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Abstract

Drift-diffusion models (DDMs) are a popular framework for explaining response
times in decision-making tasks. Recently, the DDM architecture has been used
to model interval timing. The Time-adaptive DDM (TDDM) is a physiolog-
ically plausible mechanism that adapts in real-time to different time intervals
while preserving timescale invariance. One key open question is how the TDDM
could deal with situations where reward is omitted, as in the peak procedure—a
benchmark in the timing literature. When reward is omitted, there is a consis-
tent pattern of correlations between the times at which animals start and stop
responding. Here we develop a formulation of the TDDM’s stationary proper-
ties that allows for the derivation of such correlations analytically. Using this
simplified formulation we show that a TDDM with two thresholds–one to mark
the start of responding and another the stop–can reproduce the same pattern
of correlations observed in the data, as long as the start threshold is allowed
to be noisy. We confirm this by running simulations with the standard TDDM
formulation and show that the simplified formulation approximates well the
full model under steady-state conditions. Moreover, we show that this simpli-
fied version of the TDDM is formally equivalent to Scalar Expectancy Theory
(SET) under stationary behaviours, the most prominent theory of interval tim-
ing. This equivalence establishes the TDDM as a more complete drift-diffusion
based theory with SET as a special case under steady-state conditions.

Keywords: interval timing, peak procedure, computational models,
drift-diffusion model, scalar expectancy theory

1. Introduction

Learning the time between important events is a fundamental feature of
cognition. Humans and other animals can readily learn the timing of upcoming
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rewards and adapt their behavior accordingly [1, 2]. A range of psychological
and computational theories have been proposed for interval timing [3, 4, 5, 6,5

7, 8, 9] which succeed at capturing the broad outlines of timing behaviour, but
they often flounder when dealing with the statistics of the micro-structure of
real-time responding.

Particularly vexing for timing models are the behavioural patterns when
predictably-timed rewards are occasionally omitted, as in the peak procedure10

[10]. This peak procedure is likely the most popular interval timing task. Al-
though major timing models such as Scalar Expectancy Theory (SET)[3], Be-
havioral Theory of Timing (BeT)[4], Learning to Time (LeT)[11, 8] and Multiple
Time Scales (MTS)[5] can reproduce the global averaged behaviour in this task,
very few models have been able to account for the pattern of behaviour observed15

in individual trials. The notable exception is SET, which provides good quan-
titative fits to animal data [12] and remains the theory of choice for explaining
static timing phenomena.

Recently, a series of studies have adapted the classic drift-diffusion model
(DDM) used to explain the dynamics of real-time decision-making in behaviour20

and the brain [13, 14, 15] to interval timing [9, 16, 17, 18]. The Time-adaptive
DDM (TDDM) explains timing as the result of a noisy drift-diffusion process
with an adaptive drift rate, which is adjusted based on the time interval ob-
served. The TDDM has a plausible neural implementation, in that the for-
malism is also a mathematical approximation of the net effect of excitation25

and inhibition in the activity of a pool of neurons [18]. The model builds on
earlier theories, such as SET, by adopting a different, more complete mathemat-
ical formulation that allows modeling the trial-by-trial dynamics of timing (i.e.,
the learning), while still explaining core properties of interval timing (such as
timescale invariance). The general modular architecture (accumulator, memory30

storage and decision rules) is preserved, however, raising interesting questions
as to the exact formal relationship between the TDDM and SET.

The TDDM has been successfully applied to some key features of interval
timing. Most notably, it can account for the scalar property, a ubiquitous
feature of timing data where the distribution of response times scales with the35

interval being timed. The model has also been shown to learn quickly and to
reproduce the behaviour observed in fixed-interval schedules [17], the bisection
procedure [19], and tasks where time intervals are changing either randomly [18]
or cyclically [16], but has been only cursorily applied to the aggregate data in
the peak procedure thus far [9].40

One of the main advantages of a mathematical model is the capacity to de-
rive precise quantitative predictions from as few assumptions as possible. In
this respect, the TDDM is particularly well placed among other timing models.
As previously demonstrated [9], Weber’s law, which in the context of interval
timing manifests itself as a constant coefficient of variation (CV), follows from45

adjustments made to the parameters of the inverse Gaussian distribution pre-
dicted by the model. In contrast, SET’s main theoretical component—a Poisson
pacemaker—cannot by itself produce a constant CV. The usual solution is to
add an assumption that the noise in the memory for the remembered intervals
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is so large as to overcome the noise in the pacemaker. This solves the problem50

but at the cost of adding an extra assumption and doing away with the Poisson
pacemaker.

In this paper, we show that the TDDM can account for both the global
averaged response curve in the peak procedure—and reproduce the statistics of
behaviour in individual trials. We demonstrate this first analytically, through55

a new simplified formulation of TDDM’s stationary properties, which we then
show is equivalent to a constrained version of SET. The analytical results from
the simplified model are then validated through simulations with the complete
TDDM formulation.

These results extend the range of phenomena for which the TDDM can60

account and suggest that the Poisson pacemaker postulated by SET—but not
actually used—may be substituted by the result of an opponent Poisson process
[9]. Furthermore, and in light of previous successes, these results suggest there
might be a single comprehensive drift-diffusion-based theory of decision making
and timing, which could cover both the steady-state properties as well as the65

learning dynamics.
The paper next reviews the studies that have examined the patterns of cor-

relations in single-trial analyses of the peak procedure. We then revisit the
TDDM and develop a simplified stochastic model approximating TDDM’s sta-
tionary properties. Given that formulation, the simplest possible extension of70

TDDM to support start and stop behaviours is analytically derived. This sim-
plified formulation is shown to be equivalent to a constrained version of SET
with two thresholds [12], and shown to be a good approximation of the full
TDDM through simulations. Finally, some predictions are made with the full
TDDM about possible sequential effects in the peak procedure.75

1.1. Peak Procedure

In the peak procedure subjects are first trained on a fixed-interval (FI) sched-
ule where the first response after an interval has elapsed since the appearance of
a stimulus produces a reward (see diagram on the left in Fig. 1). When behavior
on FI trials has stabilized, peak trials are then introduced. These peak trials80

are interspersed randomly between the normal FI trials, last 3 or 4 times longer,
and are not rewarded. When peak trials are first introduced during training,
animals start responding as usual before the FI time and then continue respond-
ing throughout the whole (long) interval. With sufficient experience with the
peak trials, a different pattern emerges where responding eventually ceases or85

lowers in frequency soon after the expected reward time [20]. This pattern of
starts and stops that appears after sufficient training is the focus of our analysis
here.

