.	Compared	with	Pearson	correlation,	Spearman's	correlation	does	not	require	

the	assumption	that	the	relationship	between	the	variables	is	linear,	and	it	also	does	not	

require	the	variables	to	be	measured	on	interval	scales.149	It	can	be	used	for	variables	

measured	on	ordinal	scales.	148	Spearman's	correlation	coefficient	“𝑟!”	represents	the	

strength	of	a	monotonic	association	between	two	variables,	which	assesses	how	well	an	

arbitrary	monotonic	function	can	describe	a	relationship	between	two	variables,	without	

making	any	assumption	about	the	frequency	distribution	of	the	variables.149		

Kendall's	correlation	coefficient	“𝜏”	is	similar	to	Spearman's	correlation	coefficient	“𝑟!”,	but	

Kendall's	correlation	can	be	used	with	smaller	samples	or	when	there	are	many	values	for	

the	same	score.150	

These	correlation	coefficients	fall	between	+1	and	-1.	A	correlation	coefficient	of	+1	

indicates	a	perfect	positive	correlation,	while	a	coefficient	of	-1	indicates	a	perfect	negative	

correlation.	151	A	coefficient	of	0	indicates	the	absence	of	an	association	between	the	two	
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variables.	A	coefficient	that	is	closer	to	+1	or	-1	indicates	a	stronger	positive	or	negative	

relation.	A	positive	coefficient	means	that	when	one	variable	increases,	the	other	variable	

has	a	corresponding	increase.	Similarly,	a	negative	coefficient	means	that	as	one	variable	

increases,	the	other	variable	decreases	by	a	set	amount.		

Along	with	the	correlation	coefficients,	the	corresponding	statistical	significance	is	also	used	

to	assess	the	association	of	the	variables.	Statistical	significance	uses	the	p	value	to	

represent	the	probability	to	obtain	an	effect	equal	to	or	more	extreme	than	the	one	

observed.152	Thus,	the	significance	of	the	correlation	coefficient	represents	how	likely	the	

coefficient	that	we	would	obtain	from	the	sample	data	is	the	same	value	as	that	coefficient	

obtained	by	chance.	Generally	speaking,	a	p-value	that	is	equal	to	or	smaller	than	a	0.05	

significance	level	is	acceptable,	which	indicates	that	the	correlation	is	significant	at	the	

significance	level. 	

This	study	works	out	the	values	of	correlation	coefficients	among	the	total	of	seven	

variables,	as	well	as	the	significance	of	the	correlation	coefficients.	Except	for	v5	which	is	on	

a	ordinal	scale,	the	rest	of	the	variables	are	continuous	data.	Also,	the	relations	are	more	

likely	to	be	linear	according	to	a	cause-effect	association.	Thus,	Pearson’s	correlation	is	

chosen	to	implement	the	correlation	analysis	first.	Furthermore,	Kendall's	correlation	is	also	

used,	because	v5	is	measured	at	the	ordinal	level	and	so	does	not	show	a	strong	association	

with	other	variables	in	the	results	of	Pearson’s	correlation	analysis.	Also,	Kendall's	

correlation	helps	to	test	possible	monotonic	relationships	between	variables.	Table	7.12	and	

Table	7.13	show	Pearson’s	correlation	results	and	Kendall's	correlation	results	respectively.	



101	
	

	

Table	7.12	Pearson’s	correlation	results	

	

Table	7.13	Kendall’s	correlation	results	

A	total	of	56	sets	of	data	are	used	for	the	analysis.	As	we	have	seen	from	the	table,	

Pearson’s	correlation	and	Kendall's	correlation	indicate	similar	association	results,	and	the	

results	obtained	from	the	sample	data	match	most	of	the	initial	qualitative	relations	from	

the	previous	system	dynamics	modelling.	To	be	specific,	the	relations	are:	

− v1	is	significantly	correlated	with	v2,	where	the	r	is	0.661	with	a	p	value	0.00.				
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v5	shows	less	linear	correlation	with	v2	at	the	0.05	level	with	the	r	0.271,	and	does	

not	show	significant	correlation	in	Kendall's	results.	

− y1	shows	significant	correlation	with	v2,	v3,	and	v4	separately	at	the	0.01	level.		

However,	the	56	sets	of	sample	data	do	not	show	correlation	between	v5	and	y1	in	

either	Pearson’s	analysis	or	Kendall's	analysis.	

− y1	and	y2	are	significantly	correlated,	where	the	r	is	0.462	with	a	p	value	0.00	

In	addition	to	the	previous	qualitative	relations,	the	sample	data	also	show	the	following	

information:	

− v1	is	not	only	highly	related	to	v2,	but	also	related	to	v3,	v4	separately	at	the	same	

time,	although	the	relations	with	v3	or	v4	are	less	correlated	than	v2.	

− The	correlations	among	three	factors	v2,	v3,	v4	are	significant	as	well,	especially	for	

the	correlation	between	v2	and	v3,	and	the	correlation	between	v2	and	v4.	

Although	all	factors	are	initially	selected	according	to	the	literature	and	clinician	feedback,	

the	experiment	results	that	are	on	the	basis	of	sample	data	also	further	modify	the	factors	

and	relations.		

The	variable	v5	is	removed	from	the	correlation	assumptions,	because	v5	does	not	show	

significant	correlation	in	v2	and	y1	according	to	the	data	results,	and	factors	with	the	

significance	less	than	0.01	are	selected	to	remain.	The	other	reason	why	v5	is	removed	is	

that	the	sample	data	of	v5	is	not	uniformly	distributed	in	its	range.	Data	collected	from	the	

questionnaires	for	v5	“Doctor’s	knowledge	and	experience”	cover	an	uneven	distribution	of	

three	levels	of	clinicians.	Only	three	questionnaires	are	collected	from	level-1	clinicians,	and	

the	rest	are	the	datasets	from	level-2	and	level-3	clinicians.	Thus,	this	may	be	also	the	

reason	why	v5	is	not	significantly	correlated	with	v2	and	y1.	The	experimental	results	also	

indicate	that	level-2	and	level-3	clinicians	do	not	show	significant	impact	on	the	dependent	

variables.	Overall,	v5	“Doctor’s	knowledge	and	experience”	is	removed	from	the	analysis.		

Moreover,	two	new	added	qualitative	relations	between	v1	and	v3	and	between	v1	and	v4	

are	required	to	be	tested	and	evaluated.	According	to	the	data	correlation	results,	the	

following	relations	are	to	be	determined	and	evaluated:	

− v1	is	a	cause	of	v2	

− The	relations	between	v1	and	v3	

− The	relations	between	v1	and	v4	



103	
	

− v2,	v3,	v4	are	causes	of	y1	

− y1	is	a	cause	of	y2	

	

7.7 Univariate	regression	analysis		
This	step	is	to	discover	the	relationship	between	a	single	factor	and	its	dependent	variable,	

and	to	determine	the	best	quantitative	relationship	models,	which	cover	the	relations	

between	v1	and	v2,	v1	and	v3,	v1	and	v4.		

SPSS	provides	a	wide	range	of	11	models	that	can	be	used	to	estimate	the	best-fit	curve.	

They	are	listed	as	below153:	“	

−  Linear.	Model	whose	equation	is	Y	=	b0	+	(b1	*	t).	The	series	values	are	modelled	as	a	

linear	function	of	time.	

−  Logarithmic.	Model	whose	equation	is	Y	=	b0	+	(b1	*	ln(t)).	

−  Inverse.	Model	whose	equation	is	Y	=	b0	+	(b1	/	t).	

−  Quadratic.	Model	whose	equation	is	Y	=	b0	+	(b1	*	t)	+	(b2	*	t**2).	The	quadratic	model	

can	be	used	to	model	a	series	that	"takes	off"	or	a	series	that	dampens.	

−  Cubic.	Model	that	is	defined	by	the	equation	Y	=	b0	+	(b1	*	t)	+	(b2	*	t**2)	+	(b3	*	t**3).	

−  Power.	Model	whose	equation	is	Y	=	b0	*	(t**b1)	or	ln(Y)	=	ln(b0)	+	(b1	*	ln(t)).	

−  Compound.	Model	whose	equation	is	Y	=	b0	*	(b1**t)	or	ln(Y)	=	ln(b0)	+	(ln(b1)	*	t).	

−  S-curve.	Model	whose	equation	is	Y	=	e**(b0	+	(b1/t))	or	ln(Y)	=	b0	+	(b1/t).	

−  Logistic.	Model	whose	equation	is	Y	=	1	/	(1/u	+	(b0	*	(b1**t)))	or	ln(1/y-1/u)	=	ln	(b0)	+	

(ln(b1)	*	t)	where	u	is	the	upper	boundary	value.	After	selecting	Logistic,	specify	the	

upper	boundary	value	to	use	in	the	regression	equation.	The	value	must	be	a	positive	

number	that	is	greater	than	the	largest	dependent	variable	value.	

−  Growth.	Model	whose	equation	is	Y	=	e**(b0	+	(b1	*	t))	or	ln(Y)	=	b0	+	(b1	*	t).	

−  Exponential.	Model	whose	equation	is	Y	=	b0	*	(e**(b1	*	t))	or	ln(Y)	=	ln(b0)	+	(b1	*	t).	”	

Since	dependent	variables	or	predicted	variables	are	continuous	values,	regression	analysis	

is	used	and	five	models	were	selected	and	compared	in	this	section,	which	are	linear	model,	

quadratic	model,	s-curve	model,	logistic	model	and	exponential	model.		

Each	model	is	also	evaluated	at	the	end	of	each	section.	Since	the	quantity	of	data	is	small,	

the	analysis	of	variance	(ANOVA)	is	also	employed,	and	several	metrics	are	used	to	evaluate	

the	adopted	model.	The	metrics	include:	
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1) Significance	or	P-value:	It	means	the	probability	that	the	results	observed	in	a	study	

could	have	occurred	by	chance.154	Generally	speaking,	a	p	value	of	0.05	or	below	is	

taken	as	being	statistically	significant.		

2) Standard	error:	It	is	the	standard	deviation	of	the	regression	line,	which	indicates	

how	much	the	observed	data	or	real	data	differ	from	the	values	on	the	regression	

line.	155	The	value	of	standard	error	is	less	than	0.1.	

3) R-squared,	the	coefficient	of	determination:	It	is	the	coefficient	of	determination.	It	

is	the	correlation	coefficient	squared,	which	indicates	the	proportionate	amount	of	

variation	in	the	response	variable	explained	by	the	independent	variables	in	the	

regression	model.		

4) Adjusted	R-squared	is	a	modified	version	of	R-squared	that	has	been	adjusted	for	

the	number	of	predictors	or	degrees	of	freedom	in	the	model.	R-squared	increases	

when	a	new	variable	is	added	to	a	model	every	time.	The	adjusted	R-squared,	taking	

account	of	the	degrees	of	freedom, increases	only	if	the	new	predictor/factor	
improves	the	model	by	more	than	would	be	expected	by	chance,	and	it	decreases	if	

the	new	predictor	is	not	related	to	the	dependent	variable.	During	this	study,	both	

R-squared	and	adjusted	R-squared	are	used	as	a	reference	metric,	and	a	larger	

adjusted	R-squared	is	preferred.	

7.7.1 Relationship	between	v1	and	v2	

This	subsection	is	to	determine	the	relational	equation	for	v1	and	v2,	where	v1	is	the	factor	

and	v2	is	the	dependent	variable.	It	first	conducts	the	curve	estimations.	By	comparing	the	

statistical	results	of	different	curves	or	models,	the	best	model	type	is	chosen.	Furthermore,	

the	details	of	the	model	results	are	described	and	relevant	quantities	in	the	results	are	

explained.	

7.7.1.1 Curve	estimation	

At	first,	the	five	possible	curves	including	linear	model,	quadratic	model,	s-curve	model,	

logistic	model	and	exponential	model	were	tested	and	compared	in	order	to	represent	the	

relationship	function	between	v1	and	v2.	Figure	7.3	illustrates	the	graphs	of	the	five	curves	

for	the	56	sample	data.	As	seen	in	Figure	7.3,	the	five	models	show	no	significant	difference	

in	using	graphs	to	represent	the	sample	data.	Thus,	five	models	are	further	compared	using	

statistical	data	and	the	results	are	summarised	in	two	tables:	the	model	summary	table-

Table	7.14	and	the	standard	error	summary	table–Table	7.15.	
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Figure	7.3	Different	graphs	of	v2	as	a	function	of	v1 

	

Equation	

Model	Summary	 Parameter	Estimates	

R	Square	 F	 df1	 df2	 Sig.	 Constant	 b1	 b2	

Linear	 0.373	 32.163	 1	 54	 0.000	 0.481	 0.461	 	

Quadratic	 0.378	 16.113	 2	 53	 0.000	 0.634	 0.013	 0.312	

S	 0.295	 22.562	 1	 54	 0.000	 0.140	 -0.244	 	

Exponential	 0.343	 28.215	 1	 54	 0.000	 0.524	 0.595	 	

Logistic	 0.343	 28.215	 1	 54	 0.000	 1.910	 0.552	 	

Table	7.14	Curve	estimation	for	v2	as	a	function	of	v1	

 

Model	information	summary	and	parameter	estimation:	

Table	7.14	describes	details	of	the	model	summary	as	well	as	parameters,	including:	

• R-squared;		

• F,	the	F-statistic:	It	expresses	the	ratio	of	mean	squares,	and	the	F	in	the	table	can	

be	represented	as	given	below156:	

𝐹 =
𝑚𝑒𝑎𝑛 𝑠𝑞𝑢𝑎𝑟𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛
𝑚𝑒𝑎𝑛 𝑠𝑞𝑢𝑎𝑟𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠 	

Thus,	a	higher	F	indicates	a	significant	effect.	 

• df,	the	degrees	of	freedom:	It	is	the	number	of	values	that	are	free	to	vary.	The	

regression	degrees	of	freedom	is	equivalent	to	the	number	of	coefficients	estimated	

minus	1.	
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• Sig:	significance	level,	or	p	value; 

• Parameter	estimation:	“b”	is	the	coefficient	of	the	independent	variable,	and	

“Constant”	is	the	constant	in	the	model	equation.	

where	sig,	F	and	R-squared	are	the	metrics	to	be	used	for	curve	selection.	

Standard	errors	and	p	values:		

Table	7.15	shows	more	information	about	standard	errors.	Specifically,	it	has	two	sections,	

and	individually	displays	the	following	quantities:		

• The	first	section:	model	R-squared,	model	adjusted	R-squared,	and	standard	error	of	

the	model.		

• The	second	section:	relevant	coefficient	standard	errors	with	corresponding	p	

values,	which	can	be	used	for	representing	confidence	intervals	

Equation	 Model	Summary	 Unstandardised	

Coefficients	(C)-

C1	

Unstandardised	

Coefficients	(C)-

C2	

Unstandardised	

Coefficients	(C)-

C3	

R	

square	

Adjusted	

R	Square	

Std.	

Error	of	

the	

Estimate	

Std.	

Error	

Sig.	 Std.	

Error	

Sig.	 Std.	

Error	

Sig.	

Linear	 0.373	 0.362	 0.089	 0.081	 0.000	 0.062	 0.000	 --	 	

Quadratic	 0.378	 0.355	 0.090	 0.699	 0.985	 0.485	 0.523	 0.245	 0.013	

S	 0.295	 0.282	 0.128	 0.051	 0.000	 0.073	 0.062	 --	 --	

Exponential	 0.343	 0.331	 0.123	 0.112	 0.000	 0.045	 0.000	 --	 --	

Logistic	 0.343	 0.331	 0.123	 0.062	 0.000	 0.164	 0.000	 --	 --	

Table	7.15	Curve	standard	error	summary	for	v2	as	a	function	of	v1	

To	sum	up	the	statistical	results	in	the	above	two	tables	Table	7.14	and	Table	7.15,	the	

results	show	that	all	the	curves	have	a	p	value	=	0,	which	indicates	that	all	curve	results	are	

significant.	However,	the	linear	model	has	the	largest	F.	At	the	same	time,	linear	model	has	

the	largest	adjusted	R-squared	with	the	lowest	standard	error,	and	all	coefficient	standard	

errors	are	less	than	0.1	with	a	p	value	=	0	in	Table	7.15.	Therefore,	combining	the	p	value,	F,	

R-squared	and	standard	errors,	a	linear	model	is	chosen	for	the	relationship	between	v1	and	

v2.	
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7.7.1.2 Model	result	summary	and	evaluation		

After	a	linear	relationship	is	chosen,	the	relationship	model	for	v1	and	v2	can	be	obtained	

using	regression	analysis.	The	regression	equation	is	shown	as	below:	

	 𝑣2 =  0.461 ∗ 𝑣1 + 0.481	 (7.1)	

In	addition	to	this	equation,	more	detailed	information	regarding	the	model	for	v1	and	v2	

can	be	achieved	to	describe	and	evaluate	the	model	fit:	

1) Model	type:	linear	model	

2) R	=	0.611;	R-squared=0.373;	Adjusted	R-squared	=	0.362;		

It	means	37.3%	of	the	variation	in	v2	“communications	between	doctors	and	

patients”	is	explained	by	its	relationship	with	v1	“continuity	of	care”.			

3) Standard	error	of	the	estimation:	0.0895	

At	the	same	time,	an	analysis	of	variance	(ANOVA)	is	conducted	to	evaluate	the	model.	It	

includes	the	“regression”	that	variance	can	be	explained	by	the	independent	variables,	and	

the	“residual”	that	the	variance	is	not	explained	by	the	independent	variables.	In	the	ANOVA	

result	table,	Table	7.16,	the	sum	of	squares	is	described	first.	The	total	sum	of	squares	

represents	the	total	variation,	which	is	the	sum	of	the	regression	sum	of	squares	and	the	

residual	sum	of	squares.	The	sum	of	squares	provides	a	measure	of	variation	from	the	mean,	

and	furthermore,	the	mean	squares	can	be	obtained	by	sum	of	squares	divided	by	the	

degrees	of	freedoms	(df).	F,	the	F-statistic,	is	a	ratio	of	mean	squares,	which	is	the	mean	

square	of	the	regression	divided	by	the	mean	square	of	the	residual.	A	high	F-statistic	

indicates	a	significant	effect.	Also,	“Sig.”,		p-value,	is	equal	to	zero,	which	is	much	smaller	

than	0.05.	This	indicates	that	the	regression	line	is	unlikely	to	have	occurred	by	chance.	In	

other	words,	the	regression	line	is	significantly	better	at	predicting	the	dependent	variable	

v2	from	the	factor	v1	than	using	the	mean	of	v2	every	time.	The	total	sum	of	squares,	mean	

square	and	F	can	be	represented	respectively	as	below:	

𝑇𝑜𝑡𝑎𝑙 𝑠𝑢𝑚 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒𝑠 = (𝑦 − 𝑦)2 = (𝑦 − 𝑦)2 + (𝑦 − 𝑦)2,	

where	𝑦	is	the	predicted	values	and 𝑦 is	the	mean	value.	

𝑀𝑒𝑎𝑛 𝑠𝑞𝑢𝑎𝑟𝑒 =
𝑠𝑢𝑚 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒𝑠

𝑑𝑓 	

𝐹 =
𝑚𝑒𝑎𝑛 𝑠𝑞𝑢𝑎𝑟𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛
𝑚𝑒𝑎𝑛 𝑠𝑞𝑢𝑎𝑟𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠 	
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Model	 Sum	of	Squares	df	Mean	Square	F	 Sig.	

1	Regression	0.257	 1	 0.257	 32.163	0.000	

Residual	 0.432	 54	0.008	   

Total	 0.690	 55	   

Table	7.16	ANOVA	for	the	relational	equation	in	v1	and	v2	

Figure	7.4	displays	the	scatterplot	with	the	regression	line.	It	reflects	the	statistical	results	

above,	and	shows	that	there	is	a	clear	positive	relationship	between	v1	and	v2.	

	
Figure	7.4	v1-v2	scatterplot	with	the	regression	line	

Overall,	the	regression	equation	is	summarised	as	below:	

𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑑𝑜𝑐𝑡𝑜𝑟𝑠 𝑎𝑛𝑑 𝑝𝑎𝑡𝑖𝑒𝑛𝑡𝑠

=  0.461 ∗ 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑖𝑡𝑦 𝑜𝑓 𝑐𝑎𝑟𝑒 + 0.481	

with	R2	=0.373,	adjusted	R2	=	0.362,	F	=	32.163,	p=	0.00.	

7.7.2 Relationship	between	v1	and	v3	

This	subsection	is	to	find	the	relationships	between	v1	and	v3,	where	v1	is	the	factor	and	v3	

is	the	dependent	variable.	Following	the	same	procedure	ass	pointed	out	in	the	previous	

subsection,	this	subsection	first	estimates	the	best	fit	curve	type,	and	then	explains	the	

model	results.	

7.7.2.1 Curve	estimation	

Five	curves	are	compared	and	results	are	listed	in	Table	7.17	and	Table	7.18.	As	shown	in	

these	two	tables,	linear,	s,	exponential	and	logistic	models	have	p	values	less	than	0.05.	
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Although	the	linear	model	has	a	lower	R2	and	F	than	the	rest	of	the	models,	it	performs	

better	in	terms	of	standard	error	results	for	both	model	and	coefficients.	Considering	that	a	

simpler	model	is	always	preferred,	the	linear	relationship	is	chosen	to	represent	the	

association	between	v1	and	v3.	

Equation	

Model	Summary	 Parameter	Estimates	

R	Square	 F	 df1	 df2	 Sig.	 Constant	 b1	 b2	

Linear	 0.119	 7.327	 1	 54	 0.009	 0.480	 0.393	 	

Quadratic	 0.123	 3.708	 2	 53	 0.031	 0.291	 0.946	 -0.386	

S	 0.123	 7.598	 1	 54	 0.008	 0.103	 -0.279	 	

Exponential	 0.135	 8.430	 1	 54	 0.005	 0.458	 0.659	 	

Logistic	 0.135	 8.430	 1	 54	 0.005	 2.183	 0.517	 	

Table	7.17	Curve	estimation	for	v3	as	a	function	of	v1 

Equation	 Model	Summary	 Unstandardised	

Coefficients	(C)-

C1	

Unstandardised	

Coefficients	(C)-

C2	

Unstandardised	

Coefficients	(C)-

C3	

R	

square	

Adjusted	

R	Square	

Std.	

Error	of	

the	

Estimate	

Std.	

Error	

Sig.	 Std.	

Error	

Sig.	 Std.	

Error	

Sig.	

Linear	 0.119	 0.103	 0.160	 0.145	 0.009	 0.111	 0.000	 --	 	

Quadratic	 0.123	 0.090	 0.161	 1.252	 0.453	 0.869	 0.658	 0.439	 0.511	

S	 0.123	 0.107	 0.252	 0.101	 0.008	 0.145	 0.477	 --	 --	

Exponential	 0.135	 0.119	 0.250	 0.227	 0.005	 0.080	 0.000	 --	 --	

Logistic	 0.135	 0.119	 0.250	 0.117	 0.000	 0.380	 0.000	 --	 --	

Table	7.18	Curve	standard	error	summary	for	v3	as	a	function	of	v1	

7.7.2.2 Model	result	summary	and	evaluation		

The	linear	regression	is	further	adopted	to	provide	details	of	the	relationship	model	of	v1	

and	v3.	Also,	ANOVA	is	performed	to	evaluate	the	regression	model,	and	the	corresponding	

result	is	shown	in	Table	7.19.		
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	 Sum	of	Squares	 df	 Mean	Square	 F	 Sig.	

Regression	 0.187	 1	 0.187	 7.327	 0.009	

Residual	 1.379	 54	 0.026	 	 	

Total	 1.566	 55	 	 	 	

Table	7.19	ANOVA	for	the	relational	equation	in	v1	and	v3 

The	regression	equation	for	v3	on	v1	is	obtained	as	below:	

	 𝑣3 =  0.393 ∗ 𝑣1 + 0.480	 (7.2)	

which	means:	

𝑃𝑎𝑡𝑖𝑒𝑛𝑡 𝑚𝑒𝑑𝑖𝑐𝑎𝑙 ℎ𝑖𝑠𝑡𝑜𝑟𝑦 =  0.393 ∗ 𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑖𝑡𝑦 𝑜𝑓 𝑐𝑎𝑟𝑒 + 0.480	

At	the	same	time,	the	results	provided	the	following	information:	

1) Model	type:	linear	model.	It	indicates	that	v1	“continuity	of	care”	positively	linearly	

affects	doctor’s	accessing	to	v3	“patient	medical	history”.	

2) R	=	0.346;	R-squared=0.119;	Adjusted	R-squared	=	0.103.	

It	means	only	11.9%	of	the	variation	in	v3	is	explained	by	its	relationship	with	v1.	A	

low	R-squared	value	also	agrees	with	the	fact	that	the	relationship	between	v1	and	

v3	is	not	shown	in	the	results	from	the	previous	qualitative	CLD	model.	

