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A closed form expression, in terms of some functions which we call exponential Appell poly-
nomials, for the probability of non-ruin of an insurance company, in a finite-time inter-
val is derived, assuming independent, non-identically Erlang distributed claim inter-arrival
times, τi ∼ Erlang (gi, λi) , i = 1, 2, . . ., any continuous joint distribution of the claim
amounts and any non-negative, non-decreasing real function, representing its premium in-
come. In the special case when τi ∼ Erlang (gi, λ) , i = 1, 2, . . . it is shown that our main
result yields a formula for the probability of non-ruin expressed in terms of the classical
Appell polynomials. We give another special case of our non-ruin probability formula for
τi ∼ Erlang (1, λi) , i = 1, 2, . . ., i.e., when the inter-arrival times are non-identically exponen-
tially distributed and also show that it coincides with the formula for Poisson claim arrivals,
given in [18], when τi ∼ Erlang(1, λ), i = 1, 2, . . .. The main result is extended further to a risk
model in which inter-arrival times are dependent random variables, obtained by randomizing
the Erlang shape or/and rate parameters. We give also some useful auxiliary results which
characterize and express explicitly (and recurrently) the exponential Appell polynomials which
appear in our finite time non-ruin probability formulae.

Keywords: finite-time (non-) ruin probability; risk process; Erlang claim inter-arrival
times; dependent claim amounts; exponential Appell polynomials; divided difference;
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1. Introduction

Evaluating the probability, P (x), that the path of a stochastic process, St does not
cross a curved boundary, h(t), before time x, is known as the first crossing of a
curved upper boundary problem. First crossing problems arise in insurance, finance,
queuing and storage and have attracted a lot of attention in the corresponding
research communities. In the context of risk theory, the process, Rt = h(t)− St, is
known as the risk process of an insurance company, where St, models the arrival
of consecutive claims up to time t, the deterministic function h(t), represents the
aggregate premium income up to time t and P (x) is interpreted as the probability
of survival (non-ruin) of the company within the finite time interval [0, x], x > 0. In
classical ruin theory, St is assumed a compound Poisson process and h(t) = u+ ct,
where u > 0 is the initial reserve of the company, and c is the positive premium
rate.
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Since the seminal paper [26] where the (classical) risk model was first considered,
huge volume of applied probability literature has been devoted to various ruin-
theoretic problems related to estimating ruin probabilities and first crossing time
distributions under various definitions of the process St and the boundary h(t).
To mention only a few of the contributions in this strand of literature we refer to
the papers [2, 7, 13, 27–29] and more recently, to [12, 19, 23, 33] and [32]. The
reader is referred to the books [16] and [3] where more ruin probability results and
references can be found.
Another stream of literature on ruin probability is devoted to the so called Sparre

Andersen risk model in which claim amounts and the premium income are as in
the classical case but the Poisson assumption for the claim arrivals is released,
assuming that claim inter-arrival times are independent and identically distributed
random variables with generic distribution F . Ruin probabilistic results for the
special case F ∼ Erlang(2, λ) in the Sparre Andersen model have been obtained
in [5, 6, 8–10, 25, 31] and in [24] and [14, 15], in the case when claim inter-arrival
times have distribution F ∼ Erlang(n, λ). In the latter case, [11] derive expressions
for the density of the time to ruin in the special case of independent identically
exponentially distributed claim amounts. Some research has also been performed
beyond the Sparre Andersen assumption of independence of the times between
consecutive claim arrivals. Thus, risk models in which an appropriate dependence
structure is imposed on the claim inter-arrival times and claim sizes, has been
considered in [1], assuming the premium income function, h(t) = u + ct, and also
in [4].
Despite the great attention which ruin probabilities have received, finding closed

form expressions for P (x) has in general proved a difficult task. Such expressions
involving generalized Appell polynomials have been obtained in [29] in the case
when, h(t) is a non-decreasing premium income function, claims arrive according
to a Poisson process and claim amounts are assumed integer valued, independent
and identically distributed random variables. Closed form expressions for P (x),
involving classical Appell polynomials have been derived in [17, 18] and [20] in a
more general risk model, assuming, any non-decreasing real-valued function h(t),
Poisson claim arrivals and any integer-valued or continuous joint distribution for
the claim sizes, thus allowing them to be dependent.
In this paper, we consider a reasonably general risk model, in which claim inter-

arrival times are assumed independent, non-identically Erlang distributed random
variables with arbitrary shape and rate parameters, claim amounts may be depen-
dent, with any continuous joint distribution and the premium income function h(t)
is any non-negative non-decreasing real function. Our main result is a closed form
expression of the non ruin probability in terms of a new class of functions which we
call exponential Appell polynomials. We extend further the generality of the risk
model and incorporate dependence between consecutive claim inter-arrival times,
by appropriately randomizing the Erlang shape, and/or rate parameters and give
the ruin probability in this case as well.
The precise formulation of the risk model considered in the paper is as follows.

The aggregate claim amount to the insurance company is modelled by the increas-
ing pure-jump process

St =

Nt∑
i=1

Wi,

whereW1,W2, . . ., is a sequence of positive random variables, representing the sizes
of consecutive claims and Nt is a process, counting the number of claims up to time
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t (St = 0 when Nt = 0). We will denote Nt = # {i : τ1 + . . .+ τi ≤ t}, where # is
the cardinality of the set {·} and τ1, τ2, . . . are the consecutive inter-arrival times
of the claims. We will also assume that the sequence W1,W2, . . . is independent of
τ1, τ2, . . .. The random variablesW1,W2, . . .may be dependent with any continuous
joint distribution with joint probability density function, ψW1,...,Wk

(w1, . . . , wk).
We further assume that the claim inter-arrival times τi, i = 1, 2, . . . defining the

process, N(t), are independent, (non-identically) Erlang (gi, λi) distributed random
variables with shape parameter, gi > 0 and rate parameter, λi > 0, i.e. τi ∼
Erlang (gi, λi), with density

fτi(t) =
λgii t

gi−1e−λit

Γ (gi)
,

where gi, i = 1, 2, . . . is a sequence of arbitrary positive integers and λi, i = 1, 2, . . .
is a sequence of (possibly coincident) positive real numbers. In other words, we
assume that the inter-arrival times τi, i = 1, 2, ... have Gamma distributions with
(positive) integer shape parameters gi and scale parameters λi, i = 1, 2, . . . .
Consider an upper boundary given by the non-decreasing, non-negative, real

valued function h(t) on [0,∞) such that limt→∞ h(t) = +∞. The function h(t),
modelling the premium income up to time t, may be continuous or not. If h(t)
is discontinuous it will be assumed that h−1(y) = inf{z : h(z) ≥ y}. Define the
insurance risk process

Rt = h(t)− St

and denote by

T := inf {t : t > 0, Rt < 0} ,

the time of the first crossing of the trajectory t| → St and the boundary t| → h(t).
Let us consider the finite time interval [0, x], x > 0, and denote by P (T > x) the
probability that the trajectory t| → St will not cross the boundary t| → h(t) in
time x.
In what follows we will give an explicit expression for the probability of non-ruin

P (T > x), up to time x, assuming that the parameters gi and λi are such that∑∞
i=1

gi
λi

= ∞, which is a sufficient condition for
∑n

i=1 τi
a.c.→

n→∞
+∞. The latter con-

dition, is required since otherwise ruin may occur with probability one. We show
that the probability of non-ruin, P (T > x), is expressed in terms of a sequence
of functions, Bk(x), k = 0, 1, 2, . . . which obey a specific system of linear differen-
tial equations. As established by Lemmas A.5 and A.6, Bk(x) is an exponential
Appell polynomial. The latter is a linear combination of exponentials multiplied
by classical Appell polynomials. We will also consider non-ruin probabilities in a
model with dependent claim inter-arrival times in which dependence is introduced
by randomizing the parameters of the Erlang distributed claim inter-arrival times.
The structure of the paper is as follows. In Section 2.1 we derive our main result,

the closed form expression (4), for the probability of non-ruin, P (T > x), in a
risk model with independent non-identically Erlang distributed claim inter-arrival
times. In Section 2.2 we give explicit formulae for P (T > x) in the following special
cases: 1) when λ = λ1 = λ2 = . . . and , gi, i = 1, 2, . . . are arbitrary positive integers,
(see Corollary 2.3); 2) when 1 = g1 = g2 = . . . and λi, i = 1, 2, . . . are arbitrary,
pairwise distinct positive real numbers, i.e., when claim inter-arrival times are non-
identically exponentially distributed (see Corollary 2.4), and also; 3) when gi are
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arbitrary positive integers and λi, i = 1, 2, . . . are arbitrary, pairwise distinct (see
Corollary 2.5 and Lemma A.6). It is shown that the non-ruin probability formula
(1), given in [18], for the case of Poisson claim arrivals is a special case of formula
(19), for 1 = g1 = g2 = . . ., and λ = λ1 = λ2 = . . ..
In Section 3.2 we introduce a risk model in which the claim inter-arrival times

τ1, τ2, ..., are dependent random variables, obtained by randomizing the Erlang
shape parameters g1, g2, . . .. or/and the Erlang rate parameters λ1, λ2, . . ., assuming
they are random variables with appropriate joint distributions. We point out that,
based on our main result, ruin probability formulae for these various dependent
models are easily derived. As an illustration we give a formula for P (T > x), in
the special case when λ = λ1 = λ2 = . . . and the Erlang shape parameters are
modelled by a sequence of integer valued positive random variables G1, G2, . . ..
(see Corollary 2.6 ).
In the Appendix we give some useful lemmas which are used in proving the

results in Section 2 and establish some recurrent expressions and other important
properties of the exponential Appell polynomials, Bk(x), k = 0, 1, 2, . . ..

