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Analyzing Eye-Tracking Information in
Visualization and Data Space: from Where on

the Screen to What on the Screen
Sayeed Safayet Alam∗, Member, IEEE, and Radu Jianu†, Member, IEEE

Abstract—Eye-tracking data is currently analyzed in the image space that gaze-coordinates were recorded in, generally with the help

of overlays such as heatmaps or scanpaths, or with the help of manually defined areas of interest (AOI). Such analyses, which focus

predominantly on where on the screen users are looking, require significant manual input and are not feasible for studies involving

many subjects, long sessions, and heavily interactive visual stimuli. Alternatively, we show that it is feasible to collect and analyze

eye-tracking information in data space. Specifically, the visual layout of visualizations with open source code that can be instrumented

is known at rendering time, and thus can be used to relate gaze-coordinates to visualization and data objects that users view, in real

time. We demonstrate the effectiveness of this approach by showing that data collected using this methodology from nine users

working with an interactive visualization, was well aligned with the tasks that those users were asked to solve, and similar to annotation

data produced by five human coders. Moreover, we introduce an algorithm that, given our instrumented visualization, could translate

gaze-coordinates into viewed objects with greater accuracy than simply binning gazes into dynamically defined AOIs. Finally, we

discuss the challenges, opportunities, and benefits of analyzing eye-tracking in visualization and data space.

F

1 INTRODUCTION

E YE-tracking allows us to locate where users are looking on a

computer screen [1], [2] and is often used to record peoples’

gazes while they are performing tasks that involve visual stimuli,

and to analyze this data off-line to see how people interpreted

the stimuli and solved the tasks [3]. Diagnostic eye-tracking has

been used widely in psychology and cognitive science to help

researchers understand thought and affect mechanisms [4], and

in data visualization and human computer interaction (HCI) to

explain how people use visual interfaces [3].

To date, eye-tracking data is collected and interpreted in a

low-level form, as gaze-coordinates in the space of rendered

visual stimuli that gazes were recorded for. Relating this data to

the semantic content of the stimuli is generally done offline by

human analysts or coders who inspect gaze heatmaps visually,

or define area of interest (AOIs) manually. As such, this process

requires significant manual intervention and is especially difficult

for studies involving many subjects, long sessions, and interactive

content.

The work we describe here rests on the observation that for

visual content that a computer generates on the fly, such as data

visualizations, the structure and layout of the visual content is

known at rendering time. Thus, for data visualizations with source

code that is open to instrumentation, gaze-coordinates provided by

an eye-tracker can be related to the rendered content of the visu-

alization in real-time, yielding a detailed account of visualization
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elements, and implicitly data elements, that users are viewing.

Our paper shows that this instrumentation approach is indeed

feasible and produces data that can be collected over long sessions

involving open-ended tasks and interactive content. Moreover,

the collected data is derived directly from the visualization’s

underlying data, and thus has semantic meaning without the need

for additional coding. As such, this data can be particularly well

suited to explain how people forage for, analyze, and integrate

information in complex visual analytics systems and workflows.

While this idea is similar to previous work on 3D objects of

interest (OOI) [5], and dynamic AOIs [6], detecting individual

data and visualization objects that are being viewed (e.g., nodes

in a network) is different than binning gazes into AOIs, which

are traditionally large, non-overlapping, and lack data-derived

semantic meaning. Instead, we evaluate the feasibility of collecting

data that is highly granular and has semantic meaning. This creates

interesting opportunities for data analysis, which we exemplify in

Section 4 and discuss in Section 5, but also involves a challenge:

how can we accurately use eye-tracking data, which is generally

imprecise and low resolution, to discriminate between many small,

intertwining visual objects which are typical of data visualization

content?

First, we show that a fuzzy interpretation of gaze data, that

is detecting likelihood rather than certainty that an object was

viewed, can work well for practical purposes. Second, we build

on previous work by Salvucci, who showed that viewed object

detection can be significantly more accurate if gazes are “inter-

preted intelligently” by leveraging the fact that users don’t view

visual objects in random order, but in sequences and patterns that

are influenced by tasks and visualization properties. For example,

as we show in Section 4, users tend to look at highlighted

items rather than regular ones, and they search for information

connected to what they viewed previously. Such information can

be used to predict which objects are most likely to be viewed at
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a given time [7], [8]. We contribute by introducing and evaluating

an algorithm that can “intelligently” detect viewed objects from

gaze coordinates in real-time and that is tailored to visualization

content, and we reveal and quantify viewing patterns such as those

described above for one specific visualization.

To evaluate the feasibility of collecting and analyzing eye-

tracking data directly in visualization and data space, we used

the aforementioned algorithm to instrument an interactive visual-

ization of IMDB data and collect viewed-object data from nine

subjects. We then showed that the instrumentation yielded useful

results in two ways. First, we show that viewed objects identified

by our instrumentation method are tightly related with tasks we

asked users to do. Second, we show that differences between the

manual annotations of five coders who were asked to analyze

the raw gaze data, and our automatically collected data, are not

greater than differences between the coders’ own annotations. As

part of this quantitative evaluation, we also show that our novel

algorithm for detecting viewed objects outperforms two naı̈ve

implementations.

Our contributions are: (i) a qualitative and quantitative

demonstration of the validity, effectiveness, and potential of an-

alyzing eye-tracking data in visualization and data space; (ii) an

“intelligent” algorithm for detecting viewed objects from eye-

tracking data in visualizations that are open for instrumentation,

and its quantitative evaluation; (iii) a demonstration of the ex-

istence of viewing patterns in visualization and a methodology

to compute them; (iv) a discussion of methods, benefits, and

applications for collecting and analyzing eye-tracking data in

visualization and data space.

2 RELATED WORK

Eye-tracking can locate users’ gazes on a computer screen [1],

[2] and is a technology that is becoming increasingly accurate,

fast, and affordable [3], [9]. Eye-tracking is often used to record

peoples’ gazes while performing tasks that involve visual stimuli,

and to analyze the data off-line to gain insight into how people

interpreted the stimuli and solved the tasks [3]. For example, eye-

tracking was used to understand how people perceive faces [10],

[11], to study how attention changes with emotion [12], to under-

stand changes in perception that are caused by disease [13], and

to gain insight into how students use visual content to learn [14],

[15], [16], [17]. Within the field of data visualization, examples

of eye-tracking studies include but are not limited to work by

Pohl et al. and Huang et al. on graph readability [18], [19], [20],

Burch et al.’s work on tree-drawing perception [21], [22], and

work by Kim et al. on evaluating an interactive decision making

visualization [23].

Eye-tracking data is traditionally interpreted and analyzed in

the space of rendered visual stimuli that gazes were recorded for,

using one of two analysis paradigms: point based or area of interest

(AOI) based [24]. Point based analyses treat gaze samples or

fixations as independent points while AOI analyses first aggregate

gazes into areas of interest and then operate at this higher level

of abstraction. Most often, experimenters define AOIs manually,

but gaze clustering algorithms are also available to automatically

define AOIs based on the available eye-tracking data [25], [26],

[27].

