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Abstract

In this paper a numerical method for the computation of the approximate least
common multiple (ALCM) of a set of several univariate real polynomials is
presented. The most important characteristic of the proposed method is that it
avoids root finding procedures and computations involving the greatest common
divisor (GCD). Conversely, it is based on the algebraic construction of a special
matrix which contains key data from the original set of polynomials and leads to
the formulation of a linear system which provides the degree and the coefficients of
the ALCM using low-rank approximation techniques and numerical optimization
tools particularly in the presence of inaccurate data. The numerical stability
and complexity of the method is analysed and a comparison with other methods
is provided.

Keywords: Greatest common divisor, linear systems, shifting operation,
numerical errors, least squares
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1. Introduction

The area of approximate algebraic computations is a fast growing area which
has attracted the interest of many researchers in recent years. Two well known
problems of algebraic computations are the computation of the Greatest Common
Divisor (GCD) and the computation of the Least Common Multiple (LCM) of sets
of polynomials. Both of them have widespread applications in several branches of
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mathematics and engineering. The problem of computing an approximate LCM
of many polynomials is an integral part of the algebraic synthesis methods in
Linear Control [1, 2, 3]. This problem is linked to the computation of polynomial
matrix fraction descriptions of rational matrices. In fact, the computation of
the LCM is central in the derivation of minimal polynomial representations
and this has several applications, such as the representation of vector transfer
functions problem [1], the squaring- down problem [4], and the pole assignment
by dynamic precompensation [1].

In the case of two polynomials P = {p1(s), p2(s)} we have the standard
identity that p1(s) ·p2(s) = gcd{P} · lcm{P}, which indicates the natural linking
of the two problems. For a given set of polynomials with randomly selected
coefficients (generic values) the existence of a non-trivial (different than 1) GCD
is a non-generic property [5]. This implies that the set of polynomials with a
non-trivial GCD belongs to an algebraic variety of Lebesgue measure zero. Use
of the genericity property of polynomials implies that for any generic set of
polynomials the LCM is the product of the set of polynomials, since any subset
of them will be coprime. For non-generic sets of polynomials, is known that the
LCM exists and divides the product of the polynomials. This suggests that there
are fundamental differences between the two computational problems.

Existing LCM methods rely on GCD algorithms and numerical factorization
of polynomials [6], and the computation of a minimal basis of special polynomial
matrices [7, 8, 9] and use of algebraic identities. In [6], the above standard
algebraic identity of the LCM is generalized and this provides a symbolic pro-
cedure for the LCM computation, as well as the basis for a robust numerical
LCM algorithm that avoids any computation of the roots of the corresponding
polynomials, and also leads to an approximate solution when the data are given
inexactly or there are computational errors. The associativity property of the
LCM [6] is fundamental for this computation and the developed methodology
depends on the proper transformation of the LCM computations to real matrix
computations.

An alternative approach is presented in [10]. This approach is based on
standard system theory concepts and also avoids root finding as well as GCD
computations. The results in [10] led to a robust procedure for the LCM of
several polynomials and enabled the computation of approximate values when
the original data have numerical inaccuracies. However, the complexity of the
developed algorithm in [10] dramatically increases when the size of P is increased.

Another approach to finding approximate LCMs is also presented in [11] and
the proposed algorithm, developed for two univariate or multivariate polynomials,
uses the geometrical notion of principal angles between vector spaces and the
interrelation of the LCM with the GCD.

In this paper the aim is to develop a numerical method for the approximate
computation of the LCM of sets of several real univariate polynomials by com-
pletely avoiding root finding and GCD computations. The developed method
relies on the properties of polynomial long division and the use of algebraic
procedures in the context of the ERES methodology [12, 13, 14]. Specifically,
it involves the formulation of a linear system which provides the degree and
the coefficients of the LCM when it is solved. Depending on the nature of the
data, the solution of this system may be sought either using direct algebraic
methods, such as LU factorization, or using optimization methods, such as linear
least-squares, for approximate solutions. The paper is structured as follows.
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In Section 2, we provide a matrix representation for the LCM of sets of many
polynomials based on the theoretical properties of the LCM and the Euclidean
identity. This representation leads to a definition for the approximate LCM
of sets of several univariate polynomials. In Section 3, we develop the ERES
division algorithm which is an integral part of current LCM method, and in
Section 4 we discuss and analyse the theoretical concepts of the computation of
the LCM of a polynomial set without using the GCD. In Section 5, the obtained
theoretical results formulate the Hybrid LCM method and we discuss the issues
of its implementation. The numerical properties of this method are analysed,
and in Section 6 various examples with comparison to other LCM methods are
given for the demonstration of the developed procedures.

Notation. In the following, N denotes the set of natural numbers and R denotes
the field of real numbers. R[s] denotes the ring of polynomials in one variable
over R. Capital letters denote matrices, i.e. A ∈ Rm×n is a m× n matrix with
elements from R. Small underlined letters are used for vectors, i.e. v ∈ Rm is a
column vector with m elements from R. The transpose vector of v (row vector)
is denoted by vt. The greatest common divisor and the least common multiple
of a set of polynomials P are denoted by gcd{P} and lcm{P}, respectively.
Throughout the paper a polynomial in R[s] is denoted by p(s) and its degree
will be deg{p}, ρ(·) denotes the rank of a matrix, ‖ · ‖F denotes the Frobenius
matrix norm and ‖ · ‖2 denotes the Euclidean vector norm, and diagm{v} stands
for a diagonal matrix with m rows created from a vector v. The mathematical
operators , and ≈ indicate equality by definition and approximate equality,
respectively. Finally, we use the Maple notation for the range of numbers that
an index can take on, i.e. i = 1..h means that the index i can take on all the
integer numbers from 1 to h.

2. The matrix representation of the LCM of several polynomials and
its approximation

The next set of real polynomials in one variable will be considered in the
following:

Ph,n =
{
pi(s) ∈ R[s], i = 1, 2, . . . , h with di = deg{pi} > 0 and n = max

i
(di)

}
(1)

The polynomials pi(s) are represented with respect to the maximum degree n by

pi(s) =

n∑
j=0

c
(i)
j sj =

[
0, . . . , 0, c

(i)
di
, . . . , c

(i)
0

]
sn

...
s
1

 (2)

where c
(i)
di
6= 0 for every i = 1..h and c

(i)
n 6= 0 for at least one i ∈ {1..h}.

We also consider a real univariate polynomial of degree d > n represented as

l(s) =

d∑
j=0

aj s
j = [ad, . . . , a0]


sd

...
s
1

 and d =

h∑
i=1

di (3)
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Since di ≤ n < d for all i = 1..h, according to the Euclidean identity there exist
real polynomials qi(s) (quotients) and ri(s) (remainders) such that

l(s) = qi(s) pi(s) + ri(s) (4)

with deg{q i} = d− di and deg{r i} ≤ di − 1.

For each one of the polynomials pi(s), qi(s), ri(s), and l(s) we denote the
corresponding vector of coefficients by

pt
i

=
[
c
(i)
di
, . . . , c

(i)
0

]
, qt

i
=
[
q
(i)
d−di , . . . , q

(i)
0

]
, rti =

[
r
(i)
di−1, . . . , r

(i)
0

]
,

and at = [ad, . . . , a0], respectively. Then every polynomial in the set Ph,n with
degree di = n can be associated with an upper trapezoidal matrix of the form:

Pi , diag(d+1){pti} = (5)

=


c
(i)
di

c
(i)
di−1 . . . c

(i)
0 0 . . . 0

0 c
(i)
di

c
(i)
di−1 . . . c

(i)
0 . . . 0

...
. . .

. . .
. . .

. . .
. . .

...

0 . . . 0 c
(i)
di

c
(i)
di−1 . . . c

(i)
0

 ∈ R(d+1)×(d+n+1)

If di < n, then Pi ,
[
On−di |diag{pt

i
}
]

where On−di is a (d+ 1)× (n− di) zero

matrix. Similarly, the matrices

Qi , diag(di+1){qti} ∈ R(di+1)×(d+1) (6)

Ri ,
[
Od+n−di |diag(di+1){rti}

]
∈ R(di+1)×(d+n+1) (7)

Li ,
[
On−di |diag(di+1){at}

]
∈ R(di+1)×(d+n+1) (8)

can be associated with the polynomials qi(s), ri(s), and l(s), respectively. The
extended matrix

P̂ =

 P1

...
Ph

 ∈ R(hd+h)×(d+n+1) (9)

is a representative matrix for the set Ph,n and the Euclidean identity (4) can be
expressed in the matrix form as

L̂ = Q̂ · P̂ + R̂ (10)

L̂ =

 L1

...
Lh

 ∈ R(d+h)×(d+n+1), R̂ =

 R1

...
Rh

 ∈ R(d+h)×(d+n+1) (11)

where L̂ is the extended matrix associated with the polynomial l(s) as defined

in (3), R̂ is the extended matrix associated with the remainders after division of
the polynomial l(s) by the polynomials of Ph,n, and

Q̂ = diag {Q1, Q2, . . . , Qh} ∈ R(d+h)×(hd+h) (12)
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is the block-diagonal matrix associated with the quotients after division of the
polynomial l(s) by the polynomials of Ph,n.