3) Standard	error	of	the	estimation	has	the	value	0.160,	which	is	slightly	higher	than	

0.1.	

4) F	=	7.327.	The	F	in	this	model	is	lower,	compared	with	the	F	result	in	the	v1-v2	

model.		

5) p=	0.009,	which	is	smaller	than	0.05.	The	linear	regression	model	is	significant.	

The	scatterplot	of	sample	data	with	the	regression	line	is	illustrated	in	Figure	7.5.	It	reflects	

the	statistical	results,	and	shows	that	there	is	linear	relationship	between	v1	and	v3.	

However,	at	the	same	time,	the	linear	association	is	not	very	strong,	since	the	sample	data	

are	spread	widely	around	the	line.		

Overall,	because	v1	and	v3	display	a	weak	linear	correlation	and	a	low	R2,	less	than	15%,	

indicates	a	low	percentage	of	variation	explained	by	the	relationship	with	v1,	the	

relationship	model	of	v1	and	v3	is	not	selected	for	the	quantitative	system	dynamics	model,	

and	v1	is	not	used	for	the	prediction	of	v3	in	the	system	dynamics	model.	
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Figure	7.5	v1-v3	scatterplot	with	the	regression	line 

7.7.3 Relationship	between	v1	and	v4		

This	subsection	determines	the	relationship	model	of	v1	and	v4,	where	v1	is	the	factor	and	

v4	is	the	dependent	variable.	Similarly	to	the	relationship	between	v1	and	v3,	the	

relationship	between	v1	and	v4	is	not	apparent	from	the	previous	literature	review	or	

clinician	feedback,	but	the	correlation	analysis	indicates	that	the	two	do	have	an	association.	

This	subsection	first	finds	which	curve	is	the	best	to	fit	the	relationship,	and	then	model	

results	are	described.	

7.7.3.1 Curve	estimation	

The	model	results	for	fives	curves	are	described	in	Table	7.20	and	Table	7.21.	Results	in	

Table	7.20	show	that	all	five	models	are	significant	and	have	p	values	much	less	than	0.05.	

At	the	same	time,	the	linear	model,	exponential	model	and	logistic	model	have	higher	R	

squared	value	and	F	value,	compared	with	the	quadratic	model	and	s	model.	Moreover,	the	

results	in	Table	7.21	displays	that	the	linear	model	has	the	lowest	value	for	model	standard	

error	which	is	0.112.	Although	not	much	difference	among	these	results	is	observed,	still,	

results	show	that	the	linear	model	has	a	better	performance	in	terms	of	the	coefficient	

standard	errors	that	are	0.102	and	0.078	respectively	with	both	p	values	being	zero.	Overall,	

the	linear	model	is	selected	to	express	the	relationship	between	v1	and	v4.	
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Equation	

Model	Summary	 Parameter	Estimates	

R	Square	 F	 df1	 df2	 Sig.	 Constant	 b1	 b2	

Linear	 0.221	 15.277	 1	 54	 0.000	 0.452	 0.398	 	

Quadratic	 0.225	 7.695	 2	 53	 0.001	 0.618	 -0.086	 0.338	

S	 0.205	 13.951	 1	 54	 0.000	 0.043	 -0.247	 	

Exponential	 0.237	 16.795	 1	 54	 0.000	 0.472	 0.599	 	

Logistic	 0.237	 16.795	 1	 54	 0.000	 2.119	 0.549	 	

Table	7.20	Curve	estimation	for	v4	as	a	function	of	v1 

Equation	 Model	Summary	 Unstandardised	

Coefficients	(C)-

C1	

Unstandardised	

Coefficients	(C)-

C2	

Unstandardised	

Coefficients	(C)-

C3	

R	

square	

Adjusted	

R	Square	

Std.	

Error	of	

the	

Estimate	

Std.	

Error	

Sig.	 Std.	

Error	

Sig.	 Std.	

Error	

Sig.	

Linear	 0.221	 0.206	 0.112	 0.102	 0.000	 0.078	 0.000	 --	 	

Quadratic	 0.225	 0.196	 0.113	 0.878	 0.922	 0.609	 0.581	 0.308	 0.050	

S	 0.205	 0.191	 0.164	 0.066	 0.000	 0.094	 0.650	 --	 --	

Exponential	 0.237	 0.223	 0.161	 0.146	 0.000	 0.053	 0.000	 --	 --	

Logistic	 0.237	 0.223	 0.161	 0.080	 0.000	 0.238	 0.000	 --	 --	

Table	7.21	Curve	standard	error	summary	for	v4	as	a	function	of	v1	

7.7.3.2 Model	result	summary	and	evaluation		

The	details	of	the	linear	model	are	discussed	and	the	model	is	further	analysed	using	

ANOVA.	The	ANOVA	results	are	illustrated	in	Table	7.22,	where	the	independent	variable	is	

v1.	

	 Sum	of	Squares	 df	 Mean	Square	 F	 Sig.	

Regression	 0.192	 1	 0.192	 15.277	 0.000	

Residual	 0.680	 54	 0.013	 	 	

Total	 0.873	 55	 	 	 	

Table	7.22	ANOVA	for	the	relational	equation	in	v1	and	v4 

The	linear	regression	model	obtained	is	as	below:	

	 𝑣4 =  0.398 ∗ 𝑣1 + 0.452	 (3.3)	

which	represents:	
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𝐶𝑙𝑎𝑟𝑖𝑡𝑦 𝑜𝑓 𝑑𝑖𝑠𝑒𝑎𝑠𝑒 𝑠𝑦𝑚𝑝𝑡𝑜𝑚𝑠 𝑜𝑟 𝑠𝑖𝑔𝑛𝑠 =  0.398 ∗ 𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑖𝑡𝑦 𝑜𝑓 𝑐𝑎𝑟𝑒 + 0.452	

Additionally,	the	following	quantities	help	understand	and	evaluate	the	obtained	linear	

model:	

1) Model	type:	linear	model.	It	indicates	that	v1	“continuity	of	care”	positively	linearly	

affects	doctors’	findings	on	v4	“clarity	of	disease	symptoms/signs”.	

2) R	=	0.470;	R-squared=0.221;	Adjusted	R-squared	=	0.206.	

It	explains	that	22.1%	of	the	variation	in	v4	“clarity	of	disease	symptoms/signs”	is	

explained	by	its	relationship	with	v1	“continuity	of	care”.	

3) Standard	error	of	the	estimation:	0.112.	It	is	slightly	higher	than	0.1.	

4) F	=	15.277.		

5) p=	0.00,	and	the	linear	regression	model	is	significant.	

The	scatterplot	and	the	regression	model	are	displayed	in	Figure	7.6.	It	demonstrates	the	

same	results	with	the	above	statistical	results.	As	seen	from	the	figure,	there	is	a	linear	

association	between	v1	and	v4,	although	the	association	is	not	very	strong.	Still,	according	

to	the	overall	model	results,	it	is	reasonable	to	add	the	model	for	v1	and	v4	into	the	

quantitative	system	dynamics	model.	

	
Figure	7.6	v1-v4	scatterplot	with	the	regression	line	

	

7.7.4 Relationship	between	y1	and	y2		
Previous	analysis	indicates	that	there	is	an	association	between	y1	“missed	or	wrong	

diagnostic	clues	from	phase1”	and	the	number	of	y2	“missed	or	wrongly	hypothesised	

diagnosis”,	where	the	value	of	y1	is	the	number	of	cases	with	“missed	or	wrong	diagnostic	

clues	from	phase1”	and	the	value	of	y2	is	the	number	of	cases	with	“missed	or	wrongly	

hypothesised	diagnosis”.	This	section	determines	the	relational	equation	for	independent	

variable	y1	and	dependent	variable	y2.	
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7.7.4.1 Curve	estimation:	

Fives	curves	are	applied	to	the	sample	data,	and	results	are	compared	to	choose	the	best	fit	

curve.	Table	7.23	and	Table	7.24	display	the	statistical	results	of	the	five	curves.	From	the	

results	in	Table	7.23,	all	five	curves	show	their	significance	with	p	values	much	less	than	

0.05.	At	the	same	time,	the	linear	model,	exponential	model	and	logistic	model	have	higher	

R-squared	value	and	F	value.	Table	7.24	further	shows	that	the	linear	model	has	the	lowest	

model	standard	error	whose	value	is	0.1,	and	both	of	its	two	coefficients	are	significant	

whose	standard	errors	are	0.125	and	0.031	respectively.	Combining	the	results	from	both	

tables,	the	linear	model	is	selected	to	represent	the	relationship	of	y1	and	y2.	

Equation	

Model	Summary	 Parameter	Estimates	

R	Square	 F	 df1	 df2	 Sig.	 Constant	 b1	 b2	

Linear	 0.214	 14.661	 1	 54	 0.000	 0.091	 0.478	 	

Quadratic	 0.215	 7.247	 2	 53	 0.002	 0.076	 0.619	 -0.265	

S	 0.139	 8.748	 1	 54	 0.005	 -1.398	 -0.066	 	

Exponential	 0.210	 14.328	 1	 54	 0.000	 0.098	 2.432	 	

Logistic	 0.210	 14.328	 1	 54	 0.000	 10.188	 0.088	 	

Table	7.23	Curve	estimation	for	y2	as	a	function	of	y1	

Equation	 Model	Summary	 Unstandardised	

Coefficients	(C)-

C1	

Unstandardised	

Coefficients	(C)-

C2	

Unstandardised	

Coefficients	(C)-

C3	

R	

square	

Adjusted	

R	Square	

Std.	

Error	of	

the	

Estimate	

Std.	

Error	

Sig.	 Std.	

Error	

Sig.	 Std.	

Error	

Sig.	

Linear	 0.214	 0.199	 0.100	 0.125	 0.000	 0.031	 0.004	 --	 	

Quadratic	 0.215	 0.185	 0.101	 0.509	 0.229	 0.926	 0.776	 0.061	 0.219	

S	 0.139	 0.123	 0.539	 0.022	 0.005	 0.150	 0.000	 --	 --	

Exponential	 0.210	 0.195	 0.517	 0.642	 0.000	 0.015	 0.000	 --	 --	

Logistic	 0.210	 0.195	 0.517	 0.056	 0.125	 1.602	 0.000	 --	 --	

Table	7.24	Curve	standard	error	summary	for	y2	as	a	function	of	y1	

7.7.4.2 Model	result	summary	and	evaluation		

After	the	model	type	is	chosen,	the	details	of	the	model	are	further	analysed.	Also,	the	

ANOVA	is	conducted	and	results	are	shown	in	Table	7.25.	
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	 Sum	of	Squares	 df	 Mean	Square	 F	 Sig.	

Regression	 0.148	 1	 0.148	 14.661	 0.000	

Residual	 0.545	 54	 0.010	 	 	

Total	 0.693	 55	 	 	 	

Table	7.25	ANOVA	for	the	relational	equation	in	y1	and	y2 

The	relationship	equation	for	y1	and	y2	is	obtained	as	below:		

𝑦2 =  0.478 ∗ 𝑦1 + 0.091	 (7.4)	

which	means:	

𝑚𝑖𝑠𝑠𝑒𝑑 𝑜𝑟 𝑤𝑟𝑜𝑛𝑔 ℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑧𝑒𝑑 𝑑𝑖𝑎𝑔𝑛𝑜𝑠𝑖𝑠

=  0.468 ∗𝑚𝑖𝑠𝑠𝑒𝑑 𝑜𝑟 𝑤𝑟𝑜𝑛𝑔 𝑑𝑖𝑎𝑔𝑛𝑜𝑠𝑡𝑖𝑐 𝑐𝑙𝑢𝑒𝑠 𝑓𝑟𝑜𝑚 𝑝ℎ𝑎𝑠𝑒1 + 0.091	

Moreover,	the	model	also	shows	the	following	information:	

1) Model	type:	linear	model.	The	model	explains	that	there	is	a	positive	linear	

relationship	between	y1,	that	is	the	number	of	cases	with	“missed	or	wrong	

diagnostic	clues	from	phase1”,	and	y2,	that	is	the	number	of	cases	with	“missed	or	

wrongly	hypothesised	diagnosis”.	

2) R	=	0.462;	R-squared=0.214;	Adjusted	R-squared	=	0.199;	It	shows	that	there	is	21.4%	

of	the	variation	in	y2	“missed	or	wrongly	hypothesised	diagnosis”	explained	by	its	

relationship	with	y1	“missed	or	wrong	diagnostic	clues	from	phase1”.	

3) Standard	error	of	the	estimation:	0.100.		

4) F	=	14.661.		

5) p=	0.00,	and	the	regression	model	is	significant.	

From	the	previous	literature	review,	there	is	also	another	factor	affecting	the	value	of	y2,	

which	is	the	“history	and	physical	examination	sensitivity”.	Although	this	factor	may	also	

vary	in	different	situations,	it	is	taken	as	a	constant	during	the	study.	This	is	because	all	

sample	data	are	collected	from	one	area,	and	one	research	investigation	in	2008	157	shows	

that	this	factor	is	a	constant	whose	value	may	lie	around	66%.	Therefore,	this	study	

considers	the	“history	and	physical	examination	sensitivity”	as	a	constant,	and	constructs	

the	y1-y2	relationship	model	with	y1	as	the	factor.	At	the	same	time,	this	assumption	may	

explain	the	slightly	low	R2	value.	

The	scatterplot	Figure	7.7	also	shows	that	y2	and	y1	remain	as	a	linear	relation,	and	at	the	

same	time,	the	data	are	spread	widely	around	the	regression	line	in	the	chart.	
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Figure	7.7	y1-y2	scatterplot	with	the	regression	line	

	

7.8 Multiple	regression	analysis	of	the	relationship	between	y1	and	

v2,v3,v4	
Multiple	regression	analysis	is	conducted	in	this	section,	considering	that	there	are	more	

than	one	factor	involved.	The	intention	is	to	identify	the	relationship	between	y1	and	its	

relevant	factors	v2,	v3,	v4,	and	determine	the	quantitative	relationship	function	for	the	

system	dynamics	model.		

Generally	speaking,	multiple	regression	analysis	starts	with	the	estimation	of	a	linear	model	

format,	and	the	relationship	can	be	represented	as:	

𝑦! =  𝑏! + 𝑏! ∗ 𝑣! + 𝑏! ∗ 𝑣! + 𝑏! ∗ 𝑣!	

where	𝑏!, 𝑏!, 𝑏!, 𝑏!	are	the	coefficients	to	be	obtained.	The	individual	coefficient	represents	

the	independent	contribution	of	the	corresponding	factor	to	the	dependent	variable	y1.	The	

correlation	between	an	individual	factor	and	the	dependent	variable	is	referred	to	as	a	

partial	correlation,	because	the	correlation	is	observed	with	the	condition	of	controlling	the	

remaining	two	factors.		

Although	real	practical	data	may	show	some	deviation	from	a	linear	model	type,	a	multiple	

linear	regression	model	is	still	preferred	since	the	procedures	of	the	regression	analysis	are	

not	greatly	affected	by	minor	deviations	from	this	assumption.158	However,	when	the	data	

show	a	significant	large	deviation	from	a	linear	regression	model,	it	is	considered	that	

transformation	of	the	variables	is	required	to	allow	for	nonlinear	components	in	the	model.	

Therefore,	the	following	subsection	conducts	a	bivariate	analysis	between	the	individual	

factor	and	the	dependent	variable	to	observe	whether	there	is	a	significant	deviation	from	
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the	linear	model.	

7.8.1 Bivariate	scatterplot	

Bivariate	analysis	is	exploited	to	observe	the	relationship	between	an	individual	factor	and	

dependent	factor	y1.	A	simple	way	of	observing	the	relationship	is	using	bivariate	

scatterplots.	Figure	7.8	displays	the	graphs	for	y1	on	v2,	y1	on	v3,	y1	on	v4	separately,	

together	with	graphs	illustrating	the	bivariate	scatterplots	with	five	different	regression	

curves,	including	linear,	quadratic,	s,	exponential,	and	logistic	curves.	As	seen	in	Figure	7.8,	

the	linear	line	does	not	show	significant	deviation	from	the	remaining	four	different	curves,	

although	there	is	substantial	variation	between	the	sample	data	and	each	regression	curve.	

In	addition,	statistical	results	further	support	the	same	conclusion	and	show	that	the	linear	

relationship	is	the	best	model	in	the	bivariate	analysis,	whose	details	are	listed	below:	

• Bivariate	analysis	of	the	relationship	between	y1	and	v2:		

Linear	model	has	the	lowest	p	value=0.007	and	the	largest	F=7.98.	Also,	it	has	the	

second	largest	R2=0.127	and	the	largest	adjusted	R2=0.113	considering	the	degrees	

of	freedom.	

• Bivariate	analysis	of	the	relationship	between	y1	and	v3:		

Linear	model	has	the	lowest	p	value=0.001,	the	largest	F=12.286,	the	second	largest	

R2=0.185,	and	the	second	largest	adjusted	R2=0.170	

• Bivariate	analysis	of	the	relationship	between	y1	and	v4:		

Linear	model	has	the	lowest	p	value=0.003,	the	largest	F=9.431,	the	second	largest	

R2=0.149,	and	the	largest	adjusted	R2=0.133	

Overall,	it	is	reasonable	to	employ	a	multiple	linear	regression	model	to	represent	the	

relationship	between	y1	and	its	factors	v2,	v3,	v4.	
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Figure	7.8	Bivariate	scatterplots	for	y1	on	its	individual	factor	

7.8.2 Multiple	linear	regression	results 
Following	the	multi-variable	linear	function	format,	regression	analysis	is	conducted	to	

obtain	the	function	coefficients.	The	regression	results	are	shown	below,	where	the	

dependent	variable	is	y1	and	the	factors	are	v2,	v3,	v4:	

𝑦! =  0.566 − 0.036 ∗ 𝑣! − 0.204 ∗ 𝑣! − 0.210 ∗ 𝑣!	 (7.5)	

The	relational	equation	stands	for:	

𝑀𝑖𝑠𝑠𝑒𝑑 𝑜𝑟 𝑤𝑟𝑜𝑛𝑔 𝑑𝑖𝑎𝑔𝑛𝑜𝑠𝑡𝑖𝑐 𝑐𝑙𝑢𝑒𝑠 𝑓𝑟𝑜𝑚 𝑝ℎ𝑎𝑠𝑒1

=  0.566 − 0.036 ∗ "𝐶𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑑𝑜𝑐𝑡𝑜𝑟𝑠 𝑎𝑛𝑑 𝑝𝑎𝑡𝑖𝑒𝑛𝑡𝑠"

− 0.204 ∗ "𝑃𝑎𝑡𝑖𝑒𝑛𝑡 𝑚𝑒𝑑𝑖𝑐𝑎𝑙 ℎ𝑖𝑠𝑡𝑜𝑟𝑦" − 0.210

∗ "𝐶𝑙𝑎𝑟𝑖𝑡𝑦 𝑜𝑓 𝑑𝑖𝑠𝑒𝑎𝑠𝑒 𝑠𝑦𝑚𝑝𝑡𝑜𝑚𝑠/𝑠𝑖𝑔𝑛𝑠"	

The	model	also	shows:	

1) All	three	factors	v2,	v3,	v4	have	a	negative	association	with	y1.	

2) The	model	has	R	=	0.494;	R-squared=0.244;	Adjusted	R-squared	=	0.201;	and	24.4%	

of	the	variation	in	y1	can	be	explained	by	its	relationship	with	the	three	factors	v2,	

v3,	v4.	

3) Standard	error	of	the	estimation	=	0.09698	which	is	lower	than	0.1.	

4) p=	0.02	shows	that	the	above	multiple	linear	regression	model	is	significant.	

Residual	statistical	results	for	y1	as	a	function	of	v2,	v3	and	v4	shown	in	Table	7.26	list	the	

residual	values	which	are	the	deviations	between	the	predicted	values	from	the	regression	

line	and	the	observed	values	from	sample	data.	
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 Minimum	 Maximum	 Mean	 Std.	Deviation	 N	

Predicted	Value	 0.1547	 0.3629	 0.2198	 0.05360	 56	

Residual	 -0.14761	 0.27185	 0.00000	 0.09430	 56	

Std.	Predicted	Value	-1.214	 2.670	 0.000	 1.000	 56	

Std.	Residual	 -1.522	 2.803	 0.000	 0.972	 56	

Table	7.26	Residuals	statistics	for	y1	as	a	function	of	v2,	v3	and	v4	

At	the	same	time	the	ANOVA	is	conducted,	and	coefficients	are	further	analysed.	ANOVA	

results	in	Table	7.27	show	that	the	model	is	significant	but	F=5.600	which	is	not	a	high	value.	

Table	7.28	shows	the	details	of	the	coefficients.	All	standard	errors	of	coefficients	are	lower	

than	0.2,	and	in	particular,	the	coefficient	of	v2	has	the	highest	standard	error	=0.162.	At	the	

same	time,	v2	also	has	a	very	high	p	value	which	is	0.825.	Moreover,	v4	also	has	a	high	p	

value	=	0.110.	The	reason	that	the	v2	and	v4	have	high	p	values	may	lie	in	correlations	

between	the	factors.	Thus,	Pearson	correlation	analysis	results	are	checked	again	to	observe	

whether	these	correlations	exist.	Results	in	Table	7.29	confirm	that	v2	and	v3,	v2	and	v4	

have	strong	correlations,	also,	v3	and	v4	are	correlated.	Therefore,	Eq.(7.5)	represents	the	

relationship	between	y	and	v2,	v3,	v4,	and	a	high	p	value	of	one	coefficient	is	observed	as	

the	result	of	correlations	between	the	variables.		

Model	 Sum	of	Squares	df	Mean	Square	F	 Sig.	

1	Regression	.158	 3	 .053	 5.600	.002b	

Residual	 .489	 52	.009	   

Total	 .647	 55	   

Table	7.27.	ANOVA	for	the	relational	equation	in	y1	and	v2,	v3,	v4	

	

Model	

Unstandardised	Coefficients	

Sig.	B	 Std.	Error	

1	(Constant)	.566	 .101	 .000	

v2	 -.036	 .162	 .825	

v3	 -.204	 .094	 .034	

v4	 -.210	 .129	 .110	

Table	7.28.	Coefficients	analysis	
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	 v2	 v3	 v4	
v2	 Pearson	Correlation	 1	 .559**	 .591**	

Sig.	(2-tailed)	 	 .000	 .000	
N	 56	 56	 56	

v3	 Pearson	Correlation	 .559**	 1	 .377**	
Sig.	(2-tailed)	 .000	 	 .004	
N	 56	 56	 56	

v4	 Pearson	Correlation	 .591**	 .377**	 1	
Sig.	(2-tailed)	 .000	 .004	 	
N	 56	 56	 56	

Table	7.29.	Pearson	correlation	anlysis	for	v2,	v3	and	v4	

	

7.9 Principal	components	analysis	
Principal	components	analysis	(PCA)	is	widely	applied	in	the	situation	in	which	there	are	a	

large	number	of	variables	and	the	variance	structure	of	these	variables	are	to	be	discovered.	

PAC	introduces	new	combinations	of	original	variables	as	new	components,	and	represents	

the	maximum	amount	of	variance	using	fewer	new	components.	By	interpreting	the	new	

components,	the	variance	structure	of	these	variables	can	be	discovered.	Furthermore,	the	

number	of	variables	as	well	as	the	correlation	effect	in	the	model	can	be	reduced.	This	

section	applies	PCA	to	the	factors	v2,	v3	and	v4,	since	the	results	from	the	last	subsection	

show	that	the	factors	v2,	v3	and	v4	appear	correlations	and	the	correlation	effect	to	the	

equation	model	is	to	be	reduced.	Although	PCA	is	commonly	used	in	cases	with	a	large	

number	of	factors	rather	than	just	three	factors,	the	experiment	in	this	section	is	essentially	

a	pilot	and	aims	to	demonstrate	its	utility	in	analysing	the	variance	structure	and	helping	

with	the	factor	correlation	effect	in	situations	where	there	is	a	large	number	of	variables.	

7.9.1 PCA	introduction	

PCA	discovers	the	variance	structure	of	a	group	of	variables	using	linear	combinations	of	

these	variables,	and	explains	the	maximum	amount	of	variance	with	the	fewest	number	of	

principal	components.159	

During	the	PCA	procedure,	a	set	of	linearly	correlated	variables	is	converted	into	a	set	of	

new	components	that	are	linearly	uncorrelated.	To	obtain	the	new	uncorrelated	

components,	PCA	uses	new	components	to	represent	original	variables,	by	employing	the	

following	method:	
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where	F1,	F2	…	Fp	are	the	new	uncorrelated	components,		X1,	X2…Xp	are	the	original	factors	

represented	using	normalised	data,	and	a11…app	are	the	coefficients.	

