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Abstract

A methodology for pricing of reinsurance contracts in the presence of a catastro-

phe bond is developed. An important advantage of this approach is that it allows

for the pricing of reinsurance contracts consistent with the observed market prices

catastrophe bonds on the same underlying risk process.

Within the proposed methodology, an appropriate financial pricing formula is de-

rived under a market implied risk neutral probability measure for both a catastrophe

bond and an aggregate excess of loss reinsurance contract using a generalised Fourier

transform. Efficient numerical methods for the evaluation of this formula such as

the Fast Fourier transform and Fractional Fast Fourier transform are considered.

The methodology is illustrated on several examples including Pareto and Gamma

claim severities.
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1 Introduction

The nature of the reinsurance industry is rapidly changing. Over the last

decade large institutions and the financial markets have developed a range

of new financial products that provide direct exposure to the risks that pre-

viously had been the sole interest of the insurance industry. These include

catastrophe bonds, industry loss warranties, industry loss futures and a range

of other insurance linked securities derived from special purpose vehicles such

as sidecars.

The convergence of the insurance and capital markets appears to be accel-

erating. Considering the market for catastrophe (cat) bonds alone, the total

outstanding issuance at end of 2007 was $13.8 billion up 63 percent over the

end of 2006. In fact $7 billion of publicly disclosed cat bonds were issued in

2007, compared to $4.7 billion in 2006 and $2 billion in 2005 (see McGhee et

al (2007)).

There are several reasons for the increasing popularity of securitised insurance

instruments. Recently, the accelerated issuance of cat bonds was in response to

limited catastrophe capacity in the reinsurance industry, following Hurricane

Katrina, Rita and Wilma. During the early issues of cat bonds, prices were

regarded as being high, compared to traditional reinsurance and the bonds

acted to fill gaps in the market, where capacity was limited.

Over time, as the financial markets became comfortable with the concept

of insurance linked securities, demand for them has increased. Many large

investment entities such as hedge funds are constantly looking for investment

vehicles that provide diversification from the rest of their portfolio. As most

early cat bonds were written to cover high levels of losses, the majority did

not trigger and provided rates of return well above LIBOR. This increased

demand further and the insurance industry reacted by increasing issuance of
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cat bonds and other related securities.

More recently, as described by the Insurance Journal (2002), investment banks

have moved into the reinsurance market and are now both capitalising and

setting up reinsurance companies. The aim of this initiative is two-fold. Firstly

it provides them with a direct exposure to the historically high levels of prof-

itability in the reinsurance sector. Secondly, it allows them to exploit price

differentials between the direct reinsurance market and insurance linked secu-

rities in the capital markets. This can be achieved by issuing insurance linked

securities on the insured risks of the reinsurer. Typically, the design of the se-

curitisation follows that of asset backed securities by forming a multi-tranche

format of varying risk. This approach helps to make the securitised insur-

ance instrument attractive to the widest range of investors and hence achieve

greater prices for a given level of issuance.

As the trend of moving towards the capital markets for protection against

catastrophe risk increases, an important question arises. Does the current mar-

ket price of insurance linked securities imply something about how much rein-

surers should be charging to insure similar risks? If investment banks are able

to make profits by exploiting price differentials between reinsurance premiums

and the price investors are prepared to pay for insurance linked securities, then

the answer is a definite yes.

From the perspective of a direct insurer, it is important to be able to assess

whether purchasing insurance linked securities or reinsurance cover provides

better value for money. Similarly, a reinsurer should be able to judge whether

the prices it is offering are higher or lower than that implied by the capital

markets.

The aim of this paper will be to set up a framework in which the observed

market prices of insurance linked securities can be used to assess a market

consistent price for traditional reinsurance.
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Rather than looking at the entire universe of insurance linked securities and

reinsurance contracts, we will consider only the cat bond and the aggregate

excess of loss contract. However, the approach taken could be extended to

consider a wider range of securitisation vehicles and reinsurance policies.

The paper is organised as follows:

In Section 2 we describe a general approach for pricing reinsurance in the

presence of a market for cat bonds. This provides the foundations upon which

we build a consistent pricing methodology that is applied to both cat bonds

and reinsurance contracts.

Sections 3 and 4 implement this pricing framework building upon the risk-

neutral pricing approach originally developed for insurance by Delbaen &

Haezendonck (1989). We apply the financial pricing approach first described

for reinsurance by Sondermann (1991) and later for cat bonds by Baryshnikov

et al (2001).

Following this approach leads to a pricing formula based around calculating

the expected discounted value of the contract payoff under a risk-neutral prob-

ability measure.

Most theory relating to evaluating the risk-neutral pricing formula is derived

from incomplete market derivative pricing theory in finance. The financial

world has developed many techniques for dealing with pricing derivative con-

tracts where the underlying stock price follows a Levy process. For example of

such research we refer the interested reader to Cont & Tankov (2004). Since

the compound Poisson model fits into this characterisation we can directly

apply these methods.

The idea of applying risk-neutral valuation is not new to the actuarial profes-

sion. For example, Holtan (2004) describes applying option pricing techniques

to insurance contracts. Further Muermann (2002) applies a Fourier transform
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based approach for pricing catastrophe derivatives and reinsurance based on

a classic option pricing technique described by Carr & Madan (1999). We will

follow the approach of risk-neutral valuation but will utilise a more recent

pricing technique described by Lewis (2001): the generalised Fourier transfor-

mation method. This will provide us with an elegant mechanism for evaluating

the theoretical prices of cat bonds and reinsurance contracts. It will lead us to

an integral expression for the contract price in terms of the generalised Fourier

transform of the payoff function and the aggregate loss characteristic function.