2. The probability of survival under Erlang (gi, λi) claim arrivals

In this section we present our main result for P (T > x) assuming Erlang (gi, λi)
distributed claim inter-arrival times. We consider also several special cases of dif-
ferent choices of the Erlang parameters gi, and λi, including their randomization
under which claim inter-arrival times become dependent.

2.1 Main result

In order to prove our main result we start with representing the Erlang distributed
inter-arrival times as sums of independent identically exponentially distributed ran-
dom variables. For the purpose, we will need some auxiliary variables and functions.
Let the integer-valued function j(k), k = 0, 1, 2, . . ., be such that

g1 + . . .+ gj(k) ≤ k < g1 + . . .+ gj(k) + gj(k)+1 (1)

so that

k 0 1 . . . g1 − 1 g1 . . . g1 + g2 − 1 g1 + g2 . . . g1 + g2 + g3 − 1 g1 + g2 + g3 . . .
j(k) 0 0 . . . 0 1 . . . 1 2 . . . 2 3 . . .

Let τ̃1, τ̃2, . . . be a sequence of independent, exponentially distributed random
variables with parameters θ1, θ2, . . . correspondingly, i.e. τ̃i ∼ Exp (θi), such that
θk+1 = λj(k)+1, k = 0, 1, 2, . . . and

(τ̃1 + . . .+ τ̃g1 , τ̃g1+1 + . . .+ τ̃g1+g2 , ...)
d
= (τ1, τ2, . . .) .

Obviously, in this more refined representation of the Erlang claim arrivals in terms
of sums of exponentials we have that

θ1, ...θg1 , θg1+1, ...θg1+g2 , ... ≡ λ1, ...λ1︸ ︷︷ ︸
g1

, λ2, ...λ2︸ ︷︷ ︸
g2

, ... (2)
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noting that the λi-s may possibly coincide. In the sequel it will be convenient to use
the notation τ̃∗1 , τ̃

∗
2 , . . . for the r.v.s τ̃1, τ̃2, . . ., in the case when θk+1 = λj(k)+1 ≡ 1,

k = 0, 1, 2, . . ..
Denote by T1 = τ1, T2 = τ1+ τ2, . . ., the moments of claim arrivals and introduce

the sequence of random variables T̃1 = τ̃1, T̃2 = τ̃1 + τ̃2, . . .. Obviously, we can
also write Ti = T̃g1+...+gi i = 1, 2, . . .. Let us also consider the partial sums, Yi,
i = 1, 2, . . . of the consecutive claim amounts, Y1 = W1, Y2 = W1 +W2, . . . with
probability density function

fY1,...,Yi
(y1, . . . , yi) = {φ (y1, ..., yi) ,

0
if 0 ≤ y1 ≤ . . . ≤ yi

otherwise
, (3)

where φ (y1, . . . , yi) ≥ 0 for 0 ≤ y1 ≤ . . . ≤ yi and∫
. . .

∫
0≤y1≤...≤yi

φ (y1, . . . , yi) dy1 . . . dyi = 1.

We will also denote by FY1,...,Yi
(y1, . . . , yi), the cdf of Y1, . . . , Yi. For brevity we

will alternatively write F (y1, . . . , yi).
It can easily be seen that the joint density ψW1,...,Wi

(w1, . . . , wi) of the claim
amount random variables W1, . . . ,Wi can be expressed as

fY1,...,Yi
(y1, . . . , yi) = ψW1,...,Wi

(y1, y2 − y1, . . . , yi − yi−1) .

It will be convenient to formulate and prove our main ruin probability result first
in terms of the density fY1,...,Yi

(y1, . . . , yi) and then to restate it, in Corollary 2.2,
in terms of the claim amount random variables W1, . . . ,Wi. We will also need
to introduce the non-decreasing sequence of variables Ỹ1, Ỹ2, . . ., independent of
τ̃1, τ̃2, . . .. and such that 0 = Ỹ1 = . . . = Ỹg1−1 ≤ Y1 = Ỹg1 = . . . = Ỹg1+g2−1 ≤
Y2 = Ỹg1+g2 = . . . = Ỹg1+g2+g3−1 ≤ . . .. Our main result is given by the following
theorem.

Theorem 2.1 : The probability of survival within a finite time x

P (T > x) = e−λ1x +

∞∑
k=1

∫
. . .

∫
0≤y1≤...≤yj(k)≤h(x)

Bk(x)f
(
y1, . . . , yj(k)

)
dyj(k) · · · dy1, (4)

where,

0 < s = k + 1−
(
g1 + . . .+ gj(k)

)
, (5)

and

Bk(x) = λj(k−1)+1e
−λj(k)+1x

∫ x

h−1(yj(k))
eλj(k)+1zBk−1(z)dz, k = 1, 2, . . . (6)

with B0(x) = e−λ1x.
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Remark 1 : Above and in what follows, Bk(x) is an abbreviation for

Bk

x;h−1(0), . . . , h−1(0)︸ ︷︷ ︸
g1−1

, h−1 (y1) , . . . , h
−1 (y1)︸ ︷︷ ︸

g2

, . . . ,

h−1
(
yj(k)−1

)
, . . . , h−1

(
yj(k)−1

)︸ ︷︷ ︸
gj(k)

, h−1
(
yj(k)

)
, . . . , h−1

(
yj(k)

)︸ ︷︷ ︸
s


which stems from Lemmas A.1, A.2 and Corollary A.3, noting that (6) coincides
with (A13) for νk = h−1(yj(k)), k = 1, 2, . . .. It will be convenient to use the two
notations interchangeably.

Remark 2 : Let us note that, as established by Lemmas A.5 and A.6, the func-
tions Bk(x), k = 0, 1, 2, . . ., are exponential Appell polynomials. Their numerical
evaluation is facilitated by the results of Lemmas A.4-A.6 (see also Corollary 2.4).

Proof : By construction, the event T > x can be expressed as

{T > x} =
∞
∩
i=1

[{
h−1 (Yi) < Ti

}
∪ {x < Ti}

]
=

∞
∩
i=1

[{
h−1

(
Ỹg1+...+gi

)
< T̃g1+...+gi

}
∪
{
x < T̃g1+...+gi

}]
(7)

For the i-th event in (7) we have{
h−1

(
Ỹg1+...+gi

)
< T̃g1+...+gi

}
∪
{
x < T̃g1+...+gi

}
⊆
{
h−1

(
Ỹg1+...+gi

)
< T̃g1+...+gi+r

}
∪
{
x < T̃g1+...+gi+r

}
for r = 0, 1, ..., gi+1 − 1, which is equivalent to{
h−1

(
Ỹg1+...+gi

)
< T̃g1+...+gi

}
∪
{
x < T̃g1+...+gi

}
⊆
{
h−1

(
Ỹl

)
< T̃l

}
∪
{
x < T̃l

}
for g1 + ... + gi ≤ l < g1 + ... + gi+1. Therefore, for any i = 1, 2, ...{

h−1
(
Ỹg1+...+gi

)
< T̃g1+...+gi

}
∪
{
x < T̃g1+...+gi

}
⊆

g1+...+gi+1−1
∩

l=g1+...+gi

[{
h−1

(
Ỹl

)
< T̃l

}
∪
{
x < T̃l

}]
(8)

In addition, for 1 ≤ l < g1, (g1 ̸= 1), we also have{
h−1

(
Ỹl

)
< T̃l

}
∪
{
x < T̃l

}
=
{
h−1(0) < T̃l

}
∪
{
x < T̃l

}
=
{
0 < T̃l

}
∪
{
x < T̃l

}
= Ω

and hence

g1−1
∩
l=1

[{
h−1

(
Ỹl

)
< T̃l

}
∪
{
x < T̃l

}]
= Ω (9)
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where Ω is the sure event. Thus, from (7), (8) and (9) we obtain

{T > x} =
∞
∩
l=1

[{
h−1

(
Ỹl

)
< T̃l

}
∪
{
x < T̃l

}]
. (10)

Let us consider the (complete) set of events Ck =
{
T̃k ≤ x

}
∩
{
T̃k+1 > x

}
, k =

0, 1, 2, ..., where x > 0 and T̃0 = 0. For k = 0, we obviously have
{
T̃0 ≤ x

}
∩{

T̃1 > x
}
≡
{
T̃1 > x

}
. Note that the events Ck, k = 0, 1, ... are mutually exclusive

and that ∪∞
k=0Ck = Ω . Hence, from (10) we have

P (T > x) = P

(
∞
∩
l=1

[{
h−1

(
Ỹl

)
< T̃l

}
∪
{
x < T̃l

}]
∩ (∪∞

k=0Ck)

)
=

∞∑
k=0

P

(
∞
∩
l=1

[{
h−1

(
Ỹl

)
< T̃l

}
∪
{
x < T̃l

}]
∩ Ck

)
. (11)

The event in (11) can be expressed as

(
k
∩
l=1

[{
h−1

(
Ỹl

)
< T̃l

}
∪
{
x < T̃l

}]
∩ Ck

)
∩
(

∞
∩

l=k+1

[{
h−1

(
Ỹl

)
< T̃l

}
∪
{
x < T̃l

}]
∩ Ck

)
=

(
k
∩
l=1

[({
h−1

(
Ỹl

)
< T̃l

}
∩ Ck

)
∪
({
x < T̃l

}
∩ Ck

)])
∩
(

∞
∩

l=k+1

[({
h−1

(
Ỹl

)
< T̃l

}
∩ Ck

)
∪
({
x < T̃l

}
∩ Ck

)])
(12)

Now, taking into consideration the facts that
{
x < T̃l

}
∩
{
T̃k ≤ x

}
≡ ∅, for

l = 1, . . . , k, that
{
x < T̃l

}
∩ Ck ⊂ Ck, for l = k + 1, . . . ,∞, since

{
x < T̃l

}
⊃{

T̃k+1 > x
}
, and also that

(
∞
∩

l=k+1

{
h−1

(
Ỹl

)
< T̃l

}
∩ Ck

)
∪ Ck ≡ Ck we can

rewrite (12) as

(
∞
∩
l=1

[{
h−1

(
Ỹl

)
< T̃l

}
∪
{
x < T̃l

}])
∩ Ck =

(
k
∩
l=1

[{
h−1

(
Ỹl

)
< T̃l

}
∩ Ck

])
∩ Ck

=

(
k
∩
l=1

{
h−1

(
Ỹl

)
< T̃l

})
∩ Ck. (13)
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In view of (13), (11) can now be rewritten as