Therefore, if l(s) in (4) represents the LCM of Ph,n, the following basic
definition can be provided.

Definition 1. Given a set of several polynomials Ph,n, the exact least common
multiple of the polynomials of the set is a polynomial of the smallest possible
degree ` ≤ hn, such that:

L̂ = Q̂ · P̂ (13)

Equivalently, using an appropriate matrix norm [15], denoted by ‖ · ‖, the next
equality is satisfied:

‖L̂− Q̂ · P̂‖ = 0 (14)

Remark 1. Throughout the paper by LCM we mean the exact least common
multiple of Ph,n.

The following lemma provides the theoretical foundation of the proposed
LCM method and it is based on the generalization of a characteristic LCM
property from the number case to the polynomial one.

Lemma 1. Given a set of polynomials Ph,n, the LCM of Ph,n is a real polynomial

with the least possible degree ` ≤
∑h
i=1 deg{pi} and every polynomial pi(s) divides

evenly into LCM.

Proof. If we denote by l(s) the LCM of Ph,n with degree ` and di = deg{pi} for
every i = 1, 2, . . . , h, then two different cases must be considered:

1. If the polynomials pi(s) ∈ Ph,n cannot be factored into polynomials in
R[s], the LCM is given by the product of all pi(s) ∈ Ph,n, such that

l(s) =

h∏
i=1

pi(s) and ` =

h∑
i=1

di

Obviously, in this case every pi(s) divides evenly into l(s).

2. Assuming that the polynomials pi(s) ∈ Ph,n can be factored into polynomi-
als ti,ji(s) ∈ R[s] irreducible over R, i.e. ti,ji(s) is non-constant and cannot
be represented as the product of two or more non-constant polynomials
from R[s], then

pi(s) = t
ki,1
i,1 (s) · tki,3i,2 (s) · · · tki,jii,ji

(s) (15)

with powers ki,ji such that ki,1 + . . .+ ki,ji = di for any positive integer
ji ≤ di and i = 1..h.
The set containing the factors ti,j(s) of every polynomial pi(s) raised to a
power ki,j can be defined by

Tf =
{
t
ki,j
i,j (s) ∈ R[s] for i = 1..h and j = 1, 2, . . . , ji ≤ di

}
and we consider the subsets of Tf :

Tcf =
{
t
ki,j
i,j (s) : ti,j(s)=common factor raised to the highest power ki,j

}
Tncf =

{
t
ki,j
i,j (s) : ti,j(s)=non-common factor

}
5



Then, the LCM is given by

l(s) =
∏
i,j

t
ki,j
i,j (s), where t

ki,j
i,j (s) ∈ Tcf ∪ Tncf .

Therefore, considering (15), every pi(s) divides evenly into l(s). Moreover,
since Tcf ∪ Tncf ⊆ Tf , it follows that

` =
∑
i,j

ki,j ≤
h∑
i=1

di

which implies that the LCM is a real polynomial with maximum degree
equal to the sum of the degrees of all pi(s) ∈ Ph,n.

The above Lemma 1 implies that:

ri(s) = 0, ∀ i = 1..h (16)

Hence, when l(s) represents the LCM, the matrix R̂ in (10) is actually a zero
matrix. Thus, from the algebraic viewpoint the LCM of Ph,n satisfies the
equation:

‖R̂‖ = 0 (17)

However, when the given data contain numerical inaccuracies an approximate
LCM must be sought. Therefore, based on the developed matrix representation
of the LCM, the following definition of the approximate LCM can be provided.

Definition 2. Given a set of several polynomials Ph,n and a specified small
tolerance ε, the approximate least common multiple of the set, denoted by
ALCM, is a polynomial of the smallest possible degree ` ≤ hn, such that the
next inequalities are satisfied:

‖L̂− Q̂ · P̂‖ ≤ ε ⇔ ‖R̂‖ ≤ ε (18)

3. The ERES representation of the polynomial Euclidean division

The ERES method [12, 13, 14, 16] was originally developed for the compu-
tation of the approximate GCD of sets of many polynomials using Gaussian
transformation and shifting. In this section the algebraic relationship between
ERES and the Euclidean algorithm for two univariate polynomials will be anal-
ysed. Specifically, it will be shown how the remainder of the Euclidean division
of two polynomials can be represented as a matrix product where the matrices
correspond to the applied ERES operations.

3.1. Definition of the ERES operations and background results

The following describe the basic notions of the ERES methodology.

6



Definition 3 (ERES operations [12]). For any set Ph,n as defined in (1), a
vector representative p(s) and an associated matrix P ∈ Rh×(n+1) are defined by

p(s) = [ p1(s), . . . , ph(s) ]t = [ p
1
, . . . , p

h−1, ph ]t · en(s) = P · en(s)

where en(s) = [sn, sn−1, . . . , s, 1]t and p
i
∈ Rn+1 for all i = 1..h. Then, the

following operations are defined:

a) Elementary row operations with scalars from R on P .

b) Addition or elimination of zero rows (or columns) on P .

c) If c(i) = [0, . . . , 0, c
(i)
l , . . . , c

(i)
n+1]t ∈ Rn+1 with c

(i)
l 6= 0 is the ith row of P ,

then we define the shifting operation as the next transformation:

shf : shf(c(i)) = [c
(i)
l , . . . , c

(i)
n+1, 0, . . . , 0]t ∈ Rn+1 (19)

Type (a), (b) and (c) operations are referred to as Extended-Row-Equivalence and
Shifting (ERES) operations. The ERES operations without using the shifting
operation are referred to as ERE operations.

Remark 2. The matrix P is formed directly from the coefficients of the poly-
nomials of the set Ph,n and typically its size is h × (n + 1). However, for the
LCM computation, if all the polynomials pi(s) have a factor of the form ski , the
shifting operation implies that

lcm {Ph,n} = sk lcm {shf(Ph,n)}

where k = min1≤i≤h{ki}. The factor ski of any polynomial in the given set, if it
exists, can be defined by the maximum number of consecutive coefficients which
are zero, starting from the constant. Therefore, in this case we may consider a
reduced matrix P of size h× (n− k + 1) for the set Ph,n.

Remark 3. The matrix P̂ as defined in (9) can be regarded as the extended
form of P constructed for the matrix representation of the LCM of sets of several
polynomials.

3.2. The shifting operation for upper trapezoidal matrices

Given a matrix A = [at1, a
t
2, . . . , a

t
m]t ∈ Rm×n, where ai ∈ Rn for i =

1, 2, . . . ,m are the row-vectors of A, the matrix-shifting is defined as the ap-
plication of shifting to every row of A. The shifted form of A will be denoted
by

shf(A) , A∗ = [shf(at1), shf(at2), . . . , shf(atm)]t ∈ Rm×n (20)

Furthermore, if A ∈ Rm×n with m < n is a non-singular upper trapezoidal
matrix with rank ρ(A) = m, then in [14] it is proven that there exists a square
matrix S ∈ Rn×n such that:

shf(A) = A · S (21)

The matrix S is referred to as the shifting matrix of A and is given by the
formula:

S =

m∑
i=1

(
In −A†A+A†Ai

)
Ji (22)
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where, for every i = 1, 2, . . . ,m, Ai denotes the m×n matrix derived from A if we
keep only the ith row and zero all the others, Ji ∈ Rn×n is a permutation matrix
which gives the appropriate shifting to each Ai, respectively, and A† ∈ Rn×m is
the pseudo-inverse of A, such that AA† = Im. The shifting transformation of a
nonsingular upper trapezoidal matrix is a reversible process, unless the shifted
matrix is rank deficient.

3.3. The ERES division algorithm

Using the ERES operations, the Euclidean division of two arbitrary polyno-
mials will be presented in matrix form. The developed algorithmic procedure
will provide an elegant and quick way to compute the quotient and the remainder
of the division l(s)/pi(s) which is essential for the computation of the ALCM in
the current study.