General inversion formulae which can be used for insurance and option pric-

ing based on the Parseval’s theorem have been recently obtained by Dufresne

et al (2006). Additionally, a Fourier Space Time-stepping methodology is ap-

plied to the problem of pricing catastrophe equity put options is presented by

Jaimungal (2007).

In Sections 5-7 we consider different numerical methods of evaluating the

general pricing formulae for cat bonds and reinsurance contracts obtained in

Sections 3 and 4. We begin by implementing the Fast Fourier Transform to

provide an efficient numerical computation of contract prices, as suggested by

Muermann (2003) as an extension of his work.

We then follow the approach of Chourdakis (2005) from derivative pricing

theory to demonstrate how the Fractional Fast Fourier Transform can be used

as an efficient numerical algorithm to evaluate cat bonds and reinsurance

prices.

Section 8 considers two practical examples of applying the theoretical and

numerical pricing techniques. The first example demonstrates that the pricing

method works successfully in the case of a Gamma distribution for claim

severity.

For the second example, we consider pricing contracts under the Pareto type II
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severity distribution. It is demonstrated that the pricing method is successful

for cat bonds but fails for an aggregate excess of loss reinsurance contract due

to the behaviour of the Pareto’s characteristic function.

In order to resolve this issue we derive a put-call parity relationship for aggre-

gate reinsurance contracts. This leads us to recover the price of the reinsurance

contract in terms of the price of an put option on the aggregate claims pro-

cess. This approach is a successful demonstration of the practicality of the

generalised Fourier transform pricing method.

In Section 9 we compare the accuracy of the pricing method to that of Monte-

Carlo simulation and conclude that for calibration purposes, the analytical

formulae are preferable, since at least 2 million simulations are required to

achieve accuracy within 0.1% of the theoretical prices.

Finally in Section 10 we consider a simple extension of the pricing formulae

to allow for stochastic interest rates.

2 General approach

In this paper we utilise risk neutral valuation for pricing both cat bonds and

reinsurance contracts. This differs to the standard actuarial approach of ap-

plying real-world premium principles to contracts involving insurance risk. We

refer the read to Holtan (2004) for a comparison of the two methodologies and

to Baxter & Rennie (1996) for a detailed introduction to risk neutral financial

pricing.

Following Embrechts (1996), we describe the insurance market as a filtered

probability space (Ω, F, (Ft)t≥0,P), where (Ft) is an increasing family of σ-

algebras, that represent all the information present in the history of the in-

surance risk process. We denote by (St)0≤t≤T the accumulated losses at time
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t from an underlying insurance risk process. Throughout this paper we will

assume that St can be adequately modelled as a compound Poisson process.

Using a (risk-neutral) equivalent martingale probability measure Q to the real-

world probability measure P, the arbitrage free price of a contingent claim with

payoff φ(ST ) at time T is given by the fundamental theorem of asset pricing

as

Vt = EQ

{
e−r(T−t)φ(ST )|Ft

}
, (1)

where r is the continuously compounded risk-free interest rate. For more in-

formation about the fundamental theorem of asset pricing, we refer the reader

to Delbaen & Schachermayer (1994).

Insurance risk modelling is usually carried out using incomplete market mod-

els, which means there is no unique equivalent martingale measure. Instead,

the insurance market uses a wide range of risk-neutral measures that corre-

spond to the many different actuarial premium principles. Delbaen & Haezen-

donck (1989) characterise the set of equivalent martingale measures Q, un-

der which the structure of the insurance risk process remains a compound

Poisson process under the real-world measure P. They also identify different

risk-neutral probability measures that correspond to some of the actuarial

premium principles.

Recently, Muermann (2002) characterises the market price of risk implied by

different premium principles and describes a pricing technique for contracts

with a European payoff (that is not path dependent) under the associated

risk-neutral probability measure. In Muermann (2003) the author identifies

the implied risk-neutral measure associated with different investor preferences

when pricing catastrophe derivatives. In his most recent paper Muermann

(2006) investigates whether the market price of catastrophe risk can be cal-

culated by comparing the market price of reinsurance and catastrophe deriva-
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tives. He provides a method of calculating market price of catastrophe risk

under the restriction that a single catastrophe event will be sufficient to bring

an out-of-the-money catastrophe derivative into the money.

In this paper, rather than choosing an equivalent martingale measure that cor-

responds to a particular premium principle, we will follow Muermann (2006)

and adopt a ’market implied’ approach. That is, we will price reinsurance

contracts using the (risk-neutral) equivalent martingale probability measure,

implied by the observed market prices of cat bonds. This is analogous to how

exotic stock options are usually priced using the risk-neutral measure implied

by the observed market prices of vanilla European stock options, as described

by Schoutens (2003).

We note that in the current secondary market for cat bonds, there is not

sufficient liquidity to readily obtain market prices for variety of cat bonds

on a specific region and peril. However, we believe that given the continuing

growth in the insurance linked security market, it is only a matter of time

before such a market develops. We will therefore proceed on the basis that the

liquidity of the securitisation market will improve with time and we assume

that prices are readily available for cat bonds at a range of expiration dates

and trigger levels on the insured risk.

We will assume that under the market implied risk-neutral probability mea-

sure, the underlying loss process follows a compound Poisson distribution.

This assumption is supported by Delbaen & Haezendonck (1989), who show

that if the loss process is compound Poisson under the real-world probabil-

ity measure P, then it will remain compound Poisson under any equivalent

risk-neutral measure Q, provided that insurance premiums on the underlying

risk are linear with respect to time. That is, the insurance premium for the

outstanding period of cover, is a multiple of a premium density and the out-

standing time period. Delbaen & Haezendonck (1989) conclude that provided
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sufficiently many reinsurance markets exist, premium linearity is satisified.

