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A FINITE ELEMENT MODEL FOR PRETENSIONED 

PRESTRESSED CONCRETE GIRDERS 

By Ashraf Ayoub, A.M. ASCE1, and Filip C. Filippou, M. ASCE2 

Abstract  

This paper presents a nonlinear model for pretensioned prestressed concrete girders. 

The model consists of three main components: a beam-column element that describes the 

behavior of concrete, a truss element that describes the behavior of prestressing tendons, 

and a bond element that describes the transfer of stresses between the prestressing 

tendons and the concrete. The model is based on a two-field mixed formulation, where 

forces and deformations are both approximated within the element. The nonlinear 

response of the concrete and tendon components is based on the section discretization 

into fibers with uniaxial hysteretic material models. The stress transfer mechanism is 

modeled with a distributed interface element with special bond stress-slip relation. A 

method for accurately simulating the prestressing operation is presented. Accordingly, a 

complete nonlinear analysis is performed at the different stages of prestressing. 

Correlation studies of the proposed model with experimental results of pretensioned 

specimens are conducted. These studies confirmed the accuracy and efficiency of the 

model.  

CE Database subject headings: Prestressed concrete; Pretensioning; Finite element 

method; Nonlinear analysis; Bond stress; Slip. 
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Introduction  

 

The use of prestressed concrete in the design of buildings, bridges, tanks, offshore 

platforms and many other structures has increased dramatically since the second world 

war. The active combination of high strength concrete and high strength steel leads to the 

achievement of desirable structural properties such as high strength to weight ratio, 

increased flexural ductility, improved shear strength, better deformation control and 

deformation recovery with crack closure upon unloading. These properties have made 

prestressed concrete the ideal choice for many structural applications. 

Two different procedures for prestressing exist: pretensioning procedures, and post-

tensioning procedures. The main difference between pretensioned and post-tensioned 

structures is the type of prestressing. The term pretensioning is used to describe any 

method of prestressing in which the tendons are tensioned before the concrete is placed. 

The tendons must be temporarily anchored against an abutment or stressing bed when 

tensioned, and the prestress is transferred to the concrete after the concrete has set. The 

tendons generally have their prestress transmitted to the concrete by their bond action 

near the beam ends. The effectiveness of such stress transmission is limited to large 

diameter strands which possess better bond properties than smooth wires. Pretensioning 

was developed by the German engineer E. Hoyer as a practical technique in 1938, and is 

employed in precasting plants or laboratories where permanent beds are provided for such 

tensioning, and in fields where abutments can be economically constructed. The term 

post-tensioning, on the other hand, is used when the tendons are stressed against the 

concrete after it has hardened. 
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Modeling of prestressing tendons in finite element analysis can be performed in two 

ways, as discussed by Aalami (2000), either as a loading applied to the member, or as an 

additional structural element that contributes to the resistance to the applied loads. The 

first considers the prestressing effects just as loads acting on the concrete member. The 

load is applied either using load balancing techniques (e.g. Aalami 1990), through applied 

primary and secondary moments (e.g. Picard et. al. 1995), or by discretization of the 

tendon force (e.g. ADAPT-PT 1999). The main drawback of this method is that it 

neglects the effect of the concrete deformation on the prestressing force, and thus doesn’t 

predict the prestressed losses accurately. In the second method, the tendon is modeled as 

an additional load resisting element, and contributes to the overall stiffness of the 

structure. Such technique directly takes into account the interaction between the tendon 

and its surrounding concrete. Furthermore, long term effects could be directly accounted 

for in this type of modeling without separate stress loss calculations.  

In the second method of analysis, most previously developed formulations are based 

on the displacement method of analysis (e.g. Kang 1977; Mari 1984; Roca and Mari 

1993, and Cruz et al. 1998). In this method, typically a linear variation of axial 

deformation and a cubic variation of transverse deformation are assumed along the 

element length. For pre-tensioned constructions, prestressing tendons are modeled as steel 

segments perfectly bonded to the concrete beam. The prestressing operation is simulated 

simply by transferring the prestressing force in the tendon to the concrete reference axis.  

