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Abstract

Performing typical network tasks such as node scanning and path tracing can be difficult in large and
dense graphs. To alleviate this problem we use eye-tracking as an interactive input to detect tasks that
users intend to perform and then produce unobtrusive visual changes that support these tasks. First, we
introduce a novel fovea based filtering that dims out edges with endpoints far removed from a users view
focus. Second, we highlight edges that are being traced at any given moment or have been the focus of
recent attention. Third, we track recently viewed nodes and increase the saliency of their neighborhoods.
All visual responses are unobtrusive and easily ignored to avoid unintentional distraction and to account
for the imprecise and low-resolution nature of eye-tracking. We also introduce a novel gaze-correction
approach that relies on knowledge about the network layout to reduce eye-tracking error. Finally, we
present results from a controlled user study showing that our methods led to a statistically significant
accuracy improvement in one of two network tasks and that our gaze-correction algorithm enables

more accurate eye-tracking interaction.

Keywords: Eye tracking, gaze contingent graph vi-
sualization.

1. Introduction

Network analysis plays an important part in do-
mains such as neuroscience [BS09], genomics and pro-
teomics [CCNSO08], transportation [KTO06], software
engineering [GNOO], social sciences [BMBLO09], or in-
telligence analysis [CGMO04]. Interaction is instrumen-
tal in allowing users to weed through the scale, com-
plexity, and clutter inherent to visualizations of real-
life networks. Here we explore the use of eye track-
ing as an interactive input to detect users’ intentions
and support them by slight changes in the visualiza-
tion. The use of eye tracking as an input has been ex-
plored in the human computer interaction (HCI) com-
munity [Duc02], but it has not yet been explored in
the area of network visualization.

Specifically, we introduce three types of interac-
tions. First, we reduce clutter by using a novel fovea-
based filtering that dims edges that pass through the
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user’s view focus but have their endpoints far outside
of the user’s fovea. Second, we increase the saliency
of edges as they are visually traced by the user at
any given moment or have been the focus of frequent
recent tracings. Third, we keep track of nodes that
were recently viewed and increase the salience of their
neighborhood. All visual responses are gradual, incre-
mental rather than binary, and visually subtle.

Thus, by design, our interactions are gaze-
contingent [Duc02]. This means gaze coordinates are
used to infer users’ task intentions and the visualiza-
tion is changed to support these tasks as unobtrusively
as possible to minimize distraction and account for
errors of interpretation. This approach also relates to
attentive interfaces [Duc02,Sel04] and multimodal in-
terfaces [Ovi03] but contrasts with early HCI efforts to
use eye-tracking in ways analogue to manual pointing
and clicking. Merely connecting eye-tracking input to
otherwise conventional network interactions is limited
due to the particularities of eye-movements and eye-
tracking technology. Specifically, as noted by [ZMI99],
the eyes are not a control organ, eye-tracking input is
generally low resolution and inaccurate, and the ab-
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sence of a trigger analogue to a mouse click is difficult
to compensate [Jac90].

An additional contribution of our work is a gaze-
correction algorithm that uses knowledge of the visu-
alization layout to reduce eye-tracking error. Faulty
or insufficient calibration sometimes leads to local-
ized screen regions in which gaze-coordinates are offset
from the users true viewing point. Our algorithm relies
on the known visual positioning of nodes on the screen
to detect which nodes users are likely to be looking at.

In a controlled within-subject user study with
twelve participants, we evaluated the performance of
our gaze-enabled network visualization. We asked par-
ticipants to perform two types of tasks: (i) identify
whether there is a direct connection between two
nodes; and (ii) identify the shortest path between two
nodes. In a third task designed to evaluate the ef-
ficiency of our gaze correction algorithm, users were
asked to select as many nodes as possible in a given
time interval by looking at them, with and without
gaze correction. Our results were statistically signif-
icant (p = 0.02) and showed a 30% improvement in
the direct connection task, were not significant in the
path task, and showed a significant (p = 0.01) 25%
improvement in the node selection task.

2. Related Work

The fovea, a small area in the center of the retina,
is responsible for our high resolution vision. The rest
of our field of view is low resolution and defined as
peripheral. The illusion of complete high definition
vision is created by an unconscious scanning pro-
cess: the fovea performs quick translations, called sac-
cades, during which vision is temporarily blinded, be-
tween short moments of focus, called fixations. Eye-
tracking technology allows us to locate users’ points
of gaze [WMS7, Jac91].

