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ON THE MAGNITUDE OF A FINITE DIMENSIONAL ALGEBRA

JOSEPH CHUANG, ALASTAIR KING, AND TOM LEINSTER

ABSTRACT. There is a general notion of the magnitude of an enriched category,
defined subject to hypotheses. In topological and geometric contexts, magnitude
is already known to be closely related to classical invariants such as Euler charac-
teristic and dimension. Here we establish its significance in an algebraic context.
Specifically, in the representation theory of an associative algebra A, a central
role is played by the indecomposable projective A-modules, which form a cate-
gory enriched in vector spaces. We show that the magnitude of that category is
a known homological invariant of the algebra: writing x4 for the Euler form of A
and S for the direct sum of the simple A-modules, it is x4 (S, S).

1. INTRODUCTION

This paper is part of a large programme to define and investigate cardinality-like
invariants of mathematical objects. Given a monoidal category V together with a
notion of the ‘size’ | X| of each object X of V| there arises automatically a notion of
the ‘size’ or ‘magnitude’ of each V-category (subject to conditions). Here we apply
this general method in the context of associative algebras.

More specifically, for any finite-dimensional algebra A, the category IP(A) of
indecomposable projective A-modules plays a central role (discussed below) in the
theory of representations of A. This category is enriched in finite-dimensional vector
spaces, and, taking dimension as the base notion of size, we can then consider the
magnitude of IP(A). We show that this is a known homological invariant of the
original algebra A.

Little algebra will be assumed on the reader’s part; all the necessary background
is provided in Section 2.

The general definition of magnitude is as follows [9, §1.3]. Let V be a monoidal
category equipped with a function |- | on its set of objects (taking values in a semir-
ing, say). Let A be a V-category with finitely many objects. Denote by Za = (Zy)
the square matrix whose rows and columns are indexed by the objects of A, and
with entries

Zab = ‘A(avb)’ (11)

(a,b € A). If Z4 is invertible, the magnitude |A| of A is defined to be the sum of
all the entries of Z;l.

Since Za need not be invertible, magnitude is not defined for every A. But
where magnitude is defined, we may harmlessly extend the definition by equivalence,
setting |A| = |B| whenever A and B are equivalent V-categories such that B has
finitely many objects and Zp is invertible. (There is no problem of consistency, since
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if A and B are equivalent and both ZA and Zg are invertible then both A and B are
skeletal—that is, isomorphic objects are equal-—and so A and B are isomorphic.)
Unmotivated as this definition may seem, multiple theorems attest that magnitude
is the canonical notion of the size of an enriched category. For example, take V to
be the category of finite sets and | X| to be the cardinality of a finite set X. Then we
obtain a notion of the magnitude of a finite category. In this context, magnitude is
also called Euler characteristic [8], for the following reason. Recall that every small
category A gives rise to a topological space BA, its classifying space or geometric
realisation. Proposition 2.11 of [8] states that under finiteness hypotheses,

Al = X(BA). (1.2)

Thus, the Euler characteristic of a category has a similar status to group
(co)homology: it is defined combinatorially, but agrees with the topological notion
when one passes to the classifying space.

For another example, let V be the ordered set ([0, 0], >) with addition as the
monoidal structure, so that metric spaces can be viewed as V-categories [6]. For
x € [0,00], put |z| = e™*. (The virtue of this choice is that |z ® y| = |z||y|.) Then
we obtain a notion of the magnitude of a finite metric space. This extends naturally
to a large class of compact metric spaces [9, 11, 12]. The magnitude of a compact
subset of R™ is always well-defined, and is closely related to classical quantities of
geometric measure. For example, a theorem of Meckes [12, Corollary 7.4] shows that
Minkowski dimension can be recovered from magnitude, and conjectures of Leinster
and Willerton [10] state that magnitude also determines invariants such as volume
and surface area.

Here we study the case where V is the category of finite-dimensional vector spaces
and |X| = dim X. We then obtain a notion of the magnitude of a linear (that is,
V-enriched) category. Our main theorem is this:

Theorem 1.1. Let A be an algebra of finite dimension and finite global dimension
over an algebraically closed field. Write IP(A) for the linear category of indecom-
posable projective A-modules, (S;)icr for representatives of the isomorphism classes
of simple A-modules, and S = @,.; Si. Then

TP(A)| =) (~1)" dim Ext’} (S, S). (1.3)

n=0

We now explain the context of this result; background can be found in the next
section.

Any associative algebra A gives rise to several linear categories, including the
category of all A-modules and the one-object category corresponding to A itself
(which trivially has magnitude 1/dim A). But it also gives rise to the category
IP(A) of indecomposable projective A-modules, whose main significance is that its
representation theory is the same as that of A:

A-Mod [IP(A)°P, Vect]

M o Homa(o M) (1.4)
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where the right-hand side is the category of contravariant linear functors from IP(A)
to vector spaces. In other words, IP(A)°P and the one-object linear category A are
Morita equivalent.

