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ANALYSIS OF REINFORCED CONCRETE COLUMNS SUBJECTED TO 

COMBINED AXIAL, FLEXURE, SHEAR AND TORSIONAL LOADS 
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Abstract  

This paper describes the implementation of a 3-dimensional concrete constitutive model for 

fiber-based analysis of reinforced concrete members subjected to combined loadings including 

torsion. The proposed model is formulated to address the interaction between the axial force, 

bidirectional shear, biaxial bending, and torsion. The shear mechanism along the beam is 

modeled using a Timoshenko beam approach with three dimensional (3-D) frame elements with 

arbitrary cross-section geometry. The model considers the 3D equilibrium, compatibility, and 

constitutive laws of materials at the section and structural level. The concrete constitutive law 

follows the Softened Membrane Model (SMM) with a tangent-stiffness formulation. The 

emphasis of the paper is on evaluation of the effect of the different stress states on the global and 

local behavior of the member. The ability of the model to assess the ultimate strength, stiffness, 

energy dissipation, failure modes under 3-dimensional loading is evaluated by correlation of 

analytical results with experimental tests of RC specimens. 
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INTRODUCTION 

Reinforced concrete (RC) structures are subjected to combinations of actions and 

deformations, caused by spatially complex earthquake ground motions, features of structural 

configurations and the interaction between input and response characteristics. Combined 

loadings can have significant effects on the force and deformation capacity of reinforced 

concrete structures, resulting in unexpected large deformations and extensive damage that in turn 

influences the performance of structures. In particular, combined bending and torsional effect is 

observed in structures such as skewed and horizontally curved bridges, bridges with unequal 

spans or column heights, spandrel beams and bridges with outrigger beams. The analytical 

modeling of the behavior of structures under bending, shear and axial force interaction has 

received considerable attention in recent years. There is however a lack of research studies 

regarding the combined behavior of 3D concrete structures.   

The first tests on combined shear, bending and torsion were reported by Nylander (1945). 

Using only longitudinal steel and disregarding transverse steel, the author found that the bending 

moment reduced the torsional strength. Lessig (1959) derived two possible failure modes and 

suggested equations for the torsional strength of the beams. Later most of the experimental work 

concentrated on combined loadings focused on the failure modes and the derivation of equations 

to define a 3-D interaction surface (Yudin 1962, Gesund and Boston 1964). Elfgren et al. (1974) 

derived shear, bending and torsion interaction from the Skew Bending theory; later Ewida and 

McMullen (1981) found that the Skew Bending theory’s predictions agreed fairly well with the 

available results. Mansur and Paramasivam (1984) tested ten beams with small circular openings 

in bending and torsion and found that the torsional strength and stiffness decreased as the 

opening size increased. For a small amount of bending moment there is an increase in the 
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torsional capacity of the member but for a substantial amount of bending, the ultimate torque 

decreases with the increase of bending.  

Rahal and Collins (1995a) studied the effect of the thickness of concrete cover on the 

behavior of reinforced concrete sections subjected to combined shear and torsion and found that 

the increase in thickness of the concrete cover increases the strength of sections, increases the 

crack spacing and induces lateral curvatures. 

 Rahal and Collins (1995b, 2003a) developed a 3-D truss model to analyze members 

subjected to combined loading with the help of the Modified Compression Field theory (MCFT). 

This model follows the curvature and checks the spalling of the concrete cover subjected to 

combined shear and torsional loads. Rahal and Collins (2003b) evaluated the ACI318-02 and 

AASHTO-LRFD provisions under combined shear and torsional loads. ACI provisions give very 

conservative results with the recommended 45
o
 angle between the compression diagonals and the 

longitudinal axis of the member. If a lower limit of 30
o
 angle is used for some cases, un-

conservative results might be possible. Tirasit et al (2005) investigated the performance of ten 

reinforced concrete columns under cyclically applied bending and torsional loadings with and 

without the effect of a constant axial compression force. Axial compression increases the 

torsional strength and angle of cracks but its effect decreases as the rotation increases. The 

plastic hinge zone changes with the change of angle of twist to drift ratio; as the torsion 

increases, the flexural capacity and drift of the column is reduced. On the other hand, with the 

increase of bending moment, torsional resistance and angle of twist reduces significantly. Tirasit 

and Kawashima (2008) studied the effect of seismic torsion on the performance of a skewed 

bridge and developed the Nonlinear Torsional Hysteretic model. It was found that the torsional 

strength reduces the combination of flexure and eccentric impact force due to the lack of bearing 
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movement that induces higher torsion in bridge piers. Prakash et al. (2010) tested circular 

reinforced concrete columns under cyclic bending and shear, cyclic pure torsion, and various 

levels of combined cyclic bending, shear, and torsional loads with an aspect ratio of 3 and 6. It 

was found that shear capacity increases with the reduction of the aspect ratio. The displacement 

at ultimate shear and rotation at ultimate torque also decreased significantly under combined 

loading.  

The establishment of nonlinear constitutive models for RC elements under combined loading 

and the development of corresponding nonlinear finite element models are essential to predicting 

the correct behavior of RC structures. In the past three decades, new constitutive models were 

developed in an effort to improve the general performance of the structures and elements. In 

these models, the equilibrium equations assume the stresses in the concrete struts and steel bars 

to be smeared. Similarly, the strains of steel and concrete are also smeared, and are obtained by 

averaging the strains along a steel bar that crosses several cracks. The constitutive laws of 

concrete and steel bars were developed through large-scale panel testing, and relate the smeared 

stresses to the smeared strains of the element (Belarbi and Hsu, 1994, 1995; Hsu and Zhang, 

1996). The first work to develop such constitutive laws is the one by Vecchio and Collins (1981), 

who proposed the Compression Field Theory (CFT) to predict the nonlinear behavior of cracked 

reinforced concrete membrane elements. The CFT however is unable to take into account the 

tension stiffening effect of the concrete. The researchers later improved their model and 

developed the Modified Compression Field Theory (Vecchio and Collins 1986), in which the 

tension stiffening of concrete is accounted for by imposing a concrete tensile stress across the 

shear crack. Belarbi and Hsu (1994, 1995), and Pang and Hsu (1995) used a different approach 

and developed the Rotating-Angle Softened-Truss Model (RA-STM). In this model, the tension 
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stiffening effect of concrete was taken into account by assuming a shear stress along the crack 

direction. Later, the researchers improved their work and developed the Fixed-Angle Softened-