Most often, gaze tracing is used for data collec-
tion in offline, post hoc analyses of human visual per-
ception [Duc07]. Examples of eye-tracking facilitated
analyses span a broad range of domains including cog-
nitive science, psychology, education, marketing, and
interface design. In data visualization, eye-tracking
has traditionally been used in post hoc analyses of
visualization perception and interpretation. For exam-
ple, Huang et al. [HEHO8] or Pohl et al. [PSD09] use
eye-tracking in the context of understanding network
visualization use.

The appeal of the eye’s speed led human com-
puter interaction researchers to also explore gaze as
an actuatory input in ways analogue to manual in-
put (e.g. mouse). This approach has met with lim-
ited success due to several reasons. First, while very

fast, gaze-input comes with disadvantages such as
low accuracy, jitter, drift, offsets, and calibration
needs [Duc07, JK03, TJ00, KPWO07]. Second, finding
a gaze equivalent of a trigger command is not triv-
ial and leads to the Midas touch phenomenon - the
inability of the interface to reliably distinguish be-
tween looking and controlling [Jac91]. Ultimately, the
duration of a fixation, or dwell time, has been es-
tablished as the most effective way to trigger com-
mands [WMB87, Jac91]. However, low dwell thresholds
amplify the Midas touch problem by triggering com-
mands inadvertently, while high dwell thresholds offset
the speed advantage of gaze input.

The current consensus is that eyes are not control
organs and should not be treated as such [ZMI99]. In-
stead, Jacob proposed that interfaces should use gaze
as an indicator of user intention and should react with
gradual, unobtrusive changes [Jac91,JKO03]. This view
is formalized within the concept of attentive inter-
faces [ADS05, Ver02,VSCMO06,VS08, HMR05, RHN*03]
which“(a) monitor user behavior, (b) model user
goals and interests, (c) anticipate user needs, (d) pro-
vide users with information, and (e) interact with
users” [MMC*00]. The research described here aligns
with this paradigm and also drew inspiration from
work in gaze-contingent rendering [OHM*04, DC07,
HDOO3], where scenes are drawn in high resolution
in foveated screen areas and with lower quality in re-
gions outside of the user’s focus.

To the best of our knowledge, in visualization in gen-
eral and network visualization in particular, eye track-
ing has only been used in a diagnostic role. Given the
unavoidable connection between eyes and data visual-
ization, the fact that people’s gazes are linked to tasks
they are performing [YR67], and that eye-tracking is
on its way to becoming a component of regular work
stations [Duc07, JK03, LBP06], we hypothesize that
visualization research can benefit from exploring use
of eye-tracking as an input channel. The results pre-
sented here demonstrate this approach and introduce
concrete techniques and algorithms.

3. Implementation

To develop a gaze responsive network visualization, we
focused our methods on two issues: improving gaze ac-
curacy and providing interactive visual responses. The
interactive responses are: (i)a novel fovea based filter-
ing that dims out edges with endpoints far removed
from a user’s view focus; (ii) highlighting edges that
are being traced at any given moment or have been the
focus of recent attention; (iii) tracking recently viewed
nodes and increasing the saliency of their neighbor-
hoods. We detail these techniques in the following sec-
tions.
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3.1. Gaze-correction

Due to poor or insufficient calibration offsets, reported
eye-tracking coordinates are sometimes slightly offset
from true gaze positions in some screen areas. We hy-
pothesized we can alleviate this problem by leveraging
the known network layout, and on the assumptions
that users rarely stare at blank screen space and that
long fixations correspond to node fixations. Concep-
tually, we matched offset-vectors between subsequent
long fixations (200-300ms) to offset-vectors between
nodes lying close to these fixations (Fig. 1) to iden-
tify offsets between reported coordinates and nodes
that were likely the target of the users attention. We
aggregate these offsets over time, gradually construct-
ing and adjusting an offset map over the screen space.
This offset map is then used to correct all incoming
gaze coordinates. In (Fig. 2), we show a depiction of a
gaze correction. The magnitude of vectors in the offset
map is displayed as a red heatmap, while the centers
of the blue and red circles represent corrected gaze
and raw gaze respectively.

