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CANONICAL BASES FOR FOCK SPACES

AND TENSOR PRODUCTS

JOSEPH CHUANG AND KAI MENG TAN

Abstract. We relate the canonical basis of the Fock space represent-

ation of the quantum affine algebra Uq(ĝln), as defined by Leclerc and

Thibon [LT], to the canonical basis of its restriction to Uq(sln), regarded

as a based module in the sense of Lusztig. More generally we consider

the restriction to any Levi subalgebra. We deduce results on decomposi-

tion numbers and branching coefficients of Schur algebras over fields of

positive characteristic, generalising those of Kleshchev [Kl] and of Tan

and Teo [TT].

1. Introduction

The complete determination of the decomposition numbers of the sym-

metric groups and Schur algebras in positive characteristic p is a well-known

and longstanding open problem, for which a complete solution does not

seem to be forthcoming. Related to these decomposition numbers are the

q-decomposition numbers arising from the canonical basis for the Fock space

representation of the quantum affine algebra Uq(ĝln). These q-decomposition

numbers, as conjectured by Leclerc and Thibon [LT] and shown by Varagnolo

and Vasserot [VV], are polynomials in q with nonnegative integer coefficients

and when evaluated at q = 1 give the corresponding decomposition numbers

for the v-Schur algebra in characteristic zero where v is a primitive n-th root

of unity. As shown by James [Jam], when n = p, the decomposition matrix

for the Schur algebra can be obtained by postmultiplying the decomposition

matrix of the v-Schur algebra in characteristic zero by an adjustment matrix

which has nonnegative integer entries and is unitriangular when the indexing

set is suitably ordered. As such, the q-decomposition numbers provide a first

approximation to the decomposition numbers of the Schur algebras.

James’s Conjecture asserts that this first approximation is in fact an

equality whenever the indexing partitions have p-weight less than p. Even

though the conjecture is now known to be false in general [W], it has

been proved in some cases, such as in Rouquier blocks [CT] and in blocks

with p-weight less than 5 [F1, F2]. It has also been shown that the first
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approximation is in fact an equality in many cases irrespective of the p-weight

of the indexing partitions; see for example [T, TT].

In [Kl], Kleshchev introduces the combinatorics of sign sequences, and uses

it to describe the decomposition number dλµ when the partition λ is obtained

from µ by moving one node. Subsequently, the present authors and Miya-

chi [CMT2] provide closed formulas for the corresponding q-decomposition

number dλµ(q) using the same combinatorics. More recently, the second

author and Teo [TT] provide closed formulas for dλµ(q) when λ is obtained

from µ by moving any number of nodes as long as all of them have the same

n-residue, and show that, when n = p, dλµ(1) = dλµ. The astute reader of

[TT] who is familiar with the work of Frenkel and Khovanov in [FK] will

be struck by the uncanny similarity between the last closed formulas and

those describing the canonical bases of tensor powers V ⊗d2 of the natural

two-dimensional representation V2 of the quantum enveloping algebra Uq(sl2),

although the former is formulated using the combinatorics of sign sequences

while the latter is described by graphical calculus. It is natural to attempt

to find out the exact relationship between the latter canonical bases with

that of the Fock space representation. This is the main motivation of our

work appearing in this paper.

We briefly describe our results here. For our purposes it suffices to

consider the subalgebra U = Uq(ŝln) of Uq(ĝln). Let n = (n1, . . . , nr) be

a tuple of positive integers such that n1 + · · · + nr = n, and let U(n)

denote the subalgebra of U isomorphic to Uq(sln1) ⊗ · · · ⊗ Uq(slnr). We

show that the Fock space representation Fs indexed by an integer s (see

subsection 2.3 for formal definition), when restricted from U to U(n), has a

natural decomposition, which corresponds to partitioning the standard basis

of Fs into subsets in a certain way. Each summand Ft of the restriction is

isomorphic to a tensor product of irreducible U(n)-modules and hence, as a

based module in the sense of Lusztig [Lu], is equipped with a canonical basis.

We then show that a subset of the canonical basis of Fs maps to this basis of

Ft under the natural projection map Fs → Ft (Theorem 5.2). The difficulty

in directly relating the canonical bases of Fs and Ft stems from the differing

nature of the corresponding ‘bar involutions’ that fix basis vectors: in the

Fock space, the involution is given by reversing q-wedges [LT], whereas for

tensor products of based modules, it is defined through quasi-R-matrices

[Lu].

Subsequently, the results in [FK] can be exploited to provide more in-

formation when nj = 2 for some j. In particular, this establishes the exact

relationship between the canonical basis of the Fock space and that of V ⊗d2 .

We also obtain closed formulas for some of the branching coefficients for Fs.
We then turn our attention to the Schur algebras. Assuming the results of

Kleshchev [Kl] describing the branching coefficients [Res(L(µ)) : L(λ)] when
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λ is obtained from µ by removing a normal node, we obtain closed formulas

for the decomposition numbers dλµ when λ is obtained from µ by moving

some nodes whose p-residues are pairwise non-adjacent (Corollary 6.2),

generalising the results of [TT] on the decomposition numbers. We also show

that [Res(L(µ)) : L(λ)] = 0 whenever λ is obtained from µ by removing a

node and moving other nodes while preserving their p-residues, such that

the p-residues of all these nodes are pairwise non-adjacent (Theorem 6.5).

We now indicate the layout of this paper. We begin in the next section

with a short account of the background theory which we require. In section 3,

we prove some preliminary results which we shall require in a general setting

to deal simultaneously with the quantized Fock spaces and the Grothendieck

group of the Schur algebras. In section 4, we describe the restriction of

the quantized Fock space to U(n) as a direct sum of factors Ft isomorphic

to tensor products of exterior powers of the natural nj-dimensional repres-

entations of the Uq(slnj ). In section 5, we relate the canonical basis of the

quantized Fock space to that of Ft. In section 6, we apply an argument

analogous to that used in section 5 to the Schur algebras and obtain closed

formulas for the decomposition numbers mentioned above.

2. Preliminaries

Denote N = {1, 2, . . . , } and N0 = {0, 1, . . . }.

2.1. Partitions, β-numbers, abaci. A partition λ = (λ1, λ2, . . . ) is an

infinite weakly decreasing sequence of non-negative integers such that λk = 0

for all large enough k. We write |λ| for
∑∞

i=1 λi, and denote the set of all

partitions by P.

For λ ∈ P, define its Young diagram [λ] = {(i, j) ∈ N2 | j ≤ λi}. The

elements of N2 are usually called nodes in this context. A node (a, b) is to

the left of a node (c, d) if b < d, in which case (c, d) is to the right of (a, b).

If n ∈ N, the n-residue of a node (i, j) is the residue class of j − i modulo

n. For convenience, for k ∈ Z, we will say a node has n-residue k if the

n-residue of the node is the residue class of k modulo n.

A node n ∈ [λ] is removable if [λ]\{n} = [µ] for some µ ∈ P , in which case

we also say that n is an addable node of [µ] (or simply µ). The removable

node is normal if it, as well as any of the removable or addable nodes with

the same n-residue as and to the right of n, has at least as many removable

nodes as addable nodes of the same n-residue to its right.

For (a, b) ∈ [λ], define

ha,b(λ) = {(i, j) ∈ [λ] | i ≥ a, j ≥ max(b, λi+1)}.

This is a rim hook of [λ] (or simply λ). Note that [λ] \ ha,b(λ) = [ν] for some

ν ∈ P; we say that ν is obtained from λ by unwrapping ha,b(λ) and λ is

obtained from ν by wrapping ha,b(λ).



4 JOSEPH CHUANG AND KAI MENG TAN

A subset B of Z is a set of β-numbers if |N0 ∩ B| + |Z<0 \ B| is finite.

Denote the collection of all sets of β-numbers by B. If B ∈ B, then since it is

bounded above, we can arrange its elements in decreasing order and obtain its

associated β-sequence B = (B1, B2, . . . ). Write s(B) = |N0 ∩B| − |Z<0 \B|,
and for each s ∈ Z, let Bs = {B ∈ B | s(B) = s}.

For each λ ∈ P and s ∈ Z, define βs(λ) = {λi + s − i | i ∈ N}. Then

βs(λ) ∈ Bs. In fact, λ↔ βs(λ) gives a one-to-one correspondence between

P and Bs. More generally, we have a bijection between P × Z and B given

by (λ, s)↔ βs(λ). For each B ∈ B, write Par(B) for the partition such that

(Par(B), s(B))↔ B.

The n-abacus was introduced by James to facilitate manipulations with

rim hooks of size n (see, e.g. [JK]). It has n vertical runners, labelled 0,

1, . . . , n − 1 from left to right, and infinitely many rows, labelled by Z in

an ascending order from top down. The position on row i and runner j

of the n-abacus is labelled in+ j. Thus the positions on the n-abacus are

labelled by integers running left to right and top to bottom, with position 0

in the leftmost runner. We may display any subset S of Z on the n-abacus

by placing a bead on position x for each x ∈ S. We do so especially for the

elements B ∈ B. See Figure 2.1 for an example.

0 1 2 3 4 5 6 7 8

−2

−1

0

1

2

3

Figure 2.1. Displaying the partition λ =
(13, 12, 10, 8, 8, 8, 6, 5, 5, 3, 2, 1, 1) on a 9-abacus, with
s = 14.

Moving a bead from position a on the n-abacus display of B to a vacant

position b produces the display of B′ = B \ {a} ∪ {b}, and s(B′) = s(B).

If a > b, then Par(B′) can be obtained from Par(B) by unwrapping a rim

hook of size a− b, namely hx,y(Par(B)) where a = Bx, Bz+1 < b < Bz, and

y = z+ b+ 1− s(B). Conversely, if µ ∈ P is obtained from λ by unwrapping

a rim hook of size c, then βs(µ) = βs(λ) \ {x} ∪ {y} for some x ∈ βs(λ) and

y /∈ βs(λ) such that x− y = c.
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In particular, moving a bead on runner i in the n-abacus display of B to

its vacant preceding position corresponds to removing a removable node of

n-residue is, where is is the residue class of i− s modulo n, from Par(B).