Truss Model (FA-STM) (Pang and Hsu, 1996; Hsu and Zhang, 1997; and Zhang and Hsu, 1998), 

which is capable of predicting the concrete contribution to shear resistance by assuming the 

cracks to be oriented at a fixed angle. Zhu et al. (2001) derived a rational shear modulus and 

developed a simple solution algorithm for the FA-STM. The work was further extended by 

developing the Hsu/Zhu Poisson ratios (Zhu and Hsu 2002), which led to the development of the 

Softened Membrane Model (SMM), which can accurately predict the entire response of the 

specimen, including both the pre and post-peak responses. Recently, Jeng and Hsu (2009) 

developed the Softened Membrane Model for Torsion (SMMT) which takes into account the 

strain gradient of concrete struts in the shear flow zone with two significant modifications. First, 

in the tensile stress-stain relationship of concrete, the initial elastic modulus and strain at peak 

stress are increased by 45%; second, the Hsu/Zhu ratio of torsion is taken as 80% of the Hsu/Zhu 

ratio for bending-shear (Zhu and Hsu 2002).  

Vecchio and Selby (1991) developed a finite element program for 3-D analysis of concrete 

structures with an eight node regular hexahedral element. In their constitutive material model 

they used the Modified Compression Field Theory. Gregori et al. (2007) analyzed the section of a 

concrete column subjected to biaxial bending, bidirectional shear and torsion by subdividing it 

into several regions that are subjected to either uniaxial, biaxial, or triaxial state of stress. The 

regions subjected to a triaxial state of stress were analyzed following the approach of Vecchio 

and Selby (1991). 

In this research a generalized 3-D frame element adopting the Softened Membrane Model is 

implemented. The model is based on a Timoshenko-type force based formulation. Each element 
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is divided into several sections along the length and into several fibers across the cross section. 

Coupling between torsion and axial, flexural, and shear behavior is accounted for through 

satisfaction of the equilibrium and compatibility conditions along the three dimensions. This was 

performed by developing a new algorithm that correctly evaluates the longitudinal and transverse 

reinforcement strains compatible with the 3-dimensional cracked concrete behavior. The present 

study accomplishes three main tasks: 1) it formulates a force-based frame element to simulate the 

combined 3-dimensional loading effect on concrete members with reasonable computational 

efficiency, 2) it expands the use of the SMM constitutive model for analysis of RC members 

under triaxial states of stresses, 3) it validates the new finite element model by comparing its 

predictions with the experimental results of RC columns.  

The element was added to the library of the FORTRAN based finite element analysis 

program FEAPpv, developed by Taylor (2005). In order to implement the 3-D model into 

FEAPpv, a Timoshenko beam element with triaxial constitutive relations is added to the existing 

library of the FEAPpv as presented in Figure1. A detailed derivation of the element formulation 

is presented in the next sections. 

 

FINITE ELEMENT FORMULATION 

The 3-D response is described by defining six degrees of freedom at each section of the 

element, which consists of three translations 0u , 0v , 0w  and three rotations x , y , z with the 

corresponding forces N ,V ,W  and three moments T , yM , zM respectively. The general 3-D 

beam element with rigid body modes is shown in Figure 2(a); and without rigid body modes is 

shown in Figure 2(b). Each element is further divided into a number of sections that are 

subdivided into fibers. Section deformations and forces are shown in Figure 3 (a) and Figure 
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3(b). 

The main strains and corresponding stresses acting at any section can be grouped in vector 

forms:  

    
T

x xy xz         
T

x xy xz     (1) 

where x is the normal strain and xy and xz  are the shear strains. The remaining strain vectors 

,y z   , and yz are determined by enforcing equilibrium between the concrete and reinforcement, 

as will be described later. 

The section deformations at the origin of the section, in matrix form, can be written as: 

     0 0 0
0 0 0

T
T y z x

y z x xy xz z y

u v w
s

x x x x x x

  
       

     
     

      
 (2) 

where 0  is the longitudinal strain at the section centroid, y and z are the curvatures about the 

y- and z- coordinate system, x  is the angle of twist per unit length, and 0xy and 0xz  are the 

generalized shear strains.  

The strain vector at any fiber,  , is related to the sectional strain s  as follow: 

       
T

x xy xz T s      (3) 

where 

  

1 0 0 0

0 0 0 1 0

0 0 0 0 1

z y

T z

y

 
 

 
 
  

, (4) 

In the present model, a force-based formulation (Spacone et al. 1996) is adopted. The force-

based approach has superior numerical capabilities than standard displacement formulations. 

Furthermore, the latter suffers from locking if shear deformations are accounted for. By using the 
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force interpolation function ( )xb , the section forces ( )xS at a section x  are related to the element 

end forces P  by: 

 ( ) ( )x x b PS  (5) 

where 

 

1 0 0 0 0 0

0 0 1 0 0

0 0 0 0 1

( )
0 1 0 0 0 0

1 1
0 0 0 0

1 1
0 0 0 0

x x

L L

x x

L L
x

L L

L L

 
 
 
 
 

 
 
 
 

  
 
  
 
 

b . (6) 

To implement the force-based model in a finite element program based on displacement 

degrees of freedom, the following equation needs to be solved for incrementally: 

 elementK d R    (7) 

Here, the element stiffness matrix 1K F   and the resisting load increment 1

u
R P F r


    , 

Where 
0

( ) ( ) ( )

L

TF b x f x b x dx   is the element flexibility matrix, and 
0

( ) ( )

L

T

u d
r b x r x dx   is the 

section residual deformation vector. The process of the state determination of force-based 

elements requires an internal element iteration in addition to the Newton-Raphson global 

iteration; it is further described by Spacone et al. (1996) and Neuenhofer and Filippou (1997). 