The panel on the right in Fig. 1 shows an example of how, when response
rate is averaged over these peak trials even for a single individual, there is an90

apparent smooth, symmetrical rise and fall in responding around the time of
reinforcement. When individual trials are analyzed, however, a more abrupt
shift in response rate is often observed. On many trials, animals start with
a low response rate, switch to a high response rate, and then go back down
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Figure 1: Peak procedure. Left: Schematic of fixed-interval (FI) and peak trials. Right:
Response rate averaged over peak trials for one rat subject (data from [21]). Reward was
ordinarily available after 20 seconds.

again after the usual interval has elapsed and no reward has arrived [22, 12, 23].95

This three-state system (low-high-low) can be characterized by its two transition
points: the start (switch from low to high) and stop (switch from high to low)
times. In addition, the middle time and duration of the high-frequency bout
can be calculated from the start and stop times.

A detailed analysis of these variables may shed light on the internal mech-100

anisms of interval timing and provide constraints on current timing models.
Table 1 collates the results from the major studies in the literature that have
examined the statistics of these four variables. When possible we have sepa-
rated the data by FI duration and, in only one case, also by reward magnitude.
We did this because in a few cases the correlations were reported to be signif-105

icantly different as a function of FI duration [23] and reward magnitude [24],
although this was not the norm. Of particular note are the coefficients of vari-
ation of each variable and their correlations. Note the strong similarity in the
correlation patterns across 4 different species. The key results are as follows:

1. Positive correlation between start (S1) and stop (S2): ρ(S1, S2) > 0;110

2. Negative correlation between start and duration (D): ρ(S1, D) < 0;

3. Positive correlation between duration and middle (M): ρ(D,M) > 0;

4. Coefficient of variation (CV) for the start larger than for stop: CVstart >
CVstop.
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The correlation results above mean that, in general, start times that occur115

early/late into the trial are usually followed by early/late stops. In contrast,
the duration of the period of high frequency responding tends to decrease with
late starts and increase with early starts. Also, the coefficient of variation
(CV = σ/µ) is larger for starts than for stops.

The four properties above will be referred to as the stationary features of the120

peak procedure, to differentiate from the dynamic features related to learning
when to stop when peak trials are first introduced. Existing timing theories do
contend with some of this static data. SET can capture the first three features
through the variance in its clock and memory processes [31] as can the TD(λ)
algorithm coupled with a neural net function approximator [32]. The Multiple125

Time Scales model [5] has the capacity to generate start and stop responses, but
it is unclear whether that model can fit the full range of these timing features.
Finally, BeT can be made to explain the correlation patterns if it is modified
to include a variable transitional period when behavior switches (Gibbon and
Church [31] called this modification the quasi-serial model, whilst Killeen and130

Fetterman [33] called it augmented BeT ). As Church, Meck and Gibbon [12]
showed, however, this model is incompatible with correlations observed between
subjects which SET can explain. It remains an open question whether other
timing theories can accommodate these features.

Given the formal similarity between BeT and the TDDM [9], this raises135

significant doubt as to whether the TDDM can be made to accommodate these
trial-by-trial properties of the peak procedure. Below, the main formulation of
the TDDM is briefly reviewed and then a new simplified version of TDDM’s
stationary properties is introduced which allows for the derivation of the four
static properties above analytically. The parameters thus obtained with the140

simplified version are used with the full TDDM formulation; these simulations
show that the results match appropriately.

2. Theory

2.1. The Time-adaptive Drift-diffusion Model (TDDM)

The drift-diffusion foundation of the TDDM is given by the stochastic dif-145

ferential equation:

dx = A · dt+m ·
√
A · dW (1)

where A > 0 is the drift or slope and m > 0 is a constant that determines the
amount of Gaussian white noise dW . Note that limiting A to be positive and
scaling the noise by

√
A are particular to the TDDM, not to DDMs in general.

In decision models, x(t) represents the current level of evidence toward a150

conclusion. When x(t) reaches a threshold, that indicates that enough evidence
has been accumulated in favor of a corresponding conclusion. For example, if
the process starts at x(0) = 0, two thresholds at z+ = 1 and z− = −1 could
represent two different conclusions (in decision models, A can be negative).
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Noisy evidence (noise dW and input evidence A in equation (1)) are accumulated155

by pushing x toward one conclusion or the other.
Similarly, in the TDDM the accumulation process gathers noisy evidence

that time has elapsed with A > 0 and x ≥ 0 [17, 16]. A single threshold z > 0 is
used to mark the expected level of x at the time T of a salient event, a reward for
example, such that x crosses z at time t = T on average. The time it takes for x160

to reach z (since A > 0, this will eventually occur) represents the psychological
or subjective estimate for a given time interval. Moreover, because the noise
dW on x at every time step is Gaussian, the distribution of times t it takes for
x to reach z, which is the inverse, is given by the inverse Gaussian distribution
[9]:165

p

(
t;
z

A
,
z2

m2A

)
=

z

m
√
At32π

exp

(
−(At− z)2

2Am2t

)
(2)

with mean µ = z/A and variance σ2 = m2z/A2. In the TDDM, different time
intervals are learned by adapting the drift rate A while holding the threshold
z fixed, such that A → z/T . Therefore, A can be seen as the rate at which
the time interval is elapsing. It is the time-adaptability of A combined with
the
√
A factor in equation (1) that differentiates TDDM from DDM, and that170

gives TDDM its timescale invariance property [9]. If the events to be timed are
unit-size rewards, than A is equivalent to a reward rate.

The coefficient of variation of the time estimate produced by the TDDM is
solely a function of the noise m and threshold z, and can be derived directly
from the distribution (2):

CVTDDM =
m√
z
. (3)

Finally, equation (1) can be approximated numerically as

X(t+ ∆t) = X(t) +A ·∆t+m ·
√
A ·∆t · N (0, 1). (4)

The time-adaptive property of TDDM comes from slope A taking the form
of an exponential moving harmonic average of the observed intervals (Theorem
2 in[17]):

An+1 = (1− α)An + α
1

În
(5)

where În is the estimated time interval observed on the nth trial and 0 < α ≤ 1
is the learning rate. Without loss of generality, if z = 1, then at the time of
reward (t = T ), the value of X(t) (which must then be positive) produces a
positive estimate În = Xn(T )/An of the time interval T . The application of the
learning rule, when the cue indicating the end of the interval is observed, thus
changes the slope A toward the inverse of this new perceived interval În such
that:

An+1 = (1− α)An + α
An

Xn(T )
(6)
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Given each trial begins with X(0) = 0, it can be seen that intervals perceived
to be longer than T (with Xn(T ) > 1) will decrease the rate A toward the
inverse of În > 0, while intervals perceived shorter than T (with Xn(T ) < 1)175

will increase it. We refer the interested reader to [17] and [9] for a full exposition
of the learning rules at the real-time (time-step) level. In the case of the peak
procedure, where the intervals are always of the same duration, equations (4)
and (6) are the only ones needed.