The main shortcoming of displacement formulations lies in their inability to 

accurately trace localized curvature distributions in the plastic zone, since they typically 

assume linear interpolation functions for curvatures. A fine mesh is thus needed in the 
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plastic area, which renders the problem computationally expensive. Furthermore, all 

previously developed models assumed perfect bond between prestressing tendons and 

concrete and neglected slip effects. It is known that for pre-tensioned structures, tendons 

are anchored to the concrete by direct bond, which depends on several factors including 

among other concrete quality, surface roughness of the prestressing steel and size of 

strands. The prestressing force is transferred from the steel tendon to the concrete over a 

specified transfer length that depends on the bond properties between tendon and 

concrete. Estimation of the value of the transfer length is essential for design purposes, 

and failure to evaluate it properly can lead to unsafe designs. It is therefore necessary to 

include bond-slip effects in finite element models to account for such an important 

phenomenon. 

Another method of modeling pre-tensioned beams is based on the force method of 

analysis (e.g. Kodur 1988, Yassin 1994). In this method, equilibrium is satisfied within 

the element in a strong sense. Kodur used a curvature incrementing technique using pre-

generated moment-curvature relations to trace the behavior of bonded prestressed beams. 

For each increment of curvature, a secant stiffness is used to determine the moment and 

curvature in each segment. The moment is checked against the one determined from the 

pre-generated moment-curvature relation, and the cycle is repeated until convergence is 

satisfied. One limitation of the model is that moment equilibrium is checked only at the 

central section of a segment. The use of a single control point per segment does not allow 

for accurately estimating the plastic hinge length of the beam, and hence the failure load. 

Another shortcoming of the model by Kodur is that it also neglected bond-slip and 

transfer length effects. 
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The model by Yassin (1994) is also based on the force method of analysis. The 

model considers bond-slip effects, and uses force-based beam elements (Spacone et. al. 

1996) to describe concrete behavior, and truss elements to describe tendon behavior. 

Bond stresses are assumed to follow a linearly varying distribution, which results in a set 

of distributed loads acting on both the concrete beam and the tendon. The transfer of 

prestress is simulated by performing a complete nonlinear analysis for each stage of the 

prestressing operation.  While the model by Yassin is the first to consider bond effects 

and transfer length in modeling pre-tensioned beams, its main shortcoming lies in the fact 

that it evaluates the bond stiffness and resisting loads at element ends only. This lumping 

procedure requires a fine mesh in regions of high bond stresses, which increases the 

computational cost of the solution. 

This paper presents a new model for pretensioned prestressed concrete beams. The 

model uses the same approach of Yassin (1994) for simulating the prestressing operation, 

but overcomes most of its numerical limitations by adopting a two-field mixed 

formulation for the finite element solution of the problem. The new model is described 

next. 

Prestressed Concrete Beam Model 

The model for the prestressed concrete element is made up of three components: (a) 

a fiber beam-column element, (b) a tendon element, and (c) a bond element. The fiber 

beam-column element describes the behavior of concrete and bonded mild reinforcement. 

The tendon element describes the behavior of the prestressing steel tendon. The bond 

element describes the transfer of forces between the prestressing tendon and the fiber 
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beam-column element. The interaction between the beam-column and the tendon 

elements, which together form a parallel system, is such that the transfer of forces 

between them occurs continuously along their lengths through the bond element. The 

bond element describes the interaction between the beam-column and tendon elements 

with special bond stress-slip relations. The total number of degrees of freedom for each 

prestressing element node equals the number of degrees of freedom for the concrete beam 

node, in addition to the number of prestressing tendons.  

In the nonlinear analysis of pretensioned beams, it is important that the prestressing 

operation be simulated as accurately as possible. This is because the different stages of 

the operation will result in different initial stress distributions, thus affecting the overall 

behavior. Aspects of structural behavior such as the occurrence of secondary moments, 

initial deformations due to prestress, and prestress losses are very much influenced by the 

method of prestressing. Therefore, the simulation of the different stages of prestressing is 

essential in capturing the most relevant aspects of the structural behavior. 

The finite element model for the pretensioned prestressed concrete beam used in 

this study is based on a newly developed mixed formulation, where both, forces and 

deformations, are approximated within the element. The formulation is modified to 

account for the simulation of the prestressing operation at the initial stages. In the next 

section, the finite element model for pretensioned prestressed concrete beams is briefly 

presented followed by a discussion of the prestressing operation. The model for the 

pretensioned prestressed concrete beam is implemented in the general purpose finite 

element program FEAP developed by R.L. Taylor and described in Zienkiewicz and 

Taylor (1989). 
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Finite Element Model for Pretensioned Prestressed Concrete Beams 

In the mixed formulation, the differential equations are solved with the interpolation 

of both the displacement and the force field. A detailed derivation of the formulation is 

presented in earlier studies by Ayoub and Filippou (1999) for anchored reinforcing bar 

problems, Ayoub and Filippou (2000) for composite steel-concrete beam elements, and 