The Krull-Schmidt theorem states that every finitely generated A-module can
be expressed as a direct sum of indecomposable modules, in an essentially unique
way. It implies that the A-module A is a direct sum of indecomposable projective
modules, and that, moreover, every indecomposable projective appears at least once
in this sum. Thus, the indecomposable projectives are the ‘atoms’ of A, in the sense
of being its constituent parts.

This explains the equivalence (1.4). The absolute colimits in linear categories are
the finite direct sums and idempotent splittings (that is, direct summands). Every
finitely generated projective module is a direct sum of indecomposable projectives,
so the category of finitely generated projectives is the Cauchy completion of IP(A).
On the other hand, every finitely generated projective is a direct summand of a direct
sum of copies of the A-module A, so the category of finitely generated projectives is
also the Cauchy completion of the one-object category A°P. Hence IP(A) and A°P
have the same Cauchy completion, and are therefore Morita equivalent.

The simple modules, too, can be thought of as ‘atomic’ in a different sense. A
simple module need not be indecomposable projective, nor vice versa. However, the
two conditions are closely related: as recounted in Section 2, there is a canonical
bijection between the isomorphism classes of simple modules and the isomorphism
classes of indecomposable projectives.

The condition that A has finite global dimension guarantees that the sum in (1.3)
has only finitely many nonzero terms. The condition that A has finite dimension
guarantees that the linear category IP(A) is equivalent to one with finitely many
objects and finite-dimensional hom-spaces, as we shall see. This is a necessary
condition in order for the magnitude of IP(A) to be defined. It is not a sufficient
condition, but part of the statement of Theorem 1.1 is that |IP(A)| is defined.

Theorem 1.1 was first noted by Catharina Stroppel under the additional hypoth-
esis that A is a Koszul algebra (personal communication, 2009). We observe here
that the Koszul assumption is unnecessary.

2. ALGEBRAIC BACKGROUND

Here we assemble all the facts that we will need in order to state and prove
the main theorem. General references for this section are [13, Chapter I] and [2,
Chapter 1].

Throughout this note, K denotes a field and A a finite-dimensional K-algebra
(unital, but not necessarily commutative). ‘Module’ will mean left A-module. Since
A is finite-dimensional, a module is finitely generated over A if and only if it is
finite-dimensional over K.

Simple and indecomposable projective modules. Details for this part can be
found in [7], as well as in the general references above.

A nonzero module is simple if it has no nontrivial submodule, and indecompos-
able if it has no nontrivial direct summand. There is a canonical bijection between
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the isomorphism classes of simple modules S and the isomorphism classes of inde-
composable projective modules P, with S corresponding to P if and only if S is a
quotient of P. (It is not an equivalence of categories.)

Choose representatives (.5;);cr of the isomorphism classes of simple modules and
(P;)ier of the isomorphism classes of indecomposable projective modules, with S; a
quotient of P;.

Modules of both types are finitely generated (indeed, cyclic), so each vector space
Hom 4 (P;, P;) is finite-dimensional. Moreover, one can use either the Jordan-Hdélder
theorem or the Krull-Schmidt theorem to show that I is finite. Denote by IP(A) the
category of indecomposable projective A-modules and all homomorphisms between
them, which is a K-linear category. Then IP(A) has finite-dimensional hom-spaces
and only finitely many isomorphism classes of objects.

We have Homa(P;, S;) = 0 when i # j, since any homomorphism into a simple
module is zero or surjective. It can be shown that Homu(P;,S;) = End4(S;) as
vector spaces. This is a skew field, isomorphic to K if K is algebraically closed.

Homological algebra. For each n > 0, there is a functor
Ext;: A-Mod®? x A-Mod — Vect. (2.1)

One can characterise Ext’} (X, —) as the nth right derived functor of Hom4 (X, —),
and Ext’y(—,Y) as the nth right derived functor of Hom4(—,Y"), but we will only
need the following consequences of these characterisations.

First, Exty = Hom4. Second, if P is projective then Ext” (P, —) = 0 for all n. > 0.
Third, Ext’} preserves finite direct sums in each argument. Fourth, Ext’i(X,Y) is
finite-dimensional if both X and Y are. Finally, given any A-module V' and short
exact sequence

0-W->X—-Y —0, (2.2)

there is an induced long exact sequence
0 — ExtQ(V, W) — Ext%(V, X) — Ext%(V,Y)
— BExth (V, W) — Exth (V, X) — -, (2.3)

and dually a long exact sequence 0 — Ext% (Y, V) — ---.