Note that in the peak procedure, we assume the learning rule is only applied180

when the reward occurs. As a result, there are no updates to the rate A on
peak trials. In line with this assumption, some experiments have reported that
peak trials have little or no impact on the start and stop times [20, 21], but
others have reported a leftward shift of the response curve following peak trials
[12] (but no relationship with peak-trial duration). This latter finding suggests185

some influence of peak trials on later trials, but this effect would not seem to be
mediated by an update of the memory for time as encoded in the drift rate A.
Any update due to the long peak trials should actually induce later responding
and a right-ward shift of the response curve (opposite to that observed). Instead,
this finding probably reflects an incomplete reset of the accumulator following190

peak trials.

2.2. Application of the TDDM to the peak procedure

As suggested by [9], perhaps the simplest way to account for the abrupt
switch back to a low response rate in individual trials of the peak procedure is
to use two thresholds z1 < z2. The first threshold z1 marks the time to start the
high response rate, and the second threshold z2 marks the time to stop. This
modification would immediately produce the difference in the CV for starts and
stops (feature #4) because by (3)

CVstart =
m
√
z1

>
m
√
z2

= CVstop.

Note that feature #4 rules out the possibility of having two consecutive
single-threshold timers (one determining the start time, and one determining
the stop time), because starting the second timer when the first one reaches a195

threshold would force CVstop ≥ CVstart. Similarly, having two parallel single-
threshold timers would break feature #1 by producing ρ(S1, S2) = 0, unless
there is really only one timer, or unless some extra common factor is added.
Thus, the single-timer two-threshold approach seems the most sensible option
available. The mechanism for the emergence of such a second threshold dur-200

ing training remains unknown, but for the current purpose of explaining the
stationary features of the peak procedure, we need only to assume its existence.

Due to TDDM’s learning ability, however, it is not immediately clear what
other modifications would be needed in order for the model to exhibit the four
stationary properties of the peak data. Many variations on the model could205

possibly fit the data, but for reasons of parsimony we aimed to find a suitable
variation with the fewest modifications possible. To aid this search in model
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space, we built a simplified version of the TDDM without noise in the diffusion
process (i.e. setting m = 0 in equation (4)) and without applying the slope-
adaptation rules (equation (6)) directly. Instead, we propose to approximate210

the stationary distribution of the slope A as a result of these two interacting
components.

2.3. TDDM: A simplified formulation

The learning rule for adapting A in equation (6) can be seen as a Robbins-
Monro algorithm [34], which estimates the reward rate (assuming fixed unit-size215

rewards) for the stimulus on non-peak trials. The slope An is therefore an im-
proving estimate of the reward rate given the noisy measure În = X(T )/An of
the true time interval T provided by the accumulator at the time of reward.
This algorithm, under some conditions, converges by the law of large numbers
to a normal distribution centered on the reward rate. Under steady-state con-220

ditions, we can therefore approximate the full model by replacing the noise
m in the accumulation or memory process and the application of the learning
rule altogether by sampling the slope An at the beginning of each trial from a
Gaussian distribution N (z/T, σ2) clipped above 0.

Sampling the slope A produces a range of values across trials. On trials225

when the slope is high, both start and stop times are low; on trials when the
slope is low, both start and stop times are high. As a result, there is a positive
correlation across trials (feature #1, see Fig. 2). This sampling, however, is
insufficient to generate a negative correlation between the start and the duration
(feature #2).230

As shown on the simplified TDDM diagram in Fig. 2, a simple way to account
for the negative correlation while maintaining CVstart > CVstop (feature #4)
is to add noise to the start threshold z1. At the beginning of each trial, a
threshold Z1,n is sampled from a probability distribution with a given mean
and variance (for simplicity we used a uniform distribution U(a, b) where a and235

b are estimated from the data but in principle other distributions could have
been used instead). Note that this increases the CVstart to which equation (3)
does not apply anymore, while maintaining feature #4. On trials when the
sampled threshold is low, the start time will be low and the duration high,
while the opposite will happen when the threshold is high, giving rise to a240

negative correlation between the start time and the high response rate duration
(feature #2, see Fig. 2).

Note that adding noise to the stop threshold instead of the start threshold
would not be sufficient to fit the data. It would increase the CVstop, which
may then require additional noise in the start threshold to maintain feature #4245

(CVstart > CVstop). Thus, although adding noise to the stop threshold is also
possible, adding noise only to the start threshold is simpler (and as we will show,
appears to be sufficient).

A major advantage of this simplified formulation is that it allows a direct
analytic derivation of estimates for the model parameters in the full TDDM250

which can reproduce static features 1-4 of the peak procedure, without the
need for time-consuming optimization routines. The simplified model will first
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Figure 2: Diagram illustrating how the correlations seen in the data can be derived from
the simplified model. The panels show two hypothetical trials: the left with a low slope
A and the right with a high slope A. This variable slope induces a positive correlation
between S1 and S2, and between D and M . To highlight the effect of the noise in threshold
z1, two corresponding values S1 are shown (minimum and maximum) on each panel, with
their corresponding durations and middle points. This noisy threshold induces a negative
correlation between S1 and D.

be used to directly generate predictions for the correlations. Secondly, it will
be used to estimate most parameters of the full model directly from the same
CVs. The full model will then be simulated to produce predictions for these255

same correlations, and to asses the degree of agreement between the data, the
simplified model, and the full model. Finally, the simplified model will also be
mapped to SET. Thus, the simplified model will provide a link between the
CVs and the correlations, as well as between the full model and SET under
stationary conditions.260

3. Results

3.1. Simplified TDDM

Let S1, S2,M and D be the times of start time, stop time, middle and
duration respectively with start and stop thresholds Z1 and z2 respectively.
Then according to the simplified model:

S1 =
Z1

A
, M =

S1 + S2

2
=
Z1 + z2

2A
,

S2 =
z2
A
, D = S2 − S1 =

z2 − Z1

A
.
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Let Z1 and 1/A be independent random variables with means E(Z1), E(1/A)
and variances σ2

Z1
, σ2

1/A respectively. It is then possible to write all the statistics
of the peak procedure in terms of the squared coefficients of variation of Z1 and265

1/A, γ2Z1
and γ21/A respectively, and the ratio of the thresholds θ = z2/E(Z1)

(see supplementary material for the complete mathematical derivations of these
statistics). The squared coefficients of variation are:

γ2S1
= γ21/A + γ2Z1

· γ21/A + γ2Z1
, (7)

γ2S2
= γ21/A, (8)

γ2D =
γ2Z1

(1 + γ21/A)

(θ − 1)2
+ γ21/A, (9)

γ2M =
γ2Z1

(1 + γ21/A)

(θ + 1)2
+ γ21/A. (10)

The correlations are:

ρ(S1, S2) =
1√

γ2Z1
+

γ2
Z1

·γ2
1/A

+ 1

, (11)

