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A closed form expression, in terms of some functions which we call exponential Appell poly-
nomials, for the probability of non-ruin of an insurance company, in a finite-time inter-
val is derived, assuming independent, non-identically Erlang distributed claim inter-arrival
times, 7, ~ Erlang(gi,A\;),4 = 1,2,..., any continuous joint distribution of the claim
amounts and any non-negative, non-decreasing real function, representing its premium in-
come. In the special case when 7; ~ Erlang(g;,A),7 = 1,2,... it is shown that our main
result yields a formula for the probability of non-ruin expressed in terms of the classical
Appell polynomials. We give another special case of our non-ruin probability formula for
7; ~ Erlang (1, A;),¢ = 1,2,..., i.e., when the inter-arrival times are non-identically exponen-
tially distributed and also show that it coincides with the formula for Poisson claim arrivals,
given in [18], when 7; ~ Erlang(1,\),7 = 1,2, .... The main result is extended further to a risk
model in which inter-arrival times are dependent random variables, obtained by randomizing
the Erlang shape or/and rate parameters. We give also some useful auxiliary results which
characterize and express explicitly (and recurrently) the exponential Appell polynomials which
appear in our finite time non-ruin probability formulae.

Keywords: finite-time (non-) ruin probability; risk process; Erlang claim inter-arrival
times; dependent claim amounts; exponential Appell polynomials; divided difference;
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1. Introduction

Evaluating the probability, P(x), that the path of a stochastic process, S; does not
cross a curved boundary, h(t), before time x, is known as the first crossing of a
curved upper boundary problem. First crossing problems arise in insurance, finance,
queuing and storage and have attracted a lot of attention in the corresponding
research communities. In the context of risk theory, the process, Ry = h(t) — Sy, is
known as the risk process of an insurance company, where S, models the arrival
of consecutive claims up to time ¢, the deterministic function h(t), represents the
aggregate premium income up to time ¢ and P(x) is interpreted as the probability
of survival (non-ruin) of the company within the finite time interval [0, z], z > 0. In
classical ruin theory, Sy is assumed a compound Poisson process and h(t) = u+ ct,
where u > 0 is the initial reserve of the company, and ¢ is the positive premium
rate.
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Since the seminal paper [26] where the (classical) risk model was first considered,
huge volume of applied probability literature has been devoted to various ruin-
theoretic problems related to estimating ruin probabilities and first crossing time
distributions under various definitions of the process S; and the boundary h(t).
To mention only a few of the contributions in this strand of literature we refer to
the papers [2, 7, 13, 27-29] and more recently, to [12, 19, 23, 33| and [32]. The
reader is referred to the books [16] and [3] where more ruin probability results and
references can be found.

Another stream of literature on ruin probability is devoted to the so called Sparre
Andersen risk model in which claim amounts and the premium income are as in
the classical case but the Poisson assumption for the claim arrivals is released,
assuming that claim inter-arrival times are independent and identically distributed
random variables with generic distribution F'. Ruin probabilistic results for the
special case F' ~ Erlang(2,A) in the Sparre Andersen model have been obtained
in [5, 6, 8-10, 25, 31] and in [24] and [14, 15], in the case when claim inter-arrival
times have distribution F' ~ Erlang(n, A). In the latter case, [11] derive expressions
for the density of the time to ruin in the special case of independent identically
exponentially distributed claim amounts. Some research has also been performed
beyond the Sparre Andersen assumption of independence of the times between
consecutive claim arrivals. Thus, risk models in which an appropriate dependence
structure is imposed on the claim inter-arrival times and claim sizes, has been
considered in [1], assuming the premium income function, h(t) = u + ct, and also
in [4].

Despite the great attention which ruin probabilities have received, finding closed
form expressions for P(z) has in general proved a difficult task. Such expressions
involving generalized Appell polynomials have been obtained in [29] in the case
when, h(t) is a non-decreasing premium income function, claims arrive according
to a Poisson process and claim amounts are assumed integer valued, independent
and identically distributed random variables. Closed form expressions for P(x),
involving classical Appell polynomials have been derived in [17, 18] and [20] in a
more general risk model, assuming, any non-decreasing real-valued function h(t),
Poisson claim arrivals and any integer-valued or continuous joint distribution for
the claim sizes, thus allowing them to be dependent.

In this paper, we consider a reasonably general risk model, in which claim inter-
arrival times are assumed independent, non-identically Erlang distributed random
variables with arbitrary shape and rate parameters, claim amounts may be depen-
dent, with any continuous joint distribution and the premium income function h(t)
is any non-negative non-decreasing real function. Our main result is a closed form
expression of the non ruin probability in terms of a new class of functions which we
call exponential Appell polynomials. We extend further the generality of the risk
model and incorporate dependence between consecutive claim inter-arrival times,
by appropriately randomizing the Erlang shape, and/or rate parameters and give
the ruin probability in this case as well.

The precise formulation of the risk model considered in the paper is as follows.
The aggregate claim amount to the insurance company is modelled by the increas-
ing pure-jump process

Nt
Sp=>Y Wi,
=1

where W1, Ws, .. ., is a sequence of positive random variables, representing the sizes
of consecutive claims and NV, is a process, counting the number of claims up to time
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t (St = 0 when Ny = 0). We will denote Ny = #{i: 7 +...+ 7 <t}, where # is
the cardinality of the set {-} and 71, 79,... are the consecutive inter-arrival times
of the claims. We will also assume that the sequence Wy, W, ... is independent of
T1,T9,.... The random variables W1, Wy, ... may be dependent with any continuous
joint distribution with joint probability density function, ¥w, . w, (w1,..., wg).

We further assume that the claim inter-arrival times 7;, ¢ = 1,2, ... defining the
process, N(t), are independent, (non-identically) Erlang (g;, \;) distributed random
variables with shape parameter, g; > 0 and rate parameter, A\; > 0, i.e. 7; ~
Erlang (gi, \i), with density

)\i}L 19i— le—kit

fﬂ- (t) - T (gz) )

where g;, i = 1,2, ... is a sequence of arbitrary positive integers and \;, i = 1,2, ...
is a sequence of (possibly coincident) positive real numbers. In other words, we
assume that the inter-arrival times 7;, ¢ = 1,2, ... have Gamma distributions with
(positive) integer shape parameters g; and scale parameters \;, i = 1,2,....

Consider an upper boundary given by the non-decreasing, non-negative, real
valued function h(t) on [0,00) such that lim; o h(t) = +o00. The function h(t),
modelling the premium income up to time ¢, may be continuous or not. If h(t)
is discontinuous it will be assumed that h=!(y) = inf{z : h(z) > y}. Define the
insurance risk process

and denote by
T:=inf{t:t>0,R; <0},

the time of the first crossing of the trajectory t| — S; and the boundary ¢| — h(t).
Let us consider the finite time interval [0, z], x > 0, and denote by P(T > x) the
probability that the trajectory ¢| — S; will not cross the boundary t| — h(t) in
time .
In what follows we will give an explicit expression for the probability of non-ruin
P(T > x), up to time z, assuming that the parameters g; and \; are such that
a.c.

