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Abstract  

Improved clinical care for Bipolar Disorder (BD) relies on the identification of diagnostic markers that 

can reliably detect disease-related signals in clinically heterogeneous populations. At the very least, 

diagnostic markers should be able to differentiate patients with BD from healthy individuals and 

from individuals at familial risk for BD who either remain well or develop other psychopathology , 

most commonly Major Depressive Disorder (MDD). These issues are particularly pertinent to the 

development of translational applications of neuroimaging as they represent challenges for which 
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clinical observation alone is insufficient. We therefore applied pattern classification to task-based 

functional magnetic resonance imaging (fMRI) data of the n-back working memory task, to test their 

predictive value in differentiating patients with BD (n=30) from healthy individuals (n=30) and from 

patients’ relatives who were either diagnosed with MDD (n=30) or were free of any personal lifetime 

history of psychopathology (n=30). Diagnostic stability in these groups was confirmed with 4-year 

prospective follow-up. Task-based activation patterns from the fMRI data were analyzed with 

Gaussian Process Classifiers (GPC), a machine learning approach to detecting multivariate patterns in 

neuroimaging datasets. Consistent significant classification results were only obtained using data 

from the 3-back versus 0-back contrast.  Using contrast, patients with BD were correctly classified 

compared to unrelated healthy individuals with an accuracy of 83.5%, sensitivity of 84.6% and 

specificity of 92.3%. Classification accuracy, sensitivity and specificity when comparing patients with 

BD to their relatives with MDD, were respectively 73.1%, 53.9% and 94.5%. Classification accuracy, 

sensitivity and specificity when comparing patients with BD to their healthy relatives were 

respectively 81.8%, 72.7% and 90.9%.  We show that significant individual classification can be 

achieved using whole brain pattern analysis of task-based working memory fMRI data. The high 

accuracy and specificity achieved by all three classifiers suggest that multivariate pattern recognition 

analyses can aid clinicians in the clinical care of BD in situations of true clinical uncertainty regarding 

the diagnosis and prognosis.  

 

 

 

 

 

INTRODUCTION  

 

Bipolar disorder (BD) is an affective disorder that ranks amongst the leading causes of disability 

worldwide across all age groups (World Health Organization, 2008). This motivates efforts to 

characterize valid and reliable biological markers of disease expression in order to facilitate early 

identification and novel treatment discovery. 

 

Magnetic resonance imaging (MRI) has been extensively used to investigate the neural correlates of 

disease expression in BD. Structural MRI (sMRI) studies have demonstrated that BD is associated 

with reductions in whole brain and regional gray matter volumes (Hallahan et al., 2011; Kempton et 

al., 2011; Fears et al., 2014). Functional MRI (fMRI) studies have provided further information in 
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terms of changes in regional blood-oxygen-level-dependent (BOLD) signal, most commonly in the 

domains of affect processing and executive control,  where both genetically-derived and disease-

related deficits have been reported (Glahn et al., 2010;  Fears et al., 2014).  The common network 

for affect processing notably involves the amygdala (AMG), ventral striatum and putamen and the 

ventral prefrontal (VPFC), ventral anterior cingulate (ACC) and insular cortices (Lindquist et al., 

2012). The common network supporting executive control functions includes dorsal striatal 

structures as well as the dorsolateral prefrontal (DLPFC), dorsal ACC, and parietal (PAR) cortices 

(Niendam et al., 2012). In patients with BD, exaggerated activation during affective and executive 

tasks has been consistently observed in the AMG, insula, and ventral ACC coupled with reduced PFC 

engagement (Chen at al., 2011; Cusi et al., 2012; Delvecchio et al., 2012; Fusar-Poli et al., 2012; Jogia 

et al., 2012; Cremaschi et al., 2013; Dima et al., 2013).  These observations have improved the 

characterization of the biological underpinnings of BD but have had limited clinical utility as they are 

based on group-level inferences that cannot be readily applied to the categorization of single 

individuals.  