Concretely, our implementation works as follows.
We maintain a list of the last three fixations, as they
are delivered by the eye-tracker API. Whenever this
list changes we do the following. For each of the three
fixations we find the closest three network nodes and
we construct nine possible combinations. For each
combination we compute a score that averages two
components: proximity of the gazes to their corre-
sponding nodes; and differences between vectors con-
structed between three pairs of gaze points and the
three pairs of corresponding nodes. We then choose the
best scored configuration, and if it is below a thresh-
old, we consider that the current three fixations match
those three nodes. This allows us to compute offsets
between reported fixation coordinates and likely true
coordinates.

Finally, we integrate the currently computed offset
into the existing offset map. This map is essentially a
partitioning of the screen space into cells of 10x10 pix-
els, where each cell contains a two-dimensional vector
representing the offset that should be applied to any
subsequent gaze landing in that cell. To integrate an
offset vector into the map we combine (e.g., weighted
average) the current offset vector with the vector cur-
rently stored in the map. We also do this for cells
neighboring that where the gaze landed, albeit with
a decreasing contribution into the current score (e.g.,
less weight), depending on how far removed the neigh-
boring cell is from the reported or center cell.

Correction happens in screen space rather than vi-
sualization space and as such the computed offset map
is bounded in size. This means it can be computed rel-
atively quickly and then adjusted on the fly as users
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Figure 1: Correcting the gaze input: Even though fiz-
ations gi,g2,g93 are not exactly over graph vertices
v1,v2,v3 their relative position matches that of the
prozimal graph vertices. We therefore conclude that
g1, g2, g3 were fixations on the graph vertices v1,va, v3.

Figure 2: Gaze correction in our system. The blue
circle represents the corrected gaze while the red one
matches the raw gaze sample. Red indicates regions
with high offsets.

interact with the visualization and viewing conditions
change.

We note that in a sense this approach is similar to
work by Salvucci et al. [Sal99,SA00] who use Markov
and Bayesian models to predict gaze targets based on
probable behavior, to that of MacKenzie and Zhang
[MZ08] who use letter and word prediction to improve
their eye-typing system, and finally to work interpret-
ing fixations as part of gaze gestures [DS07, DDLS07].

3.2. Gaze-enabled network interactions

We implemented three types of interactions. The next
three sub-sections describe a series of node and edge
scores that are computed from gaze data. The fourth
sub-section describes how these scores are combined
and used during rendering to create visual responses.
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The last sub-section discusses a few implementation
details that apply to all interactions.

3.2.1. Gaze-enabled filtering

Figure 3: Foveated edge filtering.

Gaze-enabled edge filtering aims to dim edges that
pass through the user’s fovea but have both endpoints
far removed from it. To achieve this, given a current
gaze point, we compute filtering scores (Sef) for all
edges according to the diagram in Figure 3 and using
Formula 1. Specifically, we use two circles centered at
the user’s focus point to create a gradual transition be-
tween areas in which the filtering is applied (foveated
region, inner circle) and where it is not (peripheral
region, outside the outer circle). Current edge scores
are combined with previous scores to ensure gradual
changes in this measure. Finally, S. f is combined with
other saliency measures and used to render edges , as
will be described in section 3.2.4.

Sar = f(pd) + (1 — f(pd)) x min(1, Ri)
2
pd — Ry (™)
where f(pd) =1— B Ry

3.2.2. Detecting viewed edges

We also aim to detect edges that are viewed as users
are tracing them and increase their saliency. To this
end we compute edge viewing scores (Scv) for all
edges.

We first divide edges into segments of equal lengths.
A score is maintained for segment endpoints to indi-
cate whether recent gazes landed nearby. Each gaze
sample landing close to an edge segment endpoint will
increase the endpoint’s score by a factor inversely pro-
portional to the distance between the gaze and the
endpoint. At the same time all scores are gradually
decreased each time a new gaze is processed.

These segment endpoint scores are combined into

a total edge score as follows. A bar is extended in
both directions of an endpoint with non-zero score
(Figure 4). The bar’s length is directly proportional
with the magnitude of the score. All bar lengths of an
edge are then added together, divided by a constant,
in our case 500, and capped to 1. This step ensures
edge scores between 0 and 1 and gives preference to
edges close to or longer than 500 pixels.