Thus,	the	first	step	of	PCA	is	data	preparation	by	normalizing	the	original	raw	data.	Different	

variables	may	have	different	value	ranges.	For	example,	if	one	variable	lies	between	0	and	1,	

and	another	variable	lies	between	100	and	1000,	then	the	variation	value	between	any	two	

samples	in	the	first	variable	set	always	appears	to	be	smaller	than	the	value	in	the	second	

one.	The	two	variables	cannot	be	compared	directly.	Therefore,	normalisation	is	conducted	

to	reduce	such	effect	of	different	value	ranges.	

Then,	the	new	components	can	be	obtained,	via	determining	eigenvectors	with	eigenvalues	

“λ”.		An	eigenvector	indicates	an	axis	with	direction.	PCA	changes	the	original	axes,	and	

selects	the	“major	axis	of	variation”	as	the	eigenvectors	or	the	new	axis.	In	other	words,	an	

eigenvector	or	the	axis	is	selected	to	keep	the	minimum	of	the	sum	of	squares	of	distances	

to	the	axis.	At	the	same	time,	the	second	eigenvector	is	chosen	in	the	orthogonal	direction	

of	the	first	eigenvector	to	avoid	correlations,	and	keep	the	second	minimum	of	the	sum	of	

squares	of	distances.	Considering	that	the	eigenvectors	are	selected	from	a	

multidimensional	space	of	p	dimensions,	p	eigenvectors	are	generated.	At	the	same	time,	

each	eigenvector	has	a	value	“λ”	named	as	eigenvalues.	This	value	represents	how	much	

variance	there	is	in	the	direction	of	the	corresponding	eigenvector.	In	other	words,	

eigenvalues	indicate	how	spread	out	the	data	are	on	the	eigenvector	line.	Combining	the	

eigenvectors	and	eigenvalues,	new	components	F1,	F2	…	Fp	are	generated.	For	example,	{a11,	

a21,	…	ap1}	is	the	first	eigenvector.	The	eigenvector	with	the	highest	eigenvalue,	which	

indicates	it	has	the	largest	variance	in	this	eigenvector	direction,	is	taken	as	the	Principal	

component	of	the	data	set.	Figure	7.9	is	an	example	and	explains	two	principal	components	

in	two	dimensions.	The	orange	colour	vector	represents	the	1st	principal	component	with	

the	largest	variance,	and	the	blue	vector	represents	the	2nd	Principal	component.		

To	sum	up,	PCA	uses	eigenvectors	to	represent	orthogonal	direction	in	multiple	dimensions,	

which	solve	the	problem	of	linear	correlations.	Moreover,	it	uses	eigenvalues	to	represent	
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the	value	of	variance	in	the	direction	of	the	corresponding	eigenvector.	A	larger	eigenvalue	

means	larger	variance.	

	

Figure	7.9	Finding	principal	components	in	PCA	

7.9.2 PCA	process	

• Step	1.	Data	preparation	

The	first	step	is	preparing	the	data.	PCA	analyses	the	normalised	data	instead	of	the	original	

raw	data	of	the	factors,	thus,	the	original	data	are	required	to	be	normalised	or	

standardised,	using	the	mean	and	standard	deviation	of	original	data.	

Table	7.30	shows	descriptive	statistical	results	of	v2,	v3,	and	v4.	It	lists	the	mean	value	and	

standard	deviation	of	the	three	factors.	The	new	data,	which	are	the	normalised	data,	are	

generated	according	to	the	function	below:	

	

where	v	are	the	original	data	and	v’	are	the	normalised	new	data.	

	 Mean	 Std.	Deviation	 Analysis	N	

v2	 0.828125	 0.1119844	 56	

v3	 0.775804	 0.1687380	 56	

v4	 0.752500	 0.1259690	 56	

Table	7.30	Descriptive	statistics	of	v2,	v3,	v4	

• Step	2.	Identify	the	number	of	principal	components		

!v = v−Mean
Std.Deviation
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This	step	is	to	determine	the	number	of	principal	components	from	the	normalised	data.	It	

first	analyses	the	variance	of	three	new	components.	Table	7.31	lists	the	eigenvalues	of	the	

components	in	descending	order.	The	first	component	has	the	highest	eigenvalue,	which	

means	the	largest	variance.	Thus,	it	contributes	the	largest	part,	which	is	67.44%,	to	the	

total	variance.	The	larger	the	variance	of	the	component	is,	the	more	information	that	

component	carries.	Then,	there	is	a	significant	decrease	on	the	second	component,	which	is	

20.801%	total	variance	accounted	for	by	this	component.	The	third	contributing	11.760%	to	

the	total	variance	contains	the	least	information.		

Component	 Eigenvalues	 %	of	Variance	 Cumulative	%	

1	 2.023	 67.440	 67.440	

2	 .624	 20.801	 88.240	

3	 .353	 11.760	 100.000	

Table	7.31	Component	variance	analysis	

	

Figure	7.10	Eigenvalue	graph	

Generally	speaking,	an	eigenvalue	is	assigned	a	boundary	value	to	determine	the	number	of	

principal	components.	Any	component	with	its	variance	larger	than	the	boundary	

eigenvalue	is	extracted	as	the	Principal	component.	The	number	of	components	with	

eigenvalue	larger	than	the	boundary	value	is	referred	to	as	the	number	of	latent	roots.	The	

setting	of	the	boundary	eigenvalue	also	requires	considering	the	cumulative	percentages,	

although	the	boundary	value	is	taken	as	λ=1	in	many	cases.	

As	seen	from	Figure	7.10,	one	component	should	be	extracted	when	the	boundary	

eigenvalue	is	1.	However,	the	cumulative	percentage	shows	that	one	component	only	cover	

67.44%	of	the	total	variance	value.	At	the	same	time,	this	study	has	three	factors	only,	and	

the	eigenvalue	of	the	2nd	component	is	still	significantly	higher	than	that	of	the	3rd	

component,	although	it	is	much	lower	than	that	of	the	1st	component.	Overall,	considering	
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the	eigenvalue	and	the	cumulative	percentage,	first	two	components	marked	in	the	blue	

box	in	Table	7.31	should	be	extracted,	and	the	cumulative	variance	percentage	is	up	to	

88.24%	in	this	case.			

7.9.3 Component	rotation:		

• Why	to	use	rotation	

After	the	new	components	have	been	chosen,	they	can	be	represented	by	the	intersection	

of	the	original	factors/features,	as	shown	below:	

New component!
=  a! ∗ original factor! +  a! ∗ original factor! +⋯+ a!

∗ original factor!	

where	a!, a!… a!	are	the	coefficients	or	the	eigenvectors	of	the	new	components.	The	

coefficients	identify	the	relative	weight	of	each	variable	in	the	component,159	and	the	

component	scores	can	be	obtained	by	giving	the	coefficient	matrix.	The	individual	

correlation	between	the	new	component	and	the	factor	is	referred	to	as	the	“loading”	of	

the	component.	Component	loadings	are	the	coefficients	of	linear	combinations	of	

components	to	predict	variables.	There	is	a	relationship	between	the	component	score	

coefficients	and	component	loadings,	which	is:	

coefficient	matrix	=	L	(LT	L)-1	

where	L	is	the	matrix	of	component	loadings.159	

Also,	squared	loadings	indicate	that	the	percentage	of	the	variance	in	the	original	variable	is	

explained	by	the	new	component,	and	the	sum	of	squared	loadings	of	a	component	is	its	

eigenvalue.160	In	other	words,	loadings	indicate	how	much	an	original	factor	can	be	

explained	by	the	new	component. 	

After	the	step	above,	it	can	be	shown	that	fewer	new	components	are	used	to	represent	the	

original	factors.	The	new	components	can	be	understood	as	higher-level	classifications	of	

the	original	factors.	For	example,	if	a	new	component	is	related	to	a	large	loading	of	

“electronic	patient	records”	and	a	large	loading	of	“advanced	equipment”,	then	the	new	

component	could	indicate	the	clinical	IT	level.	

However,	the	new	components	may	not	be	represented	by	significant	loadings	at	the	

current	stage,	which	makes	it	difficult	to	interpret	or	explain	the	new	components.	Thus,	



125	
	

rotations	are	performed	here.	It	is	to	maximize	the	loading	of	a	variable	on	one	component	

while	minimising	its	loading	on	all	other	factors,	so	that	components	can	be	more	

meaningful	and	can	be	explained	more	simply.	

To	achieve	the	aims	above,	the	axes	of	the	factors,	which	are	the	components,	are	rotated.	

The	purpose	of	rotating	axes	of	the	factors	is	to	make	the	clusters	of	previous	factors	align	

as	closely	as	possible	to	the	axes	or	the	component	lines.	It	also	indicates	the	reason	why	

PCA	is	applicable	to	a	large	number	of	factors.	

• Two	ways	of	rotation	

There	are	two	approaches	to	rotation:	orthogonal	rotation	and	oblique	rotation.	Both	

rotation	methods	are	illustrated	in	Figure	7.11.	In	the	example	in	Figure	7.11,	blue	points	

and	green	points	form	two	clusters,	and	stand	for	two	clusters	of	previous	factors.	Before	

any	rotation,	the	axes	of	the	factors	are	the	original	black	lines,	which	indicate	the	new	

components	“component	1”	and	“component	2”.	Orthogonal	rotation	means	that	the	axes	

rotate	while	they	are	kept	orthogonal,	and	oblique	rotation	allows	two	axes	to	rotate	in	

different	directions.	However,	both	rotation	methods	make	the	two	clusters	of	items	fall	as	

closely	as	possible	to	the	axes,	so	that	the	components	can	be	represented	using	factors	

with	significantly	different	loadings.		

Using	the	example	in	Figure	7.11,	before	the	rotation,	components	are	related	with	both	

factors	in	the	blue	cluster	and	factors	in	the	green	cluster.	After	a	rotation,	which	is	either	

the	orthogonal	rotation	or	the	oblique	rotation,	the	component1	line	goes	through	the	

factors	in	the	green	cluster	in	order	to	fall	as	closely	as	possible	with	the	axis	line	of	

component1.	Due	to	this	rotation,	component	1	has	a	weak	effect	on	the	factors	in	the	

green	cluster.	In	other	words,	component1	loads	least	to	the	factors	in	the	green	cluster.	

Similarly,	component2	is	rotated	to	go	through	the	blue	factor	cluster,	which	makes	the	

factors	in	the	blue	cluster	are	minimally	loaded	on	to	component	2.	Therefore,	different	

loadings	help	to	interpret	the	extracted	components.	For	example,	new	component1	and	

new	component2	can	be	mainly	interpreted	as	a	new	feature	by	the	factors	in	the	blue	

cluster	and	in	the	green	cluster	respectively.	
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Figure	7.11	Orthogonal	rotation	and	oblique	rotation	

• Choosing	the	rotation	type	

As	seen	in	Figure	7.11,	two	rotation	methods	result	in	the	new	components	having	different	

characteristics,	which	indicates	that	two	rotation	methods	may	be	appropriate	for	different	

applications.	

	The	main	difference	is	set	out	below:	

− Orthogonal	rotation:	The	new	components	after	the	rotation,	sometimes	refered	to	

as	new	factors,	are	kept	orthogonal,	which	means	the	new	components	are	

uncorrelated.	Thus,	the	loadings	and	the	correlations	between	the	variables	and	

factors	are	the	same.	

− Oblique	rotations:	The	new	components	are	not	orthogonal,	which	indicates	the	

components	are	allowed	to	correlate.	Thus,	the	loadings	and	correlations	are	

different	and	described	in	two	different	tables.	

Generally	speaking,	an	orthogonal	method	might	be	preferred	to	an	oblique	method161.	

• Results	of	the	PCA	experiment	

After	determining	two	components	to	be	extracted	by	eigenvalues,	the	loading	values	

before	any	rotation	are	described	in	Table	7.32.	Table	7.32	is	a	matrix	showing	the	

component	underlying	construction	or	the	loading	values	before	the	rotation.	As	seen	in	the	

table,	component	1	largely	loads	all	three	factors	v2,	v3	and	v4,	while	loadings	of	

component	2	display	significantly	less	than	loadings	of	component	1.	Component	2	has	a	

very	small	loading	from	v2,	which	is	-0.036,	and	some	loadings	from	v3	and	v4,	which	are	
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0.585	and	-0.530	respectively.	It	is	very	difficult	to	explain	the	meanings	of	the	two	

components.	Thus,	rotations	are	carried	out	in	this	situation	to	generate	two	new	rotated	

components.	

	

Component	

1	 2	

v2	 0.885	 -0.036	

v3	 0.777	 0.585	

v4	 0.798	 -0.530	

Table	7.32	Component	pattern	matrix	before	rotation 

In	this	study,	both	rotation	methods	were	tested	and	compared.	The	direct	oblimin	

rotation162	method	is	chosen	to	perform	an	oblique	rotation,	and	the	varimax	rotation162	

method	is	conducted	to	present	an	orthogonal	rotation.	

• Oblique	rotation	(direct	oblimin	rotation)	results	

Oblique	rotation	allows	new	component	lines	to	be	un-orthogonal,	which	indicates	the	new	

components	may	be	correlated.	Thus,	for	a	clear	description	of	the	new	components,	the	

loading	values	and	the	correlations	between	original	factors	and	new	components	are	

displayed	in	two	separate	tables.	Loading	results	are	shown	in	Table	7.33,	which	are	

significantly	different	from	the	results	in Table	7.32.	Loadings	are	the	linear	regression	

coefficients,	thus	the	extent	to	which	the	two	reproduced	components	explain	the	original	

factor	can	be	interpreted	as:	

𝑣!  =  0.993 ∗  𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 1 − 0.089 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 2 	

𝑣!  =  0.603 ∗  𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 1 + 0.438 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 2	

𝑣! =  −0.027 ∗  𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 1 + 0.984 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 2	

where	v4,	v2	and	v3	are	standardised	original	observed	factors. v4	“Clarity	of	disease	

symptoms/signs” shows	the	largest	loading	to	component1,	while	v3	“Patient	medical	

history”	is	least	related	to	component1.	Component2	loads	most	on	v3	“Patient	medical	

history”.		
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Component	

1	 2	

v4	 0.993	 -0.089	

v2	 0.603	 0.438	

v3	 -0.027	 0.984	

Table	7.33	Pattern/loading	matrix	-	Oblimin	with	Kaiser	normalization 

Table	7.34	is	the	structure	matrix,	which	shows	the	results	of	the	correlations	between	the	

original	observed	factors	and	the	new	components. Component1	shows	a	close	correlation	

with	v4	and	Component2	is	observed	to	have	the	closest	relationship	with	v3.  

	

Component	

1	 2	

v4	 0.954	 0.341	

v2	 0.793	 0.699	

v3	 0.399	 0.972	

Table	7.34	Structure/correlation	matrix	–Oblimin	with	Kaiser	normalization 

• Orthogonal	rotation	(varimax	rotation)	results:	

Orthogonal	rotation	assumes	that	the	new	components	are	orthogonal	or	un-correlated.	

Thus,	the	pattern	matrix	and	the	structure	matrix	are	the	same	and	the	results	are	shown	in	

Table	7.35.	Table	7.35	lists	the	component	loadings,	which	are	also	the	correlations	between	

the	variable	and	the	component.	The	original	factor	can	be	explained	by	two	reproduced	

components	after	Varimax	rotation	as	follows:	

v! =  0.947 ∗  component 1 +  0.142 ∗ component 2	

v! =  0.680 ∗  component 1 +  0.567 ∗ component 2	

v! =  0.184 ∗  component 1 +  0.955 ∗ component 2	

The	result	shows	that	the	reproduced	component1	is	correlated	with	v4	and	v2,	and	not	

significantly	correlated	with	v3.	Component	2	is	correlated	with	v3	and	partial	v2,	and	it	has	

a	low	correlation	with	v4.		
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Component	

1	 2	

v4	 0.947	 0.142	

v2	 0.680	 0.567	

v3	 0.184	 0.955	

Table	7.35	Component/loading	matrix	-	Varimax	with	Kaiser	normalization 

7.9.4 Regression	model	after	PCA	

This	subsection	sets	out	to	discover	whether	y1	can	be	better	predicted	using	the	new	

components	instead	of	the	original	v2,	v3	and	v4.		

1) Components	from	Oblimin	rotation	and	Varimax	rotation	

Previously,	the	relational	equation	between	y1	and	its	three	factors	v2,	v3,	v4	has	been	

identified.	This	step	is	to	conduct	experiments	and	find	out	the	relations	between	y1	and	

the	new	components	generated	from	v2,	v3	and	v4.	Two	different	rotation	methods	

produce	two	different	sets	of	new	components.	Thus,	the	regression	models	are	analysed	

separately.		

Again,	five	curves,	including	linear,	quadratic,	s,	exponential,	and	logistic	curves,	are	tested	

for	bivariate	analysis	of	relationship	between	the	individual	component	and	dependent	

factor	y1.	Bivariate	scatterplots	show	no	significant	variation	between	the	linear	line	and	the	

other	four	curves.	Thus,	multiple	linear	regression	is	carried	out,	and	Table	7.36	compares	

the	model	results	of	different	rotation	methods.	Varimax	rotation	shows	a	better	

performance	in	using	its	two	components	to	predict	y1,	because	all	its	coefficients	have	a	p	

value	lower	than	0.05.	

 

	 Model	summary	 Coefficient	summary	

R2	 Std.	Error	 F	 Sig.	 Coefficient	 B	 Std.	Error	 Sig.	

Oblimin	

rotation	

0.228	 0.097			 7.829	 0.001	 (Constant)	 0.220	 0.013	 0.000	

FAC1_oblimin	 -0.028	 0.015	 0.061	

FAC2_oblimin	 -0.033	 0.015	 0.026	

Varimax	

rotation	

0.228	 0.097			 7.829	 0.001	 (Constant)	 0.220	 0.013	 0.000	

FAC1_varimax	 -0.034	 0.013	 0.012	

FAC2_varimax	 -0.039	 0.013	 0.004	

Table	7.36	Regression	model	of	y1	and	new	components	
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2) Compare	the	model	before	and	after	PCA:		

The	regression	model	that	is	obtained	after	PCA	with	Varimax	rotation	is	compared	with	the	

original	regression	model	for	y1	and	v2,v3,v4.	Table	7.37	lists	the	comparison	results.	Both	

models	are	significant.	R2	and	adjusted	R2	are	reduced	after	PCA,	because	original	factors	v2,	

v3,	v4	carry	more	information	than	the	two	new	components.	The	variance	is	lost	during	the	

process	of	choosing	the	number	of	components,	and	the	two	components	bring	88.24%	of	

the	total	variance	from	the	original	data	set.	Although	more	information	is	lost,	the	F	value	

is	improved.	Moreover,	the	coefficients	in	the	after-PCA	model	show	a	significant	

improvement	in	both	standard	errors	and	p	values.	It	confirms	that	the	newly	reproduced	

components	are	not	correlated	and	their	coefficients	are	significant	in	the	regression	model.		

	 Model	Summary	 Coefficients	Summary	

	 R	

square	

Adjusted	

R	Square	

Std.	Error	

of	the	

Estimate	

F	 Sig.	 Coefficients	

list	

Standard	

error	

P	

value	

Before-PCA	

model:		

y1	and	

v2,v3,v4	

0.244	 0.201	 0.09698	 5.600	 0.02	

(Constant)	 0.101	 0.000	

V2	 0.162	 0.825	

V3	 0.094	 0.034	

V4	 0.129	 0.110	

After-PCA	

model:		

y1	and	2	new	

components	

	

0.228	

	

0.199	

	

0.09708	

	

7.829	

	

0.01	

(Constant)	 0.013	 0.000	

Component1	 0.013	 0.012	

Component2	 0.013	 0.004	

Table	7.37	Comparison	of	two	regression	models	

Overall,	compared	with	the	before-PCA	model	that	is	for	y1	and	v2,v3,v4,	the	after-PCA	

model,	which	is	for	y1	and	two	new	components,	shows	improvement	in	model	coefficient	

significance,	but	loses	variance	during	the	process	of	PCA.	Since	the	PCA	is	more	suitable	for	

a	larger	number	of	variables,	the	results	of	the	new	model	will	not	be	implemented	in	the	

quantitative	model.	

	

7.10 Discussion	
This	chapter	first	quantifies	the	non-numerical	factors,	and	implements	regression	analysis,	

and	then	successfully	determines	the	relevant	relationship	functions.	
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Since	regression	analysis	relies	on	the	data,	the	model	results	depend	largely	on	the	

quantity	and	quality	of	the	data.	It	is	observed	that	there	are	substantial	variations	in	the	

observed	points	or	sample	data	around	the	fitted	regression	lines	in	the	scatterplots.	

Because	of	the	limitations	in	the	data	sources,	data	in	the	study	are	collected	from	

questionnaires	and	the	data	are	subjective	in	terms	of	the	doctors’	estimations.	Also,	the	

size	of	the	dataset	could	be	larger	so	that	these	could	have	been	better	coverage	for	all	

three	levels	of	doctors,	and	different	evaluation	methods,	such	as	cross	validation,	could	

have	been	implemented.	However,	several	methods	have	been	exploited	in	the	study	in	

order	that	the	data	collected	might	be	as	objective	as	possible.	For	example,	the	

questionnaires	are	anonymous	during	the	entire	process	and	the	questionnaire	document	

substitutes	all	subjective	words,	such	as	“good”	or	“poor”,	by	“group	1	“,	“group	2”	or	

“group	3”.	Moreover,	the	data	used	in	the	study	could	be	found	in	better	quality	from	other	

sources	such	as	patient	medical	records	or	by	recording	patients’	visits	over	a	period.	

PCA	has	also	been	implemented	to	demonstrate	that	it	helps	to	understand	the	variance	

structure	of	factors	and	helps	with	factor	correlations	especially	for	a	group	of	large	quantity	

of	factors,	although	the	new	components	produced	from	PCA	are	not	adopted	in	the	

quantitative	system	dynamics	model.	

	

7.11 Summary	
Overall,	this	chapter	successfully	quantifies	the	non-numerical	variables	and	carries	out	data	

collection	from	questionnaires	for	regression	analysis.	Finally,	it	identifies	the	required	

relationship	functions	using	regression	analysis	and	relationship	functions	are	evaluated	at	

the	end	of	each	section.	The	relationship	functions	obtained	are	used	as	the	equations	in	

the	quantitative	system	dynamics	model.	The	next	chapter	will	introduce	the	simulation	

data,	summarise	model	equations,	and	then	conduct	simulation	experiments	under	

different	scenarios.		 	
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Chapter	8 Model	Simulation	
	

8.1 Introduction	
This	chapter	commences	with	presenting	data	collection	for	simulation.	In	particular,	an	

expert	elicitation	study	is	conducted	to	collect	data	of	the	estimates	from	clinicians.	Then,	it	

provides	a	summary	of	assumptions,	equations	and	data	used	in	the	simulation	studies.	

Finally,	simulation	experiments	are	carried	out.	System	behaviours	are	observed	under	

different	scenarios.	Parts	of	the	simulation	experiments	can	also	be	found	in	paper	163.	

	

8.2 Data	for	model	simulation	
Simulation	requires	reliable	data	to	be	available.	The	quantitative	model	covers	a	variety	of	

key	factors,	constants	and	other	variables,	and	thus	it	requires	a	large	data	range	for	the	

wide	range	of	system	elements.	At	the	same	time,	Brailsford	in	2008	164	points	out	that	

system	dynamics	modelling	does	not	depend	on	large	quantities	of	high-quality	data,	and	its	

data	requirement	is	generally	weaker	than	that	of	other	discrete-event	simulations.	It	is	

usually	higher-level	and	more	aggregated	than	other	models,	and	it	can	still	illustrate	the	

outputs	based	on	highly	simplified	data.164	Overall,	the	quantitative	model	needs	a	wide	

range	of	data	for	the	simulation,	but	it	has	weaker	data	requirements	in	terms	of	data	

quantities	and	quality.	

There	is	no	available	data	source	that	covers	all	the	variables	of	the	system.	Thus,	data	for	

different	variables	are	collected	from	different	sources	in	different	ways.	Overall,	two	main	

sources	are	used	in	this	thesis:	public	data	and	estimated	data	from	experts.	

8.2.1 Public	data	

Public	data	are	the	published	literature	from	relevant	researches	or	published	information	

from	relevant	societies.	Published	literature	of	relevant	researches	can	be	conveniently	

retrieved	and	easily	accessed.	Generally,	it	focuses	on	one	or	two	factors,	and	provides	

output	data	from	experiments	or	review	analysis.	Thus,	this	source	provides	high-level	

processed	data,	and	it	has	the	advantage	of	easy	adoption	and	is	time	saving.	