We note that premium linearity will not necessarily hold when the underlying

insurance risk process exhibits seasonality effects.

We will not tackle any of the issues surrounding calibration techniques in

this paper. Instead we will focus on the actual practicalities of applying risk-

neutral valuation to insurance processes. This is a necessary prerequisite to

the calibration process. As such we return to the calibration problem in a

future paper.

3 Pricing cat bonds

We will begin by providing some background information on how cat bonds

operate. Cat bonds are a relatively new type of bond that provides a series of

coupon payments and return of capital to an investor, contingent on a trigger

event not occurring. The trigger event is defined to be where a measurable

quantity related to an underlying insured risk exceeds a predetermined level.

There are many different varieties of cat bond, where the trigger event could be

based on modelled losses, industry losses or the severity of a natural disaster

exceeding a specified limit.

In this paper we will only be considering cat bonds with an indemnity based

trigger. The indemnity event is triggered when the actual losses of the bond

issuer exceed a threshold trigger level (so the issuer is effectively fully indem-

nified against losses in a layer starting at the trigger level and extending to

the trigger level plus the net present value of outstanding coupons and the

redemption payment).

It will be assumed that under a risk-neutral probability measure Q, the ag-
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gregate loss process St follows a compound Poisson process and

St =
Nt∑

j=1

Xj , with the convention that St = 0 if Nt = 0, (2)

where Nt is the number of claims that have occurred by time t and Xj is a

random variable representing the severity of the j-th claim.

We assume that Nt is a Poisson process with arrival rate λ and the Xj (j =

1, ..., Nt) are independent identically distributed absolutely continuous random

variables with probability density function f(x).

It is assumed also that the cat bond is of the indemnity type with trigger level

D, D > 0. The bond is assumed to mature at time T and coupons are paid

at rate Ctj at times t < t1 < t2 < ... < tn = T (n ≥ 1). We apply the financial

pricing formula (1) to assert that the price at time t per $1 nominal can be

written as

V cat
t = V cat coup

t + V cat cap
t

=
n∑

j=1

CtjEQ

{
e−r(tj−t)1{Stj <D}|Ft

}
+ EQ

{
e−r(T−t)1{ST <D}|Ft

}
, (3)

where 1{Sτ <D} is the indicator function and V cat coup
t , V cat cap

t denote the

coupon and the capital parts of the bond price respectively.

For further details related to the derivation of this approach, we refer to

Baryshnikov et al (2001).

In order to calculate the expectation in (3), we will use the generalised Fourier

transform method. This was introduced to financial mathematics by Lewis

(2001) who demonstrated its use for option pricing under a Levy process.
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We define the generalised Fourier transform F of a function w : R → R as

F {w(x)} = ŵ(z) =

∞∫

−∞
eizxw(x)dx, where z = u + iv and u, v ∈ R

The inverse generalised Fourier transform is defined as

F−1 {ŵ(z)} = w(x) =
1

2π

iv+∞∫

iv−∞
e−izxŵ(z)dz,

where integration is performed along a straight line parallel to the real axis,

along which z stays within a strip of regularity.

The idea behind the generalised Fourier transform pricing method is to utilise

the ability to switch the order of expectation and integration, when applying a

consecutive Fourier and Fourier inverse transformation to the indicator process

1{Sτ <D}. Switching the order of expectation and integration is equivalent to

switching the order of integration under a double integral. This is permissible

under Fubini’s theorem provided that the real and imaginary parts of the

integrand are both L1(R2) functions (see e.g. Weir (1973)). We will proceed

under the assumption that this is satisfied. In practice, this will normally be

the case, since the usual choices of severity distributions such as the Gamma,

Pareto and Log-Normal are well behaved.

It is not difficult to see that the Fourier transform of the indicator process is

given by

F
{
1{ST <D}

}
=

∞∫

−∞
1(−∞,D) (ST ) eizST dST = −ieizD

z
for Im(z) < 0.

Let us now return to the pricing formula (3) and express the indicator process

in terms of its Fourier transform. We begin by simplifying the capital part

V cat cap
t of the bond price as follows
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V cat cap
t = EQ

{
e−r(T−t)F−1

(
−ieizD

z

)
|Ft

}

= e−r(T−t)EQ





1

2π

iv+∞∫

iv−∞
e−izST

−ieizD

z
dz|Ft





=
−ie−r(T−t)

2π

iv+∞∫

iv−∞

eizD

z
EQ

(
e−izST |Ft

)
dz. (4)

Now, in order to evaluate the integral given in (4) we will first need to simplify

the expression EQ

(
e−izST |Ft

)
.

Following definition (2) of the compound Poisson model the accumulated losses

at the contract expiry time T can be expressed in terms of the accumulated

losses at time t (i.e. using the information given by the filtration Ft) as

ST = St +
NT∑

j=Nt+1

Xj = St + Dt,T ,

where Dt,T =
NT∑

j=Nt+1
Xj. Hence we have

EQ

(
e−izST |Ft

)
= EQ

(
e−izSte−izDt,T |Ft

)
= e−izStEQ

(
e−izDt,T |Ft

)
.

Now, EQ

(
e−izDt,T |Ft

)
is actually the moment generating function of Dt,T eval-

uated at τ = −iz. A standard approach to evaluate the MGF yields

EQ

(
e−izDt,T |Ft

)
= MNT−Nt {ln MX(τ)} ,

where we assume that X is such that MX(τ) exists for imaginary τ .