Section behavior, as stated earlier, is evaluated through fiber discretization with the 

appropriate material constitutive models. The material constitutive models are described next. 
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CONCRETE CONSTITUTIVE MODEL 

There exist six stresses  3D and corresponding strains 3D acting on any concrete fiber; 

however, the current formulation considers only three stresses    and strains    components, 

while the other three stress and strain components are derived by considering the equilibrium 

conditions. The different stress and strain vectors are defined as follow: 

    3

T

D x y z xy yz xz       ,     3

T

D x y z xy yz xz       , (8) 

  
T

x xy xz       ,           
T

x y xz        (9) 

  
T

UN y z yz       ,           
T

UN y z yz        (10) 

The unknown stress components UN  should equal zero to satisfy the internal equilibrium 

between the reinforcing steel and concrete, which will result in evaluation of the corresponding 

three unknown strain values UN . Since the constrained condition is nonlinear, determination of 

the corresponding strains requires an iterative solution.  

The proposed model extends the 2-D SMM to describe the material response of 3-D regions. 

The modified constitutive relations follow a 3-D stress space formulation and differ from those 

originally proposed in 2-D formulations (Mullapudi 2010, Mullapudi and Ayoub, 2010). 

Concrete strains 3D  are used to calculate the principal strains, or Eigen values; and principal 

strain directions, or Eigen vectors; with the help of the Jacobi method.  

Eigen vectors, or direction cosines, are derived from the applied stresses 3D  which are 

represented with  1  
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  
1 2 3

1 1 2 3

1 2 3

l l l

m m m

n n n



 
 


 
  

 (11) 

The calculated principal strains 1 2 3,  ,      are sorted in such a way that 1 2 3    , the 

corresponding stresses 1 2 3,  ,  c c c   , are calculated using the biaxial constitutive relations 

explained in later sections.  

The rotation matrix needed to rotate the stress and strain vectors from the global x-y-z system 

to the applied principal stress direction system 1-2-3 with an angle of  1  is: 

  

2 2 2

1 1 1 1 1 1 1 1 1

2 2 2

2 2 2 2 2 2 2 2 2

2 2 2

3 3 3 3 3 3 3 3 3

1

1 2 1 2 1 2 1 2 2 1 1 2 2 1 1 2 2 1

2 3 2 3 2 3 2 3 3 2 2 3 3 2 2 3 3 2

3 1 3 1 3 1 3 1 1 3 3 1 1 3 3 1 1 3

n

n

n
( )

2 2 2

2 2 2

2 2 2

l m l m m n n l

l m l m m n n l

l m l m m n n l
R

l l m m n n l m l m m n m n n l n l

l l m m n n l m l m m n m n n l n l

l l m m n n l m l m m n m n n l n l









  

  

  






 
 
 
 
 

 (12) 

In a fiber-based element formulation, the process of the state determination at the fiber level 

requires the calculation of the fiber stresses 
T

x y z xy yz xz        from the strain 

state
T

x y z xy yz xz        . Because the SMM has been implemented in a Timoshenko-

type beam element, the values of ,   and x xy xz   are typically known, while the lateral strains y  

and z  values must be evaluated from the equilibrium conditions.  

 

EVALUATION OF LATERAL STRAIN  

The equilibrium equations needed to evaluate the stresses in the x-y-z coordinate system 

T

x y z xy yz xz        as a function of the principal stresses resisted by concrete 
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T
c c c c c c

x y z xy yz xz        and reinforcing bar stresses sxf , syf and szf  along the x, y, and z 

directions respectively are: 

 
     

 

1

1( )

                                                        

TT
c c c c c c

x y z xy yz xz 1 2 3 12 23 13

T

sx sx sy sy sz sz

= R σ σ σ τ τ τ

+ f f f 0 0 0

      

  



, (13) 

where  
T

c c c c c c

1 2 3 12 23 13σ σ σ τ τ τ  is the local concrete stress vector,  R  is the rotation 

matrix and  
1

R


= 
T

R  and sx , sy  and sz  are the smeared steel ratio in the direction of x, y and 

z  respectively.  

Transverse strains are internal variables determined by imposing equilibrium on each fiber 

between concrete and steel stirrups. Stirrup strains are not known in advance, and because of the 

non-linear behavior of the concrete and steel materials, an iterative procedure is needed to satisfy 

the equilibrium in the y and z directions, following the flow chart in Figure 4. The second of the 

equilibrium equations in (13) is used to evaluate the lateral strain 
y  in fiber i ; taking into 

consideration that the value of 
y

 equals zero: 

 
, 2 , 2 , 2 , , ,

1 1 2 2 3 3 12 1 2 23 2 3 31 1 32 2 2 0c i c i c i c i c i c i i i
sy sym m m m m m m m m f              (14) 

Eq. (14) can also be written as:  

 0i i i i

cy cy sy syA A    (15) 

The third of the equilibrium equations in (13) is used to evaluate the lateral strain 
z  in fiber 

i ; taking into consideration that the value of 
z

 equals zero:  

 , 2 , 2 , 2 , , ,
1 1 2 2 3 3 12 1 2 23 2 3 31 3 12 2 2 0c i c i c i c i c i c i i i

sz szn n n n n n n n n f               (16) 

Eq. (16) can also be written as  
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 0i i i i

cz cz sz szA A    (17) 

Here, i

cy  and i

cz  are the concrete stresses in the transverse y and z  direction of fiber i  

respectively; i

sy  and i

sz  are the steel stresses in the transverse y and z  direction of fiber i  

respectively; i

cyA and i

czA  are the  area of concrete in y and z  direction within the spacing S 

(Figure 5); i

syA  and i

szA  are the steel reinforcement, cross sectional areas in y and z  direction 

within the spacing S ; i
sy , i

sz  are the ratios of steel to concrete area in the y and z  direction of 

fiber i  , and i
syf , i

szf  are the transverse steel bar stresses which are equal to i

sy , and 
i

sz  . 

An iterative procedure is needed to determine the lateral strain y  and z  that will also 

satisfy the equations demonstrated in Figure 4 because of the nonlinear behavior of the concrete 

and steel. An initial value for y  and z  is assumed at each fiber, and the iterations proceed until 

Eqs. (14 and 16) are internally satisfied.  

 

STRAINS IN CIRCULAR SECTIONS 

Circular cross sections are typically divided into a number of sectors along the 

circumferential direction (Figure 6).  

