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A number of studies have investigated how the visual
system extracts the average feature-value of an
ensemble of simultaneously or sequentially delivered
stimuli. In this study we model these two processes
within the unitary framework of linear systems theory.
The specific feature value used in this investigation is
size, which we define as the logarithm of a circle’s
diameter. Within each ensemble, sizes were drawn from
a normal distribution. Average size discrimination was
measured using ensembles of one and eight circles.
These circles were presented simultaneously (display
times: 13–427 ms), one at a time, or eight at a time
(temporal-frequencies: 1.2–38 Hz). Thresholds for eight-
item ensembles were lower than thresholds for one-item
ensembles. Thresholds decreased by a factor of 1.3 for a
3,200% increase in display time, and decreased by the
same factor for a 3,200% decrease in temporal
frequency. Modeling and simulations show that the data
are consistent with one readout of three to four items
every 210 ms.

Introduction

Within the framework of linear systems theory, the
temporal impulse response (TIR) can be considered a
primitive, from which several psychophysical results
evolve. In general, the TIR describes visual activity
following a briefly presented stimulus. When that
stimulus is a luminance grating that has a relatively
high spatial frequency, the TIR is biphasic (De Lange,
1952; Gorea & Tyler, 1986). Low-frequency gratings
produce monophasic TIRs (Kelly, 1977).

Contrast thresholds can be predicted from the total
visual activity, during and after each presentation. For
relatively short presentations, Bloch’s Law (Bloch,
1885) says that the product of contrast threshold and

duration should be a constant. Adherence to Bloch’s
Law is not always perfect (Gorea & Tyler, 1986;
Watson, 1986). When we refer to empirically derived
functions mapping presentation durations of arbitrary
length to performance threshold, we will use the more
general term Bloch’s Curve.

Bloch’s Law also has implications for speeded-
response detection tasks: Response time at constant
performance should be inversely proportional to the
stimulus intensity. Over the last three decades or so,
this paradigm has become popular for investigating
how sensory evidence is accumulated over time.
Alternative to linear systems theory are drift-diffusion
models, which stipulate that the evidence for and
against the presence of a visual signal should be
encoded in terms of its likelihood (or log-likelihood;
Gold & Shadlen, 2001; Bogacz, Brown, Moehlis,
Holmes, & Cohen, 2006; Yang & Shadlen, 2007). While
this latter class of models provides good fits to
behavioral (e.g., Usher & McClelland, 2001; de
Gardelle & Summerfield, 2011) and physiological (e.g.,
Gold & Shadlen, 2001; Yang & Shadlen, 2007)
decision-time data, the proposal that the brain inte-
grates log-likelihood ratios rather than stimulus
strength remains debatable (e.g., Liston & Stone, 2013).

The temporal contrast sensitivity function (TCSF) is
another empirically derived curve. It maps the recip-
rocal of contrast threshold (i.e., sensitivity) to temporal
frequency. Linear systems theory describes how this
function can also be predicted from the TIR. The two
types of curve are related by the Fourier Transform (De
Lange, 1952; Kelly, 1977). Thus, there is a sound
theoretical basis for predicting two types of empirical
results from the temporal impulse response: Bloch’s
curve and the TCSF.

In this paper we measure Bloch’s curve and the
TCSF in an effort to characterize the evidence
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accumulation process supporting the extraction of
summary statistics, specifically the mean size of a set of
items. Once all items in a set have reached (and
exceeded) their detection threshold (an assumedly
parallel process), estimates of summary statistics may
be refined over time in a continuous manner, just as in
the drift-diffusion models of detection (Ratcliff, 1978;
Gold & Shadlen, 2001; Usher & McClelland, 2001;
Bogacz et al., 2006; Brunton, Botvinick, & Brody,
2013) or their linear-systems equivalents (Watson,
1979, 1986; Gorea & Tyler, 1986, 2013).

Data relevant to the accumulation of summary
statistics were collected by Chong and Treisman (2003),
who found a rather modest benefit of exposure durations
longer than 50 ms. However, without formal modeling, it
remains unclear whether there wasn’t more benefit
because observers had already integrated all the avail-
able evidence before 50 ms had elapsed, or whether they
simply didn’t use much of the available evidence in the
first place. Monte Carlo simulations were provided later
by Myczek and Simons (2008), who concluded it was
possible that nomore than two circles were ever used in a
computation of mean size. Problems with these simula-
tions include a lack of parameters for coding noise,
decision noise, and the explicit relationship between
exposure duration and the number of circles used in a
computation (Ariely, 2008). Whether Chong and Treis-
man’s (2003) observed slight performance improvement
with duration was due to observers using more items in
their estimates of the mean, an increase in their acuity for
size (equivalent to a decrease in coding and/or decision
noise), or both remains an open question.

Below, we answer this question by fitting Bloch’s
curve and the TCSF with the noisy, inefficient observer
model of Solomon, Morgan, and Chubb (2011).
Furthermore, we present an elaboration of that model, in
which responses are based on the accumulated evidence
from a series of independent, parallel measurements. Of
particular interest is the frequency with which the
putative parallel measurements can be made, and how
that frequency compares with other cognitive processes.

Finally, we acknowledge limitations with this class
of models, such as their equal treatment of all inputs
(cf. de Gardelle & Summerfield, 2011), and we
examine our own data for evidence that certain circles
are given greater weighting in decisions about average
size.

Methods

Participants

Five graduate students (age range: 19–23, including
author SB) and author AG participated in all duration

and temporal frequency (Main) experiments. The same
two authors and one of the other graduate students
also participated in an experiment (hereafter referred to
as the Noise Experiment) where the mean-size dis-
crimination thresholds were assessed as a function of
size variance. All participants had normal or corrected-
to-normal vision.

