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Abstract—Finding critical nodes in a network is a significant
task, highly relevant to network vulnerability and security. We
consider the node criticality problem as an algebraic connectivity
minimization problem where the objective is to choose nodes
which minimize the algebraic connectivity of the resulting net-
work. Previous suboptimal solutions of the problem suffer from
the computational complexity associated with the implementation
of a maximization consensus algorithm. In this work, we use
spectral partitioning concepts introduced by Fiedler, to propose
a new suboptimal solution which significantly reduces the im-
plementation complexity. Our approach, combined with recently
proposed distributed Fiedler vector calculation algorithms enable
each node to decide by itself whether it is a critical node. If a
single node is required then the maximization algorithm is applied
on a restricted set of nodes within the network. We derive a lower
bound for the achievable algebraic connectivity when nodes are
removed from the network and we show through simulations that
our approach leads to algebraic connectivity values close to this
lower bound. Similar behaviour is exhibited by other approaches
at the expense, however, of a higher implementation complexity.

I. INTRODUCTION

The occurrence of an unexpected event, such as a natural
disaster or an attack by a malicious node on a few links or
edges can have a great impact on the performance of the
network. This effect can vary from having a small decrease
in the QoS of a portion of the network upto the complete
breakdown of the network [1]. In March 2011, a Georgian
woman who was scavenging for copper to sell as scrap, cut
off the web access to almost the whole of Armenia [2]. She
damaged the main fiber optic that was connecting 90% of
Armenia thus, depriving 3.2 million people from the access to
the internet for five hours. In terms of graph theory, the woman
cut off an edge between two critical nodes in the network thus
disconnecting a major portion of the network.

Among various nodes that exist in the network, the nodes
that have the highest influence on the performance of the
network upon their removal are referred to as the Critical
Nodes (CNs) of a network [2]. The identification of these
CNs beforehand leads to an appreciation of the vulnerability
of a network and in some cases aid in formulating a suitable
solution which can help avoid, the degradation in performance
or the network partitioning that will result from node failure.
Numerous approaches have been proposed in literature to
determine the critical nodes in a network. A few of the

most commonly used metrics are: degree centrality [3] which
accounts for the number of neighbours of a node to determine
node centrality, betweenness centrality [4] and ego centrality
[5], which determine the criticality of a node based on its
contribution in forming the shortest path routes in a network
with the former being a global metric whereas, the later using
information gathered from the two hop neighbours of a node,
the closeness centrality [3], which uses the distance of every
node to every other node in the network to determine the CN
set in the network and eigenvector centrality [6] which uses
the largest eigenvector of the adjacency matrix of a network to
determine node criticality. Another approach, which has been
adopted in a number of recent studies, considers the algebraic
connectivity as a metric for evaluating the node criticality.

The algebraic connectivity was introduced by Fiedler [7] and
is defined as the second smallest eigenvalue of the Laplacian
matrix of a network. It has been shown to be a good measure
of the connectivity robustness of a network in the sense that
the smallest its value is, the closer the network is in becoming
disconnected. So, in many studies a node is considered as being
critical if its removal leads to a high reduction in the algebraic
connectivity of the network. Finding such critical nodes can
be done in number of ways. A basic but tedious approach is to
use an exhaustive search over n possible sub-graphs each of
which is the resultant of the removal of one of the total n nodes
in the network. This approach requires the information of the
complete network and thus can be computationally expensive
when dealing with large network structures. In addition, when
multiple critical nodes need to be found the approach becomes
computationally expensive with the number of subgraphs that
need to considered increasing exponentially with the network
size.

