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Diverse Protection Systems for Improving 
Security: a Study with AntiVirus Engines 

Peter Bishop, Robin Bloomfield, Ilir Gashi, and Vladimir Stankovic 

Abstract—Diverse “barriers” or “protection systems” are very common in many industries, especially in safety-critical ones 

where the designers must use “defense in depth” techniques to prevent safety failures. Similar techniques are also commonly 

prescribed for security systems: using multiple, diverse detection systems to prevent security breaches. However empirical evi-

dence of the effectiveness of diversity is rare. We present results of an empirical study which uses a large-scale dataset to as-

sess the benefits of diversity with an important category of security systems: AntiVirus products. The analysis was based on 

1599 malware samples collected from a distributed honeypot deployment over a period of 178 days. The malware samples 

were sent to the signature engines of 32 different AntiVirus products hosted by the VirusTotal service. We also present an ex-

ploratory model which shows that the number of diverse protection layers that are needed to achieve “perfect” detection with our 

dataset follows an exponential power-law distribution. If this distribution is shown to be generic with other datasets, it would be a 

cost-effective means for predicting the probability of perfect detection for systems that use a large number of barriers based on 

measurements made with systems that are composed of fewer (say 2, 3) barriers. 

Index Terms— Fault-tolerance, Security and Privacy Protection, Security assessment, Anti-virus engines, Empirical assess-

ment.  

——————————   �   —————————— 

1 INTRODUCTION

LL systems, including those built from off-the-shelf 
components, need to be sufficiently reliable and se-
cure in delivering the service that is required of 

them. There are various ways in which this reliability and 
security can be achieved in practice: use of various valida-
tion and verification techniques in the software construc-
tion phases, issuance of patches and service releases for 
the product in operation, as well as the use of software 
fault/intrusion tolerance techniques. Fault tolerance 
techniques can range from simple “wrappers” of the 
software components [1] to the use of diverse software 
products in a fault-tolerant system [2]. This latter strategy 
of implementing fault tolerance was historically consid-
ered prohibitively expensive, due to the need for develop-
ing multiple bespoke software versions. However, the 
wide proliferation of off-the-shelf software for various 
application domains has made software diversity an af-
fordable option for fault tolerance against either mali-
cious or non-malicious faults.  

Intrusion-tolerant architectures that employ diverse in-
trusion detection systems for detecting malicious behavior 
have been proposed in the past [3]. A more recent publica-
tion [4] has also detailed an implementation of an AntiVirus 
platform that makes use of diverse AntiVirus products for 
malware detection. Similar architectures that use diverse 
AntiVirus engines for file and email scanning have been 
commercially available for several years [5-7]. Therefore, 

architectural solutions for employing diverse detection en-
gines (either IDS or AntiVirus products) are already known 
and in some cases commercially deployed. Studies that pro-
vide empirical evaluation of the effectiveness of diversity for 
detection of malware and intrusions are, on the other hand, 
much more scarce.  

The following claim is made on the VirusTotal site [8], [9]: 
“Currently there is not any solution which provides 100% 
detection rate for detecting viruses and malware”. Given 
these limitations of individual AntiVirus engines, designers 
of security protection systems are interested in at least get-
ting estimates of what the possible gains are in terms of add-
ed security that the use of diversity (e.g. diverse AntiVirus 
products) may bring for their systems. 

In this paper we aim to address this research gap. We 
performed an analysis of the effects of diversity taking ad-
vantage of real-world data, namely the information provid-
ed by a distributed honeypot deployment, SGNET [10], [11]. 
We analyzed 1599 malware samples collected by the SGNET 
distributed honeypot deployment over a period of 178 days 
between February and August 2008. Using these malware 
samples, we studied the evolution of the detection capability 
of the signature-based component of 32 different AntiVirus 
products and investigated the impact of diversity on such a 
capability. Through daily analyses of the same sample by the 
most up-to-date signature database available for each Anti-
Virus product, we were able to study the evolution of the 
detection capability over time.  

Utilizing this dataset, we analyzed the detection capabili-
ties of different AntiVirus detection engines and potential 
improvements in detection that can be observed from using 
diverse AntiVirus detection engines. We observed that some 
AntiVirus products achieved high detection rates, but none 
detected all the malware samples in our study. 

We have quantified the possible gains in malware detec-
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tion from using more than one diverse engine. We have 
done this empirical analysis for several types of diverse set-
ups ranging from simple detection setups (where a malware is 
deemed to have been detected as soon as one of the AntiVi-
rus products raises an alarm for it) to majority voting setups 
(where a malware is deemed to have been detected only if a 
majority of AntiVirus products in a given diverse configura-
tion raise an alarm for that malware).  

We also analyzed the dataset in the time dimension to 
quantify the extent to which the use of diverse AntiVirus 
engines reduces the “at risk time” of a system.  

Finally we observe that an exponential power law model 
seems a good fit for the probability of observing non-perfect 
detection systems (those with a failure rate greater than zero) 
as we add more diverse AntiVirus products. 

We have reported on some of these results in the past 
[12], [13], but in this paper we present a consolidated and 
comprehensive analysis of the effects of various diverse An-
tiVirus configurations, incorporating new empirical analysis 
for diverse setups we have not explored in the previous 
work (such as majority voting setups) and further insights 
on the modeling aspects of the benefits of diversity.  

The analysis in this paper is based upon a simplified 
view, which we consider sufficient to the accomplishment of 
our goals. We do the following:  
• We take into consideration a single type of component 

appearing in most AntiVirus products, namely the 
signature-based detection engine. 

• We perform the analysis on unambiguous malicious 
samples, i.e. samples that are known to be malicious 
executable files according to the information provided 
by the SGNET dataset. 

• We consider as a successful detection any alarm mes-
sage provided by the component. We do not try to di-
agnose the “correctness” of the generated alarm mes-
sage. 
While the findings may not be representative of the full 

detection capability achieved by the real-world operation of 
the various AntiVirus products, they provide an interesting 
analysis of the detection capability of the respective signa-
ture-based components under the stated conditions. Also, 
the purpose of our study is not to rank the individual Anti-
Virus engines, but to analyze the benefits of diversity from 
improved detection rates of using more than one AntiVirus 
product.  

For the sake of brevity, in the rest of the paper we will use 
the short-hand notation AV to refer to the signature-based 
component of an AntiVirus detection engine. 

The rest of this paper is organized as follows: section 2 
details the experimental architecture used to collect the data; 
section 3 details empirical analysis of the results obtained for 
the single AVs; Section 4 presents the analysis of benefits of 
diversity with AntiVirus products. Section 5 presents an 
analysis of the detection capability of the AVs along the time 
dimension. Section 6 provides details of an exponential 
power law model, which appears to be a good fit to the 
probability of having a system with an observed zero failure 
rate when we increase the number of AVs in a diverse sys-
tem; section 7 presents a discussion of the results and limita-
tions on the claims we can make about the benefits of diver-

sity and the limitations of the dataset we have used; section 8 
reviews two recent implementations that employ diverse 
AntiVirus engines for detecting malware or scanning mali-
cious emails and also discusses other related work; section 9 
contains conclusions and finally section 10 contains provi-
sions for further work. 

2 EXPERIMENTAL SETUP AND ARCHITECTURE 

The construction of meaningful benchmarks for the eval-
uation of the detection capability of different AntiVirus 
products is an open debate in the research community. 
Previous work [14] underlined the challenges in correctly 
defining the notion of “success” in the detection of a spe-
cific malware sample. Also, modern AntiVirus products 
consist of a complex architecture of different types of de-
tection components, and achieve higher performance by 
combining together the output of these diverse detection 
techniques. Since some of these detection techniques are 
also based on analyzing the behavioural characteristics of 
the inspected samples, it is very difficult to set up a 
benchmark able to fully assess the detection capability of 
these complex products. 