 

Advances in machine learning techniques, a field of artificial intelligence, represent a major 

development that could lead to clinical useful neuroimaging applications in psychiatry.  Multivariate 

pattern recognition is a particular type of machine learning concerned with the discovery of 

regularities in data through the use of computer algorithms (Vapnik 1995). Frequently used machine 

learning approaches are support vector machines (SVM) and Gaussian Process Classifiers (GPC) 

(Figure 1). Our group and others have shown that the application of multivariate pattern recognition 

analyses can reliably classify patients with BD from healthy individuals (Rocha-Rego et al., 2014; 

Mwangi et al., 2014; Schnack et al., 2014) and from patients with schizophrenia (Schnack et al., 

2014) or Major Depressive Disorder (MDD) (Grotegerd et al., 2013; Grotegerd et al., 2014) with an 

accuracy of approximately 70-80%.   

 

It can be argued however, that neuroimaging may be able to make a unique contribution in 

situations where clinical assessment and observation are not sufficient for diagnosis and prognosis. 

For clinicians, one of the greatest challenges lies in the differential diagnosis of BD from MDD. 

Although mania is the diagnostic hallmark of BD, in the majority of patients the disorder first 

presents with depressive symptoms (Forty et al., 2009). Even after disease onset, depressive 

symptoms dominate and contribute to morbidity and psychosocial disability (Judd et al., 2002). A 

substantial body of research has focused on identifying phenomenological features that could 

differentiate MDD from BD depression; the weight of evidence suggests that reliable and accurate 



4 
 

differentiation at the level of the individual patient is beyond the resolution of even rigorous and 

detailed clinical assessment (Mitchell et al., 2008), particularly amongst those with a family history 

of BD (Mitchell et al., 2011). Consequently, many patients are misdiagnosed and treated as having 

MDD either because they present with depression at illness onset or because they generally under-

report manic symptoms. This has important treatment implications as antidepressant treatment in 

BD may exaggerate mood instability (El-Mallakh et al., 2015). A further challenge lies in predicting 

the outcome of asymptomatic individuals with a family history of BD. As a group, these individuals 

are a higher risk than the general population for developing BD (Duffy et al., 2015; Fullerton et al., 

2015).  

 

Therefore the aim of the current study was to test whether neuroimaging can indeed assist clinicians 

when faced with true clinical uncertainty in situations where clinical acumen and observation are 

insufficient. We tackle two challenges; one focuses on the differential diagnosis of BD from MDD in 

the presence of family history of BD in the MDD patients. The other on the correct identification of 

individuals who have remained well but would be conventionally considered “at risk” based on 

having a first-degree relative with BD. We therefore test the hypothesis that GPCs of task-based 

fMRI data during the n-back working memory task can identify patterns of neural function that will 

prove useful in differentiating patients with BD from healthy unrelated individuals, and individuals at 

familial risk for BD who have either developed MDD or remained free of psychopathology.  We focus 

on the functional neuroanatomy of the n-back task because it has been shown to be robust to 

variations in the paradigms used, scanner types and acquisition sequences (Owen et al., 2005; Dima 

et al., 2014) and has been reliably used to elicit disease-related abnormalities in patients with BD 

and their relatives (Fusar-Poli et al., 2012; Cremaschi et al., 2013). 

 

METHODS 

 

The study sample comprised 120 demographically matched participants consisting of 30 patients 

with BD-type I, 30 of their first-degree relatives diagnosed with MDD, 30 psychiatrically healthy first-

degree relatives and 30 unrelated healthy controls (Table 1).  Participants were drawn from with the 

VIBES study sample (Frangou 2009; Kempton et al., 2009a,b; Walterfang et al., 2009; Takahashi et 

al., 2010; Forcada et al., 2011; Lelli-Chiesa et al., 2011; Perrier et al., 2011; Pompei et al., 2011a,b; 

Ruberto et al., 2011; Jogia et al., 2011; Jogia et al., 2012a,b; Dima et al., 2013; Rocha-Rego et al., 

2014; Delvecchio et al., 2015).  Participants with BD or MDD fulfilled the respective diagnostic 

criteria outlined in the Diagnostic and Statistical Manual of Mental Disorders, 4th edition, revised 
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(DSM-IV) (APA, 1994). Healthy relatives had no lifetime history of any major psychiatric disorder. 