Assume henceforth that A has finite global dimension [14, Chapter 4]. This
means that there exists N € N such that every A-module X has a projective reso-
lution of the form

0—-Qn— - —>Q1 — X —0. (2.4)

When X is finite-dimensional, the projective modules (); can be chosen to be finite-
dimensional too.
A condition equivalent to finite global dimension is that Ext’y = 0 for all n > 0.
For finite-dimensional A-modules X and Y, we may therefore define
o0
Xa(X,Y) =) (-1)" dimExt}(X,Y) € Z (2.5)
n=0
(a finite sum). This x4 is the Euler form of A. We have xa(, X,,—) =
> xa(Xy,—) for any finite family (X,) of modules, and similarly in the second
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argument. Moreover, the observations above imply that

xA(P;, Pj) = dim Homx (P}, Pj) (2.6)
for all 4,j € I, and that
dimEnda(S;) ifi=j,
0 if i # j.

When K is algebraically closed, x 4(F;,S;) is therefore just the Kronecker delta d;;.

xa(P, S5) = { (2.7)

Grothendieck group. The Grothendieck group K(A) is the abelian group gen-
erated by the finite-dimensional A-modules, subject to the relation X = W +Y for
each short exact sequence (2.2) of finite-dimensional modules. Writing [X] for the
class of X in K(A), one easily deduces that, more generally, >, (—1)"[X,] = 0 for
any exact sequence

0—=X1—-—=X,—0. (2.8)

For example, take a short exact sequence (2.2) and a finite-dimensional module V.
The resulting long exact sequence (2.3) has only finitely many nonzero terms (since
A has finite global dimension), so the alternating sum of the dimensions of these
terms is 0, giving xa(V,X) = xa(V,W) + xa(V,Y). The same holds with the
arguments reversed. Thus, x4 defines a Z-bilinear map K(A) x K(A4) — Z.

We now show that K(A) is free as a Z-module, and in fact has two canonical
bases.

First, the family ([SZ])Z ¢ generates the group K(A). Indeed, for any finite-
dimensional A-module X, we may take a composition series

0=X,<---< X1 <Xy=2X, (2.9)

and then [X] =", [X,1/X,].

Second, the family ([PZ])z ¢, generates K(A). Given a finite-dimensional A-
module X, we may take a resolution (2.4) by finite-dimensional projective modules,
and then [X] = an\le(—l)’“rl [Qr]. On the other hand, each @, is a finite direct
sum of indecomposable submodules, which are projective since @, is.

Finally, both ([Sz]) and ([BD freely generate the abelian group K(A). This

follows from (2.7) and the Z-bilinearity of x 4.

3. THE RESULT

Recall our standing conventions: A is an algebra of finite dimension and finite
global dimension, over a field K which we now assume to be algebraically closed.
We continue to write (F;);er for representatives of the isomorphism classes of in-
decomposable projective A-modules, and similarly (S;);er for the simple modules,
with S; a quotient of P;.

The linear category IP(A) of indecomposable projective A-modules is equivalent
to its full subcategory with objects P; (i € I). Write Z4 = (Z;j)i jer for the matrix
of this finite linear category, so that Z;; = dim Hom 4 (FP;, P;}).
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We will derive our main result, Theorem 1.1, from the following basic theorem.
(See e.g. [1, Proposition II1.3.13(a)] for an essentially equivalent formulation.) It
implies, in particular, that the matrix Z4 is invertible over the integers.

Theorem 3.1. The inverse of the matriz Z 4 is the ‘Fuler matriz’ E4 = (Ez-j)iyje],
gwen by Eij = xa(S},5;).

Proof. Since ([Pz]) ([Sz]) are both bases for the Z-module K(A), there is
an invertible matrix C’ (ng)z jer over Z such that, writing C' 1 (6 i),

= Cri[Sk], (3.1)

kel

= Cii[Pi] (3.2)

kel

for all j € I. Since K is algebraically closed, equation (2.7) states that x 4(F;, S;) =
dij. Applying x 4 (F;, —) to each side of (3.1) therefore gives x a(P;, P;) = Cj;, which
by (2.6) is equivalent to Z;; = Cj;. On the other hand, applying x4(—, S;) to each
side of (3.2) gives Ej;; = 6Z-j. Hence Z4 = C4 and E4 = CZI. O

The matrix C4 = Z4 is known as the Cartan matrix of A ([3], [4, §5], [5]).
Explicitly, C;; is the multiplicity of S; as a composition factor of P;.

We now deduce Theorem 1.1. By definition, [IP(A)| is the sum of the entries of
Zgl. Hence by Theorem 3.1 and the Z-bilinearity of x4,

TP(A)] = xa(S),Si) = xa (@ S, @sz) = x4(8,9), (3.3)

1,5€l Jel el
completing the proof.