This work does not aim at being a comprehensive 
benchmark of the detection capability of different products 
to the variety of Internet threats. Instead, we focus on a me-
dium-sized sample set composed of a specific class of 
threats. 

The analyzed dataset is composed of 1599 malware sam-
ples collected by a real world honeypot deployment, SGNET 
[10, 11]. SGNET is a distributed honeypot deployment for 
the observation of server-side code injection attacks. Taking 
advantage of protocol learning techniques, SGNET is able to 
fully emulate the attack trace associated with code injection 
attacks and download malware samples that spread using 
server-side exploits. By deploying many sensors in different 
networks of the Internet, SGNET collects in a central dataset 
a snapshot of the aggregated observations of all its sensors. 
We use this data as input to our analysis and we build our 
analysis upon a limited, but realistic dataset with respect to 
the modern trends for a specific class of malware (i.e. mal-
ware associated with code injection attacks). 

The SGNET information enrichment framework [14] en-
riches the information collected by the deployment with 
additional data sources. Two sources are relevant to this 
work: the behavioural information provided by Anubis [15, 
16] and the detection capability information provided by 
VirusTotal [8]. 

Every malware sample collected by the deployment is au-
tomatically submitted to Anubis to obtain information of its 
behavior once executed on a real Windows system. This 
information is useful to filter out corrupted samples collect-
ed by the deployment, which would not be executable on a 
real system. Such samples proved to be the cause of ambigu-
ities in the detection capability [14]: it is unclear whether 
such corrupted samples should or should not be detected 
since different engines often follow conflicting policies. 

The foundations of our analysis are derived from the in-
teraction of SGNET with the VirusTotal service. VirusTotal is 
a web service that allows the analysis of a given malware 



 

 

sample by the signature-based engines of different AntiVi-
rus vendors. All the engines are kept up-to-date with the 
latest version of the signatures. Thus, a submission of a 
malware sample to VirusTotal at a given point in time pro-
vides a snapshot on the ability of the different signature-
based engines to correctly identify a threat in such samples. 
It is important to stress that the detection capability evalua-
tion is performed on a subset of the functionalities of the 
detection solutions provided by the different vendors.  

Every time a sample is collected by the SGNET deploy-
ment it is automatically submitted for analysis to VirusTotal, 
and the corresponding result is stored within the SGNET 
dataset. To get information on the evolution of the detection 
capability of the engines, each sample, for this dataset, is 
resubmitted on a daily basis for a period of 30 days. 

The dataset generated by the SGNET interaction has 
some important characteristics that need to be taken into 
account in the following detection capability evaluation.  

Firstly, all the malware taken into consideration have 
been pushed to the victim as a consequence of a successful 
hijack of its control flow. We can thus safely consider that all 
the analyzed samples are a result of a malicious and unsolic-
ited activity. 

Secondly, all the considered samples are valid Windows 
Portable Executable files. All these samples run successfully 
when executed against a Windows operating system. 

Thirdly, the malware samples are differentiated based 
solely on their content. Thus, the frequent usage of poly-
morphic techniques (an example of which is given in [17]) in 
malware propagation is likely to bias the number of mal-
ware samples collected. Through polymorphism, a malware 
modifies its content at every propagation attempt: two in-
stances of the same malware thus appear as different when 
looking solely at their content.  

Finally, interdependence exists between the submission 
of a sample to VirusTotal and the observed detection capa-
bility. The VirusTotal service actively contributes to the An-
tiVirus community by sharing with all the vendors all the 
submitted samples resulting in improved detection rates 
across different AV engines. 

3 EXPLORATORY ANALYSIS OF SINGLE AV DETEC-
TION PERFORMANCE 

We use the dataset introduced in the previous section to 
perform a detection capability analysis of 32 different 
AVs when subjected with the 1599 malware samples col-
lected by the SGNET deployment. Exploiting the submis-
sion policy implemented in the SGNET dataset, we have 
considered for each sample the submissions performed 
on the 30 days succeeding its download. The input to our 
analysis can thus be considered as a series of triplets asso-
ciating together a certain malware sample, an AV product 
and the identifier of the submission day with respect to 
the download date {AVi, Malwarej, Dayk}. For each of 
these triplets we have defined a binary score: 0 in case of 
successful detection, 1 in case of failure. Table 1 shows the 
aggregated counts of the 0s and 1s for the whole period. 
As previously explained, we have considered as success 
the generation of an alert regardless of the nature of the 

alert itself. 
For a number of technical reasons in the interaction of 

the SGNET dataset and VirusTotal a given malware and 
an AV are not always associated to 30 triplets. In the ob-
servation period we have some missing data since some 
AVs have not been queried on a given day. 

 

3.1 Summary of Single AV Results 

Table 2 lists the top 10 performing AVs1 ranked by 
their observed failure (non-detection) rates2. The differ-
ence between the failure rate values in the second column 
and in the fourth column is dependent on the definition 
of a unique “demand”. For the failure rates calculated in 
the second column, a unique demand is a {Malwarei, 
Dayk} pair, i.e. each malware sent on a different day is 
treated as unique. Hence the maximum number of de-
mands is the product of the number of distinct malware 
(1599) and the number of days that an AV product is sent 
this malware (maximum of 30 days), i.e. 1599 * 30 = 
47,970.  

For the failure rates calculated in the fourth column, 
unique demands are the 1599 malware samples. In this 
case, a successful detection by an AV product AVi of a 
given malware sample Malwarei happens when AVi suc-
cessfully detects Malwarei on all the dates in which it has 
inspected this malware. 

 From the results in Table 2 we can see that there is 
substantial variability in the detection capability of the 
top 10 AVs. 

Figure 1 shows a 3-dimensional plot of the data col-
lected in our study. The x-axis lists all 32 AVs ordered by 
their lowest to highest failure rates (left to right). The y-
axis lists all 1599 malware ordered by their detection dif-
ficulty – the number of AVs that have failed to detect it. 
The malware are sorted from the easiest to the most diffi-
cult one, on average for all AVs (bottom to top). Each cell 
in the plot shows a failure rate of a given AV on a given 
malware throughout the collection period. The failure 
rate values are represented with the specific coloring 
schema (see the color bar on the right hand side of the 
figure). The values are in the range 0 (represented with a 
shade of gray) to 1 (represented in white color). The plot, 
however, includes also the values of -1, which are drawn 
in black color and represent the cases where “no result” 
exists, i.e., the cases where the malware was not sent to a 
given AV at all during the collection period. A failure rate 
value of, for example, 0.2 in a given cell is represented 
with a shade of gray color and can be interpreted as fol-

 

1 The AV names have been anonymised to prevent con-
cerns deriving from the comparison of commercial products. 

2 Any mention of “failure rates” in this section refers to the 
observed (empirical) failure rates calculated from our da-
taset.  

TABLE 1. THE COUNTS OF SUCCESSFUL DETECTIONS AND 
FAILURES FOR TRIPLETS { AVI, MALWAREJ, DAYK} 

Value Count 

0 – no failure / detection 1,093,977 

1 –  failure / no detection 143,031 



 

 

lows: “AV i failed to detect the malware j on 20% of the days 
during our collection period on which the malware was submit-
ted to the AV”.  

The bottom left side of the plot shows the best per-
forming AVs on the “easy” malware (on average) where-
as the top right corner shows the worst performing AVs 
on the “difficult” malware (on average). We can also see 
many examples of “white” horizontal lines (difficult de-
mands) for one AV, which are “shaded gray” lines for 
many of the other AVs. This would indicate potential 
benefits of employing diverse AVs. 

