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Abstract

We present methodologies to price discretely monitored Asian options when
the underlying evolves according to a generic Lévy process. For geomet-
ric Asian options we provide closed-form solutions in terms of the Fourier
transform and we study in particular these formulas in the Lévy-stable case.
For arithmetic Asian options we solve the valuation problem by recursive
integration and derive a recursive theoretical formula for the moments to
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1 Introduction

We investigate the pricing problem for Asian options monitored at discrete
times. The payo¤ of an arithmetic (geometric) Asian option depends on the
arithmetic (geometric) average value of the underlying asset price over a given
time period. Asian options have been very successful in the marketplace,
because they reduce the possibility of market manipulations near the expiry
and they o¤er better hedging possibilities to �rms with a stream of exposures.
Several approaches have been attempted to obtain pricing formulas for

the price of Asian options, assuming a continuous-time monitoring of the
underlying under the geometric Brownian motion hypothesis, see Fusai and
Roncoroni (2008) for a review and numerical comparisons. Among analytical
approaches, we mention the Laplace transform approach in Geman and Yor
(1993), the spectral expansion derived by Linetsky (2004), and the approxi-
mation of the average distribution by �tting integer moments in Turnbull and
Wakeman (1991), Lévy (1992), Milevsky and Posner (1998) or logarithmic
moments as in Fusai and Tagliani (2002). Another approach uses binomial
trees, such as Gaudenzi et al. (2007). However, a large number of contracts
specify discrete time monitoring, and the impact of the continuous-time as-
sumption can be substantial for some path-dependent derivatives, see for
instance the literature on lookback and barrier options, Kat (2001).
For the discrete case, Clewlow and Carverhill (1990), Andreasen (2002),

Dempster et al. (1998), Zvan et al. (1999) focus their attention on the
geometric Brownian motion. Benhamou (2002) enhances the algorithm of
Clewlow and Carverhill (1990) based on a Fast Fourier technique and adapt
it to some non-lognormal densities, like the Student t. Their approaches,
although innovative, require computationally intensive numerical methods
or approximations for which no clear error bound is available. Albrecher
(2004) and Albrecher and Predota (2004) explore approximations based on
the moments of the average, but in general it is di¢ cult to evaluate the
approximation error.
The contributions of this paper are three-fold. In the �rst place, we

discuss geometric Asian options: we provide closed-form expressions for the
price of geometric Asian options in terms of the Fourier transform, when the
underlying asset evolves according to a generic Lévy process. This result
extends the ones available in the literature relative to the Gaussian case.
Moreover, our formula applies to both the discrete and continuous monitoring
case. In particular, we analyze in depth our closed-form pricing formulas in
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the case of Lévy-stable process. Unlike arithmetic options, geometric options
are not heavily traded. However, using the analytical formulas for geometric
options it is possible to implement a very e¢ cient Monte Carlo control-variate
technique to price arithmetic Asian options. This idea has been introduced
at �rst for Asian options by Kemna and Vorst (1990).
Secondly, we discuss the pricing of arithmetic Asian options when the un-

derlying asset evolves according to a generic Lévy process. In addition to the
above mentioned control variate approach, we present a new numerical pro-
cedure which combines a recursive numerical quadrature with a fast Fourier
transform algorithm. Our procedure is also able to provide estimates of the
Greeks, such as delta and gamma.
Finally, given the wealth of Lévy processes that potentially can be cali-

brated to a given set of prices, we discuss model-risk issues, along the lines
of Schoutens et al. (2004): as intuition suggests, due to the smoothing e¤ect
of the averaging process, arithmetic Asian options are much less sensitive to
model risk than, say, barrier options.
The paper is organized as follows. In Section 2 we model the underlying

process, starting from the distribution of the log-increments. In Section 3 we
discuss the closed-form pricing of geometric Asian options by means of the
Fourier transform technique. In Section 4 we present the new recursive algo-
rithm for the valuation of arithmetic Asian options. In Section 5 we discuss
our numerical results with particular emphasis on the discrete monitoring
feature and to model-risk issues. In Section 6 we conclude. An appendix,
which can be skipped at �rst reading, contains some proofs.

2 The process for the underlying

We are interested in pricing discrete Asian options, for which the payo¤
depends on the geometric or on the arithmetic average of the prices observed
at equally-spaced discrete times t0 � 0; t1 � �; : : : ; tj � j�; : : :. We denote
by St the underlying asset price at time t. Consider the demeaned log-
increments of size �:

X�
T � ln (ST�)� ln

�
S(T�1)�

�
�m�

T�, (1)
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where m�
T is the deterministic component under the risk-neutral measure of

the log-increments X�
T , whose value will be speci�ed later on:

m�
T �

1

�
E
�
ln (ST�)� ln

�
S(T�1)�

�	
. (2)

We consider the demeaned log-increments instead of the simple log-increments
for future notational convenience.
As far as the underlying process is concerned, we only assume that, under

the risk-neutral measure, non-overlapping log-increments be independent and
that increments of equal size be identically distributed. In other words, we
assume that the logarithm of the prices be a Lévy process under the risk
neutral measure. Then m�

T � m does not depend on either the time step T
or the step size � and the underlying asset price reads:

ST� = S0e
mT�+X�

1 +���+X�
T . (3)

Lévy processes display a number of palatable features: they are the most
direct generalization of the Brownian motion (BM); they are analytically
tractable; Lévy processes are general enough to include a wealth of patterns
and thus they account for smile and skew e¤ects in option prices; the i.i.d.
structure of the Lévy processes simpli�es the estimation of the respective
parameters under the real measure, see Meucci (2005). For a thorough in-
troduction to Lévy processes with applications to �nance see Geman (2002),
Schoutens (2003), Cont and Tankov (2004a), Carr et al. (2003), Geman
(2005).
A generic Lévy process is fully determined by the characteristic exponent

of the log-increments, which is de�ned as the logarithm of the characteristic
function:

 � (!) � ln
�
E
n
ei!X

�
T

o�
. (4)

In Table 1 we list a few parametric Lévy processes and their associated
characteristic exponent. The Gaussian model (g) is the benchmark assump-
tion: the ensuing process is the purely di¤usive Brownian motion, which gives
rise to the geometric Brownian motion (GBM) process for the price of the
underlying. The model (jd) introduced by Merton (1976) and the double ex-
ponential (de) model introduced by Kou (2002) are jump-di¤usion processes
that account for the presence of fat tails in the empirical distribution of the
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Model  � (!)

g ��2

2
!2�

nig ���
�q

�2 � (� + i!)2 �
p
�2 � �2

�
cgmy C�� (�Y )

�
(M � i!)Y �MY + (G+ i!)Y �GY

�
de �1

2
�2!2�+ ��

�
(1�p)��2
�2+i!