P (T > x) =

∞∑
k=0

P

(
k
∩
l=1

{
h−1

(
Ỹl

)
< T̃l

}
∩ Ck

)

=

∞∑
k=0

P

(
k
∩
l=1

{
h−1

(
Ỹl

)
< T̃l

}
∩
{
T̃k ≤ x

}
∩
{
T̃k+1 > x

})

=

∞∑
k=0

P
({
h−1

(
Ỹ1

)
< T̃1 ≤ x

}
∩ ... ∩

{
h−1

(
Ỹk

)
< T̃k ≤ x

}
∩
{
T̃k+1 > x

})

=

∞∑
k=0

E


x∫

h−1(Ỹ1)

. . .

x∫
h−1(Ỹk)

∞∫
x

fT̃1,...T̃k+1
(t1, . . . , tk+1)dtk+1 . . . dt1

 , (14)

where the expectation E[·] is with respect to the random variables, Ỹ1, . . . , Ỹk and
fT̃1,...,T̃k+1

(t1, . . . , tk+1) is the joint density of T̃1, . . . , T̃k+1. It can easily be seen

that the random vector T̃̃T̃T =
(
T̃1, . . . , T̃k+1

)′
coincides in distribution with the

random vector BBBk+1τ̃
∗, where τ̃∗ =

(
τ̃∗1 , . . . , τ̃

∗
k+1

)′
, and BBBk+1 is a (k+1)× (k+1)

dimensional matrix, i.e., BBBk+1τ̃
∗ d
= T̃̃T̃T . Recall that s = k + 1− g1 − . . .− gj(k) and

it is not difficult to see that 1 ≤ s ≤ gj(k)+1. From the definition of s, we have that
k + 1 = g1 + ... + gj(k) + s, which we will use frequently in the sequel. The matrix
BBBk+1 is then given in a block-matrix form as

BBBk+1 ≡


bbb1,1 · · · bbb1,j(k) bbb1,j(k)+1
...

. . .
...

...
bbbj(k),1 · · · bbbj(k),j(k) bbbj(k),j(k)+1

bbbj(k)+1,1 · · · bbbj(k)+1,j(k) bbbj(k)+1,j(k)+1

 ,

where bbbm,n is a gm × gn matrix for m,n = 1, ..., j(k), with all entries equal to 1
λn

if m > n, all entries equal to zero if m < n, and where bbbn,n is a lower triangular
matrix with all elements in the lower triangle equal to 1

λn
if m = n. The matrixes

bbbj(k)+1,n and bbbm,j(k)+1, m,n = 1, . . . , j(k), have dimensions correspondingly, s×gn
and gm × s. All the entries of bbbj(k)+1,n n = 1, . . . , j(k), are equal to 1

λn
, whereas

all the entries of bbbm,j(k)+1, m = 1, . . . , j(k) are zero. The matrix bbbj(k)+1,j(k)+1 is
a lower triangular matrix of dimension s× s with all entries in the lower triangle
equal to 1

λj(k)+1
. Then, it is not difficult to see that

fT̃1,...,T̃k+1
(t1, . . . , tk+1) = {e

−1·BBB−1
k+1·ttt

∣∣detBBB−1
k+1

∣∣
0

if 0 ≤ t1 ≤ t2 ≤ ... ≤ tk+1

otherwise...
, (15)

where, 1 =

1, . . . , 1︸ ︷︷ ︸
k+1

, ttt = (t1, . . . , tk+1)
′, ()′ stands for transposition, and

detBBB−1
k+1 denotes the determinant of the inverse of BBBk+1. It can also be directly

verified that the inverse matrix, BBB−1
k+1, is an incomplete, lower triangular matrix,
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with non-zero elements only at the main and next lower diagonals, given as

b̃l,l =


λ1 if 1 ≤ l ≤ g1
λ2 if g1 + 1 ≤ l ≤ g1 + g2
...

...
...

λj(k)+1 if g1 + · · ·+ gj(k) + 1 ≤ l ≤ g1 + · · ·+ gj(k)+1

,

b̃l+1,l =


−λ1 if 1 ≤ l ≤ g1 − 1
−λ2 if g1 ≤ l ≤ g1 + g2 − 1
...

...
...

−λj(k)+1 if g1 + · · ·+ gj(k) ≤ l ≤ g1 + · · ·+ gj(k)+1 − 1

(16)

and with all other elements equal to zero. In view of (15) and (16), and taking the
expectation, (14) becomes

P (T > x) = e−λ1x +

∞∑
k=1

∫
. . .

∫
0≤ỹ1≤...≤ỹk≤h(x)

∫ x

h−1(ỹ1)
. . .

∫ x

h−1(ỹk)

∫ +∞

x
λg11 . . . λ

gj(k)

j λsj(k)+1

exp [−{λ1tg1 + λ2 (tg1+g2 − tg1) + . . .+

λj(k)
(
tg1+...+gj(k)

− tg1+...+gj(k)−1

)
+ λj(k)+1

(
tg1+...+gj(k)+s − tg1+...+gj(k)

)}]
dtk+1 . . . dt1dFỸ1,...,Ỹk

(ỹ1, ..., ỹk) (17)

It can be seen that, the sequence of random variables Ỹ1, Ỹ2, . . . is indepen-
dent of T̃1, T̃2, . . ., and is non-decreasing, as required with respect to the ran-
dom variables Y1, Y2, . . . in equality (2) of [18],that dFỸ1,...,Ỹk

(ỹ1, . . . , ỹk) =

dFY1,...,Yj(k)

(
y1, . . . , yj(k)

)
and hence, that (17) can be rewritten as

P (T > x) = e−λ1x +

∞∑
k=1

∫
. . .

∫
0≤y1≤...≤yj(k)≤h(x)

∫ t2

h−1(0)
. . .

∫ tg1

h−1(0)︸ ︷︷ ︸
g1−1

∫ tg1+1

h−1(y1)
. . .

∫ tg1+g2

h−1(y1)︸ ︷︷ ︸
g2

. . .

∫ tg1+...+gj(k)−1+1

h−1(yj(k)−1)
. . .

∫ tg1+...+gj(k)

h−1(yj(k)−1)︸ ︷︷ ︸
gj(k)

∫ tg1+...+gj(k)+1

h−1(yj(k))
. . .

∫ tg1+...+gj(k)+s−1

h−1(yj(k))︸ ︷︷ ︸
s−1

∫ x

h−1(yj(k))

∫ +∞

x

λg11 . . . λ
gj(k)

j(k) λ
s
j(k)+1 exp

[
−
{
λ1tg1 + λ2 (tg1+g2 − tg1) + . . .+ λj(k)

(
tg1+...+gj(k)

− tg1+...+gj(k)−1

)
+λj(k)+1

(
tg1+...+gj(k)+s − tg1+...+gj(k)

)}]
dtk+1 . . . dt1dFY1,...,Yj(k)

(
y1, . . . , yj(k)

)
. (18)

Results (4) and (6) now follow from (18), Lemmas A.1 and A.2 and Corollary
A.3, noting that the multivariate integral in (18), with respect to the variables
t1, t2, ...tk+1, coincides with that in (A3) and (6) coincides with (A13) for νk =
h−1(yj(k)), k = 1, 2, . . .. �

In Corollary 2.2, we give a useful restatement of our main result, in terms of
the joint density, ψW1,...,Wk

(w1, . . . , wk), of the individual claim amount ran-
dom variables, W1, . . . ,Wk, k = 1, 2. . .., noting that ψW1,...,Wk

(w1, . . . , wk) =
fY1,...,Yk

(w1, w1 + w2, . . . , w1 + . . .+ wk).
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Corollary 2.2: The probability of survival within finite time x

P (T > x) =

g1−1∑
r=0

e−λ1xλr1
xr

r!
+

∞∑
i=1

g1+...+gi+1−1∑
l=g1+...+gi

∫
. . .

∫
0≤w1+...+wi≤h(x)

Bl

x;h−1(0), . . . , h−1(0)︸ ︷︷ ︸
g1−1

,

h−1 (w1) , . . . , h
−1 (w1)︸ ︷︷ ︸

g2

, . . . , h−1 (w1 + . . .+ wi−1) , . . . , h
−1 (w1 + . . .+ wi−1)︸ ︷︷ ︸

gi

,

h−1 (w1 + . . .+ wi) , . . . , h
−1 (w1 + . . .+ wi)︸ ︷︷ ︸

l−(g1+...+gi)+1

ψW1,...,Wi
(w1, . . . , wi) dwi . . . dw1.

2.2 Special cases

Let us now consider several corollaries of Theorem 2.1, for particular choices of the
Erlang model parameters, gi and λi, i = 1, 2, . . .. In the special case when λi = λ,
i.e., τi ∼ Erlang (gi, λ), we have

Corollary 2.3: The probability of survival within finite time x

P (T > x) = e−λx

1 +

g1−1∑
l=1

λlAl

x;h−1(0), . . . , h−1(0)︸ ︷︷ ︸
l



+

∞∑
i=1

g1+...+gi+1−1∑
l=g1+...+gi

λl
∫ h(x)

0
dy1

∫ h(x)

y1

dy2 . . .