To avoid the use of this tedious and computationally expen-
sive approach, researchers have proposed various sub-optimal
solutions for determining the CNs of a network. These sub-
optimal solutions were derived on the basis that, the algebraic
connectivity of a network is the sum of the difference in the
Fiedler vector values that correspond to the neighbouring nodes
of a network. The term Fiedler vector refers to the eigenvector
which is associated with the second smallest eigenvalue of
the Laplacian of a network. Each entry of the eigenvector
corresponds to a single node in the network. According to
a popular suboptimal solution, a node is deemed as critical
if it maximizes the summation of the differences with the



eigenvectors of its neighbouring nodes in a network as shown
below [8][9]:

2
CN = arg max | (v; —vj) (1)
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Here, N; is the set of neighbours of node ¢ where 7,5 € V
and v; is the Fiedler vector value corresponding to node 7. A
slight variant of the suboptimal solution of Eq (1) has been
proposed in literature, which uses a normalized version of the
difference in the Fiedler vector values [10][11]:

> jen; Vi(vi — vj)
1—v?

Both these suboptimal solutions have been shown to perform
well in specific scenarios but they suffer from the fact that a
global maximisation consensus algorithm must be employed
which can be slow and significantly increases the convergence
time of the proposed algorithm. This problem is particularly
vivid in distributed implementations of the proposed algorithm.

In this work we use spectral partitioning concepts that were
introduced by Fiedler [7], to propose a new suboptimal solution
which is shown to work effectively and is less computational
expensive. A node compares its Fiedler value with the Fiedler
values of its neighbours and classifies itself as being critical if
it identifies a sign change with at least one of its neighbours.
This approach is combined with a recently proposed distributed
mechanism to calculate Fiedler vector values in a network
[12], so that each node can evaluate its criticality role in
a network. When, multiple critical nodes are sought then,
no maximization consensus algorithm is required, whereas,
when a single critical node must be detected in the entire
network then, a maximization consensus algorithm must be
employed only over a restricted node set which consists of
all the nodes which report a sign change in Fiedler value
with at least one of its neighbours. Despite the significant
reduction in implementation complexity the approach is shown
through simulations to perform at least equally well with other
solutions which have been proposed in literature. In addition
we derive, using mathematical analysis, a lower bound on the
algebraic connectivity of the network when nodes are removed
and we show that the proposed approach is able to choose
critical nodes whose removal leads to algebraic connectivity
values which are close to this bound. This demonstrates that the
proposed distributive approach can correctly identify critical
nodes in a network with reduced computational complexity.

The paper is organised as follows. In Section II, we intro-
duce the relevant mathematical notation and review previous
work in the area, in Section III, we present the proposed
algorithm, in Section IV, we derive the lower bound on the
algebraic connectivity upon node removal, in Section V, we
evaluate the performance of the proposed approach using
simulations and finally in Section VI we conclude our work.

CN = arg max )
eV

II. PROBLEM FORMULATION

In this section, we introduce the relevant mathematical
framework, we formulate the considered problem and present
existing approaches found in literature.

We consider a Graph G = (V,E) where |V| = n and
|E| = m are the number of nodes and edges respectively. The
incidence matrix A is the n x m matrix where the existence of
an edge | € E between node i and j defines the [! column of
the matrix such that a;, = 1 and a;; = —1. For such a graph
the Laplacian matrix is defined as:

L=AAT = Z aal 3)
=1

The diagonal entries of this Laplacian matrix L;; denote
the degree of node 7 and the non diagonal entries denote the
existence of a link between two nodes. L is positive semi-
definite and L1 = 0 where 1 is the vector of all ones.

The eigenvalues of the Laplacian matrix are arranged in
ascending order such that 0 = A} < Ao < ... < A, The
multiplicity of zero in the eigenvalues represents the number
of disconnected components of a network. The second smallest
eigenvalue © = Ao represents the algebraic connectivity of
the network with the corresponding normalized eigenvector
being referred to as the Fiedler vector of the network [7]. The
algebraic connectivity of a graph is well known to constitute
a measure of the graph connectivity in the sense that the
lower the value is, the closer the network is in becoming
disconnected. Considering as critical nodes the ones which
contribute the most to the network connectivity, one may define
critical nodes as the ones which when removed minimize the
algebraic connectivity of the network. This is referred to as
optimization problem P which is shown formally below:

P: CN =arg Inel%/l w(G(V —a)) “4)

One way of solving P when a single node is removed is
through exhaustive search. However this approach is com-
putationally expensive. In addition, when multiple nodes are
removed, the complexity of the exhaustive solution increases
combinatorially with increasing network size. So, people have
sought suboptimal solutions which are simple to implement in
a distributed manner. The most popular solutions are inspired
from the following characterization of the algebraic connec-
tivity [13]. The algebraic connectivity is the solution of the
following optimization problem:

T
u(L(x)) = mm{yﬁfj)yy £01Ty=0) ()

Where y is a non zero vector that is orthogonal to the all
one vector 1. We can reduce Eq (5) into:

T
(L) = min "2y 2017y =0} ©

If we substitute y with the normalized vector v = y/||y|| in
Eq (6) then, it can be written as:

w(L(x)) = min{vT L(z)v| ||v|]| = 1,1Tv =0}  (7)

which can also be expressed in the form:
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The value of v;, i € V are the entries of the Fiedler vector v
of the Laplacian L. To each node corresponds a Fiedler vector
entry which refers to as its Fiedler value of the node. Now
the node which contributes most to the algebraic connectivity
according to Eq (8) is the one which maximizes the sum
of squared differences of the Fiedler values of the nodes
compared with its neighbouring nodes i.e Dy (vi — v;)%
This observation has led to the suboptimal solution of Eq (1)
and its variant of Eq (2). These solutions can be implemented
in a distributed manner based on a recently proposed dis-
tributed algorithm that calculates the Fiedler vector values of
each node using local information only. Their main drawback
as indicated by the authors in [12] is that, a maximization
consensus algorithm must be employed to find the maximum
of the criticality metric among all nodes in the network.
This significantly reduces the speed of convergence of the
algorithm.

III. PROPOSED ALGORITHM

In this section, we describe the rationale with which we
propose a new suboptimal solutions of problem P which is
computationally less expensive to implement in a distributed
manner. Our approach is based on spectral partitioning con-
cepts.

Spectral partitioning is a method of partitioning a graph into
two subgraphs in such a way that, the subgraphs have nearly
equal number of vertices while also minimizing the number
of edges in-between these two subgraphs [14]. In a network,
if ¥ = (vy1,....v,) is the Fiedler vector of the Laplacian of
the graph G, then spectral partitioning finds the suitable value
s such that the graph is divided in the form that v; > s and
v; < s withi4j =n and ¢ # j [7]. Such a partition is known
as the Fiedler cut. A Fiedler cut can be of various forms, a
bisection in which s is the median of ¥, a ratio cut in which s
gives the best ratio cut, a sign cut in which s is equal to zero
and a gap cut in which s is the value of the largest gap in the
sorted list of Fiedler vector components. In this work, we use
the sign cut approach for determining CNs in a network.

The Fiedler vector has both positive and negative entries
due to the condition 1Tv = 0 of Eq (8). It has been
shown that the set of nodes with positive Fiedler values form
a subgraph which is well connected and the set of nodes
with negative Fiedler value form another subgraph which is
also well connected. The two subgraphs between them are
poorly connected. So the Fiedler vector values can be used
to partition the network into well connected clusters. The sign
of each Fiedler vector entry determines to which subgraph the
corresponding node belongs, while its magnitude characterizes
its position in the associated cluster. A higher magnitude is the
evidence of a nodes placement close to the center of a cluster
whereas, a lower magnitude is the evidence that the node is
placed close to the edge of a cluster [12].
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Figure 1. Sample Network.