Our work is closest to a sparse set of methods that seek to

automatically relate gazes to the semantics of computer generated

content. Several papers allude to the fact that AOIs could be

defined dynamically for such cases [28], [29], but none formalize

an approach or quantify feasibility. More concretely, for dynamic

stimuli with known 3D structure, researchers have explored the

concept of objects of interest (OOI), in which gazes are auto-

matically assigned to 3D objects in the scene [5]. More recently,

Bernhard et al. looked at similar gaze-to-object mapping in the

context of understanding what people were looking at in virtual

3D environments [30]. Our work presents a more detailed account

of how gazes can be automatically assigned to content typical of

2D information visualizations and evaluate how effective this can

be.

Moreover, our method of detecting viewed objects improves

over naı̈ve methods by leveraging Salvucci’s “intelligent gaze

interpretation” paradigm [7], [8]. Specifically, Salvucci found that

simply assigning gazes to an object if the gazes’ coordinates are

within the bounds of the object is insufficient, and that leveraging

the semantics of visual content can significantly improve our

ability to predict which objects are viewed. More recently, Okoe

et al. found similar results, albeit using a different method [31],

[32]. We extend on such work by presenting an intelligent gaze

interpretation’ algorithm that is tailored to content typical of data

visualization and by evaluating it.

Finally, the visualization community proposed a plethora of

visualization and visual analytics tools for both point-based and

AOI based eye-tracking analysis. Blascheck et al. provides a com-

prehensive review of such methods [24]. Most relevant to our work

are methods for AOI visualization, since our data is in essence

a highly granular and annotated AOI data. Popular examples of

such techniques include scarf plots [33], AOI rivers [34], and

AOI transition matrices [35]. Also relevant are visual analytics

principles and systems for analyzing AOI data, such as work by

Andrienko et al. [36], Weibel et al. [37], and Kurzhals et al. [29].

However, the data our instrumentation allows us to collect differs

from regular AOI data through its high granularity, connection

with the underlying data of visualizations, and uncertainty about

whether an object AOI was truly viewed. Moreover, the focus of

the work we present here is not in proposing novel techniques of

analyzing data collected in visualization and data space, but on

whether and how this can be done accurately and whether it is

beneficial.

3 METHODS

Our general approach is illustrated in Figure 1. For visualizations

with code that is open to instrumentation, gaze coordinates pro-

vided by eye-trackers can be mapped to visual objects displayed

on the screen automatically and in real-time, since the computer

generated visual content and its layout is known during rendering.

Specifically, a visualization instrumented with our approach will

not only draw visual primitives on the screen (e.g., nodes in a

graph), but will also inform a viewed-object detection algorithm

about where such primitives are drawn and their shape. To this

end the instrumentation requires that object-rendering commands

are mirrored with calls to an instrumentation library within the vi-

sualization’s source code. The viewed-object detection algorithm

uses this information online to map 2D gaze coordinates to visual-

ization objects rendered on the screen. Should the visualization be

transformed (e.g., zoomed, panned), its content altered (e.g., visual

objects added or removed), or individual visualization components

moved (e.g., dragging a node), the detection module is informed



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 13, NO. 9, SEPTEMBER 2014 3

about these changes as soon as the visualization is redrawn and

will map subsequent gaze samples to the new visual layout.

Fig. 1: Real-time detection of viewed objects in generative visual-

izations.

Next, we describe an effective algorithm for mapping gaze

samples to objects that users are viewing. As shown in Figure 1,

we will assume that gaze samples have already been transformed

from screen space into model space. As such, the basic input of our

algorithm is a stream of gaze samples in model space, and a list

of visual primitives drawn on the screen, together with their shape

and position. Naturally, as most modern visualizations are interac-

tive, this visual structure of the visualization is likely to be highly

dynamic. The algorithm outputs a stream of viewed visualization

and data primitives (e.g., nodes, labels) in real-time, as users are

viewing them in the instrumented visualization. Of course, our

approach is limited in that it cannot be applied to already rendered

images or videos and requires that the visualization’s source code

can be altered. We discuss these limitations in Section 5.3.

We will describe our algorithm incrementally in the following

three sections, starting from a naı̈ve approach that simply draws

AOIs dynamically around visualization objects, to a predictive one

that detects objects more accurately by using knowledge about

how specific visualizations are typically used. A comparative

evaluation of these three object detection algorithms is presented

in Section 4.2.1.

3.1 Algorithms for viewed object detection in data vi-

sualizations

3.1.1 AOI-based viewed object detection

A naı̈ve viewed object detection approach is to treat object shapes

as dynamic AOIs and determine that a viewed object is that with

the most recent fixation landing in its AOI. This is a natural first try

at detecting viewed visual objects from gaze data automatically,

given that manually drawn AOIs are typically used in the same

manner in offline eye-tracking data analysis, and that the similar

concept of objects of interest (OOIs) has been proposed already

by Stellmach et al. [5] for generative 3D content.

The problem with this approach is that for highly granular

visual content, such as individual nodes or labels, users often fixate

in the vicinity of the object rather than on the object itself. We

demonstrate and quantify this observation in Section 4. A potential

solution to this problem could be to make object AOIs slightly

larger than the objects themselves. However, larger AOIs may lead

to AOI overlap in cluttered visualizations and to the inability to

assign a gaze sample or fixation to any single AOI. Ultimately, the

problem lies with an inability to determine with absolute certainty

what a user is looking at, and is described in more detail in the

next section.

3.1.2 A probabilistic approach to viewed object detection

Unlike mouse input, eye-tracking can only indicate a small screen

region that a user is fixating, rather than a particular pixel.

Typically, such a region is about one inch in diameter, though

specific values depend on the user’s distance to the monitor, and

is determined by how human vision works. As such, we argue

that it is generally impossible to tell with absolute certainty which

object a user is viewing, if the user is fixating in the vicinity

of multiple close objects (Figure 2(a)). This is not a significant

problem for traditional AOI analyses, which generally use large

AOIs. However, our goal is to detect the viewing of granular

visual content, such as network nodes or glyphs, in cluttered

visualizations.

Fig. 2: (a) A real visualization example in which a user fixates in

the vicinity of multiple close object groups (red dot). (b) predictive

method: even though the latest gaze sample falls equidistantly

between visual objects O3 and O4, we suspect that O3 is the more

likely viewing target given that (i) it is highlighted, and (ii) it is

connected to O1, which is likely to have been the object that the

user viewed previously (vs1 = 0.6 > vs2 = 0.4).

As such, we advocate for a fuzzy interpretation of gaze data

and detecting likelihoods that objects are viewed rather than

certainties. To this end, we can compute object gaze scores gs

(for all objects i in a visualization, and at all times t) that range

between zero- the object is not viewed, and one- the object is

certainly viewed as shown in Figure 3 and Formula 1.

gsi,t = 1−min(1,(
d

R
)) (1)

The region of radius R used in the formula is analogue to the

user’s foveated region, and as such needs to be constant in screen

space. Thus, if the view is zoomed in or out, R needs to be scaled

accordingly in model space to remain constant in screen space. A

more detailed discussion about choosing an appropriate R is given

in Section 5. Similar approaches were used by Salvucci et al. [8]

and Okoe et al. [31].
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Fig. 3: Calculating a gaze score gs for a given object and a gaze

sample landing nearby, where d is the distance from the object to

the gaze sample, and R approximates the size of the user’s foveated

region.