The most “difficult” malware, i.e. the ones that fail to 
be detected by most AVs, appear in the top part of Figure 
1. Figure 2 illustrates better this malware difficulty. It 
shows the mean malware difficulty for all the 1,599 mal-
ware samples in our study. The mean malware difficulty 
is calculated by averaging over all the dates and AVs on 
which a given malware has been inspected (i.e. a ratio of 
all the “1s” over the sum of “0s” and “1s” (cf. Table 1), for 
any given malware). So, it is the marginal distribution 
when summing over the malware. Figure 3 shows how 
this difficulty changes when we calculate the averages for 
all 32AVs, the best 26AVs (removing the six worst AVs 
which from Figure 2 appear to have very low detection 
rates) or the best 10 AVs (ranked over their detection 
rate). The x-axis shows the proportion of malware less 
than or equal to a given difficulty.  

The difficulty distribution gets more extreme as we use 

better (on average) subsets of AVs. The detection perfor-
mance is better for most malware when we remove the 
poorly performing AVs from the calculations of average 
difficulty, but there are some malware that are hard to 
detect for all AV sets, so the maximum difficulty remains 
much the same (does not fall below 0.5). 

While better subsets of AVs have higher detection rates 
on average for all malware, a better subset of AVs can 
have a worse detection rate on average for a specific 
malware. This is illustrated in Figure 3 where we show 
the mean difficulty of the malware for different AV sub-
sets ordered by the mean difficulty for the complete set of 
AVs (all 32). While difficulty ordering is not preserved for 
different AV sets, there is a generally increasing trend. In 
particular there are some malware at the right hand edge 
that seem to be equally difficult for the best 10 AVs as 
they are for all of them. 

Table 3 shows the count of single versions within a 
given band of failure rate when we calculate their average 
failure rate for all instances of malware in our dataset 
(47,970 demands). 

From both Table 3 and Figure 1, we see that 6 AV 
products are performing very badly for this dataset: they 
fail for more than 10% of all the demands sent to them. It 
is inconceivable that any system administrator would 
choose AVs that have such a bad detection rate to be used 
in their system. Hence we decided to remove the 6 worst 

TABLE 2. TOP 10 AVS BY THEIR FAILURE (NON-DETECTION) 
RATES 

For all instances of malware For all distinct malware 

AV Name Failure rate AV Name Failure rate 

AV-7 2.7E-04 AV-7 6.3E-04 

AV-16 4.5E-04 AV-17 1.3E-03 

AV-17 5.9E-04 AV-6 2.5E-03 

AV-32 1.0E-03 AV-26 5.0E-03 

AV-26 1.5E-03 AV-21 6.3E-03 

AV-2 1.5E-03 AV-15 8.8E-03 

AV-6 1.8E-03 AV-22 8.8E-03 

AV-30 2.5E-03 AV-16 1.0E-02 

AV-22 3.2E-03 AV-19 1.0E-02 

AV-21 3.2E-03 AV-23 1.0E-02 

 

 

Fig. 1. A plot of the AV (x-axis) failure rates (z-axis, represented by 
the intensity of the color in the plot) over the malware (y-axis).  

 

Fig. 2. Malware difficulty for different sets of AVs, and the respec-
tive quartiles.  

 

Fig. 3. Malware difficulty for different sets of AVs.  
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performing AVs from further analysis. The decision was 
also influenced by our goal to make any results of the 
benefits of diversity appear fairer. A criticism that can be 
made if these 6 worst performing AVs are included in the 
analysis is that improvements in detection capability 
through the use of diversity will of course be higher if 
you have such poorly performing individual AVs in the 
mix. By removing them we make our estimates of the 
benefits of diversity more conservative. 

4. DIVERSE AV DETECTION PERFORMANCE 

We now look at the benefits that using more than one AV 
may bring in terms of detection behavior. The analysis is 
based on the 26 top-performing individual AV products. 
The observed failure rates are calculated from a maximum of 
47,970 demands, as explained in the previous section.  

We have looked at two different types of diversity con-
figurations: 
• 1-out-of-N (abbreviated 1ooN in the rest of the paper), 

where N is the total number of AV products in a given 
configuration – in this configuration a malware is 
deemed to have been detected on a given date as long as 
at least one of the AV products out of N in a given config-
uration detected that malware on that date. These con-
figurations might be especially useful for systems where 
the administrators wish to be extra cautious and raise an 
alarm about a malware as soon as one of the AVs in a 
given configuration has done so. 

• r-out-of-N (abbreviated rooN in the rest of the paper) 
where N is the total number of AV products in a given 
configuration and r is the minimum number of AVs that 
should detect a malware on a given date for this malware 
to be deemed as detected. These configurations might be 
especially useful for systems where the administrators 
are worried about a high rate of false alarms, and wish to 
only raise an alarm if r out of N AV products in a given 
configuration do so. In our experiments we looked at 
two particular voting options: 
o majority voting: where N is an odd number and r is 

(N+1)/2 - this allows us to have a tie-breaker via ma-
jority voting; 

o trigger level: where a fixed number r of AVs have to 
detect a malware (i.e. “be triggered”) before the 
malware is considered to be detected – we will 
present results when the trigger level r equals 2 or 
3.  

Of course many other voting configurations are possible, 
but we chose these two above as we believe they best repre-

sent the contrasting tradeoffs between detection rates and 
false alarm rates that decision makers and administrators 
should take into consideration when deciding on a system 
configuration. We must make clear to the reader that since 
we are dealing with confirmed malware samples we cannot 
really present any data about false positives. But the rooN 
results will allow us to get at least initial estimates of how 
the sensitivity (i.e. the rate of correct detections of confirmed 
malware) of the AV detection capability will be affected 
when an administrator wishes to use majority voting or trig-
ger-level detection setup to attempt curtailing the false posi-
tive rate.    

4.1 1-out-of-N Results 

Table 4 gives the aggregated results for all the possible 
distinct 1ooN systems that can be built from these 26 AV 
products. 

The total number of systems in each configuration (the 
penultimate, right-most column of Table 4) is obtained 
using the combinatorial formula nCr. For example, the 
total number of 1-out-of-2 (1oo2) systems that you can 
create from 26 different AVs is 26C2 = 325, and so on. For 
each of these distinct systems we calculate the average 
failure rate for all instances of malware sent to them. The 
table only goes as far as 1-out-of-15 because we had no 
single demand that caused any combination of 15 differ-
ent AVs to fail simultaneously. Hence from 1oo15 on-
wards we observe perfect detection with our dataset. 