For the development of a division algorithm based on the ERES operations
we consider two arbitrary polynomials in one variable with degrees m and n
such that m > n :

a (s) =

m∑
i=0

ai s
i, am 6= 0 and b (s) =

n∑
i=0

bi s
i, bn 6= 0, m, n ∈ N (23)

The set of all the pairs of polynomials
(
a(s), b(s)

)
is defined by

Dm,n =
{

(a(s), b(s)) : a(s), b(s) ∈ R[s], m = deg{a(s)} ≥ deg{b(s)} = n
}

For any pair P =
(
a(s), b(s)

)
∈ Dm,n, we define a vector representative p(s) and

an associated matrix P ∈ R2×(m+1) such that

p(s) =

[
a(s)

b(s)

]
=

[
at

bt

]
· em(s) = P · em(s)

where at = [am, . . . , a0] ∈ Rm+1, bt = [ 0, . . . , 0︸ ︷︷ ︸
m−n

, bn, . . . , b0 ] ∈ Rm+1 are the

coefficient vectors of a(s) and b(s), respectively, and em(s) = [sm, sm−1, . . . , s, 1]t

is the power basis vector of s.
The matrix P is formed directly from the coefficients of the given polynomials

a(s) and b(s) and it has the following form:

P =

[
am . . . an+1 an . . . a0
0 . . . 0 bn . . . b0

]
(24)

Since P is a non-singular matrix, using (21) and (22) there exists a shifting
matrix S ∈ R(m+1)×(m+1) such that:

P ∗ = P · S (25)

The matrix P ∗ ∈ R2×(m+1) is the shifted form of P such that

P ∗ =

[
am . . . an+1 an . . . a0
bn . . . b0 0 . . . 0

]
(26)
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and it is the associated matrix of the pair

P∗ =
(
a(s), sm−n b(s)

)
∈ Dm,m

Now, given a pair of polynomials P, if a(s) is divided by b(s), then the next
identity occurs:

a(s)

b(s)
=
am
bn

sm−n +
r1(s)

b(s)
or a(s) =

am
bn

sm−n b(s) + r1(s) (27)

This is the first and most basic step of the Euclidean algorithm. The polynomial
r1(s) ∈ R[s] is a partial remainder of the division a(s)/b(s) and it is given by

r1(s) =

m−1∑
i=m−n

(
ai −

am
bn

bi−(m−n)

)
si +

m−n−1∑
i=0

ai s
i (28)

The remainder r1(s) can be computed by applying ERES operations to the
matrix P of the pair P.

Lemma 2. Given a pair of polynomials P =
(
a(s), b(s)

)
∈ Dm,n, there exists a

polynomial r1(s) ∈ R[s] with deg{r1(s)} < m, such that

a(s) =
am
bn

sm−n b(s) + r1(s) (29)

with
r1(s) = vt ·R1 · em(s) (30)

where R1 ∈ R2×(m+1) is the matrix which occurs after applying the ERES
operations to the matrix P of the pair P, and vt = [0, 1].

Proof. Considering the division a(s)/b(s) and according to Euclid’s algorithm,
there is a polynomial r1(s) with degree 0 ≤ deg{r1(s)} < m such that

r1(s) = a(s)− am
bn

sm−n b(s) (31)

Then, the above equation can be written as a matrix product in the following
form:

r1(s) = [0, 1]

 0 1

1 −am
bn

[ a(s)

sm−n b(s)

]
= [0, 1]

 0 1

1 −am
bn

 P ∗ em(s)

(32)
If we denote by

Q =

 0 1

1 −am
bn

 (33)

and vt = [0, 1], then (25) and (33) provide the next matrix representation for
the remainder polynomial:

r1(s) = vt ·Q · P · S · em(s) (34)

Therefore, there exists a matrix R1 ∈ R2×(m+1) such that

R1 = Q · P · S and r1(s) = vt ·R1 · em(s) (35)

However, the same matrix R1 can be obtained by applying the ERES opera-
tions to the matrix P according to the next three-step procedure:

9



1. Apply shifting to the rows of P . Let S ∈ R(m+1)×(m+1) be the appropriate
shifting matrix.

P (1) = P · S =

[
am am−1 ... am−n am−n−1 ... a0
bn bn−1 ... b0 0 ... 0

]
2. Reorder the rows of the matrix P (1).

P (2) = J · P (1) =

[
bn ... b0 0 ... 0
am ... am−n am−n−1 ... a0

]
, J =

[
0 1
1 0

]
3. Apply LU factorization [17, 15] to P (2). Then,

P (3) = L−1 · P (2) =

=

 bn ... b0 0 ... 0

0 ... am−n − b0
am
bn

am−n−1 ... a0

 , L =

 1 0

am
bn

1


The above procedure can be described by the equation

P (3) = L−1 · J · P · S (36)

which represents all the ERES transformations. Naturally, we have that

L−1 · J =

 1 0

−am
bn

1

 · [ 0 1

1 0

]
=

 0 1

1 −am
bn

 = Q

and thus, considering (35), it holds:

P (3) = Q · P · S = R1 (37)

The following theorem refers to the matrix representation of the remainder
of the Euclidean division of two real polynomials and establishes the algebraic
relationship between the ERES method and Euclid’s division algorithm.

Theorem 1. Applying the Euclidean algorithm to a pair of real polynomials
P = (a(s), b(s)) ∈ Dm,n, there exist unique real polynomials q(s), r(s) with
degrees deg{q(s)} = m− n and deg{r(s)} < n, respectively, such that

a(s) = q(s) · b(s) + r(s)

and the remainder r(s) can be expressed in the matrix form

r(s) = vt ·Rη · en(s) (38)

where Rη ∈ R2×(n+1) is the matrix which is obtained from the iterative application
of the ERES operations to the matrix P of the pair P, and vt = [0, 1], en(s) =
[sn, sn−1, . . . , s, 1]t. Furthermore, the quotient q(s) is given by

q(s) =

m−n∑
i=0

qi s
i =

m−n∑
i=0

lm−n+1−i s
i (39)

10



where the coefficients qi = lm−n+1−i are implicitly computed during the construc-
tion of Rη. In addition, the matrix Rη satisfies the following relation:

Rη = Qη · P · Sη (40)

where Qη ∈ R2×2 is the matrix which is obtained from the iterative applications
of the ERE operations to the matrix P , and Sη ∈ R(n+1)×(n+1) is the matrix
which accounts for all the iterative applications of the shifting operations to the
matrix P .

Proof. The Euclidean division a(s)/b(s) includes the following steps:

a(s) = l1 s
m−n b(s) + r1(s)

r1(s) = l2 s
k1−n b(s) + r2(s)

...

ri(s) = li+1 s
ki−n b(s) + ri+1(s)

...

rη−1(s) = lη s
kη−1−n b(s) + rη(s)

where ri(s) ∈ R[s] is a polynomial with degree ki = deg{ri(s)}, i = 1, 2, . . . , η
and η is the total number of steps in Euclid’s algorithm for which η = m−n+ 1.
Normally, ki > n for i = 1, 2, . . . , η − 2 and kη−1 = n, whereas kη < n.

Since P ∈ R2×(m+1) is the matrix of the pair P = (a(s), b(s)), then using
Lemma 2, the remainder r1(s) in the first iteration is given by

r1(s) = vt ·R1 · em(s) and R1 = L−11 · J · P · S1

where

L1 =

[
1 0
l1 1

]
,

the matrix S1 is the appropriate shifting matrix, and J is an elementary per-
mutation matrix. Similarly, in the second iteration of the process, if L2 applies
ERE transformations to R1 and SR1

shifts its rows, the next matrix is obtained:

R2 = L−12 ·R1 · SR1 · Zk1 (41)

The matrix Zk1 ∈ R(m+1)×(k1+1) is used in order to reduce the column dimension
of R1 by deleting the last m−k1 zero columns. Hence, R1 is linked together with
R2. If the same steps are followed, the next generalized form can be obtained:

ri(s) = vt ·Ri · e ki−1
(s), i = 2, 3, . . . , η (42)

with
Ri = L−1i ·Ri−1 · SRi−1

· Zki−1
, i = 2, 3, . . . , η (43)

The final matrix Rη is associated with the remainder r(s) of the Euclidean
division a(s)/b(s), such that

r(s) , rη(s) = vt ·Rη · en(s)

11



Figure 1: The ERES Division Algorithm

Remark 4. The developed procedure as described in the proof of Theorem 1
requires m − n + 1 iterations (for-loop) to be completed, which are referred
to as ERES iterations. This procedure forms the ERES division algorithm. A
flowchart of this algorithm is presented in Figure 1.