Finally, we note that the object scores (gs) do not directly

equate to probabilities. The distinction is important because it

implies that our implementation can detect two objects as being

viewed simultaneously (gs1 = 1 and gs2 = 1). We think this is

appropriate since a person can in fact visually parse multiple

objects at the same time if they fall within the user’s foveated

region, and even think of multiple objects as a unit for specific

task purposes. We discuss this in more detail in Section 5.5.

3.1.3 A predictive algorithm for viewed object detection in

data visualization

Salvucci and Anderson described the concept of “intelligent gaze

interpretation” in the context of a gaze-activated interface [8].

Their method achieved better accuracy in detecting which inter-

face control a user is gazing at, by integrating both the proximity

of the gaze to the control, and the likelihood that the control would

be the target of a gaze-interaction, based on the current state and

context of use of the interface. Formally, their algorithm identifies

the most likely currently viewed item iviewed by solving

iviewed = argmax
i∈I

[Pr(g|i) ·Pr(i)]

where Pr(g|i) is the probability of producing a gaze at location

g given the intention of viewing item i, and Pr(i) is the prior

probability of an item i being the target of a gaze-interaction.

In Salvucci and Anderson’s proof of concept implementation

these prior probabilities were based on assumptions about how

an interface might be used and were hardcoded into the system.

We adapt Salvucci and Anderson’s paradigm to more accu-

rately determine which object a user is viewing, in the ambiguous

case when a gaze-sample lands close to multiple objects (e.g.,

Figure 2(a).

For example, in a network visualization we may assume that a

user who has just viewed a node n will more likely view one of n’s

neighbors than a random other node, perhaps especially if the user

previously highlighted node n and its outgoing edges. In Section 4

we show qunatitatively that this assumption is in fact true for one

visualization we tested.

We consider a simplified such scenario in Figure 2(b): four

visual objects (O1...4), two of which are connected (O1 and O3),

and one of which is highlighted (O3), are shown on the screen. A

new gaze sample registers between O3 and O4 at time t. Intuitively,

it is more likely that O3 was viewed since it is highlighted.

Moreover, if we knew that O1 was viewed just before the current

moment, and, as described above we assume that users generally

view neighboring nodes together, then this likelihood becomes

even stronger.

Formally, we compute vsi,t (i.e., the viewing score vs of

object i at time t) by weighing the gaze score gsi,t described in

Section 3.1.2 by a prediction score psi,t that object i is a viewing

target at time t:

vsi,t = gsi,t × psi,t (2)

This prediction score is computed based on the likelihood that

the object is viewed given the current state of the visualization

(e.g., the object is highlighted), and the likelihood that it is viewed

if some other specific object (e.g., a node’s neighbor) was viewed

just before it. Those two components are formalized by the α
score and β score in Formula 3, and are described below.

psi,t = αi,t ×βi,t (3)

First, we will assume α is given as an input to our algorithm.

Concrete examples of what α could be linked to are whether an

object is highlighted (larger alpha) or not, whether an object is

part of a group of objects recently queried by the user, or whether

an object is known to be of particular interest to the users’ current

workflow (e.g., because they have viewed it often before, because

the visualization was constructed using those objects as initial

seeds, because they are mentioned as keywords in a user’s profile).

Second, we will compute β based on a viewing transition

function T between objects: T ( j, i) gives the likelihood that object

i is viewed after object j is viewed. We will again assume that

T ( j, i) is given as input to our algorithm. Concrete examples of

what T ( j, i) could be linked to are whether objects i and j are

somehow connected or related. This connection could be either

visual, such as an explicit edge or leader line or an implicit sharing

of similar visual attributes (e.g., color, shape), or semantic (e.g.,

both nodes are actors).

To compute β , we could consider βi,t = T ( j, i) but that would

involve knowing j, the previously viewed object, with absolute

certainty. This is problematic because we often cannot unequiv-

ocally determine which item was viewed at any given time. For

example, as illustrated in Figure 2(b), O1’s previous viewing score

(vs1,t−1 = 0.6), is just slightly larger than O2’s viewing score

(vs2,t−1 = 0.4), and thus an absolute choice of O1 over O2 as

previously viewed element would be rather arbitrary. In other

words, we cannot say with absolute certainty which of the two

objects was viewed before because the user fixated between them.

In more general terms, our computation of βi,t must account

for multiple items j that may have been viewed before. These

items j are those with a previous visual score vs j,t−1 that is greater

than 0. As such, we compute βi,t as a weighted average of all

transition probabilities from objects j with vs j,t−1 > 0 , to our

current item i. The weights are given exactly by the likelihood

that an object j was viewed before - in other words by its previous

viewing score vs j,t−1. This computation is captured by Formula 4.

βi,t =

∑
j

vs j,t−1×T ( j, i)

∑
j

vs j,t−1

, where

0≤ i≤ n and gsi,t > 0

0≤ j ≤ n and vs j,t−1 > 0

0≤ j ≤ n and gs j,t = 0

(4)

Finally, an important constrained needed to be added to For-

mula 4. Intuitively, our approach means that previously viewed

objects j act as referees with varying degrees of influence (i.e.,

previous visual scores) in a competition between currently viewed

items i. This analogy provides the intuition for the necessary

constraint: an object should not referee a competition that it is part
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of. For example, in our simplified scenario, using O3 as a previous

element in a competition between itself and O4 would result in

an open feedback-loop and should be avoided. This restriction

is reflected in Formula 4 by the 3rd inequality. The algorithm

pseudocode is provided in Algorithm 1.

Algorithm 1 Viewed Object Detection Algorithm

1: Inputs:

Oi,...,n= tracked visualization objects (shapes, positions)

g(x,y) = gaze sample in model space (time t)

αi,...,n = view weights (αi,...,n ∈ [0,1])
T (i, j) = viewing transition function (T (i, j) ∈ [0,1])

2: Outputs:

vsi,t = momentary viewing scores of all objects (i = 1, . . . ,n).

3: for i← 1 to n do

4: Compute gsi,t using Formula 1

5: max← 0

6: for i← 1 to n do

7: if gsi,t > 0 then

8: Compute βi,t using Formula 4

9: ps′i,t ← αi,t ×βi,t

10: if ps′i,t > max then

11: max← ps′i,t

12: for i← 1 to n do

13: vsi,t ← gsi,t ×
ps′i,t
max

Lastly, we note two more factors. First, to optimize for speed,

we only compute prediction scores for objects with non-zero

gazes (Algorithm 1, line 7). Second, in our implementation we

compute viewing scores for every gaze sample, rather than every

fixation. We believe that doing so leads to results that are less

dependent on how fixations are computed and more robust. Since

our eye-tracker’s sampling rate is 120Hz, the scores vs j,t−1 were

computed just 8ms ago, an interval generally shorter than the time

it takes for people to shift their attention to a new object. As

such, instead of using the raw vs j,t−1 score, we use an average of

the last several viewing scores, and, for all practical purposes,

the term vs j,t−1 should be replaced in the previous formulas

by ∑k=15
k=1 vs j,t−1, which, given our eye-tracker’s 120Hz temporal

resolution, averages samples over approximately 125ms, a time

window we observed to be close to an average fixation duration.