Y o1 % = oo, which is a sufficient condition for 1" ; 7; = +o00. The latter con-
o - n—00

dition, is required since otherwise ruin may occur with probability one. We show
that the probability of non-ruin, P(T > z), is expressed in terms of a sequence
of functions, Bi(x), k = 0,1,2,... which obey a specific system of linear differen-
tial equations. As established by Lemmas A.5 and A.6, Bi(x) is an exponential
Appell polynomial. The latter is a linear combination of exponentials multiplied
by classical Appell polynomials. We will also consider non-ruin probabilities in a
model with dependent claim inter-arrival times in which dependence is introduced
by randomizing the parameters of the Erlang distributed claim inter-arrival times.

The structure of the paper is as follows. In Section 2.1 we derive our main result,
the closed form expression (4), for the probability of non-ruin, P(T" > z), in a
risk model with independent non-identically Erlang distributed claim inter-arrival
times. In Section 2.2 we give explicit formulae for P(T' > z) in the following special
cases: 1) when A = A\; = Ao = ...and, g;,7 = 1,2,... are arbitrary positive integers,
(see Corollary 2.3); 2) when 1 = g1 = g2 = ... and A;,i = 1,2,... are arbitrary,
pairwise distinct positive real numbers, i.e., when claim inter-arrival times are non-
identically exponentially distributed (see Corollary 2.4), and also; 3) when g; are
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arbitrary positive integers and \;, i = 1,2,... are arbitrary, pairwise distinct (see
Corollary 2.5 and Lemma A.6). It is shown that the non-ruin probability formula
(1), given in [18], for the case of Poisson claim arrivals is a special case of formula
(19),for l=g1=go=..,and A=A =X =....

In Section 3.2 we introduce a risk model in which the claim inter-arrival times
T, T9, ..., are dependent random variables, obtained by randomizing the Erlang
shape parameters g1, g2, . . .. or/and the Erlang rate parameters Aj, Ag, .. ., assuming
they are random variables with appropriate joint distributions. We point out that,
based on our main result, ruin probability formulae for these various dependent
models are easily derived. As an illustration we give a formula for P(T > z), in
the special case when A\ = A\; = Ao = ... and the Erlang shape parameters are
modelled by a sequence of integer valued positive random variables G1,Go, ...
(see Corollary 2.6 ).

In the Appendix we give some useful lemmas which are used in proving the
results in Section 2 and establish some recurrent expressions and other important
properties of the exponential Appell polynomials, Bi(z), k =0,1,2,....

2. The probability of survival under Erlang (g;, A;) claim arrivals

In this section we present our main result for P(T > z) assuming Erlang (g;, \;)
distributed claim inter-arrival times. We consider also several special cases of dif-
ferent choices of the Erlang parameters g;, and J\;, including their randomization
under which claim inter-arrival times become dependent.

2.1 Main result

In order to prove our main result we start with representing the Erlang distributed
inter-arrival times as sums of independent identically exponentially distributed ran-
dom variables. For the purpose, we will need some auxiliary variables and functions.
Let the integer-valued function j(k), k= 0,1,2,..., be such that

gL+ g Sk<git . A g F i+ (1)
so that
k01 a-1 g ... gitge—-1 ga+g ... gtgt+tg—1 g+g2+gs
jk) 00 ... 0 1 .. 1 2 . 2 3
Let 71,79,... be a sequence of independent, exponentially distributed random
variables with parameters 601,60y, ... correspondingly, i.e. 7; ~ Exp (6;), such that

9k+1 = Aj(k)+17 k= 0, 1,2, ...and

~ ~ o~ ~ d
(14 .+ T Tgt1 + o+ Tgtger o) = (T1,72,...) .

Obviously, in this more refined representation of the Erlang claim arrivals in terms
of sums of exponentials we have that

91, ...991,991+1, ...991+92, = )\1, ...)\1, )\2, ...)\2, (2)

g1 g2
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noting that the \;-s may possibly coincide. In the sequel it will be convenient to use
the notation 7y, 73, ... for the r.v.s 71,72, ..., in the case when 01 = A\j)11 = 1,
k=0,1,2,....

Denote by T7 = 11,15 = 71 + 72, . . ., the moments of claim arrivals and introduce
the sequence of random variables Tl = T, T2 = 71 + T2,.... Obviously, we can
also write T; = Tgl+...+gi i = 1,2,.... Let us also consider the partial sums, Y,
i =1,2,... of the consecutive claim amounts, Y7 = Wy,Ys = W + W, ... with
probability density function

le, LY (yl,-..,yz) —{ 0 otherwise , (3)

where ¢ (y1,...,y;)) > 0for 0 <y; <...<y; and

/.../go(yl,...,yi)dyl...dyizl.

0<y1 <...<y;

We will also denote by Fy, .y, (y1,...,¥:), the cdf of Y7,...,Y;. For brevity we
will alternatively write F (y1,...,v;)-

It can easily be seen that the joint density vw, . w, (wi,...,w;) of the claim
amount random variables W7y, ..., W, can be expressed as

iy, W) =Ywyows (WL, Y2 — Y1, - Y — Yie1) -

It will be convenient to formulate and prove our main ruin probability result first
in terms of the density fy, _y; (y1,...,%;) and then to restate it, in Corollary 2.2,
in terms of the claim amount random variables W1,...,W;. We will also need
to introduce the non-decreasing sequence of variables Y1,Y2, ..., independent of
71,72, .... and such that 0=V, =...= Y;h_l <Y = Y;h = ... = Ngl+gz_1 <

Yo=Y 19, = ... Gitgatgs—1 < oe e Our main result is given by the following
theorem.

Theorem 2.1: The probability of survival within a finite time x

P(I'>z)=e M:Jrz / / F Qs i) Ay - dyr, (4)

Lo<yi < <yjom <hi(@)

where,
O<s=k+1—(g1+...-+9jm), (5)
and
By(z) = /\j(k—1)+1€_)‘“k”1x/h ( )6)‘j<k>“ZBk,1(z)dz, k=1,2,... (6)
i

with By(x) = e~ M2,
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Remark 1: Above and in what follows, By(x) is an abbreviation for

W (Wi -1) - D Wi—1) h ™ (i) > 7 (i)

7/

~~

9i(k) s
which stems from Lemmas A.1, A.2 and Corollary A.3, noting that (6) coincides

with (A13) for v = h_l(yj(k)),k = 1,2,.... It will be convenient to use the two
notations interchangeably.

Remark 2: Let us note that, as established by Lemmas A.5 and A.6, the func-
tions By(z),k = 0,1,2,..., are exponential Appell polynomials. Their numerical
evaluation is facilitated by the results of Lemmas A.4-A.6 (see also Corollary 2.4).

Proof: By construction, the event T' > x can be expressed as
{T>a}= 0 [{h" (V) <T}ufe <T}]
1=
o0 1 ~ ~ ~
= B [{n (Vosota) <Torovo JUfo < Torna}] @

For the i-th event in (7) we have

{hil (?gl+---+gi> < Tgl+...+gi} U {$ < Tg1+...+gi}
C {h_l (}7g1+...+gi) < Tg1+~~-+gi+r} U {Jj < Tgl+...+gi+r}

for r =0,1,...,¢9;4+1 — 1, which is equivalent to

{h_l <}~/qu+...+gi> < Tgl+...+gi} U {90 < T~gl+...+g7~} c {h_l <3~7) < Tl} U {90 < Tl}

forg1 +...+g9; <1< g1+ ...+ git1. Therefore, for any i = 1,2, ...