We demonstrate these concepts through the sample network
of Fig 1. The network consists of two well connected clusters.
These clusters are poorly connected between them by means
of a single link. The Fiedler vector values are calculated
and indicated in the diagram. At each node we observe
that all the Fiedler values corresponding to the nodes in the
left-hand cluster have positive values, whereas, the elements
corresponding to nodes in the right-hand cluster have negative
values. The most critical nodes are evidently the ones which
lie on the boundary of the clusters sharing the link which
connects the two clusters. Removal of one of these two nodes
will render the network disconnected. We observe that Fiedler
vector values for these two nodes have different signs, as they
belong to different subgraphs. It can also be observed from
the figure that the nodes that lie in the center of these clusters
have a higher Fiedler vector magnitude when compared to the
nodes that are at the boundary of a cluster.

This demonstrates that nodes which lie on the boundary of
the well-connected subgraph and share common links have
Fiedler vector values with different signs. We generalize this
concept and consider as critical, the nodes which report a
Fiedler value which is different from at least one of its
neighbours. So in a general graph G = (V| E), a node i is
considered as critical it if satisfies the following criterion for
some j € N;:

sign(v;) — sign(v;) >0 ©)

This approach however can lead to multiple nodes in a
network classified as critical. If only one node is to be
classified as critical then we choose the one among all nodes
which satisfy criterion Eq (9), which maximizes a particular
criticality criteria. Different criticality criteria may be selected
but along the lines of the previous work conducted, we choose
the sum of the squared differences in Fiedler vector values
between neighbouring nodes » -,y (v; — v;)%. Let V/ denote
the set of nodes which satisfy criterion Eq (9), then:

CN = arg max Z (v — vg)? (10)
kEN,

The suboptimal solution of Eq (10) is less computationally
expensive than previous approaches as the maximization algo-
rithm is applied over the restricted set V'’ instead of the whole
node set V. We conjecture that the set V' is connected, form-
ing a bipartite graph. This connectivity enables a distributed
maximization consensus algorithm to be employed locally.



The proposed algorithm is amenable for implementation in
a distributed fashion. This is achieved by employing a recently
proposed distributed algorithm which calculates the Fiedler
vector values at each node. This is particularly attractive in our
approach as it allows each node to decide locally whether it is a
critical node or not. By merely exchanging information with its
neighbours each node calculates its Fiedler value and decides
whether it is critical by checking if one of its neighbours has
Fiedler value with a different sign.

The distributed computation of the Fiedler vector is based
on the observation that the Laplacian matrix of a network is
implicitly coded inside the network itself and thus for the
matrix product Lz = y, the k' entry of x that is denoted
by x, is stored inside the node itself and thus by using the

xqs of its neighbours where g € Nj, x ” can be computed

as [12]:

Lt _ ] ali- pk\(|Nk‘$k quNk k), _ if (i mod N) =0
F I%k((l lNk‘)fEk + = quN x;, otherwise

1)

if (i mod N) = 0

i+l k> . i i+l i
k Bue 1 (rt + %), otherwise

(12)
Where o = n is a strictly positive constant, ¢ and p are iteration
indexes but p is incremented after every few iterations, § =
2= mingek [ Ny| and § is a small positive value used to avoid
division by zero. Here:

z+1 1

’LJrl l+1 13
R AL R DR (13)

neNy

IV. ANALYSIS

In this section, we derive analytically a lower bound on
the algebraic connectivity when nodes are removed from
the network under consideration. This bound allows one to
evaluate how conservative our suboptimal solution is when
multiple nodes are removed from the network.

Theorem 1. If G = (V,E) is a graph of n nodes with
eigenvalues 0 < Ny < A3 < ... < Ay, then, upon removal
of w of the most critical nodes from the graph, the algebraic
connectivity of the resultant graph is lower bounded by:

_ u3
A2 N = T T = ) (14)
where
=3 Y (wi—vy), (15)
wen jeEN; i€w
bn = n(tr(A) —ug) + /n(1 —n)f(A) (16)
and

F(A) = tr (A - tr(;l) I>2 - (2 (u2 - ”(;))2> (17)

with

2 2
tr <A — tT(QA) I) = tr(A2) - 7(#(;4)) (18)

Here, A is the Laplacian matrix defined by the set of nodes
w that are being removed from the graph.