However, we note that our algorithm can take as input fixations

rather than individual gaze samples, in which case this step would

not be necessary. Moreover, additional smoothing and filtering

such as those summarized by Kumar et al. [38] could be used

as a pre-processing step to clean gazes before feeding them into

our algorithm. For example, we tried removing gaze samples with

high velocity as they are likely to be part of saccades, but observed

no discernable improvement in our algorithm’s output.

Performance analysis: The algorithm needs to swift through

all tracked elements (n) to find those in the proximity of a gaze

sample or fixation (kt ). Then, to compute the term β for each

of the kt potentially viewed elements, the algorithm will iterate

over kt−1 objects with non-zero viewing scores from the previous

iteration. As such, the algorithm is linear if we consider the

number of objects that a user can view at any time to be a

constant. However, that is not necessarily true since in special

cases the entire visualization may fall within the algorithm’s R

radius (e.g., the visualization is zoomed out too much). However,

in this case the output of the algorithm would be irrelevant anyway

and the algorithm should not be run. Thus, the algorithm is limited

primarily by the clutter of the visualization, rather than the amount

of computation.

3.2 Instrumenting a concrete visualization

We have used the previously described principles to instru-

ment Doerk’s interactive PivotPaths visualization of multifaceted

data [39], which we linked to the popular internet movie database

(IMDB). Shown in Figure 4, the visualization renders movies in

the center of the screen, actors on top, and genres and directors

at the bottom. Actors, directors, and genres are connected by

curves to the movies they associate with, and are larger, and

their connections more salient, if they are associated with multiple

movies. Actors, genres, and directors are colored distinctively,

which is particular important for genres and directors since they

occupy the same visual space. Such views are created in response

to users’ searches for specific movies, actors, and directors, and

show data that is most relevant to the search. As shown in Figure 4,

users can hover over visual elements to highlight them and their

connections. Users can also click on visual elements to transition

the view to one centered on the select element. Finally, users can

freely zoom and pan.

We opted to instrument this particular visualization for three

reasons. First, it is highly interactive and would thus be sig-

nificantly difficult to analyze using manual gaze data analysis.

Second, it contains visual metaphors, graphic primitives, and

interactions typical of a wide range of visualizations. Third, we

used the popular IMDB data source to leverage the familiarity of

our prospective user-study subjects with it.

To apply the previously described instrumentation algorithm

to this visualization, we had to choose appropriate values for the

α and β factors used in Formula 3. To this end, we made informal

assumptions about how the visualization may be used, a method

also employed by Salvucci [8]. For instance, we assumed that

transitions between connected items would occur more often than

between unconnected items. We also assumed that elements that

are hovered or highlighted are more likely to be viewed than those

that are not. We translated these assumptions into specific weights,

as exemplified in Table 1. As we will show in Section 4, these

assumptions hold for the pivot paths visualization and the nine

subjects that used it in our study.

A more principled way to determine typical viewing patterns

and sequences in a specific visualization is to run a pilot study and

collect data using the algorithm described in Section 3.1.2, which

does not require the α and β inputs. Such preliminary data could

be used to determine typical usage patterns and help refine viewed

object detection by informing the choice of appropriate α and β
factors. We show how such an analysis can be done in Section 4.

Assumed visual and transition weights
Movie to unconnected actor 0.3
Movie to connected actor 1
Movie to unconnected genre 0.2
Movie to connected genre 0.8
Movie to unconnected director 0.3
Movie to connected director 1
Any object hovered 1
Any object not hovered 0.5

TABLE 1: Transition probabilities in our instrumented visualiza-

tion (assumed).
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Fig. 4: PivotPaths visualization of IMDB data. Movies are displayed in the center of the screen, actors at the top, and directors and

genres share the bottom space. Actors, directors, and genres associated to movies are connected through curves. Users can highlight

objects and their connected neighbors by hovering over them.

Finally, as part of instrumentation, our system collected ap-

plication screen shots, interactive events (e.g., hovering, zooming,

panning), raw gaze samples captured at a rate of 120Hz, and visual

elements with non-zero viewing scores computed at the same rate

of 120Hz. For each viewed element we recorded the type (i.e.,

movie, actor, director, genre), its label, its gaze score (gs), its

prediction score (ps), and the aggregated viewing score (vs). All

recorded data was time stamped.

4 EVALUATION

We collected data from 9 subjects, each using our instrumented vi-

sualization for approximately 50 minutes on a series of structured

and unstructured tasks. We used this data data to test the validity

and effectiveness of our approach in two ways.

First, we compared the output of the intelligent algorithm to

human annotation data. We found that data collected automatically

was on average as similar to human annotations, as human

annotations were similar to each other. Moreover, we conducted

this analysis for all three viewed detection algorithms described in

Sections 3.1.1 to 3.1.3 and found that the AOI algorithm performs

poorly compared to the other two, and that the predictive algorithm

improves detection accuracy by about 5% (Figure 5).

Second, we demonstrate that our instrumentation method can

provide relevant information and can be leveraged in novel and

interesting ways. Specifically, we show both qualitatively and

quantitatively that viewed objects detected by our instrumentation

are closely correlated to the tasks we asked people to do, and that

data collected automatically from many users can answer novel

questions about how people use visualizations (Figures 6 and 7).

Third, we show quantitatively that the assumptions we made

informally in the previous sections, about how people view our vi-

sualization, hold. Specifically, as shown in Table 2, our users were

significantly more likely to look at objects that were highlighted

and connected to each other.

4.1 Study Design

Setup: We used the visualization and data described in Section 3,

and an SMI RED-120Hz connected to a 17” monitor. Subjects

were seated approximately 30′′ away from the display.

Subjects: We collected data from 9 graduate and undergraduate

students with ages ranging between 20 years and 30 years. Six of
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them were male and three were female. Subjects were paid $10

for their participation.

Protocol: Subjects were first given a description of the study’s

purpose and protocol. They were then introduced to our IMDB

PivotPaths visualization and asked to perform a few training

tasks to help them get accustomed with the visualization. This

introductory part lasted on average 10 minutes. The main section

of the study followed, involved multiple instances of four types of

tasks, and lasted approximately 50 minutes.

Tasks: We asked subjects to complete four types of tasks. We

aimed to balance structured tasks and unstructured tasks. To solve

structured tasks, subjects had to consider a set of objects that was

better defined and less variable than in unstructured tasks. This

made it easier for us to test the degree to which our detection of

viewed objects is aligned with the data required to complete the

tasks. On the other hand, data collected for unstructured tasks may

be better at informing designs of future analysis systems of such

data. We limited the time we allowed subjects to spend on each

task for two reasons: to manage the total duration of the study, and

to make results comparable across time and users.

• Task1 (structured): Finding four commonalities between

pairs of movies. The tasks were limited at three minutes

each, and subjects solved the following four instances of

this task: (a) Goodfellas and Raging Bull; (b) Raiders of

the Lost Ark and Indiana Jones and the Last Crusade; (c)

Invictus and Million Dollar Baby; (d) Inception and The

Dark Knight Rises.

• Task2 (structured): Ranking collaborations between a

director and three actors (2 minutes). Subjects completed

four task instances centered around the following directors:

(a) Ang Lee; (b) Tim Burton; (c) James Cameron; (d)

David Fincher.