ρ(S1, D) =
γ21/A(θ − 1− γ2Z1

)− γ2Z1√
γ21/A(γ2Z1

+ 1) + γ2Z1
·
√
γ21/A[(θ − 1)2 + γ2Z1

] + γ2Z1

, (12)

ρ(D,M) =
γ21/A(θ2 − 1− γ2Z1

)− γ2Z1√
γ21/A[(θ + 1)2 + γ2Z1

] + γ2Z1
·
√
γ21/A[(θ − 1)2 + γ2Z1

] + γ2Z1

. (13)

We can demonstrate that a constant start threshold z1, as opposed to a270

stochastic threshold, is qualitatively inconsistent with the data. If z1 is constant,
then γ2z1 = 0, which when substituted into equations (11) to (13) yields positive
correlations for all three cases, contrary to the data:

ρ(S1, S2) =
1√

0 + 0 + 1
= 1,

ρ(S1, D) =
γ21/A(θ − 1)√

γ21/A ·
√
γ21/A(θ − 1)2

=
γ21/A(θ − 1)

γ21/A(θ − 1)
= 1,

ρ(D,M) =
γ21/A(θ2 − 1)√

γ21/A(θ + 1)2 ·
√
γ21/A(θ − 1)2

= 1.

By inverting some of equations (7)-(13) we can estimate the model parame-
ters from the data. We have a choice of which equations to use, the coefficients
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of variation or the correlations. It is simpler to use the coefficients of variation
(7)-(10):

γ1/A = γS2 (14)

γZ1
=

√
γ2S1
− γ2S2

1 + γ2S2

(15)

θ =


1 +

√
γ2
S1
−γ2

S2

γ2
D−γ2

S2

if using (9)

−1 +

√
γ2
S1
−γ2

S2

γ2
M−γ2

S2

if using (10)

(16)

The equations above show that, with the simplified TDDM, three pieces of
information from the data, namely the coefficients of variation of start, stop and275

either middle or duration, are sufficient to determine the three correlations in
Table 1.

Although not necessary to find the correlations, one could simulate (or sam-
ple) the simplified TDDM using the same three CVs to determine its five pa-
rameters, which are the mean start threshold E(z1), stop threshold z2, mean280

accumulator slope E(A), start threshold variance σ2
Z1

, and slope variance σ2
A.

In setting these parameters we have assumed without losing generality that the
accumulator aimed at hitting a threshold z = 1 at the time of reinforcement, and
that the two thresholds to start and stop responding are set so as to surround the
reinforcement threshold: (E(Z1) + z2)/2 = 1. This assumption implies that the285

midpoint M of high frequency responding is exactly in the middle of start and
stop, something that is roughly true (see Table 1 in [12]). Using θ = z2/E(Z1),
it follows that z2 = θ ·E(Z1) and E(Z1) = 2/(1+θ). The five simplified TDDM
parameters, can be expressed directly in terms of data, namely the three CVs
(CVstart = γS1

, CVstop = γS2
, and CVdur = γD), as follows:290

E(Z1) =
2

1 + θ
=

2

2 +

√
γ2
S1
−γ2

S2

γ2
D−γ2

S2

, (17)

σ2
Z1

= (γZ1 · E(Z1))2 =

(
γ2S1
− γ2S2

1 + γ2S2

)
E(Z1)2, (18)

z2 = E(Z1) · θ = E(Z1) ·

(
1 +

√
γ2S1
− γ2S2

γ2D − γ2S2

)
, (19)

E(A) =
1

T
, (20)

σ2
A = σ2

1/A · E(A)4

= E(1/A)2 · γ21/A · E(A)4

= 1/E(A)2 · γ21/A · E(A)4 = (γS2 · E(A))2. (21)
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In deriving σ2
A we made use of the Taylor approximation σ2

1/A ≈ E(A)−4 ·σ2
A

(see Appendix D). In the case of θ, if both CVmid and CVdur are available from
the data we have a choice between which one to use (see equation (16)). We
have used θ derived from CVdur in all models because this value provided a
better agreement with the data, probably because it conveys information about295

the anti-correlated noise between the start and stop which is filtered out in the
middle point. Notice that the correlation equations (11) to (16) do not take as
input the interstimulus interval T of the FI trials, which is coded in the variable
1/A; making the correlations completely independent of the FI timescale in this
model. The estimates for the five simplified TDDM parameters are calculated300

with equations (17) to (21) based on the three CVs from the data.
The correlations derived from the simplified TDDM can be found under the

column Simp. in Table 2. Because the model takes as input the coefficients
of variation for start, stop and duration, we were not able to model the two
studies [22, 25] that did not report these variables. Out of the 19 experiments305

left, only two violated constraints imposed by the model. The data with FI 5
seconds in [23] has γ2D = γ2S2 which causes the denominator in the radical in
equation (19) (stop threshold) to be zero. The data in [24] for FI 17 seconds
and LOW reward has γ2S2 > γ2S1 which generates imaginary values for the start
(equation (17)) and stop (equation (19)) thresholds. Therefore we did not report310

the correlations produced by the models for these two experiments.
In some cases, one or more correlations were not reported in the original

paper (marked as n/a in Table 2), so in these cases results are provided as pre-
dictions only. Considering all 44 correlations available out of the 17 experiments
with the appropriate CVs pattern, the model’s correlations deviate by 0.09 on315

average from the correlations in the data, with the worst case being ρ(S1, S2) in
[24] for FI 10H (see also Figure 3, first bar of each plot). In five cases (out of 51)
the model generates the wrong correlation sign, but those values are very close
to zero (≤ 0.03, marked by an * in Table 2), and two of them are not available
in the animal data to be verified. Such very small, wrong-signed, correlations320

can also be observed in [24] for FI 17 seconds and LOW for ρ(S1, D). In gen-
eral, such small correlations are not robust enough to be clearly considered of
a specific sign. Overall, using only three pieces of information from the data
the simplified model reproduces the pattern of correlations generally well and
generates values similar to the data in most cases as shown on the left-most bar325

of each plot in Figure 3.

3.2. Full TDDM

The full model (equations (4) and (6)) was then simulated assuming learning
occurs only on rewarded trials (and Xn(0) = 0 at the beginning of each trial).
Peak and rewarded trials were randomly generated following the proportions330

used in the original animal experiments and using the same interval lengths
(although the model is completely independent of the interval length). The
parameters were set using the simplified model equations, with the DDM noise
parameter set to m = γ1/A by equation (3) and the assumption that the learning
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Figure 3: Box-plot of the differences in correlations between the animal data and each model
for all 16 experiments to which the simplified TDDM can be fit. Each plot represents, from
left to right: the simplified TDDM (Simp), the full TDDM using the same parameters val-
ues (Full), SET fit to the correlations (SET), the full TDDM using parameters from SET
(FullS), and SET fit using only the same 3 CVs as the simplified model (SETcv). In short,
the simplified model and SET can both provide good estimates of their equivalent TDDM
on stationary conditions. Though SET gets lower error on correlations than the simplified
TDDM, it does so at the cost of error on CVs. SET, however, is not as good as the simplified
model at predicting the correlations from CVs only (last column of each sub-plot).

rule aims at threshold z = 1 when the reward occurs. The slope was initialized335

with the exact value A = 1/T . The only remaining free parameter was the
learning rate α. For each experiment, and each α ∈ {0, 0.05, 0.10, ..., 1.00}, we
ran 30 simulations of 1000 trials each, to gather means and standard deviations
for each measure of interest, namely the 4 CVs and the 3 correlations.