{hil (ffgﬁu--ﬁ-gi) < Tgl+...+gi} U {x < Tgl+...+gi}

U e () <ajofeen)]

l=g1+4...+g:

In addition, for 1 <1 < g1, (g1 # 1), we also have
{h‘l (ffl) < Tl} U {a: < Tl} = {h‘l(o) < Tl} U {x < Tl}
:{0<T1}U{x<7~’l}:ﬂ

and hence
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where €2 is the sure event. Thus, from (7), (8) and (9) we obtain
-’ -1 (v 7 7
woa- A0 G <iofen)

Let us consider the (complete) set of events Cy = {Tk < w} N {Tk+1 > x}, k=
0,1,2,..., where z > 0 and Ty = 0. For k = 0, we obviously have {f’o < :c} N

{Tl > x} = {Tl > x} Note that the events C, k = 0,1, ... are mutually exclusive
and that U2 (Cj, = Q . Hence, from (10) we have

P(T>z)=P (iﬁ’ {r (%) <Tifu{e<di}]n (U%%)

=S (Al () <mufe<}na).

(L[ (7) <} e

Now, taking into consideration the facts that {z < Tl} N {Tk < x} = (), for

I =1,...,k, that {x<Tl}ﬂC’k C Cg,forl =k+1,...,00, since {x<Tl} D

{TkH > x}, and also that <lji1 {hil <}~/l) < Tl} ﬁCk> UCr = C, we can

rewrite (12) as

(80 6) <o <)o (44 <rjoc) o
= <l1{h‘1 (V1) < Tz}) NGy (13)

[ Daw
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In view of (13), (11) can now be rewritten as

Il
[]e
~
VS
—~
7
/N
)’_‘ﬁz
N—
AN
el
IN
8
H/_/
D)
>
=
=
/N
52
N—
A\
w’ﬂz
AN
8
H’_/
D)
—
e
x
V
8
H/_/
N—

T xT

:ZE / / Frv g (B tipn)dty - dty | (14)

I GO ROk

where the expectation [E[-] is with respect to the random variables, Yi,...,Y; and
I7 ...Tk+1(t1’ ...y tiy1) is the joint density of Ti,...,Tky1. It can easily be seen

~ ~ ~ /
that the random vector T' = <T1, .. -,Tk+1) coincides in distribution with the
random vector By 17", where 7% = (%1*, . ,%,;*Jrl)/, and Biiiisa (k+1)x (k+1)

dimensional matrix, i.e., By 417" 4 T. Recall that s = k + 1 — 91— - — Gik) and
it is not difficult to see that 1 < s < g;(x)41. From the definition of s, we have that
k+1=g +..4+gjw + s, which we will use frequently in the sequel. The matrix
By is then given in a block-matrix form as

bii - b b1 jk)+1

By = : : : ,
bitky 0 biwik)  Bik)ik)+1
biky+1,1 -+ bjk)+1,500) Bite)+1,5(0)+1

where b, ,, is & g X g, matrix for m,n = 1,..., j(k), with all entries equal to /\i

if m > n, all entries equal to zero if m < n, and where b, ,, is a lower triangular
matrix with all elements in the lower triangle equal to /\i if m = n. The matrixes

bjk)+1,n and by, i1, myn=1,... ,7(k), have dimensions correspondingly, s X g,
and g, x s. All the entries of b;) 11, n=1,... ,j(k), are equal to %, whereas
all the entries of by, jk)41, m=1,...,j(k) are zero. The matrix b; )41 j(k)+1 18

a lower triangular matrix of dimension s x s with all entries in the lower triangle

equal to —L-—. Then, it is not difficult to see that
Aj(r)+1

e VBitit|det By L |if 0 <ty <ty < ... <tppq

. — k+1
fT17-~~7Tk+1(t1"‘"tk“) { 0 otherwise... > (15)
where, 1 = | 1,...,1|, t = (t1,...,tk+1), ()’ stands for transposition, and
——

k+1

det B,;il denotes the determinant of the inverse of By11. It can also be directly
-1

verified that the inverse matrix, B,

is an incomplete, lower triangular matrix,
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with non-zero elements only at the main and next lower diagonals, given as

7 AQ if 91+1§l§g1—|—g2
by = : : : ’
A it 1<i<g1—1
7 A2 it G <l<gi+g2—1
b= ; (16)

A+ ifgr g ST gt F i — 1

and with all other elements equal to zero. In view of (15) and (16), and taking the
expectation, (14) becomes

x +00
-\ 1 (k) \ S
P(T>z)=e +§ / / / /h(y)/m AT N

0<y1< <gx<h(z)
exp [— { Mty + A2 (tg,4g, —tg) + .o+

)‘j(k) (t91+~~+9j<k> - t91+~~~+9j<k>71) + )‘j(k)+1 (t91+~~+9j<k>+s - t91+~-~+gj<k>) }]

dti41 ... dtlde/l,.u,f/k (U1y -, Uk) (17)
It can be seen that, the sequence of random variables Yi,Ys,... is indepen-
dent of T1,T5,..., and is non-decreasing, as required with respect to the ran-

dom variables Yi,Ys,... in equality (2) of [18]that dFy. 3 (J1, -5 0k) =
dFy, ... v,., (1, yjk)) and hence, that (17) can be rewritten as

23 91 g1+1 g91+92
P(T>x—e’\1x+z / / / / / /
t(y1)

O<y1< <y <h(z

gi—1
Loyt —1+1 tortotajy  [torttajpy+1 g1+t g () Fo—1 +o0
/hl(yjm—l) h '/hl(yj(k)—l) /hl(ij)) /h (y() /h YY) /
950 e
M AT N1 exp [~ { Mty + A2 (Bgiags — tg) oo+ Xy (bgutetgyn — oty 1)
+)‘j(k‘)+1 (t91+~-+9j(k>+8 - t91+~~+9j(k>)}] dtpyr...dtidFy, .y, Y (yh T >yj(k)) : (18)

Results (4) and (6) now follow from (18), Lemmas A.1 and A.2 and Corollary
A.3, noting that the multivariate integral in (18), with respect to the variables
t1,ta,...tg+1, coincides with that in (A3) and (6) coincides with (A13) for v =
h_l(yj(k.)),k:LQ,.... (]

In Corollary 2.2, we give a useful restatement of our main result, in terms of
the joint density, ¢¥w, . w, (w1,...,wg), of the individual claim amount ran-
dom variables, Wy,..., Wy, k = 1,2...., noting that ¥w, _w, (wi,...,wg) =
.. v (wi,w; +wa, ..., w1+ ...+ wg).
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Corollary 2.2:  The probability of survival within finite time x

P(T>zx)=

g1—1 2" oo git..tgit1—1

DR o DEED DI B B ) E s U )
r=0

=L l=gt e A9 o<, o w, <h(z) o1

h_l(wl),...,h_l(wl),...,h_l(w1+...+wi,1),...,h_1(w1+...+wi,1),

~~

g2 gi

h_l (w1 + ... —i—wz), ,h_l (w1 + ... —|—U)Z) wW1,---7Wi (wl,... ,wz)dwz ..odwy.