This shows that

EQ

(
e−izST |Ft

)
= e−izStMNT−Nt {ln MX(−iz)}
= e−izStMNT−Nt {ln φX(−z)}
= e−izSt exp (λ(T − t) (φX(−z)− 1)) , (5)
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where φX(z) is the characteristic function of the claim severity distribution.

Applying the same approach to simplify the coupon payment part V cat coup
t of

the pricing formula we arrive at the following general pricing formula for cat

bonds

V cat
t =−

n∑

j=1

Ctj

ie−r(tj−t)

2π

iv+∞∫

iv−∞

eiz(D−St)+λ(tj−t)[φX(−z)−1]

z
dz

−ie−r(T−t)

2π

iv+∞∫

iv−∞

eiz(D−St)+λ(T−t)[φX(−z)−1]

z
dz, (6)

where Im(z) < 0.

The integral in (6) will generally be computed numerically along a strip be-

low and parallel to the real axis in the complex plane. The choice of severity

distribution will impose restriction on the exact strip chosen, the criteria be-

ing to avoid passing through any points of singularity. It is unfortunate that

realistic choices of the severity distribution will prevent the use of residue cal-

culus to evaluate the integral explicitly due to the integrand not decaying fast

enough as |z| → ∞. However, most mathematical packages provide facilities

to evaluate this type of integral and we will look at efficient algorithms for its

computation later in the paper.

In order to use this pricing formula, we can estimate parameters of the Poisson

rate λ and the distribution f(x) of the individual claim sizes, Xi, that provide

cat bond prices consistent with observed market prices and historical data for

the loss distribution. Assuming that we have calibrated the compound Poisson

model successfully (and therefore have described the loss process under the risk

neutral probability measure), we will now proceed to look at market consistent

reinsurance pricing. The calibration process for cat bonds under this type of

model is described by Burnecki (2005) and we are not going to consider it

here.
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4 Cat bond consistent reinsurance pricing

There are many varieties of reinsurance contracts. For simplicity, we will only

consider an aggregate excess of loss (’aggregate XL’). This is sometimes re-

ferred to as a stop-loss contract in the actuarial literature.

It is assumed that the aggregate XL contract will expire at time T and all

claims are settled at the end of the contract. Under this assumption, the payoff

from the contract at time T will be

X = max(ST −K, 0) = (ST −K)+ ,

where K > 0, is the priority of the contract. Other reinsurance contracts that

depend only on the total loss at time T can be expressed in a similar way.

The analogies between the payoff function of this reinsurance contract and a

European option are obvious and are a clear motivation for applying financial

pricing methods. We refer the reader to Embrechts (1996) and Holtan (2004)

for a stimulating discussion of the connections between the actuarial and fi-

nancial fields in this context. Further insight into this duality can be gained

from Dufresne et al (2006). he previous section.

As described in detail earlier in Section 2, we are adopting a market implied

approach to determining the risk-neutral probability measure from the ob-

served prices of cat bonds. Under assumptions of the framework of Delbaen

& Haezendonck (1989), we are assured that that the insurance loss process

follows a compound Poisson process under the implied risk-neutral probability

measure.

We apply the fundamental theorem of asset pricing, to assert that the value

of the reinsurance contract (on the same underlying insurance risk) at time t
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is

V XL
t = EQ



exp


−

T∫

t

rsds


 (ST −K)+ |Ft



 , (7)

or in the case of deterministic interest rates

V XL
t = EQ

{
e−r(T−t) (ST −K)+ |Ft

}
. (8)

It is worth noting that we can build more features into the aggregate XL con-

tract by combining several simple contracts, in an analogous way to creating

spreads using a portfolio of options. For instance, if we wish the XL contract

to attach at level K1 and have an upper limit of K2, then we create the in-

surance equivalent of a Bull Spread. That is, we effectively buy an aggregate

XL contract with priority K1 and sell an aggregate XL contract with priority

K2. Thus the price at time t of the aggregate XL contract that attaches at K1

with limit K2 is

EQ

{
e−r(T−t) (ST −K1)

+ |Ft

}
− EQ

{
e−r(T−t) (ST −K2)

+ |Ft

}
.

In order to evaluate these expressions, we will again use the Fourier transform

method that was introduced in Section 3. We begin by noting that the Fourier

transform of the payoff function (ST −K)+ is easily seen to be

F
{
(ST −K)+

}
= −eizK

z2
, where Im(z) > 0.

We therefore have that

V XL
t = e−r(T−t)EQ

{
F−1

(
−eizk

z2

)
|Ft

}

= e−r(T−t)EQ





1

2π

iv+∞∫

iv−∞
e−izST

−eizK

z2
dz|Ft




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=−e−r(T−t)

2π

iv+∞∫

iv−∞
EQ

(
e−izST |Ft

) eizK

z2
dz

=−e−r(T−t)

2π

iv+∞∫

iv−∞

eiz(K−St)+λ(T−t)[φX(−z)−1]

z2
dz, (9)

where the integration must be computed along a strip above and parallel to

the real axis. Again, this is performed numerically and will need to be within

a strip of regularity (determined by the choice of severity function).

5 How to evaluate the integrals

While the financial pricing approach is attractive from a theoretical stand-

point, it is of little value unless the complex integrals can actually be evaluated

in a practical manner.

In this section we will consider different ways of computing the integrals in (6)

for the price of a cat bond. Without loss of generality, we will only consider

a zero coupon cat bond. This simplifies the problem to calculating a single

integral, rather than one per coupon payment. The price of the coupon paying

cat bond can then be calculated as a linear combination of zero coupon bonds

of varying duration. The numerical techniques developed are also applied in

computing the integral in (7) and pricing aggregate XL contracts (See Section

6 (14)).