+ p��1
�1+i!

� 1
�

jd �1
2
�2!2�+ ��

�
ei!��

1
2
!2�2 � 1

�
st ��� j!j��

�
1� i� sign (!) tan

�
��
2

��
Table 1: Characteristic exponents of some parametric Lévy processes

underlying1. The remaining models (nig and cgmy) are pure jump processes
with �nite variation that can display both �nite and in�nite activity2. They
are subordinated Brownian motions: in other words, they can be interpreted
as Brownian motions subject to a stochastic time change which is related
to the level of activity in the market. In particular, stable processes (st)
display the additional feature that their distribution does not depend on the
monitoring interval, modulo a scale factor.
So far the drift parameter m in (3) has been left unspeci�ed. Due to

the incompleteness of the market, we have to choose a martingale measure
for the risk-neutral pricing of derivatives. Except in the special case of the
geometric Brownian motion, there are many equivalent measures under which
the discounted price process is a martingale. Several di¤erent approaches
have been suggested to select an appropriate martingale measure, but there
is as yet no de�nitive way of pricing contingent claims in incomplete markets.

1In these models �2 represent the instantaneous variance of the di¤usion part, whilst
� is the jump-intensity. In the jd model, � and �2 refer respectively to the mean and the
variance of the jump size. In the de model, p is the probability of a up jump, whilst �1
and �2 govern the decay of the tails of the up and down jump sizes, that are exponentially
distributed.

2In particular, the nig model has stochastic time change given by an Inverse Gaussian
Process It with parameters 1 and �

p
�2 � �2; so that nigt = ��2It + �WIt , where Wt

is a Wiener process. The path behaviour of the CGMY process is determined by the Y
parameter. If Y < 0, the paths have �nite jumps in any �nite interval; if not, the paths
have in�nitely many jumps in any �nite time interval, i.e. the process has in�nite activity.
Moreover, if the Y parameter lie in the interval [1, 2), the process is of in�nite variation.
See Schoutens (2003).
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A discussion on the di¤erent choices of an equivalent martingale measure with
reference to Lévy Processes can be found for example in Chan (1999) and in
Hubalek and Sgarra (2006). A mathematically tractable choice consists in
choosing the value of m in such a way that the price St discounted by the
money-market account Bt be a martingale, i.e. E [ST=BT ] = S0=B0, 8T � 0,
see Schoutens (2003). A simple algebraic manipulation shows that m must
solve

m = (r � q)�  � (�i)
�

, (5)

where r denotes the constant risk-free rate and q denotes the constant div-
idend payout rate. Another possible choice is represented by the Esscher
transform, as advocated at �rst in Gerber and Shiu (1994). In the following
we will also specify the process for the underlying price when the underlying
itself represents the numeraire, see El Karoui et al. (1995). In other words,
we need to set m equal to a parameter �m such that, under the new measure,
the equality E [BT=ST ] = B0=S0 is satis�ed for all T > 0. Another simple
algebraic manipulation yields the appropriate value �m = (r � q)+ � (i) =�.

3 Geometric Asian options

The payo¤ of a geometric Asian option depends on the following path-
dependent random variable:

G�T �
 

TY
k=0

S�k

! 1
T+1

. (6)

In this section we obtain new formulas that price both �xed-strike and
�oating-strike geometric Asian options when the underlying asset evolves
according to a Lévy process. In particular, we detail our formula for the case
of Lévy stable processes, for which considerable simpli�cations are possible.
Furthermore, we consider the limit of our formula as the frequency of the
monitoring dates increases, thereby obtaining new results for non-Gaussian
processes for the continuous-time monitoring case.

3.1 Fixed-strike options

The price of a geometric Asian call option with �xed strike K reads:

Cg
fx (T;K) � e�rTE

�
max

�
G�T �K; 0

		
. (7)
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In order to price this option, we adopt a Fourier transform approach. If we
derive the characteristic function of the variable Y �

T � ln
�
G�T
�
, then, as we

show in Appendix A, its characteristic function reads:

�Y �T (!) � E
n
ei!Y

�
T

o
(8)

= exp

 
i!

�
lnS0 +m

�T

2

�
+

TX
k=1

 �

�
!
T � k + 1

T + 1

�!
.

Then we follow Carr and Madan (1999) and we introduce a damping
parameter % so that we obtain an expression for the Fourier transform with
respect to the logarithm of the strike of a modi�ed call option:

F
�
Cg
fx

�
(!) �

Z +1

�1
ei!ke%kCg

fx

�
T; ek

�
dk =

e�rT�Y �T (! � %i+ i)

%2 + %� !2 + i (2%+ 1)!
. (9)

In this expression % is a positive constant such that the (%+ 1)-th moment of
G�T exists (in our numerical experiments below we set % � 1:5). If we take %
to be a negative constant, the expression above returns the Fourier transform
of a modi�ed put option. A Fourier inversion yields the option price:

Cg
fx (T;K) =

e�%k

�

Z +1

0

e�i!kF
�
Cg
fx

�
(!) d!. (10)

To perform this inversion we can apply numerical quadrature (e.g. NIntegrate
in Mathematica) or the Fast Fourier Transform (FFT) algorithm, see Press
et al. (1997), which outputs N option prices at equally spaced values for the
log-strike.

3.2 Floating-strike options

The price of a �oating-strike geometric Asian call option reads:

Cg
fl (T;K) � e�rTE

�
max

�
G�T �KS�T ; 0

		
, (11)

where in general K is set equal to 1. It can be proved, see Fusai and Meucci
(2007), that the the Fourier transform of the price reads:

F [Cfl] (!) �
Z +1

�1
ei!ke%kCg

fl

�
T; ek

�
dk = S0

e�rT�Z�T ((! � (%+ 1) i))
%2 + %� !2 + i (2%+ 1)!