Stimuli

The stimuli were presented using a Dell Precision
T3500 computer (Dell, Round Rock, TX) on a 19-in.
E96fþ SB ViewSonic monitor (1280 · 1024 pixels, 75
Hz; ViewSonic, Walnut, CA) set at about 60 cm from
observers’ eyes. Stimuli presentation and response
recording were implemented in Matlab using the
Psychophysics Toolbox (Brainard, 1997; Pelli, 1997).
Stimuli were white (44 cd/m2) or black (0.05 cd/m2)
circle outlines (five-pixel width) presented on a gray
background (22 cd/m2). Their polarity was changed
systematically across trials to avoid possibly con-
founding stimulus exposure with luminance adapta-
tion. Their contrast was such that even under the
shortest display durations and the highest temporal
frequencies they were highly suprathreshold. A white
central cross was used for fixation. The screen was
partitioned into two hemifields by a black, three-pixels
thick vertical line.

Main Experiments

The circles were presented on each side of this
vertical line either one or eight per hemifield and either
once or repeated eight times per trial. When presented
only once per trial their exposure duration could take
one of six durations (T: 13.3, 26.7, 53.3, 106.6, 217.3,
and 426.5 ms). When repeated they were refreshed at
one of six Temporal Frequencies (TF: 1.17, 2.3, 4.7,
9.4, 18.8, and 37.5 Hz) with a 0.5 duty-cycle. Eight
temporal cycles were always presented so that the total
duration of a flickering trial depended on TF. The TFs
were chosen so that the duration of one-half temporal
cycle at the highest frequency equaled the shortest
once-per-trial condition. At the lowest frequency it
equaled the longest durations used in the once-per-trial
condition. When presented only once per trial, the
number of circles per hemifield (Ns) was either 1 or 8.
When presented repeatedly in one trial each temporal
cycle also displayed 1 or 8 elements. Hence, there were
2 · 2 experimental conditions, hereafter referred to as
1:1, 1:8, 8:1, and 8:8 (i.e., Ns:Nt; see Appendix 1 for a
list of all notations) where the first and second digits
refer respectively to the number of simultaneously
displayed circles and to the number of temporal cycles
per trial (see Figure 1). In each hemifield all circles’
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diameters were randomly drawn from one of two
lognormal distributions, either lnN[l-Dl/2; r2

C� or
lnN[lþDl/2;r2

C�.
1 In this experiment the parameter

controlling stimulus variance was fixed at rC ¼ 0:2.
This is the largest value used by Solomon et al. (2011).
The baseline l was itself a random variable drawn
across trials from a flat distribution, such that l � [1.18,
2.78]. The ratio Dl/l was under the control of two
staircases per experimental condition (see Procedure).
One or eight circles’ locations were randomized both
across trials and temporal cycles. These locations were
constrained such that (a) circles were always within a
circular area around fixation with a 138 radius and (b)
the outlines of the simultaneously presented circles
were always at least 18 apart.

Noise Experiment

This experiment was in all respects equivalent to the
Main Experiment with two exceptions. In the first
phase only condition 8:1 (eight circles presented once)
was tested, and for only two display durations (13.3
and 426.5 ms). Mean-size discrimination thresholds
were measured for six levels of the parameter control-
ling stimulus variance, rC. These levels were equally
spaced on a log axis between 0.01 and 0.50. To
accommodate the largest variances and ensure that all

circles could be contained within the appropriate
hemifield, the range of baseline diameters was reduced
to [1.18, 1.98]. The second phase was identical to the
first, except only the 1:1 condition was tested, and only
two levels of rC were used: 0.01 and 0.20.

Procedure

The order of the four Main conditions (1:1, 1:8, 8:1,
8:8) was randomized across participants. The different
timings of the stimuli, their color (white or black), their
locations, and their baseline diameter l were random-
ized across trials. The participant’s task was to decide
which of the two hemifields contained the circle(s) with
the largest mean size (a two alternative forced-choice
paradigm). Participants indicated their response by
pressing one of two keys. There was no feedback. The
expected size difference between circles in the left and
right hemifields was under the control of two inter-
leaved staircases (accelerated stochastic approximation
algorithm; Kesten, 1958) set to converge on a
performance of 81% for each experimental condition so
that there were 12 interleaved staircases per experiment
and per session. Typically, each staircase converged
after an average of about 25 trials. Five trials with Dl/l
well beyond the discrimination threshold (or just-
noticeable Weber fraction) were randomly interspersed
among each staircase trials to assess the percentage of
lapses. Each participant first ran one training session
with condition 1:8 (at least 120 trials). The four
conditions were repeated four times in a random order
so that each h was computed as the geometric mean of
four assessments. The whole experiment was completed
in about 3 hrs typically dispatched in two or three
sessions per day.

The Noise Experiment was run once all Main
Experiments were completed. As a result, only three of
the original participants were still available. The
procedure was in all respects identical to that described
above with the exception that this time the two durations
and the up to six stimulus variances were randomized
across sessions and participants. The experiment was
completed within about 1 hr (no breaks).

Results

Main Experiments thresholds

Figure 2A shows the mean-size discrimination
thresholds (h · 100%) averaged over all six observers as
a function of the display duration for conditions 1:1
(circles) and 8:1 (squares) (all symbols and notations
are summarized in Appendix 1). Thresholds drop with

Figure 1. The four experimental conditions in the Main

Experiments: One or eight circles (left and right figures,

respectively) with diameters drawn from a log-normal distri-

bution displayed simultaneously for one single temporal cycle of

one of six durations (upper figures) or sequentially at one of six

temporal frequencies (bottom figures). Condition 8:1 (top right)

was used in the Noise Experiment where the diameters of the

eight circles were drawn from log-normal distributions with up

to six variances.
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duration but the slopes of the linear regressions (in log-
log coordinates; straight lines) are very shallow,
congruent with a statistical summation process (see the
Modeling section): The slope for condition 1:1 is�0.03,
which is not significantly different from 0 (F¼ 2.08, p¼
0.158); the slope for condition 8:1 is �0.08, which is
significantly different from 0 (F ¼ 4.67, p ¼ 0.037).2 It
should be pointed out that a threshold drop with
duration is theoretically obligatory due to an inevitable
reduction of early noise (see also The generalized NIO
model section).