Uni-axial stress-strain relationships of circular hoops are not available in an x-y-z coordinate 

system. Because of this difficulty they are determined along the tangential direction of the stirrup 

x’-y’-z’ coordinate system and then later converted to the x-y-z coordinate system. In each 

section, the x’-y’-z’ coordinate system is derived by choosing the angle 'θ such that the z’ axis is 

perpendicular to the transverse reinforcement alignment. The strain value in the x-y-z coordinate 

system is converted to the x’-y’-z’ co-ordinate system with the help of the transformation matrix 
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A: 

   ' '

' '

1 0 0

A = 0 cosθ -sinθ

0 sinθ cosθ

 
 
 
  

 (18) 

Accordingly, the strain perpendicular to the transverse reinforcement cross section '

y
ε  is 

calculated as:  

 ' 2 ' ' 2 '

y y yz z
ε = cos (θ ) - sin(2θ )+ sin (θ )    (19) 

Having obtained the uni-axial stress and stiffness values in the x’-y’-z’ coordinate system, 

these values are converted to the x-y-z coordinate system to satisfy equilibrium. The transverse 

steel reinforcement stress in the y-direction becomes ' 2 '
sy yf f cos (θ ) ; the transverse steel 

reinforcement stress in the z-direction becomes ' 2 '
sz yf f sin (θ ) , and the shear stress contribution 

of the steel is neglected. 

With similar transformations, the transverse steel reinforcement stiffness in the y-direction 

becomes ' 2 '
sy yE D cos (θ ) , the transverse steel reinforcement stiffness in the z-direction 

becomes ' 2 '
sz yE D sin (θ ) , and the shear stiffness contribution of the steel is neglected.  

 

EVALUATION OF CONCRETE STRESS  

The typical concrete stress-strain curves are derived from uni-axial tests, so the biaxial strains 

in the x-y-z direction 
T

x y z xy yz xz         need to be converted to equivalent uni-axial 

strains in the 1-2-3 direction  
T

1 2 3 12 23 13       to calculate the concrete stresses.  

The biaxial principal strains are then evaluated as:  
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     ( )
TT

1 2 3 12 23 13 1 x y z xy yz xzR α             (20) 

Biaxial principal strains are needed to evaluate the equivalent uni-axial strains. The 

equivalent uni-axial strains are derived from the biaxial strains with the help of the suggested 

Poisson’s Ratio of cracked concrete for SMM, also called the Hsu/Zhu ratios 

 12 21 23 32 13 31

T
       (Zhu and Hsu 2002). From the range of 1 to 3j   and 

1 to 3k  , 
jk  is the ratio of the resulting tensile strain increment in the principal j -direction to 

the source compressive strain increment in the principal k -direction; kj  is the ratio of the 

resulting compressive strain increment in the principal k -direction to the tensile source strain 

increment in the principal j -direction.  The following equations were suggested by Jeng and 

Hsu (2009) based on comparisons of test data:  

 0.16 680jk sf         sf yd   (21) 

 1.52jk        sf yd   (22) 

 0kj  , (23) 

where sf  is defined as the strain in the reinforcement that yields first, and yd is the yield strain 

of reinforcing steel.  

After cracking, Hsu/Zhu ratio
jk  lies outside the typical range of 0 to 0.5 for Poisson’s Ratio 

of continuous materials; before cracking Hsu/Zhu ratio 0.2kj  , and after cracking Hsu/Zhu 

ratio 0kj  , indicating the tensile strain has no effect on the compressive strain.  

The equivalent uni-axial strains are derived from the biaxial principal strains with Hsu/Zhu 

ratios  12 21 23 32 13 31

T
       as:  
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     1 2 3 1 2 3

T T
       , (24) 

where    

1

12 13

21 23

31 32

1

1

1

 

  

 


  

 
  
 
   

 (25) 

The equivalent uni-axial strain in the longitudinal reinforcement along the x -direction with 

the effect of Hsu/Zhu ratio is given by: 

 2 2 2

1 1 2 2 3 3 12 1 2 23 2 3 13 1 32 2 2sx l l l l l l l l l             (26) 

The equivalent uni-axial strain in the transverse reinforcement along the y -direction with the 

effect of Hsu/Zhu ratio is given by: 

 2 2 2

1 1 2 2 3 3 12 1 2 23 2 3 13 1 32 2 2sy m m m m m m m m m             (27) 

The equivalent uni-axial strain in the transverse reinforcement along the z -direction with the 

effect of Hsu/Zhu ratio is given by: 

 2 2 2

1 1 2 2 3 3 12 1 2 23 2 3 13 1 32 2 2sz n n n n n n n n n             (28) 

The equivalent uni-axial longitudinal steel stress
sxf , transverse steel stresses 

syf , and 
szf  are 

calculated from the equivalent uni-axial steel reinforcement strains sx , sy  , and sz  through a 

smeared stress-strain relationships of mild steel bars embedded in concrete and subjected to uni-

axial strains (Belarbi and Hsu 1994; 1995).  

The current equivalent uni-axial strains 1 , 2 , and 3  are individually used to calculate the 

concrete stresses 1

c , 2

c , and 3

c  in the principal direction of the uni-axial concrete material 

stress-strain relationship.  

The concrete uni-axial model describes the cyclic uni-axial constitutive relationships of 

cracked concrete in compression and tension and follows the modified Kent and Park model 
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(Park et al. 1982). The smeared stress-strain relationships of mild steel bars embedded in 

concrete and subjected to uni-axial strains developed by Belarbi and Hsu (1994; 1995) was used 

in the analysis. Steel stresses are averaged along the steel bar traversing several cracks and the 

resulting smeared steel stress at first yield is reduced compared to the local yield stress of a bare 

bar at the cracks.  

 

CONCRETE TRIAXIAL CONSTITUTIVE RELATIONS 

The constitutive equations depend on the strain state and the region of the cross section. The 

principal strains 1 2,    , and 3 are found from the global strains using the Jacobi method, and the 

equivalent uni-axial strains 1 2,  , and 3  are derived based on the Hsu/Zhu ratio (Jeng and Hsu, 

2009). The local concrete material stiffness is derived based on Young’s Modulus and the 

Hsu/Zhu ratio. The global stiffness in Cartesian direction is calculated by transforming the local 

stiffness to the global direction. The global stiffness in y, z, and yz directions are condensed in the 

element formulation and, during this process, the stresses in axial, flexure, and shear directions 

becomes coupled. 