The best matching correlation triplets derived from the full TDDM can be340

found under the column Full in Table 2. Considering all 44 correlations avail-
able out of the 17 experiments with the appropriate CVs pattern, the model’s
correlations deviate only by 0.08 on average from the correlations in the data,
with the worst case being again ρ(S1, S2) in [24] for FI 10H. The simulations
did not generate the wrong correlation sign on average, except for 1 experiment345

from [30], where the model predicts ρ(D,M) ≈ −0.02, but the real value is un-
known. As shown in Table 2, the correlations are quite similar, across all results
(animal, simp. TDDM, and full TDDM). Despite only one wrong correlation
sign (as opposed to five for the simplified model) out of 51, the full TDDM gives
very similar results to the simplified TDDM on this task. As shown in Figure350

3 (two first bars of each plot), the distribution of errors is very similar for both
models. Moreover, on average, the absolute difference between a correlation in
the simplified model and the full model is 0.04. These results show that the
simplified model is a good approximation of the full model under stationary
conditions. In addition, the extra learning parameter in the full model is shown355

to be of little use in explaining the current datasets on the intra-trial structure
of responding on the peak procedure. This outcome is as expected because
the extra learning rate parameter in the TDDM should play an important role
mostly when learning new intervals, but is expected to have little impact on
stationary behaviours.360

To better evaluate the quality of these fits, we examined the absolute error
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on the CVs between the original data and the CVs produced by the simulations
of the full TDDM. The average absolute CV error was 0.08 with the worst case
being 0.17 in [24] for FI 10H, CVdur. This discrepancy, albeit small, is most
likely due to the setting of m = γ1/A, as γ1/A represents a mixture of perceptual365

noise m and the learning rate α. Whether there could be an analytic formula
to set those parameters (m and α) remains an open question. The full model
has an extra degree of freedom in the learning rate α, but to properly estimate
this balance between m and α would require additional information about the
learning dynamics, before steady-state occurs. In the simplified model, γ1/A370

merges m and α parameters from the full model, and this issue does not arise.
Nonetheless, we can still estimate the learning rate, which across all 17 experi-
ments was consistently high and ranged between 0.45 and 0.85 (with a median
of 0.70). Moreover, in about 9 of the 16 experiments for which α has been opti-
mized (for [28], we used the median 0.70 since no correlations were available), a375

small learning rate could adversely impact the sign of ρ(D,M). A high TDDM
learning rate was also found to best fit a different timing task in [18], suggesting
that a high learning rate may be necessary, even when learning is not directly
observable.

To further investigate this hypothesis, we measured the correlation between380

the perceived time estimate of the model (provided by 1/Xn(T )) on reward tri-
als preceding peak trials and the stop time of the subsequent peak trials. The
average correlation across all 17 experiments was 0.61, as expected from such a
high learning rate (e.g., for α = 0.7, the last 2 trials account for 91% of the mem-
orized interval). Unfortunately, it might be challenging to measure an animal’s385

perceived time estimate for a single trial to see such trial-to-trial correlations in
behaviour. Another possibility would thus be to slightly change the rewarded
interval on those pre-peak reward trials to generate enough measurable changes
in responding on the subsequent peak trials. We found that varying those in-
tervals using 1.33 times the CV was sufficient to produce a correlation between390

one reward trial’s intervals and the following peak trials stop times for all 17
experiments (generating a correlation > .47 across all experiments with a mean
of 0.61). For example, if the FI is 20s and the CVstop = 0.15, then using pre-
peak trial intervals of 16s and 24s should be enough to detect a learning effect.
This prediction remains to be tested in animals.395

Finally, as an illustration that the TDDM can produce similar average curves
seen in the data, Fig. 4 shows an example of how the model predicts the start
and stop times on each trial and how averaging these times produces the peak
in response rate around the time of reinforcement.

3.3. Relationship with SET400

An important further observation is that the simplified TDDM presented
above is formally equivalent to a constrained version of the two-threshold version
of SET developed for the peak procedure in [12].

SET incorporates 4 components: a clock (or accumulator), a memory of
reinforcement times, a source of noise, and a comparator. Originally, the accu-405

mulator worked by accumulating noisy Poisson pulses, but this within-trial noise
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Figure 4: TDDM simulation using parameters derived from data in [35]. Left plot: start
and stop times for each peak trial. Right plot: averaging over all trials produces the peak of
response frequency seen in data.

was removed in more modern versions (either because it was unnecessary or be-
cause it would break timescale invariance [36, 5]). Thus, SET has a noise-free
accumulator n representing the perfect estimate of elapsed time in the current
trial. The memory is the memory of reinforcement times. It is represented as410

a distribution determined by an expected value and a coefficient of variation
providing across-trial variability and timescale invariance. At the beginning of
each trial, a sample n∗ is generated from the memory and used for comparison
with the accumulated running time n. There is finally a comparison threshold
b such that the animal starts responding when the ratio n/(n∗ · k∗) > b, where415

k∗ is a multiplicative noise source, which could easily be interpreted as related
to clock speed (k∗ is usually introduced before saving the time to memory in
SET, but this aspect is not important here).

For the peak procedure, a second threshold was introduced for the stop time
in [12]. Because an extra source of noise was necessary to explain the trial420

statistics, two stochastic thresholds were used, l = 1 − b1 and and u = 1 + b2
(each having a mean and variance). Thus, the model starts responding a short
time before the remembered interval and stops a short time after. Note that
the single threshold in the original version of SET was considered constant.
Adding noise to the start threshold is necessary to get the pattern of inter-425

trial correlations discussed here, but the simplified TDDM results suggest that
noise in the second threshold is not necessary. The expected value of the time
memory is assumed to come from experience and is therefore fixed by the task.
The remaining parameter of the model is the CV of that memory γ (k∗ is not
mentioned in [12]).430

The main difference between SET and the simplified TDDM is terminolog-
ical (a symbol mapping is provided in Table 3). In the original full TDDM
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there are two sources of noise generating trial-to-trial variability because the
start threshold z1 was regarded as a constant. The first source comes from the
accumulator, in the term m ·

√
A · dW in equation (1). The drift rate A = 1/T435

encodes the interval memory, and the
√
A factor generates timescale invariance

on reading rate A. The second source of noise comes from trial-to-trial vari-
ability in A due to the learning rule in equation (6). These two sources of
variability are merged together in the simplified TDDM in the distribution of
An which uses the trained interval as its expected value. Thus An in the simpli-440

fied TDDM is equivalent to SET’s n∗ memory, except that An represents rates
while n∗ represents durations.