∫ h(x)

yi−1

Al

x;h−1(0), . . . , h−1(0)︸ ︷︷ ︸
g1−1

,

h−1 (y1) , . . . , h
−1 (y1)︸ ︷︷ ︸

g2

, . . . , h−1 (yi−1) , . . . , h
−1 (yi−1)︸ ︷︷ ︸

gi

,

h−1 (yi) , . . . , h
−1 (yi)︸ ︷︷ ︸

l−(g1+...+gi)+1

 f (y1, . . . , yi) dyi

 , (19)

where y0 ≡ 0, the first sum vanishes if g1 = 1 and Al (x; v1, ..., vl), l = 1, 2, ... are
the classical Appell polynomials Al(x) of degree l with a coefficient in front of xl

equal to 1/l!, defined by

A0(x) = 1

A′
l(x) = Al−1(x) (20)

Al (vl) = 0, l = 1, 2, ...

Proof : The result follows from Theorem 2.1, noting that the multiple integral
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with respect to t1, . . . , tk+1, in (18) takes then the simpler form∫ t2

h−1(0)
. . .

∫ tg1

h−1(0)︸ ︷︷ ︸
g1−1

∫ tg1+1

h−1(y1)
. . .

∫ tg1+g2

h−1(y1)︸ ︷︷ ︸
g2

. . .

∫ tg1+...+gj(k)−1+1

h−1(yj(k)−1)
. . .

∫ tg1+...+gj(k)

h−1(yj(k)−1)︸ ︷︷ ︸
gj(k)∫ tg1+...+gj(k)+1

h−1(yj(k))
. . .

∫ tg1+...+gj(k)+s−1

h−1(yj(k))︸ ︷︷ ︸
s−1

∫ x

h−1(yj(k))

∫ +∞

x
λk+1e−λtk+1dtk+1 . . . dt1

= λke−λx

∫ t2

h−1(0)
. . .

∫ tg1

h−1(0)︸ ︷︷ ︸
g1−1

∫ tg1+1

h−1(y1)
. . .

∫ tg1+g2

h−1(y1)︸ ︷︷ ︸
g2

. . .

∫ tg1+...+gj(k)−1+1

h−1(yj(k)−1)
. . .

∫ tg1+...+gj(k)

h−1(yj(k)−1)︸ ︷︷ ︸
gj(k)

∫ tg1+...+gj(k)+1

h−1(yj(k))
. . .

∫ tg1+...+gj(k)+s−1

h−1(yj(k))︸ ︷︷ ︸
s−1

∫ x

h−1(yj(k))
dtk . . . dt1

= λke−λxAk

x;h−1(0), ..., h−1(0)︸ ︷︷ ︸
g1−1

, h−1 (y1) , ..., h
−1 (y1)︸ ︷︷ ︸

g2

, ..., h−1
(
yj(k)

)
, ..., h−1

(
yj(k)

)︸ ︷︷ ︸
s−1

, h−1
(
yj(k)

) ,

where the Ak(x)’s in the right-hand side of the last equality are Appell polynomials
defined as in (20). Hence,

P (T > x) =

e−λx +

∞∑
k=1

∫
...

∫
0≤y1≤...≤yj(k)≤h(x)

λke−λxAk

x;h−1(0), ..., h−1(0)︸ ︷︷ ︸
g1−1

, h−1 (y1) , ..., h
−1 (y1)︸ ︷︷ ︸

g2

, ...,

h−1
(
yj(k)

)
, ..., h−1

(
yj(k)

)︸ ︷︷ ︸
s

 f
(
y1, ..., yj(k)

)
dyj(k) · · · dy1,

which is directly seen to admit the form (19). �

Remark 3 : It can be directly verified that in the special case when gi = 1,
i = 1, 2, ... , formula (19) coincides with formula (1) given in [18] for the case of
Poisson claim arrivals.

Let us now consider the special case in which gi = 1, i = 1, 2, ... and λi, i = 1, 2, ...
are pairwise distinct real numbers. In the latter case it will be convenient for
us to change notation for the parameters λi, and denote them by µi, i = 1, ....,
i.e., τi ∼ Exp (µi). From Theorem 2.1 and Lemma A.4, with νk = h−1 (yk) ,
k = 1, 2, . . .. it follows that

Corollary 2.4: The probability of non-ruin, P (T > x), within finite time x is

P (T > x) = e−µ1x +

∞∑
k=1

∫
. . .

∫
0≤y1≤...≤yk≤h(x)

Bk

(
x;h−1 (y1) , . . . , h

−1 (yk)
)

f (y1, . . . , yk) dyk · · · dy1,
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where

Bk(x) =

k+1∑
i=1

ci(k)e
−µix , k = 0, 1, 2, . . . ,

ci(k) are appropriate constants, for which the following recurrence relations hold

ci(k + 1) =

{
µk+1

µk+2−µi
ci(k), for i = 1, 2, ..., k + 1

−
∑k+1

r=1 e
(µk+2−µr)h−1(yk+1) µk+1

µk+2−µr
cr(k) fori = k + 2

,

k = 0, 1, 2, . . ., and c1(0) = 1.

Remark 4 : Alternatively and explicitly, for Bk(x), by induction, one has

Bk(x) = µ1 . . . µk
∑

(r1,...,rk)∈{1, 2} × . . .× {1, 2}︸ ︷︷ ︸
k

(
k∏

m=1

H (m, rm)

)

exp

−x

 k∏
i=1

(2− ri)µ1 +

k−1∑
j=1

(rj − 1)

k∏
i=j+1

(2− ri)

µj+1 + (rk − 1)µk+1

 ,

where

H (m, rm) = (2− rm)
1

µm+1 − a (m, r1, . . . , rm−1)

+ (rm − 1)
− exp

{
(µm+1 − a (m, r1, . . . , rm−1))h

−1 (ym)
}

µm+1 − a (m, r1, . . . , rm−1)
,

a (m, r1, . . . , rm−1) =

(
m−1∏
i=1

(2− ri)

)
µ1 +

m−1∑
j=1

(rj − 1)

m−1∏
i=j+1

(2− ri)

µj+1,

and where
∑

∅ = 0,
∏

∅ = 1, and ∅ is the empty set.

Let us finally consider the reasonably general special case of the initially stated
Erlang claim arrival model in which gi, i = 1, 2, ... are arbitrary positive integers
and the Erlang rate parameters, λi, i = 1, 2, ... are as in (2), but are assumed
positive, pair-wise distinct real numbers. In this case, for the probability of survival
within a finite time x, from Theorem 2.1, Corollary A.3 and Lemma A.6, we have

Corollary 2.5: The probability of non-ruin, P (T > x), within finite time x is

P (T > x) = e−λ1x+

∞∑
k=1

∫
. . .

∫
0≤y1≤...≤yj(k)≤h(x)

Bk (x; ν1, . . . , νk) f
(
y1, . . . , yj(k)

)
dyj(k) · · · dy1,

where, Bk (x; ν1, . . . , νk), coincides with the expression (A25), given by Lemma
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A.6, for

ν1 = . . . = νg1−1 = h−1(0);

νg1 = . . . = νg1+g2−1 = h−1 (y1) ;

. . .

νg1+...+gj(k)−1
= . . . = νg1+...+gj(k)−1 = h−1

(
yj(k)−1

)
;

νg1+...+gj(k)
= . . . = νg1+...+gj(k)+s−1 ≡ νk = h−1

(
yj(k)

)
,

with, 0 < s = k + 1−
(
g1 + . . .+ gj(k)

)
.

Expression (A25), of Lemma A.6, does not involve integration and facilitates
the exact numerical computation of the functions, Bk(x), and hence of the non-
ruin probability, P (T > x), given by Corollary 2.5. Expression (A25) is recurrent,
with respect to the terms, R(.) and involves divided differences of a simple power
function and classical Appell polynomials, both of which can easily be computed
recurrently. For properties of divided differences and their numerical evaluation,
we refer to [30]. For an elegant recurrent expression for computing classical Ap-
pell polynomials see e.g., Lemma 4 of [17]. Further details of how the recurrence
(A25) and also the non-ruin probability, P (T > x), can be computed using the
Mathematica system will appear elsewhere.

2.3 Dependent claim inter-arrival times.

Let us note here that our main result given by formula (4), can be generalized
further to cover the case of dependent claim inter-arrival times. In view of the gen-
erality of formula (4), dependence can be introduced in various ways, in particular,
by randomizing the set of shape parameters g1, g2, ... or/and by randomizing the set
of rate parameters λ1, λ2, . . .In other words, we can assume that the inter-arrival
times τi, i = 1, 2, . . . are either Erlang (Gi, λi), or Erlang (gi,Λi), or Erlang (Gi,Λi)
distributed, where G1, G2, . . . .is a sequence of positive integer valued random vari-
ables with a sequence of joint probability mass functions

pg1,...,gl = P (G1 = g1, . . . , Gl = gl) for g1 ≥ 1, . . . , gl ≥ 1, l = 1, 2, . . . ,

and Λ1,Λ2, . . . are continuous (dependent) random variables with the sequence of
marginal joint densities

fΛ1,...,Λl
(λ1, . . . λl) for λ1 > 0, . . . , λl > 0, l = 1, 2, . . . .

Clearly, in the case of Erlang (Gi, λi), the consecutive claimsW1,W2, ... arrive with
inter-arrival times τ1 = τ̃1 + . . .+ τ̃G1

and τ2 = τ̃G1+1 + . . .+ τ̃G1+G2
, . . . which are

dependent random variables. In particular, one can see that τ1, τ2 are dependent
with covariance

Cov (τ1, τ2) = Cov (G1, G2) /λ1λ2

and correlation

Corr (τ1, τ2) = Cov (G1, G2) /
(√

Var (G1) + E (G1)
√

Var (G2) + E (G2)
)

≤ Corr (G1, G2) .
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In the case of Erlang (gi,Λi) claim inter-arrival times τ1 = τ̃1+. . .+τ̃g1 , τ2 = τ̃g1+1+
. . . + τ̃g1+g2 , . . ., it can be seen that τ1, τ2, . . . are dependent random variables as
well. In particular, it is easy to establish that τ1, τ2 are dependent with covariance

Cov (τ1, τ2) = g1g2Cov
(
Λ−1
1 ,Λ−1

2

)
and correlation

Corr (τ1, τ2) =
√
g1g2Corr

(
Λ−1
1 ,Λ−1

2

)
.