The first column of the results (f.r. = 0) shows the 
number of systems of each 1ooN configuration that de-
tected all the malware on all the dates that they inspected 
them. We had no single AV that was in this category (as 
evidenced in Table 3), but this number grows substantial-
ly as the number of AVs in a diverse configuration in-
creases (you can see its proportional growth to all the 
systems in a particular configuration in the right-most 
column of Table 4). The second column (1.E-05 ≤ f. r. < 
1.E-04) shows the number of systems whose average fail-
ure rate for all instances of malware is between 10-4 and 

TABLE 3. COUNTS OF SINGLE AVS PER FAILURE RATE BAND 

Failure rate (f.r.) 
Count (and % of the 

total) of single AVs 

failure rate = 0 0 (0%) 

1.0E-05 ≤ f. r. <1.0E-04 0 (0%) 

1.0E-04 ≤ f. r. <1.0E-03 3 (9.37%) 

1.0E-03 ≤ f. r. <1.0E-02 13 (40.63%) 

1.0E-02 ≤ f. r. <1.0E-01 10 (31.25%) 

1.0E-01 ≤ f. r. <1.0 6 (18.75%) 

Total single AVs 32 

 

TABLE 4. COUNTS OF 1-OUT-OF-N SYSTEMS OF AVS PER 
FAILURE RATE BAND. ABBREVIATION: F.R. - FAILURE RATE 

Bands f. r. = 0 

1.E-05 

≤ f. r.< 

1.E-04 

1.E-04 

≤ f. r.< 

1.E-03 

1.E-03 

≤ f. r.< 

1.E-02 

Total num-

ber 

of systems 

Proportion of  

systems  with 

perfect detec-

tion rate  

1oo2 80 40 74 131 325 0.246154

1oo3 1,353 395 528 324 2,600 0.520385

1oo4 10,985 1,618 1,881 466 14,950 0.734783

1oo5 57,033 4,169 4,134 444 65,780 0.867026

1oo6 216,199 7,355 6,360 316 230,230 0.939057

1oo7 641,030 9,255 7,355 160 657,800 0.974506

1oo8 1,547,183 8,522 6,516 54 1,562,275 0.990340

1oo9 3,114,327 5,827 4,385 11 3,124,550 0.996728

1oo10 5,306,587 2,952 2,195 1 5,311,735 0.999031

1oo11 7,724,287 1,082 791 0 7,726,160 0.999758

1oo12 9,657,234 272 194 0 9,657,700 0.999952

1oo13 10,400,529 42 29 0 10,400,600 0.999993

1oo14 9,657,695 3 2 0 9,657,700 0.999999

1oo15 7,726,160 0 0 0 7,726,160 1



 

 

10-5. The worst case failure rate band for any diverse set-
up is 10-2 and 10-3. In Table 3 we saw that the worst case 
failure rate band, even after filtering away the 6 worst 
single AVs, for any single AV is 10-1 and 10-2. Hence, for 
this dataset, we can interpret this result as “the worst di-
verse 1ooN configuration brings an order of magnitude im-
provement over the worst single AV product”. 

Figure 4 shows the cumulative distribution function 
(cdf) of the failure rate achieved for single and multiple 
1ooN AV configurations. To get a more accurate cdf we 
drew the cdf curve over 100 failure rate bands between 0-
1 rather than just 6 as we have shown in Table 4. We can 
clearly observe the shift of AV performance towards a 
lower failure rate when adding extra layers of diversity 
(i.e. additional diverse AVs). 

4.2 Majority Voting Results 

Table 5 gives the results for all the possible distinct rooN 
majority voting systems that can be built from these 26 AV 
products. As mentioned previously, in this section we are 
interested in setups that allow majority voting, so we chose 
configurations where N is an odd number and r is equal to 
(N+1)/2. The structure of the table is similar to that of Table 
4, apart from an added column 1.E-02 ≤ f. r. < 1.E-01 which 
shows the number of systems whose average failure rate 
for all instances of malware is between 10-2 and 10-1 (we 
had no 1ooN systems for any configuration in this failure 
rate band). 

Comparing these results with those of Table 4, we see 
that the proportion of systems with perfect failure rates in 
each rooN configurations remains relatively low (no more 
than 5.45% in each configuration), and that the majority of 
systems for each configuration have a failure rate in the 
bands 1.E-04 ≤ f. r. < 1.E-02. We can observe this even 
more clearly by looking at Figures 5 and 6 which show 
the cumulative distribution function (cdf) of the failure 
rate achieved for rooN AV configurations. We have split 
these into two figures to make clearer the relative de-
crease in detection rates for majority voting configura-
tions with high degree of diversity (from 8oo15 onwards).  

We observe this decrease in detection rates, because for 
higher degree of diversity we require more AVs to detect 
a malware before we raise an alarm, which can deterio-

rate the detection rate. The main conclusion from this 
analysis is that the performance of diverse majority vot-
ing systems is not improved by adding further AVs. 

4.3 Trigger Level Results 

An intermediate voting scheme between 1ooN and a 
majority vote is a trigger-level detection where some fixed 
number r out of N AVs have to agree to detect a malware. 

 

Fig. 4. Cumulative distribution of failure rate for different 1ooN con-
figurations (up to 1oo10).  

 

Fig. 6. Cumulative distribution of failure rate for different rooN con-
figurations (majority voting from 8oo13 to 13oo25). 

TABLE 5. COUNTS OF DIFFERENT R-OUT-OF-N SYSTEMS OF 

AVS PER FAILURE RATE BAND. ABBREVIATION: F.R. - FAILURE 
RATE 

Bands f. r. = 0 

1.E-05 

≤ f. r.< 

1.E-04 

1.E-04 

≤ f. r.< 

1.E-03 

1.E-03 

≤ f. r.< 

1.E-02 

1.E-02 

≤ f. r.< 

1.E-01 

Total num-

ber 

of systems 

Proportion 

of perfect 

detection 

systems 

2oo3 119 122 453 1,891 15 2,600 0.045769 

3oo5 3,224 4,022 16,548 41,965 21 65,780 0.049012 

4oo7 34,462 42,685 204,795 375,850 8 657,800 0.052390 

5oo9 168,386198,0791,128,9051,629,180 0 3,124,550 0.053891 

6oo11 421,073459,4063,125,3693,720,312 0 7,726,160 0.054500 

7oo13 563,168560,9854,608,8734,667,574 0 10,400,600 0.054147 

8oo15 407,204364,1293,690,0403,264,787 0 7,726,160 0.052705 

9oo17 156,518121,1951,586,2161,260,621 0 3,124,550 0.050093 

10oo19 30,117 18,941 350,383 258,359 0 657,800 0.045784 

11oo21 2,520 1,149 36,094 26,017 0 65,780 0.038310 

12oo23 65 15 1,434 1,086 0 2,600 0.025 

13oo25 0 0 14 12 0 26 0 

 

Fig. 5. Cumulative distribution of failure rate for different rooN con-
figurations (majority voting up to 7oo13). 
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This is a useful scheme in cases where the administrators 
wish to curtail the false positive rate by only raising an 
alarm (i.e. classifying a file as malicious) if at least some 
minimum number of AVs agrees that the file is malicious, 
but not necessarily go with a majority voting setup which 
as we saw previously can severely deteriorate the detec-
tion rates for confirmed malware (true positives). 

We looked at the diverse setups with trigger levels of 2 
and 3 (i.e. 2ooN and 3ooN setups) for N values up to 26.  

The Figures 7 and 8 below show the cdfs for 2ooN and 
3ooN respectively. 

The conclusion drawn from this analysis is that detec-
tion with a fixed trigger level r is improved by increasing 
the number of diverse AVs (N). 
Comparing and contrasting figures 4, 5, 6, 7 and 8 we can 
see that the rate of detection of malware for lower values 
of N is worse with rooN and qooN setups compared with 
1ooN, but the deterioration is far less pronounced for 
qooN setups, especially for high values of N. 

It is obvious that rooN and qooN configurations will 
have a lower detection rate than 1ooN ones. The question 
is how much lower. As we explained before, since we 
only have confirmed malware samples we cannot meas-
ure the false positive rate. However, the qooN and rooN 
configurations allow us to measure the sensitivity (the 

false negative rate) – the rate of missed detections for con-
firmed malware – that would result from a decision by 
administrators to keep down the false positive rate. We 
can do this by comparing the 1ooN results with qooN and 
rooN results for a given N. 

4.4 Comparison of the results of the various di-
verse setups 

Figures 9, 10 and 11 contain cumulative distribution of 
ratios of failure rates for rooN, 2ooN and 3ooN respec-
tively over 1ooN configurations, for a given N. With ref-
erence to Figure 9, we divided the proportion of systems 
that have a failure rate less than F for a given rooN con-
figuration (i.e. the points in the lines of a given configura-
tion in Figures 5 and 6) with the corresponding propor-
tion, for the same N, of systems that have a failure rate 
less than F for a given 1ooN configuration (i.e. the points 
in lines of a given configuration in Figures 4). 