The values of the concrete uni-axial strains in principal directions 1, 2, and 3 have eight 

conditions, and the strength in one direction is affected by the strain state in the other directions 

following the procedure proposed by Vecchio and Selby (1991). The uni-axial strains are sorted 

in ascending order such that 1 2 3    . The values of concrete compressive strength 1

c  in 

direction one and concrete compressive strength 3

c  in direction three are derived as described 

below, while the concrete compressive strength 2

c  in direction two can be found in a similar 

way by applying the corresponding relations between the 1 and 2 directions.  
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For the case in which the equivalent uni-axial strain of concrete 1 in principal direction one is 

in tension, and the equivalent uni-axial strain 3  in principal direction three is in compression, the 

uni-axial concrete stress 1

c in direction one is calculated from 1  and is not a function of the 

perpendicular concrete strain 3 . The compressive strength in principal direction three, 

however, 3

c  will soften because of the tension in the orthogonal direction. Jeng and Hsu (2009) 

derived a softening equation in the tension-compression region, which is implemented in the 

current model, and is based on panel testing
 
as proposed by Hsu and Zhu (2002). The equation 

for the compressive strength and strain reduction factor   is given by:  

 

*
1

'
1

5.8 1
0.9 1

321 400( )

r

cf MPa






   
     

        

 (29) 

where,  
* 1 13
1

1 3

2
0.5 tanr




 

  
  

 
 (30) 

The ultimate stress in the orthogonal direction is 
'

cf  at softened strain 0  when   is the 

softening coefficient; *
1r  is the deviation angle in degrees; 1  is lateral tensile strain; 0  is 

concrete strain at peak compressive strength '

cf ; and '

cf  is the softened concrete compressive 

strength. If the equivalent uni-axial strain of concrete 1  in principal direction one is in 

compression, and the equivalent uni-axial strain 3  in principal direction three is in tension, the 

same softening equations apply to the compressive strength in direction one. 

If the strains 1  and 3  are both in tension, 1

c and 3

c  are functions only of the orthogonal 

concrete strains 1 and 3  respectively. 
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If the strains 1  and 3  are both in compression, the Vecchio’s (1992) simplified version of 

Kupfer et al. (1969) biaxial compression strength equation is adopted, as described in details in 

Mullapudi and Ayoub (2010).  

 

FIBER STATE DETERMINATION 

With the equivalent uni-axial strains, the stiffness values 1

cE , 2

cE , and 3

cE  are determined 

from a material uni-axial stress-strain diagram. The material constitutive equation is:  

      123 123

cc

loD   or (31) 

     
T c Tc c c c c c

1 2 3 12 23 13 lo 1 2 3 12 23 13σ σ σ τ τ τ D       , (32) 

Whereas  123

c
  is the local concrete stress vector,  

123
  is the local principal strain vector, and 

 
c

loD  is the local uni-axial concrete material secant stiffness matrix in the principal direction, 

prD    is the uni-axial concrete material stiffness matrix in the normal principal directions which 

can be calculated as:  

 

1

12 13 1

21 23 2

31 32 3

1 0 0

1 0 0

1 0 0

c

c

pr

c

E

D E

E

 

 

 


   
           
      

 and, (33) 

 
 

1 2

1 2

2 3

2 3

1 3

1 3

(1,1) (1,2) (1,3) 0 0 0

(2,1) (2,2) (2,3) 0 0 0

(3,1) (3,2) (3,3) 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

pr pr pr

pr pr pr

pr pr pr

c c

c

lo

c c

c c

D D D

D D D

D D D

D

 

 

 

 

 

 

 
 
 
 
 

 
 
 

 
 
 
 
 

 

 (34) 
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The concrete orthotropic stiffness matrix in the global x-y-z direction 
c

glD    is evaluated 

through the rotation matrix R : 

      
1

1 1( ) ( )
c c

gl loD R D R 


     (35) 

The local uni-axial reinforcement material stiffness matrix in the direction of reinforcement 

is given by: 

 
sx

gl sx sxD E    , 
sy

gl sy syD E      and   
sz

gl sz szD E    , (36) 

where 
sx

glD   is the longitudinal steel global stiffness matrix, 
sy

glD    is the transverse steel 

global stiffness matrix along the y-axis, 
sz

glD    is the transverse steel global stiffness matrix 

along the z-axis, sx  is the smeared area of the longitudinal steel in fiber i , sy  is the smeared 

area of the transverse steel in the y-direction, sz  is the smeared area of the transverse steel in the 

z-direction, and sxE , syE , and szE  are the uni-axial steel stiffnesses evaluated from the respective 

steel model along the longitudinal and transverse directions respectively.  

The stiffness matrix including concrete and transverse steel terms is evaluated from the 

concrete stiffness 
c

glD   , and the transverse steel stiffness ,  
sy sz

gl glD D        as  

 
c sy sz c sy sz

gl gl gl glD D D D
 

                 , (37) 

The total global stiffness matrix is non-symmetric since the off-diagonal values are affected by 

the Hsu/Zhu Poisson’s Ratio, which depend on the stress state. 

Finally, a new process for determination of the sectional and elemental stiffness matrices 

derived from fiber discretization is proposed in the next section. 
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Section and Element Stiffness and Force Evaluation 

The stress and strain in the global coordinate system are as  

    
T Tc sy sz

cx y z xy yz xz gl x y z xy yz xzD           
 

    , (38) 

where the cx  is the longitudinal stress in a concrete fiber, y  and z  are the total transverse 

fiber stress in the y  and z  directions due to the concrete and steel; xy , yz , and xz  are the total 

fiber shear stresses.  

The proposed fiber beam element follows the plane section hypothesis and only have x, xy , and 

xz degrees of freedom at the section level. The sectional degree of freedom term corresponding 

to the transverse strain in y -direction y , transverse strain in z -direction z , and shear strain yz  

and corresponding stiffness and stresses are condensed out from the section stiffness matrix and 

load vector following the procedure described by Mullapudi and Ayoub (2010). 