• Task3 (semi-structured): Given three movies, subjects

were asked to recommend a fourth (5 minutes). Subjects

solved three such tasks: (a) Catch Me If You Can, E.T.

the Extra-Terrestrial, and Captain Phillips; (b) To Kill a

Mockingbird, The Big Country, and Ben-Hur; (c) Inglou-

rious Basterds, The Avengers, and Django Unchained.

• Task4 (unstructured): Given a brief and incomplete

description of the “Brat Pack”, a group of young actors

popular in the 80’s, subjects were asked to find additional

members and movies they acted in. Subjects solved one

such task, in approximately 5 minutes.

4.2 Results

4.2.1 Data collected automatically is similar to that of hu-

man annotators

We tested whether the outputs of the three algorithms described

in Sections 3.1.1 to 3.1.3 (AOI, probabilistic, and predictive)

are comparable to annotation data obtained from human coders

who inspected screen-captures with overlaid gaze samples and

manually recorded what subjects looked at. As shown in Figure 5,

we found that the overlap between human annotations and the

predictive algorithm’ s output is similar to the overlap within

the set of human annotations, and that the predictive algorithm

outperforms the other two.

Specifically, we enlisted the help of five coders and asked

them to annotate eye-tracking data corresponding to one task

of approximately three minutes, for each of six subjects. The

task was the same for all coders - task 1b. The six subjects

were selected randomly and were the same for all five coders.

Coders spent approximately one hour per subject and six hours

in total completing their annotation. This long duration meant it

was unfortunately not feasible to code data from more users or

more tasks than we did. Four coders completed all six assigned

annotation tasks, while one was able to annotate the data of only

three subjects.

Coders used an application that allowed them to browse

through screen captures of a users’ activity with overlaid gaze

coordinates. We asked coders to advance through the videos in

100ms time-steps, determine what visual objects their assigned

subjects were viewing, and record those objects along with the

start and end time of their viewing. If unsure which of multiple

objects was viewed, coders were allowed to record all of them.

We transformed each coder’s annotation for each subject into

temporal vectors with 100ms resolution. These vectors contained

at each position one or several objects that were likely viewed

by the subject during the 100ms time-step corresponding to

that position. We then created similar representations from our

automatically collected data. Finally, we defined a similarity

measure between two such vectors as the percentage of temporally

aligned cells from each vector that were equal. Equality between

vector cells was defined as a non-empty intersection between their

contents.

For each algorithm, we computed the similarity of its output

for each subject’s data to all available human annotations of the

same data. This yielded 4 coders × 6 subjects + 1 coder ×
3 subject = 27 similarities per algorithm. We averaged these

similarities and plotted them as the first three bars in Figure 5.

Then, we compared each coder’s annotation of a subject’s data to

all other available annotations of the same data. Since we had five

annotations for three subjects, yielding 3 subjects × 10 annotation

pairs = 30 similarities, and four annotations for the remaining

three subjects, yielding 3 subjects × 6 annotation pairs = 18

similarities, this process resulted in a total of 48 similarities, which

we averaged and plotted as the last bar of Figure 5.

The data we collected allowed us to perform this analysis for

all three algorithms described in Section 3.1. Specifically, if we

only consider gaze scores gs that are equal to one (Section 3.1.1)

and no predictive component, we essentially have the output of the

AOI algorithm. If we limit the analysis to gs scores alone, without

the prediction component described in Section 3.1.3, we have the

output of the probabilistic approach described in Section 3.1.2.

4.2.2 Data collected automatically is relevant and useful

We used two visual representations and analyses to show that data

collected automatically is tightly correlated with the tasks that

users had to do. We chose this evaluation for two reasons. First,

it provides evidence that the automatic instrumentation approach

can be used to solve the inverse problem: an observer or analyst

who is unfamiliar with a subject’s intentions can determine what

these are by looking at the subject’s visual interest in particular

data.

Second, it demonstrates how the automated collection of eye-

tracking data can facilitate novel analyses and insights into how

visualizations are used. For example, our approach allowed us to

quantify that a users’ interest in a visual item present on the screen

decays exponentially with a decrease in the items’ relevance to a

task. While it was generally known that users follow “information

scent” when solving tasks visually [40], we were now able to

quantify this effect.
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Fig. 5: Comparison between automated and manual viewed object

detection. The first three bars show the overlap between the

outputs of the three algorithms described in Section 3.1 and

annotation results of human coders. The last bar shows the overlap

within the set of human annotations. Values correspond to aver-

ages over multiple tasks, multiple subject data sets, and multiple

annotators, and are computed as described in Section 4.2.1. Error

bars extend by one standard error.

First , we created heatmap representations from our collected data

(Figure 6) to illustrate qualitatively the strong connection between

the tasks our subjects performed and the data we collected. We

listed viewed objects vertically, discretized viewing scores by aver-

aging them over 500ms intervals, and arranged them horizontally.

Thus, time is shown horizontally, viewed objects vertically, and

intensity of heatmap cells indicate the degree to which an object

was viewed at a given moment in time. The viewed objects listed

vertically were colored based on their type (movie, actor, director,

genre) and could be sorted by either first time they were viewed,

amount of viewing activity, or type.

Figure 6, left, shows the data collected from a subject per-

forming task 1b: finding commonalities between two Indiana

Jones movies. The upper heatmap is ordered by the amount of

visual attention that the subject dedicated to each element in the

visualization. We notice that elements at the top of the heatmap

are tightly connected to the subjects’ task. In the bottom panel,

viewed items are ordered by category (genre, director, movie,

actor). We notice a clear temporal pattern: the movies involved

directly in the task were viewed throughout the analysis, actors

were considered early on, followed by genres, then directors, and

ultimately a quick scan of other movies. We observed this pattern

for most subjects and believe it was caused by the ordering used in

the task’s phrasing: we asked subjects to determine actors, genres,

and directors that were common between the two movies.

Figure 6, right, shows a subject’s results for one of the

instances of task 3, which was significantly less structured than

task 1 (see Section 4.1). This heatmap was sorted by the first time

each object was viewed and shows how subjects were moving

through different aspects of the analysis. Heatmaps associated to

these task types typically showed a wider range of viewed objects,

as indicated by the heatmap’s greater height. We attribute this

pattern to the more exploratory nature of the task.

Second , we formalized the relevance of each visual item to

a particular task and plot this relevance against the amount of

interest that each item attracted, as shown in Figure 7. These plots

quantify the degree to which tasks determine users’ interest in

visual items, and demonstrates that our instrumentation captures

relevant data.

We formalized the relevance of a visual item to a task as

Relevance = 1/(1 + d), where d is the shortest graph distance

between that item and items mentioned directly in the task de-

scription. To exemplify, the relevance of Goodfellas and Ranging

Bull to task 1a is 1 as they are the focus of the task, that of Martin

Scorsese is 1/2 because he directed both movies, while that of

other movies directed by Scorsese is 1/3. This definition is not

fully accurate as items might be relevant to a task even though

they are not directly mentioned in the description. For instance,

items that eventually constitute a user’s answer will elicit more

attention. Moreover, this definition is particular to the visualization

we instrumented.