Figure 4: Computing edge score segment bars.

An improvement was introduced to account for a
behavior observed during testing. People seemed to
require shorter fixations and longer saccades when
tracing edges that were fairly isolated or travelling
through empty space, but required longer fixations
with shorter saccades between them when tracing
edges in dense areas. To account for this, we compute
a density score for each segment endpoint by adding
up the number of other endpoints that lie within a
certain distance from it. We use this density score to
extend longer bars from low density endpoints and
shorter bars from high density endpoints. This ensures
that we easily detect views of isolated edges yet at the
same time reduce false positives in dense areas where
two random fixations could easily match an edge.

Two types of edge viewing scores are computed us-
ing this methodology. The first is a short-term score
(Sev) that captures edges that are currently viewed.
This score can change between its minimum and max-
imum values within a few hundred milliseconds. The
second is a long-term score (S,v) that captures edges
of interest, those that have been viewed repeatedly in
the last several seconds. We use the first score to in-
crease or decrease the value of the second score by a
constant that depends on the desired life-span of the
second score.

3.2.3. Detecting sub-networks of interest

Highlighting sub-networks of interest aims to make
node neighborhoods that are of current interest more
salient. To achieve this we first compute an interest
score for each node in a way analogue to edge seg-
ment endpoint scores: if a user’s gaze lingers close to
a node, its score will be increased by a factor inversely
proportional to the distance between the gaze and the
node. As in the case of edges, we decay all node scores
each time a new gaze is processed.

Once node scores are computed we diffuse them
across their neighborhoods. For example, for a current
gaze fixation g, the closest m vertices {vi,v2,...,vm}
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Figure 5: Highlighting of a viewed edge.

get a particular score s. The next level of adjacent ver-
tices {vi,, Vig, ..., i, } for each v; € {v1,v2,...,0m}
gets a score of s/f where f is a dividing factor. We
continue this diffusion process until vertices in level n
receive score ——t < t where ¢ is a threshold. In our
implementation we have kept m = 3 and f = 4. Simi-
larly to edges scores, we keep two scores for each node,
a short term score S, computed as described above
and a long term score S, that is computed from S, .

Figure 6: Highlighting a sub-network of interest.

3.2.4. Rendering

We described several types of scores computed for
nodes and edges. Upon rendering we combine these
scores and link them to visual properties such as color
and alpha blending. In our implementation we have
used the mapping described below. However, we note
that other mappings can be explored as long as they
are gradual and unobtrusive.

When drawing nodes, the previously described node
scores Sv and S’v are factored into the node’s color
and opacity. To compute node color we used formula
2 while for opacity we used formula 3. The four con-
stants determine the base color for unviewed nodes,
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the saliency for viewed nodes, and weight of each score
into the visual response. The values chosen in our
evaluated implementation, given color components be-
tween 0 and 255, were C1 = 50,C2 = 30, C3 = 90,
C'4 =120.

Red(v) = C1+ 8, xCy+ S; x O3

Green(v) = (& (2)
Blue(v) = Ch
Alpha, = C; + S, x C2 + S, x C4 (3)

Similarly, when drawing edges we also varied opac-
ity and the red color component to highlight interest-
ing edges, as shown in formulas 4, 5, 6. Moreover,
we rendered edges in two layers: a short-term layer
that highlights edges currently viewed and a long-term
layer to highlight edges that have been of interest in
the last several seconds or more.

Red(u, v) =C5 4+ Cs X Sey
+ C7 X ch,long

S, + S,
+C8><7(“;r ») (4)
Green(u,v) =Cj5

Blue(u, v) =Cs

Alpha(u, v) =Set X (Cog 4+ C10 X Sev)

5
+Cll><(lfsef)><sev ( )

Alpha’ (11, v) =St x (Chz x Sty + Cis X (5“7;5“))

+ Cra x (1 — Ser)

x (Chr2 X Sev + Chs X M

)
(6)

In the color computation, C5 indicates the base
component of edges (125 in our implementation). C6,
C'7, and C8 represent the weights given to the three
scores they precede. The sum of C'5 through C8 should
be lower than or equal to 1.