The problem we are aiming to solve is to find a method of computing the

following integral

V cat
t =

−ie−r(T−t)

2π

iv+∞∫

iv−∞

eiz(D−St)+λ(T−t)[φX(−z)−1]

z
dz, (10)

where V cat
t denotes the price of a zero coupon cat bond.
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The simplest way to evaluate this type of integral is to represent it as a Rie-

mann summation and then either compute it directly or apply an efficient

numerical integration algorithm. For instance, adaptive Gauss-Kronrod inte-

gration described by Calvetti et al (2000) can be applied by making a substi-

tution to remove the complex limits.

Alternatively, techniques such as the Fast Fourier Transform can be applied

if efficient evaluation of the integral is required to be evaluated at a range of

trigger levels. For instance, during the calibration process one will attempt

to replicate observed cat bond price for a variety of different trigger levels by

repeated re-evaluation at different parameter values. It is important that at

each iteration of the calibration process the cat bond prices can be evaluated

quickly.

The first step in developing the numerical computation of cat bond prices is to

simplify the integral expression. It currently has complex limits that prevent

it being represented as a summation, we therefore make the substitution ẑ =

z − iv, which yields

V cat
t =

−ie−r(T−t)

2π

∞∫

−∞

ei(ẑ+iv)(D−St)+λ(T−t)[φX(−ẑ−iv)−1]

ẑ + iv
dẑ, (11)

where the real and imaginary parts of the integrand function are assumed to

be in L1(R). In (11) we truncate the limits of integration at −A/2, A/2, we

have

V cat
t ≈ −ie−r(T−t)

2π

A
2∫

−A
2

ei(ẑ+iv)(D−St)+λ(T−t)[φX(−ẑ−iv)−1]

ẑ + iv
dẑ

=
−ie−r(T−t)

2π

A
2∫

−A
2

eiẑ(D−St)
e−v(D−St)+λ(T−t)[φX(−ẑ−iv)−1]

ẑ + iv
dẑ.

Convergence of this integral is guaranteed following the property that integrals
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are continuous functions of their limits.

Finally, we define

∆ =
A

N − 1
,

ẑm =−A

2
+ m∆,

where N is the number of steps in the numerical approximation, ẑ0 < ẑ1 < ... <

ẑN define a uniform partition of the interval [−A/2, A/2] and ∆ is the width

of the partition. This is a classical Riemann approximation of the integral,

which yields

V cat
t =−ie−r(T−t)

2π

N−1∑

m=0

ei(−A
2

+m∆)(D−St) e
−v(D−St)+λ(T−t)[φX(−ẑm−iv)−1]

ẑm + iv
∆

=−∆
ie−r(T−t)−( iA

2
+v)(D−St)

2π

N−1∑

m=0

eim∆(D−St)+λ(T−t)[φX(−ẑm−iv)−1]

ẑm + iv
. (12)

Clearly, as A and N →∞ this will converge to the required integral (10). The

convergence of this approximation could be very easily improved by using a

better numerical integration method such as a standard quadrature rule or a

more advanced method such as the aforementioned adaptive Gauss-Kronrod

approach.

The pricing formula can therefore be evaluated numerically using a simple

computer program. However, as mentioned above, there is a more efficient

way of calculating this type of integral, when the price is required for a range

of trigger levels D: computation using the Fast Fourier Transform (FFT) or

the Fractional Fast Fourier Transform (FFFT).
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6 The Fast Fourier Transform

The Fast Fourier Transform (FFT) is an efficient algorithm that can be used

to numerically evaluate the Discrete Fourier Transform (DFT). We refer the

reader to Carr & Madan (1999) for a detailed discussion of the FFT for the

application of option pricing.

Returning to equation (12), we can re-express it as a DFT by making the

following substitution

Dn = St +
2πn

N∆
,

as an approximation to D for a suitable choice of n. We then approximate the

price of the cat bond as

V cat
t,Dn

=−∆
ie−r(T−t)−( iA

2
+v)(Dn−St)

2π

N−1∑

m=0

fme
2πinm

N , (13)

where fm = eλ(T−t)[φX (−ẑm−iv)−1]

ẑm+iv
.

This is in precisely the form of the DFT which means that we can use the Fast

Fourier Transform to perform the required numerical computation. The FFT

will return us with an array, {V cat
t,Dn

}N−1
n=0 , each element of which V cat

t,n represents

the price of a cat bond with trigger Dn = St + 2πn
N∆

, where losses to date are

St.

Thus, we are quickly able to price an entire range of cat bonds with a range

of trigger levels Dn = St to St + 2πN
A

, in a single computation. Note that any

cat bonds for which D is below St will have already been triggered.

Similar computations yield the following approximation formula for the price

of the aggregate XL contract in the earlier example
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V XL
t,Kn

=−∆
e−r(T−t)−( iA

2
+v)(Kn−St)

2π

N−1∑

m=0

fme
2πinm

N , (14)

where fm = eλ(T−t)[φX (−ẑm−iv)−1]

(ẑm+iv)2
and Kn = St + 2πn

N∆
.

The FFT applied to (14) will yield aggregate XL reinsurance prices for a range

of priority levels Kn = St to St + 2πN
A

.