Definition 4. Given two polynomials a(s), b(s) ∈ R[s] with degrees m and n,
respectively, and m > n, the transformation[

a(s)
b(s)

]
ERES
=⇒

[
b(s)
r(s)

]
(44)

represents the Euclidean division of two polynomials using the ERES operations
and is referred to as the ERES division.

Example 1. We consider the division a(s)/b(s) of the polynomials:

a(s) = 2 s3 + 3 s2 − 7 s− 32, deg{a(s)} = m = 3
b(s) = s2 + 4 s+ 5, deg{b(s)} = n = 2

with a corresponding matrix

P =

[
2 3 −7 −32
0 1 4 5

]
∈ R2×4

which is structured using the power basis vector
[
s3, s2, s, 1

]t
. According to the

Euclidean division it is

a(s)

b(s)
=

2 s3 + 3 s2 − 7 s− 32

s2 + 4 s+ 5
= (2 s− 5) +

3 s− 7

s2 + 4 s+ 5

and the remainder is r(s) = 3 s− 7. The ERES division is represented by the
equation

Rη = Qη · P · Sη =

[
1 4 5

0 3 −7

]
where

Qη =

[
0 1
1 −(2− 5)

]
=

[
0 1
1 3

]
and Sη =


13
2

45
2

57
10

−3 −5 23
5

1 1 − 12
5

0 1 2


12



The remainder r(s) of the division a(s)/b(s) is given by

r(s) = [0, 1] ·Rη ·

 s2

s
1

 = 3 s− 7

The coefficients of the quotient q(s) = 2 s− 5 are implicitly obtained during the
construction process of the matrix Qη.

4. Computation of the LCM without using the GCD

In this section the theoretical concepts of the current approach for the ALCM
computation are analysed.

4.1. The symbolic-rational formulation of the remainder sequence

Let the LCM of a given set Ph,n be a polynomial l(s) with arbitrary (symbolic)
coefficients in its generic form (3). The ERES division algorithm provides the

means to compute the vectors r i =
[
r
(i)
di−1, . . . , r

(i)
0

]t
of the remainders of the

division l(s)/pi(s) in rational-symbolic form. Considering the overall matrix
representation of the ERES division given in (40), each vector r i is obtained
from the second row of a matrix Rη and is used in order to construct the matrix

R̂ as described in Section 2. However, this matrix is relatively large for effective
use in a computational method.

A careful study of the elements of the obtained vectors r i reveals that they
are linear combinations of the arbitrary coefficients aj of l(s). More specifically,

r i =


r
(i)
di−1
r
(i)
di−2
...

r
(i)
0

 =


f
(i)
di−1,d ad + . . .+ f

(i)
di−1,1 a1 + f

(i)
di−1,0 a0

f
(i)
di−2,d ad + . . .+ f

(i)
di−2,1 a1 + f

(i)
di−2,0 a0

...

f
(i)
0,d ad + . . .+ f

(i)
0,1 a1 + f

(i)
0,0 a0

 (45)

where all f
(i)
µ,ν for µ = 0, 1, . . . , di − 1 and ν = 0, 1, . . . , d are real numbers which

follow the analytic formula

f (i)µ,ν =
∑

0<k<d

λk

(
c
(i)
0

)m0
(
c
(i)
1

)m1

· · ·
(
c
(i)
di

)mdi(
c
(i)
di

)d−n+1
(46)

where λk ∈ R and
∑di
j=0mj = d− n+ 1 for every i = 1..h.

Example 2. Let the two arbitrary polynomials:

l(s) = a5 s
5 + a4 s

4 + a3 s
3 + a2 s

2 + a1 s+ a0 , deg{l(s)} = d = 5

p(s) = c3 s
3 + c2 s

2 + c1 s+ c0 , deg{p(s)} = n = 3

The ERES division algorithm provides the following vector of coefficients r of
the remainder of the division l(s)/p(s).

13



r =


a2 − c2

c3
a3 +

(−c1c32+c2
2c3)

c33 a4 +
(−c0c32+2 c1c2c3−c23)

c33 a5

a1 − c1
c3
a3 +

(−c0c32+c1c2c3)
c33 a4 +

(c0c2c3+c12c3−c1c22)
c33 a5

a0 − c0
c3
a3 + c0c2

c32 a4 +
(c0c1c3−c0c22)

c33 a5



=


−c0c32+2 c1c2c3−c23

c33
−c1c32+c2

2c3
c33 − c2c3 1 0 0

c0c2c3+c1
2c3−c1c22

c33
−c0c32+c1c2c3

c33 − c1c3 0 1 0

c0c1c3−c0c22

c33
c0c2
c32 − c0c3 0 0 1

 ·

a5
a4
a3
a2
a1
a0



4.2. The real matrix representation of the remainder sequence

We may associate every vector ri with a real matrix Fi ∈ Rdi×(d+1), such
that

r i = Fi · a (47)

where a = [ad, . . . , a0]t is the vector of coefficients of the polynomial l(s) and
every matrix Fi has the following structure:

Fi =
[
F̃i|Idi

]
=

ad . . . adi adi−1 . . . a0
↓ ↓ ↓ ↓

f
(i)
di−1,d . . . f

(i)
di−1,di 1 . . . 0

...
. . .

...
...

. . .
...

f
(i)
0,d . . . f

(i)
0,di

0 . . . 1

 (48)

where Idi is the di × di identity matrix and i = 1..h. Then, an extended matrix
FP ∈ Rd×(d+1) can be formed, such that

FP · a =

F1

...
Fh

 a =

r 1
...
r h

 (49)

The new matrix FP is smaller than R̂ in (11) and free of arbitrary parameters,
but the two matrices are linked together as explained in the following proposition.

Proposition 1. For the matrices R̂ and FP it holds:

‖R̂‖F ≤
√
n+ 1 ‖FP a‖2 (50)

Proof. Considering the matrix R̂, we can obtain the following result:

‖R̂‖F =

√√√√ h∑
i=1

(di + 1) (‖rti‖2)
2 ≤

√√√√(n+ 1)

h∑
i=1

(‖r i‖2)
2

=
√
n+ 1 ‖FP a‖2

14



Therefore, if ‖FP a‖2 = 0, we expect that ‖R̂‖F = 0. This result marks the
transition from a symbolic-rational state of the problem to a numerical state
where robust numerical methods can be employed for the computation of an
approximate LCM. Solving the linear system

FP · a = 0 (51)

introduces a new algorithmic procedure for the numerical computation of the
LCM of several polynomials and its approximation. The following result reveals
a special property of the matrix FP .

Proposition 2. The rank of FP is equal to the degree of the LCM of the set
Ph,n.

ρ(FP) = deg{lcm{Ph,n}} (52)

Proof. We consider again the LCM of the set Ph,n in its generic form l(s) as
defined in (3). The linear system (51) has d equations and d + 1 variables.
Hence, it is an underdetermined homogeneous linear system. If n(FP) denotes
the nullity of FP and ρ(FP) its rank, then n(FP) ≥ 1 which implies that there
are infinite solutions.

a) If n(FP) = 1 only one solution (up to scalar multiples) is obtained and
this is actually the generic solution:

l(s) = p1(s) · p2(s) · · · ph(s)

Then,

deg{l(s)} =
∑h
i=1 di = d

ρ(FP) = d+ 1− n(FP) = d

}
⇒ ρ(FP) = deg{l(s)} = d

b) If n(FP) = ν > 1, we can set exactly ν free variables. However, a careful
examination of the structure of FP (eq. 48) reveals that each column
corresponds to a coefficient aj of the polynomial l(s) which has a fixed
position according to the power basis vector e d = [sd, . . . , s, 1]t. Thus, the
last d+1−ν columns, which correspond to aj for j = 0, 1, . . . , d−ν, should
lead to the trivial solution. Assuming that l(s) is a monic polynomial, the
least degree solution will be obtained if we set

ad−ν+1 = 1 and ad−ν+2 = . . . = ad = 0

Then,

deg{l(s)} = d− ν + 1
ρ(FP) = d+ 1− n(FP) = d+ 1− ν

}
⇒ ρ(FP) = deg{l(s)} = d+ 1− ν

Remark 5. Given a small tolerance ε > 0, the numerical ε-rank of FP deter-
mines the degree of the ALCM of the set Ph,n.