I—(g14...4g:)+1

2.2 Special cases

Let us now consider several corollaries of Theorem 2.1, for particular choices of the
Erlang model parameters, g; and \;, i = 1,2, .... In the special case when \; = ),
i.e., 7, ~ Erlang (g;, \), we have

Corollary 2.3: The probability of survival within finite time x

g1—1
P(T>a)=e 14> NA | 2;071(0),...,h7(0)
=1

l

oo git+..+giy1—1

. h(z) h(x) h(z) . 1
+> > )\/O dyl/ dyg.../ Ay | 2 h7H0),..., hH(0),

i=1 l=gi+...+g Y Yi-1 e
A )y ) T (i) s R (i),
g2 gi
hil (yl) LR hil (yz) f (yl; e 7y2) dyl 9 (19)

I—(g14...+g:)+1

where yo = 0, the first sum vanishes if g1 = 1 and A; (z;v1,...,v7), 1 =1,2,... are
the classical Appell polynomials Aj(x) of degree | with a coefficient in front of x!
equal to 1/1!, defined by

Ao(l‘) 1
Aj(w) = A (2) (20)
Al (1}1) = 0,[ = 1,2,

Proof: The result follows from Theorem 2.1, noting that the multiple integral
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with respect to t1,...,t541, in (18) takes then the simpler form
to g1+1 91+92 Lot tgj(y—1+1 Lo+t o
/ ‘o) / 10) / ‘) / ) /hl(yj(k>1) '”/hwy,-(k)l)
210

tg1+.‘.+gj(k)+1 91+ ) Fe—1
/ / / / MNetle=Abesigp, 0L diy
= (Yix)) = (Yi ) H(i)
91 g91+1 91+92
= N / / / /
(y1)

91—1
t91+---+93(k),1+1 t91+---+9j(k) t91+---+9j(k)+1 t91+---+.qj(k.)+s—1 z
dty . ..dt;
h=(y;m-1) h=(yjmy—1) Yh= (Yim) h=*(y;x)) h=*(y;))
9i(k) s—1

= )‘ke_AwAk x;h_l(o)"'-ah_l(o)vh_l (yl)v'“ah_l (yl)""7h_1 (yj(k)) )""h_l (yj(k))vh_l (y](k)) s

~~ ~~

g1—1 92 s—1

where the Ag(x)’s in the right-hand side of the last equality are Appell polynomials
defined as in (20). Hence,

P(T>z) =

e M4y // Nee A A | 2 h710), ..., h7H0), A7 (1) 5 s A (1), -

F=1 <y, <...<y; 0 <h() gi—1 g2

=t (yi)) s B (?/j(k))J F (W1, yi)) i) -~ dyn,

which is directly seen to admit the form (19). O

Remark 3: It can be directly verified that in the special case when ¢; = 1,
i =1,2,..., formula (19) coincides with formula (1) given in [18] for the case of
Poisson claim arrivals.

Let us now consider the special case in which g; = 1,7 =1,2,...and \;,71 = 1,2, ...
are pairwise distinct real numbers. In the latter case it will be convenient for
us to change notation for the parameters A;, and denote them by u;, i = 1,....,
i.e., 7, ~ BExp(p;). From Theorem 2.1 and Lemma A.4, with vy = h~! (ys) ,
k=1,2,.... 1t follows that

Corollary 2.4:  The probability of non-ruin, P(T > x), within finite time x is

P(T>z)=e" W+Z / / By (zh™ (1) - b7 ()

k= 10<y1< <yr<h(x)

f(y177yk)dykdy17
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where
k+1
Bie) = ci(k)e ™, k=0,1,2,...,
=1

ci(k) are appropriate constants, for which the following recurrence relations hold

et (k), fori=1,2,...k+1

ci(k+1) =< Hriz b -1 ;
ok {— Sovt] eliampdh ) e (k) fori =k 42

k=0,1,2,..., and ¢1(0) = 1.

Remark 4: Alternatively and explicitly, for Bg(x), by induction, one has

k
Bi(x) = pq - .. pg Z (H H(m,rm)>
(rire)e{1,2} x ... x {1,2} V=l

k

k k—1 k
expq =z |[[T@=r)m+D> [y =1 ] @=r)| i1+ k= Dpra | ¢
i=1 j=1 i=j+1
where
H (m, ) = (2= 7) .
m,rm) = (2—1r
" " um+1—a(m,n,...,7’m_1)
—exp {(,um+1 —a(m,ry,...,Tm1))h7} (ym)}
+ (rm — 1) )
Hmt1 — a (M, Ty .. Tin—1)
m—1 m—1 m—1
a(m,ri,...,"m—1) = (H (2 —ri)> p1 + Z (rj—1) H (2—=7i) | js1,
i=1 j=1 i=j+1

and where ) 5 =0, [[y =1, and 0 is the empty set.

Let us finally consider the reasonably general special case of the initially stated
Erlang claim arrival model in which g;, « = 1,2, ... are arbitrary positive integers
and the Erlang rate parameters, \;,;i = 1,2,... are as in (2), but are assumed
positive, pair-wise distinct real numbers. In this case, for the probability of survival
within a finite time x, from Theorem 2.1, Corollary A.3 and Lemma A.6, we have

Corollary 2.5:  The probability of non-ruin, P(T > x), within finite time x is

P(T>$):€7AII+Z // Bk(m;yl,...,yk)f(yl,...,yj(k)) dyj(k)u-dyl,

F=1 <y <..<yjm <h()

where, By (x;v1,...,v;), coincides with the expression (A25), given by Lemma
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A.6, for
— — —p ! 0):
vVi=...=Vg 1= (),
_ —_ — 1 .
Vg1 ot T V91+g2—1 - h (yl) )
v = =v =p ! ( ; ) ;
g1+ +gi-1 = 0 T Vgt Agim—1 = Yik)-1) 5
_ _ — _3,—1
Vgitokgyoy =+ = Vgit gy ts—1 = Ve = h (yj(k)) )

with, 0 < s =k +1— (g1 + ...+ gir))-

Expression (A25), of Lemma A.6, does not involve integration and facilitates
the exact numerical computation of the functions, By(z), and hence of the non-
ruin probability, P(T > x), given by Corollary 2.5. Expression (A25) is recurrent,
with respect to the terms, R(.) and involves divided differences of a simple power
function and classical Appell polynomials, both of which can easily be computed
recurrently. For properties of divided differences and their numerical evaluation,
we refer to [30]. For an elegant recurrent expression for computing classical Ap-
pell polynomials see e.g., Lemma 4 of [17]. Further details of how the recurrence
(A25) and also the non-ruin probability, P(T" > x), can be computed using the
Mathematica system will appear elsewhere.

2.3 Dependent claim inter-arrival times.

Let us note here that our main result given by formula (4), can be generalized
further to cover the case of dependent claim inter-arrival times. In view of the gen-
erality of formula (4), dependence can be introduced in various ways, in particular,
by randomizing the set of shape parameters g1, go, ... or/and by randomizing the set
of rate parameters A, Ao, ...In other words, we can assume that the inter-arrival
times 7;, 1 =1,2,... are either Erlang (G;, \;), or Erlang (g;, A;), or Erlang (G, A;)
distributed, where G1,Ga,....is a sequence of positive integer valued random vari-
ables with a sequence of joint probability mass functions

Pgg =P (Gr=g1,....,Gi=gq) forg1>1,...,¢0>1,1=1,2,...,

and Aj,As,... are continuous (dependent) random variables with the sequence of
marginal joint densities

fAl,‘..,AL ()\1,...)\5) for Ay >0,...,x>0,1=1,2,....
Clearly, in the case of Erlang (G;, A;), the consecutive claims Wy, Wa, ... arrive with
inter-arrival times 71 =71 + ...+ 7g, and 2 = Tg,+1 + . .- + TG, +G,, - - - Which are

dependent random variables. In particular, one can see that 71,7 are dependent
with covariance

COV (7‘1,7‘2) = COV (Gl,Gg) /)\1)\2

and correlation

Corr (1,72) = Cov (G1, G) / <\/Var (G1) + E (G1)y/Var (Go) + E (Gg))
< Corr (G1, G2) .
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In the case of Erlang (g;, A;) claim inter-arrival times 7y = 71 +.. .47y, T2 = Ty, 41+
oo+ Tgi4gs»- -+ it can be seen that 71, 72,... are dependent random variables as
well. In particular, it is easy to establish that 71, are dependent with covariance

Cov (11, 72) = g192Cov (Afl, A;l)
and correlation

Corr (11, 72) = 1/g192Corr (Al_l,Az_l) .