,

(12)
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where �Z�T (!) is the characteristic function of Z
�
T � ln

�
G�T =S�T

�
and is

given by:
�Z�T (!) = e�i! �m�

T
2
+
PT
k=1  �(�! k

T+1). (13)

Then, the FFT algorithm yields the desired call prices.

3.3 Stable processes

A distribution is stable if the sum of its i.i.d. copies is an i.i.d. copy of
the same distribution, modulo an a¢ ne transformation. Stability comes at a
price, as stable distributions display in�nite variance, except in the normal
case. A Lévy process is stable if the distribution of its increments is stable.
Stable distributions and stable Lévy processes have been the object of intense
study in the past decades, see Samorodnitsky and Taqqu (1994) and Sato
(1999) for a thorough introduction and Carr and Wu (2003) and McCulloch
(1996) for applications to �nance. For stable processes the characteristic
exponent is of the form:

 � (!) = ���� j!j
�
�
1� i� sign (!) tan

���
2

��
, (14)

where � > 0 is a scale parameter, � 2 [�1; 1] is a skewness parameter and
� 2 (1; 2] is known as the stability index.
For the �xed-strike case, the characteristic function (8) simpli�es as fol-

lows, see Fusai and Meucci (2007):

E
n
ei!Y

�
T

o
= ei!(lnS0+m

�T
2 )��c��j!j

�(1�i� sign(!) tan(��2 )). (15)

In this expression, c can be represented in terms of the Riemann zeta and
the generalized Riemann zeta functions respectively:

Z (s) =
1X
k=1

k�s; Z (s; p) =
1X
k=1

(k + p)�s , (16)

and reads:

c �
�

1

T + 1

��
(Z (��)�Z (��; T + 1)) . (17)

When � � �=
p
2, � � 0 and � � 2 the stable process (14) becomes the stan-

dard Brownian motion, and c simpli�es into c = (2 + T ) (3 + 2T ) = (6 (1 + T ))
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and (15) becomes the characteristic function of a normal distribution with
mean lnS0 +m�T=2 and variance �c�

2

2
. In other words, the geometric av-

erage (6) is lognormally distributed and we obtain the result of Kemna and
Vorst (1990).
For �oating-strike geometric Asian options, the characteristic function

(13) becomes

E
n
ei!Z

�
T

o
= ei! �m�

T
2
��d��j!j�(1�i� sign(!) tan(��2 )). (18)

In this expression, d can be represented in terms of the n-th harmonic number
of order r, de�ned as H(r)

n =
Pn

k=1 1=k
r, and reads d � H

(��)
T = (T + 1)�.

Again, when � � �=
p
2, � � 0 and � � 2 the stable process (14) becomes

the standard Brownian motion, and (18) becomes the characteristic function
of a normal distribution.

3.4 Continuous-time monitoring

The results of the continuous-time literature can be obtained by letting the
number of monitoring dates T approach in�nity while the observation fre-
quency � approaches zero, in such a way that � � T� remains constant.
For �xed-strike geometric Asian options3, the quantity of interest is the con-
tinuously monitored log-geometric average:

eY� � 1

�

Z �

0

ln (St) dt. (19)

The characteristic function of eY� reads:
�Y �T (!) � E

n
ei!

eY�o (20)

= exp

�
i!

�
lnS0 +m

�T

2

�
+ lim

x!1

Z x

0

 �=x

�
!
x� u

x

�
du

�
.

The integral and the limit can be computed analytically for several paramet-
ric processes, see Table (3).

[INSERT TABLE (3) HERE]

3A similar result can be obtained for �oating-strike geometric Asian options, see Fusai
and Meucci (2007).
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In particular, in the case of stable processes, the characteristic function
of (19) admits an analytic expression:

E
n
ei!

eY�o = ei!(lnS0+m
�
2 )�

�
1+�

��j!j�(1�i� sign(!) tan(��2 )). (21)

This also follows from applying to (15) and (17) the Euler-McLaurin for-
mula limT!1 c�=T = �= (1 + �), see Abramowitz and Stegun (1974). In
particular, in the Gaussian case � � 2 we obtain that, under the appropriate
measures, eY� is Normal with mean lnS0 +m�=2 and variance �2�=3, which
is the result that appears in Hull (2005).

4 Arithmetic Asian options

The payo¤ of an arithmetic Asian option depends on the following path-
dependent random variable:

A�T �
1

T + 1

TX
k=0

S�k. (22)

Notice that we use the convention that the average starts at period k � 0.
In the following, we exploit a recursive formulation to price the �xed strike
arithmetic Asian option. For the �oating strike version see Fusai and Meucci
(2007). The payo¤ of an arithmetic Asian call option with �xed strike K
reads:

Ca
fx (K;T ) � max

�
A�T �K; 0

	
. (23)

As realized in Clewlow and Carverhill (1990), the distribution of A�T can be
obtained recursively. If we de�ne Z�k � m�+X�

k , from (22) we are interested

in the distribution of the following quantity
PT

k=1 S�k = eZ
�
1

�
1 + eZ

�
2

�
� � �
�
1 + eZ

�
T

���
.

Starting from L�T � eZ
�
1 and introducing recursively the quantities

L�k � eZ
�
k

�
1 + L�k+1

�
; k = T � 1; :::; 1, (24)

we obtain A�T � S0
�
1 + L�1

�
= (T + 1). Therefore, the key ingredient for the

computation of �xed-strike arithmetic Asian options is the density of L�1 or
equivalently, the density of B�

1 � ln
�
L�1
�
. We discuss this computation in
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Section 4.1. Once we obtain the density fB1 we can price call options
4 with

an additional numerical integration:

E
�
Ca
fx (K;T )

	
= e�rT

Z +1




�
S0

T + 1
(1 + ex)�K

�
fB1 (x) dx, (25)

where 
 � ln (K (T + 1) =S0 � 1). Furthermore, once we have the density
fB1 we can compute option prices for di¤erent strikes K and spot prices S0:
From (25) we can also easily compute the Greeks. For instance, for the delta
we obtain:

� =
e�rT@E

�
Ca
fx (K;T )

	
@S0

=
e�rT

T + 1

Z +1




(1 + ex) fB1 (x) dx. (26)