The fiber strains are derived from the section strains as:  

  0 0 0

1 0 0 0

0 0 0 1 0

0 0 0 0 1

x
T

xy y z x xy xz

xz

z y

z

y



      



   
   

    
      

 (39) 

The transformation matrix to transform the fiber stiffness to the section stiffness is therefore  

  

1 0 0 0

0 0 0 1 0

0 0 0 0 1

z y

T z

y

 
 

 
 
  

 (40) 

The contribution of concrete to the section stiffness is: 

       11)(
T

Section c cxk T AK T    , (41) 

where cxA  is the area of the concrete fiber in the longitudinal direction and 11k  is the condensed 
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section stiffness matrix. 

The sectional stiffness due to the longitudinal reinforcement is: 

       )(
sxT

Section sx gl sxD T AK T      (42) 

The sectional forces due to the concrete fiber are: 

        )(
T

Section c fiber cxc
AF T   (43) 

The sectional forces due to the longitudinal steel fiber are:  

   
1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

T

sx

Section sxsx

z y

z A

y

F

   
  

    
     

  (44) 

The total stiffness of the section is derived from the sum of concrete and steel stiffness as: 

  
1 1

) )( (
nc ns

Section Section c Section sxK K K   , (45) 

where nc  and ns  are the number of concrete and longitudinal steel fibers in a section. 

The total force of the section is the sum of concrete and steel forces in their respective 

directions: 

  
1 1

) )( (
nc ns

Section Section c Section sxF F F   (46) 

 

ANALYSIS OF COLUMNS SUBJECTED TO COMBINED LOADS 

The 3-D fiber beam element is used for the analysis of a combination of axial, shear, flexure, 

and torsion-loaded columns tested by Prakash et al. (2010). The experimental study was 

conducted at Missouri S&T to evaluate the behavior of reinforced concrete circular bridge 

columns (Figure 7) under combined flexure, axial, shear, and torsion loadings. The columns are 
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tested with two aspect ratios (height (H) to diameter (D)) with H/D=3 and 6, and two spiral 

reinforcement ratios of 0.73 percent and 1.32 percent respectively. 

The actual test specimen has a diameter of 609.6 mm (24 inches) and is 3657.6 mm (144 

inches) long from the top of the footing to the centerline of the applied load for the column with 

an aspect ratio of 6, and is 1828.8 mm (72 inches) long from the top of the footing to the 

centerline of the applied load for the column with an aspect ratio of 3. A 63.5 mm (2.5-inch) hole 

in the center of the column cross section was used to run seven high-strength steel strands that 

are stressed to apply an axial load of 7% of the concrete capacity (Figure 7(a)). The lateral load is 

applied at the top of the column using two hydraulic actuators in a displacement-control mode. 

The reinforcement consisted of 12 No. 8 longitudinal bars, and No. 3 spiral transverse 

reinforcement spaced at 69.9 mm (2.75 in.) for the columns with an aspect ratio of 6, and No. 4 

spiral transverse reinforcement spaced at 69.9 mm (2.75 in.) for the columns with an aspect ratio 

of 3. The reinforcement details with different aspect ratios are given in Table 1. 

The column section is subdivided into 36 fibers and modeled with only one element along 

the length. A Gauss-Labatto integration scheme with five integration points is used in the 

analysis. These numbers of sections and fibers proved to be sufficient to reach a converged 

solution. The columns boundary condition is assumed as fixed at the bottom and free at the top 

(Figure 7(c)). All of the columns are analyzed with a displacement-control strategy by applying a 

constant axial force (7% of the concrete capacity) at the top of the column with an appropriate 

time variant lateral displacement and twist at the top free end of the column. 

The input data of the model consists of the frame geometry and boundary conditions, 

external loads or imposed displacements, number of sections and fibers, longitudinal and 

transverse reinforcement area, basic material properties (elastic modulus, yield stress and 
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hardening ratio for steel; compressive strength, strain at compressive strength, post-peak 

compression slope and tension stiffening slope for concrete), as well as time step increments. No 

additional data is needed. 

Column H/D(6)-T/M(0.2) was tested with an applied torsion to uniaxial moment (T/M) ratio 

of 0.2, and an aspect ratio (H/D) of 6. The column’s reinforcement ratio, concrete compressive 

strength and peak capacities are given in Table 2. Analysis of the column was conducted using 

the proposed 3D fiber beam-column element under cyclic load (Figure 8). Flexural cracks first 

appeared near the bottom of the column and their angle became more inclined at increasing 

heights above the top of the footing. The appearance of the cracks increased with an increase in 

applied loading. The longitudinal bars yielded at about 38 inches from the base of the column. 

The model failed by yielding of the longitudinal and transverse reinforcement followed by 

core degradation. Figure 8 shows the comparison of the column performance with a similar 

column tested under pure uniaxial bending, as well as the analytical results using the proposed 

model. The analytical load-displacement curve matched well with the experiment. Because of the 

moderate amount of induced torsion, the bending strength and stiffness were reduced slightly. 

Figure 9 shows the longitudinal steel strain history at 432 mm (17 inches) above the foundation. 

The longitudinal strain increased with the increase of the lateral load acting on the column. The 

experimental strain gauge readings matched well with the analytical results and the model 

captured the yielding of the reinforcement rather well.  

Another column H/D(6)-T/M(0.4) is analyzed under cyclic load with an applied torsion to 

moment (T/M) ratio of 0.4. The aspect ratio H/D of the column is 6. The column’s reinforcement 

ratio, concrete compressive strength and peak capacities are given in Table 2. The column model 

reached the peak shear of 183.8 kN (41.3 kips) at a displacement of 196.0 mm (7.7 in) (Figure 
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10). For this column, both the longitudinal and transverse reinforcement yielded at same time. 

Because of the higher T/M ratio, damage did not only occur at the bottom of the column, but also 

along its entire length.  

The ultimate load and peak displacement values are fairly matched with the experimental 

results as shown in Figure 10. There are some differences between the experimental and 

analytical results specifically with respect to the unloading stiffness and energy dissipation. This 

is due to the fact that the uniaxial concrete model of Park et al. (1982) assumes a linear 

unloading stiffness. The analytical results of the peak load and corresponding displacement 

values are compared to the experimental results in Table 3 for both, columns H/D(6)-T/M(0.2) 

and H/D(6)-T/M(0.4). 