Blending edge filtering with edge interest scores is
not trivial. If edge filtering scores are simply multi-
plied to the interest scores, then a user tracing a long
edge may find that the edge disappears while his gaze
reaches the edge mid-point. Thus, viewed edges should
be “exempt” from filtering. To achieve this, the com-
puted alpha values combine two components: what
happens when edges are not filtered (the first term
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in the summation) and what happens when they are
filtered (the second term in the summation). Thus, for
short term alphas (Alpha), in the case of non-filtered
edges we combine a base component (C9) with a com-
ponent determined by ( Sev,short) (C9 + C10 <= 1).
The long-term alpha (Alpha’) does not have a base
component and thus this layer is invisible for edges
that are not of interest. C12 and C'13 are weights of
the two scores they precede (C12 + C13 <= 1). Fi-
nally, C11 and C'14 indicate the visibility of edges that
should be filtered out but are currently viewed.

3.3. Implementation Notes

Our gaze correction implementation relies on fixa-
tions provided by the eye-tracking API. These fix-
ations are computed by the API from a stream of
gaze-samples acquired at a frequency of 120Hz. As
such, they represent a discretization of the actual data
stream. Conversely, the gaze interactions described in
section 3.2 work directly with individual gaze samples.
These small but frequent bits of information are ag-
gregated over different time scales to indicate whether
nodes and edges are being viewed. The advantage of
this continuous approach over using discrete fixations
is that responses can be gradual rather than binary,
that errors are smaller and less noticeable, and that
visual responses can be produced while a fixation is in
progress.

All distance thresholds involved in gaze-based inter-
actions should be defined in screen space. Whenever
computations are done in visualization space, these
thresholds need to be adjusted by the zoom level. For
instance, the 500 pixel normalization threshold men-
tioned in section 3.2.2 refers to lengths on the screen
rather than lengths in visualization space and con-
versions should be applied whenever necessary. Thus,
since bar lengths are computed in model space we
lower the 500 pixel threshold by a factor proportional
to the zoom level.

4. Evaluation
4.1. Study design

We performed a within-subjects user study to evaluate
our gaze-enabled network visualization (eye-tracking
condition) against the same visualization without
gaze interaction (control condition). The dataset used
for the study was a book recommendation network
dataset. The network had approximately 900 nodes
and 2500 edges and had been drawn using the neato
algorithm [?]. The eye-tracker used in the study was a
RED120HZ from Sensory Motor Instruments (SMI).

We recruited 12 participants, 9 male and 3 female,

most of which were graduate students in our depart-
ment. Their ages ranged between 24 and 30 years.
None of the participants reported vision deficiencies
or color blindness. Reimbursement was set at $10 with
an additional $5 awarded to the user with the best ag-
gregated accuracy over all tasks and conditions. The
study lasted approximately one hour.

The study was designed to test the potential of gaze
interactions to improve network tasks and to demon-
strate the effectiveness of the gaze correction algo-
rithm. For the first goal we tested two network tasks:
determining the existence of direct connections (task
1) and finding shortest paths (task 2) between pairs
of highlighted nodes, in the two conditions.

Instances of task 1 were limited at 3 seconds after
which the screen faded out. Users would advance to
the next question by pressing Y or N to answer the
current question. We showed 175 instances of task 1,
the same ones in both conditions. Uers were not al-
lowed to use the mouse.

Instances of task 2 were limited at 35 seconds and
generally involved paths of length three or four. To
provide their answers, users had to click on the nodes
forming the path. Within the last five seconds of the
total 35, the screen faded slightly indicating to users
that time draws to an end and they should provide the
answer. We showed 20 such questions, the same ones
in both conditions. In this task users were allowed to
pan but not zoom.

Users performed both tasks in one condition before
solving them again in the other condition. To reduce
learning effects, half of the participants started the
study in the eye-tracking condition while the other
half started with the control condition. A three minute
break was introduced between the two conditions.

In a second stage we tested the effectiveness of the
gaze-correction algorithm. With eye-tracking support
enabled, users were shown a view of the graph in which
a quarter of the nodes ( 225) were un-selected (gray)
while all others were selected (red). They were then
asked to select as many unselected nodes as possible
in a two minute period by looking at them. They were
allowed two minutes with gaze correction active and
two minutes with gaze correction inactive. These two
conditions were again alternated to minimize learning
effects. In this task users could pan but not zoom.