Overall, mean-size discrimination thresholds for one
single circle are 1.4 times higher than for eight
simultaneously displayed circles. An ideal observer
should have decreased its thresholds by a factor offfiffiffi

8
p
¼ 2.83. The lesser summation assessed in human

observers may be caused by their coding and decision
noise and by their lesser coding efficiency (see the
Modeling section). When compared with the contrast
detection thresholds in the standard Bloch’s Law
regime over the same duration range (Figure 2B,
shaded area) they appear to be almost independent of
duration. While over the same duration range contrast
detection thresholds for low and high spatial frequen-
cies (upper and lower continuous curves) drop by
respectively 0.47 and 0.82 log-units (the pairs of red
closed circles on each curve), mean-size discrimination
thresholds drop by only 0.12 log-units.

Figure 3A shows the mean-size discrimination
sensitivity (1/[h · 100]) averaged over the six observers
as a function of the display TF for conditions 1:8
(circles) and 8:8 (squares). Here again, sensitivity barely

varies with TF. When compared with the standard
Temporal Modulation Transfer functions for contrast
(Figure 3B) over the same TF range they show a
maximum modulation of 0.23 log-units, while the
maximum sensitivity modulation for low and high
spatial frequencies is 2.5 and 2.8 log-units (pairs of red
closed circles on the left and right smooth curves,
respectively).

Figure 4 displays the 8:1 data from Figure 2A
together with the 1:8 data from Figure 3A with the later
now plotted as a function of the duration of half a cycle
of the respective TFs. This is the duration for which
each refreshed circle is continuously visible over the
eight cycles of the flickering stimuli. The observation
here is that the amount of summation over eight
spatially or temporally distributed items is (close to)
equivalent (two-way repeated measures ANOVA, F [1,
71]¼ 0.98, p¼ 0.32).3 This is true independently of the
rate (TF) at which size information is delivered
(interaction: F [5, 71] ¼ 0.11, p ¼ 0.99).

Noise Experiment thresholds

Figure 5 shows size discrimination thresholds (h ·
100) of three observers (different symbols) for condi-
tion 8:1 and stimulus durations of 13 and 427 ms (open
and solid symbols, respectively) as a function of the
parameter controlling stimulus variance. This figure
suggests that duration has a large effect on threshold
when stimulus variance is low; it has little effect on
threshold when stimulus variance is high.

Figure 2. (A) Mean-size Just Noticeable Weber Fractions (JNWF)

averaged over the six observers as a function of stimulus

duration for conditions 1:1 and 8:1 (open circles and squares,

respectively). Straight lines are linear regression fits with slopes

of �0.03 and �0.08. (B) The same data (open symbols in the

shaded area) rescaled to match the scale of the standard Bloch’s

Law plots for low and high spatial frequencies (continuous top

and bottom curves, respectively; adapted with permission from

Gorea & Tyler, 1986). The pair of red closed circles on each

curve shows the highest and lowest thresholds within the

display duration range tested in the present experiments.

Vertical bars in each panel are 61 SE.

Figure 3. (A) Mean-size sensitivity (1/JNWF) averaged over the

six observers as a function of TF for conditions 1:8 and 8:8

(closed circles and squares, respectively). (B) The same data

(closed symbols in the shaded area) rescaled to match the scale

of standard Temporal Modulation Transfer Functions (TMTFs)

for low and high spatial frequencies (left and right curves,

respectively; adapted with permission from Gorea & Tyler,

1986). The pair of red closed circles on each TMTF shows the

highest and lowest sensitivities within the frequency range

tested in the present experiments. Vertical bars in each panel

are 61 SE.
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Modeling

The Noise Experiment thresholds are useful for
disentangling two qualitatively different limitations in
performance. One type of limitation is inefficiency. An
inefficient observer may base his judgments on the
median size instead of the mean. Or, if there is a mode,
maybe he uses that. Or he may even calculate the mean
size, but not of all the circles. In other words, an
inefficient observer makes the wrong calculation.
Nonetheless, he makes that calculation perfectly. A
different kind of limitation is imprecision. The impre-
cise observer may indeed calculate the geometric mean
of all diameters, but—like virtually all measurements—
there will be some variability in his calculation; he
won’t get the same value every time. These different
types of limitation have different effects on the
‘‘hockey-stick’’ (Allard & Cavanagh, 2012) function
mapping log stimulus standard deviation to log
threshold (see Figure 5). Increasing imprecision raises
the left-hand branch. Increasing inefficiency always
elevates the right-hand branch. Its effect on the left-
hand portion depends on the source of imprecision.

The noisy, inefficient (but otherwise ideal)
observer model

In Solomon et al.’s (2011) parameterization of the
noisy, inefficient observer (NIO) model, sources of
imprecision are either ‘‘early’’ (i.e., independently
affecting each item in an ensemble) or nominally ‘‘late’’
(i.e., affecting the decision variable). When, as in these
experiments, the lapse rates are virtually zero, Solomon
et al.’s equation 4 implies that the size-discrimination
threshold can be modeled as

h ¼ exp U�1ð0:81Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

L þ
2ðr2

E þ r2
CÞ

M

r" #
� 1: ð1aÞ

For convenience, we used the following approxima-
tion.

h ’ U�1ð0:81Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

L þ
2ðr2

E þ r2
CÞ

M

r
: ð1bÞ

In the foregoing expressions, U�1 is the inverse
standard normal distribution, (0.81 was the conver-
gence point of the adaptive staircases), r2

C is the
parameter controlling stimulus variance, and r2

E; r
2
L and

M are free parameters. The first two are the variances
of the early and late noises, respectively, and M is the
effective maximum number of circles used by observers
to compute the mean of each array of Ns elements (M
� Ns). A random perturbation with variance r2

E is
added to the effective size of each item independently,
while a random perturbation with variance r2

L is added
to the difference between estimates of the sample mean
effective sizes. Note that segregating the cause of
imprecision into an early and late stage is somewhat
arbitrary. If, instead of late noise, we allow the random
perturbation added to the effective sizes of any two
elements to have correlation q, then we can reparame-
terize Equation 1b such that

h ’ U�1ð0:81Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2qðM� 1Þ

M
r2

E þ
2ðr2

E þ r2
CÞ

M

r
: ð1cÞ

For each observer and each duration, we simulta-
neously fit the NIO model to the data from two
conditions: 1:1 (not shown for better legibility) and 8:1
(dashed and solid curves in Figure 5 for 13- and 427-ms

Figure 4. Mean-size JNWF for condition 8:1 (squares; from

Figure 2A) together with the thresholds for condition 1:8

(circles; from Figure 3A) with the latter now plotted as a

function of the duration of half a cycle of the temporally

modulated stimuli (instead of their TF).