In principle, a large class of multivariate discrete distributions can be used to in-
troduce dependence in our risk model through, e.g. the Dirichlet-compound multi-
nomial distribution (see [21], p.80), the multivariate logarithmic series distribution
(see [21], p.158), and the multivariate Pólya-Eggenberger distributions (see [21],
p.200), subject to appropriate ’zeros-truncation’ (as described in [21], p.21). As an
example we will give the ’zeros-truncated’ multinomial distribution (MDZT) of [20].
The joint probability mass function of the MDZT distribution with parameters m
and d1, ..., dl is defined as

P (G1 = g1, . . . , Gl = gl) =
m!

(g1 − 1)! . . . (gl − 1)! (m+ l − g1 − . . .− gl)!
dg1−1
1 . . . dgl−1

l

(1− d1 − . . .− dl)
m+l−g1−...−gl

for gi ≥ 1, i = 1, 2, . . . , l, l = 1, 2, . . ., positive integers, g1 + . . . + gl ≤ m + l
and P (G1 = g1, . . . , Gl = gl) = 0 otherwise, where m ≥ 1 is a positive integer and
di ∈ R+, i = 1, . . . , l are such that d1 + . . . + dl < 1, l = 1, 2, . . .. In the case of
Erlang (gi,Λi) , claim inter-arrivals, there is also abundance of joint distributions
for the random variables Λ1,Λ2, ... to choose from (see [22]) . It is worth noting
that various copula models, can also be used to construct the dependent joint
distribution of Λ1,Λ2, .... It is not difficult to see that formulae for P (T > x), for the
models of possibly dependent claim inter-arrival times, introduced in this section,
can be easily obtained applying the formula of total probability, with respect to
the set G1, G2, ... or/and to the set Λ1,Λ2, .... To illustrate this, next, we give
a straightforward generalization of formula (19), assuming that the inter-arrival
times τi, i = 1, 2, ... have Erlang (Gi, λ) distribution, where λ = λ1 = λ2=.....

Corollary 2.6: The probability of survival within a finite time x under the
assumption that consecutive claims W1,W2, ... arrive with inter-arrival times
τ1 = τ̃1 + . . .+ τ̃G1

, τ2 = τ̃G1+1 + . . .+ τ̃G1+G2
, . . ., is given as

P (T > x) = e−λx

1 +

∞∑
k=1

k∑
r=1

∑
(g1,...,gr+1)∈Gk(r)

pg1,...,gr+1
Dk (x, h(x), g1, . . . , gr)

 ,
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where Gk(r) = {(g1, . . . , gr+1) : g1 + . . .+ gr ≤ k < g1 + . . .+ gr + gr+1}, and

Dk (x, h(x), g1, . . . , gr) = λk
∫
. . .

∫
0≤y1≤...≤yr≤h(x)

Ak

x;h−1(0), . . . , h−1(0)︸ ︷︷ ︸
g1−1

, h−1 (y1) , . . . , h
−1 (y1)︸ ︷︷ ︸

g2

,

. . . , h−1 (yr−1) , . . . , h
−1 (yr−1)︸ ︷︷ ︸

gr

, h−1 (yr) , . . . , h
−1 (yr)︸ ︷︷ ︸

s

 dF (y1, . . . , yr) ,

with s = k + 1− (g1 + . . .+ gr), so that 1 ≤ s ≤ gr+1.
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Appendix A.

In what follows, we are going to prove five auxiliary lemmas, which introduce a
class of exponential polynomials and establish some of their important properties,
needed in order to prove our main non-ruin probability formula, given by Theorem
2.1, and facilitate its numerical evaluation.

Lemma A.1: Let g1, g2, ... be a sequence of positive integers and let λ1, λ2, ...
be a sequence of positive real numbers. Based on these two sequences, let us define
the sequence of functions B0(x), B1(x), ..., Bk(x), for x > 0 as

B0(x) = e−λ1x (A1)

B1(x) ={
λ1

λ2−λ1
e−λ1x − λ1

λ2−λ1
e(λ2−λ1)h−1(y1)e−λ2x, for g1 = 1 and λ1 ̸= λ2

λ1xe
−λ1x for {g1 = 1 and λ1 = λ2} or g1 ≥ 2

(A2)



July 5, 2011 16:24 Stochastics: An International Journal of Probability and Stochastic Processes
Finite*Horizon*(Non-)*Ruin*Probability*for*Erlang*revised

16 Zvetan G. Ignatov and Vladimir K. Kaishev

and for k = 2, 3, . . ., as

Bk(x) =∫ t2

h−1(0)
. . .

∫ tg1

h−1(0)︸ ︷︷ ︸
g1−1

∫ tg1+1

h−1(y1)
. . .

∫ tg1+g2

h−1(y1)︸ ︷︷ ︸
g2

. . .

∫ tg1+...+gj(k)−1+1

h−1(yj(k)−1)
. . .

∫ tg1+...+gj(k)

h−1(yj(k)−1)︸ ︷︷ ︸
gj(k)∫ tg1+...+gj(k)+1

h−1(yj(k))
. . .

∫ tg1+...+gj(k)+s−1

h−1(yj(k))︸ ︷︷ ︸
s−1

∫ x

h−1(yj(k))

∫ +∞

x
λg11 . . . λ

gj(k)

j λsj(k)+1 exp [

−
{
λ1tg1 + λ2 (tg1+g2 − tg1) + . . .+ λj(k)

(
tg1+...+gj(k)

− tg1+...+gj(k)−1

)
+ λj(k)+1

(
tg1+...+gj(k)+s − tg1+...+gj(k)

)}]
dtk+1...dt1, (A3)

where the index function, j(k), is defined in (1), 0 < s = k−
(
g1 + . . .+ gj(k)

)
+ 1

(as given in (5)) and y1, y2, . . . are realizations of the random variables Y1, Y2, . . .,
defined in (3) (see Section 2.1). This sequence of functions obeys the following
system of linear differential equations

B
′′′

0(x) = −λ1e−λ1x

B
′′′

k(x) = −λj(k)+1Bk(x) + λj(k−1)+1Bk−1(x), for k = 1, 2, ... , (A4)

with initial conditions

B0(0) = 1, B1

(
h−1(0)

)
= 0, ..., Bg1−1

(
h−1(0)

)
= 0,

Bg1

(
h−1 (y1)

)
= 0, Bk

(
h−1

(
yj(k)

))
= 0, ..., for k = g1 + 1, g1 + 2, .... (A5)

Proof : By means of direct differentiation it can be verified that the functions
B0(x) and B1(x) for g1 = 1, given by (A1) and (A2) respectively, obey the differ-
ential equations

B
′′′

0(x) = −λ1e−λ1x

B
′′′

1(x) = −λ2B1(x) + λ1B0(x),

and for g1 ≥ 2, obey the equations

B
′′′

0(x) = −λ1e−λ1x

B
′′′

1(x) = −λ1B1(x) + λ1B0(x).

The function, Bk(x), defined in (A3), is a well defined (k+1)−variate integral, for
g1 ≥ 2, with limits of integration depending on the variable x. It will be convenient
for us to change the notation for the parameters λi, and denote them by µi, i =
1, ....in the case when λi, i = 1, 2, ... are pairwise-distinct and 1 = g1 = g2=... In
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this case, consider Bk(x) for any fixed k ≥ 2. We have

Bk(x) =

∫ t2

h−1(y1)
dt1...

∫ tk

h−1(yk−1)
dtk−1

∫ x

h−1(yk)
dtk

∫ +∞

x
dtk+1 (µ1...µk+1

exp [−{µ1t1 + µ2 (t2 − t1) + ... + µk (tk − tk−1) + µk+1 (tk+1 − tk)}])

=

∫ t2

h−1(y1)
dt1...

∫ tk

h−1(yk−1)
dtk−1

∫ x

h−1(yk)
dtk

∫ +∞

x
dtk+1(

µk+1e
−µk+1tk+1µ1...µk exp [−{µ1t1 + µ2 (t2 − t1) + ... + µk (tk − tk−1)− µk+1tk}]

)
= e−µk+1x

∫ t2

h−1(y1)
dt1...

∫ tk

h−1(yk−1)
dtk−1

∫ x

h−1(yk)
dtk

(µ1...µk exp [−{µ1t1 + µ2 (t2 − t1) + ... + µk (tk − tk−1)− µk+1tk}]) (A6)

from where, denoting the multiple integral on the right-hand side by Ik(x), we have

Bk(x) = e−µk+1xIk(x) . (A7)

One sees that the derivative of Ik(x) is given by

dIk(x)

dx
=

∫ t2

h−1(y1)
dt1...

∫ tk−1

h−1(yk−2)
dtk−2

∫ x

h−1(yk−1)
dtk−1

(µ1...µk exp [−{µ1t1 + µ2 (t2 − t1) + ... + µk−1 (tk−1 − tk−2) + µk (x− tk−1)− µk+1x}])

= µke
(µk+1−µk)xIk−1(x). (A8)

Differentiating both sides of (A7) and using (A8), we obtain

dBk(x)

dx
= −µk+1e

−µk+1xIk(x) + µke
−µk+1xeµk+1x−µkxIk−1(x)

= −µk+1Bk(x) + µkBk−1(x). (A9)

Let us now consider the general case in which, g1, g2, ... is an arbitrary sequence of
positive integers and λi, i = 1, 2, ... is a sequence of positive, possibly coincident,
real-valued intensities. In order to consider this general case, we need to pass to
the limit in the integrand function in (A6), with respect to the parameters µi, i =
1, 2, ..., as µ1 → λ1, ..., µg1 → λ1, µg1+1 → λ2, . . . , µg1+g2 → λ2, . . . , µg1+...+gj(k)

→
λj(k), . . . , µk+1 → λj(k)+1 . It is not difficult to establish that the latter limit exists
and the limit of the integral in (A6) exists as well. We have

limµ1 . . . µk+1e
−{µ1t1+µ2(t2−t1)+...+µk(tk−tk−1)+µk+1(tk+1−tk)}

= λg11 . . . λ
gj(k)

j(k) λ
s
j(k)+1 exp [−{λ1tg1 + λ2 (tg1+g2 − tg1) + . . .