For example, for 2oo3/1oo3 in Figure 9: to calculate the 
first point in the line for this configuration we divide the 
proportion of 2oo3 systems that have a failure rate less 
than 1E-05 (from Table 5 there are 119/2,600 systems with 
perfect detection) with the corresponding proportion of 
1oo3 systems that have a failure rate less than 1E-05 (from 
Table 4 there are 1,353/2,600 systems with perfect detec-
tion). This means there is more than an order of magni-
tude drop in the number of 3-version systems that have a 
perfect detection rate when we move from a 1oo3 to a 
2oo3 setup. This drop in proportion of perfect systems 
when switching from a 1ooN to a rooN setup is even 
more pronounced for configurations with a higher N. The 
drop is much less pronounced for 2ooN and 3ooN setups 
which for higher values of N are all within an order of 
magnitude. 

The figures confirm what we have observed in the 
previous sub-sections: clearly majority voting seems to be 
a very costly (on average) configuration in terms of the 
detection rate of confirmed malware, whereas 2ooN and 
3ooN are less so. This cost may be compensated by a de-
crease in false positive rates, which unfortunately we 
cannot calculate with our dataset. 

Another interesting comparison of the 1ooN and qooN 
setups is the proportion of systems within a given config-
uration N that have non-zero detection rates. Figure 12 
presents this comparison. 

  We can see that to get 90% of all 1ooN systems to 
have a perfect detection of all malware with our dataset 
we need N~5 (we can observe this in Figure 12 by follow-
ing where the x-axis value 5 meets the y-axis value 1.E-01 
for the 1ooN line). To get 90% of 2ooN systems to detect 
all malware we need N~8 whereas N for 3ooN is > 10. 
This is another way in which an administrator could 
measure the cost of seeking confirmation from 2 or 3 AVs 
before raising alarms. 

4.5 A Closer Look at the Simplest Diverse Configu-
rations 

We will now look more closely at the simplest diverse 
configurations, namely 1oo2 and 2oo3. We want to com-
pare what improvements in malware detection they bring 

 

Fig. 7. Cumulative distribution of failure rate for different 2ooN con-
figurations (up to 2oo10). 

 

Fig. 8. Cumulative distribution of failure rate for different 3ooN con-
figurations (up to 3oo10). 
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compared with single versions. The graph in Figure 13 
shows the average improvements in the detection rate of 

diverse systems over the average detection rates of single 
AVs. 

The x-axis shows the average failure rates of a pool of 
single AVs as we remove the AV with the worst failure 
rate. So the right-most point is the average failure rate of 
all 26 AVs. We then progressively remove the AV with 
the worst detection rate, until we are left with the two 
AVs with best detection rates (we need at least two to 
build a 1oo2 system). The y-axis shows the ratio between 
the average failure rates of single version and 1oo2 con-
figurations (shown with the blue line in the graph) and 
average failure rates of single version and 2oo3 configura-
tions (shown with the red line in the graph). 

We can see that removing the worst 11 single AVs the 
improvement rate for both 1oo2 and 2oo3 over the single 
versions remains fairly constant (around one order of 
magnitude for 1oo2 and around 5-fold for 2oo3). For the 
next 9 we see the improvements for 1oo2 getting larger 
(surpassing 2 orders of magnitude at some stage) though 
they remain constant for 2oo3. Finally for the last remain-
ing ones, where the single AVs have high detection rates, 
the improvement ratio is then shown on the graph by the 
Infinity label (Inf) since the average failure rates of 1oo2 
and 2oo3 systems are 0. 

Figure 14 compares the average failure rates of 1oo2 
and 2oo3 as we progressively remove the single worst 
AV. The blue line shows the ratio between the average 
failure rates of 2oo3 and 1oo2 configurations at each step 
(we discarded the last three steps where, as shown in fig-
ure 13, all 1oo2 and 2oo3 average failure rates were 0). We 
see that in some cases the average failure rate of a 1oo2 
system becomes worse compared with the one from the 
previous step. This is because even though we have re-
moved a single AV with the worst detection rate from the 
previous step that may not necessarily lead to the average 
failure rate of 1oo2 systems becoming smaller: what mat-
ters is how diverse the detection behavior of the AVs are. 
 

 
 

 

Fig. 13. Malware detection improvement over single versions using 
the simplest diverse configurations (1oo2 and 2oo3). Abbreviation: 
F- failure rate. 

 

Fig. 9. Proportion of rooN systems as a ratio of 1ooN systems with 
Failure rate < F. 

 

Fig. 10. Proportion of 2ooN systems as a ratio of 1ooN systems with 
Failure rate < F. 

 

Fig. 11. Proportion of 3ooN systems as a ratio of 1ooN systems with 
Failure rate < F. 

 

Fig. 12. Proportion of diverse systems of size N that have a non-
perfect detection rate. 
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5 “DIVERSITY OVER TIME” ANALYSIS 

As we stated before, each malware sample was sent to a 
given AV product on several consecutive days after it was 
first uncovered in the SGNET honeypots. This period was 
a maximum of 30 days in our dataset. By their very na-
ture signature-based AVs should eventually detect all the 
malware, provided the vendors write the appropriate 
signatures to detect them. However the response time for 
writing these signatures can differ significantly. Hence we 
analyzed to what extent the use of diverse AVs may help 
a system reduce its “at risk time”, i.e. the time before a 
signature is available for a new malware. By using more 
than one AV, in a 1ooN configuration for example, the 
system is only exposed for the time it takes the fastest of 
the vendors to define the signature.  

Figure 15 shows a 3-dimensional plot of the entire da-
taset of the 26 AVs in our study.  

We now look in more detail at the most “difficult” 10% 
of malware (i.e. the ones which were most often missed 
overall by the AV products). This is shown in Figure 16. 
Note that this not a zoom of the top-most 10 % of the Fig-
ure 15, because the ordering is done over the malware. 
The ordering is bottom-to-top, from the most difficult to 

detect to the least difficult (within this 10% of malware). 
The x-axis lists the 26 AVs ordered from left to right 

based on the detection rate: from the highest detection 
rate to the one with the lowest. The y-axis contains a list-
ing of all 1599 malware. The z-axis values are given by the 
intensity of the color on the plot, which is given by the 
legend on the right-hand side of the plot. The black col-
ored lines are associated with malware that were never 
seen by a given AV (i.e. the missing data): in our dataset 
these are associated with just one AV product. The white 
lines are associated with malware which were always 
detected by given AV product. The values 1-30 in the z-
axis, represented by colors ranging from intense green to 
light pink, are associated with the number of days that a 
given AV failed to detect a given malware in our study, 
but which eventually were detected. The red lines repre-
sent the malware which, in our collection period, were 
never detected by a given AV product. 

The graph shows clear evidence of diversity, which is 
consistent with the results we have observed in the previ-
ous section, especially for 1ooN configurations. 

If we look at the graph along the x-axis it is clear again 
that there are infrequent cases of a line (i.e. a particular 
malware) running across the different AVs with the same 
color. This indicates that even for malware which, on av-
erage, different AVs are finding difficult to detect, there is 
considerable variation on which ones they find difficult 
(i.e. a malware which an AV finds difficult another one 
does not, and vice versa) and when they do fail, their at 
risk time does vary. Hence it is clear that using diverse 
AVs, even in the cases when different AVs fail to detect 
the malware, can have an impact in reducing the “at risk 
time” of a system: for example, in a 1ooN configuration, 
the time the system is at risk is the minimum time it takes 
any of the diverse AVs employed to detect the malware (. 