Figure 7 facilitates several insights. First, even though many

items were shown to subjects during their tasks, only very few

were viewed for significant periods of time, and many were not

viewed at all. Second, the types of data that users focus on

correlates with the particularities of each task. For example, task

3 involved movie recommendations and Figure 7 illustrates that

genres and directors were viewed significantly more than in task

4, which involved determining the identity of a group of actors and

seemed to drive users to mostly focus their attention on actors.

4.2.3 Assumptions about viewing transition patterns hold

We performed a qunatitative analysis of our subjects’ viewing-

transition patterns, using the data we collected during our study,

and found that the informal assumptions we made in Section 3.1.3

were correct: our users showed strong preferences to view objects

that were highlighted or connected to previously viewed objects.

The last three columns in Table 2 compare the probability with

which our users viewed one object category after another (e.g.,

viewed a highlighted actor after a movie) as computed from data

we collected, to a null hypothesis in which users pick next items

to view at random. The quantitative results show for instance that

after viewing a movie, our users were four times more likely to

look at an actor that was highlighted (Ratio = 4.081), and eleven

times more likely to look at an actor that was both highlighted and

connected to the previously viewed movie (Ratio = 11.484), than

if users were viewing items at random.

To reach these results, we first discarded the prediction com-

ponent from the data we collected, since it represents exactly the

assumption we seek to evaluate. We then counted direct viewing

transitions between all types of objects (sources) to all other

types of objects (targets) and divided them into categories based

on whether targets were highlighted, connected to the sources,

or both (Table 2). For example, after looking at a movie title,

our users looked at an actor that was unconnected to that movie

and unhighlighted 793 times and at an actor that was connect to

the movie and highlighted 616 times. Since in our visualization

connections existed only between movies and actors, genres,

and directors, transitioning to a connected or highlighted and

connected target was only possible when transitioning to and from

movies.

These counts were translated into observed transition probabil-

ities by normalizing them by the total number of transitions from

each type of source to each type of category. For example , our

users transitioned in total 1784 times from a movie to an actor, of

which 147 transitions were from a movie to a highlighted actor,

yielding an observed transition probability of 147/1784 = 0.082.

However, interpreting these observed probabilities by them-

selves can be misleading. For example, we observed 793 transi-
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Fig. 6: Heatmap views of one subject’s activity on two tasks; time, in 500ms increments, is shown horizontally; viewed objects are

viewed vertically; cell darkness indicates viewing intensity (black: high; white: low). (Top left) Data for task 1b (see Section 4.1);

viewed items are ordered by decreasing total amount they were viewed. (Bottom left) Data for task 1b; viewed items are ordered by

category (genre, director, movie, actor). (Right) Data for task 3a; viewed items are ordered by first time they were viewed.
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Movie to
No. of

transitions

Observed
trans.
prob.

Unbiased
trans.
prob.

Ratio
Observed
Unbiased

Actor

- 793 0.445 0.898 0.495
H 147 0.082 0.02 4.081
C 228 0.128 0.052 2.473

CH 616 0.345 0.03 11.484

Movie
- 5727 0.761 0.899 0.846
H 1798 0.239 0.101 2.376

Director

- 304 0.537 0.887 0.606
H 37 0.065 0.021 3.088
C 51 0.09 0.055 1.647

CH 174 0.307 0.038 8.176

Genre

- 193 0.33 0.792 0.417
H 40 0.068 0.033 2.045
C 69 0.118 0.102 1.159

CH 282 0.483 0.072 6.693

Actor to
No. of

transitions

Observed
trans.
prob.

Unbiased
trans.
prob.

Ratio
Observed
Unbiased

Actor
- 4711 0.685 0.962 0.713
H 2164 0.315 0.038 8.207

Movie

- 839 0.469 0.82 0.572
H 213 0.119 0.058 2.046
C 386 0.216 0.076 2.843

CH 352 0.197 0.046 4.284

Director
- 68 0.701 0.959 0.731
H 29 0.299 0.041 7.271

Genre
- 43 0.524 0.931 0.563
H 39 0.476 0.069 6.918

Director to
No. of

transitions

Observed
trans.
prob.

Unbiased
trans.
prob.

Ratio
Observed
Unbiased

Actor
- 71 0.747 0.958 0.78
H 24 0.253 0.042 5.964

Movie

- 271 0.494 0.792 0.623
H 55 0.1 0.04 2.478
C 130 0.237 0.108 2.198

CH 93 0.169 0.06 2.841

Director
- 384 0.706 0.93 0.759
H 160 0.294 0.07 4.216

Genre
- 256 0.522 0.899 0.581
H 234 0.478 0.101 4.708

Genre to
No. of

transitions

Observed
trans.
prob.

Unbiased
trans.
prob.

Ratio
Observed
Unbiased

Actor
- 61 0.656 0.9791 0.67
H 32 0.344 0.021 16.47

Movie

- 229 0.118 0.261 0.453
H 46 0.024 0.008 3.001
C 172 0.089 0.093 0.956

CH 138 0.071 0.013 5.288

Director
- 282 0.591 0.973 0.608
H 195 0.409 0.027 15.174

Genre
- 348 0.398 0.943 0.422
H 526 0.602 0.057 10.627

TABLE 2: Transitions from a source object to a target object,

divided by: (i) type of source and target; (ii) whether the target

was highlighted (H); (iii) whether the target was highlighted and

connected to the source (HC); (iv) and whether source and target

were neither highlighted nor connected. Columns show: (i) the

number of direct transitions for the source/target combination; (ii)

the observed transition probability from the source to that target;

(iii) the (unbiased) probability of transition between source and

target if all elements had equal probability to be viewed; (iv) the

ratio between observed and unbiased transition probabilities.

Fig. 7: Users’ interest in data objects, in relation to each objects’

relevance to a task, for twelve tasks of four types. Each individual

task is plotted in its type’s corresponding chart as a subdivision

across multiple relevance categories. Relevance was computed as

described in Section 4.2.2, and plotted for all objects that were

visible to subjects during each task. The average interest in objects

with the same task relevance are linked by separate polylines for

each individual task; errors bars extend from the averages by one

standard error.

tions from a movie to an unconnected actor, and just 147 to a

connected one. This however does not indicate a preference for

viewing actors that are not highlighted, but happened because

users had many more opportunities to view unlighted actors

than they had to view highlighted ones. Intuitively, when a user

transitions their gaze from a source to a target, the visualization

typically contains many more targets that are not highlighted and

are not connected to the source, than those that are.
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Thus, observed transitions should be compared to the default

case which assumes that users treat all visual objects equally.

Assume the following simplified case: a movie is connected to

two of ten actors shown in a visualization. We observe that of

ten transitions from that movie to one of the actors, five were

to a connected actor, while five were to unconnected actors. The

two observed probabilities, to connected and unconnected actors,

would in this case be equal at 5/10 = 0.5. However, if there was

no transitioning preference, the probability of transitioning to any

actor would be equal to 0.1, that of transitioning to a connected

actor 0.2, while that of transitioning to an unconnected actor

0.8. Thus, our observed transition probability from a movie to

a connected actor is 0.5/0.2 = 2.5 times higher than the default,

unbiased probability, while our observed transition from a movie

to an unconnected actor is a fraction (0.5/0.8 = 0.625) of the

unbiased one.