Ayoub (2006) for reinforced concrete beam-columns with bond-slip. The present mixed 

model for prestressed beams is similar in concept. Accordingly, the equilibrium equation 

of a prestressed beam with J tendons can be written, similar to the latter study, as: 

 L L q wT

b

T

bx xD( ) ( )− =ρρρρ  (1) 

where D( ) ( ) ... ( ) ... ( )x N x N x M xc sj

T

=  j=1,J,   

Nc  and sjN  are the axial forces in the concrete and jth tendon respectively, M is the 

bending moment, L is a differential operator that includes first derivative of the axial 

parameters and second derivative of the flexural parameters, 

Lb jh d dx= −
L

N

M
M
M

O

Q

P
P
P

... ... ...

/

... ... ...

1 1  is a J J× + 2 differential operator, hj is the distance 

between the centroid of the concrete beam and the jth tendon, ρρρρ  is a diagonal matrix that 

includes the tendons perimeter,  

qb bj

T

x q x( ) ... ( ) ...=  , bjq  is the bond stress for the jth tendon, and w is the vector of 

externally applied distributed loads. Similarly, the compatibility equation is: 

 Lu d( ) ( )x x− = 0  (2) 



 

 8 

where u( ) ( ) ... ( ) ... ( )x u x u x v xc sj

T

= , uc  and usj are the concrete and jth tendon 

axial displacement respectively, v  is the vertical displacement of the beam, 

d ( ) ( ) ... ( ) ... ( )x x x xc sj

T

= ε ε χ , ec  and e sj  are the concrete and jth tendon axial 

strains respectively, and c  is the beam curvature. 

The present model uses fiber discretization to describe section behavior, and a distributed 

interface element to model bond behavior. The section and bond constitutive laws are: 

 D d( ) ( )secx f x= ,          [ ]( ) ( )b bond bq x f S x=  (3) 

where secf is a nonlinear function that describes the section force deformation response 

through fiber integration, where the fibers are either steel or concrete; and fbond  is a 

nonlinear function that describes the relationship between the bond stress q xb( ) and bond 

slip bS  (x).  

Material constitutive laws for the three main components of the pretensioned prestressed 

element, namely steel, concrete and bond have to be accurately determined. The concrete 

uniaxial constitutive law used is based on the model by Kent and Park (1971). The steel 

uniaxial stress-strain law used is based on the model by Menegotto and Pinto (1973) as 

modified by Filippou et al. (1983). The bond model used in this study is based on the 

bond stress-slip relation by Eligehausen et al. (1983) for anchored reinforcing bars.  

The mixed finite element formulation for a single Newton-Raphson iteration denoted by i 

starts by considering the inverse of the section force-deformation relation: 

 1 1i i i i

sf
- -= D +d D d  (4) 
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Where 1i-
d  is the section deformation at the end of the last iteration, fs

i-1
 the 

corresponding section flexibility, and ∆∆∆∆ represents increments. Substituting (4) in the 

weighted form of the compatibility equation (2) yields:  

 1 1

0

( ) ( ) 0

L

T i i i ix x dxsL fD u D dd - -È ˘- D - =Î ˚Ú  (5) 

where ( )xd D  is the virtual force field in the role of a weight function and the integration 

extends over the element length L. 

The displacement field ( )xu  and internal force vector ( )xD are respectively 

approximated along the beam length through the displacement shape functionsa( )x  and 

force interpolation functions b( )x :   

 ( ) ( )x xa vu = ,      ( ) ( )x xb q=D  (6) 

where v and q are the vector of element end displacements and forces respectively. In this 

work, cubic hermitian polynomials and quadratic functions are used to approximate the 

transverse and axial displacements respectively, while linear functions are used to 

approximate the axial forces and external bending moments.  

Substituting a( )x  and b( )x  into (5), results in 

 
11 0

ii i i

rT v F q v
--D - D - =  (7) 

T b B= z T
L

x x dx( ) ( )

0

,    1 1

0

( ) ( ) ( )

L

i T ix x x dx− −= ∫ sF b f b ,    
1 1 1

0

( ) ( )

L

i T i ix x dxrv b T v
- - -= -Ú d  (8) 

B La( ) ( )x x= , L is defined in (1), F  is the beam flexibility matrix and 
1i

r

-
v  is the vector 

of nodal displacement residuals at the end of the previous iteration.  