The n-core of λ is defined to be the partition obtained from λ by success-

ively removing rim hooks of size n. This is the partition obtained by sliding

the beads in the n-abacus display of λ up their respective runners as high up

as possible, and is thus well-defined (i.e. independent of the order in which

the rim hooks of size n are removed).

Let ≥ denote the usual lexicographic ordering on the set of infinite se-

quences of integers, so that (a1, a2, . . . ) > (b1, b2, . . . ) if and only if there

exists r ∈ N such that ak = bk for all k < r and ar > br. Then ≥ restricts to

a total order on P and on {B | B ∈ B} and hence on B. It is easy to see

that, for λ, µ ∈ P, the following statements are equivalent:

(1) λ ≥ µ.

(2) βs(λ) ≥ βs(µ) for all s ∈ Z.

(3) βs(λ) ≥ βs(µ) for some s ∈ Z.

Note that, from our definition, it is possible for λ ≥ µ when |λ| 6= |µ|, and

for B ≥ B′ when s(B) 6= s(B′).

We now define a coarser order on B. Let B,B′ ∈ B. We write B →n B
′

if B′ = B \ {a, b} ∪ {a − in, b + in} for some a, b ∈ B and i ∈ N such that

a > b+ in and a− in, b+ in /∈ B. The Jantzen order ≥Jn on B is defined

as follows: B ≥Jn B′ if and only if there exist B0, . . . , Bt ∈ B (t ∈ N0) such

that B0 = B, Bt = B′, and Bi−1 →n Bi for all i = 1, . . . , t. We note that, if

λ, µ ∈ P, then βs(λ)→n βs(µ) for some s ∈ Z if and only if βs(λ)→n βs(µ)

for all s ∈ Z. As such, we may define the relations →n and ≥Jn on P: if

λ, µ ∈ P, then λ→n µ (resp. λ ≥Jn µ) if and only if βs(λ)→n βs(µ) (resp.

βs(λ) ≥Jn βs(µ)) for some s ∈ Z. Note that λ →n µ if and only if λ ≥ µ

and µ is obtained from λ by unwrapping a hook of size in from λ and then

wrapping a hook of size in.

2.2. Quantized enveloping algebras. Let U = Uq(ŝln) be the quantized

enveloping algebra of affine type A
(1)
n−1; it is the unital associative C(q)-algebra

generated by ei, fi,K
±
i (0 ≤ i < n), subject to the following relations:

K+
i K

−
i = 1 = K−i K

+
i , K+

i K
+
j = K+

j K
+
i ,

K+
i ejK

−
i = qaijej , K+

i fjK
−
i = q−aijfj ,

eifj − fjei = δij
K+
i −K

−
i

q − q−1
,

1−aij∑
k=0

(−1)k
[

1−aij
k

]
q
e

1−aij−k
i ej e

k
i = 0 (i 6= j),
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1−aij∑
k=0

(−1)k
[

1−aij
k

]
q
f

1−aij−k
i fj f

k
i = 0 (i 6= j).

Here A = (aij)0≤i,j<n is the Cartan matrix of type A
(1)
n−1, and [mk ]q =

[m]q [m−1]q ···[m−k+1]q
[k]q [k−1]q ···[1]q

where [i]q = q1−i + q3−i + · · ·+ qi−3 + qi−1 for all i ∈ N.

For convenience, if j ∈ Z and j ≡n j̄ with j̄ ∈ {0, 1, . . . , n − 1}, we also

write fj for fj̄ .

Fix a tuple (n1, . . . , nr) of positive integers such that n1 + · · ·+ nr = n,

and, for each j = 1, . . . , r, let

σj =

j∑
a=1

na.

Let U(n) be the corresponding Levi subalgebra of U, isomorphic to Uq(sln1)⊗
· · · ⊗ Uq(slnr), the quantized enveloping algebra of finite type An1−1 × · · · ×
Anr−1. So U(n) is the subalgebra of U generated by the ei, fi and K±i such

that i 6= σk for all k with 0 ≤ k ≤ r − 1.

The assignments φ(ei) = ei, φ(fi) = fi, φ(K±i ) = K∓i define a C(q)-

semilinear automorphism φ : U → U. (Here, and hereafter, a map f :

V →W between C(q)-vector spaces is C(q)-semilinear if and only if f(v1 +

a(q)v2) = f(v1) + a(q−1)f(v2) for all v1, v2 ∈ V and a(q) ∈ C(q).) Likewise,

ω(ei) = fi, ω(fi) = ei, ω(K±i ) = K±i can be extended to a C(q)-linear

antiautomorphism of U. The maps φ and ω restrict to an automorphism

and an antiautomorphism of U(n), respectively.

We define a coproduct ∆ : U→ U⊗U by

∆(ei) = ei ⊗ 1 +K−i ⊗ ei,

∆(fi) = fi ⊗K+
i + 1⊗ fi,

∆(K±i ) = K±i ⊗K
±
i .

It restricts to a coproduct on U(n). Note that ∆ differs from the coproduct

used in [Lu] and [Jan], which is (φ⊗ φ) ◦∆ ◦ φ, and from that used in [Ka],

[HK] and [Le], which is (ω ⊗ ω) ◦∆ ◦ ω.

Given two U-modules (resp. U(n)-modules) M and N , we take the U-

module (resp. U(n)-module) structure on M⊗N to be given by the pullback

along ∆.

2.3. Fock spaces. Let

F :=
⊕
λ∈P

C(q)λ

be the C(q)-vector space with distinguished basis given by the set P of

partitions of all natural numbers.

In [LT], Leclerc and Thibon defined an C(q)-semilinear bar involution

x 7→ x on F . They proved the existence of another distinguished basis
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{G(λ) | λ ∈ P} of F , called the canonical basis, which has the following

characterization:

G(λ)− λ ∈
∑
µ∈P

qZ[q]µ, G(λ) = G(λ).

Let 〈−,−〉 be the symmetric bilinear form on F with respect to which P
is orthonormal. For λ, µ ∈ P, define dλµ(q) ∈ C(q) by

dλµ(q) = 〈G(µ), λ〉.

As the involution defined in [LT] depends on a fixed integer n ≥ 2, dλµ(q)

also implicitly depends on n. When we need to emphasize the role of n, we

shall write dnλµ(q) instead. For convenience, we further define d 1
λµ(q) = δλµ.

We shall make use of the following remarkable properties of these q-

decomposition numbers dλµ(q):

Theorem 2.1.

(1) dµµ(q) = 1.

(2) If λ 6= µ, then dλµ(q) ∈ qN0[q].

(3) If dλµ(q) 6= 0, then µ ≥Jn λ.

Recall the collection B of all sets of β-numbers. Define FZ to be the

C(q)-vector space with basis B. Following [H, MM], we define an action

of U = Uq(ŝln) on FZ as follows. Let B ∈ B, and take x /∈ B such that

x− 1 ∈ B. Let C = B \ {x− 1} ∪ {x}, and

N>(B,C) = |{y ∈ B | y > x, y ≡n x− 1}| − |{y ∈ B | y > x, y ≡n x}|,
N<(B,C) = |{y /∈ B | y < x− 1, y ≡n x− 1}| − |{y /∈ B | y < x− 1, y ≡n x}|.

Here, and hereafter, we write a ≡n b for a ≡ b (mod n). For B ∈ B and

0 ≤ i < n, let

Ni(B) = |{y /∈ B | y − 1 ∈ B, y ≡n i}| − |{y ∈ B | y − 1 /∈ B, y ≡n i}|.

Then we have

ei(C) =
∑
B

qN<(B,C)C, fi(B) =
∑
C

qN>(B,C)C, K+
i (B) = qNi(B),

where the first sum runs over all B ∈ B such that B = C \ {x} ∪ {x − 1}
for some x ∈ C, x ≡n i and x− 1 /∈ C, and second sum over all C ∈ B such

that C = B \ {x− 1} ∪ {x} for some x− 1 ∈ B, x ≡n i and x /∈ B.

Let s ∈ Z, and write Fs for the vector subspace of FZ with basis Bs

(= {B ∈ B | s(B) = s}). It is easy to see that Fs is invariant under the

U-action defined above. Furthermore, the bijection from P to Bs defined

by λ 7→ βs(λ) induces a C(q)-linear isomorphism βs : F → Fs. Thus via

this isomorphism, Fs inherits the bar-involution from F , while F inherits an

U-action from Fs. The action of ei and fi on F via βs may be described as

follows. Let is be the residue class of i− s modulo n. Suppose that λ ∈ P
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has an addable node n of n-residue is, and let µ be the partition obtained

by adding n to λ. Let N>(λ, µ) (resp. N<(λ, µ)) be the number of addable

nodes of λ, of n-residue is and to the right (resp. left) of n, minus the number

of removable nodes of λ, of n-residue is and to the right (resp. left) of n.

For λ ∈ P and 0 ≤ i < n, let Ni(λ) be the number of addable nodes of λ of

n-residue i minus the number of removable nodes of λ of n-residue i. Then

ei(µ) =
∑
λ

q−N<(λ,µ)λ, fi(λ) =
∑
µ

qN>(λ,µ)µ, K+
i (λ) = qNi(λ)λ,

where the first sum runs over all partitions λ that can be obtained by

removing a removable node of n-residue is from µ and the second sum runs

over all partitions µ that can be obtained by adding an addable node of

n-residue is to λ.

For each λ ∈ P, write Gs(λ) for βs(G(λ)).

Theorem 2.2 ([LT]). For all u ∈ U and x ∈ Fs, we have

ux = φ(u)x.

In particular, for 0 ≤ i < n,

fi(Gs(λ)) =
∑
µ∈P

Lµλ(q)Gs(µ),

where Lµλ(q) = Lµλ(q−1) ∈ C(q) for all µ ∈ P.