In principle, a large class of multivariate discrete distributions can be used to in-
troduce dependence in our risk model through, e.g. the Dirichlet-compound multi-
nomial distribution (see [21], p.80), the multivariate logarithmic series distribution
(see [21], p.158), and the multivariate Pdlya-Eggenberger distributions (see [21],
p.200), subject to appropriate 'zeros-truncation’ (as described in [21], p.21). As an
example we will give the "zeros-truncated’ multinomial distribution (MDyr) of [20].
The joint probability mass function of the MDgzt distribution with parameters m
and di, ..., d; is defined as

m! -1 -1

P(Gi=g,....G=q)= 49t g

(=91 Cr=9) = T g i =g = =gt
(L—dy— ... — dy) ™H-9=0

for g; > 1,7 =1,2,...,1, ] = 1,2,..., positive integers, g1 + ... + g < m +{
and P (G1 =g1,...,G; = g;) = 0 otherwise, where m > 1 is a positive integer and
di e Ry, i=1,...,1 aresuchthat di+...+d; < 1,1 =1,2,.... In the case of
Erlang (g;, A;), claim inter-arrivals, there is also abundance of joint distributions
for the random variables Aj, Ag, ... to choose from (see [22]) . It is worth noting
that various copula models, can also be used to construct the dependent joint
distribution of Ay, Ag, .... It is not difficult to see that formulae for P(T' > x), for the
models of possibly dependent claim inter-arrival times, introduced in this section,
can be easily obtained applying the formula of total probability, with respect to
the set G1,Ga,... or/and to the set Aj, Ag,.... To illustrate this, next, we give
a straightforward generalization of formula (19), assuming that the inter-arrival
times 7;, ¢ = 1,2, ... have Erlang (G;, A) distribution, where A = \; = Ag=.....

Corollary 2.6: The probability of survival within a finite time x under the
assumption that consecutive claims Wi, Wo,... arrive with inter-arrival times
T=T1+4+...+Tq,, M =Te+1 + .- +TG1+Gs, - - -, 15 given as

oo k
P(T>z)=e |1+ Z Z Z Pgsongris Di (2, 0(2), 9155 90) |

k=1r=1 (g1,....9r41)€EGk(r)
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where G(r) ={(g1,-- - 9r+1) 1+ ...+ g <k<qg+...+ g +gry1}, and

) hil (y1)7

Dy (z,h(x),g1,...,gr) = \¥ / / Ak x;hH0),... R 0), A (), . ..

0<y:1 <...<y,.<h(z g1—1 g2

) hil (y’r‘—l) IEERE) hil (yT’—l)7 hil (y’r‘) IEERE) hil (yT) dF (ylu s 7y7") ’

withs=k+1—(g1+ ...+ 9r), so that 1 < s < gpq1.
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Appendix A.

In what follows, we are going to prove five auxiliary lemmas, which introduce a
class of exponential polynomials and establish some of their important properties,
needed in order to prove our main non-ruin probability formula, given by Theorem
2.1, and facilitate its numerical evaluation.

Lemma A.1: Let g¢1,g92,... be a sequence of positive integers and let A, Ao, ...
be a sequence of positive real numbers. Based on these two sequences, let us define
the sequence of functions Bo(z), Bi(x), ..., Bg(x), for z > 0 as

By(x) = eM* (A1)
By(x) =
)\2)\:)\1 e—)\lac _ )\2)\71)\16,(/\2—)\1)hﬂ(yl)e—)\zac7 fO’f’ g1 = 1 and )\1 7& )\2 A2)
)\lxe—)\lx fofr{gl =1and \; = /\2} or gy > 2
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and for k=2,3,..., as

By(z) =
/t2 /tgl /tg1+1 /tg1+gg /t91+-.-+gj(k)_1+1 /t91+~~+9j(k)
h=1(0) h=1(0) Jh=1(y1) h=*(y1) h=(yj0-1) h=(y;00-1)
gi—1 g2 9i(k)

tor+o g +1 tor+o ot ts—1 [T 400
g1 gj(k) y s
=1 (y;0)) h=(yjx)) h=*(yjmy) Y@

stl
- {)‘th1 + AQ (t91+92 - tg1) +..F )\](k’) (t91+---+9j(k) - t91+---+.‘]j(k)—1)
+ )‘j(k)—i-l (tgl+-~~+gj(k)+3 - tgl+--~+gj(k))}] dtg41...dty, (A?’)

where the index function, j(k), is defined in (1), 0 < s =k — (g1 +...+ gj(k)) +1
(as given in (5)) and y1,y2,. .. are realizations of the random variables Y1,Yo, . . .,
defined in (3) (see Section 2.1). This sequence of functions obeys the following
system of linear differential equations

By(z) = —AjeM®
Bi(z) = =X\jg11Bk(@) + Njgm1)11Bie-1(x),  fork=1,2,...,  (A4)

with initial conditions

By(0) = 1,B; (h"1(0)) =0, ..., Bg,—1 (R71(0)) =0,
By, (h_l (yl)) =0, Bg (h_l (yj(k))) =0,..., fork=g1+1,g1+2,.... (AD)

Proof: By means of direct differentiation it can be verified that the functions
By(x) and Bj(x) for g1 = 1, given by (Al) and (A2) respectively, obey the differ-
ential equations

Bj(z) = —Aje™™®

’

Bl(.T) = —)\231(1’) + )\1B0($),
and for g; > 2, obey the equations

Bé(x) = —A\e M*
B (z) = =\ B1(z) + M\ Bo(z).

The function, By (z), defined in (A3), is a well defined (k + 1)—variate integral, for
g1 > 2, with limits of integration depending on the variable x. It will be convenient
for us to change the notation for the parameters \;, and denote them by u;, i =
1,....in the case when \;, i = 1,2, ... are pairwise-distinct and 1 = g; = go=... In
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this case, consider By(z) for any fixed k& > 2. We have

to tr T +oo
Bk(az) = / dtl.../ dtkl/ dtk/ dtk+1 (N1~--Nk+1
h=1(y1) h=(yr-1) h=1(yx) x

exp [— {pity 4+ po (t2 — t1) + oo 4 g (b — to—1) + g1 (tpr — tr)}])

to tr T 400
= / dtq... / dti_1 / dt;. / dtpt1
h_l(yl) h_l(yk—l) h‘l(yk) x

(phgre™ b0y g exp [— {paty + po (b2 — 1) + - + e (b — the1) — ps1tn}])
2 tr x
= g Hrh1¥ / dt... / dtp_q1 / dty
h=1(y1) = (yr-1) h=1(yx)
(b1 exp [={paty + po (b2 — 1) + oo 4 g (b — th1) — pirgat}]) (AG)
from where, denoting the multiple integral on the right-hand side by Ij(x), we have
By(x) = e M=% [1(x) . (AT)