Similarly, for the gamma we obtain:

� =
e�rT @2EfCafx(K;T )g

@S20
= e�rT

�
K
S0

�2
T+1

K(T+1)�S0fB1 (
) :
(27)

Finally, notice that the recursion (24) translates into a formula for the
moments of the arithmetic average. Indeed, from the independence of Z�k
and L�k+1 as well as from the de�nition of Z�k , we obtain:

E
��
L�k
�n	

= E
n�
eZ

�
k

�
1 + L�k+1

��no
(28)

= enm��X� (�in)
nX
q=0

�
n

q

�
E
��
L�k+1

�q	
,

where the recursion starts with the following initial condition:

E
��
L�T
�n	 � EnenZ�1 o = �X� (�in) . (29)

The moments of the arithmetic average then can be computed as follows:

E
��
A�T
�n	 � � S0

T + 1

�n nX
j=0

�
n

j

�
E
n�
L�T
�jo

. (30)

We will use this result to verify the accuracy of our numerical method. An
expression similar to (30) was obtained also in Albrecher (2004).

4If we are interested in pricing put options, we have to integrate over the relevant
domain or to exploit the put-call parity for Asian options.
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4.1 Computation of the pricing density

Since Z�k and L�k+1 are independent, the density of Bk � ln
�
L�k
�
= Z�k +

ln
�
1 + L�k+1

�
is the convolution of the density fZ�k and that of ln

�
1 + eB

�
k+1

�
.

Furthermore, since the Z�k are i.i.d. the density fZ�k does not depend on the
monitoring time index k, which we drop from the notation. With a change
of variable we obtain that the density of fBjsatis�es the recursion:

fBk (x) =

Z +1

�1
fZ� (x� ln (ey + 1)) fBk+1 (y) dy; k = T � 1; :::; 1, (31)

where the initial condition is set as fBT � fZ�. For some speci�cations of
the underlying Lévy process such as Gaussian, NIG, Double Exponential and
Jump-Di¤usion this density is known analytically; for other speci�cations,
such as CGMY, it can be obtained by inverting the characteristic function
of the log returns with the FFT. We remark that a recursion similar to (31)
appears in Clewlow and Carverhill (1990) and then in Benhamou (2002).
These authors exploit the convolution structure of the recursion to obtain
the density of B�

k by applying an FFT and an inverse FFT at each mon-
itoring date. Instead, we use the FFT once to generate the density of Z�k
given its characteristic function and then we implement a series of recursive
quadratures.
We proceed by approximating the integral (31) using anM -point quadra-

ture formula, see Press et al. (1997):

fBk (x) �
Z u

l

'Z� (x� ln (ey + 1)) fBk+1 (y) dy (32)

�
MX
j=1

wj� (x� ln (eyj + 1)) fBk+1 (yj) ,

where yj are the abscissas and wj the corresponding weights in the quadra-
ture formula. An issue in the implementation of the above procedure is the
choice of the domain [l; u]. We use the results in Philips and Nelson (1995)
that, for a given random variable X, yield a bound to Pr (X > c) and to
Pr (X < �c) in terms of the integer moments of X. In our implementation
we focus on the �rst ten integer moments of B�

T to determine l such that
Pr
�
B�
T < l

�
� 10�8 and similarly we focus on the �rst ten integer moments

of L�T � exp
�
B�
T

�
to determine u such that Pr

�
L�T > eu

�
� 10�8 (the latter
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moments are readily provided by (28)). These choices have proved su¢ cient
to achieve accurate results. Another issue in the implementation of (32) is
the choice of the quadrature rule: in our numerical implementation we adopt
a Gaussian quadrature rule. To motivate this choice with respect to alterna-
tive procedures we observe that the quantity to be estimated, i.e. the option
price, can be represented as a multiple integral

I =

Z +1

ln
�
KT
S0

� dx
Z +1

�1
dyn � � �

Z +1

�1
dy1� (x;y) , (33)

where

� (x;y) �
�

S0
T + 1

(1 + ex)�K

�
'Z� (x� ln (eyn + 1)) � � �'Z� (y1) . (34)

An M -point numerical quadrature approximates (33) with the following ex-
pression:

Î �
MX

kn+1=1

MX
kn=1

� � �
MX
k1=1

wk1 � � �wknwkn+1�
�
xkn+1 ; yk1 ; � � � ; ykn

�
. (35)

The convergence rate using the trapezoid rule is O
�
J�2=n

�
, where J is the

number of evaluations of � (x;y), see Haselgrove (1961). Using the Simpson
rule we have an improvement to O

�
J�4=n

�
. A crude Monte Carlo simulation

samples points uniformly and averages the function at these points, providing
an approximation to (33) which is characterized by a standard error which
is independent of n and of order O

�
J�1=2

�
: for su¢ ciently large values of

n, this convergence rate is better than either the trapezoid or the Simpson
rule. On the other hand, using anM -point Gaussian quadrature, the error is
O
�
J�(2M+1)=2n

�
, and for M su¢ ciently large we obtain a faster convergence

than with any of the above methods, including Monte Carlo simulations. We
mention that recursive quadrature has received attention in the literature on
barrier options, see Aitsahalia and Lai (1997), Sullivan (2000), Andricopoulos
et al. (2003), Fusai and Recchioni (2005).
A third issue in the implementation of the recursion (32) is the compu-

tational cost. We can write that recursion in matrix form as follows:

fk = KDfk+1, (36)
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where fk is a vector with elements fBk (xj); K is an M �M kernel whose
(k; j)-th element reads � (xk � ln (eyj + 1)); and D is a diagonal matrix with
elements djj = wj: The density at the n-th monitoring date is then given by
iterating (36) starting from fn. Therefore, the solution at the n-th monitoring
date for each value of x requires O (nM2) function evaluations (matrices K),
plus O (nM2) elementary operations. Therefore the total cost is of the order
of O (nM2) elementary operations.
To summarize, the algorithm, which was implemented in C, proceeds as

follows:
� De�ne the parametric model for log-returns as in Table 1.
� Using the FFT algorithm compute the density function of the log-

returns, and assign it as initial condition fT to the recursion (36).
� Using the weights and abscissas of the Gaussian quadrature, construct

the product matrix KD and then iteratively compute fn; fn�1; : : : ; f1.
� Compute the option price by numerical integration of the payo¤function

with the density f1 as in (25).
� Check the accuracy of the results by comparing the numerical moments

of the arithmetic average with the theoretical expression provided by (30).