+λj(k)
(
tg1+...+gj(k)

− tg1+...+gj(k)−1

)
+λj(k)+1

(
tg1+...+gj(k)+s − tg1+...+gj(k)

)}]
(A10)

where s is defined as in (5). Hence, in view of (A10), it can be seen that the integral
in (A6), i.e., Bk(x) also has a limit which admits the representation (A3) and obeys
the system of equations (A4) which is established similarly, by passing to the limit
in (A9), as µ1 → λ1, ..., µg1 → λ1, µg1+1 → λ2, . . . , µg1+g2 → λ2, . . . , µg1+...+gj(k)

→
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λj(k), . . . , µk+1 → λj(k)+1. The system of functions (A1), (A2) and (A3) obeys the
initial conditions (A5) which follows since in this case the limits of integration with
respect to tk coincide and the multivariate integral in (A3) is zero. In the cases
when k = 0 and k = 1 it is directly verified that the initial conditions hold. This
completes the proof of Lemma A.1. �

We can now formulate the following lemma.

Lemma A.2: The system of linear differential equations,

B
′′′

0(x) = −λ1e−λ1x

B
′′′

k(x) = −λj(k)+1Bk(x) + λj(k−1)+1Bk−1(x). (A11)

for k = 1, 2, . . . with initial conditions

B0(0) = 1, Bk (νk) = 0, k = 1, 2, ... (A12)

has a unique solution, given by the following sequence of functions

Bk(x) = λj(k−1)+1e
−λj(k)+1x

∫ x

νk

eλj(k)+1zBk−1(z)dz , k = 1, 2, . . . (A13)

where B0(x) = e−λ1x and νk, k = 1, 2, . . . is a non-decreasing sequence of real
numbers, 0 ≤ ν1 ≤ ν2 ≤ . . ..

Proof : Let us differentiate with respect to x , each of the functions in the
sequence Bk(x) , k = 0, 1, 2, . . . , given by (A13). We have,

B
′′′

0(x) = −λ1e−λ1x;

and

dBk(x)

dx
= −λj(k)+1Bk(x) + λj(k−1)+1Bk−1(x).

Moreover, B0(0) = 1, and Bk (νk) = 0 for k = 1, 2, .... hence the asserted result
holds true. �

Corollary A.3: The sequence of functions Bk(x), given by (A13) and the cor-
responding sequence Bk(x), defined by (A1), (A2) and (A3) coincide.

Proof : Denote, by 0 ≤ ν1 ≤ ν2 ≤ ... , the sequence of real numbers

h−1(0) ≤ . . . ≤ h−1(0)︸ ︷︷ ︸
g1−1

≤ h−1 (y1) ≤ . . . . ≤ h−1 (y1)︸ ︷︷ ︸
g2

, . . . , (A14)

correspondingly. The statement of Corollary A.3 follows from the uniqueness of the
solution of the system (A11) with initial conditions (A12), Lemma A.2 and Lemma
A.1, in which limits of integration are replaced according to (A14). �

Lemma A.4: Let, 1 = g1 = g2 = . . . and let the parameters µ1, µ2, . . . be pairwise
distinct. Then

Bk(x) =

k+1∑
i=1

ci(k)e
−µix , k = 0, 1, 2, . . . (A15)
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where ci(k) are appropriate constants, for which the following recurrence relations
hold

ci(k + 1) =

{
µk+1

µk+2−µi
ci(k), for i = 1, 2, . . . , k + 1

−
∑k+1

r=1 e
(µk+2−µr)νk+1 µk+1

µk+2−µr
cr(k) fori = k + 2

, (A16)

where k = 0, 1, 2, . . . and c1(0) = 1.

Proof : Using induction, we have B0(x) = e−µ1x , hence c1(0) = 1. Assume,
(A15) holds for some k ≥ 1 . Then, from (A13) and the latter assumption we have

Bk+1(x) = µk+1e
−µk+2x

∫ x

νk+1

eµk+2z
k+1∑
i=1

ci(k)e
−µizdz

= µk+1e
−µk+2x

k+1∑
i=1

ci(k) (
exp [(µk+2 − µi)x]

µk+2 − µi
− exp [(µk+2 − µi) νk+1]

µk+2 − µi

)

=

k+1∑
i=1

e−µix µk+1

µk+2 − µi
ci(k)− e−µk+2x

k+1∑
r=1

e(µk+2−µr)νk+1
µk+1

µk+2 − µr
cr(k)

(A17)

Comparing expression (A17) with (A15) for k+1, using (A16), we get the desired
result. �

Let us now consider the problem of finding an expression for Bk(x) in the gen-
eral case of τi ∼ Erlang (gi, λi), where g1, g2, . . .is an arbitrary positive integer
sequence and λi, i = 1, 2, . . . is the sequence of possibly coincident positive, real
intensities. One possible approach would be to proceed from the special case of
1 = g1 = g2 = . . . and µk, k = 1, 2, . . . pairwise-distinct, by passing to the limit as
µ1 → λ1, ..., µg1 → λ1, µg1+1 → λ2, . . . , µg1+g2 → λ2, . . .. However, we will follow a
different approach, based on the decomposition of the Erlang random variables, τi
as sums of Exponential random variables with parameters as in (2). Further more,
we will consider an arbitrary sequence, θ1, θ2, . . ., for which (2) does not necessarily
hold and will be aiming at identifying the distinct values within it. In this way,
in θ1, θ2, . . ., we ignore the fact that the parameters gi and λi are associated with
one another through the Erlang claim inter-arrival model. Based on θ1, θ2, . . ., let
us construct the sequence, µ1, µ2, . . . of pairwise-distinct positive real numbers, ac-
cording to the following rule: Set µ1 ≡ θ1, µ2 to be the first number in the sequence
θ1, θ2, . . ., which differs from µ1, µ3 to be the fist number in the sequence, θ1, θ2, . . .
which is different from µ1 and µ2 and so on. The sequence, obtained in this way
may be either finite or infinite and we can use it to express the elements of the
sequence, θ1, θ2, . . . as

θr = µir , r = 1, 2, . . . , (A18)

where i1 ≡ 1, ir, r = 2, 3, . . . are some indexes for which the inequality 1 ≤ ir ≤ r,
r = 1, 2, . . . holds. Denote by s(k + 1) the number of pairwise-distinct indexes
i1, i2, . . . , ik, ik+1. Obviously, s(k+1) ≤ k+1. Based on (A18), let us introduce the
index sets m(k + 1, j) as

m(k + 1, j) = {r − 1 : ir = j, 1 ≤ r ≤ k + 1} , j = 1, 2, . . . , s(k + 1)
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for k = 1, 2 . . .. Denote

l(k + 1, j) = # {m(k + 1, j)} , j = 1, 2, . . . , s(k + 1)

for k = 1, 2 . . .. We have l(k + 1, j) ≥ 1 and

s(k+1)∑
j=1

l(k + 1, j) = k + 1

for k = 1, 2 . . .. Denote

(m(k + 1, j))1 < . . . < (m(k + 1, j))l(k+1,j)

the elements of the index setm(k+1, j), ordered in a non-decreasing order. Finally,
we define the set, D(k, j, q), of ordered real values d = (d1, . . . , dq), as

D(k, j, q) ={
{d1, . . . , dq} : d1 < . . . < dq; {d1, . . . , dq} ⊂

{
ν(m(k+1,j))

2
, . . . , ν(m(k+1,j))

l(k+1,j)

}}
where q = 0, 1, 2, . . . , l(k + 1, j) − 1 and D(k, j, q) is empty when l(k + 1, j) = 1
and/or q = 0.
The function e−µxAq(x, d1, . . . , dq), with parameters µ > 0, 0 ≤ d1 ≤ · · · ≤ dq

where Aq(x, d1, . . . , dq) is the classical Appell polynomial of degree q, defined as
in (20), will be called exponential Appell monomial. A linear combination of such
monomials with different parameters will be called exponential Appell polynomial.
The following lemma establishes a characterization of the function Bk(x) as an
exponential Appell polynomial (see A20).

Lemma A.5: The function,

B̃k(x) =

∫ t2

ν1

∫ t3

ν2

. . .

∫ tk

νk−1

∫ x

νk

∫ +∞

x
µ1µi2 . . . µik+1

exp
[
−
{
µ1t1 + µi2 (t2 − t1) + . . .+ µik (tk − tk−1) + µik+1

(tk+1 − tk)
}]

dtk+1 . . . dt1, (A19)

constructed, using the first k + 1 terms, θ1 = µ1, θ2 = µi2 , . . . , θk+1 = µik+1
, of

the sequence (A18) and the first k terms, ν1, ..., νk, of a non-decreasing sequence
of real numbers, 0 ≤ ν1 ≤ ν1 ≤ . . ., can be expressed as

B̃k(x) =

s(k+1)∑
j=1

l(k+1,j)−1∑
q=0

∑
d∈D(k,j,q)

c(k, j, q, d)e−µjxAq(x, d) , (A20)

where c(k, j, q, d) are appropriate constants, Aq(x; d) ≡ Aq (x; d1, . . . , dq) is the
classical Appell polynomial of degree, q, defined as in (20).