Another viewpoint of the time dimension analysis is 
given in Figure 17. For each AV we looked at the time (in 
number of days) it took to detect a given malware sample. 
To make the graph more readable we categorized the 
malware into groups depending on the time it took an AV 
to detect them: always detected (shown on the bars filled 

 

Fig. 14. Malware detection improvement of 1oo2 over 2oo3 configu-
rations. Abbreviation: F- failure rate. 

 

Fig. 15. The “at risk time” in number of days for each of the 26 AVs 
on each of the 1599 malware samples in our dataset.  

 

Fig. 16. The “at risk time” in number of days for each of the 26 AVs 
when considering the 160 most “difficult” Malware samples.  



 

 

in white color with black borders), never detected (shown 
in red fill color), no data (in black fill color), and then sev-
eral 5-day groupings (1-5 days, 6-10 days etc.). Each bar 
shows the proportion of malware that are in any of these 
categories. We are only showing the top 45% in the y-axis, 
as all AVs always detected at least 55% of all the malware 
samples sent to them. 

Figure 17 allows us to look more clearly at the empiri-
cal distribution of the time it takes each AV to detect the 
malware samples in our study. Along the x-axis the AVs 
are ordered left-to-right from the AV with the lowest at 
risk time (AV-7) to the highest (AV-5). 

The distribution of detection times may have a bearing 
on the choice of AVs that a given user may wish to make 
for a given system. Rather than choosing the “best on av-
erage”, users may choose the AVs that do not have too 
many undetected malware (shown in red color in the bars 
of the graph in Figure 17). For example, even though AV-
23 has a better (shorter) average “at risk time” than AV-
18, it is evident from Figure 17 that AV-18 has a shorter 
red colored section of the bar compared with AV23. This 
means AV-18 failed to detect, in our study, a smaller 
number of malware than AV-23, even though its average 
at risk time was worse (higher).  

From the viewpoint of diversity analysis, the choice of 
which set of AVs to choose is therefore not only influ-
enced by the highest detection rates (diversity in “space”) 
but also the time it takes the different AVs to detect mal-
ware (diversity in “time”). Different AV vendors may 
have different policies on deciding which malware they 
prioritize for a signature definition. Therefore the needs 
of an individual end-user for whom a definition of a sig-
nature for a particular malware sample is of high im-

portance, may mismatch with the AV vendor’s prioritiza-
tion of that malware. So use of diverse AVs helps avoid 
this “vendor lock-in”. Selection of diverse AVs to opti-
mize the diversity in time aspect requires we choose AVs 
from vendors that exhibit diverse policies at prioritizing 
signature definitions for different malware. 

6 MODELING THE IMPACT OF ADDITIONAL AVS 

6.1 Exponential Power Law Models for Probability 
of Imperfect 1ooN, 2ooN and 3ooN Systems 

An interesting characteristic of the data plotted in Figure 
12 is the asymptotic reduction in the proportion of “im-
perfect” (i.e. systems that fail to detect all the malware) 
1ooN, 2ooN and 3ooN systems. When reasoning about 
1ooN, then a simple exponential model of the decrease 
with the number of AVs (N) in the diverse system would 
estimate the proportion as: 
Pfaulty(1ooN) = p

N
  (1) 

where p is the probability that a single AV fails to de-
tect all the malware. 

In practice this proved to be a very poor fit to the ob-
served proportions. However an empirically derived ex-
ponential power law model of the form: 

Pfaulty(1ooN) =  (2)
 

proved to be a good fit to the observed data for 1ooN 
as shown in Figure 18. The goodness of fit was assessed 
by performing a linear regression analysis of the 
linearised form of the relationship, i.e. ln(P(faulty1ooN )) ∝ 
N2. The coefficient of determination, R2 was extremely 
high at 0.9975. 

Figure 18 also shows the fit obtained using an expo-
nential power law model fit for the 2ooN and 3ooN re-
sults.  We obtained the best fits using the equations: 

Pfaulty(2ooN) =  (3) 

Pfaulty(3ooN) =  (4) 

Again, there is a very good fit when regression is ap-
plied to linearised versions of these relationships (R2 val-
ues of 0.9985 and 0.9990 respectively). 

We have also compared the 2ooN and 3ooN cases 
against a “shifted” 1ooN distribution, where we essential-
ly take the fitted 1ooN curve and shift it to the right. Ef-
fectively we assume: 

Pfaulty(2ooN) =  (5)
 

and 

Pfaulty(3ooN) =  (6)
 

As we can see in Figure 18, the curves are a reasonable 
fit to the empirical data (with an R2 value better than 0.97) 
although it is not as good as the fit obtained using a high-
er power law. This result suggests there could be a useful 
“rule of thumb” for implementing a diverse AV voting 
scheme. If you increase the trigger level by one you need 
to increase the total number of AVs – N - by two to get the 
same probability of selecting a perfect combination of 
AVs for a given detection trigger level. 

2Np

5.2)1( −Na
3)2( −Nb
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Fig. 17. “At risk time” distribution for single AVs.  
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6.2 Further Analysis of the Modeling for 1ooN

In our earlier paper [12] we had no detailed explanation 
for this surprisingly good fit of the 1ooN system detection 
capability to the exponential power law model
looked into this aspect in more detail for the 1ooN setup.

One way of exploring the data is to consider what 
happens to the initial probability distribution of failure 
rates as we combine “barriers” (i.e. different AVs)
model we take the barriers to be a composite one with a 
probability distribution given by combining the rates of 
the different AVs. We can then model how the distrib
tion changes as we add barriers. 

As we add independent barriers we are making a co
volution of the distribution with itself. To see how the 
shape changes we could first take a Laplace transform 
then multiply the resulting distribution in the Laplace 
transform space. The reverse transformation 
us the shape of the new distribution we can then adjust 
for normalization etc. Although this is tractable for
Gamma distributions, the data we have did not provide a 
convincing fit. Instead we have qualitative arguments
due to the multiplicative nature of the barriers, that 
distributions might tend towards log normal
there is no straightforward transform.  

However we can use the extreme value result due to 
[18] that the probability density function (
product of n independent identically distributed positive 
random variables (the probability of failure of the AVs)
���= ∏ ����   

with individual pdfs p(x), under certain assumptions, 
given by the expression from [18]: 

�� 
��~ ��
��/����
   

for � →  ∞  and n finite. 
To use this approximation we need a suitable property 

that satisfies the condition � →  ∞, such
failure (in terms of number of demands) of the AVs. So 
the time to failure (ttf) distribution for n barriers can be 
derived from the individual distributions and (8)
that if we are interested in probability of 
demands we see the most relevant part of the distribution 
for m barriers is only between D/n and D. 

We can use equation (8) to see the result of multiplying 
independent variables that are distributed log normally:

�
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Fig. 18. Effect of increasing diversity by adding AVs. 
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6.2 Further Analysis of the Modeling for 1ooN 

we had no detailed explanation 
s surprisingly good fit of the 1ooN system detection 

model. We have 
looked into this aspect in more detail for the 1ooN setup. 