Lascoux and Thibon in fact extend the action of U on Fs to an action of

the larger algebra Uq(ĝln), and prove the theorem in this context. We will

not require the extended action.

2.4. Tensor products of based modules. In this subsection we give an

abbreviated introduction to Lusztig’s theory of based modules over quantized

enveloping algebras; see [Lu, Chapters 27-28] for full details, though note

that since our coproduct is slightly different, we need to swap q and q−1 in

Lusztig’s account. The theory is valid in finite type; we consider specifically

based modules of U(n), the subalgebra of U defined in subsection 2.2.

A based U(n)-module M is a finite-dimensional weight U(n)-module

equipped with a C(q)-basis B satisfying certain conditions, amongst which

are the following:

(1) each b ∈ B is a weight vector.

(2) for all u ∈ U(n) and m ∈M , we have ψM (um) = φ(u)ψM (m), where

ψM is the C(q)-semilinear involution of M fixing every element of B.

Any highest weight irreducible U(n)-module, together with its canonical

basis, is a based module.

Recall that U(n) ∼= Uq(sln1) ⊗ · · · ⊗ Uq(slnr). Given a based Uq(slnj )-

module (M (j), B(j)) for each j = 1, . . . , r, we may form the ‘external’ tensor
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product

M = M (1) ⊗ · · · ⊗M (r),

a U(n)-module. It is then clear that the basis B = B(1)⊗ · · · ⊗B(r) satisfies

the two properties above, and in fact it is true that (M,B) is a based

U(n)-module.

We now turn to the consideration of ‘internal’ tensor products. Let

(M1, B1), . . . , (Md, Bd) be based modules of U(n). The coproduct on U(n)

gives a U(n)-module structure M = M1 ⊗ · · · ⊗Md. However M together

with the obvious basis B⊗ := B1⊗· · ·⊗Bd is not necessarily a based module.

In order to correct this deficiency, Lusztig defines an involution ψM of M ,

constructed out of the involutions ψMi and the quasi-R-matrix of U(n), and

shows that for each b = (b1, . . . , bd) ∈ B := B1 × · · · × Bd there exists a

unique element

b� = b1 � · · · � bd ∈M
such that

ψM (b�) = b� and b� − b⊗ ∈
⊕
c∈B

qZ[q]c⊗,

where b⊗ = b1 ⊗ · · · ⊗ bd. He also proves that, writing

B� = B1 � · · · �Bd := {b� | b ∈ B},

(M,B�) is a based U(n)-module.

In order to formulate some required additional properties of this canonical

basis, we introduce a partial order on B, a reverse lexicographic order, as

follows: b = (b1, . . . , bd) > b′ = (b′1, . . . , b
′
d) if and only if there exists i such

that wt(bj) = wt(b′j) for all i < j ≤ d and wt(bi) < wt(b′i).

Lemma 2.3. Keep the notations above.

(1) We have, for all b ∈ B,

b� − b⊗ ∈
⊕
c<b

qZ[q]c⊗.

(2) Let b = (b1, . . . , bd) ∈ B, and suppose that bd is a highest weight

vector in Md. Writing a = (b1, . . . , bd−1), we have

b� = a� ⊗ bd.

Proof. This first part follows by iterated application of [Lu, Theorem 27.3.2(b)].

The second is checked by directly evaluating ψM (a� ⊗ bd); see the proof of

[Lu, Lemma 28.2.6] �

Finally we explain how to handle a mixture of external and internal tensor

products of based modules. Suppose that for j = 1, . . . , r we are given based

Uq(slnj )-modules

(M
(j)
1 , B

(j)
1 ), . . . , (M

(j)
d , B

(j)
d ).
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Then, as described above, for each j we have a based Uq(slnj )-module

M (j) = M
(j)
1 ⊗ · · · ⊗M (j)

d

with basis

B(j)� = B
(j)
1 � · · · �B

(j)
d .

We can then take the external tensor product, obtaining a based U(n)-module

M ′ = M (1) ⊗ · · · ⊗M (r)

with basis

B�⊗ = B(1)� ⊗ · · · ⊗B(r)�.

On the other hand, we may take external tensor products first, before

taking internal tensor products. For each i = 1, . . . , d, we have the based

U(n)-module

Mi = M
(1)
i ⊗ · · · ⊗M

(r)
i .

with basis

B⊗i = B
(1)
i ⊗ · · · ⊗B

(r)
i .

The internal tensor product

M ′′ = M1 ⊗ · · · ⊗Md

is then a based U(n)-module with basis

B⊗� = B⊗1 � · · · �B
⊗
d .

Thus, to each b ∈ B =
∏

1≤i≤d, 1≤j≤r B
(j)
i , we have associated a distin-

guished basis element b�⊗ ∈ B�⊗ ⊆ M ′ and another distinguished basis

element b⊗� ∈ B⊗� ⊆M ′′.

Proposition 2.4. Keep the notation as above. The obvious correspond-

ence between M ′ and M ′′ gives an isomorphism of based U(n)-modules.

Furthermore b�⊗ ↔ b⊗� for each b ∈ B under this correspondence.

Proof. Since the coproduct of U(n) is simply the tensor product of the

coproducts of its factors Uq(slnj ), the natural identification of vector spaces

M = M (1) ⊗ · · · ⊗M (r) =
⊗

1≤i≤d
1≤j≤r

M
(j)
i = M1 ⊗ · · · ⊗Md = M ′′

is an isomorphism of U(n)-modules. Under this identification b�⊗ = b⊗�

for all b ∈ B, as they are characterized in terms of involutions that coincide

because the quasi-R-matrix of U(n) is the tensor product of the quasi-R-

matrices of its factors Uq(slnj ). �

2.5. Schur algebras. Let Sm = S(m,m) be the Schur algebra of degree

m over a field F of characteristic p > 0. This is a quasi-hereditary algebra

with indexing set {λ ∈ P | |λ| = m}, together with the order opposite to
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the lexicographic order; here we are following the notation conventions in

[Jam]. Denote by L(λ), ∆(λ) and P (λ) the simple, standard and projective

indecomposable modules associated to λ. By Brauer-Humphrey’s reciprocity

the decomposition number dλµ := [∆(λ) : L(µ)] may be expressed as the

multiplicity [P (µ) : ∆(λ)] of ∆(λ) in a ∆-filtration of P (µ); even though the

filtrations are not unique, the multiplicities are. These numbers enjoy the

following well-known properties:

Proposition 2.5. Let λ, µ ∈ P. Then

(1) dλλ = 1;

(2) dλµ 6= 0 only if λ ≤Jp µ (see [TT, Theorem 2.5(iv)]);

(3) dλµ ≥ dλµ(1) (by [VV] and [Jam]).

For each residue class i modulo p, one can define functors

i-Resm : Sm+1-mod→ Sm-mod,

i-Indm : Sm-mod→ Sm+1-mod.

They are a biadjoint pair of exact functors, sending projectives to projectives.

In particular, if λ ∈ P with |λ| = m, then

i-Indm(P (λ)) ∼=
⊕
µ∈P

|µ|=m+1

P (µ)⊕L
µ
λ ,

where each Lµλ ∈ N0. In fact,

Lµλ = dimF(HomSm+1(i-Indm(P (λ)), L(µ))) = dimF(HomSm(P (λ), i-Resm(L(µ)))),

so that Lµλ is the multiplicity [i-Resm(L(µ)) : L(λ)] of L(λ) as a composition

factor of i-Resm(L(µ)). Kleshchev describes some of these multiplicities.

Theorem 2.6 ([Kl, Theorem 9.3]). Let µ ∈ P with |µ| = m. Suppose that µ

has a normal node n of p-residue i, and let λ be the partition obtained when

this node is removed from µ. Then

[i-Resm(L(µ)) : L(λ)] =

1 + number of normal nodes of µ of p-residue i and to the right of n.

Let i-Res =
⊕

m i-Resm and i-Ind =
⊕

m i-Indm. For convenience, for k ∈
Z, we also write k-Res and k-Ind, which mean k̄-Res and k̄-Ind respectively,

where k̄ is the residue class of k modulo p.

The effects of i-Res and i-Ind on the standard module ∆(λ) can be easily

described in the Grothendieck group K0(
⊕

m Sm-mod) as follows:

[i-Res(∆(λ))] =
∑
τ

[∆(τ)];

[i-Ind(∆(λ))] =
∑
µ

[∆(µ)],
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where the first sum runs over all partitions τ that can be obtained by removing

a removable node of p-residue i from λ, while the second sum runs over all

partitions µ that can be obtained by adding an addable node of p-residue i

to λ.

It is natural to identifyK0(
⊕

m Sm-mod) with the classical (non-quantized)

Fock space Fc =
⊕

λ∈P Zλ under the correspondence [∆(λ)]↔ λ.

Recall the quantized Fock space F introduced in subsection 2.3. Let

A = Z[q, q−1], and let FA be the free A-submodule of F with basis P . Then

G(λ) ∈ FA for all λ ∈ P by Theorem 2.1. Similarly, let Fs,A denote the

free A-submodule of Fs with basis Bs for each s ∈ Z. We have a surjective

Z-linear map εq=1 : FZ,A → Fc defined by a(q)B 7→ a(1) Par(B) for all

a(q) ∈ A and B ∈ B.

Let n = p, and let UA be the A-subalgebra of U generated by {ei, fi,K±i |
i = 0, 1, . . . , p − 1}. Then for each s ∈ Z, Fs,A is a UA-submodule of Fs.
Under the above identification of K0(

⊕
m Sm-mod) with Fc, we have that

εq=1, when restricted to Fs,A, intertwines the Chevalley generators ei and fi
with the (i− s)-Res and (i− s)-Ind functors. More precisely, we have

εq=1 ◦ fi = (i− s)-Ind ◦ εq=1 and εq=1 ◦ ei = (i− s)-Res ◦ εq=1.