5 Numerical results

In this section we perform numerical tests to examine the accuracy of our
procedure5. More precisely, we compare our recursive pricing procedure with
the results of a standard Monte Carlo-based pricing with one million scenar-
ios.
The �rst issue is the impact of the monitoring frequency. It is well known

that for barrier options the discrepancy between option prices under con-
tinuous and discrete monitoring can be signi�cant. Indeed, the convergence
of the discrete monitored barrier option prices to the continuous case is ex-
tremely slow, of the order of n�1=2, where n is the number of monitoring
dates. In the sequel, we investigate if this is also the case for Asian options
when the underlying follows a Lévy process.
The second issue is model risk: in its general formulation, model risk

arises when di¤erent competing models properly account for the empirical

5Detailed results are available in the pre-print version of the present paper, see Fusai
and Meucci (2007).

14



evidence, but decisions based on di¤erent models give rise to di¤erent re-
sults, see Meucci (2005) for a discussion in the general context of trading
and portfolio management. In this speci�c context, the competing models
are di¤erent parametric speci�cations for the underlying Lévy process; the
empirical evidence is represented by a set of option prices; and the decision
can be, represented for instance, by the choice of the most suitable hedge.

5.1 Calibration of the underlying processes

To perform a comparison between di¤erent Lévy models, we proceed as fol-
lows. We consider the calibration results reported in Schoutens (2003, p. 82)
relative to the NIG and the CGMY models6. The calibrated parameters for
the NIG process are:

�̂ = 6:1882; �̂ = �3:8941; �̂ = 0:1622. (37)

The calibrated parameters for the CGMY process are:

Ĉ = 0:0244; Ĝ = 0:0765; M̂ = 7:5515; Ŷ = 1:2945. (38)

Using the estimated CGMY model, we calibrate the Gaussian, the double-
exponential and the Merton models. The calibration problem for the Merton
model is ill-posed, as many di¤erent combinations of the mean jump size
and its volatility reproduce option prices with about the same overall least
square error, see He at al. (2006) and Cont and Tankov (2004b) where some
regularization techniques based on splines and relative entropy are proposed.
The problem stems from the low sensitivity of liquid vanilla option prices to
the jump parameters. Since our aim is not the calibration to market prices,
but to prices generated by the CGMY model, we calibrate the two jump-
di¤usion models in such a way to minimize the square integrated di¤erence
between the real part of the characteristic functions of the CGMY and the
jump-di¤usion models:

min
�=f�;�;�;�g

Z !max

0

3X
j=1

�
Re
�
e
 cgmy�j

(!)
�
� Re

�
e
 jd�j

(!;�)
��2

d!, (39)

6These models have been calibrated to a set of 77 mid-prices of European call options
on the S&P 500 Index at the close of the market on 18 April 2002. On this day the S&P
500 closed at 1124.47. The considered options expire in May 2002, June 2002, September
2002, December 2002, March 2003, June 2003 and �nally in December 2003. The strikes
range mainly in the interval 1100-1300. See Schoutens (2003, p. 6).
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where �1 � 0:25; �2 � 0:5; �3 � 1 and !max has been set equal to 250.
The same procedure has been pursued to calibrate the pure di¤usion (GBM)
and the double-exponential models. A similar calibration procedure has been
proposed by Belomestny and Reiß(2006) and by Schmidt (1982). The cal-
ibrated volatility parameter for the GBM is �̂ = 0:17801: The calibrated
parameters for the Merton model are:

�̂ = 0:126349; �̂ = �0:390078; �̂ = 0:174814; �̂ = 0:338796.

The calibrated parameters for the double-exponential model are:

�̂ = 0:120381; �̂ = 0:330966; p̂ = 0:20761; �̂1 = 9:65997; �̂2 = 3:13868.
(40)

Figure 1 shows the density of the log-returns for the calibrated models.
The Merton jump-di¤usion model, the Kou double exponential model and
the CGMY densities appear very similar and remarkably di¤erent from the
Gaussian case. In particular, the skewness and kurtosis parameters are re-
spectively equal to -19.813 and 986.936 for the CGMY model, to -2.16016
and 7.46374 for the Merton model, to -2.77006 and 13.5805 for the double
exponential model and to -2.13745 and 9.93736 for the NIG model.

[Insert Figure 1 here]

5.2 Monte Carlo simulations

To simulate paths from the above Levy processes we follow the algorithms
presented in Cont and Tankov (2004a). In addition, for the CGMY model we
use the approximate simulation method based on a combination of Brownian
subordination and rejection recently proposed by Madan and Yor (2005)7.
However, their algorithm introduces a bias because small jumps are replaced
by their expectations. Unfortunately, this bias is di¢ cult to quantify but, to
the best of our knowledge, no exact simulation method for the increments of
this process is known, although a possible alternative is proposed by Poirot
and Tankov (2007). To increase the accuracy of the Monte Carlo simulations
we use the Geometric Asian option prices as control variate. In particular,
the Control variate estimate has been obtained using

ĉCVMC = ĉAMC + �̂
�
cG � ĉGMC

�
;

7P. Tankov kindly provided the C code to implement the Yor-Madan algorithm.
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where cG is the analytical geometric Asian option obtained in previous sec-
tion, ĉAMC and ĉ

G
MC are the crude MC estimates of the arithmetic and geo-

metric options and the coe¢ cient �̂ has been pre-computed from regressing
100000 simulations of the arithmetic payo¤ against the respective geometric
payo¤. Then 1000000 new simulations are performed and the control variate
estimate is obtained by using the above formula.