7 The Fractional Fast Fourier Transform

The Fast Fourier Transformation was shown in the previous section to provide

a good method for evaluating the contract price for a range of triggers /

priority levels. However, its main disadvantage is that the trigger / priority

levels all lie on the mesh defined by
{

2πn
N∆

}N−1

n=0
. This means that to price

at particular points, interpolation must be used, which introduces additional

error. In order to overcome this source of error the Fractional Fast Fourier

Transform (FFFT) method suggested by Bailey (1990) and implemented for

option pricing by Chourdakis (2005) can be useful.

As an example of applying the FFFT to pricing contracts, we consider the

cat bond example from the previous section on the FFT. Suppose we wish to

price cat bonds using (12) for a range of trigger levels D = DL to DU . We

define

Dn = DL +
DU −DL

N − 1
n, for n = 0, 1, ..., N − 1

and substitute into (12) yielding the following expression for cat bond prices,

V cat
t,Dn

≈−∆
ie−r(T−t)−( iA

2
+v)(Dn−St)

2π

N−1∑

m=0

e
im∆

(
DL+

DU−DL
N−1

n−St

)
eλ(T−t)[φX(−ẑm−iv)−1]

ẑm + iv
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=−∆
ie−r(T−t)−( iA

2
+v)(Dn−St)

2π

N−1∑

m=0

e2πimnγfm, (15)

where γ = ∆
2π

(
DU−DL

N−1

)
and fm = eim∆(DL−St) eλT [φX (−ẑm−iv)−1]

ẑm+iv
. Expression

(15) can be computed for the exact range of required trigger levels in sin-

gle application of the FFFT.

8 Example

We will now look at an example of pricing the cat bond and the aggregate

excess of loss contract under a particular choices of severity function to demon-

strate the method is feasible from a practical perspective.

8.1 Gamma Severity

It is assumed that St follows a compound Poisson distribution with frequency

λ and loss size follows a Gamma distribution with parameters α and β. For

simplicity, we assume that the cat bond pays no coupons.

The characteristic function of the Gamma distribution is

φX(z) =

(
1− iz

β

)−α

=

(
β

β − iz

)α

.

Applying formula (6) we have the value of a zero coupon cat bond at time t

V cat
t =

−ie−r(T−t)

2π

iv+∞∫

iv−∞

eiz(D−St)+λ(T−t)[( β
β+iz )

α−1]

z
dz. (16)

To evaluate this numerically, we require Im(z) < 0 and we must avoid the

irregularity at z = βi (which will make β + iz = 0). We therefore should
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integrate along a straight line that lies beneath the real axis. Note that since

the point z = βi lies above the real axis, it does not concern us.

Next, we consider the pricing formula (9) for the aggregate XL contract. Sub-

stituting in the formula for the characteristic function, we immediately see

V XL
t = −e−r(T−t)

2π

iv+∞∫

iv−∞

eiz(K−St)+λ(T−t)[( β
β+iz )

α−1]

z2
dz, (17)

where integration is carried out on a straight line that lies above the real axis

and below the point z = βi.

8.2 Pareto Severity

One of the more popular severity distributions in practical applications is the

Pareto distribution. We will consider the two parameter version of the Pareto

distribution and derive the pricing formulae for the two contracts.

The two parameter Pareto distribution with parameters k and α does not have

a moment generating function, we only require the existence of its character-

istic function, which can be shown to be

φX(t) = k (−iαt)k Γ (−k,−iαt) , (18)

where Γ (a, z) is the incomplete upper Gamma function defined as

Γ (a, z) =

∞∫

z

ya−1e−ydy.

The derivation of the characteristic function is standard but is rather lengthy

and hence is omitted. For an example of similar calculations we refer to Bot-

tazzi (2007) (see also Dufresne et al (2006)).
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This representation of the characteristic function is only defined for z in the

upper half of the complex plane, that is, where Im(z) ≥ 0. This restriction will

have a serious effect on our ability to price certain contracts where the pricing

formula involves calculation of the characteristic function in the negative half

of the complex plane.

Note that there is a numerically efficient method of evaluating the incom-

plete gamma function described in Numerical Receipes (1988), which is easily

adapted to the complex parameter case.

Again, applying formula (6) we have the value of a zero coupon cat bond at

time t to be

V cat
t =

−ie−r(T−t)

2π

iv+∞∫

iv−∞

eiz(D−St)+λ(T−t)[k(iαz)kΓ(−k,iαz)−1]

z
dz. (19)

To evaluate this numerically, we simply require Im(z) < 0. Since the Pareto

characteristic function is being evaluated at −z, this will ensure that we are

only evaluating the characteristic function in the upper half of the complex

plane.

We now continue to look at the case of the aggregate XL contract. Using the

same approach we have that the value of aggregate XL contract is

V XL
t = −e−r(T−t)

2π

iv+∞∫

iv−∞

eiz(K−St)+λ(T−t)[k(iαz)kΓ(−k,iαz)−1]

z2
dz, (20)

where integration is carried out on a straight line that lies above the real axis.

This means that we need to evaluate the characteristic function in the lower

half of the complex plane. However, as previously noted, the numerical form

of the characteristic function is divergent in this region, which means that this

pricing method fails.

We need to explore an alternative approach of evaluating the aggregate XL
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contract price in the case of Pareto severity. Fortunately, we can draw inspi-

ration from the finance world once more. The key connection between the

financial and actuarial fields exploited in this paper is the form of the aggre-

gate XL payoff function, max(ST −K, 0), which is identical to the payoff of a

European option contract. An important formula in option pricing theory is

the put-call parity relationship

ct + Ke−r(T−t) = pt + st, (21)

where ct, pt are the prices at time t of a call and put option expiring at time

T on stock s, with strike price K.