The preceding analysis leads to the following result.
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Theorem 2. Given a set of several polynomials Ph,n, the corresponding LCM

denoted by l(s) =
∑d
j=0 aj s

j with d =
∑h
i=1 deg{pi(s)} is given by the least

degree solution of the underdetermined linear system

FP · a = 0 (53)

where FP ∈ Rd×(d+1) is associated with the remainders ri(s) which derive from
the application of the ERES division algorithm to all the pairs (l(s), pi(s)), and
a = [ad, . . . , a0]t is the vector of coefficients of the LCM.

Proof. Let ρ denotes the rank of FP . From Proposition 2 we have:

ρ = ρ(FP) = deg{l(s)}

Therefore, since the columns of FP correspond to the coefficients of l(s) in a
fixed order, the d× (d+ 1) linear system (53) can be reduced to a d× ρ linear
system, such that

F̌P · ǎ+ f
d−ρ+1

· aρ + F̂P · â = 0 ⇔ F̂P · â = −aρ f d−ρ+1
(54)

where

• the matrix F̌P is constructed from the first d− ρ columns of FP ,

• the matrix F̂P is constructed from the last ρ columns of FP ,

• f
d−ρ+1

is the d− ρ+ 1 column of FP (counting from left to right),

• ǎ = [ad, . . . , aρ+1]t is the vector of the coefficients of l(s) which can be
omitted (or set equal to 0),

• â = [aρ−1, . . . , a0]t is the vector of the r coefficients of l(s) which form the
solution, and

• aρ 6= 0 which corresponds to the leading coefficient of the LCM. If c
(i)
di

denotes the nonzero leading coefficients of the polynomials pi(s), as defined
in (2), then aρ may take on the following values:

aρ =


1, if all the polynomials pi(s) are monic, i.e. c

(i)
di

= 1, i = 1..h

lcm
{
c
(i)
di
, i = 1..h

}
, if c

(i)
di

are all integer numbers.∏h
i=1 c

(i)
di
, if c

(i)
di

are real numbers.

(55)
The last form of the coefficient aρ as a product of the leading coefficients
of the given polynomials is particularly used for computing the ALCM.

Consequently, the full-rank linear system (54) has a unique solution which is the
least degree solution of the system (53) and provides the LCM of the given set
of polynomials Ph,n.

The next example illustrates the procedure for the algebraic computation of
the LCM of sets of more than two polynomials which derives from Theorem 2.
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Example 3. We consider the set of h = 3 polynomials:

Ph,n =
{
pi(s) ∈ R[s], i = 1, 2, 3 , di = {3, 3, 2}, n = 3

}
with

p1(s) = (2 s− 3)(s+ 1)2

p2(s) = (3 s+ 3)(s− 2)2

p3(s) = (s+ 1)(s− 2)
and P =

 2 1 −4 −3
3 −9 0 12
0 1 −1 −2


The current procedure for the LCM computation requires the following steps:

1. Assuming that the actual degree of the LCM is unknown, we represent
the LCM in terms of its generic degree d = 3 + 3 + 2 = 8 using arbitrary
coefficients aj , j = 0, 1, . . . , 8.

l(s) = a8 s
8 + a7 s

7 + a6 s
6 + a5 s

5 + a4 s
4 + a3 s

3 + a2 s
2 + a1 s

1 + a0 s
0

2. We can apply the ERES division algorithm to every pair (l(s), pi(s)) and
form a sequence of remainder vectors r i in symbolic-rational format.

3. Using the obtained remainder vectors, we create the matrices Fi with
respect to the vector a = [a8, . . . , a1, a0]t as described in (45)–(48). Finally,
we construct the 8× 9 matrix:

FP =



457
64

3
32

65
16

− 5
8

9
4

− 1
2

1 0 0

201
32

115
16

17
8

15
4

1
2

2 0 1 0

9
64

195
32

− 15
16

27
8

− 3
4

3
2

0 0 1

313 135 57 23 9 3 1 0 0

−228 −92 −36 −12 −4 0 0 1 0

−540 −228 −92 −36 −12 −4 0 0 1

85 43 21 11 5 3 1 1 0

86 42 22 10 6 2 2 0 1


which forms the homogeneous linear system (53).

4. Since ρ = ρ(FP) = 5, the degree of the LCM will be equal to 5 and we
obtain the next reduced linear system:

F̂P · â = −a5 f 4

where the matrix F̂P ∈ R8×5 is constructed from the last 5 columns of
FP , f

4
is the 4th column of FP , and â = [a4, , . . . , a0]t. Moreover, aj = 0

for j = 6, 7, 8 and, since not all the polynomials of the given set Ph,n
are monic and their leading coefficients are prime numbers, the leading
coefficient of the LCM will be a5 = 2 · 3 · 1 = 6. Finally, we end up with
the overdetermined linear system:
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

9
4

− 1
2

1 0 0

1
2

2 0 1 0

− 3
4

3
2

0 0 1

9 3 1 0 0

−4 0 0 1 0

−12 −4 0 0 1

5 3 1 1 0

6 2 2 0 1



·


a4

a3

a2

a1

a0

 =



− 5
8

15
4

27
8

23

−12

−36

11

10


Since the matrix F̂P has full rank, the above linear system has a unique so-
lution which can be computed using standard algebraic methods, such as LU
decomposition or Gaussian elimination [17, 15]. The obtained solution is

â = [−21, 0, 51,−12,−36]t

and corresponds to the exact LCM of the given set Ph,n, which is:

lcm{Ph,n} = l(s) = 6 s5 − 21 s4 + 51 s2 − 12 s− 36

5. The H-LCM method and its hybrid implementation

The results derived from Theorem 2 lead to the formulation of a computa-
tional method for the ALCM which is free of GCD computations or polynomial
factorization. In order to obtain the “best” possible solution in a sense of a
meaningful approximation, exact symbolic and numerical computations are com-
bined together (hybrid computations) in order to formulate the Hybrid LCM
method (H-LCM) for the approximate computation of the least common multiple
of set of several univariate polynomials.

5.1. The development of the H-LCM method

The H-LCM method requires careful consideration especially when numerical
inaccuracies are present and an approximate solution is desired. The method
has two main parts with the following tasks:

P1 Divide the generic LCM by the given polynomials and create a sequence
of remainders. Then process the remainder vectors so as to obtain a linear
system for the computation of the ALCM.

P2 Solve the linear system to compute the ALCM.

In the context of a symbolic-numeric implementation, the above problems can
be handled as follows.

P1: Assuming the generic degree, the ALCM is expressed as a polynomial with
symbolic coefficients. Then, the ERES division algorithm can be employed
in order to provide the general algebraic (symbolic) form of the remainder
vectors r i which correspond to the division of the generic ALCM by the
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given polynomials. The implementation of this part of the algorithm using
symbolic-rational operations provides the means to form the special matrix
FP which will be used to estimate the degree and the coefficients of the
ALCM.

P2: The second part of the H-LCM algorithm involves: i) the construction
of the matrix FP from the remainder vectors r i, ii) the determination
of the rank of FP , and iii) the solution of the linear system (54). In the
approximate case the solution of the linear system (54) can be computed
using a low-rank approximation technique and numerical optimization
tools.

5.2. The H-LCM algorithm

Input : Ph,n =
{
pi(s) ∈ R[s], i = 1..h with di = deg{pi} > 0

}
Step 1: Set d =

∑h
i=1 di and l(s) =

∑d
j=0 aj s

j using coefficients aj
in symbolic form.

Step 2: For i = 1..h, apply the ERES division algorithm to the pairs of
polynomials

(
l(s), pi(s)

)
to obtain the remainder vectors r i in

symbolic-rational form.

Step 3: For i = 1..h, construct the matrix FP using the vectors r i as
described in (7) – (51) and compute its rank ρ = ρ(FP).

Step 4: Form the d× ρ linear system F̂P · â = −aρ f d−ρ+1

and solve this system using numerical computations.

Output: lcm{P} , l(s) = aρ s
ρ + ât · e ρ−1(s)

5.3. The numerical computation of an ALCM using the H-LCM algorithm

The critical step in the second part of the H-LCM algorithm is the compu-
tation of the numerical rank of FP which determines the degree of the ALCM
(Remark 5). Considering a small tolerance ε > 0, the numerical ε-rank of the
matrix FP can be computed using singular value decomposition (SVD) [17].