In adapting the TDDM to the peak procedure data, we found that it was
analytically sufficient to add noise only into the start threshold (noise in the stop
threshold can be added, but must remain smaller than in the start threshold).445

Thus, while in [12] SET uses two noisy thresholds, the simplified TDDM shows
that a noisy start threshold and a fixed stop threshold are sufficient to explain
the data. Moreover, SET allows for full fitting of the two threshold positions
(in terms of proportion of time interval). Because the CVs themselves cannot
give threshold locations, but only some information about their relative time450

positions, we use the fact that the peak response is near the FI to estimate a
threshold ratio θ and locate the thresholds on both sides of it. Thus, the TDDM
has only 3 parameters directly estimated from specific measurements (3 CVs)
whereas SET requires a search process to optimize its 5 parameters. Beyond
that, the thresholds in SET and the simplified TDDM are the same.455

The key equations of the simplified TDDM (Equations (7) to (13)) are equiv-
alent to the two-threshold SET equations in Fig. 13 in [12]. Table 3 further
shows the correspondence between SET and the simplified TDDM in terms of
their parameters. As an example, we show how SET’s formula for the coefficient
of variation of the middle time (cv(m) in Fig. 13 in [12] is equivalent to γM in
the Simplifed TDDM):

γ2+ =
σ2
u + σ2

l

(U + L)2
=

σ2
z2 + σ2

Z1

(z2 + E(Z1))2
=

σ2
Z1

(θE(Z1) + E(Z1))2
=

σ2
Z1

E(Z1)2(θ + 1)2

=
γ2z1

(θ + 1)2
.

cv2(m) = γ2(1 + γ2+(1 + γ−2))

= γ2 + γ2+γ
2 + γ2+ = γ21/A +

γ2Z1

(θ + 1)2
γ21/A +

γ2Z1

(θ + 1)2

=
γ2Z1

(1 + γ21/A)

(θ + 1)2
+ γ21/A = γ2M ,

because σ2
z2 = 0 as we assume here that z2 is constant. The other six equations

in Fig. 13 in [12] can be transformed into the notation from the simplified
TDDM in a similar manner.

To quantitatively compare SET and the simplified TDDM, we implemented
SET and, using a grid search, found the parameters that best fit the 3 correla-460
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tions for each experiment. In the grid search, the mean memory time was the
FI, the CV could vary from 0.05 to 0.25, the largest CV, by steps of .05, the two
thresholds could vary from .1 to .9 by steps of .1 on each side of the FI indepen-
dently, and their standard deviations could vary from 0.00 to 0.75−CVparam value

and 0.25 − CVparam value for the start and stop threshold respectively, where465

CVparam value was the value of the CV parameter for a given grid point. In
the simulations, if the memory time or start threshold where negative or if the
stop threshold was smaller than start threshold, these were then resampled. If
a given set of parameters generated 10% or more of such invalid values, that set
of parameters was skipped.) A total of 30 simulations of 1000 trials each were470

run for every grid point (as in the full TDDM). The mean absolute error on all
available correlations for all 17 experiments TDDM could fit was 0.05 (as op-
posed to 0.09 for the simplified model), and there was no sign error (comparing
the first and third bars on each plot of Figure 3).

The absolute difference in parameters value between the two models is pro-475

vided in the last column of Table 3. The noise levels were very close to each
other, including the stop threshold. The main difference was in the extra free-
dom SET has to position the start and stop thresholds relative to the FI. This
error reduction, however, came at a cost. SET has 2 extra parameters and
the fitting used all 7 pieces of information available, compared to the simplified480

model that only used 3. Whereas the simplified model used the exact CVs,
SET produced substantial error on each of them (0.04 on average, for each CV).
Thus, the reduced error on the correlations was counteracted by increased error
on the CVs. When fitting SET using only the same 3 CVs as the simplified
TDDM, SET’s absolute error on correlations increased from 0.05 to 0.19 (more485

than double the simplified model, see the last bars of each plot on Figure 3
as compared to the third bars). Thus, SET has a little less predictive power,
but the discrepancy between the SET and TDDM thresholds would be better
analysed by looking at the start and stop temporal positions relative to the FI
in future studies.490

To further assess whether SET (like the simplified model) could be used as an
estimate of the full TDDM under stationary behaviours, we augmented the full
TDDM to support two thresholds with specific means and variances. We then
ran the same simulations as before, but feeding the SET parameters directly into
this augmented TDDM as estimates (using m = γ and optimizing α to match495

the correlation as before). The average absolute error for this augmented full
TDDM average was 0.04 (as opposed to 0.05 for SET alone, comparing the third
and fourth bars on each plot of Figure 3), and the average absolute difference in
correlation between SET and its TDDM equivalent was 0.03 (as opposed to 0.04
for the simplified TDDM and its full equivalent). The learning rate was also500

similar to the previous TDDM simulations with α ≥ 0.55 for all experiments
with a median of 0.90, thus confirming the prediction about sequential effects
made in the previous section. In short, the TDDM, although well-known for
modelling the learning dynamics, can be well approximated by SET (with the
same parameters) under stationary conditions.505

We have thus established the precise mapping between the simplified TDDM
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and SET, as well as having showed that they can both serve to provide estimates
for the parameters for their TDDM equivalent under stationary conditions. The
simplified TDDM model provides a way to show that adding noise in the start
threshold and having a fixed stop threshold is sufficient for the full TDDM to510

fully account for the micro-structure of peak-interval data, and to link SET to
the TDDM under stationary conditions without removing the TDDM’s ability
to also reproduce trial-to-trial time learning dynamics [18, 16]. Moreover, the
formulae developed to estimate the TDDM’s parameters can also be turned into
formulae to estimate SET’s parameters directly from the CVs, without the need515

to run thousands of simulations to find the best possible parameters (as in [12]).
While SET can also be used as an estimate of the full TDDM for stationary
conditions, a major advantage of the full TDDM over SET is that it is not
limited to stationary behaviours, as it also covers time-adaptive phenomena
through its learning rule.520

4. Discussion

This paper extends the TDDM to deal with the micro-structure of respond-
ing on the peak procedure, when rewards are occasionally omitted. A simplified
version of the TDDM was introduced, which allows for analytic derivation of
model predictions for steady-state behaviour. This simplified version is also525

shown to be equivalent to a constrained version of Scalar Expectancy Theory,
making SET a special case of the broader drift-diffusion framework.