Proof: We use the eigenvalue decomposition of L =
QDQT where D = Diag(0,Aa,....., A,) is the diagonal
matrix of ascending eigenvalues and () is an orthogonal matrix
with corresponding eigenvectors of L in its columns. The
eigenvalues of a Laplacian matrix L can be found using
Lv = \v, therefore, in this expression we substitute L to get
[15]:

(Q@DQ")v; = Aju; (19)

Where v; is the 11near combination of the eigenvectors

corresponding to the jt* eigenvalue A; of L. The removal of

w nodes from the network reduces D by a factor vu” where

u = QTH and H is the incidence matrix defined by the set
of nodes being removed [16]. Thus we have:

Q(D — uwu™)QTv; = Nju; (20)

We know from [17] that, the eigenvalues of Eq (20) can be
obtained by solving D — uu” — I for the determinant of the
matrix, where [ is the identity matrix [17]:

det(D —uul —XI) =0 (1)

det(D — M)det(I — (D = XI) " tuu®) =0 (22)

Eq (22) can be reduced to [17]:

TTn =N (1 -y (A;LE A)) —0 (23)

i=1 i=1

This shows that, the eigenvalue of Eq (20) can be computed
by finding the roots of the secular equation:

= Z v (24)

i=1

We solve Eq (24) for the the eigenvalue \ of the network that
results after the removal of w node from the network. Here,
we know that u1 = 0 and uz = 3, ., > icn, iew (Vi — Vj)-
Therefore we have:

u?

Z - (25)

=3

/\2—

This can be re-arranged into:
u3

L3 gui /A=A

A=Ay — (26)



According to the eigenvalue interlacing theorem, the alge-
braic connectivity of network that results from the removal of
a node is bounded by 0 < Ay < A5 [18].

Theorem 2. Let X be a graph with n vertices and let Y be
obtained by removing a vertex from X then

Ai1(L(X)) < Xi(L(Y) < Ai(L(X))

We use Theorem 2 along with the observation in Eq (26),
that the LHS is a decreasing function whereas the RHS is an
increasing function of A, therefore we obtain the lower bound
of A by using the appropriate substitution of A\ = Ag > As.
This gives us:

u3
A> Ny — o
=TI YT W2 (A — An)
From [19] we know that Y. , u? < b,,, thus we approxi-
mate » ., u? with the difference b,, — u3 to obtain the final
expression of Eq (14), where:

@7

by, = n(tr(A) —ug) +
and f(A) is:

F(A) = tr (A - ”(2’4)I>2 - (2 (u2 - ”(2‘4))2> (29)

In Eq (29) the square of the matrix can be avoided by using
Eq (30) [19].

n(l—n)f(A) (28)

2 2
tr (A ~ WQA)I) — tr(A2) - L(;‘)) (30)

Here tr(A?) = [|A|| and |[A[|f is the Frobenius matrix
norm of A. u

V. SIMULATION AND RESULTS

In this section, we present the simulation analysis conducted
to evaluate the performance of the proposed critical node
selection method. A comparative study was conducted against
the exhaustive search approach and the suboptimal solutions
presented in Eq (1) and Eq (2). In the first set of experiments,
we consider a network comprising of two connected clusters
which are between them connected via a few bridge links. The
emphasis in this first set of experiments is on the particular
critical nodes selected by each method. In the next set of
experiments, we use a network with randomly distributed
nodes to evaluate the performance of the proposed approach in
terms of the algebraic connectivity against existing approaches
and the lower bound of Eq (14).

In the first set of simulations we use an area of 100 x 100m?
where 16 nodes are deployed in a way such that two clusters
are formed each containing 8 nodes. These two clusters are
connected through 6 bridge edges. Nodes 16 and 15 of one
cluster are connected to nodes 2, 6, 7 and 8 of the other cluster
as shown in Fig 2a. As shown in Table I all methods identify

Selection Mechanism Node's identified as critica}
Network size=16 Network size=40
Exhaustive Search 16 11
Eq (D 16 1
Eq ) 16 11
Proposed approach 16 11

Table 1. NODE SELECTION BASED ON DIFFERENT APPROACHES FOR

NETWORK SIZE OF 16 AND 40 NODES.

node 16 as the most critical node in the network. However,
our approach is able to achieve the correct node selection in
the least computationally expensive way.