We can derive a similar relationship in insurance. We begin by defining the

insurance equivalent of a put option as described by Wacek (1997). This will

be a contract that provides payoff

max(K − ST , 0) (22)

at time T . We can construct a put-call parity relationship for insurance by

considering no-arbitrage arguments under the assumption that the notional

put contract exists. Consider the following portfolios.

Portfolio 1: At current time t, purchase a put contract at cost Pt and ad-

ditionally purchase an insurance policy on the aggregate claims process for

price ξt. By time T , if the aggregate claims process ST has exceed priority

K, then the put contract will provide zero payoff. If the aggregate claims do

not exceed K then the put contract will provide payoff K −ST . In both cases

the insurance policy will provide payoff ST . Thus the overall payoff from this
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portfolio at time T is




ST , if ST ≥ K

K, if ST < K.

In a similar fashion, we set up a second portfolio below.

Portfolio 2: At current time t, purchase an aggregate XL contract at cost

V XL
t and additionally invest amount Ke−r(T−t) in risk-free cash. By time T , if

the aggregate claims process ST has exceeded priority K, then the aggregate

XL contract will provide payoff ST −K. If the aggregate claims do not exceed

K then the contract will provide zero payoff. The cash will mature to amount

K. Thus the overall payoff from this portfolio at time T is




ST , if ST ≥ K

K, if ST < K,

which is precisely the same as Portfolio 1. Applying the principle of no-

arbitrage, we assert that both portfolios have equal value at time t as well.

Otherwise it would be possible to make risk-free profit by selling one portfolio

short and taking a long position in the other.

We therefore have the following put-call relationship for insurance policies

V XL
t + Ke−r(T−t) = ξt + Pt.

The premium paid for the insurance policy on the aggregate claims process

can be priced under a risk-neutral probability measure as follows

ξt = EQ

(
e−r(T−t)ST |Ft

)
= e−r(T−t)EQ (ST |Ft) . (23)

We can calculate this expectation using a similar approach and notation to
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that used in (5) for calculating the characteristic function of the aggregate

claims process with respect to the filtration at time t. We have

E (ST |Ft) = E (St + Dt,T |Ft)

= St + E




NT∑

j=Nt+1

Xj




= St + E(X)E(NT −Nt|Ft)

= St + λE(X) (T − t) ,

where in the last equality we have used the fact that the centred Poisson

process (NT − λT ) is a martingale with respect to the filtration Ft.

This provides us with put-call parity relationship for insurance processes under

the aggregate claims compound Poisson model

V XL
t + Ke−r(T−t) = e−r(T−t)λE(X) (T − t) + Pt. (24)

We now return to the problem of evaluating the price of the aggregate XL

contract in (20). Using the put-call parity relationship we can re-express V XL
t

as

V XL
t = Pt −Ke−r(T−t) + e−r(T−t)λE(X) (T − t) .

So, provided we can successfully calculate the value of the put contract under

the Pareto claims severity distribution, we will be able to work the price of

the aggregate XL contract.

The generalised Fourier transform of the put payoff (22) is easily calculated

to be

F
{
(K − ST )+

}
= −eizK

z2
, (25)

where Im(z) < 0. This is virtually the same as the Fourier transform of the
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aggregate XL payoff function, except z is now restricted to the lower half of

the complex plane. The put contract can therefore be valued as

Pt = −e−r(T−t)

2π

iv+∞∫

iv−∞

eiz(K−St)+λ(T−t)[k(iαz)kΓ(−k,iαz)−1]

z2
dz, (26)

where integration is carried out along a straight line that lies beneath the real

axis. This means that we will need to evaluate the characteristic function in the

upper half of the complex plane, which is within the region of regularity. We

therefore have successfully found a means of pricing aggregate XL contracts

in the case of a Pareto severity distribution.

Let us note that an alternative expression for E
(
(ST −K)+ |Ft

)
has been

obtained by Dufresne et al (2006) using Parseval’s theorem.

8.3 Numerical Computation

As an illustration of the practicality of the FFFT approach, the price of cat

bonds and aggregate XL contracts were computed using this algorithm and

the parameterisation from example in Section 8.1, for a range of triggers /

priority levels and durations between 0 and 1. A 3D plot of the aggregate XL

prices is shown in Figure 1 and the corresponding plot for the cat bond is

shown in Figure 2.

It is noticeable that at the boundary points where the trigger / priority level

is close to zero, the integral approximation does not converge well. This is a

well known problem in the application of the DFT to option pricing prob-

lems in finance. However, it is not a significant issue, since no cat bonds or

reinsurance contracts are issued with a trigger / priority level close to zero.

This would become a more serious problem for pricing direct insurance. For

normal contracts arising in the reinsurance market the integral approximation
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Fig. 1. Aggregate XL prices under Gamma(2,2) severity and λ = 2 claims frequency.

converges quickly and accurately.

9 Comparison with Monte Carlo simulation

To verify that the analytical formulae derived using the generalised Fourier

transform method provide the anticipated results, they will be evaluated using

the Riemann summation approximation and compared to that achieved using

Monte Carlo simulation for a varying number of simulations.

For this purpose, we will set up a simple model in which losses are generated

for a 1 year period according to a compound Poisson distribution with rate

λ = 2 and severity distribution Gamma with parameters α = β = 1. The

generated losses are aggregated and then the recoveries are evaluated for both

an aggregate XL contract and a cat bond. The aggregate XL contract has

attachment point at 4.75 and has no limit of reinstatements or upper limit
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Fig. 2. Catastrophe bond prices under gamma(2,2) severity and λ = 2 claims fre-

quency.

on recoveries. The cat bond is a simple zero coupon trigger based bond with

priority level 4.75.