3. General setup

In order to deal with the quantized Fock spaces and the classical non-

quantized Fock space simultaneously, we consider the following general setup.

Let R be an integral domain, and let F be the free R-module with R-basis

{s(λ) | λ ∈ P}, indexed by the set P of all partitions. Let 〈 , 〉 denote the

symmetric R-bilinear form on F with respect to which {s(λ) | λ ∈ P} is

orthonormal.

For each λ ∈ P, let H(λ) ∈ F be such that 〈H(λ), s(µ)〉 6= 0 only if

λ ≥Jn µ, and 〈H(λ), s(λ)〉 = 1. Then {H(λ) | λ ∈ P} is another R-basis of

F. We note the following easy lemma:

Lemma 3.1. Let x =
∑

µ∈P aµH(µ) ∈ F, where aµ ∈ R for all µ ∈ P. Let

ν ∈ P be such that aµ = 0 whenever µ >Jn ν. Then 〈x, s(ν)〉 = aν .

Proof. We have aµ = 0 if µ >Jn ν, while 〈H(µ), s(ν)〉 = 0 if µ 6≥Jn ν, so that

〈x, s(ν)〉 = 〈
∑
µ∈P

aµH(µ), s(ν)〉 = 〈aνH(ν), s(ν)〉 = aν .

�

Fix n ∈ N and let r be a residue class modulo n. Let fr : F → F be an

R-linear map such that 〈fr(s(λ)), s(µ)〉 6= 0 only if λ can be obtained from µ

by removing a removable node of n-residue r, and equals 1 if λ is obtained by

removing the rightmost such node which also lies to the right of all addable

nodes of n-residue r.
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Proposition 3.2. Let λ ∈ P, and suppose that its rightmost addable node

of n-residue r lies to the right of all its removable nodes of n-residue r, and

let µ be the partition obtained by adding this node. Then

fr(H(λ)) = H(µ) +
∑
ν∈P
|ν|=|µ|
ν<µ

aνH(ν),

with aν ∈ R for all ν.

Proof. Note first that when we remove from µ its rightmost removable node

of n-residue r, we obtain λ.

Since {H(ν) | ν ∈ P} is a basis for F, we have fr(H(λ)) =
∑

ν∈P aνH(ν),

where aν ∈ R for all ν ∈ P. Since 〈H(ρ), s(σ)〉 6= 0 only if ρ ≥Jn σ, and the

latter only if |ρ| = |σ|, we see that aν = 0 unless |ν| = |λ|+ 1 = |µ|. Thus,

we need to show that aµ = 1, and aν 6= 0 only if ν ≤ µ.

Let σ ∈ P be maximal (with respect to ≥) subject to aσ 6= 0. Then, by

Lemma 3.1, we have

(0 6=) aσ = 〈fr(H(λ)), s(σ)〉 = 〈fr

∑
ρ∈P
〈H(λ), s(ρ)〉 s(ρ)

 , s(σ)〉

=
∑
ρ∈P
〈H(λ), s(ρ)〉〈fr(s(ρ)), s(σ)〉.

Thus there exists ρ ∈ P such that 〈H(λ), s(ρ)〉, 〈fr(s(ρ)), σ〉 6= 0; in particular,

ρ ≤ λ, |ρ| = |λ|, and ρ can be obtained from σ by removing a removable

node of n-residue r. This also shows that |σ| = |µ|.
If ρ = λ, then σ can be obtained by adding an addable node of n-residue

r to λ, so that since µ is obtained by adding the rightmost addable node of

λ of n-residue r, we have µ ≥ σ (in fact, µ ≥Jn σ).

If ρ 6= λ, then ρ < λ. Let a, b ∈ N be such that µi = λi + δai, σi = ρi + δbi
for all i ∈ N. Also, let k ∈ N be such that ρi = λi for all i < k and ρk < λk.

We consider the cases a < k, a = k and a > k separately.

a < k: Note first that in this case a ≤ b: otherwise λi = ρi for all i ≤ b
while σb = ρb + 1, so that (b, ρb + 1) = (b, λb + 1) is an addable node

of ρ and λ of n-residue r lying to the right of (a, λa+1), contradicting

the latter being the rightmost addable node of λ of n-residue r. Thus

µi = λi = ρi = σi for all i < a, and µa = λa + 1 = ρa + 1 =

σa + 1− δba. Consequently either µa > σa or a = b; in the latter case

µi = λi + δai = ρi + δbi = σi for all i < k, and µk = λk > ρk = σk.

Either way, we have µ > σ.

a = k: In this case, we have µi = λi = ρi for all i < a = k, and

µa = λa + 1 = λk + 1 > ρk + 1 = ρa + 1 = σa + 1− δba ≥ σa. Thus

µ > σ.
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a > k: In this case, we have µi = λi = ρi for all i < k, and µk = λk >

ρk = σk − δbk. Thus either µk > σk or both b = k and µk = σk. In

the latter case, the node (k, σk) = (k, µk) is a removable node of σ

whose removal produces ρ, so that it has n-residue r; but this cannot

be a removable node of µ since (a, µa) is its rightmost removable node

of n-residue r. As such, (k+1, µk) ∈ [µ]\ [σ]. This gives µk+1 > σk+1.

Thus, once again, either way, we get µ > σ.

We thus conclude that µ ≥ σ always. To finish off the proof, it suffices to

show that aµ = 1. By Lemma 3.1, we have, as above,

aµ = 〈fr(H(λ)), s(µ)〉 =
∑
ρ∈P
〈H(λ), s(ρ)〉〈fr(s(ρ)), s(µ)〉.

For each ρ such that 〈fr(s(ρ)), s(µ)〉 6= 0, ρ must be obtained from µ by

removing a removable node of n-residue r. Since λ is obtained by removing

from µ its rightmost removable node of n-residue r, we see that λ ≤ ρ (in

fact, λ ≤Jn ρ), so that 〈H(λ), s(ρ)〉 = 0 unless λ = ρ. Thus,

aµ = 〈H(λ), s(λ)〉〈fr(s(λ)), s(µ)〉 = 1.

�

Remark. Proposition 3.2 in fact holds even when H(λ) satisfies the weaker

condition that 〈H(λ), s(µ)〉 6= 0 only if λ > µ and |λ| = |µ|. The proof is

similar, uses a modified version of Lemma 3.1. We leave it to the reader as

an easy exercise.

Applying Proposition 3.2 to Fc (∼= K0(
⊕

m Sm-mod)) and FA,s in the

place of F, and i-Ind and fs+i in the place of f, we get the following immedi-

ately corollary.

Corollary 3.3. Let λ ∈ P, and suppose that its rightmost addable node of

n-residue i lies to the right of all its removable nodes of n-residue i, and let

µ be the partition obtained by adding this node. Then

(1) when n = p,

i-Ind(P (λ)) ∼= P (µ)⊕
⊕
ν∈P
|ν|=|µ|
ν<µ

P (ν)⊕[i-Res(L(ν)) :L(λ)];

(2)

fs+i(Gs(λ)) = Gs(µ) +
∑
ν∈P
|ν|=|µ|
ν<µ

Lνλ(q)Gs(ν),

where Lνλ(q) ∈ Z[q, q−1] for all ν.

Suppose further that P =
⋃

t∈T Pt can be partitioned into subsets which

are indexed by a set T, and that the indexing set T can be partially ordered
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by ≥ so that if λ ∈ Pt, µ ∈ Ps and λ ≥Jn µ, then t ≥ s. For each t ∈ T,

let Ft be the free R-submodule of F with R-basis {s(λ) | λ ∈ Pt}. Then

F =
⊕

t∈T Ft; let πt : F→ F denote the natural projection onto Ft via this

decomposition. We have, as immediate consequences of such an order on T,

the following: for t ∈ T and λ ∈ Pt,

• H(λ) ∈
⊕

s≤t Fs;

• if s 6≤ t, then πs(H(λ)) = 0.

Lemma 3.4. Let ξ : F → F be an R-linear map satisfying ξ(Fs) ⊆ Fs for

all s ∈ T. Let t ∈ T and λ ∈ Pt. Suppose that ξ(H(λ)) =
∑

µ∈P aµH(µ),

where aµ ∈ R for all µ ∈ P. Then

(1) aµ = 0 for all µ ∈ Ps with s 6≤ t;

(2) ξ(πt(H(λ)) = πt(ξ(H(λ))) =
∑

µ∈Pt
aµπt(H(µ)).

Proof. Since H(λ) ∈
⊕

s≤t Fs, we have ξ(H(λ)) ∈
⊕

s≤t Fs. If there exists

ν ∈ Ps with s 6≤ t such that aν 6= 0, choose ν to be maximal with respect to

≥Jn . Then by Lemma 3.1,

aν = 〈ξ(H(λ)), s(ν)〉 = 0,

since ξ(H(λ)) ∈
⊕

s≤t Fs, a contradiction. Thus, (1) holds, and hence

ξ(H(λ)) =
∑

s≤t
∑

µ∈Ps
aµH(µ), so that

πt(ξ(H(λ))) = πt(
∑
s≤t

∑
µ∈Ps

aµH(µ))

=
∑
s≤t

∑
µ∈Ps

aµπt(H(µ))

=
∑
µ∈Pt

aµπt(H(µ)),

proving the second equality of (2). The first equality of (2) follows from the

fact that ξ and πt commute, since each Fs is invariant under ξ. �

4. Restriction to Levi subalgebra

Fix n ∈ N and a tuple n = (n1, . . . , nr) of positive integers such that

n1 + · · ·+ nr = n, and for each j = 0, 1, . . . , r, let σj =
∑j

i=1 ni.

We wish to consider the restrictions of the action of U on the Fock spaces

Fs to the Levi subalgebra U(n), as defined in subsection 2.2. The restrictions

have natural direct sum decompositions; to better understand the summands,

consider the example pictured in Figure 4.1.