Column H/D(3)-T/M(0.2) with low aspect ratio H/D of 3 is analyzed with the proposed 3-D 

element. This column was designed to be shear sensitive, and was tested under monotonic load 

with an applied torsion to moment (T/M) ratio of 0.2. The column’s reinforcement ratio, concrete 

compressive strength and peak capacities are given in Table 2. The column model reached the 

peak shear at a displacement of 50.8 mm (2 in) (Figure 11). The peak torsional moment in the 

analysis was reached at a twisting angle of 0.85 deg. (Figure 12). Before reaching the peak 

strength, the longitudinal steel at the bottom of the column yielded first followed by the bottom 

spiral reinforcement. From Figures 11 and 12, it is evident that the analytical results matched 

well with the experiment. 

Column H/D(3)-T/M(0.4) with low aspect ratio H/D of 3 and high torsional moment 

characterized with T/M ratio of 0.4 was analyzed with the proposed element. The column’s 

reinforcement ratio, concrete compressive strength and peak capacities are given in Table 2. The 

column model reached the peak shear at 61 mm (2.4 in) (Figure 13). The peak torsional moment 
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in analysis was reached at a twisting angle of 3.2 deg (Figure 14). Before reaching the peak load, 

the longitudinal reinforcement yielded first followed by the transverse reinforcement. Similar to 

the previous columns, the analytical results including the cracking, yielding, peak and ultimate 

loads and corresponding displacements matched well with the experimental results. 

 

SUMMARY AND CONCLUSIONS 

This work represents a finite element model for the analysis of reinforced concrete structures 

subjected to combined loading including torsion. A force-based Timoshenko-type 3-D beam 

element with SMM constitutive model was developed to analyze reinforced concrete structures 

with the incorporation of mechanisms of shear deformation and strength. Transverse strains due 

to torsion and shear were evaluated with the development of an iterative process at the fiber 

level, and condensed out at the section level. Circular hoop reinforcement stresses and stiffnesses 

were calculated based upon angular segmentation. Triaxial constitutive relations based on strain 

state were developed for 3-dimensional modeling of concrete fibers. The fiber state 

determination along with the formulation of stiffness and resisting loads were presented. 

Correlation studies with available experimental test data were conducted in order to 

investigate the validity of the model. These studies confirmed the accuracy of the model in 

representing both global and local parameters as well as the proper failure mode. It was also 

concluded that the increase of bending moments reduces the torsional moment required to cause 

yielding of the transverse and longitudinal reinforcement. With the increase of the T/M ratio, the 

torsional stiffness degrades rapidly as compared to the flexural stiffness, and the ultimate twist is 

reduced. A reduction in aspect ratio reduces the displacement and twist at the ultimate resisting 

load, resulting in a predominantly shear failure mode.  
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NOTATIONS 

1 2 3   = direction of applied principal tensile stress 

x y z   = global coordinate of RC element 

x' ' 'y z   = local coordinate of RC element for circular 

cross section 

'θ   = angle for circular cross section 

 
T

 = transpose matrix 

 0 0 0

T

x y zu v w     
= frame displacements in global system  

 
T

x y z xy yz xz       = global strain vector 

 
T

1 2 3 12 23 13        biaxial principal strains in the 1-2-3 

direction 

 
T

x y z xy yz xz       = global total stress vector 

   0 0 0

T

y z x xy xzs        
= section deformations  

 ( )
T

y zx N V W T M MS  
 section forces 

   
T

x xy xz     
= available strains 
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   
T

x xy xz     
= available stresses 

 T  = transformation matrix 

( )xb   = force interpolation function 

s'   = section deformations at x' 'y  coordinate 

system 

y
ε , '

y
f  = strain and stress perpendicular to the 

stirrup cross section 

 A   = transformation matrix for circular cross 

section 

P   = element end forces 

d   = element deformation 

( )
Section

xK  = section stiffness matrix 

(x)r   = residual section deformation 

d
r  

= residual of sectional deformation 

u
r   

= element residual deformation vector 

( )f x   = section flexibility 
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F   = element flexibility matrix without rigid 

body modes 

 1
  = angle between the (x-y-z) coordinate 

system and (1-2-3) coordinate system 

 1
( )R    rotating matrix 

sxf , syf , szf  = Reinforcing bar stresses along the x , y and 

z directions respectively 

sx , sy , sz  = Smeared steel ratio in the direction of x, y 

and z directions respectively 

 
T

c c c c c c

1 2 3 12 23 13σ σ σ τ τ τ  = local concrete stress vector in 

1 2 3  direction 

i

cx , i

cy , i

cz   = concrete stress in x, y and z directions 

respectively of fiber i  

i

sx ,
i

sy , i

sz  = steel stress in x, y and z directions 

respectively of fiber i  

i

cyA , i

czA   = Area of concrete between the spacing of 

the stirrups in the y and z direction 

respectively of fiber i  
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i

syA , i

szA   = area of steel between the spacing of the 

stirrups in the y and z direction 

respectively of fiber i 

cxA   = area of the concrete fiber in the x direction. 

 12 21 23 32 13 31

T
       = Hsu/Zhu ratios 

 1 2 3

T
    = equivalent uni-axial strains 

sx , sy , sz   = equivalent uniaxial strain in the 

reinforcement in x, y and z directions 

respectively  

   = Softened coefficient of concrete in 

compression 

*
1r   = Deviation angle between the applied stress 

angle 1
α and the rotating angle r

α  

'

cf  = uni-axial concrete compressive strength 

1cK , 2cK , 3cK  = biaxial strength magnification factors in 1-, 

2-, 3- directions respectively 

1p , 2 p , 3 p  = ultimate strain in 1-, 2-, 3- directions 

respectively 



35 

 