Therefore, using Theorem 2 in the approximate case, we aim to solve the
d× (d− ρ) linear system

F̂P · â ≈ −aρ f d−ρ+1
(56)

where now r is the ε-rank of the matrix F̂P which is also equal to the ε-rank of
the matrix FP . We actually seek a solution, such that:∥∥∥F̂P · â+ aρ f d−ρ+1

∥∥∥ = minimum

If we use the Euclidean norm ‖ · ‖2, the latter implies a least-squares solution
[17] for the linear system (56) and, since it is a full-rank overdetermined linear
system, it has a unique least-squares solution [17] which can be represented as

â = F̂ †P · (−aρ f d−ρ+1
) (57)
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where F̂ †P is the pseudo-inverse of F̂P .
The main result for the numerical computation of the ALCM is summarized

in the next theorem.

Theorem 3. Let Ph,n a set of real univariate polynomials, as defined by (1)
and a small specified tolerance ε > 0. An ALCM of the set Ph,n is given by the
solution of the least-squares problem

L , min
â

∥∥∥F̂P · â− (− aρ f d−ρ+1

)∥∥∥
2

(58)

where ρ is the numerical ε-rank of the matrix F̂P , aρ is the leading coefficient of
the ALCM, and â is the vector of the remaining ρ− 1 coefficients of the ALCM.

The residual from the solution of the linear least-squares problem (58) char-
acterises the numerical quality of the obtained ALCM and the unique solution
of the least-squares problem (58) can be computed using either the QR, or
the SVD least-squares methods [15]. In fact, several mathematical software
packages, such as Matlab and Maple, include efficient built-in routines for the
linear least-squares problem where QR decomposition or SVD based algorithms
are used.

5.4. Error analysis of the H-LCM algorithm

In order to study the overall stability of the proposed H-LCM method
according to the backward error analysis concepts we first prove that the matrix
formed by the end of the process P1 is actually a slight variation of FP , that is
FP + ∆FP , where the difference ∆FP is appropriately bounded. Then, we apply
standard error analysis results for the corresponding least-squares problem.

5.4.1. Backward error analysis for the formulation of the matrix FP
Given a set Ph,n with numeric coefficients (floating-point numbers), in the

first part of the algorithm, P1, we may assume an error-free conversion from the
numeric to a rational form (fractions of integers). The application of the ERES
division algorithm to the polynomials of the original set Ph,n involves symbolic-
rational operations which are used to construct the initial matrix FP for the
ALCM computation and do not introduce numerical errors during the processing
of the data. The general form of the elements of this matrix is described in
(46). Conversely, in the beginning of the second part of the algorithm, P2, the
necessary conversion from the rational to a numeric form may lead to a small loss
of accuracy which depends on the number of digits of the variable floating-point
arithmetic controlled by the user.

Hence, assuming that the input data may contain uncertainties due to
measurements, previous computations, or errors committed in storing numbers
on the computer, we shall consider a perturbed set of polynomials P̃h,n, which
also follows the general backward error concept [15, 17]. Therefore, for each
polynomial pi(s), we regard a perturbed polynomial p̃i(s) as a slight variation
of the initial pi(s), such that

p̃i(s) =

di∑
j=0

(
c
(i)
j + εi

)
sj , ∀ i = 1..h (59)
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where εi = O(u) and u denotes the machine-precision (u = 2−52 in 16-digits
arithmetic precision). In the following, we assume a uniform perturbation
ε = maxi=1..h(εi).

As described in Section 4, the construction of the initial matrix FP involves
the computation of h smaller matrices Fi which are associated with the remainder
vectors r i in (47), and thus, with the polynomials pi(s).

Definition 5. For every polynomial pi(s) in Ph,n a parameter γi > 0, such that

γi =
maxj=0..di

(
|c(i)j |

)
|c(i)di |

, ∀ i = 1..h (60)

characterizes the elements of the matrix Fi for every i = 1..h. Then, a uniform
parameter for all Fi is defined by

γ = max
i=1..h

(γi) (61)

Remark 6. The norm of Fi computed without taking into account the pertur-
bation ε is:

‖Fi‖F =
√
di O

(
γd−di+1
i

)
For instance, considering the polynomials in Example 2 with d = 5 and di = 3
we get:

‖Fi‖F ≤
(
3 γi

6 − 10 γi
5 + 14 γi

4 − 8 γi
3 + 6 γi

2 + 3
) 1

2 =
√

3 O
(
γ3i
)

Assuming the same degree n for all the h polynomials of the given set Ph,n, we
have d = hn. Consequently,

‖FP‖F ≤ h
√
n O

(
γd−n+1

)
(62)

Proposition 3. The application of the ERES division to the perturbed set P̃h,n
leads to a matrix of the form FP + ∆FP , represented as:

ERESdiv
(
l(s), P̃h,n

)
= FP + ∆FP

The matrix ∆FP represents the total accumulated error and it holds:

‖∆FP‖F ≤ (hn− n+ 1)h
√
n ε O

(
γhn−n

)
+O(ε2) (63)

Proof. Let Fi+ ∆Fi the computed matrix associated with each remainder vector
r i, where ∆Fi represents the accumulated error after the application of the
ERES division. This process can be described as follows:

ERESdiv
(
l(s), p̃i(s)

)
= Fi + ∆Fi

Considering (46), (48), and (60), we obtain

‖∆Fi‖F ≤ (d− di + 1)
√
di

ε

γi
O
(
γd−di+1
i

)
+O(ε2) (64)

which can be extended to (63) using (49), (61), and (62).
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5.4.2. Backward error analysis for the least-squares solution

In order to compute the rank of the matrix FP and determine the degree
of the ALCM more accurately, it is preferable to apply the SVD algorithm to
a normalized copy of FP + ∆FP , such that all its elements be less than 1 in
absolute value [17]. This process is an elementary row transformation which
provides better numerical stability and does not affect the properties of the
system (53) and the final solution. The normalization of the rows using the
Euclidean norm in floating-point arithmetic with unit round-off u satisfies [15]
the relations

F̄P = N · (FP + ∆FP) + EN

‖EN‖2 ≤ du ‖FP + ∆FP‖2 +O(u2) (65)

where N ∈ Rd×d is a diagonal matrix accounting for the performed transforma-
tions with ‖N‖2 ≤

√
d, and EN ∈ Rd×(d+1) is the obtained error.

Therefore, if ρ is the numerical rank of F̄P , then the matrix F̂P in the least-
squares problem (58) is actually formed from the last ρ columns of FP + ∆FP
and the above error in (65) is not added to the system. We only have that

ρ , ρ(F̂P) = ρ(F̄P)

and, if we denote by

F̃P = F̂P + ∆F̂P and f̃
d−ρ+1

= f
d−ρ+1

+ ∆f
d−ρ+1

the d × ρ submatrix and the d − ρ + 1 column of the matrix FP + ∆FP ,
respectively, which are necessary for the ALCM computation, then, due to the
specific ordered structure of the matrix FP and considering the results obtained
from the preceding analysis, it holds that:∥∥∥∆F̂P

∥∥∥
F

≤ (ρ− n+ 1) ε
∥∥∥F̂P∥∥∥

F

and
∥∥∥∆f

d−ρ+1

∥∥∥
2
≤ ε

∥∥∥f
d−ρ+1

∥∥∥
2

(66)

where ∥∥∥F̂P∥∥∥
F

≤ h
√
n O

(
γρ−n

)
and

∥∥∥f
d−ρ+1

∥∥∥
2
≤ h
√
n O (γρ) (67)

Remark 7. The errors ∆FP and ∆F̃P involve the parameter γ, as defined by
(61), which refers to the magnitude of the coefficients of the given polynomials
pi(s). In general, we expect a small error when γ ≤ 1. Otherwise, we may
consider an initial scaling for the polynomials, so that ‖p

i
‖2 ≤

√
di, i = 1..h.

Different methods lead to a variety of estimates for the optimal size of
backward errors for least-squares problems [15, 17, 18]. Based on the QR
method for the full-rank least-squares problem (Golub-Householder method [17]),
the computed solution â is such that it satisfies the condition:∥∥∥(F̃P + ∆F

)
â−

(
− aρ f̃ d−ρ+1

+ ∆f
)∥∥∥

2
= minimum

where (∆F , ∆f) is the inherited rounding error perturbation. It has been shown
in [19] that the normwise backward error of this kind of problem is small. More
specifically,

‖∆F‖F ≤ (6h− 3ρ+ 41) ρu ‖F̃P‖F +O(u2) and (68)

‖∆f‖2 ≤ (6h− 3ρ+ 41) ρu |aρ|
∥∥∥f̃

d−ρ+1

∥∥∥
2

+O(u2) (69)
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The preceding analysis leads to the following theorem which provides a
backward error for the ALCM computation.