5.3 Results for geometric options

We consider now the pricing of Asian options. Tables 4 to 10 report the
main results of this analysis. In particular, Table 4 reports the prices for
�xed-strike geometric-average Asian options. Di¤erent columns correspond
to di¤erent models: this way we can assess the impact of model risk on the
pricing of these derivatives. The �rst column selects the model, the second
selects the number of monitoring dates (12, 50, 250, 1000, 10000, 1), the
third the CPU time and the remaining the Geometric Asian option price for
di¤erent strikes (90, 100 and 110). We keep the maturity date �xed and
equal to 1 year. The spot price has been set equal to 100. Option prices have
been computed using the Carr-Madan formula and FFT inversion (10) with
N � 217, � � 0:0004 and setting the damping parameter % � 1:5.
Comparing the prices of the geometric options as the monitoring fre-

quency varies, we notice that the di¤erences between continuous and discrete
monitoring are relevant only for high strike prices and a very low number of
monitoring dates. Otherwise the percentage di¤erence between the discrete
and the continuous version is below 5%. Considering the non-exact esti-
mation of the parameters due to calibration, this di¤erence is acceptable:
discrete monitoring provides a viable approximation for the continuous-time
limit. This result is useful because the discrete-monitoring computation is
less computationally intensive than its continuous counterpart.
The second remark is that the choice between Gaussian and non-Gaussian

model appears very important. This is also consistent with Figure 2, where
we report the density of the log-geometric mean. Comparing di¤erent Lévy
models, we notice that the pure jump process (jd), the double exponential
(de) and the CGMY models yield very similar option prices, whereas NIG
prices tend to be undervalued. This result does not seem due to the calibra-
tion procedure: once we re-calibrate the NIG model using the same proce-
dure followed for the jump-di¤usion and double-exponential process, the new
prices are still di¤erent from the ones obtained in the remaining models.
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Monte Carlo Number of Quadrature Points
7000 5000 1000

Modello Dates MC CPU MC+CV CPU MSE CPU MSE CPU MSE CPU
g 12 0.08439 63 0.03525 68 0.00000 119 0.00000 65 0.00000 6
g 50 0.97323 125 0.02433 130 0.00640 135 0.00640 52 0.00640 5
g 250 0.56911 454 0.01786 459 0.02621 250 0.02621 130 0.02537 8
n ig 12 0.93767 88 0.01573 93 0.01106 67 0.01106 35 1.91168 5
n ig 50 0.85467 225 0.03892 230 0.02555 97 0.06330 52 n .a . 6
n ig 250 1.69247 952 0.01453 957 n .a . 252 n .a . 131 n .a . 8
cgmy 12 25.37854 105 2.84911 111 0.52170 64 0.52170 37 0.52115 8
cgmy 50 7.25580 293 0.77980 299 1.07702 95 1.07702 53 4.10542 10
cgmy 250 4.00879 997 0.43916 1005 1.18273 218 4.74037 126 n .a . 12
jd 12 0.82418 70 0.82418 75 0.03609 65 0.03609 34 0.03609 5
jd 50 1.50117 156 1.50117 161 0.04138 95 0.04138 51 0.04138 6
jd 250 1.81340 602 1.81340 607 0.04307 246 0.04307 131 6.36434 9
de 12 0.38332 73 0.38332 78 0.10211 73 0.10211 40 0.10211 6
de 50 0.90982 156 0.90982 161 0.14144 107 0.14144 57 0.14145 6
de 250 0.99756 601 0.99756 606 0.11956 261 0.11956 144 n .a . 11

Table 2: In this table we give, for di¤erent models, the 1000*Squared Root of Sum of Squared (column

ERR), the CPU time in Seconds (CPU column) for the Monte Carlo simulation (Crude and with Control

Variate) and for the recursive quadrature method (with di¤erent number of grid points: from 1000 to

7000). As benchmark we have used the �rst �ve moments computed according to formula (30)

[Insert Table 4 here]
[Insert Figure 2 here]

5.4 Results for arithmetic options

We consider now arithmetic-average Asian options. In Table 5 we report
the CPU time and the square root of the sum of squared errors, where the
errors are the di¤erences between the analytical moments and the numerical
moments of order 0 to 5. The analytical moments are computed according
to formula (30), whilst the numerical are computed in two ways: using one
million Monte Carlo simulations (with and without the Geometric Average
as control variate; for these results we report the standard error) and using
the density obtained by recursion (36).
The most interesting results are that, except for the NIG process, the

proposed numerical integration procedure provides much more accurate es-
timates in lesser computational time than Monte Carlo simulation also if
implemented using control variates.
We stress that the Monte Carlo approach is a viable alternative only if

enhanced by the control variates. In order to compute the latter, our ex-
pressions for the geometric-average options are essential. Indeed, the control
variate substantially reduces the error with respect to the crude Monte Carlo
simulation. An exception is represented by the CGMY results, which ap-
pear quite inaccurate. This can be due to the simulation algorithm we used,
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whose approximation error is very hard to quantify. In particular, more
detailed results, given in Fusai and Meucci (2007), show up how the percent-
age error between analytical and numerical moments is larger than 1% only
in exceptional cases and is very small in the Gaussian and Jump-Di¤usion
case. We have also examined the performance of our approach using di¤erent
parameter con�gurations, but the greater accuracy respect to Monte Carlo
simulation is in general preserved.
The computational cost of our technique is linear in the number of mon-

itoring dates and quadratic in the number of quadrature points. Extremely
accurate result can be obtained for the Gaussian, jump-di¤usion and double
exponential processes, even with a very large number of monitoring dates (�
250) and a low number of nodes (� 3000). Slightly less accurate results are
obtained for the CGMY process, but in this case the Monte Carlo simulations
do not appear to provide a reliable alternative at all. Instead, for the NIG
model, our approach does not perform well, because the density peaks as we
increase the monitoring frequency. In this case the Monte Carlo appears to
be the only viable alternative.

[Insert Table 5 here]

In Tables 6-10 we consider prices of arithmetic Asian options. The nu-
merical results previously presented seem to justify that model risk does not
seem to be an issue (although Gaussian and NIG models produce somewhat
di¤erent option prices), as important as for barrier options. Intuitively, the
averaging process tapers the thickness of the tails, whilst for barrier options
the model sensitivity is much higher, as di¤erent path properties are empha-
sized by the knock-out/in e¤ect of the barrier, see Schoutens et al. (2004).
The tapering e¤ect for Asian options is con�rmed by Figures 2 and 3, which
display the densities of the geometric and arithmetic average according to
di¤erent models. As we can see, with the exception of the Gaussian and NIG
cases, these densities look very similar.
Furthermore, the number of monitoring dates does not seem as crucial as

for barriers. Therefore, in order to approximate the continuously monitored
solution, we can use the discrete solution with a low number of monitoring
dates, for which our algorithm is reliable and fast.