Figure 5. Mean-size discrimination thresholds (Noise Experi-

ment) for three observers (different symbols) as a function of

the spread parameter (expressed as a percentage of the mean)

in the log-normal distribution (whence the quotes for the

abscissa label) of circle diameters (condition 8:1) displayed for

13.3 and 427 ms (open and closed symbols, respectively).

Dashed (13 ms) and solid (427 ms) curves show Solomon et al.’s

(2011) NIO model (Equation 1b) when simultaneously fit to

these (8:1) data and to those from condition 1:1 (not shown).

The legend includes the best-fitting parameter values. Dotted

line shows the ideal observer (rE ¼ 0, rL ¼ 0, M ¼ 8).
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stimulus presentations). The fits minimized the root-
mean-squared (RMS) log error between the model’s
predictions and the measured thresholds. There were
three free parameters in each fit: r2

E; r
2
L, andM. In these

fits efficiency and precision were constrained to be
nondecreasing with exposure duration. Thus we
ensured M427ms � M13ms, r2

E;427ms � r2
E;13ms, and

r2
L;427ms � r2

L;13ms. Like Solomon et al. (2011) we, too,
found sizeable individual differences in efficiency, with
observer SB effectively using 5.9 circles in his calcula-
tions and observer HV effectively using just 3.7 (see
inset in Figure 5). Notably, however, the present data
suggest virtually zero effect of exposure duration on
efficiency (averageM¼5). On the other hand, exposure
duration does seem to affect all observers’ precision
(either early noise, late noise, or both).

The generalized NIO (gNIO) model

gNIO development

Time is not a variable in Solomon et al.’s (2011) NIO
model. However, if observers could accumulate evi-
dence during the course of a trial, it is conceivable that
efficiency and/or precision might increase with dura-
tion. We modelled evidence accumulation as the result
of series of independent, parallel measurements of circle
size. In the present generalization of the NIO, parallel
measurements of m circles in each hemifield occur
within a putative ‘‘attentional loop’’. Equation 1b can
be considered a special case (see below) of this gNIO:

h ¼ U�1ð0:81Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

L þ 2NCðr2
C; l;m;Ns;NtÞ þ 2NEðr2

e ; l;m;Ns;NtÞ
q

ð2Þ

where NCðr2
C; l;m;Ns;NtÞ and NEðr2

e ; l;m;Ns;NtÞ rep-
resent the (necessarily independent) contributions of
the stimulus and early noise to the variance of
estimated averages (i.e., one on each side of the
display), respectively. Note that when the symbol N has
a capital subscript, it denotes a variance (in squared
units of what Solomon et al., 2011, call ‘‘effective size’’);
when it has a lower-case subscript, it denotes a number
(i.e., of either elements or pairs of subarrays).

Each variance is as a function of: Ns, the number of
simultaneously visible elements within each of these
subarrays; Nt, the number of successively exposed
subarrays on each side of the display; l, the number of
times (a.k.a. ‘‘loops’’) an observer forms an indepen-
dent estimate using the same subarray; m, the
maximum effective sample size of each aforementioned
independent estimate. As with Solomon et al. (2011),
we consider a circle’s effective size to be proportional to
its diameter’s logarithm. The remaining two symbols in
Equation 2 are r2

e, which describes the variance of an
early noise that is added to the effective size of each
item independently on each loop, and r2

L, which

describes the variance of a late noise that is added to
the difference between estimates of sample mean
effective sizes. Note that in the gNIO model, responses
are based on the average of l · Nt independent
estimates. Each estimate is based on up to 2 · m circles
(m on the left plus m on the right). If fewer than 2 · m
circles appear during the loop, then that loop’s estimate
is based on the number of circles that did appear. It
doesn’t matter whether these elements are there for the
whole loop or not (the understanding being that, once
they exceed the detection threshold, their sizes are
instantaneously coded). Instead, the shorter the loop,
the higher the best-fitting r2

e will be. The derivation of
NC and NE is developed in Appendix 2.

gNIO fit

To fit our data with the generalized NIO (or
gNIO), we assumed that the number of loops (l) per
subarray would be proportional to the duration of
each subarray. Thus the full gNIO has four free
parameters: m, re, rL, and l13. The first three
parameters are defined in the preceding section. The
fourth parameter is the number of loops during the
shortest stimulus exposure (13.3 ms). The gNIO was
fit to the geometric mean thresholds from the three
observers (AG, HV, and SB) who participated in both
the Main Experiment and the Noise Experiment. (The
Main Experiment alone was insufficient to constrain
all four parameters.) Best-fitting parameter values
were: m ¼ 3.2, re ¼ 0.02, rL ¼ 0.10, and l13 ¼ 0.0625.
The RMS error between the model’s predictions and
34 datum points (18 from the Main Experiment,
omitting 8:8,4 plus 16 from the Noise Experiment)
was 0.05 log units. These fits and the corresponding
datum points are shown in Figure 6. Note that 0.0625
loops per 13.3 ms yields a loop duration of 213 ms,
i.e., about two loops for the present longest presen-
tation duration.

There are several notable features of the fit. For
example, there seem to be some cases in which human
observers outperform the ideal: Some empty green
circles (condition 1:1) fall below the dotted magenta
line in Figure 6a and one symbol (filled green circle)
falls below the dotted black line in Figure 6b. Since
better-than-ideal performance is impossible, the dis-
tances between these symbols and the ideal lines
provide some indication of the large measurement error
in these conditions. However, since these datum points
cannot be well-fit whatever the values of the models’
parameters, they could not have influenced the best-
fitting parameter values.