This paper also provides, to the best of our knowledge, the most comprehen-
sive review of single-trial analyses in the peak procedure, which reveals a con-
sistent pattern of correlations and CVs observable in the trial micro-structure530

across 19 of 21 data sets. The TDDM and its simplified model were both able
to provide good fits for most correlations available as well as to make realistic
predictions for those which were not, such as in [28]. The two cases in which
they both failed to fit the data—FI 5 in [23] and FIs 17L in [24]—were in direct
violation of the model’s constraints imposed by equations 15 and 16 (the data535

had either γ2S2
> γ2D or γ2S2

> γ2S1
). In a few cases the simplified model had the

wrong sign, but those predictions were too close to zero for the sign to be clear
and in some of those cases, the experimental correlations were not available.

The TDDM, in its original formulation, could be expanded in many different
ways to fit the peak procedure data. For example, multiple accumulators, in540

parallel, or in sequence, could be used to determine when to start and to stop,
with each potentially having different noise factors, thresholds, and learning
rates. Given that using distinct timers for the start and stop could easily be
eliminated, we developed an approximation or simplified model of the TDDM
using a single timer for steady-state or stationary behaviours. We then used545

it to find the simplest modifications that could account for the peak procedure
statistics. By adding to this simplified TDDM an extra threshold to account for
the stop time on peak trials and noise to the start time threshold, we were able
to generate predictions that fit the data well. Simulations using the full TDDM
formulation corroborated the simplified TDDM results and also validated the550
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simplified version as a good approximation of the full TDDM’s steady-state
behaviours. Thus, in future studies, this simplified version can be useful in
formulating hypothesis and generating parameters that can later be tested with
the full TDDM.

The paper also demonstrates that this simplified TDDM is formally equiv-555

alent to a specific version of SET on many tasks covered by SET. Therefore, a
direct comparison between these two models could be made. Although math-
ematically equivalent, there are possible differences in interpretation. For ex-
ample, SET postulates a Poisson pacemaker but this feature does not influence
timing noise, because, within SET the error in reading and writing in memory560

overcomes the Poisson variability. In the TDDM, the Poisson noise resides in
the opponent-process underlying the noise m in the DDM [18]. That DDM
noise can be considered both the error in reading the slope value at every time
step [17] as well as perceptual error generated by this accumulation of noise.
This error, combined with the learning process, seems sufficient to explain the565

inter-trial variability covered in SET by the memory error. Finally, though
SET works in steady-state tasks such as the peak procedure, the theory has no
possible mechanism to account for any learning dynamics. While we showed
that SET can be used to estimate the full TDDM (or its parameters), the full
TDDM on the other hand, can adapt its drift rate to also account for behaviour570

on dynamic tasks, as previously demonstrated in the case of random and cyclic
schedules of reinforcement [18, 16]. This adaptive element may also predict
hitherto unreported effects. Depending on the values chosen for α and m, the
full TDDM could show sequential trial-to-trial dependencies by appropriate ma-
nipulation of the FI on reward trials preceding peak trials. A deeper account575

of such sequential effects would require data from the beginning of training to
set α and m more precisely, but some testable predictions were made with the
model assuming α stays high (≥ 0.5).

While the question of whether there is one central clock or a bunch of dis-
tributed timers in the brain is still debated [37], SET usually posits a central580

clock, whereas the TDDM does not require such a central pacemaker and could
very well suppose different accumulators for each interval being timed. The data
from [23] also contains an experiment looking at the timing of multiple durations,
which could pose a challenge to such a multiple timers idea. In one experiment,
3 distinct durations were used, allowing evaluation of the start and stop times585

for the different timed durations in the same peak trial. Interestingly, they
found that stop times for the different durations were correlated within trials,
suggesting a common clock noise (in SET), which would go against having the
3 different intervals in 3 different integrator rates for the TDDM. There is, how-
ever, also evidence that diffuse neurotransmitters, such as dopamine [38], can590

influence time perception. Thus, in a multiple-duration procedure, dopamine
might diffusely influence all the timers in parallel. In the TDDM, this could be
modelled by adding a common k factor in front of A in equation (1), affecting
all timers speed equally. Such a parameter could also be considered equivalent
to SET’s k∗ parameter and could be added to the simplified model as well,595

keeping both models similar (but [23] only scratched the surface on this point).
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It would be necessary to develop formulae to isolate the variability of k across
trials from the other sources of noise, possibly from the stop time correlation in
the multiple duration trials. This is beyond the scope of this paper.

The TDDM also provides a degree of neural plausibility that most other600

timing models lack. For example, Simen et al. [18] showed how the TDDM
could be represented at a lower level by a pool of Poisson firing neurons, even at
long multi-second timescales [18, 39]. In addition, neurons with climbing activity
which adapt their climbing rate to the necessary delay (exactly like TDDM) have
already been recorded in numerous brain areas over short timescales, such as the605

thalamus (adapting between 1- to 2-s intervals) [40], the posterior parietal cortex
(adapting between 300ms and 800ms intervals) [41], and in the inferotemporal
cortex (adapting between 4 and 8 seconds intervals) [42].

The TDDM, however, can reproduce adaptive behavioural data on timescales
up to 90 s and technically should work on static data for any timescale —not610

only the shorter timescales above. Recent work by Mello et al. [43] fills this gap
in the timescale of the neural substrate. They found evidence for an adaptive
neural representation in the striatum, which changes for intervals varying from
12 to 60 s. In rats performing a timing task, neurons from a pool of striatal
neurons fired in sequence with each neuron roughly representing a different615

elapsed time. When the time interval was changed, this neural representation
adapted to the interval duration, with the same neuron representing a similar
relative time, but different absolute time. Such a dynamic adjustment of the
time scale is a fundamental element of the TDDM, but lies outside the scope of
SET’s static representation.620

The adaptive nature of the neural representation also does not accord with
most learning models of timing which assume a fixed and predetermined time-
code [5, 6, 7, 8]. An important outstanding question is how a population of
spiking neurons such as the one found [43] could implement the learning rule as
defined in equation (5) from [18, 17]. Nonetheless, the TDDM is perhaps unique625

among timing models to incorporate an adaptive representation of elapsed time,
in accordance with the neural data, and to still fit the behavioural data under
static conditions. Therefore, the TDDM seems well positioned as a simple high-
level model that also accurately express lower-level neural representations.