One sees that the derivative of I;(z) is given by

d]’ tz tk,1 xT
k(x) = / dty... / dti_o / dty_1
dx h_l(yl) h_l(yk72) h_l(yk71)

(1--prexp [— {pats + p2 (b2 — t1) + oo + pp—1 (Be—1 — tr—2) + g (2 — th—1) — pr12}])
= uke(“’““_“’”‘)xlk_l(x). (A8)

Differentiating both sides of (A7) and using (A8), we obtain

dBy(z)
dx

— _Mk+1e—ﬂk+1$[k(m) + Mke—uk+1$euk+1$—uk$[k_l(x)
= —pig+1Br(z) + prBr-1(x). (A9)

Let us now consider the general case in which, g1, g, ... is an arbitrary sequence of
positive integers and A;, ¢ = 1,2, ... is a sequence of positive, possibly coincident,
real-valued intensities. In order to consider this general case, we need to pass to
the limit in the integrand function in (A6), with respect to the parameters pu;, i =
1,20, 88 11 = A1y fhg, —> ALy Hgi+1 = A2y ey Hgitge = A2y oy Hgitobgion
Aj(k)s -+ s Hk+1 = Ajk)+1 - It is not difficult to establish that the latter limit exists
and the limit of the integral in (A6) exists as well. We have

lim I Mk+1e*{#ltl+/I«2(t2*t1)+--~+ll«k(tk —tr—1) k1 (Eer1—te)}

=\ .. .)\?E;:)) A1 €xP [— {Aitg, + Ao (tgi 400 — Tgu) + -
+)‘j(k) (t91+---+91<k) - t91+---+91(k)71)

+)‘j(k)+1 (t91+-~~+9j<k)+8 - t91+-~~+9j<k)) }] (A10)

where s is defined as in (5). Hence, in view of (A10), it can be seen that the integral
in (A6), i.e., Bi(z) also has a limit which admits the representation (A3) and obeys
the system of equations (A4) which is established similarly, by passing to the limit

in (A9), as 11 —> A1y flgy = ALy Mgt = A2y o5 flgitgs = A2y ey Mg todgyn —
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Aj(k)s - s Mkt1 = Ajk)+1- The system of functions (A1), (A2) and (A3) obeys the
initial conditions (A5) which follows since in this case the limits of integration with
respect to tj coincide and the multivariate integral in (A3) is zero. In the cases
when k£ = 0 and k = 1 it is directly verified that the initial conditions hold. This
completes the proof of Lemma A.1. O

We can now formulate the following lemma.

Lemma A.2: The system of linear differential equations,

Bg)(a:) = —\e M®

Bi(z) = =X 41Br(®) + Njor_1)11 Br—1 (). (A11)
for k=1,2,... with initial conditions
Bo(O) :1, Bk (Vk) ZO, ]{,’:1,2,... <A12)

has a unique solution, given by the following sequence of functions
x
Bk(x) = )\j(k_l)_,_le_/\j(’“)“x/ e’\j““’“ZBk,l(z)dz 5 k= 1, 2, ce <A13)
Vi

where By(x) = e M and v, k = 1,2,... is a non-decreasing sequence of real
numbers, 0 < <y <....

Proof: Let us differentiate with respect to x , each of the functions in the
sequence Bi(z), k=0,1,2,..., given by (A13). We have,

BE)(CL‘) = e M

and

dBy(x)
dx

= —Xj(k)+1Bk(®) + Nj(k—1)+1Br—1(2).
Moreover, By(0) = 1, and By (1) = 0 for k = 1,2, .... hence the asserted result
holds true. U

Corollary A.3: The sequence of functions By(z), given by (A13) and the cor-
responding sequence By (x), defined by (A1), (A2) and (A3) coincide.

Proof: Denote, by 0 <1y <wvy < ..., the sequence of real numbers
R0y <...<h N O)<h T ) <. < (), (A14)
g:il 92

correspondingly. The statement of Corollary A.3 follows from the uniqueness of the
solution of the system (A11) with initial conditions (A12), Lemma A.2 and Lemma
A.1, in which limits of integration are replaced according to (A14). O

Lemma A.4: Let, 1 = g1 = go = ... and let the parameters p1, p2, . . . be pairwise
distinct. Then

Bi(x) =Y ci(k)e™™" , k=0,1,2,... (A15)
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where ¢;(k) are appropriate constants, for which the following recurrence relations

hold

1o (k) fori=1,2,....k+1

Cl(k+1) — {.u'k+2,ui ) ; (A16)

k+1 i1 _ P ~_
— ok e(Hr2—pr Vi ﬁc?“(k) fori =k +2

where k =0,1,2,... and ¢1(0) = 1.

Proof: Using induction, we have By(z) = e "7 | hence ¢1(0) = 1. Assume,
(A15) holds for some k > 1. Then, from (A13) and the latter assumption we have

T k+1
Bji1(z) = Hk+le_ﬂk+2$/ pHi+2z Z e (k)e 7 dz
Vit i=1
1 exp [(phs2 — pi) 2] exp [(trr2 — p) Vi)
= g1 > (k) ( N
=1 ,[Lk+2 — Mg Nkﬁ-‘rQ — Ui
k+1 ftl
= Z e_,uif&ci(k}) — e M2 Z 6(#k+2—ur)uk+1 &CT(I{:)
=1 Hhet2 = i =1 Pit2 — fhr
(A17)

Comparing expression (A17) with (A15) for k4 1, using (A16), we get the desired
result. O

Let us now consider the problem of finding an expression for By (x) in the gen-
eral case of 7; ~ Erlang(g;, \;), where g1, go,...is an arbitrary positive integer
sequence and A;,7 = 1,2,... is the sequence of possibly coincident positive, real
intensities. One possible approach would be to proceed from the special case of
l=gi=g¢g2=...and pg, k =1,2,... pairwise-distinct, by passing to the limit as
H1 = A1y fbgy = A1, fhgr+1 =+ A2y 0oy fhgi+g, — A2, . ... However, we will follow a
different approach, based on the decomposition of the Erlang random variables, 7;
as sums of Exponential random variables with parameters as in (2). Further more,
we will consider an arbitrary sequence, 61, 6, . . ., for which (2) does not necessarily
hold and will be aiming at identifying the distinct values within it. In this way,
in 01,05, ..., we ignore the fact that the parameters g; and \; are associated with
one another through the Erlang claim inter-arrival model. Based on 61, 0,, ..., let
us construct the sequence, 1, us, ... of pairwise-distinct positive real numbers, ac-
cording to the following rule: Set u; = 01, uo to be the first number in the sequence
01,05, ..., which differs from g1, pus to be the fist number in the sequence, 01,05, . ..
which is different from py and po and so on. The sequence, obtained in this way
may be either finite or infinite and we can use it to express the elements of the
sequence, 61,60s,... as

Or = p,r=1,2,..., (A18)
where i1 = 1, i,,7 = 2,3, ... are some indexes for which the inequality 1 < i, <r,
r = 1,2,... holds. Denote by s(k + 1) the number of pairwise-distinct indexes

01,12, .., 1k, ig+1. Obviously, s(k+1) < k+1. Based on (A18), let us introduce the
index sets m(k +1,7) as

mk+1,5)={r—1:i, =7, 1<r<k+1},7=12,...,s(k+1)
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for k =1,2.... Denote
k4 15) = #{m(k+1.7)} =12, s(k+1)
for k=1,2.... We have I(k+ 1,7) > 1 and

s(k+1)

S Uk+1,5)=k+1
j=1

for k =1,2.... Denote

(ms 19 < oo < Ok + L9

the elements of the index set m(k+1, j), ordered in a non-decreasing order. Finally,
we define the set, D(k,j,q), of ordered real values d = (di,...,dy), as

D(k,j,q) =
{{dl, R ,dq} rdp <. < dq; {dl, R ,dq} C {V(m(k+1,j))2, ceey y(m(k+17j))l(k+1,j)}}

where ¢ = 0,1,2,...,l(k+ 1,7) — 1 and D(k,j,q) is empty when I(k + 1,j) =1
and/or ¢ = 0.