Perhaps the most salient feature of the fits is the
relatively large decrease in threshold as the duration of
half a temporal cycle (condition 1:8 in Figure 6a, empty
blue circles) increases beyond 0.027 s, i.e., for
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frequencies lower than 19 Hz. Given l13¼ 0.0625, this is
the point at which exactly one loop extends over the
eight cycles. Below this frequency the gNIO is able to
use more than m elements from each hemifield. At
0.068 s per half-cycle (7 Hz), the number of loops
during each cycle becomes 1/m and thus the gNIO is
able to use all the circles in its computations (see
Equation A5 and related text in Appendix 2). This
feature of the fits provides a strong constraint on the
duration of each loop, such that there is a well-defined
minimum in the function mapping parameter values to
the RMS error (Figure 7). It is partially supported by
the statistical analysis mentioned in Footnote 3, even
though no such significant difference is observed when
considering the data of all six observers (see Figure 4
and related analysis). This apparent discrepancy may
be accounted for by the fact that the goodness-of-fit
statistics (RMS) for our model fits decreases only
mildly for loops longer than 200 ms so that our loop-
duration estimate allows for some variability.

Regression weights

In experiments where observers had to discriminate
the mean-shape and mean-color of sets of 12 items
presented simultaneously, de Gardelle and Summerfield
(2011) derived the regression weights of the ranked
shapes and colors in each sample and found signifi-
cantly larger weights for items whose critical features
(shape or color) were closer to the mean feature of the
sample. They referred to such weighting as ‘‘robust’’ in
the sense that it minimizes the contribution of outliers.
However, an ideal observer gives equal weights to all
magnitudes of a sample of items provided that these
weights are applied to the effective magnitudes of the
attribute under consideration (e.g., luminance, con-
trast, size, shape, etc.). By effective we mean the
physical value transduced by the brain (frequently
referred to as the psychophysical function, i.e., the
function that expresses the relationship between the
physical magnitude of a stimulus and the magnitude of
the sensory response evoked by that stimulus; Fechner,
1858).

Once the physical magnitudes are transformed by the
psychophysical function, they should all count equally
in the observer’s computation. An analysis suggesting
unequal contributions of the presented magnitudes to
the computation of their mean (such as in de Gardelle
& Summerfield, 2011) implies that the magnitudes used
in the derivation of the corresponding weights were
obtained via an incorrect psychophysical function
(including constant or linear functions). Using a log
transformation of diameter and a logistic regression
analysis equivalent to that used by de Gardelle and
Summerfield (2011), we obtained size-rank weights (for
conditions 8:1 and 8:8) not significantly different from
constant. This suggests that our log transform is close
to the psychophysical function for size, but given the
large confidence intervals about all derived weights, we
cannot be certain this is the case. As the inference of the

Figure 6. Fits of the gNIO model to geometrically averaged

duration dependent thresholds for all three observers who

participated in both the Main Experiment (condition 8:8

excluded, panel a) and the Noise Experiment (panels b and c for

conditions 1:1 and 8:1, respectively). In panel a, empty green

circles and squares and empty blue circles represent the

measured thresholds for conditions 1:1, 8:1, and 1:8, respec-

tively. Dashed green, solid green, and dashed blue lines are

gNIO model fits to these data. The dotted magenta line

represents the ideal observer’s thresholds in the 1:1 condition

(ideal thresholds for 8:1 and 1:8 conditions are less than 10). In

panels b and c, open and solid symbols (data) and dashed and

solid curves (fits) represent thresholds for 13.3 ms and 427 ms

presentations, respectively, for conditions 1:1 (circles) and 8:1

(squares) with the dotted straight black lines showing the

performance of the ideal observer.

Figure 7. The gNIO’s goodness-of-fit to the data in Figure 6,

when the time of each loop (0.013s / l13) is fixed at values

between 0.02s and 2.00s. The overall best fit occurs when l13¼
0.0625.
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size-transducer was not one of the goals of this study,
we did not pursue this line of analysis.

More interesting is the weighting of the sizes as a
function of their temporal order in conditions 1:8 and
8:8. These temporal order weights were derived using a
logistic regression procedure (Ludwig, Gilchrist,
McSorley, & Baddeley, 2005; de Gardelle & Summer-
field, 2011) applied either to the difference between log
diameters (condition 1:8) or to the difference between
the average log diameters (condition 8:8) in the two
hemifields (Figure 8).

The temporal order coefficients displayed in Figure 8
show a general tendency to increase with their rank.
This tendency is statistically significant for both (1:8
and 8:8) regressions. Also, the first three coefficients for
condition 8:8 are not significantly different from 0
implying that the first three (out of eight) frames were
not considered in computing the average size. Overall
one may conclude that late frames in a temporal
sequence are more heavily weighted than early frames
(a recency effect; Ebbinghaus, 1913).

The recency effect

The recency effect revealed by the larger weights
given to late items in a temporal sequence is tanta-
mount to an imperfect memory, which can be modeled
as a leaky temporal integration (Ossmy, Moran,
Pfeffer, Tsetsos, Usher, & Donner, 2013; Usher &
McClelland, 2001). It is reasonable to assume that such
an increase in weighting over time should also occur
over successive attentional loops. This possibility was
not considered in the gNIO model where memory was
taken to be perfect, i.e., where the computation of
means over loops was leakless. One possible imple-
mentation of such leakage is in terms of a Markov-like
memory process where the previously estimated mean
and the current evidence are given different weights in
the computation of the current estimate. A tentative
modeling of the recency effect with such a Markov-like
process could not simultaneously account for the data
obtained with 1.2 and 37 Hz stimulus presentations

while keeping the duration of the attentional loop
constant. As a consequence it has not been incorpo-
rated in the gNIO model.