Theorem 4. The computed ALCM solution â = [0, . . . , 0, aρ, aρ−1, . . . , a0]t

obtained from the H-LCM algorithm, is the exact solution of the nearby problem

(FP + E) a = 0 (70)

where

‖E‖F ≤
∥∥∥∆F̂P

∥∥∥
F

+ ‖∆F‖
F

+ |aρ|
(∥∥∥∆f

d−ρ+1

∥∥∥
2

+ ‖∆f‖2
)

(71)

5.5. Computational complexity of the H-LCM algorithm

Assuming that all the polynomials pi(s) ∈ Ph,n have the same degree n (i.e.
di = n for all i = 1..h), then d = hn. The number of operations required for the
ERES division algorithm is

flED(h, n ) = h(n+ 2)(d− n+ 1) ≤ (hn)3 (72)

It can easily be proven that the above inequality holds for every n, h ≥ 2.
However, since the ERES division involves operations not only with rational
numbers but also with symbolic parameters, the overall complexity mostly de-
pends on how these data are stored and processed by the software. The current
procedures have been implemented using Maple 18 which is a mathematical
software optimized for symbolic-rational computations. Using appropriate in-
terpolation techniques, several tests with various sets Ph,n have shown that the
time complexity for the first part, P1, of the H-LCM algorithm, which involves h
calls of the ERES division algorithm, can be approximately given by the function

T (κ) = O
(
κ3 log(κ)

)
, κ = hn− n+ 1 (73)

where κ represents the number of the ERES iterations of the main procedure of
the ERES division algorithm for two polynomials of degrees m = hn and n (see
Remark 4 and Figure 1).

As an example of the performance of the ERES division algorithm, Figure
2 illustrates the time complexity of the algorithm for h ≥ 2 polynomials with
randomly selected 2-digit integer coefficients and uniform degree n ≥ 2. The
diagram on the left shows the increase of the processing time for sets Ph,n with
fixed number of polynomials h = 4 when n = 2, 3, . . . , 100. The diagram on
the right shows the increase of the processing time for sets Ph,n with fixed
polynomial degree n = 4 when h = 2, 3, . . . , 100.

In the second part, P2, of the H-LCM algorithm, the numerical rank of
the d× (d+ 1) matrix FP can be determined by the magnitude of its singular
values. Thus, additional operations are required for the normalization and the
estimation of the numerical rank of FP . Conclusively, if the Golub-Householder
method [17] is used for the full-rank least-squares problem, the total amount of
operations required for the H-LCM algorithm will be

O

(
4

3
(nh)3 +

3

2
(nh)ρ2 + 5 ρ3

)
(74)

In the worst case scenario where the LCM has the maximum degree d = nh = ρ,
the algorithm performs less than 8 d 3 operations for the final result.
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Figure 2: H-LCM time complexity: Construction of the matrix FP

6. Numerical examples and comparison with other methods

The LCM problem has also been addressed in [6] and for comparison reasons
the provided method was reformulated as described next.

6.1. The symbolic-rational LCM algorithm

The approach followed in [6] was based on the reduction of the computation
of the LCM to an equivalent problem where the computation of GCD is an
integral part. The essence of this procedure is that if p(s) denotes the product
of the polynomials of the original set and g(s) the GCD of a special set of
polynomials derived from the original set, then the LCM, l(s), can be computed
using the factorisation p(s) = g(s) l(s). The use of algorithms for computing the
GCD are important for the particular LCM method. Naturally, for approximate
values of the GCD the order of approximation is defined as a factor of p(s)
and the computation of the approximate LCM is then seen as the best way
of completing the approximate factorisation, which is defined as the optimal
completion problem [6].

The following algorithm is developed in the context of symbolic-rational
computations for the estimation of the ALCM of a set of polynomials P and it
is based on the results presented in [6]. The next Symbolic-Rational (SR) LCM
algorithm is actually a variation of the numerical LCM algorithm which has been
developed in [6].

The SR-LCM Algorithm.

Input : P =
{
pi(s) ∈ R[s], i = 1..h

}
Step 1 : Compute p(s) = p1(s) p2(s) · · · ph(s).

Step 2 : Find the set T =
{
pωi(s) : pωi(s) =

∏h−1
k=1 pik(s), i = 1, . . . , h

}
for all ωi = (i1, i2, . . . , ih−1) ∈ Qh−1,h.

Step 3 : Compute g(s) = gcd{T }.

Step 4 : Compute l(s) =
p(s)

g(s)
by applying the ERES division algorithm

to the pair (p(s), g(s)).
Output : lcm{P} = l(s)
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Notation 1. Let Qµ,ν be the ordered set of lexicographically ordered sequences
of µ integers from ν. We shall denote by ω = (i1, i2, . . . , ih−1) ∈ Qh−1,h and
ω̂ = (j) is the index from (1..h) which is complementary to the set of indices in
ω.

The above SR-LCM algorithm is very effective when the polynomials have
integer coefficients and are processed by using exact rational operations. However,
the amount of the required arithmetic operations for the initial polynomial p(s)
and the polynomials of the set T can be prohibitively high. Specifically, for
h polynomials with average degree d̄ ≥ 2 the algorithm performs O

(
(d̄+ 1)h

)
operations. More operations are required for the GCD computation and the
ERES division. Several tests have shown that the SR-LCM algorithm can be
computationally efficient only for moderate sets of polynomials.

Regarding its numerical efficiency, if the original data are inaccurate, the
construction of the polynomials of the set T and the ERES division algorithm
can be implemented using symbolic-rational operations in order to minimize the
risk of obtaining erroneous results due to the excessive accumulation of rounding
errors. Therefore, the computation of an ALCM with the SR-LCM algorithm
relies on the approximate computation of the GCD. There are several effective
methods for the computation of an approximate GCD for univariate polynomials
[20, 21, 22, 23, 24, 25] which can be integrated with the SR-LCM algorithm, but
in the following tests we used the H-ERES algorithm [16].

6.2. Computational examples

The following examples illustrate the basic characteristics of the H-LCM
algorithm and a comparison with the methods developed in [6] and [10] is
provided.

Example 4. Consider the set of three integer polynomials:

P =

 p1 (s) = (s+ 1) (s+ 2 + ε)
2

p2 (s) = (s+ 2) (s+ 3) (s+ 4 + ε)

p3 (s) = (s+ 4)
2

(s+ 5)

 (75)

Two of the three polynomials of the given set P contain a small perturbation ε.
If ε = 0, the exact LCM is

lcm{P} = (s+ 1) (s+ 2)
2

(s+ 3) (s+ 4)
2

(s+ 5)

= s7 + 21 s6 + 183 s5 + 855 s4 + 2304 s3 + 3564 s2 + 2912 s+ 960

The maximum theoretical degree of the LCM is d = 9 and, using the H-LCM
algorithm, a 9× 10 matrix FP is constructed for the main linear system (53):

FP=



−1793 769 −321 129 −49 17 −5 1 0 0
−4868 2052 −836 324 −116 36 −8 0 1 0
−3076 1284 −516 196 −68 20 −4 0 0 1

−111645 26335 −6069 1351 −285 55 −9 1 0 0
−539054 125370 −28286 6090 −1214 210 −26 0 1 0
−632040 145656 −32424 6840 −1320 216 −24 0 0 1

−1101157 194017 −33069 5385 −821 113 −13 1 0 0
−8219432 1421064 −235880 36936 −5288 648 −56 0 1 0

−15521360 2645520 −430800 65680 −9040 1040 −80 0 0 1


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Then, the rows of FP are normalized by using the Euclidean norm and its
numerical rank is computed. If ε = u ‖FP‖F ≈ 10−16, the diagram of the singular
values of the normalized FP , denoted by F̄P , in Figure 3a shows a sudden drop
from the 7th to the 8th singular value, and σ8 < ε. Therefore, in regular double
precision arithmetic (16-digits) the numerical ε-rank of the matrix F̄P is ρ = 7.
Hence, the aim is to find an ALCM with degree equal to 7.