Healthy unrelated controls had no family history or personal lifetime history of any major psychiatric 

disorder. All participants were free of any medical comorbidity and had no lifetime history of 

substance dependence or substance abuse in the six months leading to their brain scan. The 

diagnostic status of all participants was assessed using the Structured Clinical Interview for DSM-IV 

for Axis I diagnoses (First et al., 2002a, b). Patients with BD and their relatives with MDD did not 

differ in the age of onset of their respective diagnosis.  The diagnostic stability of patients with BD, 

their MDD and healthy relatives was confirmed through annual interview over a 4-year period 

following their brain scan. On the day of scanning, all participants were assessed using the Hamilton 

Depression Rating Scale (HDRS) (Hamilton, 1960), the Young Mania Rating Scale (YMRS) (Young et 

al., 1978), the Brief Psychiatric Rating Scale (BPRS) (Lukoff et al., 1986) and the Wechsler Adult 

Intelligence Scale 3rd Edition (Wechsler, 1997). To ensure patients with BD and relatives with MDD 

were in remission their psychopathology was assessed weekly over period of 1 month leading to 

their scan and at each assessment patients’ scored below 7 in the HDRS and YMRS.  Although the 

level of symptomatology was very low, patients with BD were more symptomatic than all other 

groups (p<0.001).  The BPRS, HDRS and YMRS scores were highly correlated (all r > 0.78, all p< 

0.001).BD patients were medicated at the time of scanning with atypical antipsychotics (n=21), 

antiepileptics (n=8), lithium (n=14), as monotherapy (n=18) or combination therapy (n=12). Three 

relatives with MDD were on selective serotonin re-uptake inhibitors. All medicated participants had 

remained on the same type and dose of medication for a minimum of 6 months prior to scanning.   

Informed consent was obtained from all participants. The study was approved by the institutional 

ethics review board. 

 

 

Working Memory Functional Imaging Task  

The n-back task was employed in a block design incorporating alternating experimental and 

sensorimotor control conditions. A series of letters in yellow font were displayed on a blue screen 

for two seconds each. Participants were instructed to indicate by a button press whether the letter 

currently displayed matched the letter from the preceding n trials. In the sensorimotor control (0-

back) the letter “X” was the designated target. In the experimental conditions (1, 2, 3-back) the 

target letter was defined as any letter that was identical to the one presented in the preceding one, 

two, or three trials. There were 18 epochs in all, each lasting 30 seconds, comprising 14 letters with 

a ratio of target to non-target letters ranging from 2:12 to 4:10 per epoch. The entire experiment 

lasted 9 minutes and included a total of 49 target and 203 non-target stimuli. To avoid any 
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systematic order effects the conditions were pseudo-randomised. Performance was evaluated in 

terms of reaction time to target letters and accuracy (% correct responses).The task was explained to 

participants prior to scanning but there was no training. 

 

Image acquisition 

Gradient echo planar magnetic resonance (MR) images were acquired using a 1.5-Tesla GE Neuro-

optimised Signa MR system (General Electric, Milwaukee, WI, USA) fitted with 40 mT/m highspeed 

gradients. Foam padding and a forehead strap were used to limit head motion. A quadrature 

birdcage head coil was used for radio frequency (RF) transmission and reception. A total of 180 T2*-

weighted MR brain volumes depicting BOLD contrast were acquired at each of 36 near-axial planes 

parallel to the inter-commissural (AC-PC) plane; repetition time (TR) = 3000ms, echo time (TE) = 

40ms, slice thickness = 3mm, voxel dimensions = 3.75 x 3.75 x 3.30mm, interslice gap = 0.3mm, 

matrix size = 64 * 64, flip angle=90°. Prior to each acquisition sequence, four dummy data acquisition 

scans were performed to allow the scanner to reach a steady state in T1 contrast. During the same 

session, a high-resolution T1-weighted structural image was acquired in the axial plane (inversion 

recovery prepared, spoiled gradient-echo sequence; TR = 18ms, TE = 5.1 ms, TI = 450 ms, slice 

thickness = 1.5 mm, voxel dimensions = 0.9375 × 0.9375 x 1.5 mm, matrix size 256 * 192, field of 

view = 240 x 180 mm, flip angle = 20°, number of excitations = 1) for subsequent co-registration. 