There	are	still	several	societies	that	focus	on	patient	safety	and	diagnostic	errors.	They	

usually	have	richer	data	sources,	and	data	are	usually	mixed	with	statistical	data	and	higher-

level	findings	from	data.	However,	it	has	also	the	drawback	that	the	data	are	much	more	
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specific	and	it	is	more	difficult	to	search	out	relevant	data	from	a	large	quantity	of	data	

sheets.	Relevant	societies	were	found	as	listed	below:	

1) CRICO165,	owned	by	and	serving	the	Harvard	medical	community	in	evidence-based	

risk	management;		

2) The	commonwealth	fund166,	working	towards	a	high	performance	health	system;	

3) Agency	for	healthcare	research	and	quality167;	

4) National	information	centres:	such	as	NHS(National	Health	Service)	information	

centre	and	clinical	trials168;		CIHI(Canadian	Institute	for	Health	Information)169.	

Literature	reviews	for	public	data	are	conducted	in	this	step.	To	provide	more	specific	data,	

an	individual	literature	review	is	performed	for	each	phase	of	the	model,	following	the	

model	structure	described	in	Chapter	6.	Relevant	literature	published	from	1994	to	2014	is	

retrieved	and	reviewed	from	relevant	databases	such	as	PubMed	and	EMbase	and	other	

relevant	society	databases.	

Results	show	that	few	data	were	found	in	the	society	databases,	and	compared	with	other	

phases,	a	larger	quantity	of	data	evidence	about	laboratory	tests	was	found.	In	detail,	the	

data	relating	to	the	following	variables	are	found	from	the	literature,	listed	as	below:	

1) History	and	physical	examinations:	

The	history	and	physical	examination	sensitivity	is	around	66%	according	to	the	relevant	

document157.	

2) Radiology	tests:		

The	blended	error	rate	for	a	wide	range	of	modalities	is	4.4%,	with	a	possible	range	of	errors	

between	0.8%	and	9.2%	depending	on	the	type	of	studies	interpreted,	modality	mix	and	

subspecialty	expertise	of	the	radiologist.	170	

3) Laboratory	tests:	

Most	studies	discuss	relevant	laboratory	errors	under	three	headings:	pre-analytical	errors,	

analytical	errors,	and	post-analytical	errors.	Although	differences	in	laboratory	error	rate	

among	study	areas	were	witnessed	in	this	study,	results	show	pre-analytical	errors	take	the	

largest	percentage,	55%-77%	for	a	60%	likelihood,	of	the	laboratory	errors	in	all	areas,	

compared	with	the	other	two	types:	analytical	errors	and	post-analytical	errors.	A	relevant	

study172	also	describes	the	top	three	causes	of	pre-analytical	errors	as:	tube	filling	error	
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(13.1%	of	the	total	pre-analytical	errors),	patient	ID	error	(8.8%),	and	inappropriate	

container	(8.1%).		Table	8.1	summarises	the	relevant	literature	data	for	laboratory	tests.	

Papers	 Year	 Study	Area	 Laboratory	

test	error	

rate	

Pre-

analytical	

error	rate	

(ppmb)	

Analytical	

error	rate	

(ppmb)	

Post-

analytical	

error	rate	

(ppmb)	

Abdollahi		et	al	171	 2014	 Iran	 6.30%	 41007	 14616	 7358	

Carraro	&	Plebani	172	 2007	 Italy	 0.31%	 1914	 463	 715	

Wiwanitkit	173	 2001	 Thailand	 NDa	 1100	 58	 147	

Stahla		et	al	174	 1998	 Germany	 0.61%	 4575	 976	 549	

Plebani	&	Carraro175		 1997	 Italy	 0.47%	 3183	 621	 863	

Nutting		et	al	176	 1996	 North	

America		

0.11%	 612	 146	 330	

Lapworth	&	Teal	177	 1994	 UK	 0.05%	 158	 158	 154	

a	ND:	Not	identified;			b	ppm:	parts	per	million	

Table	8.1		Data	for	laboratory	test	errors	from	literature	

The	simulation	data	on	the	three	variables	pre-analytical	errors,	analytical	errors,	and	post-

analytical	errors	are	randomly	selected	in	the	circa	70%	likelihood	range.	Specifically,	for	a	

70%	likelihood,	the	percentage	of	pre-analytical	errors	lies	in	a	range	of	0.087%	to	0.254%,	

analytical	error	percentage	lies	from	0.0258%	to	0.0627%,	and	post-analytical	error	

percentage	is	around	0.0393%	to	0.0674%.	Moreover,	test	repetition	rate	is	selected	as	

16.9%	according	to	a	relevant	study172.	

4) After	diagnosis	and	patient	outcomes:	

According	to	the	data	results	of	a	relevant	study14	that	uses	an	electronic	health	record-

based	method	to	detect	the	diagnostic	errors,	the	patient	outcome	flows,	shown	in	Table	

8.2,	were	the	observed	data	based	on	a	total	of	212,165	first	visits	with	a	14	day	observation	

period	after	first	visits	or	index	visits.	The	14-day	cut-off	observation	period	is	chosen,	

because	longer	intervals	show	that	return	visits	are	less	clearly	linked	with	errors	in	the	

index	visits.14		
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	 Total	cases	with	errors	(190	cases)	

Unscheduled	patient	cases	(177	cases)	 control	patient	

cases	(13	cases)	

Patient	

outcome	

flows:		

	

A	primary	care	visit	

followed	by	an	unplanned	

hospitalisation	that	

occurred	between	24	h	

and	14	days	after	the	visit.	

A	primary	care	visit	

followed	by	one	or	more	

unscheduled	primary	care	

visits,	an	urgent	care	visit,	

or	an	ER	visit	that	occurred	

within	14	days		

Recovering	cases	&	

re-visiting	cases	

scheduled	by	

follow-up	service	

Ratios:	 141	out	of	177	

unscheduled	cases	

36	out	of	177	unscheduled	

cases		

13	out	of	190	total	

error	cases	

Table	8.2	Patient	outcome	flows	of	diagnostic	error	cases	

8.2.2 Estimated	data	from	experts	or	“expert	elicitation”	

Expert	elicitation	is	another	source	of	data	especially	when	the	data	are	unattainable	

because	of	time,	physical	constraints	or	lack	of	resources.	Figure	8.1	shows	seven	steps	that	

are	commonly	implemented	in	an	expert	elicitation	study.	

	

Figure	8.1	Seven	steps	for	a	formal	expert	elicitation178	
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8.2.2.1 Study	design	

An	expert	elicitation	study	is	designed	based	on	the	seven	steps	shown	in	Figure	8.1.	In	

detail,	this	thesis	conducts	the	study	following	the	same	methods	employed	in	the	expert	

judgment	study181	by	Van	der	Fels-Klerx	et	al	in	2005.	The	steps	are	described	below:	

a. Define	case	structure	document	including	uncertainties	identification:	

This	step	identifies	the	objectives	and	types	of	uncertainty	considered.	This	study	collects	

estimates	of	relevant	variables	from	experts,	and	the	main	uncertainties	involved	are:	

doctor’s	medical	knowledge	and	experience;	doctor’s	preference;	different	working	areas	

and	patient	groups.	

The	model	is	overviewed	again	in	this	step.	The	target	variables,	which	are	to	be	assessed	by	

the	experts,	are	identified.	At	the	same	time,	two	variables,	whose	values	are	known	from	

the	literature,	are	selected	as	the	“seed	variables”.	Seed	variables	are	used	to	weight	the	

individual	expert’s	performance	and	then	to	reduce	the	effect	of	uncertainties	on	the	data	

results.	A	summary	of	target	variables	to	be	estimated	and	seed	variables	to	weight	expert	

performance	is	listed	below	in	Table	8.3:	

Target	Variables:	

Variable	

ID	

Variable	name	in	the	model	 Explanation	of	the	variable	

1	 percentage1	of	cases	with	missed	tests	 the	percentage	of	missing	tests,	for	a	

case	with	errors	

2	 percentage2	of	cases	with	missed	tests	 the	percentage	of	missing	tests,	for	a	

case	without	errors	

3	 percentage1	of	improper	referrals;		

percentage2	of	improper	referrals	

they	taken	as	the	same	value,	and	

represented	by	the	percentage	of	

improper	referrals	for	case	with	errors	

4	 pecentage3	of	improper	referrals	 the	percentage	of	improper	referrals	for	

case	without	errors	

5	 improper	referrals	corrected	by	expert	 the	percentage	of	improper	referrals	

corrected	by	expert	

6	 percentage	of	obtaining	discordant	data	

during	a	repeat	visit	

during	a	repeat	visit,	the	percentage	of	

information	which	is	discordant	with	the	

data	from	the	first	visit	

7	 error	detection	rate	after	obtaining	

concordant	data	during	a	repeat	visit	

during	a	repeat	visit,	the	error	detection	

rate	if	new	data	are	concordant	with	the	

data	from	the	first	visit	
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Seed	Variables:	

Variable	ID	 Variable	Name	in	the	Model	

e1	 history	and	physical	examination	sensitivity	

e2	 error	detection	rate	after	obtaining	discordant	data	during	a	repeat	visit	

	

Table	8.3	A	summary	of	target	variables	and	seed	variables	

b. Scope	and	format	of	the	elicitation:	

Since	resource	is	limited,	it	is	suggested	that	six	to	12	experts	are	needed	to	conduct	the	

study.178	At	least	six	experts	should	be	included,	and	the	benefit	of	including	additional	

experts	beyond	12	experts	begins	to	drop	off.178	Thus,	six	to	12	experts	are	sufficient	for	this	

study.	

Personal	face-to-face	interviews	were	chosen	as	the	method	to	conduct	the	expert	

elicitation.	Although	interviews	may	be	more	time	consuming	than	questionnaires,	the	

number	of	participants	in	this	study	is	small	and	data	quality	is	of	greater	concern.	

Compared	with	questionnaires,	face-to-face	interviews	provide	the	opportunity	of	

communicating	with	participants.	Interview	questions	can	be	further	explained	during	the	

process	and	participants	can	give	more	detailed	explanation	in	their	answers.	Moreover,	

participants	in	interviews	are	generally	more	motivated.	For	participants	who	are	not	able	

to	engage	in	face-to-face	interviews	due	to	location	constraints,	interviews	can	be	

conducted	via	online	video	applications,	such	as	Skype179.	

c. Identify	experts	and	select	experts:	

Experts	are	randomly	selected	from	the	list	of	names	based	on	pervious	working	contacts.	

At	the	same	time,	the	selected	experts	need	to	meet	the	following	criteria:	experts	should	

be	independent	clinicians	with	at	least	five	years	of	general	practice	experience,	and	the	

Target	Variables:	

Variable	ID	 Variable	Description	

ratio1	 patient	flows	after	phase1:		

patients	to	receive	final	diagnosis	and	be	discharged	:		patients	to	undergo	

tests	:	patients	to	be	referred	

ratio2	 patient	flows	after	phase2:		

patients	to	be	discharged	:	patients	to	be	referred	to	other	experts	
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relevant	work	experience	should	be	in	countries,	where	the	diagnostic	process	or	patient	

pathway	is	similar	to	that	of	the	UK.	The	number	of	male	participants	and	female	

participants	is	aimed	to	be	half	and	half	in	order	to	provide	a	balance	of	views.	In	the	end,	

participants	are	identified	based	on	the	interests	of	the	study	and	availability.	

d. Design	the	elicitation	format	document:		

The	details	of	interviews	are	designed	in	this	step.	Questions	to	be	assessed	are	

documented.	

The	interviews	are	conducted	in	three	main	steps,	and	documents	required	for	each	step	

are	generated:	

− Step	1:	Show	participants	information	relating	to	the	study	and	ask	them	to	sign	

consent	form.	This	is	to	make	participants	understand	their	rights	when	

participating	in	the	study	and	to	understand	that	the	study	is	confidential.	

− Step	2:	Introduce	the	background	to	the	study.		Study	background	information	and	

the	model	framework	illustrating	the	diagnostic	process	are	shown	and	explained	to	

the	experts.	The	background	information	provides	a	quick	introduction	to	the	types	

of	data	that	the	expert	should	provide.	More	information	is	attached	in	APPENDIX	

VII.	

− Step	3:	Experts	are	asked	to	provide	their	estimates,	following	a	list	of	semi-

structured	questions.		

A	total	of	nine	target	variables	and	two	seed	variables	in	Table	8.3	are	included	in	

the	questions.	For	each	variable,	experts	are	required	to	provide	the	median	of	the	

variable	with	a	90%	confidence	band,	as	well	as	their	rationale	for	the	probability	

assessments	if	possible.	The	document	listing	the	semi-structured	questions	is	

attached	in	APPENDIX	VII.	

e. Dry-run	session:		

One	clinician	is	selected	and	is	given	the	elicitation	format	document.	The	clinician	is	asked	

to	provide	comments	on	the	document.	If	needed,	the	document	is	revised	based	on	

feedback	from	the	clinician.		

f. Elicitation	of	expert	judgements,	and	possible	feedback	communication:	

Interviews	are	conducted	this	step,	and	data	are	collected.	In	some	relevant	studies,	

assessment	may	be	carried	out	over	many	rounds.	The	experts	will	be	provided	with	
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feedback	in	terms	of	discrepancy	analysis	of	the	relevant	variables	with	rationales	at	the	end	

of	the	first	round	assessment	or	interview,	and	then	experts	are	encouraged	to	revise	their	

earlier	answers.	This	step	may	be	repeated	several	times	until	the	results	meets	a	pre-

defined	stop	criterion	which	may	be	the	number	of	rounds	or	stability	of	results.180	

However,	due	to	the	study	time	limit	and	expert	availability,	it	is	not	possible	to	ask	experts	

to	answer	questions	in	two	or	more	rounds	in	this	study.	At	the	same	time,	the	study	also	

aims	to	reduce	the	uncertainty	impact	to	a	minimum	and	obtain	estimates	with	confidence.	

Therefore,	this	study	amends	the	feedback	session	at	the	end	of	each	interview.	The	

individual	expert	will	receive	feedback	on	the	assessment	immediately	at	the	end	of	the	

interview	by	comparing	the	assessment	results	with	the	results	from	the	previous	experts’	

results.	To	avoid	misleading	correct	answers	or	to	avoid	possible	bias,	the	expert	will	not	be	

informed	that	the	feedback	is	based	on	the	other	expert	members,	and	will	only	be	asked	

their	rationale	in	relation	to	relevant	variables	which	show	discrepancy	and	mention	of	

rationale	from	other	experts	at	the	same	time.	Then	the	expert	will	be	asked	whether	

he/she	wants	to	change	their	answer.	

g. Data	analysis	and	documentation:	

Collected	data	are	analysed	using	Cooke’s	classical	model.	Cooke’s	method	first	weights	the	

individual	expert’s	assessment	performance	by	scoring	the	likelihood	that	expert	

distributions	over	the	set	of	seed	items	correspond	to	the	known-observed/measured	

results.	181 Then,	for	each	variable,	the	individual	experts’	assessments	are	aggregated	to	

one	combined	probability	distribution	function(PDF),	named	the	decision	maker’s	(DM)	

distribution181	which	can	be	taken	as	an	expected	distribution	function.	The	DM	

distributions	reflect	the	weighted	assessments,	and	are	documented	as	the	output	data.	

8.2.2.2 Data	results		

A	total	of	six	clinicians	participated	in	the	study,	and	completed	all	the	estimations.	Data	

were	collected,	and	this	includes	the	estimates	of	two	ratios	and	nine	variables.	For	each	

variable,	three	values	are	estimated,	which	are	the	values	of	the	5th	percentile,	the	50th	

percentile	and	the	95th	percentile.	

There	are	a	number	of	software	packages	available	to	support	data	analysis	of	expert	

elicitation	studies182	183.	The	software	package	EXCALIBUR184	is	used	to	process	the	data	

mainly	due	to	its	function	of	weighting	expert	assessment	performance.	The	measure	used	

to	weight	expert	performance	in	this	study	is	called	global	weights.	Global	weights	are	
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defined	as	the	measures	of	expert	performance	on	seed	variables184.	In	other	words,	the	

global	weight	indicates	the	probability	that	the	expected	distribution	takes	the	random	

individual	expert	distribution.	For	each	expert,	global	weights	are	the	same	for	all	variables.	

For	each	variable,	the	three	percentile	values	from	the	individual	expert	provide	the	

individual subjective	PDF.	By	comparing	the	true	values	of	the	seed	variables	with	the	expert	

assessment	results,	the	expert	is	assigned	a	weighted	score,	the	global	weight.	The	final	

weighted	estimation	results	of	the	variable,	namely	the	DM	distribution	function	of	a	

variable	is	the	combination	of	weighting	individual	PDF,	which	can	be	represented	as:		

																																																	DM distribution function f = !!!!!
!!!

!!!
!!!

,		

where	i = 1,… , n,		𝑓! 	is	the	probability	distribution	function	from	an	individual	expert	and	

𝑤! 	is	the	global	weight	(performance-based	weighting)	or	the	probability.		

The	data	results	are	listed	in	Table	8.4	and	Table	8.5,	which	are	used	as	the	simulation	data	

for	the	quantitative	model.	Table	8.4	shows	the	DM	distribution	functions	based	on	global	

weights.	Table	8.5	shows	the	mean	of	the	ratios	from	experts.	The	column	of	“realisation”	in	

Table	8.4	describes	the	true	values	of	the	seed	variables.	It	is	witnessed	that	the	true	values	

of	the	seed	variables	lie	in	the	ranges	of	the	estimates	provided	by	the	experts.	
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Number	 ID	 Percentiles	 Realisation	 Full	name	

5th	 50th		 95th		

1	 1	 4.968	 33.73	 78.07	 -	 percentage1	of	cases	with	missed	tests	

2	 2	 1.51	 19.14	 39.98	 -	 percentage2	of	cases	with	missed	tests	

3	 3	 2.196	 9.611	 72.53	 -	 percentage2	of	improper	referrals	

4	 4	 1.85	 10	 19.42	 -	 pecentage3	of	improper	referrals	

5	 5	 9.972	 84.94	 98.76	 -	 improper	referrals	corrected	by	expert	

6	 6	 2.067	 32.33	 79.05	 -	 percentage	of	obtaining	discordant	

data	during	a	repeat	visit	

7	 7	 1.358	 61.74	 96.26	 -	 error	detection	rate	after	obtaining	

concordant	date	during	a	repeat	visit	

8	 e1	 45.57	 84.44	 95.16	 66	 history	and	physical	examination	

sensitivity	

9	 e2	 28.13	 78.9	 98.73	 76.3	 error	detection	rate	after	obtaining	

discordant	data	during	a	repeat	visit	

Table	8.4	Resulting	solution	(combined	DM	distribution	of	values	assessed	by	experts)	

ID	 Mean	 Variable	Description	

ratio1	 65%	:	30.2%	:	

13.8%	

patient	flows	after	phase1:		

patients	to	receive	final	diagnosis	and	be	discharged	:		patients	to	

undergo	tests	:	patients	to	be	referred	

ratio2	 86%	:	14%	 patient	flows	after	phase2:		

patients	to	be	discharged	:	patients	to	be	referred	to	other	experts	
Table	8.5	Results	of	ratios	

	

8.3 Model	simulation	results	
This	section	conducts	model	simulation	experiments.	It	first	summarises	model	equations,	

data	and	assumptions	used	in	the	simulation	experiments.	Then,	three	different	scenarios	

are	simulated	and	relevant	results	are	illustrated.	The	first	scenario	provides	a	one-year	

overview	of	the	system	as	it	relates	to	the	current	situation	and	assumptions.	The	second	

scenario	changes	one	factor,	and	observes	changes	in	system	outputs.	Two	factors	are	

selected	as	an	example,	and	individually	demonstrate	the	changes	of	the	system	outcomes.	

Model	sensitivity	is	conducted	to	estimate	model	outputs	as	a	factor	changes.	The	third	
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scenario	changes	two	factors	at	the	same	time,	and	simulates	the	patient	outcomes	caused	

by	diagnostic	errors.	

8.3.1 Model	summary	of	equations	and	data:	

Relational	equations,	simulation	data	and	assumptions	are	summarised	below.	The	model	is	

further	refined	based	on	the	assumptions,	and	the	simulation	model	is	shown	in	Figure	8.2.	

• Assumptions	used	during	simulation	experiments:		

During	the	simulation	experiments,	some	assumptions	are	made.	Because	the	quantitative	

model	reflects	the	whole	diagnostic	process	and	covers	many	variables,	assumptions	are	

made	in	order	to	simplify	the	simulation	situation	and	to	reduce	the	time	and	resources.	

1) Assumption	1:	During	the	simulation,	phase2	represents	the	laboratory	tests	only.	

There	are	three	reasons	for	this:		

− Focusing	on	one	type	of	diagnostic	test	can	provide	more	detailed	information.	A	

specific	simulation	is	preferred	to	a	more	general	sum	of	two	types	of	diagnostic	

tests.		

− GPs	do	many	more	laboratory	tests	than	radiology	tests.		

− There	are	more	data	available	for	laboratory	tests	than	for	radiology	tests.	

2) Assumption	2:	The	waiting	lists	are	not	considered	in	simulation	experiments,	and	

all	administration	rates	involved	in	the	model	are	taken	as	100%	because	of	

insufficient	data	regarding	administration	rates.	

3) Assumption	3:	During	this	simulation,	errors	arising	after	being	referred	to	experts	

are	not	accounted	for	and	hence	the	error	rate	from	experts	is	assumed	to	be	zero.	

4) Assumption	4:	Two	variables	are	not	included	in	the	simulation	model.	

− “doctor’s	knowledge	and	experience”	is	not	included	in	the	simulation	model,	

because	it	is	not	identified	during	the	regression	modelling	process.	Regression	

modelling	is	based	on	the	sample	data,	and	this	factor	is	not	observed	to	have	

strong	correlations	with	other	variables.	

− “history	and	physical	examination	sensitivity”	is	not	shown	in	the	simulation	model,	

because	this	factor	is	considered	as	a	constant	according	to	the	relevant	study157,	

and	its	dependent	variable	is	determined	as	the	function	of	relevant	variables	using	

regression	modelling.	

	

• Summary	of	equations	used	in	the	simulations:	
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The	equations	of	the	model	are	constructed	in	three	ways:	integration	relations,	regression	

relations	and	simple	relations.	

1) Integration	relations	are	in	the	form	of	integration	functions	for	the	“stock”	

variables	in	the	stock	and	flow	diagrams.	The	“stock”	variables	can	be	represented	

using	integration	functions	of	input	flows	and	output	flows,	which	were	introduced	

in	Chapter	6.	The	dependent	variables	of	the	model	are	mainly	the	“stock”	variables,	

illustrated	as	the	variables	in	the	blocks	in	Figure	8.2.	

2) Regression	relations	are	the	relational	equations	identified	by	regression	analysis,	

and	these	equations	are	difficult	to	be	determined	using	system	dynamics	modelling.		

Especially	for	the	variables	in	Phase1,	regression	equations	are	constructed	using	

data	collected	from	questionnaires,	as	shown	in	Chapter	7.		

3) The	rest	are	simple	relations,	and	the	relationship	functions	are	easily	identified.		

	

• Summary	of	data	used	in	the	simulations:	

The	relevant	factors	such	as	the	input	and	output	arrows	used	in	the	integration	equations	

are	required	to	collect	relevant	data.		

1) Data	from	experts:	The	variables,	which	are	simulated	based	on	the	data	from	

experts,	are	highlighted	in	different	colours	(purple,	yellow	and	green)	in	Figure	8.2.	

Data	collected	from	the	experts	are	randomly	plotted	with	a	90%	confidence	band	

following	a	normal	probability	distribution.		

2) Data	from	the	literature:	The	variables	based	on	the	data	from	literature	are	

simulated	based	on	the	data	results	in	subsection	8.2.1.	

3) Simulation	experiments	include	some	soft	variables,	and	are	conducted	using	what-

if	scenarios:	assumptions	simplify	the	simulation	situation.	Especially	for	the	

variables	whose	data	are	very	difficult	to	achieve,	it	also	helps	to	save	time	and	

resource.	Moreover,	simulations	under	different	assumption	scenarios	help	to	

explore	the	assumptions,	and	observe	and	compare	different	system	behaviours.	

The	variables	“continuity	of	care”	and	“patient	medical	history”	are	assumed	to	be	

at	an	average	level.	An	average	level	indicates	that	the	relevant	score	of	the	variable	

is	0.5,	according	to	the	quantifying	method	described	in	section	7.3.	

4) Control	patient	cases	include	recovering	cases	and	re-visited	cases	scheduled	by	the	

follow-up	service.	During	this	simulation,	it	is	assumed	that	the	percentage	of	

recovering	cases	in	the	total	error	cases	is	zero.	
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5) Error	rate	from	experts	is	assumed	as	zero.	

6) No	time	delays.	It	is	assumed	that	the	administration	rate/percentage	of	each	step	

is	100%.	In	other	words,	there	is	no	delay	of	administration,	and	100%	of	the	cases	

are	administrated	so	that	these	cases	proceed	to	the	next	step	at	every	time	unit.	