To compute unbiased probabilities, every time we counted a

transition from a source to a target, we also counted all target

options available to a user at that point, given the state and

structure of the visualization at the time of transition. Reverting

to our simplified example, for each of our ten observed transitions

we would count two possible transitions to connected actors and

eight possible transitions to unconnected actors, ending up with 20

counts for connected actors, and 80 counts for unconnected actors.

These numbers allow us to compute the two unbiased probabilities

as 20/(20+80) and 80/(20+80).

5 DISCUSSION

5.1 Benefits

It took each of our coders approximately six hours to produce

a detailed and accurate coding of just eighteen minutes of user

data (6 subjects × 3 minutes). This illustrates the importance

of moving beyond interpreting eye-tracking in stimulus space.

The instrumentation we described and evaluated makes it feasible

to analyze eye-tracking data from many subjects, using highly

interactive content, for long analysis sessions. Such analyses can

be done immediately after or even as the data is collected since no

manual annotation of the data is required.

Moreover, the collected data has semantic meaning that is tied

to the underlying data of the visualization and is thus amenable to

a much richer set of visual and computational analyses than tradi-

tional eye-tracking data. Such analyses, which we exemplified in

Sections 4.2.2 and 4.2.3 , focus on data and concepts, and are thus

significantly different from current eye-tracking analyses, which

generally are aimed at understanding low-level visual perception

in static visualizations.

Our work provides a quantitative framework that can be used

to explore questions related to how users perceive visualizations

in general, how domain experts look at particular types of data,

and how analysts use visualization to search for relevant data

and aggregate them into hypotheses. Currently, visualization re-

searchers often have to rely solely on discussions with domain

experts, think aloud studies, and recordings of user activity, all of

which provide only qualitative data and often require additional

coding and interpretation.

5.2 Applications

As described above, our approach can be useful in understanding

how users forage for, integrate, and hypothesize about data using

complex, interactive visualization systems. For example, visual

analytics applications could be instrumented to facilitate the ex-

ploration of domain expert workflows, of how expertise influences

data search and analysis patterns, and of visual strategies and

data associated with successful hypothesis generation and testing.

Similarly, the instrumentation of visual learning environments

could lead to insight into how students learn and what makes

some learners more effective than others. Given the proliferation

of education through visual, interactive environments, particularly

as part of massive MOOC instruction, this could have significant

impact.

In both aforementioned cases, the data can also explain how

visualizations support analysis, discovery, and learning, and how

they may be changed to make them more efficient. For example,

given a particular domain, we could quantify which data best

answers which questions, what types of data are often used

together, and how visual widgets are viewed in an analysis process.

Results could then be used to optimize specific visualizations

systems or generic visualization methods. Section 4 exemplifies

quantitative and qualitative analyses that are possible using our

approach.

Viewing data collected automatically during a user’s session

could also be used more directly to support analytic workflows.

For example, the data could be transformed automatically into

summaries that capture the user’s activity during a day, week, or

month. Such summaries could be used to refresh the user’s mem-

ory at a later time, communicate progress to peers or supervisors,

and provide useful hints to other users or analysts exploring similar

questions in similar data-sets.

Moreover, detecting viewed objects online opens up two

specific opportunities. First, analyzing eye-tracking data in real-

time could be used in teaching. By instrumenting learning envi-

ronments, we could allow instructors to track students’ progress in

lab assignments in real-time, to detect students that are not tending

to elements crucial for solving or understanding the assigned

problems, and to provide help proactively. Second, it would allow

us to create a new generation of gaze-contingent visualizations

that can detect in real-time data that is of particular interest to a

user and make recommendations of unexplored data with similar

attributes. The ever lower cost of eye-trackers, currently under

$150, makes it conceivable that eye-trackers may be included in

regular work stations, rendering our suggested new applications as

potentially impactful.

5.3 Limitations

Our approach is restricted to visualizations with open source code

and cannot be used to automate the full spectrum of current eye-

tracking studies (e.g., analysis of real imagery or of commercial

systems). This problem is to some degree inherent to any software

or hardware instrumentation: whether one wishes to capture an

application’s interaction data, a website’s activity, or a network’s

throughput, one needs privileged access to those systems. Thus,

like most instrumentations, our approach is intended primarily for

creators or owners of data visualizations who wish to understand

how their visualizations are used, and to discover changes that

could make their visualizations more efficient. Moreover, this limi-

tation is offset by new analysis and interaction opportunities which

our approach enables, a few of which we discussed previously.

Second, instrumenting a visualization by altering its source

code and defining transition and viewing probabilities involves
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an overhead. This is also a general instrumentation problem and

should be solved on a case by case basis, by considering of the

tradeoff between the overhead of instrumenting a specific system

and the benefits of collecting data from it. For example, if the

development of a visual analytics system takes a year from re-

quirements elicitation to final implementation, and instrumenting

it would allow developers to gain significant insight into how the

system is used, then spending an extra week to instrument the

rendering code may seem warranted. Our future plans include

bundling the predictive algorithm into an instrumentation library

(Section 5.6) to reduce the cost of instrumenting visualizations.
Finally, picking the right parameters to our predictive algo-

rithm may be difficult for some visualizations, given that a solid

understanding of how users parse and interpret visualizations

does not yet exist. To address this, in Section 4.2.3 we give

a methodology to quantify transition and viewing probabilities

from real data collected from users. Such computations could be

performed during a pilot study, to reveal usage patterns in a par-

ticular visualization. Furthermore, since we believe visualizations

are rarely used in a random fashion and that specific tasks and

visual outputs elicit certain gaze patterns, we think further research

could lead to a more general understanding of the probabilities our

algorithm relies on. More importantly, our framework facilitates

exactly this type of unexplored questions in ways previously not

possible, as exemplified by the analyses in Section 4.

5.4 Performance gains by using a predictive approach

An important contribution was to show that by leveraging a

predictive model of how users view data in a visualization we can

detect objects more accurately than by just relating gazes to visual

object geometry. While in our particular example the gain was

relatively small (5%), we think that benefits are highly dependent

on the type of visualizations that are instrumented, and that some

visualizations will benefit significantly more from the predictive

approach.
This belief is supported by the results shown in Table 2, which

reveal very strong biases in how people use visualizations (e.g.,

subjects were up to 11 times more likely to view highlighted items

connected to previously viewed items, than to view random other

items). We believe this to be generalizable to many visualizations,

especially those that show large, heterogeneous data, and those

that are intended for in-depth, focused analyses. The first aspect

means that the same data are likely to be used differently based

on context and task. The second aspect means that tasks can

significantly constrain what data is viewed.
The degree to which such viewing patterns can and need

to be leveraged predictively depends on the particularities of

each visualization. For example, in our particular case study, the

different data categories (i.e., movies, directors, actors, genres)

were spatially separated in different panels. As such, if a gaze

landed between multiple data objects, these were generally of the

same type. This means that our algorithm never got the chance

to use object category as a discriminator. Instead, in a traditional

node link diagram for example, multiple definable categories of

nodes share the same space, and are distinguishable by specific

visual attributes or semantic meaning (e.g., proteins in a protein

interaction network can be kinases, receptors, etc.). In such a case,

an algorithm could use knowledge that a user is currently scanning

for, or generally more interested in, a particular type of node, to

distinguish between the viewing of nodes that are placed next to

each other but are from different categories.