 

Image Processing 

Conventional fMRI analyses were implemented using Statistical Parametric Mapping (SPM8) 

(www.fil.ion.ucl.ac.uk/spm/software/spm8/). fMRI images were realigned, normalized and 

smoothed using an 8 mm full-width-half-maximum Gaussian kernel. To ensure data quality, task 

registration parameters were extracted and were used to identify participants with excessive 

interscan motion (defined as >4 mm translation, >4° rotation) and to conduct group comparisons. No 

subjects were excluded and there were no significant group differences in motion. The smoothed 

single-participant images were analysed via multiple regressions using the linear convolution model, 

with vectors of onset representing the memory load conditions (1, 2, and 3 back) and the 0-back 

condition as sensorimotor control. Six movement parameters were also entered as nuisance 

covariates. Serial correlations were removed using an AR(1) model. A high pass filter (128s) was 

applied to remove low-frequency noise. Contrast images of each memory load condition (1-, 2-, 3- 

back) versus 0-back were produced for each participant. At the individual subject level, a standard 

general linear modelling (GLM) approach was used to obtain estimates of the response size (beta) in 

each the memory load condition against the 0-back control condition. 
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Conventional fMRI Analysis  

We examined the effect of group (patients with BD, MDD relatives, healthy relatives and unrelated 

healthy controls) on BOLD signal using a standard general linear modelling (GLM) in SPM8 separately 

for each memory load condition (1-, 2-, 3- back) against the 0-back control. We examined each 

condition separately, instead of modelling activation changes with increasing load. This is because it 

has long been known that cortical loci, particularly in prefrontal regions, show non-linear changes in 

activation with increasing memory load (Callicott et al., 1999) which could increase voxel level 

variability. Suprathreshold clusters were identified using family wise error (FWE) voxel-wise 

correction of p<0.05. Stereotactic coordinates were converted from MNI spatial array to that of 

Talairach and Tournoux (www.mrc-cbu.cam.ac.uk/Imaging/mnispace.html) and corresponding 

anatomical and Brodmann area (BA) labels were identified with The Talairach Daemon Client 

(www.talairach.org). Measures of brain activation (weighted parameter estimates) from each 

subject were extracted using the MarsBaR toolbox (marsbar.sourceforge.net) from regions of 

interest (ROIs) defined on the basis of the whole brain analysis as 5 mm radius spheres at peak 

height coordinates within each suprathreshold cluster. These measures were also used to examine 

the role of potentially confounding variables of age, IQ, age of onset, task performance and 

medication. Although we report uncorrected P values, due to the large number of correlations 

undertaken the level of significant inference was set at a conservative P vale of 0.005.  

 

Multivariate pattern classification 

Probability of group membership was determined using Gaussian Process Classifiers (GPCs) 

implemented in the Pattern Recognition for Neuroimaging Toolbox (PRoNTo) 

(www.mlnl.cs.ucl.ac.uk/pronto/) using whole-brain individual beta maps/GLM coefficients for the 

contrasts of 1-back, 2-back and 3-back versus 0-back. Technical descriptions of GPC inference have 

been presented elsewhere (Schrouff et al. 2013). Briefly, the classifier is first trained to determine a 

predictive distribution that best distinguishes between two groups (e.g., case and controls); any 

parameters controlling the behaviour of this distribution are computed by maximizing the logarithm 

of the marginal likelihood on the training data only. Then in the test phase, the classifier predicts the 

group membership of a previously unseen example. This is achieved by integrating over the 

predictive distribution for the test case and passing the output through a sigmoidal function, 

resulting in predictive probabilities scaled between 0 and 1 which precisely quantify the predictive 

uncertainty of the classifier for the test case.   
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We focus on the usefulness of fMRI data derived from the n-back task in differentiating patients with 

BD from (a) healthy individuals, (b) their relatives with MDD, and (c) from their psychiatrically 

healthy relatives. Each classifiers was trained a leave-two-out cross-validation. For each cross-

validation iteration, a matched pair of subjects from each group was excluded first and then the data 

were partitioned into training and test sets. For each trial, we thresholded the probabilistic 

predictions at 0.5 to convert the probabilistic predictions to class labels allowing the sensitivity and 

specificity of classification to be computed over all trials (Rasmussen and Williams, 2006). Statistical 

significance of each classifier was determined by permutation testing, as described previously 

(Marquand et al., 2010). Briefly, permutation testing was performed by repeatedly retraining the 

classifier after permuting the class labels (1000 permutations). A P-value for classification accuracy 

was computed by counting the number of permutations for which the permuted accuracy was equal 

or greater than the true accuracy (obtained with non-permuted labels), then dividing by 1000. In 

addition for each classifier, Pearson correlation analyses were carried out between GPC predictive 

probability and total BPRS scores, age, IQ, task performance, age of onset and medication dose. 