We will compare the price of these contract using the analytical formulae (16)

and (17) to that achieved through simulation.

Calculating the analytical formulae numerically under the Riemann sum ap-

proximation to 7 decimal places of precision, we find the prices for the ag-

gregate XL and cat bond contracts are 0.1625310 and 0.8658063 respectively

assuming the risk free rate of interest is 0.04. Under Monte-Carlo simulation,

the pricing results for different simulation sizes are shown in the table below:
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Trials XL Mean (MC) Error % Cat Bond Mean (MC) Error %

10000 0.1519416 6.515% 0.8721086 0.728%

100000 0.1620345 0.306% 0.8665744 0.089%

500000 0.1612862 0.766% 0.8663496 0.063%

700000 0.1617444 0.484% 0.8660117 0.024%

1000000 0.1619830 0.337% 0.8658980 0.011%

2000000 0.1626854 0.095% 0.8657770 0.003%

It is interesting to observe that convergence under Monte-Carlo is quite slow

and requires around two million trials to achieve an aggregate XL price within

0.1% of the analytical price. This suggests that for pricing applications the

analytical methods of computing prices are more efficient than Monte Carlo

simulation techniques. In particular, this makes the analytical method suitable

for calibrating the model to observed market prices. This would not be possible

to achieve in a reasonable time period using Monte-Carlo, since the calibration

process usually involves an optimising routine recalculating modelled prices

repeatedly using different parameter values.

10 Comments and conclusions

In this paper we have provided a framework for pricing reinsurance contracts

in a way that is consistent with the prices of cat bonds on the same underlying

loss process.

We have utilised existing work in this area by applying an option pricing tech-

nique developed by Lewis (2001) that applies the generalised Fourier transform

to price derivative contracts on an underlying Levy process. We then demon-
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strated pricing an aggregate excess of loss contract and cat bond under this

framework, for both the Gamma and Pareto Type II severity distribution.

While the mathematics involved under this approach is more complicated than

traditional actuarial pricing methods, we have shown that it is relatively easy

to compute the pricing formulae derived using efficient numerical methods.

In particular we have demonstrated that the Fractional Fast Fourier Transform

(FFFT) can provide a useful role in actuarial science. Using the FFFT we have

shown how insurance contracts can be priced in a single calculation for a range

of priority / trigger levels. This provides a clear advantage over Monte-Carlo

based methods, as it means that the modelled cat bond price can be computed

at all required trigger levels in around one second (on a 3 Ghz Intel CPU). The

source code implementing the methodology proposed in the paper is available

upon request to the authors.

Undoubtedly, the most difficult part of applying this approach will be cali-

brating the compound Poisson distribution to the market prices of cat bonds

and historical loss frequency / severity data. However, this is certainly achiev-

able and is an extension of existing research that has focused on calibrating

against historical data. Some work has already been carried out in this area by

Burnecki (2005), who describes the calibration process for pricing cat bonds

on the Property Claims Services (PCS) index in the United States.

We believe that the FFFT could provide an efficient method of calibrating

the model by means of an optimisation algorithm. In particular we suggest

to follow the calibration methods normally used in option pricing models. For

example, an exhaustive algorithm such as adapted simulated annealing or a

genetic algorithm could be applied to find the model parameters that minimise

the total squared error between observed cat bond prices and modelled prices.

Finally, we note that the methodology presented in the paper can be easily
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generalised to the case of stochastic interest rates under the assumption of

independence between the insurance and interest rate processes.
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other exponential Lévy processes. Envision Financial Systems and Option

City.net.

McGhee, C., Clarke, R., Fugit, J. & Hathaway, J. (2007). The Catastrophe

Bond Market at Year-End 2007: The Market Goes Mainstream. Investment

Banking Speciality Practice, MMC Securities Corp.

33



McGhee, C., Clarke, R., & Collura, J. (2006). The Catastrophe Bond Market

at Year-End 2006. Investment Banking Speciality Practice, MMC Securities

Corp.

Muermann, A. (2002). Actuarially Consistent Valuation in an Integrated Mar-

ket. The Wharton School, University of Pennsylvania.

Muermann, A. (2003). Actuarially Consistent Valuation of Catastrophe

Derivatives. The Wharton School, University of Pennsylvania.

Muermann, A. (2006). Market Price of Insurance Risk Implied by Catastrophe

Derivatives. The Wharton School, University of Pennsylvania.

Press, W.H., Flannery, P.F., Teukolsky, S.A., Vetterling, W.T. (1988). Numer-

ical Recipes in C: The Art of Scientific Computing. Press Syndicate of the

University of Cambridge.

Schoutens, W. (2003). Levy Processes in Finance: Pricing Financial Deriva-

tives, Wiley, New York, 2003

Sondermann, D. (1991). Reinsurance in arbitrage-free markets. Insurance:

Mathematics and Economics 10, 191-202.

Wacek, M. G. (1997). Application of the Option Market Paradigm to the So-

lution of Insurance Problems. Proceedings of the Casualty Actuarial Society

LXXXIV, 701-733.

Weir, A.J. (1973). Lebesgue Integration and Measure. Press Syndicate of the

University of Cambridge.

Young, V. R. (2004). Encyclopedia of Actuarial Science. Wiley.

11 Address for correspondence

Gareth Haslip Aon Benfield, 55 Bishopsgate, London EC2N 3BD, +44 (0)20

7522 3934

Vladimir Kaishev Sir John Cass Business School, City University, 106 Bun-

hill Road, London EC1Y 8TZ, +44 (0)20 7040 8453

34