For	ease	of	reference,	a	full	list	of	the	variable	equations	in	the	simulation	is	attached	in	

APPENDIX	VIII.		
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Figure	8.2	Simulation	model	
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8.3.2 Scenario	1:	one	year	overview		

Assuming	there	is	a	constant	100	patient	cases	per	day	receiving	healthcare	service,	the	

model	is	simulated	and	observed	over	a	one-year	period	from	day	0	to	day	365,	and	system	

behaviours	reflect	the	outcomes	under	the	current	assumptions	and	conditions	of	the	

system.		

Figure	8.3	plots	the	number	of	cases	with	decision-making	errors	over	365	days,	which	is	the	

number	of	diagnostic	error	cases	in	the	system	from	day	0	to	day	365.	The	density	of	the	

graph	indicates	that	the	data	are	plotted	every	day	for	12	months.	The	initial	data	of	the	

error	case	are	set	as	0	at	the	beginning,	which	indicates	that	there	is	no	error	in	the	system.	

Because	it	is	assumed	that	each	step	takes	one	time	unit	to	be	processed,	the	proceeding	

time	from	receiving	healthcare	service	to	decision-making	is	reflected	as	a	time	delay	on	the	

variable	of	cases	with	decision-making	errors.	Thus,	the	variable	turns	out	to	be	its	first	non-

zero	value	1.01	on	day	4.	As	seen	in	this	figure,	the	number	of	“cases	with	decision	making	

errors”	floats	in	a	range	of	0	to	7.482,	where	the	density	mainly	lies	around	1	and	the	value	

remains	under	2.5	for	the	most	of	the	days.	The	somewhat	wide	floating	range	of	model	

output	is	because	many	factors	in	the	model	are	chosen	to	plot	randomly	within	a	

confidence	range.	

In	order	to	provide	a	more	detailed	analysis	of	simulation	results	and	to	avoid	the	effect	of	

the	initial	setting	values	on	statistical	results,	a	period	from	day51	to	day350,	which	covers	

continuous	300	data	points	or	“counts”,	is	selected	to	display	the	statistical	results.	

Specifically,	Table	8.6	provides	the	statistical	results	of	number	of	cases	with	decision-

making	errors	over	the	300	days.	During	the	300	points,	the	“min”	shows	the	smallest	value,	

while	the	“max”	displays	the	largest	value.	Also,	it	shows	the	“mean”	value	and	the	

“median”	value.	“Mean”	value	is	the	arithmetic	average	of	all	points	and	“median”	value	

indicates	the	value	that	the	variable	is	larger	than	one	half	of	the	time	and	smaller	than	for	

half	the	time185.	Moreover,	“StDev”	is	the	standard	deviation,	and	“Norm”	means	the	

normalised	standard	deviation,	that	is	the	standard	deviation	divided	by	the	mean.	Results	

show	that	the	average	number	of	cases	with	decision-making	errors	is	0.9156	every	day	over	

the	300	days	if	there	is	a	constant	100	patient	cases	per	day	and	these	case	visits	starts	on	

day1.	It	is	worth	noting	that	0.9156	represents	the	number	of	the	error	cases	still	in	the	

system,	and	does	not	include	the	number	of	patients	discharged.	The	outcomes	of	the	

discharged	patients	are	represented	by	other	variables	and	will	be	discussed	later.		
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Figure	8.3	Cases	with	decision	making	errors	(missed	or	wrongly	diagnosis)	

Variable	

(per	100	

cases)	

Counta	 Minb	 Maxc	 Meand	 Mediane	 StDevf	 Normg	

cases	with	

decision	

making	

errors	

(missed	or	

wrongly	

diagnosis)		

300	

(from	

day51	

to	

day350)	

0.0701	 5.444	
	

0.9156	 0.7063	 0.7621	 0.8323	

a. the	total	data	points	considered	

b. the	smallest	value	during	all	data	point	

c. the	largest	value	during	all	data	point	

d. the	arithmetic	average	of	all	points	

e. the	number	which	the	variable	is	bigger	than	one	half	the	time	and	smaller	than	on	half	the	time	

f. the	standard	deviation	over	all	points		

g. the	normalised	standard	deviation,	which	is	the	standard	deviation	divided	by	the	mean	

Table	8.6	Statistical	results	of	number	of	cases	with	decision-making	errors	over	300	days	

The	variable	of	cases	with	decision-making	errors	has	four	input	error	flows.	The	input	error	

flows	are	listed	below,	with	the	first	three	error	flows	being	from	three	diagnostic	phases.	

− Flow1	-	errors	from	phase1:	

Phase1	is	history	taking	and	physical	examinations,	where	initial	errors	occur.	

During	the	current	simulation,	the	factors	“continuity	of	care”	and	“patient	

medical	history”	are	assumed	to	be	at	an	average	level,	which	indicates	both	

values	are	0.5,	and	the	error	rate	in	the	initial	hypothesis	is	shown	to	be	up	to	

22.01%	under	current	assumptions.	Also,	only	2.102%	of	these	error	cases	lead	

to	the	errors	in	the	final	decision-making.	

− Flow2	-	errors	from	phase2:	

cases with decision making errors (missed or wrongly diagnosis)
7.482
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2.494

0
0 73 146 219 292 365

Time (Day)
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s
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The	total	laboratory	test	error	rate	is	around	0.262%	on	average,	which	agrees	

with	the	range	0.195%	to	0.42%	from	the	literature.	The	error	cases	from	

phase2	are	delivered	into	two	flows:	“cases2	with	errors	proceeding	to	decision	

making”,	which	indicate	that	the	errors	have	a	direct	effect	on	decision-making	

errors,	and	“cases2	with	no	effect	errors	proceeding	to	next	phase	per	time	

unit”,	which	means	that	although	the	case	has	error,	the	error	has	no	effect	on	

decision-making.	The	ratio	of	the	two	flows	is	1:32.28,	which	indicates	the	cases	

with	no-effect	errors	take	a	larger	percentage	in	the	total	laboratory	errors.	

Also,	only	1.073%	of	the	initial	laboratory	errors	contribute	to	the	decision-

making	errors.	Table	8.7	illustrates	the	details	of	all	three	outflows	of	phase2.	

Outflows	from	phase2	

(per	100	cases)		

Count	 Min	 Max	 Mean	 Median	 StDev	 Norm	

Flow1:	cases2	proceeding	

to	decision	making	

without	errors	

(cases/day)	 300	 0.2852	 6.903	 3.3018	 3.221	 1.6983	 0.5144	

Flow2:	cases2	with	errors	

proceeding	to	decision	

making	(cases/day)	 300	 0.00012	 0.6869	 0.04514	 0.0166	 0.0751	 1.6639	

Flow3:	cases2	with	no	

effect	errors	proceeding	

to	next	phase	(cases/day)	 300	 0.00038	 2.128	 0.13985	 0.0513	 0.2327	 1.6638	

Table	8.7	Three	outflows	from	phase2	

− Flow3	-	errors	from	phase3:	The	average	rate	of	errors	during	referrals	is	about	

2.554%.	

− Flow4	–	errors	from	revisits:	A	flow	of	error	cases	may	revisit	the	healthcare	

service,	and	the	undetected	cases	are	counted	as	errors	in	revisits	and	go	back	

into	system	diagnostic	errors		

Table	8.8	compares	the	three	input	error	flows	from	three	phases.	Compared	with	errors	

from	the	other	two	phases,	errors	from	Phase	1	contribute	significantly	more	to	the	final	

decision-making	errors.	
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Input	error	flows	to	

decision	making	

(per	100	cases)	

Count	 Min	 Max	 Mean	 Median	 StDev	 Norm	

Phase1:	cases1	with	

missed	or	wrong	

hypothesis	proceeding	

to	decision	making	per	

time	unit	 300	 0.0032	 4.569	 0.4627	 0.1653	 0.6575	 1.4209	

Phase2:	cases2	with	

errors	proceeding	to	

decision	making	 300	 0.00012	 0.6869	 0.0451	 0.0166	 0.0751	 1.6639	

Phase3:	cases3	with	

errors	proceeding	to	

decision	making	 300	 0.01413	 2.192	 0.3560	 0.2074	 0.3569	 1.0024	

Table	8.8	Comparison	of	three	input	error	flows	

There	are	a	total	of	four	patient	outflows	coming	out	of	the	model,	namely	there	are	four	

patient	outcomes.	They	can	be	divided	into	two	groups	which	can	be	discussed	separately.	

One	is	patient	outcome	for	the	cases	with	no	error	or	no	harm.	The	other	is	outcomes	for	

the	cases	with	errors.	Specifically,	the	results	are	as	show	below:	

• Outcomes	for	cases	with	no	error	or	no	harm:	

The	outcome	is	that	patients	are	discharged	with	no	error	or	no	harm.	These	cases	

are	the	majority	of	all	input	cases,	and	the	number	is	99.123	on	average	per	day	

from	day51	to	day	350	over	300-day	counts	if	there	is	a	constant	100	cases	per	day	

making	the	first	visit	of	healthcare	service	since	day1.	Its	first	non-zero	value	occurs	

on	day2.	The	sum	of	the	mean	of	“cases	with	no	error	or	no	harm”	and	the	mean	of	

“cases	with	errors”	equals	100.	

The	“cases	with	no	error	or	no	harm”	comes	from	five	input	flows,	which	are:	“cases	

without	errors	after	phase1	proceeding	to	decision	making”;	“cases	without	errors	

after	phase2	proceeding	to	decision	making”;	“cases	without	errors	to	be	discharged	

after	phase3”;	“cases1	proceeding	to	decision	making	without	errors”	that	are	the	

corrected	errors	from	phase1;	“cases2	proceeding	to	decision	making	without	

errors”	that	are	the	corrected	errors	from	phase2.	

• Outcomes	for	cases	with	errors:	
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− Control	patients	discharged.	Control	patients	are	the	patients	with	errors,	but	

who	are	either	recovering	or	under	close	follow-up.	It	indicates	that	for	these	

patients	there	is	the	chance	to	detect	errors	during	follow-up.	Simulation	results	

show	that	there	are	61.753%	errors	in	control	patients	that	can	be	detected	

during	follow	up.	Control	patients	take	6.84%	of	total	error	cases	under	current	

simulation.	

− Unplanned	hospitalisations.		This	represents	patients	experiencing	an	

unplanned	hospitalisation	during	14	days	following	a	first	visit,	and	it	happens	in	

18.95%	of	error	cases.	

− Unscheduled	primary	care	visits,	an	urgent	care	visit,	or	an	emergency	room	

(ER)	visit.	It	includes	the	patients	experiencing	an	unscheduled	re-visit	in	14	days	

after	first	visit,	which	could	be	a	primary	care	visit,	an	urgent	care	visit,	or	an	ER	

visit.	It	makes	up	74.21%	of	the	total	error	cases.	

Among	all	patient	outcomes,	“unplanned	hospitalisations”	and	“unscheduled	primary	care	

visits,	an	urgent	care	visit,	or	an	ER	visit”	are	the	two	main	negative	patient	outcomes	

caused	by	relevant	errors.	Table	8.9	summarises	the	statistical	results	of	the	three	patient	

outcomes	after	a	diagnostic	error.	

Outcomes	 Percentage	 Count	 Min	 Max	 Mean	 Median	 StDev	 Norm	

Control	patients	 6.84%	 300	 0.0048	 0.3724	 0.0626	 0.0483	 0.0521	 0.8323	

Unplanned	

hospitalisations	

	

18.95%	 300	 0.0133	 1.032	 0.1735	 0.1338	 0.1444	 0.8324	

Unscheduled	

primary	care	visits,	

urgent	care	visits,	or	

ER	visits	

	

	

	

74.21%	 300	 0.0520	 4.04	 0.6795	 0.52415	 0.5656	 0.8323	

Table	8.9	Four	patient	outcomes	

8.3.3 Scenario	2:	changing	one	factor	

Two	factors	are	randomly	chosen	during	the	simulation	described	in	this	subsection,	and	

used	to	demonstrate	how	relevant	model	behaviour	change	when	changing	one	factor.	

Simulation	experiments	are	conducted	separately	to	observe	system	behaviours	responses	

to	the	individual	factor.	The	same	period	from	day51	to	day350	is	chosen	to	display	the	

statistical	simulation	results.	Furthermore,	model	sensitivities	to	different	factors	are	

analysed	and	compared.	
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8.3.3.1 Changing	the	continuity	of	care		

The	factor	“the	continuity	of	care”	is	selected	in	this	section	to	demonstrate	relevant	system	

behaviour	changes.	

The	score	for	“the	continuity	of	care”	is	changed	from	0.5	to	1	during	the	simulation.	The	

score	0.5	is	the	current	score	which	has	been	simulated	in	scenario	1.	A	score	of	0.5	

indicates	an	average	level	of	“the	continuity	of	care”,	and	a	score	of	1	means	the	highest	

level,	under	which	all	patients	see	the	same	doctor	all	the	time.		

The	variable	“missed	or	wrongly	hypothesised	diagnosis“,	namely,	the	relevant	error	rate	in	

phase1	is	a	dependent	variable	that	is	affected	by	the	factor	“the	continuity	of	care”.	The	

changes	of	this	variable	are	shown	in	Table	8.10.	Table	8.10	also	displays	the	number	of	

cases	with	decision	making	errors,	as	well	as	the	changes	of	the	three	types	of	patient	

outcomes:	“unplanned	hospitalisations”,	“unscheduled	primary	care	visits,	urgent	care	visits,	

or	ER	visits”	and	“detected	cases	or	recovering	cases”	which	is	a	flow	from	control	patients.	

Score	for	the	

factor:	the	

continuity	of	care		

Count	 Min	 Max	 Mean	 Median	 StDev	 (Norm)	

	 missed	or	wrongly	hypothesised	diagnosis	(in	phase1)	(ratio)	

0.5	(before)	 300	 0.2352	 0.2352	 0.2352	 0.2352	 -	 -	

1					(after)	 300	 0.2113	 0.2113	 0.2113	 0.2113	 -	 -	

	 cases	with	decision	making	errors	(missed	or	wrongly	diagnosis)	(unit:	

case)	

0.5	(before)	 300	 0.07011	 5.444	 0.9156	 0.7063	 0.7621	 0.8323	

1					(after)	 300	 0.0677	 4.974	 0.8708	 0.6917	 0.7073	 0.8123	

	 patient	outcome1_	unplanned	hospitalisations	(unit:	case)	

0.5	(before)	 300	 0.01328	 1.032	 0.1751	 0.1342	 0.1457	 0.8318	

1					(after)	 300	 0.01283	 0.9425	 0.1665	 0.1314	 0.1351	 0.8113	

	 patient	outcome2_	unscheduled	primary	care	visits,	urgent	care	visits,	or	

ER	visits	(unit:	case)	

0.5	(before)	 300	 0.05203	 4.04	 0.6860	 0.5255	 0.5705	 0.8318	

1					(after)	 300	 0.05024	 3.692	 0.6520	 0.5146	 0.5290	 0.8113	

	 patient	outcome3_	detected	cases	or	recovering	cases	from	control	

patients	(unit:	case)	
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0.5	(before)	 300	 0.00197	 0.2399	 0.0389	 0.0280	 0.0341	 0.8759	

1					(after)	 300	 0.00188	 0.2192	 0.0370	 0.0272	 0.0318	 0.8577	

Table	8.10	System	outputs	when	changing	“the	continuity	of	care”	

It	is	shown	from	the	results	in	Table	8.10	that	by	improving	the	score	of	“the	continuity	of	

care”	from	0.5	to	1,	the	rate	of	“missed	or	wrongly	hypothesised	diagnosis”	of	phase1	is	

predicted	to	reduce	by	10.16%,	and	the	“cases	with	decision	making	errors”	can	be	reduced	

by	4.893%	which	is	0.0448	cases	on	average.	Furthermore,	two	negative	patient	outcomes,	

which	are	“unplanned	hospitalisations”,	“unscheduled	primary	care	visits,	urgent	care	visits,	

or	ER	visits”,	drop	by	4.911%	and	4.956%	respectively.	The	change	of	“cases	with	decision	

making	errors”	is	illustrated	in	Figure	8.4.	The	blue	line	indicates	its	values	when	“the	

continuity	of	care”	is	0.5,	while	red	line	illustrate	its	new	values	after	“the	continuity	of	care”	

is	changed	to	1.	To	illustrate	clearly	the	changes,	data	are	plotted	once	in	every	30	days	in	

Figure	8.5.	It	is	shown	that	the	value	of	“cases	with	decision	making	errors”	is	apparently	

reduced.	

	

	
Figure	8.4	The	change	of	“cases	with	decision	making	errors”	plotted	every	day	

	

	
Figure	8.5.	The	change	of	“cases	with	decision	making	errors”	plotted	every	30	days	
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8.3.3.2 Changing	the	patient	medical	history	

The	factor	“patient	medical	history”	is	selected	in	this	section	to	demonstrate	its	impact	on	

system	behaviours.		

The	score	for	“patient	medical	history”	is	also	chosen	to	change	from	0.5	to	1	during	the	

simulation.	The	score	0.5,	which	means	an	average	score	for	clinicians	accessing	“patient	

medical	history”,	is	the	current	score	which	has	been	simulated	in	the	scenario	1.	Then,	the	

score	is	improved	to	1,	which	is	the	highest	score.	It	is	observed	that	relevant	system	

outputs	have	changed,	and	some	results	are	listed	in	Table	8.11.	The	rate	of	“missed	or	

wrongly	hypothesised	diagnosis”	of	phase1	is	observed	to	reduce	by	up	to	20.75%,	and	the	

mean	of	“cases	with	decision	making	errors”	can	be	remarkably	reduced	by	9.950%.	The	

variable	“unplanned	hospitalisations”,	“unscheduled	primary	care	visits,	urgent	care	visits,	or	

ER	visits”	are	reduced	by	10.051%	and	10.045%	respectively.	

Score	for	the	

factor:	patient	

medical	history	

Count	 Min	 Max	 Mean	 Median	 StDev	 (Norm)	

	 missed	or	wrongly	hypothesised	diagnosis	(in	phase1)	(ratio)	

0.5	(before)	 300	 0.2352	 0.2352	 0.2352	 0.2352	 0	 0	

1					(after)	 300	 0.1864	 0.1864	 0.1864	 0.1864	 0	 0	

	 cases	with	decision	making	errors	(missed	or	wrongly	diagnosis)	(unit:	case)	

0.5	(before)	 300	 0.07011	 5.444	 0.9156	 0.7063	 0.7621	 0.8323	

1					(after)	 300	 0.0652	 4.49	 0.8245	 0.6402	 0.6536	 0.7928	

	 patient	outcome1_	unplanned	hospitalisations	(unit:	case)	

0.5	(before)	 300	 0.01328	 1.032	 0.1751	 0.1342	 0.1457	 0.8318	

1					(after)	 300	 0.01235	 0.8507	 0.1575	 0.1228	 0.1246	 0.7912	

	 patient	outcome2_	unscheduled	primary	care	visits,	urgent	care	visits,	or	ER	

visits	(unit:	case)	

0.5	(before)	 300	 0.05203	 4.04	 0.6859	 0.52545	 0.5705	 0.8318	

1					(after)	 300	 0.04839	 3.332	 0.6170	 0.48105	 0.4882	 0.7912	

	 patient	outcome3_	detected	cases	or	recovering	cases	from	control	patients	

(unit:	case)	

0.5	(before)	 300	 0.00197	 0.2399	 0.0389	 0.0280	 0.0341	 0.8759	

1					(after)	 300	 0.00179	 0.1978	 0.0351	 0.0264	 0.0295	 0.8405	

Table	8.11.	System	outputs	when	changing	“patient	medical	history”	
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8.3.3.3 Sensitivity	analysis		

The	results	of	model	sensitivity	analysis	are	described	in	this	subsection.	It	has	two	aims.	For	

an	individual	factor,	probabilistic	sensitivity	analysis	helps	to	quantify	the	confidence	level	of	

a	variable	for	decision-makers.	Also,	the	model	sensitivities	to	different	factors	are	

compared	so	that	suggestions	for	decision-makers	can	be	provided.	Based	on	the	simulation	

tests	of	the	continuity	of	care	and	the	patient	medical	history,	model	sensitivity	for	the	

individual	factor	is	analysed	and	compared.	

• Model	sensitivity	to	continuity	of	care	

It	is	assumed	that	the	impact	of	a	changing	range	from	0	to	1	of	the	continuity	of	care	is	to	

be	observed.	The	value	distribution	of	continuity	of	care,	which	is	normally	distributed	in	a	

band	from	0	to	1,	is	simulated.	Its	impact	on	relevant	system	variables	is	observed.	

Sensitivity	graphs	are	shown.	Figure	8.6	shows	the	sensitivity	graph	of	“missed	or	wrongly	

hypothesised	diagnosis	in	phase1”.	Since	this	variable	has	a	linear	regression	relationship	

with	“continuity	of	care”,	its	sensitivity	graph	shows	a	band	with	a	minimum	value	21.14%	

and	a	maximum	value	of	25.90%.	Figure	8.7	illustrates	the	sensitivity	graphs	of	“cases	with	

decision	making	errors	(missed	or	wrongly	diagnosis)”	and	“unplanned	hospitalizations”	

separately.	Data	are	plotted	once	every	30	days	for	a	clear	overview.	As	seen	in	Figure	8.7,	

both	graphs	display	very	narrow	bands.	

	

Figure	8.6	The	continuity	of	care	impact	on	missed	or	wrongly	hypothesised	diagnosis	
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Figure	8.7	Sensitivity	graphs	for	continuity	of	care		

• Model	sensitivity	to	patient	medical	history	

Assuming	that	the	impact	of	patient	medical	history	from	0	to	1	is	to	be	observed,	patient	

medical	history	with	a	normal	distribution	from	0	to	1	is	simulated.	

Still,	sensitivity	graphs	for	the	two	variables	“missed	or	wrongly	hypothesised	diagnosis	in	

phase1”	and	“cases	with	decision	making	errors	(missed	or	wrongly	diagnosis)”	are	

illustrated	in	Figure	8.8	and	Figure	8.9.	Comparing	with	the	sensitivity	graph	for	factor	

“continuity	of	care”,	Figure	8.8	shows	a	wider	band	that	is	from	0.1874	to	0.2827	for	a	100%	

confidence	band.	Comparing	with	Figure	8.7,	the	sensitivity	graphs	of	“cases	with	decision	

making	errors	(missed	or	wrongly	diagnosis)”	and	“unplanned	hospitalizations”	in	Figure	8.9	

are	remarkable	wider	than	that	in	Figure	8.7.	It	is	clear	that	that	the	three	variables	are	

more	sensitive	to	the	factor	patient	medical	history	than	the	continuity	of	care.		
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Figure	8.8	The	patient	medical	history	impact	on	missed	or	wrongly	hypothesised	diagnosis	

	

Figure	8.9	The	patient	medical	history	impact	on	cases	with	decision	making	errors		
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Scenario2	demonstrates	the	effect	of	two	factors	from	phase1	and	scenario	3	chooses	two	
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individual	impact	of	the	two	factors	in	the	first	two	experiments,	and	then	the	third	

experiment	demonstrates	the	patient	outcomes	when	the	factors	are	changed	together.	

“Test	repetition	percentage”	from	phase2	and	“follow-up	percentage”	from	after-diagnosis	

phase	are	selected	as	the	examples.		The	two	variables,	“unplanned	hospitalisations”	and	

“unscheduled	primary	care	visits,	urgent	care	visits,	or	ER	visits”,	directly	reflect	the	negative	

impact	of	diagnostic	errors	on	patient	outcomes,	and	their	simulation	outputs	are	

demonstrated.	
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During	the	first	experiment,	“test	repetition	percentage”	is	reduced	from	its	original	16.9%	

to	15.4%,	and	“follow-up	percentage”	remains	its	original	value	at	6.84%.	The	simulation	

results	of	the	two	patient	outcomes	from	day51	to	day	350	are	listed	in	Table	8.12.	

“Unplanned	hospitalisations”	displays	a	small	increase	by	0.000123	cases	that	is	701.76	

parts	per	million	(ppm)	of	the	original	outcome.	“Unscheduled	primary	care	visits,	urgent	

care	visits,	or	ER	visits”	is	shown	to	increase	by	683.74ppm.	