As a secondary outcome we generated an unthresholded GPC weight map for each classifier. As GPC 

classifiers are multivariate, these discrimination maps do not describe focal activation effects but 

instead they represent the spatially distributed pattern of coefficients that quantify the contribution 

of each voxel to the classifier’s decision function.  We then estimated the positive (PPV) and negative 

(NPV) predictive value of each classifier.  

 

RESULTS 

Conventional fMRI Analysis 

There were no group differences in the 1-back or 2-back versus 0-back contrasts. In the 3-back 

versus 0-back contrast a main effect of group was found (p=0.05 FWE voxel level corrected) in the 

middle frontal gyrus (BA10) (x=36 y=58 z=0, F score= 6.64, cluster size 240), the superior temporal 

gyrus (BA22) (x=58 y=-44 z=12, F score=6.54, cluster size 169) and the posterior cingulate cortex 

(BA30) (x=-28 y=-68 z=8, F score= 6.97, cluster size 76). Patients with BD had reduced mean level of 

activation in the middle frontal gyrus compared to healthy relatives and unrelated controls (p <0.02); 

however relatives with MDD did not differ compared to any other group and had an intermediate 

level of mean activation between healthy relatives/ unrelated controls and BD patients.  In the 

superior temporal gyrus, BD patients showed a greater mean level of activation compared to healthy 

controls and psychiatrically well relatives (p<0.05); however, relatives with MDD did not differ 

compared to any group and had an intermediate level of mean activation between healthy 

relatives/controls and BD patients. In the posterior cingulate cortex, the mean level of activation was 



9 
 

reduced in relatives with MDD compared to all the other groups (p<0.04); all other pairwise 

comparisons were not significant. 

 

We examined the role of potential confounders in several ways. We used three multivariate analyses 

of variance with medication status (antiepileptics vs. not on antiepileptic, lithium vs. not on lithium 

and antipsychotic vs. not on antipsychotics) as the independent factors and levels of activation in 

suprathreshold clusters in patients with BD as dependent variables. No group differences were 

found (all P>0.28). We examined correlations between activation in suprathreshold regions in 

patients with BD and dose of lithium and antipsychotics on the day of scanning. None were 

significant (all r<0.21, P>0.28). Similarly, we did not observe any correlation with age of onset in 

patients and relatives with MDD (all r<0.23, P>0.07). Further analyses in the entire sample did not 

reveal significant correlations between the level of activation in any suprathreshold cluster and age 

(all r<0.10, P>0.27), IQ (all r<0.08, P>0.38), accuracy (all r<0.06, P>0.51) and response time (all 

r<0.16, P>0.08). None of these correlations survive correction for multiple testing.  

 

Multivariate Classification 

Patients with BD versus unrelated healthy controls: Classifiers using the 1-back or 2-back versus 0-

back contrast did not lead to a statistically significant differentiation between patients with BD and 

healthy controls. Classification based on the 1-back versus 0-back contrast resulted in 65.5% 

accuracy, 61. 5% sensitivity (true positives for BD) and 69.2% specificity (true negatives for unrelated 

controls) and was not significant (p=0.01).  Classification based on the 2-back versus 0-back contrast 

resulted in 73.1% accuracy, 76.9% sensitivity and 69.3% specificity and was also not significant 

(p=0.08).  In contrast, the classifier based on the 3-back versus 0-back contrast significantly 

differentiated patients from unrelated controls with an accuracy of 83.5% (p=0.001). The sensitivity 

of the classification was 84.6% and the specificity 92.3%/. The PPV (probability that individuals 

classified as BD patients were correctly identified) and NPV (probability that individuals classified as 

healthy controls were correctly identified) values were respectively 0.91 and 0.85. The 

unthresholded discrimination map showing the global spatial pattern by which the two groups differ 

based on the 3-back versus 0-back classifier is displayed in Figure 2A; the largest clusters 

discriminating patients with BD from unrelated controls were located in the left 

inferior/middle/superior frontal gyrus and in the superior parietal lobule. 