Proof : We will apply induction with respect to the index k. For k = 0, obviously,
from (A20) we see that j = 1, q = 0 and hence, B̃0(x) = e−θ1x = e−µ1x, which is of
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the form as in (A20) with c(0, 1, 0) ≡ 1. For k = 1, and θ1 = µ1, θ2 = µ2 we have

B̃1(x) =
µ1

µ2 − µ1
e−µ1x − µ1

µ2 − µ1
e(µ2−µ1)ν1e−µ2x,

and in this case

c(1, 1, 0) =
µ1

µ2 − µ1
, and c(1, 2, 0) =

−µ1
µ2 − µ1

e(µ2−µ1)ν1 .

For θ1 = µ1, θ2 = µ1 we have that

B̃1(x) = µ1 (x− ν1) e
−µ1x,

and in this case

c(1, 1, 0) = 0, and c(1, 1, 1, d) = µ1 ≡ θ1,

where d = (d1) = (ν1) and in c(k, j, q) for k = 1, j = 1, 2, q = 0 we have omitted
the argument d, since the set D(k, j, q) is empty for q = 0. In both cases, B̃1(x)
has the form as in (A20). Assume, (A20) holds for some k ≥ 2. Denote by H(k)
the set of all exponential Appell monomials which appear in (A20), i.e.,

H(k) =
{
e−µjxAq(x; d); 1 ≤ j ≤ s(k + 1), 0 ≤ q ≤ l(k + 1, j)− 1, d ∈ D(k, j, q)

}
.

In other words, B̃k(x) is a linear combination of elements of H(k) in which some of
the coefficients may be equal to zero. The elements of H(k) can be uniquely defined
by the index sets m(k + 1, j), j = 1, . . . , s(k + 1). Therefore, we can alternatively
denote H(k) as H(m(k+1, j), j = 1, . . . , s(k+1))). Since,m(k+1, j) ⊂ m(k+2, j))
for every fixed j, hence H(k) ≡ H(m(k + 1, j), j = 1, . . . , s(k + 1))) ⊂ H(m(k +
2, j), j = 1, . . . , s(k+2))) ≡ H(k+1), i.e., H(k) ⊂ H(k+1). For B̃k(x), by analogy
with (A13) we have that

B̃k(x) = µike
−µik+1

x

∫ x

νk

eµik+1
zB̃k−1(z)dz . (A21)

Hence, from (A21), for k + 1 and the induction assumption that (A20) holds for
some k we have that

B̃k+1(x) =

µik+1
e−µik+2

x
s(k+1)∑
j=1

l(k+1,j)−1∑
q=0

∑
d∈D(k,j,q)

c(k, j, q, d)

∫ x

νk+1

e(µik+2
−µj)zAq(z; d)dz.

(A22)

In order to show by induction that (A20) is valid for k + 1, it suffices to show
that, B̃k+1(x) is a linear combination of elements of H(k+1) ≡ H(m(k+2, j), j =
1, . . . , s(k+2))). Following this line of reasoning, for ik+2 = s(k+1)+1 ≡ s(k+2),
from (A22), integrating by parts and using the property of Appell polynomials,
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A′
q(x) = Aq−1(x), given in (20), we have

B̃k+1(x) = µik+1
e−µik+2

x
s(k+1)∑
j=1

l(k+1,j)−1∑
q=0

∑
d∈D(k,j,q)

c(k, j, q, d)

(
q∑

t=0

(−1)t

(µik+2
− µj

)
t+1

Aq−t(x; d)e
(µik+2

−µj)x

+

q∑
t=0

(−1)t+1

(µik+2
− µj

)
t+1

Aq−t (νk+1; d) e
(µik+2

−µj)νk+1

)

=

s(k+1)∑
j=1

l(k+1,j)−1∑
q=0

∑
d∈D(k,j,q)

µik+1
c(k, j, q, d)

q∑
t=0

(−1)t

(µs(k+2) − µj
)
t+1

e−µjxAq−t(x; d)

+

s(k+1)∑
j=1

l(k+1,j)−1∑
q=0

∑
d∈D(k,j,q)

µik+1
c(k, j, q, d)

q∑
t=0

(−1)t+1

(µs(k+2) − µj
)
t+1

Aq−t (νk+1; d) e
(µs(k+2)−µj)νk+1

)
e−µs(k+2)xA0 (x) ,

(A23)

where Aq−t (x; d) ≡ Aq−t (x; d1, . . . , dq) ≡ Aq−t (x; d1, . . . , dq−t) and A0 (x) ≡ 1.

Since ik+2 = s(k + 1) + 1 ≡ s(k + 2), the index sets which define B̃k+1(x) are
m(k+2, j) = m(k+1, j), j = 1, . . . , s(k+1) and m(k+2, s(k+2)) = {k + 2− 1}.
Hence, H(k + 1) = H(k) ∪ {e−µs(k+2)xA0(x)}.
It can be directly verified that each exponential Appell monomial in (A23) is an

element of H(k + 1). More precisely, the exponential Appell monomials

e−µjxAq−t(x, d), 1 ≤ j ≤ s(k + 1), 0 ≤ q ≤ l(k + 1, j)− 1, 0 ≤ t ≤ q, d ∈ D(k, j, q)

are elements of H(k) whereas, e−µs(k+2)xA0(x) is not in H(k) but is in H(k + 1).
This completes the proof of the lemma in the case ik+2 = s(k + 1) + 1.
In the case 1 ≤ ik+2 = n ≤ s(k + 1), we will briefly sketch the proof which is
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similar. From (A22), we have

B̃k+1(x) =

µik+1
e−µnx

s(k+1)∑
j=1
j ̸=n

l(k+1,j)−1∑
q=0

∑
d∈D(k,j,q)

c(k, j, q, d)

∫ x

νk+1

e(µn−µj)zAq(z; d)dz

+µik+1
e−µnx

l(k+1,n)−1∑
q=0

∑
d∈D(k,n,q)

c(k, n, q, d)

∫ x

νk+1

e(µn−µn)zAq(z; d)dz

=

s(k+1)∑
j=1
j ̸=n

l(k+1,j)−1∑
q=0

∑
d∈D(k,j,q)

µik+1
c(k, j, q, d)

q∑
t=0

(−1)t

(µn − µj)
t+1 e

−µjxAq−t(x; d)

+

s(k+1)∑
j=1
j ̸=n

l(k+1,j)−1∑
q=0

∑
d∈D(k,j,q)

µik+1
c(k, j, q, d)

q∑
t=0

(−1)t+1

(µn − µj)
t+1Aq−t (νk+1; d) e

(µn−µj)νk+1

 e−µnxA0(x)

+

l(k+1,n)−1∑
q=0

∑
d∈D(k,n,q)

µik+1
c(k, n, q, d)e−µnxAq+1 (x; d1, . . . , dq, νk+1) . (A24)

Since 1 ≤ ik+2 = n ≤ s(k+1), the index sets which define B̃k+1(x) arem(k+2, j) =
m(k+1, j), j = 1, . . . , s(k+1), j ̸= n and m(k+2, n) = m(k+1, n)∪ {k + 2− 1}.
Hence, we have

H(k + 1) =

H(k) ∪
{
e−µnxAq+1(x; d1, . . . , dq, νk+1), 0 ≤ q ≤ l(k + 1, j)− 1, (d1, . . . , dq) ∈ D(k, j, q)

}
.

It can be directly checked that each exponential Appell monomial in (A24) is an
element of H(k + 1). More precisely, the exponential Appell monomials

e−µnxAq+1(x; d1, . . . , dq, νk+1), 0 ≤ q ≤ l(k + 1, j)− 1, (d1, . . . , dq) ∈ D(k, j, q)

which appear in the last term of (A24), are elements of H(k+1) but not of H(k).
All other exponential Appell monomials in (A24) belong to H(k). This completes
the proof of Lemma A.5. �

Remark A1 : Let us note that the functions, B̃k(x), defined in (A19), coincide
with Bk(x), given by (A3), when νi, i = 1, 2, . . . are defined as in Corollary 2.5 and
µik are defined as in (A18) with θk given by (2).

Finally, let us give an expression for the functions, Bk(x), defined in (A13) of
Lemma A.2, under the initially stated Erlang claim arrivals model, given by (2)
but assuming that the claim intensities λi, i = 1, 2, ... are pair-wise distinct. The
following lemma gives an expression for the exponential Appell polynomials,Bk(x),
in this reasonably general Erlang claim arrival model.
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Lemma A.6: For k ≥ g1

Bk(x) = λg11 λ
g2
2 . . . λ

gj(k)

j(k) λ
s−1
j(k)+1

(
1

(λ2 − λ1) g2
. . .

1(
λj(k) − λ1

)
gj(k)

1(
λj(k)+1 − λ1

)
s
e−λ1x

g1−1∑
l=0

Ag1−1−l (x; ν1, ..., νg1−1−l)

 1

λ1 − λ2
g2

, . . . ,
1

λ1 − λj(k)
gj(k)

,
1

λ1 − λj(k)+1
s

 zl+g2+...+gj(k)+s−1

− 1

(λ3 − λ2) g3
. . .

1(
λj(k) − λ2

)
gj(k)

1(
λj(k)+1 − λ2

)
s
e−λ2x

g2−1∑
l=0

eλ2νg1+lR (νg1+l)Ag2−1−l (x; νg1+l+1, . . . , νg1+g2−1) 1

λ2 − λ3
g3

, . . . ,
1

λ2 − λj(k)
gj(k)

,
1

λ2 − λj(k)+1
s

 zl+g3+...+gj(k)+s−1 + . . .