One way of exploring the data is to consider what 
ribution of failure 

” (i.e. different AVs). In this 
model we take the barriers to be a composite one with a 

distribution given by combining the rates of 
how the distribu-

barriers we are making a con-
volution of the distribution with itself. To see how the 
shape changes we could first take a Laplace transform 
then multiply the resulting distribution in the Laplace 
transform space. The reverse transformation would give 

on we can then adjust 
Although this is tractable for 

, the data we have did not provide a 
have qualitative arguments, 

nature of the barriers, that the 
ons might tend towards log normality. For these 

However we can use the extreme value result due to 
that the probability density function (pdf) of the 

independent identically distributed positive 
(the probability of failure of the AVs) is: 

(7) 

p(x), under certain assumptions, 

(8) 

To use this approximation we need a suitable property 
such as the time to 

failure (in terms of number of demands) of the AVs. So 
barriers can be 

individual distributions and (8). Note 
that if we are interested in probability of failure after D 

we see the most relevant part of the distribution 
 

to see the result of multiplying 
re distributed log normally: 

(9) 

Applying (8), we get an analytical result for
with the number of barriers N that 
by 
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which simplifies to the log-normal distribution with 

parameters: 

 ,�  = $. ,.  and   /�  = √$. /. 
 

With the log-normal mean given by

  exp 
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The empirical results of Figure 19

of failure of the AVs after a total of 
for now the differences between the demands the AVs 
see). This provides a measure of the probability, or conf
dence, that the failure rate will be above ~1/
calculate how the probability that the failure rate will be 
above a threshold changes, i.e. our confidence in the rate 
being greater than, say, 0.0001. This incomplete log no
mal function has been calculated and th
given from (10). 

The variation in the incomplete cumulative distrib
tion with the number of barriers 
The dashed lines are the fit with differen
on the failure rate. The actual data is shown in red points 
and the original exponential power law
red line. 

Note that the log-normal has a power law tail over
most of this range, independent of N,
curve like the exponential power law

7 DISCUSSION 

7.1 Confidence in the Best Case Observed Failure 
Rate 

Any claim about the best case (i.e. lowest) failure rate 
we can hope for, using this dataset, will be in the region 
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Fig. 19. Variation in the incomplete cumulative distribution with the 
number of barriers.  
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we get an analytical result for the scaling 
that is approximately given 
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normal distribution with 
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normal mean given by 

(12) 

Figure 19 show the probability 
of failure of the AVs after a total of D demands (ignoring 
for now the differences between the demands the AVs 

his provides a measure of the probability, or confi-
dence, that the failure rate will be above ~1/Dt. We can 
calculate how the probability that the failure rate will be 

i.e. our confidence in the rate 
0.0001. This incomplete log nor-

mal function has been calculated and the variation with N 

The variation in the incomplete cumulative distribu-
tion with the number of barriers is shown in Figure 19. 

lines are the fit with different lower bounds 
The actual data is shown in red points 

power law fit is the dotted 

normal has a power law tail over 
, independent of N, and hence does not 

exponential power law fit. 

n the Best Case Observed Failure 

the best case (i.e. lowest) failure rate 
we can hope for, using this dataset, will be in the region 
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of 10-4 to 10-5. This is because we have a maximum of 
47,970 demands sent to any given AV (as we explained 
earlier). This is the upper bound on the observed failure 
rate. To make claims about lower failure rates (i.e. smaller 
than 1/47,970) we need more data – or, in other words, 
we must do more testing. The theoretical background 
behind these intuitive results is given in [19]3. 

But the fact that we are seeing only, for instance, 5 out 
of almost 10 million different combinations of 1oo14 sys-
tems fail on this dataset is telling us something about the 
improvements in detection rates from using diversity in a 
1ooN setup (cf. Table 4), even if we cannot claim a failure 
rate lower than 1/47,970. We may interpret the 0.999999 
proportion of 1oo14 systems with a perfect failure rate as 
a 99.9999% confidence we have in the claim that, for this da-
taset, “the average failure rate of a 1oo14 diverse AV system 
constructed from randomly selecting 14 AVs from a pool of 26 
AV products, will be no worse than ~  (1 / 4.8) * 10-5”. This 
may or may not persuade a given system administrator to 
take on the additional cost of buying this extra security: 
this will clearly depend on their particular requirements. 
But in some cases, especially regulated industries, there 
may be a legal requirement to show actually achieved 
failure rates with a given level of confidence. It may not 
be feasible to demonstrate those failure rates with the 
associated confidence for single AV products without 
extensive testing. 

The claim above is limited by the level of diversity we 
can expect between various diverse configurations. We 
“only” have 26 AV products (even though this may rep-
resent a large chunk of the available commercial solutions 
available). Hence, for instance, even though we have over 
65,000 different combinations of 1oo5 systems using 26 
AVs, the level of diversity that exists between these dif-
ferent 1oo5 systems may be limited in some cases. For 
example, a 1oo5 system which consists of AV1, AV2, 
AV3, AV4 and AV5, is not that much different from a 
1oo5 system consisting of AV1, AV2, AV3, AV4 and AV6. 
Hence care must be taken from generalizing the level of 
confidence from these large numbers without considera-
tions of these subtle concepts on the sample space of pos-
sible systems. 

7.2 Limitations of the Study and the Dataset 

There are two major limitations of the dataset we have 
used which prevent us from making more generalized 
conclusions on the possible benefits of diversity.  

The first is to do with the time in which the data has 
been collected. As we mentioned before the malware sam-
ples in our study were collected from the SGNET network 
in 2008, hence these malware samples do not accurately 
reflect the current prevalence of malware in 2012. However 
we should stress that we are matching like with like: i.e. 
malware samples and AVs at some snapshot in time, in 
this case 2008. We plan to do further work with malware 
which are prevalent in 2012 and the detection capabilities 
of 2012 AVs when they inspect these malware. This will 
 

3 Section 3 of [19] contains a discussion of the limits on 
claims we can make about reliability when statistical testing 
reveals no failures. 

give us results on the consistency, or not, of the detection 
capabilities of diverse AVs in different snapshots in time. 

The second limitation is due to the nature of the data set: 
we only have confirmed malware. Hence we can measure 
failure to detect genuine malware (false negatives), but we 
could not measure cases where benign files are incorrectly 
identified as malware (false positives). False positive rate is 
an important measure when evaluating the effectiveness of 
any detection system, including AV systems. Of course we 
could have artificially created a large set of non-malicious 
files which we could have sent to the AV systems and ob-
tained false positive rates this way. But this can just as easi-
ly be criticized due to the lack of representativeness of the 
chosen non-malicious files. Choosing representative test 
loads and defining what constitutes a false positive is a 
matter of some debate in the AV community (see discus-
sion in [11, 14] for more details). We plan to study the false 
positive aspects in future work. 

7.3 Discussion of the Exponential Power Law Mod-
el and its Implications on Systems with Diverse 
Barriers 

There is no immediate explanation for the good fit of 

the 1ooN system detection capability to the exponential 

power law model. Although the results in Section 6.2. 

show how single barrier pfd can lead to a distribution pa-

rameterized on the number of AV barriers, N, an analyti-

cal derivation of the N2 empirical result has eluded us. It 

would seem that the initial fit over the first 10 barriers can 

be modeled by a combination of independent random 

variables, but not the complete set of empirically derived 

points. We have undertaken a number of simulations 

which suggest that the underlying variability in AV fail-

ure rates is more important than their lack of independ-

ence, but dependency might be more significant for the 

tail of the distribution. We are continuing with these in-

vestigations. 
If the exponential power distribution is shown to apply 

on other datasets, it would be a useful means for predicting 
the expected detection rates for a large 1ooN AV system 
based on measurements made with simpler 1oo2 or 1oo3 
configurations.  Also, quite significantly, the results show 
that asking the question “how does the chance of surviving D 
demands vary with N barriers” provides a result that is 
much better, in the sense of a much lower probability of 
failure than one might expect from a straightforward con-
sideration and even from an optimistic independence 
assumption of the means. 

8 RELATED WORK 

8.1 Architectures that Utilize Diverse AntiVirus 
Products 

In this paper we have presented the potential gains in 
detection capability that can be achieved by using diverse 
AVs. Security professionals may be interested in the ar-
chitectures that enable the use of diverse AV products. 