The function e ™#* Ay (z,d1, ..., d,), with parameters p > 0,0 < dy < --- < d,
where Ay(z,d1,...,dy) is the classical Appell polynomial of degree ¢, defined as
in (20), will be called exponential Appell monomial. A linear combination of such
monomials with different parameters will be called exponential Appell polynomial.
The following lemma establishes a characterization of the function By(x) as an
exponential Appell polynomial (see A20).

Lemma A.5: The function,

- tz t3 tk X +OO
Bk(x) - / / ce / / / H1fbiy - Mgy
51 Va Vg—1 Y Vg JOT

exp [— {pats + pa, (b2 — t1) + ..o+ prg (b — ti—1) + Higyy (b1 — i) }]
dtk+1 e dtl, (Alg)

constructed, using the first k+1 terms, 61 = p1,02 = piy, ..., 01 = iy, of
the sequence (A18) and the first k terms, vy, ...,vk, of a non-decreasing sequence
of real numbers, 0 < vy <1y <..., can be expressed as

s(k+1) I(k+1,5)—1

)
By(x) = Z Z c(k, j,q, d)e " Ag(z,d) | (A20)
j=1 a=0  deD(k,j,q)

where c(k,j,q,d) are appropriate constants, Aq(x;d) = Aq(z;dy,...,dy) is the
classical Appell polynomial of degree, q, defined as in (20).

Proof: We will apply induction with respect to the index k. For k = 0, obviously,
from (A20) we see that j = 1, ¢ = 0 and hence, By(z) = e~%% = e7#1% which is of
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the form as in (A20) with ¢(0,1,0) = 1. For k = 1, and 61 = p1,62 = p2 we have

Bl(i{}) = Le_lhx _ Le(“r/‘l)'fle—uzx,
H2 = i p2 =
and in this case
C(ly 170) = M]- s and C(l, 2, 0) e le(llQ*ﬂl)l/l'
H2 =M p2 — 1

For 01 = pu1,02 = pp we have that

and in this case

¢(1,1,0) =0, and ¢(1,1,1,d) = p; = 6y,
where d = (d1) = (1) and in c(k, j,q) for k =1, j = 1,2, ¢ = 0 we have omitted
the argument d, since the set D(k,j,q) is empty for ¢ = 0. In both cases, Bi(x)

has the form as in (A20). Assume, (A20) holds for some k& > 2. Denote by H (k)
the set of all exponential Appell monomials which appear in (A20), i.e

H(k) = {e "" Ag(z;d); 1 < j < s(k+1),0< ¢ <U(k+1,j)—1,d € D(k,j,q)}.

In other words, By () is a linear combination of elements of H (k) in which some of
the coefficients may be equal to zero. The elements of H (k) can be uniquely defined

by the index sets m(k + 1, 7), ] = 1 ,8(k + 1). Therefore, we can alternatively
denote H(k) as H(m(k+1,7),7=1,... (k—l—l))) Since, m(k+1,j) C m(k+2,7))
for every fixed j, hence H(k) = (m(k: +1,5),j=1,...,8(k+1))) C H(m(k +
2,5),j=1,...,s(k+2))) = H(k+1), ie., H(k) C H(k+1). For Bi(x), by analogy

with (A13) we have that

€T
By(z) = uike_‘“kﬂx/ etvi1*By_q(2)dz . (A21)
1%

k

Hence, from (A21), for k + 1 and the induction assumption that (A20) holds for
some k we have that

Bk+1(®') =
s(k+1) 1(k+1,5)— .
Fiy 1 € Hea® Z Z Z k -7 q? / e(uikﬁiﬂj)zAQ(z;d)dZ'
q=0  deD(k,j,q) Vi1
(A22)

In order to show by induction that (A20) is valid for k + 1, it suffices to show
that, Byy1(z) is a linear combination of elements of H(k+1) = H(m(k+2,j),j =
1,...,s(k+2))). Following this line of reasoning, for ix1o = s(k+1)+1 = s(k+2),
from (A22), integrating by parts and using the property of Appell polynomials,
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Al (z) = Ay—1(w), given in (20), we have

s(k+1) 1(k+1,5)—

Bryi(z) = iy, e e Z Z > ek dig.d

=0 deD(k,j,q)

t+1
par umz u]) +

q t+1
+ Z 1 Ag—t (kg5 d) insa =t s
M1k+2 )
s(k+1) l(k+1,5)— q )t
SDIRD SR SIVRTER) ¥ e Ao
= — deDhd.a) — :us k+2) — Hy )
s(k+1) l(k+1,5)—
+ Z ,Uik_,_lc(kvj? q, d)

Jj=1 =0 deD(k,j,q)

)t+1

q
Z (His(rs2) — 1) t—',-lA‘I*t (Vk+1;d)6(“”(k+2)_”j)yk+l> e T Ay (),
t=0 S + J

(A23)

g—t (x di,...,dy) = Ag—¢ (z;dy,...,dg—) and {10 () = 1.
Since ik = s(k (k: + 2), the index sets which define Byyi(x) are
m(k+2,7) =m(k j), =1,...,s(k+1) and m(k+2,s(k+2)) ={k+2—1}.
Hence, H(k +1) = H(k) U {e™ ““"‘”WAO(:L’)}.

It can be directly verified that each exponential Appell monomial in (A23) is an
element of H(k + 1). More precisely, the exponential Appell monomials

where A, (z;d) = A
+1)+
+1

e T Ag (2, d),1 <j<s(k+1),0<q<Uk+1,j)—-1,0<t<gqgde D(k,jq)

are elements of H (k) whereas, e #¢+2% Ag(x) is not in H (k) but is in H(k + 1).
This completes the proof of the lemma in the case ixy2 = s(k+ 1) + 1.
In the case 1 < ixy9 = n < s(k+ 1), we will briefly sketch the proof which is
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similar. From (A22), we have

Bk+1(3€) =
s(k+1) 1(k+1,5)—

,u,ik+1 Z Z Z ]{7 j q, /gC e(u"_“j)ZAq(z;d)dz
Vi+1

9=0  deD(k.j.q)

7?571
1(k+1,n)— .
+ptg,,, e T Z Z c(k,n,q, d)/ e(“"f“")ZAq(z;d)dz
q=0  deD(k,n,q) Vi+1
s(k+1) 1(k+1,5)—1 q (1! -
= > D ek d) Y ———Lge T Ay (w3 d)
=1 q=0  deD(k,j,q) =0 (b — 1)
s(k+1) 1(k+1,5)— gy -
+ Z Z > wiaelk.d, q,d>2(_iy+lAq,t (Vi1 d) el
=1 =0 deD(kja) t=0 \Hn = Hj
I(k+1,n)—1