+(−1)j(k)+1 1(
λj(k)+1 − λj(k)

)
s
e−λj(k)x

gj(k)−1∑
l=0

eλj(k)νg1+...+gj(k)−1+lR
(
νg1+...+gj(k)−1+l

)

Agj(k)−1−l

(
x; νg1+...+gj(k)−1+l+1, . . . , νg1+...+gj(k)−1

) 1

λj(k) − λj(k)+1
s

 zl+s−1 − e−λj(k)+1x

s−1∑
l=0

eλj(k)+1νg1+...+gj(k)+lR
(
νg1+...+gj(k)+l

)
As−1−l

(
x; νg1+...+gj(k)+l+1, . . . , νg1+...+gj(k)+s−1

))
(A25)

where s is defined as in (5) (i.e., 0 < s = k + 1 −
(
g1 + ...+ gj(k)

)
), 0 ≤ ν1 ≤

ν1 ≤ . . . is a non-decreasing sequence of real numbers,

[
t0
m0

, . . . , tn
mn

]
zq is the

(m0 + . . .+mn − 1) − th order divided difference of the power function zq, for q,
positive integer, and where, R (νi), for i = g1, g1 + 1, . . .is found from the equality

R (νi) =
Bi (νi)

λg11 λ
g2
2 ...λ

gj(i)
j(i) λ

i−(g1+...+gj(i))

j(i)+1

+ e−λj(i)+1νi

i−(g1+...+gj(i))∑
l=0

eλj(i)+1νg1+...+gj(i)+l

R
(
νg1+...+gj(i)+l

)
Ai−(g1+...+gj(i))−l

(
νi; νg1+...+gj(i)+l+1, . . . , νi

)
,

assuming that, R (νm), m = g1, g1 + 1, . . . , i− 1 have already been computed.

Proof : We will first prove (A25) for k = g1. Using the recurrent integral equation
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(A13), we have

Bg1(x) = λj(g1−1)+1e
−λj(g1)+1x

∫ x

νg1

eλj(g1)+1zBg1−1(z)dz

= λ1e
−λ2x

∫ x

νg1

eλ2zλg1−1
1 Ag1−1 (z; ν1, . . . , νg1−1) e

−λ1zdz

= λg11

(
1

(λ2 − λ1)
e−λ1x

g1−1∑
l=0

Ag1−1−l (x; ν1, . . . , νg1−1−l)
1

(λ1 − λ2) l

−e−λ2x 1

(λ2 − λ1)
e−λ1νg1

g1−1∑
l=0

Ag1−1−l (νg1 ; ν1, . . . , νg1−1−l)
1

(λ1 − λ2) l
eλ2νg1

)

= λg11

 1

(λ2 − λ1)
e−λ1x

g1−1∑
l=0

Ag1−1−l (x; ν1, . . . , νg1−1−l)

 1

(λ1 − λ2)
1

 tl−
e−λ2xR (νg1) e

λ2νg1

)
.

It is easily seen that the last equality is of the form (A25), for k = g1. For k = g1+1
and g2 > 1 we have that j (g1) = j (g1 + 1) = 1 and applying again (A13), we can
write

Bg1+1(z) = λ2e
−λ2x

∫ x

νg1+1

eλ2zBg1(z)dz

= λ2λ
g1
1 e

−λ2x

∫ x

νg1+1

eλ2z

(
1

(λ2 − λ1)
e−λ1z

g1−1∑
l1=0

Ag1−1−l1 (z; ν1, . . . , νg1−1−l1)

1

(λ1 − λ2) l1
−e−λ2zR (νg1) e

λ2νg1

)
dz

= λ2λ
g1
1

(
1

λ2 − λ1
e−λ2x

∫ x

νg1+1

e(λ2−λ1)z
g1−1∑
l1=0

Ag1−1−l1 (z; ν1, . . . , νg1−1−l1)

1

(λ1 − λ2) l1
dz −

∫ x

νg1+1

R (νg1) e
λ2νg1dz

)

= λ2λ
g1
1

(
1

λ2 − λ1
e−λ2x

g1−1∑
l1=0

∫ x

νg1+1

Ag1−1−l1 (z; ν1, . . . , νg1−1−l1)
1

(λ1 − λ2) l1
e(λ2−λ1)zdz

−e−λ2xR (νg1) e
λ2νg1A1 (x; νg1+1)

)
(A26)
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After integrating by parts in (A26), we have

Bg1+1(x) = λ2λ
g1
1

(
1

(λ2 − λ1) 2
e−λ2x

(
g1−1∑
l1=0

g1−1−l1∑
l2=0

Ag1−1−l1−l2 (z; ν1, . . . , νg1−1−l1−l2)

1

(λ1 − λ2) l1
1

(λ1 − λ2) l2
e(λ2−λ1)z

)
|xz=νg1+1

− e−λ2xR (νg1) e
λ2νg1A1 (x; νg1+1)

)

= λ2λ
g1
1

(
1

(λ2 − λ1) 2
e−λ1x

g1−1∑
l1=0

g1−1−l1∑
l2=0

Ag1−1−l1−l2 (x; ν1, . . . , νg1−1−l1−l2)

1

(λ1 − λ2) l1+l2
− e−λ2xR (νg1+1) e

λ2νg1+1A0 − e−λ2xR (νg1) e
λ2νg1A1 (x; νg1+1)

)

= λ2λ
g1
1

 1

(λ2 − λ1) 2
e−λ1x

g1−1∑
l=0

Ag1−1−l (x; ν1, . . . , νg1−1−l)

 1

λ1 − λ2
2

 zl+1−

e−λ2xR (νg1+1) e
λ2νg1+1A0 − e−λ2xR (νg1) e

λ2νg1A1 (x; νg1+1)
)
, (A27)

where  1

λ1 − λ2
2

 zl+1 =
∑

l1≥0,l2≥0,l1+l2=l

1

(λ1 − λ2) l1+l2

is the first order divided difference of the function zl+1 at the point 1
λ1−λ2

of mul-
tiplicity 2, (see e.g. [30], page 47, equalities (2.94) and (2.95) ). As seen, equality
(A27) is again of the form (A25). Iterating a similar integration leads to the an-
nounced formula (A25), for all k ≥ g1. �

References

[1] Albrecher, H. and Boxma, O. J. (2005). On the discounted penalty function in a Markov-dependent
risk model. Insurance: Mathematics and Economics 373737, 650–672.

[2] Asmussen, S. (1998). Subexponential asymptotics for stochastic processes: extremal behavior, station-
ary distributions and first passage probabilities. The Annals of Applied Probability, 888, 2, 354–374.

[3] Asmussen, S. (2000). Ruin Probabilities. World Scientific.
[4] Boudreault, M., Cossette, H., Landriault, D. and Marceau, E. (2006). On a risk model with dependence

between interclaim arrivals and claim sizes. Scandinavian Actuarial Journal 555, 265–285.
[5] Cheng, Y. and Tang, Q. (2003). Moments of surplus before ruin and deficit at ruin in the Erlang(2)

risk process. North American Actuarial Journal 777, 1, 1–12.
[6] Claramunt, M. M., Marmol, M. and Lacayo, R. (2005). On the probability of reaching a barrier in an

Erlang(2) risk process. SORT 292929, (2), 235–248.
[7] Daniels, H. E. (1996). Approximating the first crossing-time density for a curved boundary. Bernoulli

222, 2, 133–143.
[8] Dickson, D.C.M. (1998). On a class of renewal risk process. North American Actuarial Journal 222, 3,

60–68.
[9] Dickson, D.C.M. and Hipp, C. (1998). Ruin probabilities for Erlang(2) risk process. Insurance: Math-

ematics and Economics 222222, 251–262.
[10] Dickson, D.C.M. and Hipp, C. (2001). On the time to ruin for Erlang(2) risk process. Insurance:

Mathematics and Economics 292929, 333–344.
[11] Dickson, D.C.M., Hughes, B.D. and Lianzeng Z. (2005). The density of the time to ruin for a Spare

Andersen process with Erlang arrivals and exponential claims. Scandinavian Actuarial Journal 555,
358–376.

[12] Foss, S., Palmowski, Z. and S. Zachary (2005). The probability of exceeding a high boundary on a
random time interval for a heavy-tailed random walk. The Annals of Applied Probability, 151515, 3,
1936–1957.

[13] Gaier, J., Grandits, P. and W. Schachermayer (2003). Asymptotic ruin probabilities and optimal
investment. The Annals of Applied Probability, 131313, 3, 1054–1076.



July 5, 2011 16:24 Stochastics: An International Journal of Probability and Stochastic Processes
Finite*Horizon*(Non-)*Ruin*Probability*for*Erlang*revised

REFERENCES 27

[14] Gerber, H. U. and Shiu, E. S. W., (2003a). Discussion of Yebin Cheng and Qihe Tang’s "Moments
of the surplus before ruin and the deficit at ruin". North American Actuarial Journal, 777, 3, 117–119.

[15] Gerber, H. U. and Shiu, E. S. W., (2003b). Discussion of Yebin Cheng and Qihe Tang’s "Moments
of the surplus before ruin and the deficit at ruin". North American Actuarial Journal, 777, 4, 96–101.

[16] Grandell, I. (1991). Aspects of Risk Theory. Springer.
[17] Ignatov, Z. G. and Kaishev, V. K. (2000). Two sided bounds for the finite time probability of ruin.

Scandinavian Actuarial Journal 111, 46–62.
[18] Ignatov, Z. G. and Kaishev, V. K. (2004). A finite time ruin probability formula for continuous claim

severities. Journal of Applied Probability 414141, 570–578.
[19] Ignatov, Z. G. and Kaishev, V. K. (2006). On the infinite-horizon probability of (non)ruin for integer-

valued claims. Journal of Applied Probability 434343, 535–551.
[20] Ignatov, Z. G. Kaishev, V. K. and R. S. Krachunov (2001). An improved finite-time ruin probability

formula and its Mathematica implementation. Insurance: Mathematics and Economics 292929, 375–386.
[21] Johnson, N. L., Kotz, S. and Balakrishnan, N. (1997). Discrete Multivariate Distributions, John

Wiley, New York.
[22] Johnson, N. L. and Kotz, S. (1972).Distributions in Statistics: Continuous Multivariate Distributions.

John Wiley, New York.
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