In view of the description of the action in terms of the abacus, it is natural

to split the n-abacus into sections, each of which is represented by a gray

region in Figure 4.1. Formally, for each i ∈ Z and j ∈ {1, . . . , r}, let

Zn
i,j = {x ∈ Z | σj−1 ≤ x− in < σj}.
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0 1 2 3 4 5 6 7 8

−2

−1

0

1

2

3

v4,0 ∧ v4,2 ∧ v4,3 ⊗ v2,1 ⊗ v3,1

v4,1 ∧ v4,2 ⊗ v2,0 ⊗ v3,1 ∧ v3,2

v4,0 ∧ v4,3 ⊗ v3,0 ∧ v3,2

Figure 4.1. A 9-abacus display of the partition λ =
(13, 12, 10, 8, 8, 8, 6, 5, 5, 3, 2, 1, 1) and the corresponding vector

in
(∧3V4 ⊗ V2 ⊗ V3

)
⊗
(∧2V4 ⊗ V2 ⊗

∧2V3

)
⊗
(∧2V4 ⊗

∧2V3

)

Given a subset B of Z, we write

Xn
i,j(B) = (B ∩ Zn

i,j)− in− σj−1 = {x− in− σj−1 | x ∈ B ∩ Zn
i,j}.

Thus Xn
i,j(B) describes, in a normalized form, the beads lying in the section

Zn
i,j in the n-abacus display of B. In addition, let tnB : Z×{1, . . . , r} → N0 be

defined by tnB(i, j) = |B ∩ Zn
i,j | = |Xn

i,j(B)|, so that it describes the number

of beads lying in each section in the n-abacus display of B. Note that B is a

set of β-numbers if and only if∑
i≥0

1≤j≤r

tnB(i, j) +
∑
i<0

1≤j≤r

(nj − tnB(i, j)) <∞,

in which case ∑
i≥0

1≤j≤r

tnB(i, j)−
∑
i<0

1≤j≤r

(nj − tnB(i, j)) = s(B).

Let Tn be the set of functions t : Z×{1, . . . , r} → N0 such that t(i, j) ≤ nj
for all i ∈ Z and that

∑
i≥0

1≤j≤r
t(i, j) +

∑
i<0

1≤j≤r
(nj − t(i, j)) <∞. For each

t ∈ Tn, let

s(t) =
∑
i≥0

1≤j≤r

t(i, j)−
∑
i<0

1≤j≤r

(nj − t(i, j)).

Then for each B ∈ B, s(B) = s(tnB). For each s ∈ Z, let Tn,s = {t ∈ Tn |
s(t) = s}.

We have a surjection from B to Tn defined by B 7→ tnB, and this restricts

to give a surjection from Bs to Tn,s for each s ∈ Z. Given t ∈ Tn, let

Bt = {B ∈ B | tnB = t}. Then the Bt’s partition Bs as t runs over Tn,s.

Let t ∈ Tn and write s = s(t). We now describe a characterisation

of B ∈ Bt in terms of Par(B). Define Bt ⊆ Z as follows: Xn
i,j(Bt) =

{0, . . . , t(i, j)− 1}. Then Bt ∈ Bt, and write λt for Par(Bt).
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Proposition 4.1. Let B ∈ Bs. Then B ∈ Bt if and only if Par(B) and λt
have the same sets of nodes of n-residue σj − s for all j = 0, . . . , r − 1.

Proof. Note that Bt is the unique element in Bt such that |Par(Bt)| is the

least. We prove by induction on |Par(B)|. If |Par(B)| ≤ |λt|, then B ∈ Bt

if and only if B = Bt. On the other hand, λt is characterised by its sets of

nodes of n-residue σj − s for all j = 0, . . . , r − 1 and that all its removable

nodes lie among these. As such, any partition µ having the same sets of

nodes of n-residue σj − s as λt for all j = 0, . . . , r− 1 must have [µ] ⊇ [λ] as

otherwise λ would have a removable node not in [µ]. Thus, if |Par(B)| ≤ |λt|,
then Par(B) has the same sets of nodes of n-residue σj − s as λt for all

j = 0, . . . , r − 1 if and only if Par(B) = λt, or equivalently B = Bt. Thus

the base case for the induction holds.

Suppose that |Par(B)| > |λt|. If B ∈ Bt, then there exists x ∈ B,

x− 1 /∈ B and x 6≡n σj for all j. Let C = B ∪ {x− 1} \ {x}. Then C ∈ Bt,

and Par(C) is obtained from Par(B) by removing a node of n-residue x− s.
By induction, Par(C) has the same sets of nodes of n-residue σj − s as λt for

all j = 0, . . . , r − 1, and thus, so does Par(B). On the other hand, if Par(B)

has the same sets of nodes of n-residue σj − s as λt for all j = 0, . . . , r − 1,

then since |Par(B)| > |λt|, we see that Par(B) must have some removable

node of n-residue not equal to σj − s for all j = 0, . . . , r − 1. Let µ be the

partition obtained by removing this node. Then tnβs(µ) = tnB, and µ has the

same sets of nodes of n-residue σj − s as λt for all j = 0, . . . , r − 1, so that

by induction, t = tnβs(µ) = tnB, and we are done. �

We get the following immediate corollary.

Corollary 4.2. Let λ, µ ∈ P and s ∈ Z. Then tnβs(λ) = tnβs(µ) if and only if

λ and µ have the same sets of nodes of n-residue σj−s for all j = 0, . . . , r−1.

For each t ∈ Tn, let Ft be the C(q)-vector space with basis Bt. Then Ft

is a vector subspace of Fs if s(t) = s, and is invariant under the action of

U(n). Moreover, Fs =
⊕

t∈Tn,s
Ft.

In the special case where n = (n), we use the following notational conven-

tions:

• T(n) = {t : Z→ {0, 1, . . . , n} |
∑

i≥0 t(i) +
∑

i<0(n− t(i)) <∞}.
• If t ∈ T(n), then s(t) =

∑
i≥0 t(i)−

∑
i<0(n− t(i)).

• If B ⊆ Z, then X
(n)
i (B) = {x − in | x ∈ B, in ≤ x < (i + 1)n} for

all i ∈ Z, and t
(n)
B : Z→ {0, 1, . . . , n} sends i to |X(n)

i (B)|.
We now proceed to identify Ft as a U(n)-module. Let Vm denote the

natural module for Uq(slm) =
〈
e1, . . . , em−1; f1, . . . , fm−1;K±1 , . . . ,K

±
m−1

〉
.

It has distinguished basis vm,0, . . . vm,m−1, with action given by

eivm,j = δi,jvm,j−1, fivm,j = δi−1,jvm,j+1
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and

K+
i vm,j =


qvm,j if j = i− 1

q−1vm,j if j = i

vm,j otherwise.

The exterior power
∧dVm is an irreducible Uq(slm)-module; its canonical

basis is given by {vm,X := vm,i1 ∧ . . . ∧ vm,id | X = {i1 < . . . < id} ∈
Pm,d}, where here and hereafter Pm,d denotes the set of d-element subsets

of {0, 1, . . . ,m− 1}. So

eivm,X =

{
vm,X∪{i−1}\{i} if i ∈ X and i− 1 /∈ X
0 otherwise,

fivm,X =

{
vm,X∪{i}\{i−1} if i− 1 ∈ X and i /∈ X
0 otherwise,

K+
i vm,X =


qvm,X if i− 1 ∈ X and i /∈ X
q−1vm,X if i ∈ X and i− 1 /∈ X
vm,X otherwise.

It follows that for any tuple d = (d1, . . . , dr) of integers with 0 ≤ dj ≤ nj for

all j,
∧d

n(V ) :=
∧d1Vn1 ⊗ . . .⊗

∧drVnr is an irreducible U(n)-module with

canonical basis

Cd = {vn1,X1 ⊗ · · · ⊗ vnr,Xr | Xj ∈ Pnj ,dj ∀j}.

Lemma 4.3. Let t ∈ Tn. Write
∧t(V ) for

⊗
i∈Z, 1≤j≤r

∧t(i,j)Vnj .

(1) The set
{⊗

i∈Z,1≤j≤r vni,Xi,j | Xi,j ∈ Pnj ,t(i,j) ∀i, j
}

is a basis for∧t(V ).

(2) The map Bt →
∏
i∈Z,1≤j≤rPnj ,t(i,j) defined by B 7→ (Xn

i,j(B))i∈Z,1≤j≤r
for all B ∈ Bt is bijective.

(3) The C(q)-linear map Θt : Ft →
∧t(V ) defined by B 7→

⊗
i∈Z,1≤j≤r vnj ,Xn

i,j(B)

for all B ∈ Bt is bijective, and is an isomorphism of U(n)-modules

if
∧t(V ) is viewed as

· · · ⊗
∧t−1

n
(V )⊗

∧t0

n
(V )⊗

∧t1

n
(V )⊗ · · · ,

where ti = (t(i, 1), . . . , t(i, r)) for all i ∈ Z.

Note that when i � 0 or i � 0, the component
∧t(i,j)Vnj , and hence∧ti

n(V ), is canonically isomorphic to the trivial module C(q), so the tensor

product
∧t(V ) is essentially a finite one.

Proof. This is straightforward to check. The reader may find Figure 4.1

useful. �
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Each of the irreducible U(n)-modules
∧d

n(V ) with its canonical basis

Cd = {vX = vn1,X1 ⊗ · · · ⊗ vnr,Xr | X = (Xj)1≤j≤r ∈
∏r
j=1 Pnj ,dj} is a

based module. Hence, by Lusztig’s theory, the tensor product
∧t(V ) =

· · · ⊗
∧t−1

n (V )⊗
∧t0

n(V )⊗
∧t1

n(V )⊗ · · · is a based module with basis

C� = · · · � Ct−1 � Ct0 � Ct1 � · · · ,

while C⊗ = · · · ⊗ Ct−1 ⊗ Ct0 ⊗ Ct1 ⊗ · · · is the basis given in Lemma 4.3(1).