Example 3.2. Let Q be a finite acyclic quiver (directed graph). Then @ consists of
a finite set I of vertices together with, for each ¢, j € I, a finite set Q(4,7) of arrows
from i to j. The path algebra A of @) is defined as follows. As a vector space, it
is generated by the paths in @, including the zero-length path e; on each vertex 1.
Multiplication is concatenation of paths where that is defined, and zero otherwise.
We write multiplication in the same order as composition, so that if « is a path from
1 to j and (8 is a path from j to k then fBa is a path from ¢ to k. The identity is
> icr€i- That @Q is finite and acyclic guarantees that A is of finite dimension and
finite global dimension.

Path algebras of quivers are very well-understood (e.g. [13, Chapter I]). The simple
and indecomposable projective A-modules are indexed by the vertex-set I. The
indecomposable projective module P; corresponding to vertex ¢ is the submodule
of the A-module A spanned by the paths beginning at 7. It has a unique maximal
submodule Nj;, spanned by the paths of nonzero length beginning at ¢, and the
corresponding simple module S; = P;/N; is one-dimensional.

Using the facts listed in Section 2, we can compute the Euler form of A. For each
1,7 € I, the short exact sequence

0= N, —-P,—5—0 (3.4)
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gives rise to a long exact sequence

0 — Ext%(S:, ;) = Ext) (P, S;) = Exty (N, Sj) = -+ . (3.5)
Observing that N; = @, PkQ(i’k), we deduce from (3.5) that

K if n =0,
Ext}(S;, S;) = { KQUJ) if n =1, (3.6)
0 ifn> 2.

Hence, writing £ = [[; ;.o Q(i,j) for the set of arrows of @,

K if n =0,
Ext’y(S,5) = < KIPl ifn =1, (3.7)
0 if n > 2.

It follows that x 4(S,S) = |I| — |E|, which is the Euler characteristic (in the elemen-
tary sense) of the quiver Q.

On the other hand, each path from vertex j to vertex ¢ induces a homomorphism
P; — P; by composition, and in fact every homomorphism P, — FP; is a unique
linear combination of homomorphisms of this form. Hence Z;; is the number of
paths from j to 7 in Q.

So in the case at hand, Theorem 1.1 states that if we take an acyclic quiver @,
form the matrix whose (i, j)-entry is the number of paths from j to 4, invert this
matrix, and sum its entries, the result is equal to the Euler characteristic of ). This
was also shown directly as Proposition 2.10 of [8].

4. SOME REMARKS

Arbitrary base fields. The assumption that the base field is algebraically closed
is needed for the simple form of the duality formula, x4(F;, S;) = 6;;. Otherwise,
equation (2.7) only gives

d; ifi=j,
0 ifij,
where d; = dimEnd4(S;). Then, applying xa(F;, —) to (3.1) yields Z;; = d;Cy;

while applying x4(—, i) to (3.2) yields E;; = d;,C;;. Therefore, writing Z;ll = (Zij)
we get

. “
Zij = di ' Eyd; (4.2)

which generalises Theorem 3.1. We can then sum (4.2) to generalise Theorem 1.1
as follows:

where S = DBicr di_lSi, which may be regarded as a formal module or we may note
that (4.3) only depends on the class [S] =3, ; d; '[Si] € K(A4) ®z Q.
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The determinant of the Cartan matrix. The fact that, when A has finite global
dimension, the Cartan matrix C4 is invertible over Z or, equivalently, is unimodular,
i.e. det C4 = £1, is an old observation of Eilenberg [4, §5]. On the other hand, the
‘Cartan determinant conjecture’ that, in fact, det C'4 = 1 is still unsolved in general,
although it is confirmed in many cases; see [5] for a survey.

An easy example is when A is (Morita equivalent to) a quotient of the path algebra
of an acyclic quiver, in which case A is necessarily finite dimensional and of finite
global dimension. In this case Cy4 = Z4 can be made upper triangular with 1s on
the diagonal, so it certainly has det C4 = 1. As another example, Zacharia [15]
showed that the conjecture holds whenever A has global dimension 2.

It is not hard to give an example of an algebra A for which C4 = Z 4 is not even
invertible over Q: e.g. the quiver algebra given by a single n-cycle, with all paths of
length n set to 0, has Cj; = Z;; = 1 for all 4, j € I. Inevitably, this algebra does not
have finite global dimension.

In this example, it is in fact still possible [9, §1] to define the magnitude of IP(A),
and indeed |[IP(A)| = 1. However, it is less clear how one might find a homological
interpretation of this.

Acknowledgements. We thank Iain Gordon, Catharina Stroppel, Peter Webb and
Michael Wemyss for helpful discussions.
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