Discussion

The main results of the present study are as follows:
(a) The mean size of a set of eight items (circles) is
computed with a precision that increases by a factor of
about 1.3 (0.11 log-units) over a display duration range
spanning a factor of 32 (1.5 log-units; from 13.3 to
426.5 ms), translating into a slope (in a log-log space) of
�0.08 significantly different from 0 (p ¼ 0.04). (b) An
even shallower slope (�0.03), marginally different from
0 (p¼ 0.15), was observed for estimating the size of one
single item over the same duration range. (c) Increasing
the sample size from one to eight items increases size
discrimination sensitivity (one/threshold) by an average
factor of 1.4, while an ideal observer should have
increased it by a factor of

ffiffiffi
8
p
¼ 2.83. (d) Mean-size

discrimination sensitivities for one and eight items
repeatedly presented for eight temporal cycles drops
when their temporal frequency increases from 1.2 to
37.5 Hz (·32) by factors of at most ·1.2 and ·1.8 (for
one and eight items, respectively), much less than
expected from a linear integration process and pretty
much in line with Haberman, Harp, and Whitney’s
(2009) results for averaging sequentially presented
faces. (e) For these two sequentially distributed
conditions (one and eight items repeatedly presented),
mean-size discrimination sensitivities differ by an
average factor of about 1.15 (instead of

ffiffiffi
8
p
¼ 2.83 for

the ideal observer). (f) Finally, the present data show
that the integration of eight items over space or over
time (simultaneously and sequentially presented, re-
spectively) yields about identical mean-size discrimi-
nation thresholds. This comparison might not be fully
warranted. Contrary to the continuous presentation
(condition 8:1), in the sequential condition (1:8) the
actual duration of each flicker frame might have
included a remnant of which observers (who definitely

Figure 8. Temporal order regression weights derived from all 6 observers’ data for conditions 1:8 (A) and 8:8 (B). Open symbols

indicate coefficients not significantly different from 0 ( p , 0.05). Vertical bars show 95% confidence intervals.
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did not report it) might have taken advantage. On the
other hand, items on each but the last frame in a
sequence might have been masked by the items in the
following frame (even though not presented at the very
same locations). This being said, the fact remains that
under the present stimulating conditions observers
integrate information over space and over time with
about equal efficiency.

In short, our data show close to null mean-size
computation dependency on the temporal factors of the
stimuli presentation. In that, our data agree with all the
published studies including those having reported an
accuracy dependency on display duration (Chong &
Treisman, 2003; Whiting & Oriet, 2011) or on reaction
times (Robitaille & Harris, 2011). The apparent
incongruence between some of these reports and the
present data comes from these studies (a) not having
related the accuracy improvement with the range of
display durations (or of reaction times) and/or (b)
having assessed accuracy in terms of percent correct
rather than in threshold units (Robitaille & Harris,
2011; Whiting & Oriet, 2011) and/or (c) having used
rather intricate experimental designs some of which
included a backward mask without specifying the
visibility of the stimuli for the shortest displays
(Robitaille & Harris, 2011). The present data also
clearly show that observers use more than one item in a
sample of eight (whether simultaneously or sequentially
presented), as the discrimination thresholds are signif-
icantly lower for samples of eight items than for
samples of one item. (See also Piazza, Sweeny, Wessel,
Silver, & Whitney, 2013, for an equivalent conclusion
in an auditory summary statistics experiment.) Such
improvement is substantially less than it should have
been, had observers used all eight items with maximum
efficiency.

The data were analyzed in two different ways. We
first fit Solomon et al.’s (2011) ‘‘noisy, inefficient (but
otherwise ideal) observer’’ (NIO) model to three
observers’ discrimination thresholds, measured as a
function of the variability of the displayed elements, to
derive observers’ internal (early, rE, and late, rL) noise
and total efficiency, M. As this model does not include
a stimulus duration parameter, rE and M refer to the
noise and efficiency over the whole inspection period.
The fit of the NIO model did yield, as expected, a
smaller rE for the longest (427 ms) than for the shortest
(13 ms) stimulus duration (rE,13ms ¼ 0.10, rE,427ms ¼
0.047; averaged over observers) but also a small
unexpected rL drop over this same time span (from
0.11 to 0.08 when averaged over observers) even though
these drops were not systematic across observers. The
fits did show an effect of exposure duration on
efficiency, but only for one of the three observers (see
inset in Figure 5).

We developed a generalized version of the NIO
model (gNIO) to include a time factor conceptualized
as a time-limited attentional loop, with its associated
sample size m. During such a loop the early noise NE

decreases with time but the subsample m remains the
same, with a new m-subsample being drawn with
replacement on each new loop. When best-fit to the
data, the duration of each loop was 213 ms (i.e., ;5
Hz), with an effective sample size per loop (m) of 3.2
items. The gNIO model (Equation 2) fits best with 3 �
m � 4, definitely larger than 1 or 2 as suggested by
Myczek and Simon’s (2008) noiseless simulations. Of
particular interest is the inferred 5-Hz loop frequency
which is within the range of attentional sampling, as
inferred by a number of authors from similar (1–8 Hz;
Wyart, de Gardelle, Scholl, & Summerfield, 2012) and
entirely different experiments (4–10 Hz; e.g., Van-
Rullen, Carlson & Cavanagh, 2007; Busch & Van-
Rullen, 2010; Macdonald, Cavanagh, & VanRullen,
2014).

Previous research has demonstrated that contrast is
integrated linearly over time up to about 30 ms (Gorea
& Tyler, 1986). Our stimuli had highly suprathreshold
contrasts, and thus their visibility was presumably
independent of the display duration. Consequently, the
present results suggest that the size averaging operation
is time dependent because the system cannot take in all
the available information at once. Our modeling
suggests that information may be accumulated in
attentional loops, whose number increases as time goes
by. The increase of the information and the decrease in
noise with the number of loops are of statistical nature.
Together they yield only a very shallow increase in
sensitivity with stimulus exposure time: a factor of 1.3
for a 3,200% increase in presentation time. As a
system’s temporal integration behavior is directly
related (via its temporal impulse response) to its
temporal contrast sensitivity function (see Introduc-
tion), the latter should also be little dependent on the
temporal frequency of the stimulus presentation (as
presently observed).