The actual study was preceded by a training ses-
sion. First, subjects were familiarized with the con-
cepts of node-link diagrams and the tasks they were
going to complete. They were then shown the visual-
ization, several instances of tasks, and were instructed
on how to advance through the study. For the first two
tasks they were shown correct answers. Users were also
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explained and shown how the gaze-enabled visualiza-
tion reacts to their view.

Finally, at the end of the study subjects completed
a short questionnaire indicating their preference be-
tween eye-tracking and conventional visualization, a
1 — 5 rating of the appeal and usefulness of eye-
tracking, and a 1 — 5 indicator of whether the visual
responses were obtrusive or not.

4.2. Results

Table 1 and Figure 8 list and summarize the quan-
titative results of our user study. We analyzed the
data using a paired t-test and found statistically sig-
nificant accuracy improvements in task 1 of approxi-
mately 30% and in task 3 of approximately 25%. No
difference was found for task 2. The full results are
listed below:

task 1: t(11) = 26719, p = 0.02172, mean-
difference= 12.5, effect size (Cohen’s d) = 0.7713;
task 2: t(11) = 0.745, p = 0.4719, mean-difference=
0.5833, effect size (Cohen’s d) = 0.2151;

task 3: t(11) = 3.1017, p = 0.01007, mean-
difference= 14.17, effect size (Cohen’s d) = 0.8954.

In terms of qualitative assessment, all users ex-
pressed a preference for the eye-tracking enabled sys-
tem, all of them rated it as helpful or very helpful, and
most of them rated it as appealing or very appealing.
These results are summarized in Figure 8. While not
listed, none of the users found eye-tracking to be ob-
trusive.

We believe several reasons contributed to the lack
of meaningful results for task 2. First of all, the high
error rate (more than 50%) indicates that the task was
difficult to complete within the allotted time. This
is likely to have introduced significant variability in
the results and made them highly depend on chance.
Second, while striving to minimize obtrusiveness we
may have reduced the visual effect to the point that
it was no longer helpful. Finally, the technique itself
works better in some case than others. For example,
in highly connected networks, entire regions light up
around viewed nodes, thereby rendering any highlight-
ing advantage void. Additional research is required to
improve this type of interaction.

An important result is that gaze correction was
shown to be working. However, the magnitude of the
improvement is dependent on factors such as eye-
tracking calibration, lighting, or user particularities.
In ideal settings, when eye-tracking works well, the
correction effect would be negligible, such as in the
case of users 5 and 7. In poor conditions the effect can
be significant. For example, just two users performed
better on task 1 in the control condition, users 2 and 8.
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Those users also happen to have two of the most sig-
nificant improvements in task 3, suggesting that the
eye-tracking was not functioning properly. Conversely,
users that show only mild improvements in task 3 gen-
erally showed significant improvements in task 1.

5. Discussion

Data visualization provides an ideal application area
for eye-tracking enabled interactions because of the in-
herent interplays between eyes and visualization and
between people’s gazes and tasks they are perform-
ing [YR67]. Current visualizations can be thought of
as complete views that support many possible visual
queries and tasks at the same time without specifically
tending to any one of them. By interpreting users’ in-
tentions from eye-tracking data, we can reduce per-
ceptual overload and fit visualizations to user’s tasks
and intentions, we reduce the overhead of manual in-
teraction, and ultimately create visualization systems
that participate proactively in the analytic process.

The results of our user study demonstrated the
effectiveness of eye-tracking in supporting low level
tasks but at the same time failed to reveal benefits in
the more high-level task of path detection. We believe
this was in part due to the design of our methods
but also due to the difficulty of evaluating complex
tasks quantitatively. However, given the reliability in
detecting viewed nodes and edges, the strong effects
in the short perceptual task, and the effectiveness of
our gaze correction, we hypothesize that our methods
can be used as a foundation for further exploration of
high level interactive and analytic metaphors.