If F̂P is the 9×7 matrix which derives from FP by deleting its first two columns,
aρ = a7 = 1 since the original polynomials are monic, and f

d−ρ+1
= f

3
is the

3rd column of FP , then the least-squares problem (58) provides the solution. We
applied three different least-squares methods based on: a) the QR factorization
(LS-QR), b) the singular value decomposition (LS-SVD), and c) the pseudo-

inverse of F̂P (LS-PInv), [15]. The quality of the obtained solution is measured
regarding the magnitude of the residual and the relative error,

‖u‖2 =
∥∥∥F̂P · â+ f

3

∥∥∥
2

and Rel =
‖â− a‖2
‖a‖2

respectively, when the exact solution a is known. The results, which are presented
in Table 1, show that the QR-Least-Squares method produces a more accurate
solution compared to the other two least-squares methods.

LS-QR LS-SVD LS-PInv

Residual 6.255761 · 10−15 1.533661 · 10−11 8.876500 · 10−12

Relative error 4.641785 · 10−13 1.535942 · 10−11 1.405633 · 10−11

Table 1: Numerical results for the LCM of the set (75) with ε = 0 given by different least-squares
methods.

Figure 3: Singular values diagram for the matrix F̄P associated with the set (75).

The set P in (75) is considered again while adding a small perturbation
ε = 10−7. Considering this perturbation in the data, the diagram in Figure 3b
illustrates the magnitude of the singular values of the matrix F̄P . The numerical
rank of the 9 × 10 input matrix F̄P , computed in regular double precision, is
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9 as expected (σ9 > 10−16). In this case the degree of the exact LCM of the
set P becomes equal to 9 which is the generic degree. However, if a numerical
tolerance ε = 10−8 = 0.1 ε is set, then the rank drops to 7. Thus, the degree of
the produced approximate ε-LCM is equal to 7.

If we try to compute an ALCM using the SR-LCM algorithm, we can just
verify that the LCM of the set P is a polynomial with degree 9, which implies
that the associated GCD, g(s), is equal to 1. However, for a numerical tolerance
ε = 10−4 the H-ERES algorithm for GCDs [16] is able to produce a non trivial
GCD of degree 2. If we denote by l1(s) the approximate solution given by the
H-LCM algorithm and l2(s) the approximate solution given by the SR-LCM
algorithm, then the distance between those two approximations is

‖l1(s)− l2(s)‖2 = 0.4057382668

which is relatively large. Therefore, judging from the tolerance ε, the relative
error, and the residual in Table 2, the approximation given by the H-LCM
algorithm is far better than the one given by the SR-LCM algorithm.

ε Degree Rel. Error / Residual

SR-LCM 10−4 7 1.296138 · 10−2

H-LCM 10−8 7 1.488148 · 10−10

Table 2: Numerical results for the approximate LCM of the set (75) with ε = 10−7 given by
different LCM methods.

Example 5. The following five real polynomials with approximately equal root
clusters are given in [6]:

P =


p1(s) = (s− 0.5) (s− 0.502) (s+ 1) (s− 2) (s− 1.5)
p2(s) = (s− 0.501) (s− 0.503) (s− 1) (s+ 2) (s+ 1.5)
p3(s) = (s− 0.50066) (s− 0.502393) (s+ 1.09553) (s− 1.09568)
p4(s) = (s− 0.494572) (s− 0.501611) (s− 0.00833993)
p5(s) = (s− 0.499717) (s− 0.50192)


(76)

An approximate LCM of degree 14 was computed by both the SR-LCM and
the H-LCM methods using standard double precision and different tolerances
ε. The results are presented in Table 3. In quadruple precision both methods
provided the trivial LCM of degree 19, but it is worth noting that the H-LCM
algorthm was about 125 times faster than the SR-LCM algorithm. Generally,
the H-LCM algorithm is significantly faster than the SR-LCM algorithm.

ε Degree Rel. Error / Residual

SR-LCM 10−7 14 O
(
10−14

)
H-LCM 10−15 14 O

(
10−17

)
Table 3: Numerical results for the approximate LCM of the set (76) given by different LCM
methods.
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Example 6. The following two real polynomials are given [10]:

p1(s) = (s+ 1.5)
(
s2 + 3.1 s+ 5.2

)
and p2(s) = (s+ 1.5) (s+ 3.7) (77)

The exact LCM of the given polynomials is:

lcm{p1(s), p2(s)} = s4 + 8.3 s3 + 26.87 s2 + 44.25 s+ 28.86

For ε = 10−16 the H-LCM algorithm gives the following result:

l(s) = s4 + 8.300000 s3 + 26.870000 s2 + 44.244999 s+ 28.860000

The relative error using the H-LCM method is 6.51 · 10−16 which is better than
the relative error 4.59 · 10−14 produced by the LCM method developed in [10].

Example 7. The following polynomial set contains three real polynomials:

P =

 p1(s) = s2 − 5 s+ 6
p2(s) = s2 − (5− ε1) s+ 6
p3(s) = s− (2− ε2)

 (78)

The coefficients of the polynomials of the above set P are perturbed by the
parameters ε1, ε2, which are small positive numbers taking on values from 10−5

to 10−15.
Considering the exact coefficients of the polynomials when ε1 = ε2 = 0, the

LCM of the set is:
lcm{P} = s2 − 5 s+ 6

However, if the coefficients of the polynomials become inexact (ε1 6= ε2 > 0),
several ALCMs can be obtained with degrees varying from 2 to 4. Those ALCMs
depend strongly on the selection of the numerical tolerances ε1 and ε2. The next
test provides a picture of the sensitivity of the ALCM to small perturbations in
the coefficients of the polynomials of the given set.

For each value of ε1 and ε2 from 10−5 to 10−15, the H-LCM algorithm was
applied to the given set (78). The numerical ε-rank for the determination of
the degree of the ALCM is selected to be ε = min{ε1, ε2}. For all the pairs
(ε1, ε2) 121 ALCMs were obtained and their degrees are shown in Table 4. Every
entry (i, j) in Table 4 represents the degree of the ALCM of the set P for
(ε1, ε2) = (10i, 10j) when i, j = −5,−6, . . . ,−15. For example, the degree of
the ALCM for (ε1, ε2) = (10−5, 10−5) is 2. Additionally, Table 5 presents some
selected results for the above ALCM computations.

7. Conclusions

In this paper the definition of the approximate LCM of several polynomials
in R[s] is provided in matrix form and with the aid of the ERES division
algorithm a new LCM computational method is derived, referred to as the Hybrid
LCM algorithm (H-LCM). The developed method combines pure symbolic and
numerical finite precision computations in order to form and solve a linear system
which provides the degree and the coefficients of an approximate LCM of a given
set of polynomials. The overall performance of the H-LCM algorithm shows that
this method can be effectively used for sets of several polynomials with inexactly
known coefficients. The implementation of the H-LCM algorithm in Maple is
available upon request.
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(i,j) -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15
-5 2 2 2 3 3 4 4 4 4 4 4
-6 2 2 2 2 3 3 4 4 4 4 4
-7 2 2 2 2 2 3 3 4 4 4 4
-8 2 2 2 2 2 2 3 3 4 4 4
-9 3 2 2 2 2 2 2 3 3 4 4
-10 3 3 2 2 2 2 2 2 3 3 4
-11 3 3 3 2 2 2 2 2 2 3 3
-12 3 3 3 3 2 2 2 2 2 2 3
-13 3 3 3 3 3 2 2 2 2 2 2
-14 3 3 3 3 3 3 2 2 2 2 2
-15 3 3 3 3 3 3 3 2 2 2 2

Table 4: LCM degrees of the set (78) for (ε1, ε2) = (10i, 10j).

Degree = 2, Tolerance (ε1, ε2) =
(
10−15, 10−15

)
Residual = 1.100559 · 10−17

ALCM = s2 − 5.0 s+ 6.0

Degree = 2, Tolerance (ε1, ε2) =
(
10−14, 10−11

)
Residual = 9.880299 · 10−15

ALCM = s2 − 5.00000000000286 s+ 5.99999999999857

Degree = 2, Tolerance (ε1, ε2) =
(
10−5, 10−5

)
Residual = 4.249130 · 10−18

ALCM = s2 − 5.0 s+ 6.0

Degree = 3, Tolerance (ε1, ε2) =
(
10−15, 10−11

)
Residual = 4.336809 · 10−17

ALCM = s3 − 6.99841030078348 s2 + 15.9920515039174 s

−11.9904618047009

Degree = 4, Tolerance (ε1, ε2) =
(
10−5, 10−10

)
Residual = 3.018419 · 10−16

ALCM = s4 − 10.0000000007172 s3 + 37.0000000039680 s2

−60.0000000062129 s+ 36.0000000022916

Table 5: Some ALCMs of the set (78).
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