[Insert Table 6 here]
[Insert Table 7 here]
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[Insert Table 8 here]
[Insert Table 9 here]
[Insert Table 10 here]
[Insert Figure 2 here]
[Insert Figure 3 here]

Finally, in Figures 4, 5 and 6 we report the di¤erences in prices, deltas and
gammas computed according to the di¤erent models taking as benchmark
the geometric Brownian motion. The di¤erences among the Levy models are
small whilst appear remarkable if compared to the GBM case: even from
a hedging perspective the e¤ect of model risk is limited, unlike in the case
of barrier options, see Schoutens et al. (2004). This is welcome news from
a risk-management perspective. Clearly, it remains to be investigated the
relevance of the i.i.d. assumption, that underlies all Lévy processes. This
will be possibly the topic of future work, although in the non i.i.d. setting
our formulae for the geometric case and the numerical approximation for the
arithmetic case do not apply.

[Insert Figure 4 here]
[Insert Figure 5 here]
[Insert Figure 6 here]

6 Conclusions

We introduce analytical closed formulas to price geometric Asian options, and
a recursive algorithm as well as a control-variate technique to price arithmetic
Asian options under the general assumption that the underlying evolves ac-
cording to a Lévy process. In both cases, we consider discretely monitored
options. However, di¤erently from other path-dependent options like barrier
and lookback, Asian option prices do not seem to be a¤ected by the mon-
itoring frequency. We also evaluate the impact of model risk. As it turns
out, model risk is signi�cant in the case of the Gaussian and NIG models. It
remains to be investigatedthe e¤ect of stochastic volatility. Unfortunately,
both the closed-form analytical formulas for the geometric Asian options and
the numerical algorithm for the arithmetic Asian options rely on the i.i.d.
assumption for the log-increments of the underlying: this assumption is not
satis�ed by non-Lévy stochastic volatility models.
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A The characteristic function of the geomet-
ric Average for a Generic Lévy processes

Let Y �
T � ln

�
G�T
�
where G�T is given in (6). With some algebraic manipula-

tion, we can express Y �
T in terms of the Lévy process increments X�

k :

Y �
T =

1

T + 1
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k=0

lnS�k (41)
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Using the independence of each X�
k and (4), we obtain the characteristic

function of Y �
T under the risk-neutral measure:
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To price �oating-strike geometric Asian options, we de�ne Z�T � ln
�
G�T =ST�

�
:

With some algebra, we have Z�T = � �m�T
2
� 1

T+1

PT
k=1 kX

�
k ;and exploiting

the independence of the increments X�
k , we obtain
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k=1  �(�! k

T+1). (43)
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Figure 1: Densities of the log-returns at the 1 yr horizon.



Model Dates CPU K=90 K=100 K=110

g 12 0.016 11.66744 4.703634 1.251243

g 50 0.047 11.7076 4.769273 1.299134

g 250 0.125 11.71856 4.787024 1.312165

g 1000 0.625 11.72065 4.790409 1.314654

g 10000 3.656 11.72128 4.791427 1.315403

g cts 0 .031 11.72135 4.791541 1.315486

n ig 12 0.063 12.40399 4.903628 0.9217

n ig 50 0.235 12.45446 4.956617 0.952823

n ig 250 1.515 12.46819 4.971162 0.961418

n ig 1000 10.703 12.47081 4.973945 0.963065

n ig 10000 158.891 12.4716 4.974784 0.963562

n ig cts 0 .047 12.47168 4.974877 0.963617

cgmy 12 0.078 12.49339 4.879854 0.930755

cgmy 25 0.14 12.52291 4.913607 0.952526

cgmy 50 0.329 12.53757 4.930348 0.963302

cgmy 100 0.703 12.54517 4.939021 0.968879

cgmy 250 1.906 12.54981 4.944327 0.97229

cgmy 1000 11.593 12.55216 4.947009 0.974013

cgmy 10000 177.657 12.55286 4.947818 0.974533

cgmy cts 0.062 12.55294 4.947908 0.974591

de 12 0.141 12.49912 4.860329 0.950346

de 50 0.875 12.54201 4.91101 0.984821

de 250 5.094 12.55377 4.924996 0.994327

de 1000 28.218 12.55602 4.927676 0.996148

de 10000 304.688 12.5567 4.928483 0.996697

de cts 0 .078 12.55677 4.928573 0.996758

jd 12 0.078 12.49709 4.853707 0.959979

jd 50 0.296 12.53882 4.9046 0.995103

jd 250 1.968 12.55026 4.918632 1.00478

jd 1000 11.969 12.55245 4.92132 1.006633

jd 10000 192.5 12.55311 4.92213 1.007192

jd cts 0 .547 12.55319 4.92222 1.007254

Table 4: Prices of geometric Asian options for di¤erent Lev́y processes and di¤erent number of mon-
itoring dates. Legend: Dates is the number of monitoring dates. Remaining parameters: S0 = 100,

T = 1year, r = 0:0367.



Monte Carlo Number of Quadrature Points
7000 5000 1000

Modello Dates MC CPU MC+CV CPU MSE CPU MSE CPU MSE CPU
g 12 0.08439 63 0.03525 68 0.00000 119 0.00000 65 0.00000 6
g 50 0.97323 125 0.02433 130 0.00640 135 0.00640 52 0.00640 5
g 250 0.56911 454 0.01786 459 0.02621 250 0.02621 130 0.02537 8
n ig 12 0.93767 88 0.01573 93 0.01106 67 0.01106 35 1.91168 5
n ig 50 0.85467 225 0.03892 230 0.02555 97 0.06330 52 n .a . 6
n ig 250 1.69247 952 0.01453 957 n .a . 252 n .a . 131 n .a . 8
cgmy 12 25.37854 105 2.84911 111 0.52170 64 0.52170 37 0.52115 8
cgmy 50 7.25580 293 0.77980 299 1.07702 95 1.07702 53 4.10542 10
cgmy 250 4.00879 997 0.43916 1005 1.18273 218 4.74037 126 n .a . 12
jd 12 0.82418 70 0.82418 75 0.03609 65 0.03609 34 0.03609 5
jd 50 1.50117 156 1.50117 161 0.04138 95 0.04138 51 0.04138 6
jd 250 1.81340 602 1.81340 607 0.04307 246 0.04307 131 6.36434 9
de 12 0.38332 73 0.38332 78 0.10211 73 0.10211 40 0.10211 6
de 50 0.90982 156 0.90982 161 0.14144 107 0.14144 57 0.14145 6
de 250 0.99756 601 0.99756 606 0.11956 261 0.11956 144 n .a . 11