One particularly appealing feature of the TDDM is the breadth of situations630

to which similar DDM formalisms can be applied. Whereas SET is a dedicated
timing model, the TDDM is a model based on some of the same principles of
the more general drift-diffusion class of models, which are well established in
decision making and encounter wide physiological support [44, 14]. Though the
computations are not strictly identical, in that the drift rate is adaptively scaled635

in the TDDM, the fact that a similar drift-diffusion process may underlie such
diverse areas as interval timing and decision making suggests this process may
be, to borrow a concept from theoretical neuroscience [45], a canonical cognitive
computation.
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Appendix A. Variances and covariances

In the simplified TDDM, the random variables are the threshold Z1 and the875

inverse of the slope 1/A (we show in S4 how to obtain the mean and variance
of A from the distribution of 1/A). Then the times of start, stop, middle and
duration can all be written in terms of these random variables as follows:
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S1 =
Z1

A
M =

S1 + S2

2
=
Z1 + z2

2A

S2 =
z2
A

D = S2 − S1 =
z2 − Z1

A

To derive the variances we use the relation Var(Y1Y2) = E(Y1)2 · Var(Y2) +
E(Y2)2 · Var(Y1) + Var(Y1) · Var(Y2) for two independent random variables Y1880

and Y2:

Var(S1) = Var

(
Z1 ·

1

A

)
= E(Z1)2 ·Var

(
1

A

)
+ E

(
1

A

)2

·Var(Z1) + Var(Z1) ·Var

(
1

A

)
.

Var(S2) = Var

(
z2 ·

1

A

)
= z22 ·Var

(
1

A

)
.

Var(D) = Var

(
1

A
· (z2 − Z1)

)
= Var

(
1

A

)
·Var(Z1) + E

(
1

A

)2

·Var(Z1) + (z2 − E(Z1))2 ·Var

(
1

A

)
.

Var(M) =
1

4
·Var

(
1

A
· (Z1 + z2)

)
=

1

4

[
Var

(
1

A

)
·Var(Z1 + z2) + E

(
1

A

)2

·Var(Z1 + z2) + E(Z1 + z2)2 ·Var

(
1

A

)]

=
1

4

[
Var

(
1

A

)
·Var(Z1) + E

(
1

A

)2

·Var(Z1) + (z2 + E(Z1))2 ·Var

(
1

A

)]
.

To find the covariances we use the definition Cov(Y1, Y2) = E(Y1Y2) −

27



E(Y1)E(Y2):

Cov(S1, S2) = E

(
Z1

A
· z2
A

)
− E

(
Z1

A

)
· E
(z2
A

)
= z2 · E

(
1

A2

)
· E(Z1)− z2 · E

(
1

A

)2

· E(Z1)

= z2 · E(Z1) ·Var

(
1

A

)
.

Cov(S1, D) = E(S1 · (S2 − S1))− E(S1) · E(S2 − S1)

= E(S1 · S2)− E(S1) · E(S2)− E(S2
1) + E(S1)2

= Cov(S1, S2)−Var(S1).

Cov(D,M) = E

(
(S2 − S1) · (S1 + S2)

2

)
− E(S2 − S1) · E

(
S1 + S2

2

)
=

E(S2
2)− E(S2

1)− E(S2)2 + E(S1)2

2

=
Var(S2)−Var(S1)

2
.

Appendix B. Coefficients of variation

To derive the squared coefficients of variation we use the definition γ2Y =
Var(Y )/E(Y )2 for a random variable Y :
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Appendix C. Correlations885

To find the correlations we use the definition ρ(Y1, Y2) = Cov(Y1,Y2)√
Var(Y1)

√
Var(Y2)

:

ρ(S1, S2) =
Cov(S1, S2)√
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√
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.

For ρ(S1, D) = Cov(S1,D)√
Var(S1)

√
Var(D)

we proceed first by dividing both numerator

and denominator by E(Z1)2 · E
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1
A

)2
:
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=
√
γ2Z1

+ γ21/Aγ
2
Z1

+ γ21/A ·
√
γ21/A(θ − 1)2 + γ21/Aγ

2
Z1

+ γ2Z1
.

Putting everything back together we have

ρ(S1, D) =
γ21/A(θ − 1− γ2Z1

)− γ2Z1√
γ21/A(γ2Z1

+ 1) + γ2Z1
·
√
γ21/A[(θ − 1)2 + γ2Z1

] + γ2Z1

.

Proceeding in the same way as above for ρ(D,M) = Cov(D,M)√
Var(D)

√
Var(M)

we

derive

ρ(D,M) =
γ21/A(θ2 − 1− γ2Z1

)− γ2Z1√
γ21/A[(θ + 1)2 + γ2Z1

] + γ2Z1
·
√
γ21/A[(θ − 1)2 + γ2Z1

] + γ2Z1

.
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Appendix D. Note on the reciprocal normal distribution 1/A

We make the following claim: the combined effect of the Gaussian noise
in the TDDM and the adaptation rules cause the slope A to be a normally890

distributed random variable. We justify this claim on the basis that, because
of noise, the slope never converges absolutely to one value that is used on every
trial. Instead, it fluctuates around an average value, being corrected up when
the process crosses the threshold too late, or down when it crosses too early.

We have shown in the paper that it is possible to use the data to estimate895

the coefficient of variation of the reciprocal of the slope 1/A, namely γ1/A = γS2

(equation (14) in the main text). However, to run the simulations we need
estimates of the mean and variance of A. The question is how to obtain such
estimates from the reciprocal distribution 1/A.

If, as we claim, A is normal, then the distribution of 1/A is undefined since

E[1/A] =
1

σ
√

2π

∫ ∞
−∞

a−1e
−(a−µ)2

2σ2 da

does not converge. A possible solution is to estimate using Taylor series. Let A
be a random variable with E[A] = µ. Estimating g(µ) we get:

g(A) = g(µ) + g′(µ)(A− µ) + ...

Then we can say that approximately

E[g(A)] ≈ g(µ),

Var[g(A)] ≈ g′(µ)2Var[A].

Finally, if g(A) = 1/A then

E

[
1

A

]
≈ 1

µ
,

Var

[
1

A

]
≈
(

1

µ

)4

Var[A].

To generate the parameter A for the simulation we sample from a normal dis-
tribution with

E[A] = µ,

Var[A] = µ4Var

[
1

A

]
= µ2γ21/A

since Var[1/A] = E[1/A]2γ21/A = µ−2γ21/A.900
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Table 3: Equivalence between the main variables in the simplified TDDM and 2-threshold
version of SET ([12]). Note that the simplified TDDM uses rate instead of time (A = 1/T ).
T is determined by the task and is only necessary to reproduce the response curve, but is
not needed for calculating CVs and the correlations analysis because of timescale invariance.
Finally, SET allows for two independent noisy thresholds whereas, in the TDDM, the expected
values of both thresholds are fixed from θ and the variance of the second threshold is 0. The
last column gives the parameters absolute difference averaged across all 17 experiments the
simplified model could fit.

SET Simplified TDDM Avg. Abs. Diff.

E(n∗) = T ∗ E(An) = 1/T 0.00
γ γ1/A 0.03

E(l) = E(1− b1) E(Z1) = 2/(1 + θ) 0.10
σb1 σZ1

0.03
E(u) = E(1 + b2) z2 = 2θ/(1 + θ) 0.19

σb2 0 0.04
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