 

Patients with BD versus relatives with MDD: Significant results were found for classifiers based on 

contrast images from the 1-back (p=0.003), 2-back (p=0.001) and 3-back (p=0.001) conditions. The 
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classifier based on the 1-back versus 0-back contrast resulted in 76.9% accuracy, 53.9% sensitivity 

(true positives for patients with BD), 100% specificity (true negatives for relatives with MDD), PPV of 

1 and NPV of 0.68.  The classifier based on the 2-back versus 0-back contrast resulted in 73% 

accuracy, 61.5% sensitivity, 84.6% specificity, 0.79 PPV and 0.68 NPV. The classifier based on the 3-

back versus 0-back contrast resulted in 73.1% accuracy, 53.9% sensitivity, 94.5%specificity, 0.90 PPV 

and 0.67 NPV. To maintain consistency with the results of the other classification problems, the 

unthresholded discrimination map showing the global spatial pattern by which the two groups differ 

based on the 3-back versus 0-back classifier is displayed in Figure 2B; the largest discriminating 

clusters were located in the left superior frontal gyrus, right middle frontal gyrus, bilaterally in the 

middle /superior frontal gyrus and the right temporal lobe. 

 

Patients with BD versus healthy relatives: Classifiers using the 1-back or 2-back versus 0-back 

contrast did not differentiate between patients with BD and healthy relatives. Classification based on 

the 1-back versus 0-back contrast resulted in 54.5% accuracy, 36.6% sensitivity (true positives for 

patients with BD) and 72.3% specificity (true negatives for healthy relatives) but the results were not 

significant (p=0.41).  Classification based on the 2-back versus 0-back contrast resulted in 59.1% 

accuracy, 36.3% sensitivity and 81.2% specificity and was also not significant (p=0.17). In contrast, 

the classifier based on the 3-back versus 0-back contrast was significant (p=0.004) and had 81.8% 

accuracy, 72.7% sensitivity, 90.9% specificity (true for healthy relative), 0.88 PPV and NPV 0.76. The 

unthresholded discrimination map showing the global spatial pattern by which the two groups differ 

based on the 3-back versus 0-back classifier is displayed in Figure 2C; the largest discriminating 

clusters were located in the lingual gyrus and the cerebellum on the left. 

 

For each classifier, Pearson correlation analyses between GPC predictive probabilities and age, IQ, 

task accuracy and reaction time, age of onset, BPRS total score and medication dose were not 

significant (r<0.28; p>0.14).  

 

Discussion 

We demonstrate the potential translational utility of task-based fMRI in aiding diagnosis and 

prognosis in BD.  The approach highlighted here provides proof of concept for the development of 

new tools for the categorization of individuals where there is general agreement that clinical data 

alone are insufficient.   
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In this study we show that patients diagnosed with BD, show sufficient consistency in their 

neurofunctional patterns for them to be reliably differentiated from healthy individuals with an 

accuracy of 83.4%. Using structural MRI data alone, we have previously achieved classification 

accuracies of 69-78%  in differentiating patients with BD from healthy individuals based on whole-

brain  gray or white matter classifiers (Rocha-Rego et al., 2014). Others who have also used 

structural MRI data have reported similar or lower accuracies (Schnack et al., 2014). It would 

therefore appear that task-based fMRI data may improve classification accuracy in BD as they may 

be more sensitive to disease-related pathology. Additionally, it is encouraging that the clusters that 

contribute to the correct classification of patients compared to controls, show biological plausibility. 

The conventional fMRI analysis of this same dataset, as well as results from independent samples 

(Cremaschi et al., 2013; Fusar-Poli et al., 2012), have consistently identified decreased prefrontal 

activation in patients with BD in the 3-back vs 0-back contrast compared to healthy controls.  This is 

consistent with the clusters contributing to successful classification of patients from controls which 

implicate the prefrontal cortex, particularly lateral and frontopolar regions, and the dorsal parietal 

cortex, both key functional nodes of the working memory network (Niendam et al., 2012). 