Table 5: In this table we give, for di¤erent models, the 1000*Squared Root of Sum of Squared (column

ERR), the CPU time in Seconds (CPU column) for the Monte Carlo simulation (Crude and with Control

Variate) and for the recursive quadrature method (with di¤erent number of grid points: from 1000 to

7000). As benchmark we have used the �rst �ve moments computed according to formula (30)

MC simulation Numerical Quadrature
n K MC+CV se 10000 5000 1000

12 90 11.90505 0.213 11.90497 11.90498 11.90428

12 100 4.88207 0.173 4.88210 4.88212 4.88199

12 110 1.36329 0.145 1.36314 1.36314 1.36371

50 90 11.93302 0.203 11.93301 11.93299 11.93339

50 100 4.93735 0.169 4.93736 4.93738 4.93711

50 110 1.40267 0.150 1.40264 1.40262 1.40199

250 90 11.94096 0.201 11.94068 11.94069 11.94137

250 100 4.95244 0.169 4.95233 4.95239 4.94942

250 110 1.41359 0.151 1.41351 1.41350 1.41290

Table 6: Prices of arithmetic Asian options for Gaussian process. Parameters:
S0 = 100, r = 0:0367, � = 0:17801.



MC simulation Numerical Quadrature
n K MC+CV se 11000 5000 1000

12 90 12.62293 0.341 12.62243 12.62243 12.61315

12 100 5.06077 0.223 5.06060 5.06057 5.05723

12 110 1.01374 0.176 1.01355 1.01355 1.01379

50 90 12.66112 0.333 12.66118 12.66160 14.11925

50 100 5.10359 0.221 5.10367 5.10383 4.88735

50 110 1.03770 0.177 1.03770 1.03774 0.75191

250 90 12.67186 0.329 n.a. n.a. n.a.

250 100 5.11558 0.218 n.a. n.a. n.a.

250 110 1.04446 0.176 n.a. n.a. n.a.

Table 7: Prices of arithmetic Asian options for NIG process. Parameters:
S0 = 100, r = 0:0367, � = 6:1882, � = �3:8941, � = 0:1622.

MC simulation Numerical Quadrature
n K MC+CV se 10000 5000 1000

12 90 12.69114 0.360 12.70625 12.70626 12.70557

12 100 5.02787 0.211 5.03492 5.03486 5.03649

12 110 1.01895 0.156 1.02115 1.02110 1.02214

50 90 12.73548 0.371 12.73854 12.73855 12.74033

50 100 5.07403 0.223 5.07570 5.07577 5.07225

50 110 1.04594 0.165 1.04674 1.04669 1.04948

250 90 12.74864 0.393 12.74737 12.72731 n.a

250 100 5.08744 0.233 5.08694 5.07912 n.a

250 110 1.05377 0.170 1.05389 1.05251 n.a

Table 8: Prices of arithmetic Asian options for CGMY process. Parameters:
S0 = 100, r = 0:0367, C = 0:0244, G = 0:0765, M = 7:5515, Y = 1:2945.



MC simulation Numerical Quadrature
n K MC+CV se 10000 5000 1000

12 90 12.71298 0.379 12.71236 12.71236 12.71252

12 100 5.01729 0.243 5.01712 5.01705 5.01772

12 110 1.04141 0.183 1.04142 1.04147 1.03957

50 90 12.74420 0.371 12.74369 12.74369 12.74386

50 100 5.05849 0.243 5.05809 5.05814 5.05781

50 110 1.06886 0.184 1.06878 1.06877 1.06983

250 90 12.75141 0.358 12.75241 12.75242 12.86165

250 100 5.06910 0.232 5.06949 5.06943 5.11830

250 110 1.07632 0.177 1.07646 1.07637 1.08915

Table 9: Prices of arithmetic Asian options for Double Exponential process.
Parameters: S0 = 100, r = 0:0367, � = 0:120381, � = 0:330966, p = 0:2071,
�1 = 9:65997, �2 = 3:13868.

MC simulation Numerical Quadrature
n K MC+CV se 10000 5000 1000

12 90 12.71035 0.375 12.71066 12.71065 12.71038

12 100 5.01117 0.248 5.01127 5.01124 5.01008

12 110 1.05141 0.189 1.05162 1.05165 1.05140

50 90 12.74051 0.367 12.74093 12.74093 12.74112

50 100 5.05226 0.245 5.05246 5.05243 5.05337

50 110 1.07959 0.192 1.07959 1.07962 1.07966

250 90 12.74964 0.366 12.74917 12.74918 12.78492

250 100 5.06417 0.244 5.06381 5.06387 5.08129

250 110 1.08772 0.189 1.08740 1.08737 1.09043

Table 10: Prices of arithmetic Asian options for Merton Jump-Di¤usion
process. Parameters: S0 = 100, r = 0:0367, � = 0:126349, � = �0:390078,
� = 0:174814, � = 0:338796.
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Figure 2: Density of the logarithm of the geometric mean for the di¤erent
Lévy models (25 monitoring dates).
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Figure 3: Density of the log(arithmetic mean) for the di¤erent Lévy models
(25 monitoring dates).
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Figure 4: Price di¤erences (Lévy model vs Gaussian) of the arithmetic Asian
option under di¤erent Lévy models (25 monitoring dates).
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Figure 5: Delta di¤erences (Lévy model vs Gaussian) of the arithmetic Asian
option under di¤erent Lévy models (25 monitoring dates). The delta has been
computed using formula (26).
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Figure 6: Gamma di¤erences (Lévy model vs Gaussian) of the arithmetic
Asian option under di¤erent Lévy models (25 monitoring dates). The gamma
has been computed using formula (27).