For each B ∈ Bt, let Xi(B) = (Xn
i,j(B))1≤j≤r ∈

∏r
j=1 Pnj ,t(i,j) for each

i ∈ Z, and let

v⊗B = · · · ⊗ vX−1(B) ⊗ vX0(B) ⊗ vX1(B) ⊗ · · · ∈ C⊗,

v�B = · · · � vX−1(B) � vX0(B) � vX1(B) � · · · ∈ C�.

Then C⊗ = {v⊗B | B ∈ Bt} = {Θt(B) | B ∈ Bt} by Lemma 4.3(3). Also,

C� = {v�B | B ∈ Bt}.
For each B ∈ Bt, let Gt(B) = Θ−1

t (v�B). Denote by ψt the C(q)-semilinear

involution of Ft fixing Gt(B) for each B ∈ Bt.

Let s = s(t). Recall that βs : P → Bs is a bijection, with inverse Par. Let

Pt = Par(Bt), so that the following three statements are equivalent:

(1) µ ∈ Pt; (2) βs(µ) ∈ Bt; (3) tβs(µ) = t.

For each µ ∈ Pt, we write Gt(µ) for Gt(βs(µ)). In addition define d t
λµ(q) ∈

C(q) for λ, µ ∈ Pt by

Gt(µ) =
∑
λ∈Pt

d t
λµ(q)βs(λ).

From Lemma 2.3(1) we deduce the following.

Lemma 4.4. Let λ, µ ∈ Pt.
(1) d t

µµ(q) = 1.

(2) If λ 6= µ, then d t
λµ(q) ∈ qZ[q].

(3) If d t
λµ(q) 6= 0, then µ ≥ λ.

(4) If m ∈ Ft satisfies ψt(m) = m and m−βs(µ) ∈
∑

B∈Bt
qZ[q]B, then

m = Gt(µ).

Proposition 4.5. Let t ∈ Tn. For each j = 1, . . . , r, define tj : Z→ N0 by

tj(i) = t(i, j).

(1) For each j = 1, . . . , r, tj ∈ T(nj). In addition,
∑r

j=1 s(tj) = s(t).

(2) The C(q)-linar map Φt : Ft → Ft1⊗· · ·⊗Ftr defined by Φt(B) = B1⊗
· · · ⊗Br for all B ∈ Bt, where Bj = {x+ inj | i ∈ Z, x ∈ Xn

i,j(B)}
for all j, is a well-defined isomorphism of U(n)-modules (where we

identify U(n) with Uq(sln1)⊗ · · · ⊗Uq(slnr) in the obvious way), and

Φt(Gt(B)) = Gt1(B1)⊗ · · · ⊗Gtr(Br)

for all B ∈ Bt.
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Proof. We show only the last equality; all other assertions can be easily

verified.

By Lemma 4.3(2), we have, for each j = 1, . . . , r, a bijective C(q)-

linear map (actually an isomorphism of Uq(slnj )-modules) Θtj : Ftj →⊗
i∈Z
∧tj(i)Vnj sending Bj to

⊗
i∈Z vnj ,X

(nj)

i (Bj)
for all Bj ∈ Btj . Since

(
(Θ−1

t1
⊗ · · · ⊗Θ−1

tr
) ◦Θt

)
(B) = (Θ−1

t1
⊗ · · · ⊗Θ−1

tr
)

 ⊗
i∈Z

1≤j≤r

vnj ,Xn
i,j(B)


=

r⊗
j=1

Θ−1
tj

(⊗
i∈Z

v
nj ,X

(nj)

i (Bj)

)
=

r⊗
j=1

Bj = Φt(B)

for all B ∈ Bt, we see that Φt = (Θ−1
t1
⊗ · · · ⊗Θ−1

tr
) ◦Θt. Thus

Φt(Gt(B)) = (Θ−1
t1
⊗ · · · ⊗Θ−1

tr
)(Θt(Gt(B)))

= (Θ−1
t1
⊗ · · · ⊗Θ−1

tr
)(v�B)

= (Θ−1
t1
⊗ · · · ⊗Θ−1

tr
)

�
i∈Z

 r⊗
j=1

vnj ,Xn
i,j(B)


= (Θ−1

t1
⊗ · · · ⊗Θ−1

tr
)

 r⊗
j=1

(
�
i∈Z

v
nj ,X

(nj)

i (Bj)

)
=

r⊗
j=1

Θ−1
tj

(
�
i∈Z

v
nj ,X

(nj)

i (Bj)

)

=

r⊗
j=1

Gtj (Bj),

using Proposition 2.4 for the fourth equality. �

5. Comparison of canonical bases

Fix n ∈ N and a tuple n = (n1, . . . , nr) of positive integers such that

n1 + · · · + nr = n. Recall our subalgebra U(n) of U and our set Tn

defined in the last section. We define a partial order ≥ on Tn as follows:

for t, t′ ∈ Tn, we have t > t′ if and only if s(t) = s(t′) and there exists

(i0, j0) ∈ Z×{1, . . . , r} such that t(i0, j0) > t′(i0, j0) and t(i, j) = t′(i, j) for

all (i, j) with i > i0 or both i = i0 and j > j0. Note that ≥ restricts to a

total order on Tn,s for each s ∈ Z.

Lemma 5.1. Let λ, µ ∈ P. If λ ≥Jn µ, then tnβs(λ) ≥ tnβs(µ) for all s ∈ Z.
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Proof. Note that B →n C implies tnB ≥ tnC . �

For t ∈ Tn,s let πt : Fs → Ft be the natural projection defined by

πt(B) = B if B ∈ Bt and zero otherwise.

Since, for each s ∈ Z, P =
⋃

t∈Tn,s
Pt is a partition of P, and the order

≥ on Tn,s defined above respects the Jantzen order ≥Jn by Lemma 5.1,

we can apply Lemma 3.4 with H(λ) = G(λ) and ξ an element of U(n), or

H(λ) = [P (λ)] and ξ an i-Ind functor.

Theorem 5.2. Let s ∈ Z and t ∈ Tn,s. If µ ∈ Pt, then πt(Gs(µ)) = Gt(µ).

Equivalently dλµ(q) = d t
λµ(q) for all λ, µ ∈ Pt.

Proof. We prove by induction on |µ| the following equivalent statement:

if µ ∈ P, then πtn
βs(µ)

(Gs(µ)) = Gtn
βs(µ)

(µ) for all s ∈ Z. If µ = ∅, then

G(µ) = µ by Theorem 2.1(1,3), while Gtn
βs(µ)

(µ) = βs(µ) by Lemma 4.4(1,3),

so that the result holds. So let µ 6= ∅ and assume that the statement holds

for all partitions µ̃ such that |µ̃| < |µ|, or both |µ̃| = |µ| and µ̃ < µ. Let

s ∈ Z and let t = tnβs(µ). Let c = max{i ∈ Z | t(i, j) > 0 for some j}, so

that row c is the bottommost row that contains some bead in the n-abacus

display of βs(µ). There are two cases to consider.

If Xn
c,j(βs(µ)) = {0, . . . , t(c, j) − 1} for all j (i.e. the beads occurring in

each section of row c in the n-abacus display of βs(µ) occupy the leftmost

positions), then vn1,Xn
c,1(βs(µ))⊗· · ·⊗vnr,Xn

c,r(βs(µ)) is the highest weight vector

for the irreducible U(n)-module
∧t(c,1)(Vn1)⊗ · · · ⊗

∧t(c,r)(Vnr).

Let λ ∈ Pt. Note that if λ > µ, then dλµ(q) = 0, by Theorem 2.1(3), and

d t
λµ(q) = 0 by Lemma 4.4(3). So we may assume that λ ≤ µ. In this case,

the beads in each section of row c of the n-abacus display of βs(λ) must be

occupying the leftmost positions too, i.e. Xn
c,j(βs(λ)) = Xn

c,j(βs(µ)) for all j.

Let t′ ∈ Tn such that

t′(i, j) =

{
t(i, j), if i 6= c;

0, if i = c.

Write s′ = s(t′). Let λ̃, µ̃ ∈ P such that βs′(λ̃) and βs′(µ̃) are obtained by

removing the beads in row c from the n-abacus displays of βs(λ) and βs(µ)

respectively. Then λ̃, µ̃ ∈ Pt′ and are the partitions obtained from λ and µ

respectively by removing the first
∑r

j=1 t(c, j) parts, so that |µ̃| < |µ|. We

have

dλµ(q) = dλ̃µ̃(q) = d t′

λ̃µ̃
(q) = d t

λµ(q),

where the first equality is ‘row removal’ [CMT1, Theorem 1(1)], the second

by induction and the last by Lemma 2.3(2).

We now proceed to the second case. In this case, there is a bead in row c

of the n-abacus display of βs(µ) having a vacant preceding position that is

in the same section as the bead. Formally, there exists k ∈ βs(µ) such that
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b knc = c, k − 1 /∈ βs(µ), and fk ∈ U(n). Let λ = Par(βs(µ) ∪ {k − 1} \ {k}).
Then λ ∈ Pt, and we have, by Corollary 3.3(2),

fk(Gs(λ)) = Gs(µ) +
∑
ν∈P
|ν|=|µ|
ν<µ

Lνλ(q)Gs(ν),

with Lνλ(q) = Lνλ(q−1) for all ν by Theorem 2.2. Applying Lemma 3.4 with

ξ = fk, we get

fk(πt(Gs(λ))) = πt(fk(Gs(λ))) = πt(Gs(µ)) +
∑
ν∈Pt
|ν|=|µ|
ν<µ

Lνλ(q)πt(Gs(ν)).

Applying the induction hypothesis to λ and ν, we get

πt(Gs(µ)) = fk(Gt(λ))−
∑
ν∈Pt
|ν|=|µ|
ν<µ

Lνλ(q)Gt(ν).