+ Z Z Mik+1c(k7 n,q, d)e_'unqu-Fl (.’IJ, di, ..., dq7 Vk-i-l) .
q=0 deD(k,n,q)

Since 1 < ij49 = n < s(k+1), the index sets which define By, () are m(k+2, j) =
m(k+1,7),7=1,...,8(k+1),j #nand m(k+2,n) =m(k+1,n)U{k+2—1}.
Hence, we have

H(k+1) =

H(k) U {e_'unIAq-‘rl(m;dla o '7dqayk+1)70 S q S l<k + 17.7) - 17 (dla e :dq) € D(kaja Q)} :

It can be directly checked that each exponential Appell monomial in (A24) is an
element of H(k + 1). More precisely, the exponential Appell monomials

e_ﬂnymAq+1($;d17 cee 7dq7yk+1)a0 < q < l(k + 17]) - ]-a (d17- . 'adq) € D(ka]a Q)

which appear in the last term of (A24), are elements of H(k + 1) but not of H (k).
All other exponential Appell monomials in (A24) belong to H (k). This completes
the proof of Lemma A.5. O

Remark A7: Let us note that the functions, By (x), defined in (A19), coincide
with By (x), given by (A3), when v, i = 1,2,... are defined as in Corollary 2.5 and
i, are defined as in (A18) with 6 given by (2).

Finally, let us give an expression for the functions, Bj(z), defined in (A13) of
Lemma A.2, under the initially stated Erlang claim arrivals model, given by (2)
but assuming that the claim intensities \;, i = 1,2, ... are pair-wise distinct. The
following lemma gives an expression for the exponential Appell polynomials, By(z),
in this reasonably general Erlang claim arrival model.

e T Ag(x)

(A24)
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Lemma A.6: Fork> g

. 1 1 1
Bi(z) = APAP . A% s e M

W I (g = M) 9 7 (A — M) 90 (Njry 1 — M) ®

, 1 1 1
A 1—1—1 (.%'; Vi, ..., UV, 1—1—l) s , zl+92+---+9j(k)+5_1
=0 ! ! AL — A2 AL = Ajky A= Ak 41
gz 210 s
- 1 PN 1 1 —)\2$
(As = A2) = (Njy = A2) 90 (N1 = Ao) *
g2—1
E e>‘2V91+lR (Vg1+l) Agz—l—l (':E? Vgl+l+17 ce0y VglJrngl)
1=0
! sy 1 , 1 Zl+93+...+gj(k)+s—1 + ...
M=Ast T = Ay Az = Ay
g3 9i(k) s
A 1 9im—1 \
(-1 NI Y eI O R (g, g i)
Njtkyr1 = Ajwy) ® =

1

. I+s—1 — (k)41 T

Agj(m—l—l (x’ Vgit..4gjmy 1+l V91+'~~+9j<k)*1) Ao — N z —e v
(k) j(k)+1

S

s—1

XY +1Vg1 4. g gy +L
Ze j 91 95 (k) R(Vg1+.~-+gj(k)+l)
=0

As—1-1 (CC; Vgit. g H+Ls - Vgl+---+gj(k)+5_1)) (A25)

where s is defined as in (5) (i.e., 0 < s=k+1—(g1+...4+gjm)) 0 < <

v < ... is a non-decreasing sequence of real numbers, |tg,...,tn | 2% is the
™Mo mMn

(mo+ ...+ my, — 1) — th order divided difference of the power function 29, for q,
positive integer, and where, R (v;), fori = gi1,g1 + 1,...is found from the equality

B; () i—(g1t.+gi))
R (Vz) — ? V‘Z e_)\j(i)+1Vi 6)‘j(i)+1l’gl+v.v+gj(i)+l
AL NGz )90 i~ (it tgm)
L 72 7)) 7i)+1 =0
R (V91+-~+gj<m)+l) Ai*(91+~--+91(z‘>)*l (Vi; Vgrt.tgjcH+1s - o Vi) ’
assuming that, R (vy,), m =g1,91 + 1,...,i— 1 have already been computed.

Proof: We will first prove (A25) for £ = g;. Using the recurrent integral equation
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(A13), we have

x
Bg1 (_jp) = )‘j(gl—l)—l—le_/\j(nglI/ eAj(gl)Jrlnglfl(Z)dZ
1%

g1

xr
_ — o Aoz yg1—1 . iz
= \ie "2 / e N Ag 1 (501, Vg —1) € P2
v,

g1

-1
1 % 1
=M eN® Ay 1 (xy0,. .. 1)
1 (()\2 _)\1)6 % g1—1 l(.T,Vl, 7Vgl 1 l) ()\1 _)\2)l

1 = 1
- - . A
_e A © mAivg E Agl,lfl (VguVly--nglflfl) ﬁe 2Vg,
(A1 = A2)

(A2 = A1) 1=0
=\ 1€A1xglz_lx4 g (mvn, o vg 1) L t'—
Pl Oe =) = . a2
=i 1

e TR (1) e’\2”01> .

It is easily seen that the last equality is of the form (A25), for k = g;. For k = g1 +1
and go > 1 we have that j(g1) = j (91 +1) = 1 and applying again (A13), we can
write

Byale) = dae ™ [ B, (s

Vgi+1
g1—1
= M \T e : A2z # —A1z Z A .
S ‘ Ca—)° -1t (£, Vg 1)
l/91+1 l1:0
1 _AQZ AZV
Gy R )
g1—1
= A # —Aez : (A2—A1)z Z A (2 )
= A2A7 Ao _)\16 e gi—1-1, (V1. Vg -1,
Vgi1+1 1,=0
1 x
mdz - R(vy,) e ndz
Vgi+1
1 91—l g . ( |
= A Agl - —AQCC / A 1 . . L s )\2_A1 Zd
o (’\2_”\16 ZZO TR (Z01see vo-0) o we P

—eTNTR (1g,) €70 A (33 0,41) ) (A26)
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After integrating by parts in (A26), we have

1 gi—1gi—1-0

By, 11(z) = A2A{! Do — )2 e YT Ag i (B0 Vg1

ll— 12—

1 1 )\2—>\1 z xr —)\QZD )\211
(AL —X) i (A — o)l el ) > v € R (vg,) e Ay (230, 41)

g—1g—1-0

where

1
= M\ e T A 1=l =l (L5 V1y e ey Vg —1—1,—1I,
1 (Ag - )\1 llzo lzz g ( g1—1 )
1 X Aot 1 X As
O — Ag)latts ~ € “R(vg,y1) et Ag — e R (vg,) €72 Ay (3509, 41)
Ao NI 1 —Alxglzé A ) 1 +1
= (v, vg 1) |—— | 2T —
Tl g —A))2 ot ' A DYDY
2
—)\2$ Azl/g +1 _ —AQQ’J )\QVg .
MR (v 1) €04 Ag = € TR (vg,) €0 Ay (w5vg,11)) (A27)
1 I+1 Z 1
_ z = _ li+1o
AL A2 L0050 4amt P T A2)

is the first order divided difference of the function z/*! at the point ﬁ of mul-
tiplicity 2, (see e.g. [30], page 47, equalities (2.94) and (2.95) ). As seen, equality
(A27) is again of the form (A25). Iterating a similar integration leads to the an-

nounced formula (A25), for all k£ > g;. O
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