Nevertheless, it could be argued that differentiating patients with established BD from healthy 

controls is of marginal clinical interest as real-life diagnostic assessments deal with more complex 

issues than separating people that have been ill for some time from those who are not ill at all 

(Wolfers et al., 2015). The value of testing classifiers for patients versus controls based on different 

imaging modalities is threefold. First, it serves to identify the type of data, or combinations of data, 

derived from neuroimaging applications that would be adapted for clinical practice. Once this is 

achieved, one could test the best-performing classifiers on different clinical groups that are 

prodromal or have atypical or comorbid presentations. Second, examining the relationship between 

the multivariate neuroimaging signature and the clinical or demographic features of a disorder can 

lead to mechanistic insights regarding etiology and progression.  Third, the availability of objective 

brain imaging tests can improve the social perception of psychiatry. At the level of individual 

patients, objective tests would provide re-assurance that clinical assessment and diagnostic 

assignment are not purely based on subjective judgment. At the societal level, it would help 

integrate psychiatry into mainstream medicine.  

 

To our knowledge this is the first study to employ neuroimaging to address core issues of clinical 

uncertainty. We provide preliminary evidence for using neuroimaging classifiers to differentiate 

MDD from BD, especially in individuals who have a family history of BD. There are several clinical 

indicators of increased likelihood of conversion to BD in those who present with depression and 
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have a family history of the disorder (Mitchell et al., 2008; 2011). However, none can be reliably 

applied to individual patients. In contrast, GPC classifiers differentiated patients with BD from 

relatives with MDD with an accuracy ranging from 73 to 77%. The sensitivity of these classifiers were 

low (53-62%). This is not surprizing given the phenomenological overlap between BD and MDD and 

the dominance of depressive psychopathology in both disorders (Judd et al., 2002; Forty et al., 

2009). What is more important however is that the classifier had very high specificity ranging from 

84-100%. In principle this means that at the level of the individual patient clinicians would be able to 

exclude the possibility of BD, with a very high level of confidence, after a 10-min brain scan.  This 

finding requires replication in different samples and settings and in more diverse clinical populations 

in terms of their age and duration of illness. Nevertheless, our results suggest that this is an avenue 

of research worth pursuing in demonstrating the translational value of neuroimaging.  

 

Our third classifier, based on the 3-back versus 0-back contrast, differentiated patients with BD from 

their psychiatrically healthy relatives with an accuracy of 81.8%. This classifier identified high-risk 

individuals unlikely to convert to BD with 90.9% specificity. However, its sensitivity was 72.7% which 

suggest that some high-risk individual likely to convent may be missed. These results are very 

encouraging and could potentially inform early intervention services, where positive family history is 

a key criterion of risk and possible service inclusion (Duffy et al., 2015). There are a number of 

behavioral indicators of increased likelihood of conversion to syndromal BD but longitudinal studies 

suggest that they have low predictive value as a significant number of high-risk individuals never 

convert (Tijssen et al., 2010). Correctly identifying those who are in need of treatment is of 

paramount significance both in terms of cost-effectiveness of early intervention services but also in 

terms of preventing unnecessary treatment, concern and self-stigmatization in those unlikely to 

convert to BD. Of the clusters contributing to the correct identification of healthy relative, one was 

in the lingual gyrus, an occipital region involved in visual processing, and another in the cerebellum. 

Intriguingly, the lingual gyrus is closely related to cognitive function particularly with increasing age 

in BD (Fears et al., 2014) and shows dysfunctional connectivity during a range of tasks in patients but 

not their unaffected relatives (Dima et al., 2013). The volume of the cerebellum has been shown to 

be increased in healthy relatives of patients (Kempton et al., 2009) compared to controls while in BD 

patients it is known to progressively decrease (Moorhead et al., 2007). Therefore clusters 

contributing to the correct categorization of healthy relatives may point us to regions that are 

particularly important for maintaining resilience when preserved or for disease expression when 

abnormal.  
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Patients with BD differed from the other groups (MDD relatives, healthy relatives, unrelated healthy 

individuals) in medication status. This raises the issue of whether classification might have been 

based on medication rather than diagnostic status. We cannot address this issue directly but we 

note that correlations between medication variables and GPC predictive probabilities were low and 

not statistically significant.  We have previously shown that medication status did not have a 

significant influence on classifier performance when using brain structural data to classify patients 

with BD from controls (Rocha-Rego et al., 2014). Patients with BD were on a variety of psychotropic 

agents with different mechanisms of action and it is therefore unlikely that the neural correlates of 

medication effects would be consistent across all participants. This mitigates the possibility that the 

classifiers could have identified uniform medication-related classification rules. In addition, the very 

low levels of psychopathology in patients suggest that it is unlikely that classification rules were 

derived from neural patterns associated with symptomatic expression on the day of the scan. 