Thus, πt(Gs(µ)) is ψt-invariant. Furthermore, since G(µ)−µ ∈
⊕

ν∈P qZ[q]ν,

we see that

Gs(µ)− βs(µ) = βs(G(µ)− µ) ∈
⊕
ν∈P

qZ[q]βs(ν) =
⊕
B∈Bs

qZ[q]B,

so that

πt(Gs(µ))− βs(µ) = πt(Gs(µ)− βs(µ)) ∈
⊕
B∈Bt

qZ[q]B.

Hence πt(Gs(µ)) = Gt(µ) by Lemma 4.4(4), as desired. �

Corollary 5.3. Let t ∈ Tn, and let λ, µ ∈ Pt. Then d t
λµ(q) 6= 0 only if

µ ≥Jn λ.

Proof. This follows immediately from Theorem 5.2 and Theorem 2.1(3) . �

Corollary 5.4. Let s ∈ Z and t ∈ Tn,s. Let λ ∈ Pt, and let ξ ∈ U(n).

Suppose that ξ(Gs(λ)) =
∑

µ∈P aµ(q)Gs(µ). Then

ξ(Gt(λ)) =
∑
µ∈Pt

aµ(q)Gt(µ).

Proof. This follows immediately from Lemma 3.4 and Theorem 5.2. �

The next result may be regarded as a ‘runner removal’ theorem.

Theorem 5.5. Let s ∈ Z and t ∈ Tn,s. Let λ, µ ∈ Pt. For each j = 1, . . . , r,

let sj =
∑

i≥0 t(i, j) +
∑

i<0(t(i, j)− nj), and let λ(j), µ(j) ∈ P such that

βsj (λ
(j)) = {x+ inj | i ∈ Z, x ∈ Xn

i,j(βs(λ))},

βsj (µ
(j)) = {x+ inj | i ∈ Z, x ∈ Xn

i,j(βs(µ))}.
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(Thus, λ(j) is the partition read off from the nj-abacus consisting of runners

i for σj−1 ≤ i < σj in the n-abacus display of βs(λ). Similarly for µ(j).)

Then

dnλµ(q) =
r∏
j=1

d
nj
λ(j)µ(j)

(q).

Proof. For each j = 1, . . . , r, define tj : Z → N0 by tj(i) = t(i, j) for all

i ∈ Z. By Proposition 4.5, we have

Φt(βs(µ)) =
r⊗
j=1

βsj (µ
(j)) and Φt(Gt(µ)) =

r⊗
j=1

Gtj (µ
(j))

for all µ ∈ Pt. Thus, d t
λµ(q) =

∏r
j=1 d

tj
λ(j)µ(j)

(q). Now apply Theorem 5.2. �

We end this section with a discussion of the case where n = (n1, . . . , nr)

has nj = 2 for some j. We first look at the special case where n = (2). In

this case, since
∧1V2 = V2 and

∧0V2 =
∧2V2 = C(q), for each t ∈ Tn, Ft is

isomorphic to a tensor power V ⊗d2 as Uq(sl2)-modules. The latter has been

studied extensively by Frenkel and Khovanov in [FK]. In particular, they

provide closed formulas for v�B in terms of graphical calculus combinatorics

for each B ∈ Bt, so that there are closed formulas for d t
λµ(q) for λ, µ ∈ Pt.

They also describe f(v�B), which we translate to our language as follows:

Theorem 5.6 ([FK]). Let n = (2), and let λ ∈ P. Let s ∈ Z and write

t = tnβs(λ). Suppose that

f(Gt(λ)) =
∑
µ∈Pt

Lµλ(q)Gt(µ).

Then

Lµλ(q) =


[1 + nλµ]q, if λ can be obtained from µ

by removing a normal node nλµ of 2-residue s+ 1;

0, otherwise.

Here nλµ is the number of normal nodes of µ with 2-residue s+ 1 and to the

right of nλµ.

Proof. We briefly describe our translation of the results in [FK]. The basis

vector v2,1 of V2, represented by an up arrow in the diagrams in [FK],

corresponds to a removable node of 2-residue s + 1, while the other basis

vector v2,0, represented by a down arrow in the diagrams in [FK], corresponds

to an addable node of 2-residue s+ 1. An arc connecting the up and down

arrows induces a pairing of the corresponding removable node with the

addable node. We should point out that the description in [FK, p.445-7] is

given in terms of the basis dual to {Gt(λ)} with respect to an inner product

for which e and f are adjoint operators, and so we use their description of

the action of e rather than that of f . �
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Corollary 5.7. Let s ∈ Z, and λ ∈ P. Write t for tnβs(λ). Suppose that

n = (n1, . . . , nr) has nd = 2 for some d, and let k =
∑d−1

j=1 nj + 1. Let

fk(Gt(λ)) =
∑
µ∈Pt

Lµλ(q)Gt(µ).

Then

Lµλ(q) =


[1 + nλµ]q, if λ can be obtained from µ

by removing a normal node nλµ of n-residue k − s;

0, otherwise.

Here nλµ is the number of normal nodes of µ with n-residue k− s and to the

right of nλµ.

Proof. By Proposition 4.5 and adopting the notations there with λ = Par(B)

and λ(i) = Par(Bi), we have

fk(Gt(λ))) = Φ−1
t (Gt1(λ(1))⊗ · · · ⊗Gtd−1

(λ(d−1))⊗

f(Gtd(λ
(d)))⊗Gtd+1

(λ(d+1))⊗ · · · ⊗Gtr(λ
(r)))

= Φ−1
t (Gt1(λ(1))⊗ · · · ⊗Gtd−1

(λ(d−1))⊗∑
µ(d)∈Ptd

Lµ
(d)

λ(d)
(q)(Gtd(µ

(d)))⊗Gtd+1
(λ(d+1))⊗ · · · ⊗Gtr(λ

(r)))

The result thus follows from Theorem 5.6. �

Corollary 5.8. Let λ, µ ∈ P. Suppose that there exists a residue class i

modulo n such that λ and µ has the same sets of nodes of n-residue i − 1

and i+ 1. Let s ∈ Z. Writing fs+i(Gs(λ)) =
∑

ν∈P L
ν
s(q)Gs(ν), we have

Lµs (q) =


[1 + nλµ]q, if λ can be obtained from µ

by removing a normal node nλµ of n-residue i;

0, otherwise.

Here, nλµ is the number of normal nodes of µ with n-residue i and to the

right of nλµ.

Proof. Let n = (2, n− 2), and let x = 1− i. By Corollary 4.2, our conditions

on λ and µ force tnβx(λ) = tnβx(µ). Thus, by Corollary 5.4 and Corollary 5.7

(with k = 1), we see that the result holds for Lνx(x). To deal with a general

s, let θab : Fa → Fb (a, b ∈ Z) be the C(q)-linear isomorphism defined

by θab(βa(ν)) = βb(ν) for all ν ∈ P. Then θab(Ga(λ)) = Gb(ν) for all

ν ∈ P. Furthermore θab intertwines fr with fr+b−a for all residue class r

modulo n. Thus, applying θxs to f1(Gx(λ)) =
∑

ν∈P L
ν
x(q)Gx(ν), we get

fs+i(Gs(λ)) =
∑

ν∈P L
ν
x(q)Gs(ν), and the result follows. �
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6. Decomposition numbers

Recall that we identified the Grothendieck group K0(
⊕

m Sm-mod) with

the classical (non-quantized) Fock space Fc. Recall also the A-lattice FZ,A
(where A = Z[q, q−1]) and the Z-linear map εq=1 : FZ,A → Fc which inter-

twines the Chevalley generators of U−A with the i-Ind functors.

We assume in this section that n = p, the characteristic over which the

Schur algebras Sm are defined. Let n = (n1, . . . , nr) be a tuple of positive

integers summing to p. For each t ∈ Tn, define %t : Fc → Fc to be the

natural projection such that %t(λ) = λ if λ ∈ Pt and zero otherwise, and

we write Fc,t for the image of %t. In addition, if M is a module of a Schur

algebra, we write [M ]t for %t[M ].

Theorem 6.1. Let n = (n1, . . . , nr) be a tuple of positive integers summing

to p. Suppose that nj ∈ {1, 2} for all j, so that U(n) is isomorphic to a

tensor product of copies of Uq(sl2). Let t ∈ Tn. Then for all µ ∈ Pt, we

have [P (µ)]t = εq=1(Gt(µ)). Equivalently, dλµ = d t
λµ(1) for all λ, µ ∈ Pt.

Proof. We follow an inductive argument reminiscent of the proof of The-

orem 5.2. Once again, we prove the following equivalent statement: if µ ∈ P ,

then [P (µ)]tn
βs(µ)

= εq=1(Gtn
βs(µ)

(µ)) for all s ∈ Z. If µ = ∅ the result is clear.

So let µ 6= ∅ and assume the statement holds for all partitions µ̃ such that

|µ̃| < |µ|, or both |µ̃| = |µ| and µ̃ < µ. Let s ∈ Z and let t = tnβs(µ). Let

c = max{i ∈ Z | t(i, j) > 0 for some j}. There are two cases to consider.

If Xn
c,j(βs(µ)) = {0, . . . , t(c, j)−1} for all j (i.e. the beads occurring in each

section of row b in the n-abacus display of B occupy the leftmost positions),

then vn1,Xn
c,1(βs(µ)) ⊗ · · · ⊗ vnr,Xn

c,r(βs(µ)) is the highest weight vector for the

irreducible U(n)-module
∧t(c,1)(Vn1)⊗ · · · ⊗

∧t(c,r)(Vnr).

Let λ ∈ Pt. Note that if λ > µ, then dλµ = 0 by Proposition 2.5(2), and

d t
λµ(q) = 0 by Lemma 4.4(3). So we may assume that λ ≤ µ. In this case,

Xn
c,j(βs(λ)) = Xn

c,j(βs(µ)) for all j. Let t′ ∈ Tn such that

t′(i, j) =

{
t(i, j), if i 6= c;

0, if i = c.