More generally, a visualization will benefit more from our

predictive approach if heterogeneous content is cluttered and

shares the same space, and the visualization provides visual and

semantic cues that allow users to select subsets of data that are

relevant to a particular task or analysis. Such visualizations are

fairly commonly used in real, complex visual analytic applica-

tions. Instead, if the visual content is sparse and well separated,

then computing gaze scores alone would be sufficient and our

algorithm’s predictive component would not create any benefit.

5.5 Evaluating viewed object detection

The above mentioned variability in accuracy makes it hard to

assess the real impact of the predictive method. Moreover, compar-

ing the output of the predictive algorithm to annotations of human

coders is questionable since, if coders look primarily at momentary

gaze positions, rather than trying to understand what users aim to

do more broadly, then their annotation may be closer to our our

simpler, probabilistic detection. This latter problem raises an issue

about whether human coders can provide a robust ground truth

for evaluating techniques such as ours, and whether such ground

truths could be improved if eye-tracking data was collected in

conjunction with a think-aloud protocol.

First, we note that we see the quantitative evaluation described

in Section 4 as an evaluation against the state-of-the-art rather

than against a ground truth. In other words, we don’t claim that

our method produces results that are accurate with respect to

what people actually looked at. Instead, we claim that our method

allows us to analyze the data in the same way a human could, only

much faster.

Second, we believe that striving towards a reliable ground truth

is slightly misguided in the context of evaluating eye-tracking

instrumentation. People often view elements even without con-

sciously realizing it, since vision is by-and-large a subconscious

process [3]. People also are able to register multiple objects in a

fixated region, while not fixating any one object specifically. For

example, while reading people often skip short words or syllables,

while still registering that they are there. Moreover, for specific

tasks, people may think about multiple objects as single data

units of analysis. For example, a user of a graph visualization

might think in terms of nodes for some tasks (e.g., are two nodes

connected?) but may reason in terms of clusters of nodes or cliques

for other tasks (e.g., what is the largest clique in the graph?). In

the latter case users may fixate at the center of a node cluster to

assess the properties of the cluster as a whole, rather than fixate on

individual nodes. Finally, people also occasionally stare at visual

objects while in fact thinking of something else [3]. These issues

lead to interesting questions about whether we track what subjects

look at or what they see.

As such, we believe a clean ground truth that represents what

a subject actually looked at is either unattainable or, if obtained

through think allowed protocols or highly constrained tasks, would

not be representative of real-life usage scenarios. Specifically, we

hypothesize that should experimenters ask subjects to state what

they are looking at, or look at particular objects, this would change

not only what items subjects look at, but also how they look

at them in terms of low level gaze patterns (e.g., subjects may

tend to fixate closer to or directly on an object). Such artifacts

are known to occur when using think-aloud protocols, and we

think they would be even more prevalent due to the subconscious,

intuitive, and fast nature of visual perception. Evidence for this is
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given by Ogolla who showed that concurrent think-aloud protocols

change visual patterns, especially for exploratory tasks [41].

Finally, the evaluation described in Section 4.2.2 implements

in fact an evaluation against a ground truth that is loosely defined

by the tasks subjects had to do. These tasks, especially the

structured ones, dictated what users had to look at in order to solve

them, and the two visual representations in Figures 6 and Figure 7

indicate how close our automatically collected data comes to

that ground truth. Such ground truths are somewhat approximate

and not sufficiently detailed, but can nevertheless show that data

collected automatically is relevant.

5.6 Future Work

We hypothesize that there is a set of general principles about

how people take in visual and data content that are valid across

visualizations. For example, most visualizations have a mechanism

for highlighting specific elements, either through interaction or

through queries, and we showed that this highlighting matters in

how people view elements. Second, while we studied connected

elements in the context of a node-link like diagram, establishing a

visual connection between elements is also employed in brushing

and linking interactions or the use of leader lines. We think our

finding that users view connected elements together also applies

to these more general cases. Third, most data featured in visual-

ization can be divided into semantic groups (e.g., actors, movies,

directors; protein kinases, protein receptors; conference papers,

journal papers) and we hypothesize that viewing transitions be-

tween and within such categories are also not random. Finally, we

showed that in our particular case study, users identified data that

is highly connected to their task and then shifted their attention

repeatedly and almost exclusively within that data group. Again,

we believe this is a behavior that is generalizable. Demonstrating

these generalities and exploring other patterns is beyond the scope

of this paper but the framework we proposed allows us to easily

explore and quantify such patterns in other visualizations. This

would both deepen our understanding of how visualizations are

used and provide guidelines for choosing appropriate inputs to our

algorithms.

More work is also needed to understand the impact of different

parameters involved in viewed object detection. For example, how

far away from an item can a user fixate and still be considered

to be viewing the item? The parameter that captures this in our

algorithm is R, and, while we use a constant R for all items, this

is unlikely the best approach. Based on qualitative observations

in the data we collected, and knowledge of the interplay between

peripheral vision and the fovea [42], we believe users fixate close

to items if they are surrounded by clutter, but exhibit significantly

more variability if items are isolated. Thus, we hypothesize that R

should adjust itself dynamically based on the clutter of the region

that a user is fixating. A further question is whether R should be

changed based on the visibility or discriminating features of an

item: can subjects fixate farther and still perceive an item if that

item is large enough?

Additional work is also needed to understand how to and

whether we can detect visual objects other than nodes or labels,

such as for instance polylines in a parallel coordinate plot, con-

tours in a group or set visualization, or cells in a heatmap. It is

unclear how to compute a gaze score (gs) for such objects since

there is no research to describe how people fixate them.

Finally, to reduce the overhead of instrumentation, our future

plans include making the predictive algorithm available as an

instrumentation library. A developer would link this library to

the visualization and maintain a correspondence between what is

shown on the screen at any given time and visual objects registered

with the library. Thus, when a new object is added to or removed

from the screen, or when its position or shape changed, these

changes would need to be registered with the library. Interestingly,

this workflow would integrate well with the add-remove-update

pattern typical of D3. Additionally, developers would create

classes of objects, for instance based on data semantics (e.g.,

kinases, movies, actors) or visual aspect (e.g., highlighted, glyphs

of a certain kind), and specify transitions probabilities between

them. The library would implement the algorithms described here

and provide in real time a list of visual items that a user is viewing.

6 CONCLUSION

In visualizations that are open to instrumentation, gaze informa-

tion provided by an eye-tracker can be used to automatically detect

what visual objects users are likely to be viewing. Such detection

can provide results that are almost as accurate as annotations

created by human coders, provided that detection is done “intelli-

gently”, by using gazes together with a prediction of which objects

are likely to be viewed at a given time. Data collected in this way

is highly granular and has semantic content because it is linked to

the data underlying the visualization. For this reason, and because

it does not require any human pre-processing, object viewing data

can be collected and analyzed efficiently for many subjects, using

interactive visualizations, for long analytic session, and could be

used in studies that explore how analysts hypothesize about data

using complex visual analytics systems.
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