(b)

Figure 2. Network model for a)16 nodes with 6 bridge links, b)40 nodes
with 40 bridge links.

We further investigate the performance of the proposed
approach by increasing the number of nodes to 40 in the same
area of 100 x 100m? and among these nodes we form two
clusters, each of 20 nodes, but this time the number of links
among the two clusters is increased to 40. Despite the change
in the network size and the number of bridge links, all methods
identify node 11 as the most critical node in the network as
reported in Table I.

In the next set of experiments we consider an area of
200 x 200m? to deploy 100, 150 and 200 nodes according to
uniform random distribution. We consider transmission radius
values for the network nodes in the range 50m to 150m
and evaluate the effect of network density on the algebraic
connectivity of the network. We then test the algebraic con-
nectivity of the resulting network after a single CN is removed
from the network and after five of the most CNs are removed
from the network. To avoid random fluctuations due to single
simulation run, simulations were conducted for 50 different
network topologies and the results were then averaged.

In Fig 3a, we show the algebraic connectivity of the
aforementioned network as a function of the transmission
radius when the most critical node is removed according to
the criticality metric under consideration i.e. the proposed
approach, the exhaustive search approach and the suboptimal
solutions of Eq (1) and Eq (2). This is done for a network
of 100, 150 and 200 nodes. The first thing to note is that, as
expected, the algebraic connectivity increases monotonically as
the transmission radius increases. The other thing to note is that
all suboptimal solutions including the proposed approach, are
very close to the algebraic connectivity values reported by the
exhaustive search solution, which is the optimal. This demon-
strates the ability of the suboptimal solution to approximate the
optimal one to a surprisingly good extent. It also demonstrates
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Figure 3. Algebraic Connectivity versus the trasnsmission radius when: a)
a single node is removed from the network, b) five nodes are removed from
the network.
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Figure 4. a) Algebraic connectivity versus transmission radius when a single
node is removed from the network, b) Difference between the lower bound
and the algebraic connectivity of the network against the transmission radius,
after five nodes are removed from the network.

the superiority of our approach which is computationally
less expensive to implement without undermining the overall
performance. Similar behaviour is observed when removing 5
nodes from the network as shown in Fig 3b.

Fig 4a shows the algebraic connectivity versus the trans-
mission radius when a single node is removed according to
the exhaustive search and the proposed method together with
the lower bound obtained in section IV. We observe that the
lower bound is close to the exhaustive search results which
demonstrate that it is not a conservative bound.

Having established that the lower bound is not conservative,
we use it to evaluate the performance of the considered ap-
proaches when multiple nodes are removed from the network.
Note that when multiple nodes are removed, the exhaustive
search approach is difficult to implement as its complexity
increases combinatorially with network size. So the only
reference for comparison is the lower bound obtained. In Fig
4b, we show the difference of the algebraic connectivity values
obtained when removing five nodes from the network using the
considered criticality metric relative to the lower bound. We
observe that the difference is extremely small (of the scale
10~2) demonstrating the ability of the considered solutions
to detect the most critical nodes. This again demonstrates the
advantage of our approach which can achieve the latter at a
lower implementation cost.

VI. CONCLUSION

In this work, we proposed a new method which uses
spectral partitioning concepts for identifying critical nodes in
a network. The proposed approach is computationally less
expensive to implement than previous proposals and is shown
to perform at least equally well using analysis. We also show
that the proposed approach is not conservative relative to the
best that can be achieved. In the future, we aim at further
evaluating the proposed approach using extensive simulations
and analysis. We also aim at pursuing connection based
enhancements using the same optimization based approach.
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