Write s′ = s(t′). Let λ̃, µ̃ ∈ P such that βs′(λ̃) and βs′(µ̃) may be obtained

by removing the beads in row c from the n-abacus displays of βs(λ) and

βs(µ) respectively. Then λ̃, µ̃ ∈ Pt′ and are the partitions obtained from λ

and µ respectively by removing the first s− s′ parts, so that |µ̃| < |µ|. We

have

dλµ = dλ̃µ̃ = d t′

λ̃µ̃
(1) = d t

λµ(1),

where the first equality is ‘row removal’ [Jam, Theorem 6.18], the second by

induction and the last by Lemma 2.3(2).
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We now proceed to the second case. In this case, there is a bead in row c

of the n-abacus display of βs(µ) having a vacant preceding position that is

in the same section as the bead. Formally, there exists k ∈ βs(µ) such that

b knc = c, k − 1 /∈ βs(µ), and fk ∈ U(n). Let λ be the partition such that

βs(λ) = βs(µ) ∪ {k − 1} \ {k}. Then λ ∈ Pt, and we have, by Corollary 3.3

and Corollary 5.4,

fk(Gt(λ)) = Gt(µ) +
∑
ν∈Pt
|ν|=|µ|
ν<µ

Lνλ(q)Gt(ν)

[(k − s)-Ind(P (λ))] = [P (µ)] +
∑
ν∈P
|ν|=|µ|
ν<µ

Lνλ[P (ν)],

and Lνλ = [(k−s)-Res(L(ν)) : L(λ)] ∈ N0 for all ν. Note that Fc,s is invariant

under (k−s)-Ind for all s ∈ Bs. Thus applying %t to the last equation above,

we get by Lemma 3.4

(k − s)-Ind([(P (λ))]t) = [P (µ)]t +
∑
ν∈Pt
|ν|=|µ|
ν<µ

Lνλ[P (ν)]t.

Hence

[P (µ)]t − εq=1(Gt(µ)) = (k − s)-Ind([P (λ)]t)− εq=1(fk(Gt(λ)))

+
∑
ν∈Pt
|ν|=|µ|
ν<µ

(Lνλ(1)εq=1(Gt(ν))− Lνλ[P (ν)]t)

=
∑
ν∈Pt
|ν|=|µ|
ν<µ

(Lνλ(1)− Lνλ) εq=1(Gt(ν)), (∗)

using the fact that εq=1 intertwines fk and (k−s)-Ind, and applying induction

hypothesis to λ and ν.

By Theorem 2.6 and Corollary 5.7, we see that Lνλ(1) ≤ Lνλ for all ν ∈ Pt.
If Lνλ(1) 6= Lνλ for some ν ∈ Pt, let ρ ∈ Pt be maximal with respect to ≥Jp
such that Lρλ(1) 6= Lρλ. Then Lρλ(1) < Lρλ, and, for all ν ∈ Pt, Lνλ(1)−Lνλ = 0

if ν >Jp ρ while dρν(q) = 0 if ν 6≥Jp ρ by Theorem 2.1(3). Thus, comparing

the coefficient of βs(ρ) in both sides of (∗), we get by Theorem 5.2

dρµ − dρµ(1) =
∑
ν∈Pt
|ν|=|µ|
ν<µ

(Lνλ(1)− Lνλ)dρν(1) = Lρλ(1)− Lρλ.

But dρµ ≥ dρµ(1) by Proposition 2.5(3) while Lρλ(1) < Lρλ, giving us a

contradiction. Therefore, Lνλ(1) = Lνλ for all ν ∈ Pt, and we get from (∗)
that [P (µ)]t = εq=1(Gt(µ)), as desired. �
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Corollary 6.2. Let n = (n1, . . . , nr) be a tuple of positive integers summing

to p, with nj ∈ {1, 2} for all j. Then dλµ = dλµ(1) for all λ, µ ∈ Pt and

t ∈ Tn.

Proof. This follows immediately from Theorem 5.2 and Theorem 6.1. �

We note that if n = (n1, . . . , nr) is a tuple of positive integers summing to

p, with nj ∈ {1, 2} for all j, then d t
λµ(q), and hence dλµ(q) and dλµ by virtue

of Theorem 6.1 and Corollary 6.2, can be described by the closed formulas

found by Frenkel and Khovanov using Theorem 5.5 for all t ∈ Tn, λ, µ ∈ Pt.

Remark. Corollary 6.2 does not hold for arbitrary n, even under James’s

hypothesis that the size of the partitions λ and µ is strictly less that p2 [Jam].

Williamson [W] produces counterexamples in which λ, µ ∈ Pt are partitions

of p
(
N
2

)
< p2, and where n = (p) and t is given by

t(i) =


p if i ≤ 0

1 if 1 ≤ i ≤ N
0 if i ≥ N + 1.

Two residue classes a, b modulo p are adjacent if and only if a− b ≡p ±1.

Lemma 6.3. Let λ, µ ∈ P, and let I be the set of p-residues of the nodes in

([λ] \ [µ]) ∪ ([µ] \ [λ]). Suppose that no two elements of I are adjacent. Then

there exist s ∈ {0, 1} and n = (n1, . . . , nr), with nj ∈ {1, 2} for all j and∑r
j=1 nj = p, such that tnβs(λ) = tnβs(µ) and I = {

∑i
j=1 nj − s− 1 | ni = 2}.

Proof. Let s = 1 if 0 ∈ I and s = 0 if 0 /∈ I. Let n = (n1, . . . , nr) be a

sequence of positive integers summing to p such that {
∑i

j=1 nj − s | s ≤
i ≤ r − 1 + s} = {0, 1, . . . , p − 1} \ I. Since the elements of I are pairwise

non-adjacent, we see that nj ≤ 2 for all j. Furthermore, tnβs(λ) = tnβs(µ) by

Corollary 4.2 and I = {
∑i

j=1 nj − s− 1 | ni = 2}. �

If µ ∈ P, and λ is obtained from µ by removing a removable node of

p-residue i and adding an addable node of p-residue i, we say that λ is

obtained from µ by moving a node of p-residue i.

Theorem 6.4. Let µ ∈ P and suppose that λ is obtained from µ by moving

some nodes whose p-residues are pairwise non-adjacent. Let I be the subset

of residue classes modulo p which occur as p-residues of the nodes moved to

obtain λ. For each i ∈ I, let λ(i) be the partition obtained from µ by moving

only those nodes with p-residue i. Then

dλµ =
∏
i∈I

dλ(i),µ.

Proof. By Lemma 6.3, there exist s ∈ {0, 1} and n = (n1, . . . , nr), with

nj ∈ {1, 2} for all j and
∑r

j=1 nj = p, such that tnβs(λ) = tnβs(µ). Furthermore,
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by Corollary 4.2, tnβs(λ) = tnβs(λ)(i) = tnβs(µ) for all i ∈ I. By Theorem 5.5

and adopting the notations there, we have

d pλµ(q) =
r∏
j=1

d
nj
λ(j)µ(j)

(q) =
∏

j :nj=2

d 2
λ(j)µ(j)

(q),

since λ(j) = µ(j) if nj = 1. For each j such that nj = 2, let ij =
∑j

i=1 ni−s−1.

Then

d pλ(ij),µ
(q) = d 2

λ(j)µ(j)
(q)

∏
k 6=j

dnk
µ(k)µ(k)

(q)

 = d 2
λ(j)µ(j)

(q),

by Theorem 5.5 and Theorem 2.1(1). Thus,

dλµ = d pλµ(1) =
∏

j :nj=2

d 2
λ(j)µ(j)

(1) =
∏

j :nj=2

d pλ(ij),µ
(1) =

∏
i∈I

d pλ(i),µ(1) =
∏
i∈I

dλ(i),µ

by Lemma 6.3 and Corollary 6.2. �

Theorem 6.5. Let µ ∈ P and let λ be the partition obtained from µ by

removing a removable node n of p-residue i and moving m other nodes, such

that the p-residues of these nodes (including n) are pairwise non-adjacent.

Then

[i-Res (L(µ)) : L(λ)] = 0,

unless m = 0 and n is a normal node of µ.

Proof. By Lemma 6.3, there exist s ∈ {0, 1} and n = (n1, . . . , nr) with

nj ∈ {1, 2} for all j and
∑r

j=1 nj = p such that tnβs(λ) = tnβs(µ). Let

t = tnβs(λ). Applying %t to i-Ind([P (λ)]) =
⊕

ν∈P L
ν
λ[P (ν)], where Lνλ =

[i-Res (L(ν)) : L(λ)] for all ν ∈ P, we get by Lemma 3.4(2)

i-Ind([P (λ)]t) =
⊕
ν∈Pt

Lνλ[P (ν)]t.

On the other hand, applying εq=1 to fs+i(Gt(λ)) =
∑

ν∈Pt
Lνλ(q)Gt(ν), where

Lνλ(q) ∈ A for all ν ∈ Pt, we get by Theorem 6.1

i-Ind([P (λ)]t) =
⊕
ν∈Pt

Lνλ(1)[P (ν)]t.

Thus, Lνλ(1) = Lνλ for all ν ∈ Pt. The statement now follows from Corol-

lary 5.7. �

Remark.

(1) Exactly the same proofs of Theorem 6.4 and Theorem 6.5 in fact

prove the respective results hold in a slightly more general setting:

whenever any two nodes in the symmetric difference of [λ] and [µ]

do not have adjacent p-residues. But the additional information is

actually trivial—they can easily be seen to hold with our current

knowledge of decomposition numbers and branching coefficients of

Schur algebras.
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(2) We have deliberately left out in Theorem 6.5 the closed formula for

[i-Res (L(µ)) : L(λ)] when λ is obtained from µ by removing a normal

node of residue i (which is one plus the number of normal nodes of µ

of residue i and to the right of the normal node removed to obtain λ,

see Theorem 2.6) so as not to give a false impression that we have

an alternative and independent proof of Theorem 2.6.
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