We also hypothesize that we can further improve on
our detection of visual targets and user tasks. In sec-
tions 3.1 and 3.2.2 we mentioned several assumptions
about peoples gaze patterns: long fixations for nodes,
shorter fixations for edge (section 3.1); longer fixations
in regions of high density, shorter fixations in regions
of low density (section 3.2.2). These assumptions were
made from informal observations during design and
do not rely on data or models of visual perception.
While such gaze models exist for specific areas such
as reading, they have not been generalized for visual
objects and layouts specific to our field. A better un-
derstanding of how visual parameters correlate to gaze
measures such as fixation duration, saccade distance,
or revisitation would enable us to detect viewed object
in a more principled way.

In a complete analysis system additional infor-
mation could be leveraged. For instance, since eye-
movement and fixation precedes motor movement and
action [Duc07], mouse patterns can be used to con-
firm and adjust data about fixations. Using our gaze-
correction in an environment with multiple views, one
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Table 1: Quantitative results.

Users Eye- Task1- Task1- Task2- Task2- Task3- Task3-
tracker no-ET ET no-ET ET no GC GC
first(y/n) | (#Errors) | (#Errors) | (#Errors) | (#Errors) | (#Selected | (#Selected

userl N 32 11 10 7 56 66

user2 N 16 20 10 8 17 59

user3 Y 32 19 12 8 103 85

user4 N 43 26 15 14 56 82

userd Y 20 13 10 10 90 98

user6 N 47 46 15 15 63 64

user7 Y 80 23 11 12 81 87

user8 Y 43 49 13 13 20 49

user9 Y 34 24 7 12 63 7

userl0 | N 29 22 15 10 91 105

userll | N 51 37 10 12 41 71

userl2 | Y 29 16 11 11 41 49

Mean 38.0000 25.5000 11.5833 11.0000 60.1667 74.3333
70 16 e -
40 1]
12 'g
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o 30 @ control o @ control - )

= = a Correction
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Figure 7: Quantitative results.
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Figure 8: Qualitative user feedback.
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visualization could correct offsets for another visual-
ization that may occupy the same screen space.

Modeling of higher level analytic tasks specific to
data visualization would allow us to apply similar
principles to detecting and supporting tasks that go
beyond perception and data reading. Gaze-enabled in-
teractions can be explored at multiple temporal scales.
Our methods hint at this by describing a perceptual
task that is supported within a fraction of a second,
and a deliberative task supported by visual responses
spanning multiple seconds. Interactions that rely on
data captured and aggregated during an entire analy-
sis session or even extended periods of time would be
worth exploring.

Finally, our work doesn’t investigate the interplay
between mouse interaction and gaze-interaction. A
valid assumption is that users could outperform the
eye-tracking enabled visualization in task 1 if allowed
to select nodes and highlight their outgoing edges. In
fact, one of the reasons for limiting task 1 to three
seconds was our desire to capture the effect of eye-
tracking on short, perceptual tasks for which the cost
of interaction plays a significant overhead. We hy-
pothesize that there is a class of interactive queries
that would be cumbersome to specify manually and
deliberately but would be easy to compute based on
users’ unconscious gaze patterns. Task 2 tried to cap-
ture such a query. Asking the user to provide and con-
tinuously update information about nodes of interest
would be unfeasible. Using eye-tracking, the same pro-
cess can be done automatically and without missing
any of the user’s visual interests.

6. Conclusion

In this paper we introduced techniques for using eye-
tracking as an interactive input in the context of net-
work visualization, and demonstrated their effective-
ness in a controlled user study. Specifically, we dim
out edges with endpoints outside of the users view fo-
cus, we highlight edges that are visually traced, and
increase the saliency of sub-networks around nodes
viewed often. We also describe an algorithm that im-
proves eye-tracking accuracy by leveraging the known
layout of the network. In a user study with twelve
participants we showed that these techniques allow
users to more accurately determine if two nodes are
connected. At the same time we demonstrated the ef-
fectiveness of the gaze correction technique quantita-
tively. Given the reliability in detecting viewed nodes
and edges, the strong effects in the connectivity task,
and the success of the gaze correction technique, and
the inherent role that eyes are playing in data vi-
sualization, we hypothesize that further exploration

submitted to Eurographics Conference on Visualization (EuroVis) (2014)

of gaze-enabled interactions for visualization will be
valuable.
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