An initial implementation of an architecture called 
Cloud-AV has been provided in [4], which utilizes multi-



 

 

ple diverse AntiVirus products. The Cloud-AV architec-
ture is based on the client-server paradigm. Each host 
machine in a network runs a host service which monitors 
the host and forwards suspicious files to a centralized 
network service. This centralized service uses a set of di-
verse AntiVirus products to examine the file, and based 
on the adopted security policy makes a decision regard-
ing maliciousness of the file. This decision is then for-
warded to the host. To improve performance, the host 
service adds the decision to its local repository of previ-
ously analyzed files. Hence, subsequent encounters of the 
same file by the host will be decided locally. The imple-
mentation detailed in [4] handles executable files only. A 
study with a deployment of the Cloud-AV implementa-
tion in a university network over a six month period is 
given in [4]. For the executable files observed in the study, 
the network overhead and the time needed for an AntiVi-
rus engine to make a decision are relatively low. This is 
because the processes running on the local host, during 
the observation period, could make a decision on the ma-
liciousness of the file in more than 99% of the cases that 
they had to examine a file. The authors acknowledge that 
the performance penalties might be significantly higher if 
the types of files that are examined increases as well as if 
the number of new files that are observed on the host is 
high (since the host will need to forward the files for ex-
amination to the network service more often). 

Commercial solutions that use diverse AV engines for 
file and for e-mail scanning are available from [5-7]. 

8.2 Other Related Empirical Work with AV Products 

Empirical analyses of the benefits of diversity with diverse 
AV products are scarce. CloudAV [4] and our previous pa-
pers [12], [13] are the only published research we know of. 

Studies which perform analysis of the detection capabil-
ities and rank various AV products are, on the other hand, 
much more common. A recent publication [9] reports re-
sults on ranking of several AV products and also contains 
an interesting analysis of “at risk time” for single AV 
products. Several other sites4 also report rankings and 
comparisons of AV products, though care must be taken 
when comparing the results from different reports, as they 
might use different definitions of “system under test”. 

9 CONCLUSIONS 

We presented results of an assessment of the application of 
diversity in a real world scenario based on realistic data gen-
erated by a distributed honeypot deployment.  

The performance analysis of the signature-based com-
ponents showed a considerable variability in their ability 
to correctly detect the samples considered in the dataset. 
Also, despite the generally high detection rate of the de-
tection engines, none of them achieved 100% detection 
rate. The detection failures were both due to the lack of 
knowledge of a given malware at the time in which the 
samples were first detected, but also due to regressions in 
the ability to detect previously known samples as a con-
sequence, possibly, of the deletion of some signatures. 
 

4 av-comparatives.org/, av-test.org/, virusbtn.com/index 

The diverse performance of the detectors justified the 
exploitation of diversity to improve the detection perfor-
mance. We calculated the failure rates of all the possible 
diverse systems in various 1-out-of-N, trigger-level 
(where a minimum number of 2 or 3 AV detections is 
needed before an alarm is raised) and majority voting 
setups (where we need a majority of AVs in a setup to 
detect a malware before an alarm is raised).  

As shown in [14], the comprehensive performance evalu-
ation of AntiVirus engines is an extremely challenging, if not 
impossible, problem. This work does not aim at providing a 
solution to this challenge, but builds upon it to clearly define 
the limits of validity of its measurements. 

The main results can be summarized as follows: 
• Despite the generally high detection rates of the AVs, 

none of them achieved 100% detection rate;  
• The detection failures were both due to an incomplete 

signature databases at the time in which the samples 
were first submitted for inspection, but also due to re-
gressions in the ability to detect previously known 
samples as a consequence, possibly, of the deletion of 
some signatures; 

• Considerable improvements in detection rates can be 
gained from employing diverse AVs; 
• No single AV product detected all the malware in 

our study, but almost 25% of all the diverse pairs, 
and over 50% of all triplets in 1-out-of-N configura-
tions successfully detected all the malware; 

• In our dataset, no malware causes more than 14 dif-
ferent AVs to fail on any given date. Hence we get 
perfect detection rates, with this dataset, by using 15 
diverse AVs in a 1-out-of-N configuration; 

• The detection rates are lower for “trigger level detec-
tion” (2-out-of-N and 3-out-of-N) and majority vot-
ing (r-out-of-N) setups compared with 1-out-of-N 
but on average are better than using a single AV;  

• Significant potential gains in reducing the “at risk 
time” of a system from employing diverse AVs: even 
in cases where AVs fail to detect a malware, there is 
diversity in the time it takes different vendors to suc-
cessfully define a signature to detect a malware;  
• The analysis of “at risk time” is a novel contribution 

compared with traditional analysis of benefits of di-
versity for reliability: analysis and modeling of di-
versity has usually been in terms of demands (i.e. in 
space) without considering the time dimension; 

• An empirically derived exponential power law model 
proved to be a good fit to the proportion of systems in 
each simple detection (1-out-of-N) and trigger level 
detection (2-out-of-N and 3-out-of-N) diverse setup 
that had a zero failure rate. If this was found to be ge-
neric for other datasets, it would be a useful and cost-
effective means for predicting the probability of per-
fect detection for systems that use a large number of 
AVs (or other types of detection systems) based on 
measurements made with systems that are composed 
of fewer (say 2 or 3) AVs.  

• A composite barrier model partially explains the ob-
served behavior, but it requires more development. If 
the impact of adding barriers can be accurately (or 



 

 

even pessimistically) modeled, it could have signifi-
cant implications for defense in depth and the archi-
tecture of safety and security critical systems.  

10 FURTHER WORK 

As we stated in the introduction, there are many difficul-
ties with constructing meaningful benchmarks for the 
evaluation of the detection capability of different AntiVi-
rus products (see [14] for a more elaborate discussion). 
Modern AntiVirus products comprise a complex architec-
ture of different types of detection components, and 
achieve higher detection capability by combining together 
the output of these diverse detection techniques. Since 
some of these detection techniques are also based on ana-
lyzing the behavioral characteristics of the inspected 
samples, it is very difficult to setup a benchmark capable 
to fully assess the detection capability of these complex 
components. In our study we have concentrated on one 
specific part of these products, namely their signature-
based detection engine. Further studies are needed, with 
other more up to date datasets, to test the detection capa-
bilities of these products in full, including their sensitivi-
ties to false positives (whatever the definition of a false 
positive may be for a given setup). 

Other provisions for further work include: 
• Studying the detection capability with different cate-

gories of malicious files. In our study we have concen-
trated on malicious executable files only. Further stud-
ies are needed to check the detection capability for 
other types of files e.g. document files, media files etc; 

• Studying the detection capabilities with datasets that 
allow measurements of false positives in addition to 
false negative rates. This will allow us a better analysis 
of the tradeoffs between the various 1-out-of-N, trig-
ger-level and majority voting detection setups;  

• Though we presented various results and distribu-
tions that show varying efficacy of different types of 
diversity, in practice a user will have to commit to a 
particular diverse configuration. We plan further 
work to study this in more detail. For example, we 
plan to study whether the particular combinations of 
AVs that are best for 1-out-of-N are the same ones that 
are best for other configurations? Are these AVs gen-
erally the ones that are individually best? Etc.  

• More extensive exploratory modeling and modeling 
for prediction. The results with the exponential power 
law distribution were a pleasant surprise, but more 
extensive analysis with new datasets is required to 
make more general conclusions. More theoretical 
work is needed to relate the combined asymptotic re-
sults to the underlying distributions. Extensions of 
current methods for modeling diversity to incorporate 
the time dimension are also needed. 
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