This scenario is very much akin to Gorea and Tyler’s
(1986) account of the contrast integration process for
durations beyond linear integration and beyond the
temporal probability summation regime (Watson,
1979). According to Gorea and Tyler’s modeling (see
their equation 6 and their figure 4), the contrast
temporal impulse response constrains linear integration
(i.e., linear filtering) within a window of about 30–50
ms. Beyond that duration integration is nonlinear,
reflecting either probability summation (within a high-
threshold formulation) or a hard-wired nonlinearity (b
’ 4) followed by nonprobabilistic linear summation.
Gorea and Tyler’s model fitting showed that this
second-order integration regime is limited to durations
in-between 200 and 500 ms, similar to the presently
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inferred duration of one attentional loop. Sensitivity
(i.e., d

0
i ) is computed within each second-order window

(i), with the total, time-dependent sensitivity given by

the sensitivity summation rule, d
0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1ðd

0
i Þ

2
q

(Green &
Swets, 1966). Beyond the second-order integration
regime sensitivity improves with duration with a log-log
slope of �1/2b ¼�0.125 (see equation 10 in Gorea &
Tyler, 1986), not so far from the presently observed
slope of �0.08. The favorable comparison of the
present modeling parameters with those of Gorea and
Tyler’s linear systems approach strongly suggests that
humans’ temporal integration behavior for higher-level
visual tasks (such as the extraction of summary
statistics) can be reasonably described within the
framework of the linear systems theory.

Following a number of recent studies (Ludwig et al.,
2005; de Gardelle & Summerfield, 2011; Wyart et al.,
2012; Brunton et al., 2013), we also examined the
weights given by the averaging process to the different
sizes in a sample, and to the different temporal
positions of sequentially presented items. A logistic
regression analysis revealed insignificantly different
size-rank weights but a statistically significant tendency
to more weighting the later three frames in a sequence
of eight. The apparent discrepancy between the robust
averaging in de Gardelle and Summerfield’s (2011)
study for shape and color and the present more or less
equal weighting for size could be due to the different
transducers subserving the different perceptual dimen-
sions. As the psychophysical function is definitely
unknown for the shape and color dimensions and as it
remains debatable for the size dimension (see Teght-
soonian, 1965; see also Footnote 1) the comparison
between our inferred size weights and the inferred
weights by in de Gardelle and Summerfield (2011) for
shape and color is pointless.

The presently observed recency effect (also docu-
mented in Tsetsos, Chater, & Usher, 2012) is at odds
with the nonmonotonic weighting over time found for
40-Hz sequential presentations of luminance blobs in
an average luminance discrimination task (Ludwig et
al., 2005). It is also different from the constant
temporal weighting derived for trains of randomly
timed light pulses (4.5 Hz) and auditory clicks (20, 40
Hz) in a counting discrimination task (Brunton et al.,
2013), and for an orientation averaging task with
stimuli delivered at 4 Hz (Wyart et al., 2012). Critical
differences across these four studies (type of stimuli—
e.g., masked vs. not masked—and their temporal
characteristics, magnitude of the samples and their
variance, task type, and modeling approach) may well
account for such discrepancies (see Tsetsos et al.,
2012; Ossmy et al., 2013). Be it as it may, a tentative
modeling of the present recency effect as a Markovian
process could not simultaneously account for the data
obtained with 1.2- and 37-Hz stimulus presentations

while keeping the duration of an attentional loop
constant. Integrating other available recency effect
models (such as those pertaining to limitations of
short term memory, to temporal distinctiveness, or to
contextual variability; see for a review Howard &
Kahana, 2002) within our gNIO is a task for the
future.

Conclusion

The present experiments and modeling within the
framework of linear systems theory suggest that in a
mean-size discrimination task observers compute the
mean size by effectively subsampling about four items
at a time out of the total number of items presented and
repeat such subsampling with replacement at a
frequency of about 5 Hz for as long as the stimulus is
present. This process yields a very small performance
improvement over time. Applying linear system theory
to higher level visual processes appears to be a
modeling approach not less valid than the drift
diffusion modeling approach.

Keywords: visual size discrimination, spatio-temporal
integration, efficiency, linear systems theory, attentional
loops
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Footnotes

1Weber’s Law for diameter (Solomon et al., 2011)
allows us to be confident that the visual system
effectively perturbs logarithmically transduced circle
diameters (or areas, or any arbitrary power function of
circle diameters) with independent, identically distrib-
uted samples of noise when observers attempt to
discriminate sizes. We recognize that equivalent noise

Journal of Vision (2014) 14(9):22, 1–14 Gorea, Belkoura, & Solomon 10

Downloaded From: http://jov.arvojournals.org/pdfaccess.ashx?url=/data/Journals/JOV/933550/ on 09/26/2016



models (e.g., the Noisy Inefficient Observer [NIO] and
generalized NIO [gNIO]) –see the corresponding
sections in the paper– are difficult to reconcile with the
magnitude estimation (Teghtsoonian, 1965; Chong &
Treisman, 2003), because the latter suggest expansive
transduction of circle diameters. Therefore, we have
decided to reserve further attempts to reconcile
magnitude estimation with discriminability for future
discussion.

2For the three observers who also completed the
Noise Experiment (which constrained fits of the gNIO,
see below), the slopes of the linear regressions (in log-
log coordinates) for conditions 1:1 and 8:1 are,
respectively,�0.022 and �0.043, neither of which is
significantly different from 0.

3For the three observers who also completed the
Noise Experiment (which constrained fits of the gNIO,
see below), ANOVA suggests a marginally significant
difference, F(1, 35) ¼ 2.83, p ¼ 0.105.