Test	repetition	

percentage	

Count	 Min	 Max	 Mean	 Median	 StDev	 (Norm)	

	 Patient	outcome1:	unplanned	hospitalisations	(cases)	

before:	16.9%	 300	 0.01328	 1.032	 0.17513	 0.1342	 0.1457	 0.8318	

after:	15.4%	 300	 0.01332	 1.032	 0.17525	 0.1342	 0.1457	 0.8315	

	 Patient	outcome2:	unscheduled	primary	care	visits,	urgent	care	visits,	

or	ER	visits	(cases)	

before:	16.9%	 300	 0.05203	 4.04	 0.68593	 0.52545	 0.5705	 0.8318	

after:	15.4%	 300	 0.05218	 4.04	 0.68640	 0.52535	 0.5707	 0.8315	

Table	8.12	Test	repetition	percentage	impact	on	patient	outcomes	

During	the	second	experiment,	“follow-up	percentage”	improves	from	6.84%	to	8.34%	

instead,	and	“test	repetition	percentage”	remains	at	its	original	value	at	16.9%.	Simulation	

results	in	Table	8.13	show	that	both	negative	outcomes	have	decreased,	where	the	two	

patient	outcomes	decline	by	3625.69ppm	and	3616.02ppm	respectively.	

Follow-up	

percentage	

Count	 Min	 Max	 Mean	 Median	 StDev	 (Norm)	

	 Patient	outcome1:	unplanned	hospitalisations	(cases)	

before:	6.84%	 300	 0.01328	 1.032	 0.17513	 0.13415	 0.1457	 0.8318	

after:	8.34%	 300	 0.01377	 1.017	 0.17450	 0.1341	 0.1436	 0.8227	

	 Patient	outcome2:	unscheduled	primary	care	visits,	urgent	care	visits,	

or	ER	visits	(cases)	

before:	6.84%	 300	 0.05203	 4.04	 0.68593	 0.52545	 0.5705	 0.8318	

after:	8.34%	 300	 0.05394	 3.982	 0.68345	 0.52535	 0.5622	 0.8227	

Table	8.13	Follow-up	percentage	impact	on	patient	outcomes	

The	third	experiment	is	simulated	to	observe	the	model	outcomes	when	the	above	two	

factors	are	changed	together.	Originally,	“test	repetition	percentage”	is	16.9%	and	“follow-
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up	percentage”	is	6.84%.	Afterwards,	“test	repetition	percentage”	reduces	to	15.4%,	while		

“follow-up	percentage”	rises	to	8.34%.	Results	are	listed	in	Table	8.14.	It	is	apparent,	as	two	

factors	are	changed	together,	both	negative	patient	outcomes	have	reduced	by	2921.82ppm	

and	2932.71ppm	respectively.	

Two	factors		 Count	 Min	 Max	 Mean	 Median	 StDev	 (Norm)	

	 Patient	outcome1:	unplanned	hospitalisations	(cases)	

Before:	

Test	repetition	percentage	16.9%	

Follow-up	percentage	6.84%	 300	 0.01328	 1.032	 0.17513	 0.13415	 0.1457	 0.8318	

After:	

Test	repetition	percentage	15.4%	

Follow-up	percentage	8.34%	 300	 0.01381	 1.017	 0.17462	 0.13415	 0.1436	 0.8224	

	 Patient	outcome2:	unscheduled	primary	care	visits,		

urgent	care	visits,	or	ER	visits	(cases)	

Before:		

Test	repetition	percentage	16.9%	

Follow-up	percentage	6.84%	 300	 0.05203	 4.04	 0.68593	 0.52545	 0.5705	 0.8318	

After:		

Test	repetition	percentage	15.4%	

Follow-up	percentage	8.34%	 300	 0.05408	 3.982	 0.68392	 0.5254	 0.5624	 0.8224	

Table	8.14.	Outcomes	when	changing	two	factors	together	

	

8.4 Discussion	and	summary	
The	model	is	a	representation	of	the	system	itself,	whereas	the	simulation	presents	the	

operation	of	the	system	over	time.	Simulation	is	a	way	of	showing	the	eventual	real	effects	

of	alternative	conditions	and	courses	of	action.186	The	stock	and	flow	diagram	of	diagnostic	

errors	is	a	quantitative	model	that	presents	the	errors	and	factors	of	the	diagnostic	system,	

while	its	simulation	shows	the	behaviours	of	the	system	elements	over	time	and	provides	a	

deep	understanding	of	system	behaviour	and	potential strategies.	

This	chapter	summarises	the	relational	equations	of	the	quantitative	model,	collects	the	

simulation	data	from	literature	and	expert	elicitation,	and	successfully	conducts	the	model	

simulation	experiments	under	different	scenarios.	The	changes	of	model	behaviour	outputs	

are	observed	and	described	when	varying	one	or	more	factors.	This	helps	to	understand	the	

relations	between	the	patient	outcomes	and	different	factors.	The	changes	in	the	factors	
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may	reflect	the	effect	of	an	external	intervention	or	policy	change.	Thus,	simulation	results	

provide	suggestions	for	decision	makers.		

The	next	chapter	summarises	the	evaluation	methods	for	both	regression	models	and	

system	dynamics	models,	and	further	implements	a	list	of	evaluation	assessments	to	

comprehensively	evaluate	the	system	dynamics	model.	 	
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Chapter	9 Model	Evaluation	
	

9.1 Introduction	
This	chapter	starts	with	a	summary	of	the	evaluation	methods	used	for	regression	modelling	

and	system	dynamics	modelling	in	the	thesis.	Then,	it	specifically	introduces	the	evaluation	

approaches	for	system	dynamics	models.	Finally,	a	list	of	evaluation	assessments	for	system	

dynamics	models	is	conducted,	and	assessment	results	are	provided.	

	

9.2 Evaluation	for	regression	models	and	system	dynamics	models	
Theoretically,	model	evaluation	involves	comprehensively	evaluating	model	performance	

and	effectiveness,	and	evaluation	approaches	can	be	diverse	according	to	different	models,	

goals	and	resources.	This	thesis	mainly	contains	two	types	of	model:	regression	models	and	

system	dynamics	models.	The	approaches	used	for	the	two	types	of	models	are	introduced	

separately.	

Approaches	for	regression	model	evaluation	mainly	involve	cross	validation,	external	

validation	or	using	metrics	to	analyse	outputs,	such	as	variance	and	R2.	Cross	validation	is	

suitable	for	a	large	data	set.	It	randomly	separates	the	dataset	into	two	parts.	One	set	is	

used	for	training	the	model,	and	the	other	one	for	testing	the	model.	The	whole	process	

may	repeat	many	times.	It	largely	avoids	the	overfitting	problem	of	the	regression	model.	

External	validation	is	similar	to	cross	validation.	It	uses	the	original	dataset	for	training,	but	

uses	new	external	data	for	testing	the	model.	Using	metrics	to	evaluate	outputs	is	a	simple	

way	of	avoiding	the	need	of	introducing	any	new	data,	and	is	suitable	for	a	small	quantity	of	

sample	data.	It	evaluates	the	model	by	comparing	the	discrepancy	between	observed	values	

and	the	values	expected187.	

Chapter	7	has	implemented	metrics	to	conduct	the	evaluation	of	regression	models.	At	the	

end	of	each	section,	each	model	is	evaluated	by	the	metrics	after	it	is	determined.	Because	

the	data	set	for	the	regression	modelling	study	has	a	small	quantity	of	data,	which	is	56	sets	

of	data,	and	the	study	has	no	external	data	source,	cross	validation	and	external	validation	

are	not	applicable.	Thus,	variance	analysis	as	well	as	other	metrics	are	employed,	which	

include	significance/p-value,	standard	error,	R-squared	and	adjusted	R-squared.	The	

evaluation	results	have	been	shown	in	Chapter	7	after	each	model	has	been	determined.		
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Several	evaluation	methods	for	system	dynamics	models	have	also	been	adopted	during	the	

main	process	of	model	design	and	model	simulation.	For	example,	the	qualitative	CLD	model	

has	 been	 evaluated,	 by	 means	 of	 collecting	 feedbacks	 from	 clinicians.	 Subsection	 5.5	 in	

Chapter	5	describes	the	details,	where	seven	clinicians	were	asked	whether	the	factors	and	

interrelations	 are	 reasonable.	 Results	 show	 that	 the	 qualitative	 model	 illustrates	 the	 key	

factors	 of	 diagnostic	 errors	 as	 well	 as	 interconnections	 among	 key	 factors	 and	 relevant	

errors.	

Moreover,	several	simulation	tests	including	sensitivity	tests	have	been	conducted	for	the	

quantitative	system	dynamics	model	in	Chapter	8.	Simulation	experiments	indicate	that	the	

quantitative	model	presents	relevant	case	flows	and	analyses	errors	through	the	whole	

picture	of	the	diagnostic	process.	Also,	the	model	variable	changes,	such	as	negative	patient	

outcomes,	have	been	successfully	observed	when	varying	one	or	more	factors.	

However,	this	chapter	conducts	a	further	set	of	evaluation	assessments	for	the	system	

dynamics	models	in	order	to	comprehensively	discuss	and	determine	the	extent	of	the	

model	domain	and	its	applicability.	

	

9.3 Introduction	to	evaluation	approaches	for	system	dynamics	

models	
 

Evaluation	for	system	dynamics	models	was	firstly	systematically	proposed	in	1980	by		

Forrester	and	Senge,	and	17	tests	were	described	for	evaluating	model	from	three	

perspectives:	model	structure,	model	behaviour,	and	policy	implications.188	At	the	same	

time,	Richardson	and	Pugh	published	more	evaluation	approaches	in	1981,	including	

deactivating	feedback	loops,	conducting	hypothesis	tests,	and	sensitivity	analysis.		Also,	a	

table	of	tests	was	provided,	which	includes	further	aspects:	model	suitability,	model	

consistency,	model	utility,	model	structure	and	model	behaviour.189	190	Later	in	1996,	Barlas	

provided	structure	tests	and	behaviour	tests,	and	in	particular	behaviour	tests	introduced	

extreme	conditions	tests,	behaviour	sensitivity	tests,	modified	behaviour	prediction,	

boundary	adequacy,	phase	relationship	test,	qualitative	features	analysis,	and	the	Turing	

test.190	191		

In	2000,	Sterman	summarised	these	prior	works	in	the	form	of	a	list	of	assessments	for	

dynamic	model	testing	in	practice	in	the	classic	textbook	on	business	dynamics51.	The	
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assessment	covers	the	following	tests:	1,	boundary	adequacy;	2,	structure	assessment;	

3,dimensional	consistency;	4,parameter	assessment;	5,	extreme	conditions;	6,integration	

error;	7,behaviour	reproduction;	8,	behaviour	anomaly;	9,	family	member;	10,	surprise	

behaviour;	11,	sensitivity	analysis;	12,	system	improvement.	51		

The	next	section	follows	these	assessments	and	provides	a	more	comprehensive	evaluation	

for	the	current	system	dynamics	model	of	diagnostic	errors.		

 

9.4 Evaluation	assessments	for	system	dynamics	modelling	
This	section	conducts	the	evaluation	assessments	defined	by	Sterman	in	2000,	and	the	

results	are	listed	and	discussed.	

1) Boundary	adequacy:  

Model	boundaries	were	discussed	at	the	beginning	of	the	model	construction.	The	model	

focuses	on	primary	care	only.	It	contains	key	factors	from	the	literature	and	the	main	phases	

of	the	diagnostic	process.	Time	delays,	as	well	as	workload	of	healthcare	providers,	are	not	

reflected	in	the	current	model.	The	model	is	reviewed	again	and	the	boundary	is	deemed	to	

be	appropriate.		

2) Structure	assessment:	 

Because	performing	structure	assessment	while	developing	the	modelling	is	highly	

recommended51,	structure	assessment	of	the	system	dynamics	model	has	been	carried	out	

while	constructing	the	model.	Specifically,	the	approaches	adopted	include	acquiring	

information	from	the	literature	and	obtaining	comments	from	clinicians.	Seven	clinicians	

provided	feedback	on	the	correlation	of	system	variables,	and	then	the	model	is	

transformed	according	to	the	diagnostic	process,	during	which	error	cases	are	separated	

into	different	flows	in	order	to	highlight	error	flows	and	to	observe	the	outcomes	of	the	

errors.	Results	show	that	the	model	clearly	illustrates	the	case	flows	from	accessing	the	

healthcare	service	to	the	final	patient	outcomes.	Moreover,	the	model	structure	has	passed	

the	“model	check”	provided	by	the	software	Vensim,	and	there	is	no	flow	failure	or	

structure	failure.	

3) Dimensional	consistency:		
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There	is	no	arbitrary	scaling	factor	involved	in	the	model.	All	variables	keep	the	dimensions	

consistent.	The	model	equations	keep	the	consistent	use	of	units.	The	units	in	the	model	

have	passed	the	“units	check”	provided	by	the	software	Vensim.	

4) Parameter	assessment:	 	

Parameters	in	the	model	have	real	life	meaning.	Parameters	are	estimated	according	to	

published	literature	or	from	estimates	made	by	clinicians.	Although	there	are	uncertainties	

in	the	data	collection	from	doctors,	parameters	are	selected	with	a	90%	confidence	band.	

5) Extreme	conditions:	

This	testing	is	conducted	along	with	the	sensitivity	testing.	Several	variables	are	randomly	

selected	from	each	phase,	including	phase1,	phase2,	phase3,	and	the	after-diagnosis	phase.	

Extreme	values	of	each	variable	are	put	into	the	system	to	observe	system	behaviours.	

Selected	variables	with	their	corresponding	boundaries	are	listed	in	Table	9.1.	Results	show	

that	there	is	no	irrational	system	behaviour	when	variables	are	tested	at	their	extreme	

values,	except	the	variable	follow-up	percentage.	When	follow-up	percentage	is	set	as	“1”,	

the	system	shows	irrational	outcomes	of	“hospitalization”	and	“unscheduled	primary	care	

visits,	urgent	care	visits,	or	ER	visits”.	Also,	when	letting	the	follow-up	percentage	be	

“0.999”,	the	system	outputs	are	observed	to	be	normal,	and	no	irrational	behaviour	is	

found.		

Variable	 lower	

boundary	

higher	

boundary	

Irrational	behaviour	

Continuity	of	care	 0	 1	 No	

Patient	medical	history	 0	 1	 No	

Percentage1	of	improper	referrals	 0	 1	 No	

Test	repetition	percentage	 0	 1	 No	

Improper	referrals	corrected	by	experts	 0	 1	 No	

Follow-up	percentage	 0	 1	 Yes,	when	the	value	is	

set	as	“1”	

Error	detection	rate	after	obtaining	

discordant	data	during	a	repeat	visit	

0	 1	 No	

Table	9.1	Extreme	testing	results	

6) Integration	Error:		
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Their	integration	method	adopted	in	the	previous	simulation	is	the	“Euler”	integration	

method.	However,	there	are	a	total	of	three	integration	methods:	Euler	integration,	

Difference	integration	and	Runge-Kutta	integration.	

• Euler	integration	assumes	that	the	rates	in	the	model,	which	are	the	input	and	

output	arrows	for	the	integrated	variables,	computed	at	a	given	time	are	

constant	through	the	time	interval	or	one	time	step.	192	

• Difference	integration	is	similar	to	Euler	integration,	but	it	records	the	value	

results	before	the	new	rates	have	been	computed	instead	of	recording	values	

after	determining	the	levels	of	the	integrated	variables.	In	other	words,	Euler	

integration	reports	levels	and	the	values	that	result	from	those	levels,	whereas	

difference	integration	reports	the	level	and	the	values	that	resulted	from	those	

levels.192	

• Runge-Kutta	integration	is	an	extension	of	Euler	integration.	It	steps	into	the	

time	interval,	evaluates	derivatives,	and	then	provides	more	accuracy	without	

imposing	a	severe	computational	burden.	192	

The	other	two	integration	methods	were	tested.	When	the	model	interpretation	setting	is	

changed	to	“Difference”	or	“RK2	Auto”,	the	outputs	of	system	variables	are	compared	with	

previous	“Euler”	integration	outputs,	it	turns	out	that	no	model	behaviour	changes	are	

observed.	

7) Behaviour	reproduction:		

Simulation	experiments	under	different	scenarios	were	conducted	in	Chapter	8.	The	

simulation	results	show	that	the	negative	patient	outcomes	will	decrease	when	either	

improving	“the	continuity	of	care”	or	encouraging	easier	access	to	“patient	medical	history”.	

The	results	agree	with	the	real	system	expectations.	

8) Behaviour	anomaly:	

Behaviour	anomaly	tests	are	done	at	an	early	stage	of	the	testing.	For	example,	initially,	

phase2	did	not	reflect	the	cases	that	require	re-testing,	so	the	model	has	to	be	modified	and	

the	flow	that	represents	laboratory	test	repetation	is	added.	

9) Family	member:		
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Family	member	means	how	well	the	model	“scales”	to	other	members	within	the	same	class	

of	systems.	The	current	model	not	only	explains	how	errors	happen	during	the	diagnostic	

process	of	primary	care	in	the	UK,	but	also	the	error	case	flows	in	most	systems	of	

healthcare	that	are	similar	to	the	system	in	the	UK.	However,	the	individual	phase	can	be	

further	developed	to	provide	more	detailed	information	and	to	analyse	more	factors	that	

may	be	involved.	Overall,	the	model	can	be	potentially	changed	and	developed	to	make	it	

easier	to	scale.	

10) Surprise	behaviour:	

Surprise	behaviour	means	model	behaviour	that	does	not	match	expectations.	System	

behaviours	including	supervise	behaviours	are	discussed	during	the	main	process	of	testing	

the	model,	such	as	sensitivity	analysis	and	extreme	condition	testing.	When	supervise	

behaviours	appear,	the	model	will	be	analysed	again	to	find	the	reason.	If	the	supervise	

behaviours	can	be	explained,	this	will	lead	to	new	understanding	of	the	model.	Otherwise,	

the	model	will	be	amended.	

11) Sensitivity	analysis: 

Although	some	sensitivity	analysis	has	been	implemented	in	Chapter	8,	more	tests	are	

conducted	in	this	section	to	provide	further	comprehensive	results.	A	total	of	six	factors	are	

randomly	selected	from	each	phase	of	the	diagnostic	process	in	order	to	undertake	the	

sensitivity	analysis	testing.	“Unplanned	hospitalizations”,	as	one	of	the	important	negative	

patient	outcome,	is	selected	to	demonstrate	the	sensitivity	results.	The	sensitivity	tests	

simulate	the	effect	of	each	factor	being	changed	between	its	lower	boundary	and	upper	

boundary	with	normal	distribution.	Test	results	are	described	in	Table	9.2.	Different	factors	

have	varying	impacts	on	the	outcome.	The	changing	percentages	of	“unplanned	

hospitalizations”	are	notable	with	the	lowest	0.48%	and	the	highest	190.38%.	The	factor	

changes	could	be	the	result	of	an	external	intervention	or	policy	changes,	and	sensitivity	

results	provide	important	information	for	healthcare	decision	makers.	
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Variable	 Changing	

range	

Mean	value	of	unplanned	hospitalisations	

testing	lower	

boundary	

original	 testing	higher	

boundary	

Continuity	of	care	 0-1	 increase 

0.1952	 (4.95%)	 0.186	

decrease	

0.1759	 (05.43%)	

Patient	medical	

history	

0-1	 increase	

0.2052	 (10.32%)	 0.186	

decrease	

0.166	 (10.75%)	

Percentage1	of	

improper	referrals	

0-1	 decrease	

0.09047	 (51.36%)	 0.186	

increase	

0.5401	 (190.38%)	

Test	repetition	

percentage	

0-1	 increase	

0.1869	 (0.48%)	 0.186	

decrease	

0.1787	 (3.92%)	

Improper	referrals	

corrected	by	experts	

0-1	 increase	

0.1887	 (1.45%)	 0.186	

decrease	

0.00075	 (99.60%)	

Follow-up	

percentage	

0-0.999	 increase	

0.1952	 (4.95%)	 0.186	

decrease	

0.1759	 (5.43%)	

Table	9.2	Sensitivity	test	results	

12) System	improvement:	 

System	simulations	provide	a	way	of	exploring	risk-free	experiments,	and	results	are	able	to	

suggest	relevant	interventions	or	policies	via	identifying	that	the	number	of	errors	varies	

with	the	changes	of	relevant	factors.	However,	assessing	the	impact	of	a	model	in	practice	

can	be	extremely	difficult51.	The	keys	to	successful	assessment	of	a	modelling	intervention	

are	suggested	as:	prospective	evaluation,	use	of	multiple	data	sources,	and	proper	

experimental	protocols51.	 

 

9.5 Discussion	and	Summary	
Overall,	the	model	has	passed	units	check	and	model	structure	check,	and	it	works	well	

under	different	integration	methods.	Moreover,	it	has	performed	well	in	the	extreme	tests,	
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and	it	shows	distinct	sensitivities	to	different	model	factors.	Also,	It	provides	a	good	

representation	of	the	current	UK	primary	care	pathway.		

At	the	same	time,	the	model	can	be	improved	in	many	ways	for	better	performance.	Firstly,	

providing	a	comprehensive	list	of	all	possible	factors	can	help	to	explore	more	possible	

relations	with	diagnostic	errors.	Although	the	factors	of	the	model	that	are	selected	from	

the	literature	help	to	remove	unrelated	variables	and	are	easier	for	data	collection,	these	

factors	are	limited	in	the	published	findings,	which	may	be	not	helpful	for	discovering	new	

factors.	Thus,	if	there	were	sufficient	data	sources	available,	all	possible	factors	could	be	

applied	to	the	feature	selection	process	before	regression	analysis,	and	classic	feature	

selection	methods	such	as	Chi-squared	filter	feature	selection	or	correlation	feature	

selection,	could	be	implemented.	

Secondly,	more	data	sources	could	help	to	provide	a	more	reliable	model.	Data	resources	

related	to	diagnostic	errors	are	generally	limited.	Medical	data	include	sensitive	personal	

data,	which	are	highly	protected	and	can	only	be	accessed	with	approval	of	the	appropriate	

authority.	Also,	there	is	no	sufficient	data	about	diagnostic	errors.	Diagnostic	errors	are	

difficult	to	identify	and	report,	and	there	is	still	a	lack	of	reliable	data	resources	currently.	

Data	used	in	the	studies	are	derived	mainly	from	three	sources:	literature,	questionnaires	

from	clinicians,	and	semi-structured	interviews	with	clinicians,	namely	expert	elicitation.	In	

particular,	both	questionnaires	and	interviews	ask	clinicians	to	provide	relevant	estimates.	

Thus,	the	data	provided	may	not	be	objective.	Their	answers	may	differ	from	what	they	

actually	do	and	are	sometimes	subject	to	personal	preference.		

Nevertheless,	many	methods	in	the	thesis	have	been	implemented	to	reduce	the	problem,	

including	anonymous	answers,	replacing	subjective	words	in	the	questionnaires,	Cook’s	

classic	mode,	and	data	input	with	a	confidence	band.	However,	if	there	was	greater	access	

to	patient	medical	records	or	there	was	the	ability	to	follow	clinical	visits	for	a	period	of	

time,	the	model	results	could	be	significantly	improved	and	the	confidence	band	of	the	

outputs	could	be	narrowed	down	as	well.	Moreover,	the	model	can	be	further	developed	

and	modified	to	reflect	real-time	data.	The	simulation	studies	choose	the	values	of	variables	

randomly	within	their	confidence	band	at	every	time	unit	and	administrative	capabilities	at	

each	stage	are	assumed	to	be	100%.	Thus,	if	real-time	data	could	be	collected,	the	model	

could	provide	real-time	outcomes.	Furthermore,	the	relevant	clinician	workloads	as	well	as	

patient	waiting	lists	could	be	reflected	using	real-time	data,	and	the	model	could	be	

enhenced	by	adding	relevant	variables.	
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The	next	chapter	will	summarise	the	contributions	of	the	thesis	to	knowledge	and	

opportunities	for	further	research.	
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Chapter	10 	Discussion	

This	chapter	examines	the	challenges	in	conducting	the	research	described	in	this	thesis	

relating	to	diagnostic	errors.		 

First,	there	has	been	the	need	to	overcome	the	limitations	of	system	dynamics	modelling	in	

identifying	relational	equations	for	model	variables.	There	are	several	interrelations	that	are	

required	to	be	determined	before	system	dynamics	modelling	can	be	performed.	In	order	to	

overcome	this	problem,	this	thesis	implements	regression	analysis	to	determine	the	

relational	equations,	and	successfully	applies	the	results	of	regression	analysis	to	the	

quantitative	system	dynamics	modelling.	

Secondly,	there	are	insufficient	data	for	conducting	the	study	of	diagnostic	errors.	Not	many	

data	are	available	from	the	literature,	and	at	the	same	time,	there	is	no	access	to	patient	

health	records.	In	order	to	successfully	conduct	the	study,	the	research	has	involved	in	

adopting	three	methods	to	carry	out	the	data	collection:	literature	review,	questionnaires	

and	expert	elicitation.	In	the	methods	of	questionnaires	and	expert	elicitation,	the	data	

obtained	from	clinicians’	estimates	are	collected.	Data	from	questionnaires	are	used	for	the	

regression	analysis	due	to	their	larger	quantity,	and	data	from	the	expert	elicitation	study	

are	used	to	carry	out	the	quantitative	model	simulation	experiments.	In	order	to	achieve	

objective	data	results,	several	methods	have	been	implemented	during	the	study,	which	

include	that	replacing	subjective	words	in	the	questionnaires	into	neural	words	and	

requiring	anonymous	answers	of	the	questionnaires	during	the	data	collection	period.	Also,	

Cook’s	classic	mode	is	implemented	during	the	data	analysis	period	to	reduce	the	bias	from	

expert	elicitations.	