1p , 2 p , 3 p  = ultimate stresses in 1-, 2-, 3- directions 

respectively 

prD    = uni-axial concrete material stiffness matrix 

at normal 1-, 2-, 3- directions 

 
c

loD   = local uni-axial concrete material secant 

stiffness matrix in the principal direction 

c

glD     = concrete orthotropic stiffness matrix in the 

global x-y-z direction 

sx

glD   ,
sy

glD   ,
sz

glD    = steel global stiffness matrices x, y and z 

directions respectively 

c sy sz

glD
 

    = Stiffness matrix including concrete and 

transverse steel terms 

1

cE , 2

cE , 3

cE  = concrete uni-axial stiffnesses in 1-, 2-, 3- 

directions respectively 

sxE , syE , szE  = uni-axial steel stiffnesses along the x-axis, 

y-axis and z-axis respectively.  

fiberk    = condensed fiber stiffness 

  fiber c
  

= condensed concrete fiber stresses 
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 ( )Section cK  = Contribution of concrete to the section 

stiffness 

 )( Section sxK  = sectional stiffness due to the longitudinal 

reinforcement 

 )( Section cF  = Sectional forces due to the concrete fiber 

  Section sx
F  = Sectional forces due to the longitudinal 

steel fiber 

 SectionK  = total stiffness of the section 

 SectionF  = total force of the section 

 ElementF  = element force vector 

 ElementK  = element stiffness matrix 
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Table 1. Missouri S&T Columns Reinforcement Details 

 

 

Table 2. Column Details and Peak Capacities 

Column Name

Spiral 

Reinforcement 

Ratio 

Longitudinal 

Reinforcement 

Ratio 

Concrete 

Compressive 

Strength 

(MPa)

Peak Shear 

Force (kN) 

Peak 

Torsional 

Moment 

(kN-m) 

H/D(6)-T/M(0.2) 0.73% 2.10% 41.2 214.0 155.7

H/D(6)-T/M(0.4) 0.73% 2.10% 41.2 183.8 204.0

H/D(3)-T/M(0.2) 1.32% 2.10% 28.7 448.2 159.1

H/D(3)-T/M(0.4) 1.32% 2.10% 26.8 378.0 260.8  

 

Table 3. Load-displacement values for H/D=6, T/M =0.2 and H/D=6, T/M =0.4 

 

H/D=6, T/M =0.2 H/D=6, T/M =0.4 

Displacement, 
mm (in) 

Shear Force, 
KN (kip) 

Displacement, 
mm (in) 

Shear 
Force, KN 
(kip) 

Analysis 221 (8.7) 214 (48.1) 196 (7.7) 183.8 (41.3) 

Experiment 221.5 (8.7) 208 (46.8) 210.4 (8.3) 193.2 (43.8) 
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FIGURE CAPTIONS 

Figure 1. Implementation of 3-D Model into FEAPpv 

Figure 2. Displacements and Forces (a) with Rigid Body Modes (b) without Rigid Body 

Modes 

Figure 3. (a) Section Displacements (b) Section Forces 

Figure 4. Iterative Procedure to Find Required 3-D Strains 

Figure 5. 3-D Fiber Element Formulation 

Figure 6. Circular Cross Section Transformation 

Figure 7. Bridge schematic view (a) Bridge column test setup (b) Bridge column section 

Figure 8. Cyclic load-displacement curve of column H/D(6)-T/M(0.2)  

Figure 9. Longitudinal strain history at Gauge 1 location of column H/D(6)-T/M(0.2) 

Figure 10. Cyclic load-displacement curve of column H/D(6)-T/M(0.4)  

Figure 11. Monotonic load-displacement curve of column H/D(3)-T/M(0.4)  

Figure 12. Monotonic torque-twist curve of column H/D(3)-T/M(0.4)  

Figure 13. Monotonic load-displacement curve of column H/D(3)-T/M(0.4)  

Figure 14. Monotonic torque-twist curve of column H/D(3)-T/M(0.4)  
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Figure 1. Implementation of 3-D Model into FEAPpv 
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(a)                                                                                         (b) 

Figure 2 Displacements and Forces (a) with Rigid Body Modes (b) without Rigid Body Modes 
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Figure 3. (a) Section Displacements (b) Section Forces 
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Assume principal stress direction  1  

 

Calculate uniaxial principal strains 1 2 3, ,     

Determine fiber uniaxial stress 1 2 3, ,c c c   , Young’s modulus 

1 2 3, ,c c cE E E based on current uniaxial principal strain 

state 

 Calculate fiber local stiffness matrix loD and global stiffness matrix glD  

Calculate fiber stresses in global reference system 
fiber

  

Calculate  1

new
  from  

fiber
  

   1 1 0
new

    

Calculate element stiffness  
Element

K  and element resisting forces  
Element

P  

Calculate section stiffness  
section

K  and section forces  
Section

S  

Assume transverse strain y  

 

Assume transverse strain 
z  

 

Assume shear strain yz  

 

Find the available strains , ,x xy xz   on each fiber 

No 

Yes 
No 

Yes 

Yes 

Yes 

Yes 

No 

No 

Shear stress 0yz   

0z   Transverse stress 

0
y

   Transverse stress 

 

Figure 4. Iterative Procedure to Find Required 3-D Strains 



41 

 

x

z

y

, zw

, yv

, xu

b

h

1

2

 

Figure 5. 3-D Fiber Element Formulation 
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Figure 6. Circular Cross Section Transformation 
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(a)                                                           (b)                                        (c) 
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Figure 7. Bridge schematic view (a) Bridge column test setup (b) Bridge column section (c) 

Analysis model 

 

 

Figure 8. Cyclic load-displacement curve of column H/D(6)-T/M(0.2)  
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Figure 9. Longitudinal strain history at Gauge 1 location of column H/D(6)-T/M(0.2) 

-250

-200

-150

-100

-50

0

50

100

150

200

250

-250 -200 -150 -100 -50 0 50 100 150 200 250

L
o

a
d

 (
k

N
)

Displacement (mm)

Analysis T/M 0.4

Experiment T/M 0.4

 

Figure 10. Cyclic load-displacement curve of column H/D(6)-T/M(0.4)  
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Figure 11. Monotonic load-displacement curve of column H/D(3)-T/M(0.2)  
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Figure 12. Monotonic torque-twist curve of column H/D(3)-T/M(0.2)  
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Figure 13. Monotonic load-displacement curve of column H/D(3)-T/M(0.4)  
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Figure 14. Monotonic torque-twist curve of column H/D(3)-T/M(0.4)  
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