4As described in Appendix 2 (see Equations A11 and
A12), Monte Carlo simulations were required to
estimate the contribution of stimulus noise to discrim-
ination. We tried all combinations of m (up to 8) and l
(up to 8) for the condition 8:1, in which the
aforementioned contribution would be constant when-
ever there were fewer than one loop per subarray (i.e., l
, 1). Simulations are much more complicated for
condition 8:8, because the aforementioned contribution
is no longer constant when, as our data with short
displays and high temporal frequencies suggest, there
are fewer than one loop per subarray.
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Appendix 1:

Main symbols and notations used in the text

d 0 Signal Detection Theory index of sensitivity
l Number of times (a.k.a. ‘‘loops’’) an observer

forms an independent estimate using the same
subarray

M Maximum effective sample size per subarray in
the NIO

m Maximum effective sample size per subarray per
loop in the gNIO

NC Contribution of stimulus noise to the variance of
estimated averages in the gNIO

NE Contribution of early noise to the variance of
estimated averages in the gNIO

b Shape parameter of the Weibull distribution; a
measure of psychometric slope

re Standard deviation of an early noise that is
added to the effective size of each item
independently on each loop in the gNIO
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Ns Number of simultaneously visible circles within
each subarray

Nt Number of successively exposed subarrays on
each side of the display

h Mean-size discrimination threshold
q Correlation between two samples of early noise

in the NIO
rC Standard deviation of stimulus sizes (i.e., log

diameters)
rE Standard deviation of early noise in the NIO
rL Standard deviation of late noise in the NIO and

gNIO
U�1 Inverse standard normal distribution function
NB: Conditions 1:1, 1:8, 8:1, and 8:8 all have the

form Ns:Nt.

Appendix 2:

The generalized NIO

The generalized NIO (gNIO) model is described by
Equation 2 in the main text. It includes four free
parameters, r2

L (the variance of a late noise added to
the difference between estimates of sample mean
effective sizes), r2

e (the variance of an early noise
added to the effective size of each item independently
on each loop), l (the number of times or ‘‘loops’’ an
observer forms an independent estimate of the mean
size using the same subarray), and m (the maximum
effective sample size of each such independent
estimate). In the present experiments both Ns and Nt

were either 1 or 8, hence yielding four spatio-
temporal combinations 1:1, 8:1, 1:8, and 8:8. These
are the last two digits appearing between parentheses
in the left side expressions of the equations below.
Since m is the maximum effective sample size on each
side of the display, it cannot exceed the total number
of elements that appear on each side during a single
loop. Thus, when there is at least one loop per
subarray, l � 1 ) m � Ns. However, when there is
less than one loop per subarray, m can be larger than
Ns. In the limit, when all subarrays are exposed within
the same loop, m is bound by the total number of
elements on each side of the array, l � 1/Nt ) m �
NsNt. Furthermore, we adopt the ‘‘reasonable’’
(Allard & Cavanagh, 2012) assumption that all
estimates are based on at least one element, i.e., m �
1. Consequently,

NCðr2
C; 1; 1; 1; 1Þ ¼ r2

C ðA1Þ
and

NEðr2
e; 1; 1; 1; 1Þ ¼ r2

e ðA2Þ

Given perfect integration (i.e., perfect memory) of l
independent estimates:

NCðr2
C; l; 1; 1; 1Þ ¼ r2

C ðA3Þ
and

NEðr2
e; l; 1; 1; 1Þ ¼

r2
e

l
ðA4Þ

In the expression above, r2
e gets divided by l in

Equation A4 because the correlation between succes-
sive samples of early noise is 0, but r2

C does not get
divided by l in Equation A3 because the correlation
between successive estimates of the same sample of
stimulus noise is 1.

For arrays having eight successively displayed
elements (i.e., one at a time), the observer will pick up
m of the total available elements on each side during
each loop. (This number will be zero on half the total
number of loops because elements were presented
with a duty cycle of 1/2.) When there is at least one
loop per exposure (i.e., l � 1), the observer will pick
up all eight elements in the array. When all eight
exposures occur within the same loop, the observer
will only get a total of m on each side. Thus, in
general, we have:

NCðr2
C; l;m; 1; 8Þ ¼

r2
C

max m; 8min 1; lmf gf g ðA5Þ

and

NEðr2
e; l;m; 1; 8Þ ¼

r2
e

8lm
ðA6Þ

For arrays having eight simultaneously displayed
elements, after one estimate (i.e., one loop) we have:

NCðr2
C; 1;m; 8; 1Þ ¼

r2
C

m
ðA7Þ

and

NEðr2
e; 1;m; 8; 1Þ ¼

r2
e

m
ðA8Þ

Given l estimates, we have

NEðr2
e; l;m; 8; 1Þ ¼

r2
e

lm
ðA9Þ

but the expression for NCðr2
C; l;m; 8; 1Þ becomes

rather complex because the correlation between
successive estimates (with efficiency m/8 , 1) of the
same sample is neither 0 nor 1, but something in
between, which depends on l and m.

We evaluated NCð1; l;m; 8; 1Þ for all combinations of
l � 8 and m � 8 using a Monte Carlo simulation. The
two-parameter exponential
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NCð1; l;m; 8; 1Þ ¼
1

8
1þ 7e�0:490ðl�1Þ�0:793ðm�1Þ
h i

ðA10Þ
was found to produce an excellent fit (R2¼ 0.983) to
these 8 · 8¼ 64 values. Consequently,

NCðr2
C; l;m; 8; 1Þ ¼

r2
C

8
1þ 7e�0:490ðmax 1;lf g�1Þ�0:793ðm�1Þ
h i

ðA11Þ
should be a fairly close approximation, even for
noninteger values of l and m.

For arrays having eight successively displayed
subarrays of eight elements each, the observer will pick

up m of the total available elements on each side during
each loop. When there is at least one loop per exposure,
the contribution of stimulus noise to the variance of
estimated averages will be one-eighth of what it was
when only one subarray was exposed, i.e.

l � 1) NCðr2
C; l;m; 8; 8Þ ¼

1

8
NCðr2

C; l;m; 8; 1Þ

ðA12Þ

When multiple exposures occur within the same
loop, the foregoing simulation (which was based on
only eight available elements in each loop) is no longer
relevant.
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