Thirdly,	 the	 factors	 of	 diagnostic	 errors	 include	 some	 non-numerical	 variables,	 such	 as	

“communications	 between	 doctor	 and	 patient”,	 and	 these	 variables	 cannot	 be	 quantified	

directly.	This	thesis	implements	the	Likert	scaling	method	and	weighted	scores	to	overcome	

the	 difficulty	 from	 such	 non-numerical	 variables.	 Using	 Likert	 scaling,	 an	 individual	 non-

numerical	variable	is	measured	in	terms	of	three	levels,	namely,	categories,	and	then	each	

category	is	given	a	weighted	score.	At	the	end	of	this	process,	non-numerical	variables	can	

be	computed	using	the	value	under	each	category,	provided	by	the	clinician’s	estimates,	and	

weighted	scores.	
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Chapter	11 	Conclusion	
This	chapter	discusses	the	extent	to	which	each	of	the	objectives	of	the	thesis	has	been	

achieved,	states	the	contributions	to	knowledge	made	by	the	research	described	in	this	

thesis,	and	describes	the	recommendations	for	future	research.	

11.1 A	discussion	of	the	extent	to	which	each	of	the	objectives	has	

been	achieved	
The	 research	 described	 in	 the	 thesis	 aims	 to	 conduct	 systemic	 analysis	 and	modelling	 of	

diagnostic	errors.	The	objectives	have	been	successfully	achieved.	Specifically,	the	objectives	

have	been	achieved	to	the	following	extent:	

• Conducting	a	systematic	review	–	This	objective	has	been	fully	achieved	as	a	

systematic	review	of	the	relevant	literature	published	between	2002	and	2012	has	

been	conducted	and	key	factors	of	diagnostic	errors	and	methods	of	reducing	

diagnostic	errors	have	been	identified.	

• Designing	a	qualitative	model	–	This	objective	has	been	fully	achieved	as	a	

quantitative	model	of	diagnostic	errors	has	been	constructed	based	on	the	findings	

of	the	systematic	review,	which	presents	a	structured	picture	of	the	causes	of	

diagnostic	errors.	

• Collecting	feedback	from	clinicians	–	This	objective	has	been	fully	achieved	as	

feedback	has	been	successfully	collected	from	seven	clinicians,	and	the	quantitative	

model	has	been	refined	accordingly.	Collecting	feedback	from	more	clinicians	could	

potentially	further	refine	the	model.	

• Representing	the	qualitative	model	into	the	structure	of	a	quantitative	model	–	This	

objective	has	been	achieved	for	the	diagnostic	process.	The	factors	outside	of	the	

diagnostic	process	are	out	of	the	scope	of	the	quantitative	model.	The	quantitative	

model	could	be	further	developed	and	cover	more	factors	if	there	was	sufficient	

time.	

• Conducting	regression	analysis	and	applying	the	algorithms	in	the	system	dynamics	

modelling	–	This	objective	has	been	achieved	as	regression	analysis	has	been	

conducted	based	on	the	collected	questionnaire	data	and	the	quantitative	

interrelations	between	model	variables	are	determined.	Collecting	more	objective	

data	could	improve	the	outputs	of	regression	modeling.	

• Conducting	simulation	experiments	and	observing	model	outputs	–	This	objective	

has	been	achieved	as	the	quantitative	model	has	been	simulated	based	on	the	data	
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from	literature	under	different	scenarios	and	model	behaviours	have	been	

successfully	observed.	

• Adopting	an	evaluation	assessment	for	the	quantitative	model	–	This	objective	has	

been	achieved	as	a	comprehensive	evaluation	assessment	defined	by	Sterman	in	

2000	is	conducted.			

	

11.2 Contributions	to	knowledge	
The	main	contribution	to	knowledge	of	the	thesis	is	its	new	application	of	system	dynamics	

modelling	combined	with	regression	modelling	to	the	clinical	diagnostic	errors.	Before	this	

thesis	was	conducted,	errors	during	the	diagnostic	process	had	been	discussed,	but	it	was	

lack	of	a	systemic	way	that	could	present	the	causal-effect	relations	and	quantitative	

relations	between	the	variables	in	the	diagnostic	process.	This	thesis	has	provided	the	

interrelation	structure	of	the	variables	in	the	diagnostic	error	model,	and	has	identified	

quantitative	relations	of	the	variables.	Simulation	results	of	the	model	show	that	the	system	

dynamics	model	of	diagnostic	errors	can	help	to	understand	diagnostic	errors	and	the	

factors	relating	to	diagnostic	errors.	It	has	provided	a	way	of	observing	model	behaviours	

while	one	or	more	factors	are	varied.	In	details,	its	main	contributions	to	knowledge	are	

listed	as	follows:	

• Summarising	the	characteristics	of	diagnostic	errors	in	Chapter	2	

Five	characteristics	of	diagnostic	errors	are	summarised,	which	helps	to	understand	the	

key	issues	of	diagnostic	errors	that	researchers	are	facing,	and	to	explain	the	special	

requirements	for	researchers.	

• Introducing	two	methods	in	a	systemic	analysis	of	diagnostic	errors	in	Chapter	3	

System	dynamics	modelling	is	introduced	and	proposed	as	a	method	of	modelling	

diagnostic	errors	in	the	diagnostic	process.	Regression	analysis	is	proposed	as	a	method	

of	identifying	the	interrelations	of	factors	and	dependent	variables,	which	can	make	up	

for	the	limitation	of	system	dynamics	modelling.	

• Discovering	key	factors	of	diagnostic	errors	and	providing	a	summary	of	current	

error	reduction	methods	in	Chapter	4	

A	literature	systematic	review	is	conducted,	and	65	relevant	publications	are	reviewed.	

In	the	light	of	the	findings	from	these	reviews,	key	factors	of	diagnostic	errors	are	
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summarised	into	six	categories	and	each	category	is	explained.	In	addition,	it	lists	both	

electronic	and	non-electronic	methods	used	in	researches	aimed	at	reducing	diagnostic	

errors.	

• Providing	a	systemic	view	of	the	factors	involved	in	diagnostic	errors	in	Chapter	5	

The	qualitative	model	is	developed.	It	connects	the	factors	and	effect	together,	

illustrates	a	systemic	view	of	relevant	factors,	and	provides	a	hierarchical	structure	of	

causes	of	diagnostic	errors.		

• Presenting	a	systemic	view	of	factors	and	errors	in	the	diagnostic	process	in	Chapter	

6		

The	structure	of	the	quantitative	model	is	developed,	and	key	factors	and	errors	are	

mapped	into	the	diagnostic	process.	The	model	structure	presents	where	errors	initially	

occur	and	how	errors	are	delivered	out	of	the	system.	Diagnostic	phases	are	discussed	

in	detail.	

• Quantifying	non-numerical	factors	and	applying	regression	modelling	to	 identifying	

relational	equations	in	Chapter	7	

Methods	 to	 quantify	 non-numerical	 factors	 are	 applied.	 The	 relationship	 functions	 of	

the	factors	and	dependent	variables	are	identified	using	regression	analysis.	Models	are	

evaluated.	PCA	 is	 conducted	 to	demonstrate	 its	utility	 in	discovering	variable	variance	

and	correlations.	

• Conducting	 expert	 elicitation	 for	 data	 collection,	 simulating	 and	 observing	 system	

behaviours	under	different	scenarios	in	Chapter	8	

Data	for	model	simulation	is	collected	from	the	literature	and	from	expert	elicitation.	In	

particular,	 Cook’s	 classic	 model	 is	 implemented	 to	 analyse	 the	 data	 from	 the	 expert	

elicitation	 study.	 Also,	 risk-free	 simulation	 experiments	 are	 performed.	 Simulation	

results	show	system	behaviours	under	different	scenarios.	

• Adopting	a	list	of	assessments	for	model	evaluation	in	Chapter	9	

Evaluation	methods	for	both	regression	models	and	system	dynamics	models	are	

summarised.	Furthermore,	more	tests	are	conducted	following	an	assessment	list	in	

order	to	provide	a	more	comprehensive	evaluation	for	system	dynamics	models.		
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11.3 Recommendations	for	future	research	
The	research	described	in	the	thesis	has	a	guide	to	future	research.	In	the	recent	years,	

system	dynamics	modelling	has	been	widely	used	in	healthcare	and	more	research	of	

diagnostic	errors	is	being	conducted.	The	future	research	involves	the	following	aspects:	

First,	the	future	research	involves	collecting	more	objective	real-time	data	and	further	

modifying	the	models	to	fit	different	purposes	and	to	provide	more	specific	suggestions	and	

strategies.	This	thesis	provides	a	platform	for	future	diagnostic	error	studies,	and	the	model	

can	be	further	modified	to	fit	different	purposes	to	provide	more	specific	suggestions	and	

strategies.	

Additionally,	the	future	research	includes	seeking	a	way	of	merging	the	models	in	the	thesis	

with	other	existing	models	that	also	focus	on	the	process	of	diagnosis	in	order	to	further	

develop	the	models.	Since	system	dynamics	modelling	has	been	applied	in	different	areas	

and	systems	of	healthcare,	it	provides	the	opportunity	for	linking	the	system	dynamics	

model	in	the	diagnostic	error	context	with	other	models,	such	as	the	model	for	patient	

waiting	list.		

Furthermore,	much	research	remains	to	be	done	on	implementations	of	similar	statistical	

approaches	to	diagnostic	error	analysis,	which	will	contribute	to	a	better	coverage	of	

possible	factors	and	improvement	of	the	quantitative	modelling	results.	This	thesis	

demonstrates	the	successful	application	of	regression	modelling	in	diagnostic	errors	in	

healthcare,	similar	statistical	approaches	can	be	implemented	in	the	area	of	diagnostic	error	

analysis	or	other	related	healthcare	areas.	When	sufficient	data	are	available,	relevant	

machine	learning	technologies	can	help	to	discover	the	relationships	between	factors	and	

outcomes.	Patients	can	be	classified	according	to	different	factors	using	unsupervised	

machine	learning	technologies,	and	supervised	machine	learning	technologies	such	as	

regression	modelling	can	be	further	applied	to	predicting	the	risk	of	diagnostic	error	or	

different	patient	outcomes.	
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APPENDIX	I Initial	quantitative	model	based	on	the	

systematic	review	
a. Patient	path	loops	

	

b. Initial	quantitative	model	based	on	literature	systematic	review	

	

		

c. 4-level-depth	causes	tree	
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APPENDIX	II Discussions	with	experts	
	

The	purpose	of	the	model	is	to	analyse	the	factors	affecting	diagnosis	and	to	illustrate	the	

cause-effect	interrelations.	The	current	model	reflects	the	findings	of	a	literature	systematic	

review	of	relevant	papers	from	2002	to	2012.		

The	initial	model	is	explained	step	by	step,	and	the	questions	mainly	cover	the	following	

aspects:		

1,	Relationship	checking:		

Such	as:	Do	the	arrows	show	reasonable	cause-effect	relationships	between	the	two	linked	

variables?	Do	all	arrows	work?	Any	suggestions	for	adding	or	deleting	any	arrows?	

2,	Variable	checking:		

Such	as:	Do	you	think	the	model	contains	all	the	variables	that	affect	the	number	of	

diagnostic	errors?	Any	suggestions	for	adding	or	deleting	any	factors?	

Experts	are	encouraged	to	ask	questions	if	they	are	not	clear	or	have	some	comments	at	any	

stage	of	the	explanation.		 	
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APPENDIX	III Causes	trees	of	diagnostic	errors	
The	3-level	causes	tree	of	diagnostic	errors	cane	be	separated	into	the	three	following	
figures:	

	

	

	

	

	

	

	

	 	

Number of existing diagnostic errors
Detected errors

On-time diagnostic accuracy

Detected errors
Doctor awareness of an errorre-visits

Possibility to carry re-exams on timeFollow-up and feedback of previous diagnosis

On-time diagnostic accuracy

Bias(Doctor experience and medical knowledge background)

Doctor experience and medical knowledge background

Retrieval accuracy of key diagnostic clues

(Bias)

Disease well researched

(Doctor experience and medical knowledge background)

Effective information percentage from other heathcare providers

Effective information percentage from tests

Quality of on-time initial diagnostic information including history taking and physical exams
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APPENDIX	V Loops	of	diagnostic	errors	in	the	qualitative	

model	
Loop	Number	1	of	length	3	

		Number	of	existing	diagnostic	errors	

							Re-visits	

							Doctor	awareness	of	an	error	

							Detected	errors	

Loop	Number	2	of	length	5	

		Number	of	existing	diagnostic	errors	

							Re-visits	

							Workload	for	healthcare	providers	

							Follow-up	and	feedback	of	previous	diagnosis	

							Possibility	to	carry	re-exams	on	time	

							Detected	errors	

Loop	Number	3	of	length	5	

		Number	of	existing	diagnostic	errors	

							Patient	trust	

							Patient	percentage	to	choose	the	same	healthcare	centre	

							Re-visits	

							Doctor	awareness	of	an	error	

							Detected	errors	

Loop	Number	4	of	length	7	

		Number	of	existing	diagnostic	errors	

							Re-visits	

							Workload	for	healthcare	providers	

							Easy	access	to	medical	service	

							Percentage	of	patients	having	on-time	access	to	healthcare	service	
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							Quality	of	on-time	initial	diagnostic	information	including	history	taking	and	physical	
exams	

							Retrieval	accuracy	of	key	diagnostic	clues	

							On-time	diagnostic	accuracy	

Loop	Number	5	of	length	7	

		Number	of	existing	diagnostic	errors	

							Patient	trust	

							Patient	percentage	to	choose	the	same	healthcare	centre	

							Re-visits	

							Workload	for	healthcare	providers	

							Follow-up	and	feedback	of	previous	diagnosis	

							Possibility	to	carry	re-exams	on	time	

							Detected	errors	

Loop	Number	6	of	length	8	

		Number	of	existing	diagnostic	errors	

							Re-visits	

							Workload	for	healthcare	providers	

							Follow-up	and	feedback	of	previous	diagnosis	

							Public	health	awareness	

							Percentage	of	patients	having	on-time	access	to	healthcare	service	

							Quality	of	on-time	initial	diagnostic	information	including	history	taking	and	physical	
exams	

							Retrieval	accuracy	of	key	diagnostic	clues	

							On-time	diagnostic	accuracy	

Loop	Number	7	of	length	9	

		Number	of	existing	diagnostic	errors	

							Patient	trust	

							Patient	percentage	to	choose	the	same	healthcare	centre	
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							Re-visits	

							Workload	for	healthcare	providers	

							Easy	access	to	medical	service	

							Percentage	of	patients	having	on-time	access	to	healthcare	service	

							Quality	of	on-time	initial	diagnostic	information	including	history	taking	and	physical	
exams	

							Retrieval	accuracy	of	key	diagnostic	clues	

							On-time	diagnostic	accuracy	

Loop	Number	8	of	length	10	

		Number	of	existing	diagnostic	errors	

							Patient	trust	

							Patient	percentage	to	choose	the	same	healthcare	centre	

							Re-visits	

							Workload	for	healthcare	providers	

							Follow-up	and	feedback	of	previous	diagnosis	

							Public	health	awareness	

							Percentage	of	patients	having	on-time	access	to	healthcare	service	

							Quality	of	on-time	initial	diagnostic	information	including	history	taking	and	physical	
exams	

							Retrieval	accuracy	of	key	diagnostic	clues	

							On-time	diagnostic	accuracy	
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APPENDIX	VI Questionnaires	for	regression	modelling	data	

a.	English	translated	document:	
	

Questionnaire					

Please	tick	the	box	for	your	relevant	work	experience:		

less	than	5	years										 6~10	years									 more	than	10	years	

	

Part	A		(total	4	tables)	

Assuming	100	patients	visited	you,	please	fill	the	estimates	of	the	number	of	the	patients	

who	are	in	the	corresponding	scale	level	in	the	blank	underlines:	

	 Group	1	

(During	the	100	

patients,	please	

estimate:		

the	number	of	

patients	who	often	

see	the	same	GP)	

	Group	2	

(During	the	100	

patients,	please	

estimate:	the	number	

of	patients	who	have	

middle-level		

frequency	of	seeing	

the	same	GP)	

Group	3	

(During	the	100	

patients,	please	

estimate:	the	

number	of	

patients	who	

rarely	see	the	

same	GP)	

According	to	the	

continuity	of	care,	

whether	the	patient	

sees	the	same	GP	

every	time	

	

	

	

____patients	

	

	

	

____patients	

	

	

	

____patients	

	[Three	numbers	need	to	add	up	to	100.]	
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	 Group	1	

(During	100	visits,	

please	estimate:	how	

many	times	the	

doctor	and	patient	

have	good	

communications	

during	the	visit)	

Group	2	

(how	many	times	

the	doctor	and	

patient	have	

middle-level	of	

communications	

during	the	visit)	

Group	3	

(how	many	times	the	

doctor	and	patient	

hardly/are	not	able	to	

have	communications	

during	the	visit)	

According	to	the	

communications	

between	doctors	

and	patients	

	

	

____times	

	

	

____times	

	

	

____times	

		[Three	numbers	need	to	add	up	to	100.]	

	

	 Group	1	

(During	100	visits,	

please	estimate:	how	

many	times	you	can	

effectively	access	and	

review	patient	medical	

history)	

Group	2	

(how	many	times	

you	can	access	

and	review	

limited	patient	

medical	history)	

Group	3	

(how	many	times	you	

can	not	access	patient	

medical	history	or	can	

only	review	very	limit	

history	information)	

According	to	

accessing	and	

reviewing	patient	

medical	history	

	

	

____times	

	

	

____times	

	

	

____times	

		[Three	numbers	need	to	add	up	to	100.]	
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	 Group	1	

(During	100	patients,	

please	estimate:		

the	number	of	the	

patients	who	present	

clear	typical	

symptoms/signs)	

Group	2	

(the	number	of	the	

patients	who	present	

a	few	

symptoms/signs,	but	

not	clear	or	typical	

enough	at	the	present	

stage)	

Group	3	

(the	number	of	the	

patients	whose	

symptoms/signs	are	

unclear,	for	

example	early	stage	

of	disease	may	

affect	it)	

According	to	the	

clarity	of	disease	

symptoms/signs	

presented	by		

patients	 	

	

	

	

____patients	

	

	

	

____patients	

	

	

	

____patients	

[Three	numbers	need	to	add	up	to	100.]	

	

	

Part	B		(total	2	questions)	

• Comparing	with	patient’s	final	correct	diagnostic	result,	about	________%	of	

patients	was	not	presenting/	was	found	one	or	more	typical	symptoms/signs	during	

physical	examinations.	(Hint:	all	4	aspects	in	Part	A	may	affect	doctors	collecting	

relevant	information)	

	

• Assuming	100	patients	visited	you,	you	may	come	up	with	one	or	more	

hypothesised	diagnosis	(although	may	not	the	final	diagnosis)	after	physical	

examinations.	About	________%	patients’	real	health	problems	were	not	under	

your	hypothesis.		 	
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b.	Original	document:	

调查问卷:  																		  																		  							职称:（初级，中级，高级）    

																											  																		  																			 							工作年限:	(小于 5年，6～10年，10年以上)	

第一部分（共 4个表） 	

假设有 100 名患者前来就诊，请估计对应级别下的患者数⽬，填⼊空格横线上： 

 一类	

（100 名患者中：多

少名经常就诊于同⼀

位医⽣） 

二类	

（100 名中：多少

名不是很少但也

不经常就诊于同

⼀位医⽣频率） 

三类	

（100 名中：多少名

很少就诊于同⼀位

医⽣） 

根据是否患者每次就

诊找同⼀位医⽣ 

 

___名 

 

___名 

 

___名 

［3 组数字之和需为 100］ 

 

 一类	

（100 例中：多少例

医患间可以有很好的

相互沟通 ） 

二类 

（多少例医患间有

⼀般的沟通）	

三类	

（多少例医患很难

或⼏乎没有相互沟

通） 

根据医⽣和患者之间

的沟通情况 

 

___例 

 

___例 

 

___例 

［3 组数字之和需为 100］ 
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 一类	

（100 例中：多少例

医⽣可很有效提取和

浏览较完整的患者病

历档案） 

二类 

（多少例医⽣可提

取和浏览⼀部分患

者病历档案）	

三类	

（多少例医⽣很难

或不能提取和浏览

患者病历档案） 

根据能否有效提取和

浏览病病历档案 

 

___例 

 

___例 

 

___例 

［3 组数字之和需为 100］ 

 

 一类	

（100 例中：多少例

患者有明显的症状

表现） 

二类 

（多少例患者

有症状表现，

但不特别明

显）	

三类	

（多少例患者症状表

现不明显，⽐如疾

病初期） 

根据疾病在患者⾝上呈现

的清晰度 

 

___例 

 

___例 

 

___例 

［3 组数字之和需为 100］ 

 

 

第二部分（共 2题） 	

1. 初步症状体征检查结果中 (不含实验室／CT 等)，对⽐患者最终正确的确诊结果，

有____% 的患者未被发现⼀个或多个典型的症状体征 。( 提⽰: 第⼀部分表格

中的 4 个⽅⾯都可能影响医⽣收集信息) 

2. 初步症状体征检查结果后 (不含实验室／CT 等)，您可能会直接得到⼀个诊断结

论，或者得到⼀个或多个初步猜想，____% 的患者最终真实病情未在您的结论

或初步猜测之内。  
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APPENDIX	VII Interview	Documents	

a.	Introduction	information	
This	study,	called	“expert	elicitation”,	is	designed	to	provide	data	to	analyse	the	relevant	

factors	of	making	a	diagnosis,	via	asking	clinicians	to	provide	estimates	of	relevant	variables.	

A	list	of	variables	will	be	given	that	are	to	be	estimated.		

For	some	variables,	you	are	asked	to	provide	estimates	for	the	median	value	of	the	variable	

with	a	90%	confidence	band.	In	other	words,	you	are	asked	to	provide	three	values	based	on	

your	experience.	The	three	values	of	a	variable	are:		

• A:	the	value	at	the	5th	percentile.	The	5th	percentile	indicates	that	5%	of	the	cases	

have	the	value	lower	than	the	value	at	the	5th	percentile.	

• B:	the	value	at	the	50th	percentile,	which	is	the	median	value.		

• C:	the	value	at	the	95th	percentile.	The	95th	percentile	indicates	that	5%	of	the	cases	

have	the	value	larger	than	the	value	at	the	95th	percentile.	
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b.	Semi-structured	questions	
[Note:	Assuming	each	patient	attends	with	a	single	diagnosis	or	problem	that	needs	to	be	

elicited	during	the	consultation]	

	

	

Scenario	1:	After	first	phase	-	the	history	taking	and	physical	examinations	

When	a	doctor	is	seeing	a	patient,	the	first	phase	is	the	history	taking	and	physical	

examinations.		

After	this	first	phase,	you	may	come	up	with	one	or	more	hypothesised	diagnosis	(although	

may	not	the	final	diagnosis).	

And	patient	flow	will	go	in	three	ways:		to	receive	final	diagnosis	directly	and	to	be	

discharged,	to	do	assessment	tests,	or	to	be	referred	to	other	experts.	

	Please	estimate:	

Variable	ID:	 ratio1	

Variable	

Description:	

	

Assuming	100	patients	visited	you,	after	the	first	phase,	what	is	the	ratio	of	

patients	to	receive	final	diagnosis	and	to	be	discharged,		patients	to	

undergo	tests,	and	patients	to	be	referred?		

	

Estimates:	 (discharged	:	tests	:	referrals)		_____:______:_______	

Rationales	

(optional):	
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Normally,	for	the	right	hypothesis	(patient’s	health	condition	right	under	your	hypothesis),	

please	estimate	the	above	two	variables	again:		

Variable	ID:	 2	

Variable	

Description:	

	

What	do	you	think	is	the	percentage	of	failing	to	order	tests,	or	ordering	

improper	tests?	

	

Estimates:	 A:	______					B:	______						C:	______	

Rationales:	 	

Variable	ID:	 4	

Variable	

Description:	

	

What	do	you	think	is	the	percentage	of	failing	to	make	a	referral,	or	

referring	to	improper	experts?	

	

Estimates:	 A:	______				B:	______						C:	______	

Rationales:	 	

	

Assuming	a	patient	is	actually	under	a	health	condition,	which	is	not	under	your	initial	

hypothesis,		

Variable	ID:	 1	

Variable	

Description:	

	

How	much	do	you	think	it	will	affect	ordering	the	right	tests	(what	is	the	

percentage	of	cases	in	which	the	tests	are	not	ordered,	or	improper	tests	

are	ordered)?	