Further investigations are, however, needed to confirm the reproducibility of our findings in more 

diverse and larger samples.  

 

In summary, this is the first study to our knowledge that has tested the contribution of neuroimaging 

to problems that arise in the clinical care of BD for which adequate non-imaging solutions have been 

elusive.  Although in need to replication and refinement, our data provide clear direction for the 

development of translational imaging applications in psychiatry.  
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Table 1. Demographic, Clinical and Task Performance Data 

 Unrelated  

Healthy 

Controls 

(n=30) 

Healthy 

Relatives 

 

(n=30) 

MDD 

Relatives 

 

(n=30) 

 

BD 

Patients 

 

(n=30) 

 

Age (years)  33.4 (11.6) 35.3 (5.6) 32.9 (9.9) 34.7 (7.7) 

Male: Female 15:15 14:16 16:14 15:15 

Full scale IQ  108.4 (10.9) 110.5 (10.5) 109 (11.4) 107.1 (12.1) 

Age of onset (years) 

 

n/a n/a 20.1 (9.1) 19.2 (10.8) 

HDRSa  0.1 (0.5) 0.1 (0.4) 1.3 (0.9) 3.2 (1.1) 

YMRSa  0.1 (0.8) (0) (0) 0.1 (1.3) 1.3 (0.7) 

BPRSa 24.4 (0.7) 24.5 (0.6) 25.4 (0.9) 27.1 (2.4) 

3-back, % correctb  73.2 (12.4) 88.5 (14.3) 73.4 (17.2) 69.8 (16.7) 

3-back, response time [sec]c 0.85 (0.3) 0.79 (0.3) 0.84 (0.5) 0.87 (0.6) 

Except for sex, data are presented as mean (standard deviation). Bipolar disorder=BD; BPRS=Brief Psychiatric Rating Scale; IQ= 

Intelligence Quotient;  HDRS=Hamilton depression Rating Scale; MDD=Major Depressive Disorder; YMRS=Young Mania Rating Scale; 

n/a=not applicable; there were no group differences in age, sex distribution, IQ and age of onset, P>0.7;  

 a Significant effect of group for HDRS, YMRS and BPRS P<0.001; Post-hoc pairwise Bonferroni corrected comparisons showed that 

patients with BD more symptomatic than all other groups, P<0.01; b  Significant effect of group F=15.8, P<0.01;  Post-hoc Bonferroni 
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Figure 1. Machine Learning Classification 

This is a simplified illustration of the Gaussian Process Classifier functions that outlines the general 

principles of multivariate machine learning classification as applied to neuroimaging data from two 

hypothetical groups, referred to as patient and comparison group. During the training phase (left 

panel), the classifier is separately presented with multiple neuroimaging datasets of individuals that 

belong to one or the other group. The algorithm uses these data to assign a predictive weight to 

each voxel as more or less likely to be associated with one or the other group. The output of the 

classifier is a discrimination maps showing regions that have the most significant contribution to 

classification (left panel, bottom left) and values regarding the performance of the classifier based 

on their separating hyperplane (left panel, bottom right). During the test phase, a previously unseen 

dataset is presented to the algorithm and is classified based on its probability of belonging to either 

the patient or comparison group.  

 

Figure 2. Unthresholded discrimination maps for the classifier based on the 3-back >0-back 

contrast: (A). Patients with Bipolar Disorder (BD) versus unrelated healthy individuals. In the 

corresponding discrimination map, positive coefficients (red) indicate clusters with predictive value 

for BD (B). Patients with BD versus relatives with Major Depressive Disorder. In the corresponding 

discrimination map, positive coefficients (red) indicate clusters with predictive value for BD (C). 

Patients with BD versus healthy relatives. In the corresponding discrimination map, positive 

coefficients (red) indicate clusters with predictive value for psychiatrically healthy relatives.    

 

 

 

corrected  pairwise comparisons showed healthy relatives outperformed all other groups, P<0.02;  Significant effect of group F=21.4, 

P<0.01;  Post-hoc Bonferroni corrected  pairwise comparisons showed healthy relatives outperformed all other groups, P<0.02 
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