	

Estimates:	 A	:	_____				B:	______					C:______	

Rationales:	 	
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Scenario	2:	After	assessment	tests	

After	gathering	more	information	from	the	tests,	you	may	arrive	at	one	or	more	

hypothesised	diagnosis.	

Please	estimate:	

Variable	ID:	 ratio2	

Variable	

Description:	

	

After	the	test	phase,	what	is	the	ratio	of	patients	to	be	discharged	and	

patients	to	be	referred	to	other	experts.	

Estimates:	 (discharged	:	referrals)		______:_______	

Rationales:	 	

	

	

Assuming	the	patient	is	under	a	health	condition,	which	is	still	not	under	your	hypothesis	

after	tests,	

Variable	ID:	 3	

Variable	

Description:	

	

How	much	do	you	think	it	will	affect	referrals	(percentage	of	cases	in	which	

a	referral	is	not	made,	or	improper	expert	is	referred	to)?	

	

Estimates:	 A:	______					B:	______						C:	______	

Rationales:	 	

Variable	ID:	 5	

Variable	

Description:	

What	is	the	chance	that	the	expert	will	find	it	improper	and	correct	it?	

Estimates:	 A:	______					B:	______						C:	______	

Rationales:	 	
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Scenario	3:	Revisits	

Assuming	there	were	100	patients	are	scheduled	to	pay	an	revisit,		

Variable	ID:	 6	

Variable	

Description:	

	

What	is	the	percentage	of	the	patients	who	has	discordant	data(data	that	

supports	different	diagnoses	in	discordant	cases),	compared	with	the	first	

visit.	

Estimates:	 A:	______				B:	______						C:	______	

Rationales:	 	

Variable	ID:	 e2	

Variable	

Description:	

	

Assuming	you	found	the	discordant	data	during	the	revisit,	what	is	the	

percentage	of	the	case	in	which	you	are	aware	of	an	improper	diagnostic	

decision	and	change	the	decision.	

Estimates:	 A:	______				B:	______						C:	______	

Rationales:	 	

Variable	ID:	 7	

Variable	

Description:	

	

Assuming	you	still	found	concordant	date,	what	is	the	percentage	of	the	

case	in	which	you	are	aware	of	an	improper	diagnostic	decision	and	change	

the	decision.	

Estimates:	 A:	______				B:	______						C:	______	

Rationales:	 	

	

	

	

The	last	variable	to	be	estimated	based	on	your	experience:	

Variable	ID:	 e1	

Variable	Description:	

	

What	is	the	result	sensitivity	of	the	history	

and	physical	examination?	

Estimates:	 A:	______				B:	______						C:	______	

Rationales:	 	
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APPENDIX	VIII Variable	Equation	List		
analytical	errors=	RANDOM	UNIFORM(	0.000258	,	0.000627	,	0	)	

Units:	Dmnl	

	 	

case	with	errors	from	test	results	per	time	unit=	

	 cases	receiving	phase2	tests*"p2-2"*test	error	rate	

Units:	cases/Day	

	

cases	corrected	after	phase2=	INTEG	(	

	 corrections	in	phase2	per	time	unit-	

	 cases1	without	error	proceeding	to	next	step	per	time	unit,	

	 	 0)	

Units:	cases	

	

cases	corrected	after	phase3=	INTEG	(	

	 corrections	in	phase3	per	time	unit-cases1	proceeding	to	decision	making	without	
errors	per	time	unit,	

	 	 0)	

Units:	cases	

	

cases	receiving	phase2	tests=	INTEG	(	

	 cases	receiving	phase2	tests	per	time	unit-cases	without	errors	after	phase2	
proceeding	to	next	phase	per	time	unit-case	with	errors	from	test	results	per	time	unit,	

	 	 0)	

Units:	cases	

	

cases	receiving	phase2	tests	per	time	unit=	

	 cases	without	errors	requiring	phase2	tests*	

	 (1-percentage2	of	cases	with	missed	tests)*	

	 "p2'-2"	

Units:	cases/Day	
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"cases	receiving	re-tests"=	INTEG	(	

	 cases	repeating	tests-"errors	uncorrected	in	re-tests"-"errors	corrected	in	re-tests",	

	 	 0)	

Units:	cases	

	

cases	repeating	tests=	

	 cases	with	error	information	from	phase2*	

	 test	repetition	percentage*	

	 "p2'-2"	

Units:	cases/Day	

	

cases	requiring	phase3	per	time	unit=	

	 cases	without	errors	after	phase2*	

	 0.14*	

	 p3'in3	

Units:	cases/Day	

	

cases	uncorrected	in	phase2=	

	 cases	with	missed	or	wrong	hypothesis	to	be	corrected*	

	 p2in1*	

	 (1-phase2	error	detection	rate)	

Units:	cases/Day	

	

"cases	with	decision	making	errors	(missed	or	wrongly	diagnosis)"=	INTEG	(	

	 undetected	cases	in	revisits	per	time	unit+	

	 cases1	with	missed	or	wrong	hypothesis	proceeding	to	decision	making	per	time	
unit+	

	 cases2	with	errors	proceeding	to	decision	making+	

	 cases3	with	errors	proceeding	to	decision	making+undetected	cases	in	revisits	per	
time	unit-	
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	 control	patient	group-	

	 unplanned	hospitalisations	per	time	unit-	

	 "unscheduled	primary	care	visits,	urgent	care	visits,	or	ER	visits	per	time	unit",	

	 	 0)	

Units:	cases	

	

cases	with	decisions	to	be	discharged	with	no	error	or	no	harm=	INTEG	(	

	 cases	without	errors	after	phase1	proceeding	to	decision	making	per	time	unit+	

	 cases	without	errors	after	phase2	proceeding	to	decision	making	per	time	unit+	

	 cases	without	errors	to	be	discharged	after	phase3+	

	 cases1	proceeding	to	decision	making	without	errors	per	time	unit+	

	 cases2	proceeding	to	decision	making	without	errors	per	time	unit-	

	 discharged	per	time	unit,	

	 	 0)	

Units:	cases	

	

cases	with	error	information	from	phase2=	INTEG	(	

	 case	with	errors	from	test	results	per	time	unit+cases	with	missed	tests	per	time	
unit+"errors	uncorrected	in	re-tests"-cases	repeating	tests-cases	without	repeating	tests,	

	 	 0)	

Units:	cases	

	

cases	with	errors	from	phase3	referral=	INTEG	(	

	 cases	with	errors	from	referals	per	time	unit-cases3	with	errors	proceeding	to	
decision	making,	

	 	 0)	

Units:	cases	

	

cases	with	errors	from	referals	per	time	unit=	

	 phase3	cases*p3in3	

	 *total	error	rate	of	diagnostic	infromation	from	referals	
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Units:	cases/Day	

	

cases	with	missed	or	wrong	hypothesis	after	phase1	proceeding	to	next	step	per	time	unit=	

	 patient	cases	receiving	halthcare	service*p1in1*missed	or	wrongly	hypothesised	
diagnosis	

Units:	cases/Day	

	

cases	with	missed	or	wrong	hypothesis	proceeding	to	phase3=	INTEG	(	

	 cases	uncorrected	in	phase2-cases1	with	missed	or	wrong	hypothesis	proceeding	to	
decision	making	per	time	unit-corrections	in	phase3	per	time	unit,	

	 	 0)	

Units:	cases	

	

cases	with	missed	or	wrong	hypothesis	to	be	corrected=	INTEG	(	

	 cases	with	missed	or	wrong	hypothesis	after	phase1	proceeding	to	next	step	per	
time	unit-	

	 corrections	in	phase2	per	time	unit-	

	 cases	uncorrected	in	phase2,	

	 	 0)	

Units:	cases	

	

cases	with	missed	tests	per	time	unit=	

	 cases	without	errors	requiring	phase2	tests*	

	 percentage2	of	cases	with	missed	tests*	

	 "p2'-2"	

Units:	cases/Day	

	

cases	with	phase2	errors	to	be	detected	in	phase3=	INTEG	(	

	 cases	without	repeating	tests-phase2	errors	detected	in	phase3	per	time	unit-
phase2	errors	undetected	in	phase3	per	time	unit,	

	 	 0)	
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Units:	cases	

	

cases	without	errors	after	phase1	proceeding	to	decision	making	per	time	unit=	

	 patient	cases	receiving	halthcare	service*	

	 (1-missed	or	wrongly	hypothesised	diagnosis)*	

	 0.65*	

	 p4'in1	

Units:	cases/Day	

	

cases	without	errors	after	phase1	proceeding	to	phase2	per	time	unit=	

	 patient	cases	receiving	halthcare	service*	

	 (1-missed	or	wrongly	hypothesised	diagnosis)*	

	 0.302*	

	 p2'in1	

Units:	cases/Day	

	

cases	without	errors	after	phase1	proceeding	to	phase3	per	time	unit=	

	 patient	cases	receiving	halthcare	service*	

	 (1-missed	or	wrongly	hypothesised	diagnosis)*	

	 0.138*	

	 p3'in1	

Units:	cases/Day	

	

cases	without	errors	after	phase2=	INTEG	(	

	 cases1	without	error	proceeding	to	next	step	per	time	unit+	

	 cases	without	errors	after	phase2	proceeding	to	next	phase	per	time	unit+	

	 cases2	with	no	effect	errors	proceeding	to	next	phase	per	time	unit+	

	 "errors	corrected	in	re-tests"-	

	 cases	without	errors	after	phase2	proceeding	to	decision	making	per	time	unit-	

	 cases	requiring	phase3	per	time	unit	
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	 ,	

	 	 0)	

Units:	cases	

	

cases	without	errors	after	phase2	proceeding	to	decision	making	per	time	unit=	

	 cases	without	errors	after	phase2*	

	 0.86*	

	 p3'in3	

Units:	cases/Day	

	

cases	without	errors	after	phase2	proceeding	to	next	phase	per	time	unit=	

	 cases	receiving	phase2	tests*"p2-2"*(1-test	error	rate)	

Units:	cases/Day	

	

cases	without	errors	requiring	phase2	tests=	INTEG	(	

	 cases	without	errors	after	phase1	proceeding	to	phase2	per	time	unit-cases	
receiving	phase2	tests	per	time	unit-cases	with	missed	tests	per	time	unit,	

	 	 0)	

Units:	cases	

	

cases	without	errors	to	be	discharged	after	phase3=	

	 phase3	cases*p3in3	

Units:	cases/Day	

	

cases	without	repeating	tests=	

	 cases	with	error	information	from	phase2*	

	 (1-test	repetition	percentage)*	

	 "p2'-2"	

Units:	cases/Day	
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cases1	proceeding	to	decision	making	without	errors	per	time	unit=	

	 cases	corrected	after	phase3*p4'in1	

Units:	cases/Day	

	

cases1	with	missed	or	wrong	hypothesis	proceeding	to	decision	making	per	time	unit=	

	 cases	with	missed	or	wrong	hypothesis	proceeding	to	phase3*	

	 (1-phase3	error	detection	rate1)*	

	 p4'in1	

Units:	cases/Day	

	

cases1	without	error	proceeding	to	next	step	per	time	unit=	

	 cases	corrected	after	phase2*p3'in1	

Units:	cases/Day	

	

cases2	proceeding	to	decision	making	without	errors	per	time	unit=	

	 errors	corrected	after	phase3*	

	 p4'in2	

Units:	cases/Day	

	

cases2	with	errors	proceeding	to	decision	making=	

	 error	uncorrected	after	phase3*	

	 (1-phase2	errors	with	no	effect	percentage)*	

	 p4'in2	

Units:	cases/Day	

	

cases2	with	no	effect	errors	proceeding	to	next	phase	per	time	unit=	

	 error	uncorrected	after	phase3*	

	 phase2	errors	with	no	effect	percentage*	

	 "p2-2"	

Units:	cases/Day	
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cases3	with	errors	proceeding	to	decision	making=	

	 cases	with	errors	from	phase3	referral*p4'in3	

Units:	cases/Day	

	

clarity	of	a	disease=	

	 0.398*continuity	of	care+0.452	

Units:	Dmnl	

	

communications	between	doctors	and	patients=	

	 0.461*continuity	of	care	+	0.481	

Units:	Dmnl	

	

continuity	of	care=0.5	

Units:	Dmnl	

	

control	patient	group=	

	 "cases	with	decision	making	errors	(missed	or	wrongly	diagnosis)"*	

	 control	percentage*	

	 percentage	

Units:	cases/Day	

	

control	patients	discharged=	INTEG	(	

	 control	patient	group-detected	cases	in	revisits	and	recovering	cases	per	time	unit-
undetected	cases	in	revisits	per	time	unit,	

	 	 0)	

Units:	cases	

	

control	percentage=	

	 recovering	percentage	+	followup	percentage	



199	
	

Units:	Dmnl	

	

corrections	in	phase2	per	time	unit=	

	 cases	with	missed	or	wrong	hypothesis	to	be	corrected*p2in1*phase2	error	
detection	rate	

Units:	cases/Day	

	

corrections	in	phase3	per	time	unit=	

	 cases	with	missed	or	wrong	hypothesis	proceeding	to	phase3*	

	 phase3	error	detection	rate1*	

	 p3in1	

Units:	cases/Day	

	

detected	cases	in	revisits	and	recovering	cases	per	time	unit=	

	 control	patients	discharged*	

	 revist	patient	percentage*	

	 error	detection	rate	+	

	 control	patients	discharged*	

	 recovering	percentage	

Units:	cases/Day	

	

detected	cases	or	recovering	cases=	INTEG	(	

	 detected	cases	in	revisits	and	recovering	cases	per	time	unit-receiving	treatments1	
or	discharged,	

	 	 0)	

Units:	cases	

	

discharged	per	time	unit=	

	 cases	with	decisions	to	be	discharged	with	no	error	or	no	harm*discharged	
percentage	

Units:	cases/Day	
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discharged	percentage=1	

Units:	Dmnl/Day	

	

error	detection	rate=	

	 percentage	of	obtaining	discordant	data	during	a	repeat	visit*error	detection	rate	
after	obtaining	discordant	data	during	a	repeat	visit	

	 +(1-percentage	of	obtaining	discordant	data	during	a	repeat	visit)	

	 *error	detection	rate	after	obtaining	concordant	date	during	a	repeat	visit	

Units:	Dmnl	

	

error	detection	rate	after	obtaining	concordant	date	during	a	repeat	visit=	WITH	LOOKUP	(	

	 RANDOM	NORMAL(0.05	,	0.95	,	0.5,	0.367,	0	),	

	 	 ([(0,0)-(1,1)],(0.05,0.01358),(0.5,0.6174),(0.95,0.96)	))	

Units:	Dmnl	

	

error	detection	rate	after	obtaining	discordant	data	during	a	repeat	visit=	0.763	

Units:	Dmnl	

	

error	rate	from	expert=0	

Units:	Dmnl	

	

error	uncorrected	after	phase3=	INTEG	(	

	 phase2	errors	undetected	in	phase3	per	time	unit-cases2	with	no	effect	errors	
proceeding	to	next	phase	per	time	unit-cases2	with	errors	proceeding	to	decision	making,	

	 	 0)	

Units:	cases	

	

errors	corrected	after	phase3=	INTEG	(	

	 phase2	errors	detected	in	phase3	per	time	unit-cases2	proceeding	to	decision	
making	without	errors	per	time	unit,	
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	 	 0)	

Units:	cases	

	

"errors	corrected	in	re-tests"=	

	 "cases	receiving	re-tests"*	

	 (1-test	error	rate)*	

	 "p2-2"	

Units:	cases/Day	

	

"errors	uncorrected	in	re-tests"=	

	 "cases	receiving	re-tests"*	

	 test	error	rate*	

	 "p2-2"	

Units:	cases/Day	

	

followup	percentage=	0.0684	

Units:	Dmnl	

	

improper	referrals	corrected	by	experts=	WITH	LOOKUP	(	

	 RANDOM	NORMAL(0.05	,	0.95	,	0.5,	0.367,	0	),	

	 	 ([(0,0)-(1,1)],(0.05,0.09972),(0.5,0.8494),(0.95,0.98)	))	

Units:	Dmnl	

	

max	administration	rate=120	

Units:	cases/Day	

	

missed	or	wrong	diagnostic	clues	from	phase1=	

	 0.566-0.036*communications	between	doctors	and	patients-0.204*patient	medical	
history-0.21*clarity	of	a	disease	

Units:	Dmnl	
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missed	or	wrongly	hypothesised	diagnosis=	

	 0.478*missed	or	wrong	diagnostic	clues	from	phase1+0.091	

Units:	Dmnl	

	

p1in1=1	

Units:	Dmnl/Day	

	

"p2'-2"=1	

Units:	Dmnl/Day	

	

p2'in1=1	

Units:	Dmnl/Day	

	

"p2-2"=1	

Units:	Dmnl/Day	

	

p2in1=1	

Units:	Dmnl/Day	

	

p3'in1=1	

Units:	Dmnl/Day	

	

p3'in3=1	

Units:	Dmnl/Day	

	

p3in1=1	

Units:	Dmnl/Day	

	

p3in2=1	
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Units:	Dmnl/Day	

	

p3in3=1	

Units:	Dmnl/Day	

	

p4'in1=1	

Units:	Dmnl/Day	

	

p4'in2=1	

Units:	Dmnl/Day	

	

p4'in3=1	

Units:	Dmnl/Day	

	

patient	administration	rate=	

	 IF	THEN	ELSE(	patient	index	visits	per	day<=max	administration	rate,	patient	index	
visits	per	day	,	max	administration	rate	)	

Units:	cases/Day	

	

patient	cases	receiving	halthcare	service=	INTEG	(	

	 patient	administration	rate-cases	with	missed	or	wrong	hypothesis	after	phase1	
proceeding	to	next	step	per	time	unit-cases	without	errors	after	phase1	proceeding	to	
decision	making	per	time	unit-cases	without	errors	after	phase1	proceeding	to	phase2	per	
time	unit-cases	without	errors	after	phase1	proceeding	to	phase3	per	time	unit	

,	

	 	 0)	

Units:	cases	

	

patient	index	visits	per	day=100	

Units:	cases/Day	
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patient	medical	history=0.5	

Units:	Dmnl	

	

pecentage3	of	improper	referrals=	WITH	LOOKUP	(	

	 RANDOM	NORMAL(0.05	,	0.95	,	0.5,	0.367,	0),	

	 	 ([(0,0)-(1,1)],(0.05,0.0185),(0.5,0.1),(0.95,0.1942)	))	

Units:	Dmnl	

	

percentage=1	

Units:	Dmnl/Day	

	

percentage	of	obtaining	discordant	data	during	a	repeat	visit=	WITH	LOOKUP	(	

	 RANDOM	NORMAL(0.05	,	0.95	,	0.5,	0.367,	0	),	

	 	 ([(0,0)-(1,1)],(0.05,0.02067),(0.5,0.32),(0.95,0.7905)	))	

Units:	Dmnl	

	

percentage1	of	cases	with	missed	tests=	WITH	LOOKUP	(	

	 RANDOM	NORMAL(0.05	,	0.95	,	0.5,	0.367,	0	),	

	 	 ([(0,0)-
(1,1),(0.05,4.9),(0.5,33.7),(0.95,78.07)],(0.05,0.04968),(0.5,0.3373),(0.95,0.7807)	))	

Units:	Dmnl	

	

percentage1	of	improper	referrals=	WITH	LOOKUP	(	

	 RANDOM	NORMAL(0.05	,	0.95	,	0.5,	0.367,	0	),	

	 	 ([(0,0)-(1,1)],(0.05,0.02196),(0.5,0.09611),(0.95,0.7253)	))	

Units:	Dmnl	

	

percentage2	of	cases	with	missed	tests=	WITH	LOOKUP	(	

	 RANDOM	NORMAL(0.05	,	0.95	,	0.5,	0.367,	0	),	

	 	 ([(0,0)-(1,1)],(0.05,0.0151),(0.5,0.1914),(0.95,0.39)	))	
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Units:	Dmnl	

	

percentage2	of	improper	referrals=	WITH	LOOKUP	(	

	 RANDOM	NORMAL(0.05	,	0.95	,	0.5,	0.367,	0	),	

	 	 ([(0,0)-(1,1)],(0.05,0.02196),(0.5,0.09611),(0.95,0.7253)	))	

Units:	Dmnl	

	

phase2	error	detection	rate=	

	 (1-percentage1	of	cases	with	missed	tests)*(1-test	error	rate)	

Units:	Dmnl	

	

phase2	errors	detected	in	phase3	per	time	unit=	

	 cases	with	phase2	errors	to	be	detected	in	phase3*	

	 phase3	error	detection	rate2*	

	 p3in2	

Units:	cases/Day	

	

phase2	errors	undetected	in	phase3	per	time	unit=	

	 cases	with	phase2	errors	to	be	detected	in	phase3*	

	 (1-phase3	error	detection	rate2)*	

	 p3in2	

Units:	cases/Day	

	

phase2	errors	with	no	effect	percentage=0.756	

Units:	Dmnl	

	

phase3	cases=	INTEG	(	

	 cases	requiring	phase3	per	time	unit+	

	 cases	without	errors	after	phase1	proceeding	to	phase3	per	time	unit-	
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	 cases	with	errors	from	referals	per	time	unit-cases	without	errors	to	be	discharged	
after	Phase3,	

	 	 0)	

Units:	cases	

	

phase3	error	detection	rate1=	

	 (1-percentage1	of	improper	referrals	+	percentage1	of	improper	referrals*improper	
referrals	corrected	by	experts)*(1-error	rate	from	expert)	

Units:	Dmnl	

	

phase3	error	detection	rate2=	

	 (1-percentage2	of	improper	referrals+percentage2	of	improper	referrals*improper	
referrals	corrected	by	experts)*(1-error	rate	from	expert)	

Units:	Dmnl	

	

postanalytical	errors=	RANDOM	UNIFORM(0.000393,	0.000674,	0	)	

Units:	Dmnl	

	

preanalytical	errors=	RANDOM	UNIFORM(	0.00087,	0.00254	,	0	)	

Units:	Dmnl	

	

ratio	of	hospitalisations=36/177	

Units:	Dmnl	

	

ratio	of	unplaned	revisits=141/177	

Units:	Dmnl	

	

receiving	treatments1	or	discharged=	

	 detected	cases	or	recovering	cases*treatment	percentage1	

Units:	cases/Day	
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receiving	treatments2=	

	 unplanned	hospitalisations*treatments	percentage2	

Units:	cases/Day	

	

receiving	treatments3=	

	 "unscheduled	primary	care	visits,	urgent	care	visits,	or	ER	visits"*treatment	
percentage3	

Units:	cases/Day	

	

recovering	percentage=0	

Units:	Dmnl	

	

revist	patient	percentage=1-	recovering	percentage	

Units:	Dmnl	

	

test	error	rate=	

	 analytical	errors+preanalytical	errors+postanalytical	errors	

Units:	Dmnl	

	

test	repetition	percentage=0.169	

Units:	Dmnl	

	

total	error	rate	of	diagnostic	infromation	from	referals=	

	 pecentage3	of	improper	referrals*(1-improper	referrals	corrected	by	experts)+	

	 (1-pecentage3	of	improper	referrals+pecentage3	of	improper	referrals*improper	
referrals	corrected	by	experts)*error	rate	from	expert	

Units:	Dmnl	

	

treatment	percentage1=1	

Units:	Dmnl/Day	
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treatment	percentage3=1	

Units:	Dmnl/Day	

	

treatments	percentage2=1	

Units:	Dmnl/Day	

	

undetected	cases	in	revisits	per	time	unit=	

	 control	patients	discharged*revist	patient	percentage*(1-error	detection	rate)	

Units:	cases/Day	

	

unplanned	hospitalisations=	INTEG	(	

	 unplanned	hospitalisations	per	time	unit-receiving	treatments2,	

	 	 0)	

Units:	cases	

	

unplanned	hospitalisations	per	time	unit=	

	 "cases	with	decision	making	errors	(missed	or	wrongly	diagnosis)"*	

	 (1-control	percentage)*ratio	of	hospitalisations*	

	 percentage	

Units:	cases/Day	

	

"unscheduled	primary	care	visits,	urgent	care	visits,	or	ER	visits	per	time	unit"=	

	 "cases	with	decision	making	errors	(missed	or	wrongly	diagnosis)"*	

	 (1-control	percentage)*ratio	of	unplaned	revisits*	

	 percentage	

Units:	cases/Day	

	

"unscheduled	primary	care	visits,	urgent	care	visits,	or	ER	visits"=	INTEG	(	

	 "unscheduled	primary	care	visits,	urgent	care	visits,	or	ER	visits	per	time	unit"-	

	 receiving	treatments3,	
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	 	 0)	

Units:	cases	 	
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