The weighted integral form of the equilibrium equation is: 
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0

( ) ( ) ( ) 0

L

T T i T i

bx x x dxbL L q wu Dd È ˘- - =Î ˚Ú rrrr  (9) 

where ( )xδu  is a weighting function. For the sake of simplicity the effect of element 

loads w is neglected in this study. Integrating by parts twice the first term in (9), and 

substituting the incremental force-deformation relation of the bond 1 1i i i i

b b b bq qk S
- -= D + , 

where bk is the tangent to the bond stress-slip nonlinear function, we get: 

 1 1

0 0

( ) ( ) ( ) BT

L L

T T i T T i i i

b b bx x dx x dxbL L qu D u k Sd d - -È ˘+ D + =Î ˚Ú Ú r rr rr rr r  (10) 

where BT is the boundary term. Substituting the predefined displacement shape functions 

and force interpolation functions into (10) yields  

 1 1 1T i i i T i i

b bT q K v P T q q- - -D + D = - -  (11) 

where T is as defined in (8), 1 1

0

( )

L
Ti i

bx dx− −= ∫b b bK B Bkρρρρ   is the contribution of the bond 

to the element stiffness, B L ab bx x( ) ( )= , 1 1

0

( ) ( )

L

Ti i

bx x dxb bq B q- -= Ú rrrr  is the contribution 

of the bond to the element resisting forces, and P is the vector of applied nodal forces. 

Writing equations (7) and (11) in matrix form: 

 

1 1

r

1 1 1

i- i-i

T i- T i- i-i

    − ∆
=     − −∆    b b

F T vq

T K P T q qv
 (12) 

In the mixed model, the element nodal forces ∆q  in (12) are condensed out at the 

element level resulting in a generalized stiffness matrix as follow: 

1
1 1 1 1 1T i i i i i T i i

−− − − − −   ∆ − + ∆ = − −   r b bT F T v v K v P T q q  (13) 
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The process for evaluating the generalized stiffness matrix requires an internal 

element iteration in addition to the Newton-Raphson iteration, in order to zero the 

residual deformation vector rv  as described in Ayoub and Filippou (1999). 

The simulation of the prestressing operation mainly involves modifying the vector 

of externally applied load P defined previously, to account for the different stages of 

prestressing. The prestressing operation is carried out in different stages. In every stage, 

each component of the prestressed concrete element, namely the fiber beam-column 

element, the tendon elements and the bond elements, is assumed to be either active or 

inactive. The term active means that the specific component contributes to the overall 

element stiffness, and thus has stiffness and resisting load terms in the corresponding 

structural quantities. The term inactive means that the specific component does not 

contribute to the overall element stiffness, and thus its stiffness and resisting load terms 

equal zero. In the next section, modeling of the pretensioning operation will be presented. 

Pretensioning Operation 

The analysis of a prestressed concrete structure is carried out at discrete times. Each 

time step represents a specific stage of the prestressing operation. The pretensioning 

operation is performed in two stages: (a) the tendon tensioning at time t0 , and (b) the 

transfer of prestress to concrete at time t1 . As shown in Table (1) and Figure (1), in the 

first stage of pretensioning operation, only the tendon elements are activated. In addition 

to the prestressed concrete elements there is also a bedding element that is represented by 

a linear stiff spring with one end fixed and the other end connected to a node. While 

linking the bedding element node to end node 1 of the tendon, a tensioning force is 
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applied to end node 2 of the tendon. Accordingly, the tensioning force is added to the 

load vector P. After the completion of the analysis at this stage, the tendon elements will 

have constant tensile force equal to the tensioning force. The situation models exactly the 

actual tendon tensioning in a stressing bed. 

During the second stage of the pretensioning operation, the beam-column and bond 

elements are activated. The tensioning force at end node 2 of the tendon is then reduced 

to zero to simulate the cutting of the strands, and the bedding element at end node 1 of the 

tendon is removed. The tendon force in the load vector P is modified accordingly. In 

addition, the prestress in the tendon elements is transferred to the beam-column elements 

via the bond elements. Depending on the resulting bond slip and beam-column 

deformation, the amount of prestress loss in the tendon varies along the length of the 

beam. Figure (2) shows the typical analytical tendon force distribution during the two 

stages of pretensioning, while Figure (3) shows the corresponding analytical bond stress 

distribution after transfer of prestress. The maximum prestress loss occurs at the ends of 

the tendon where the tendon force is reduced to zero. The maximum bond slip and bond 

stress also occurs at the ends of the tendon. 

The bond stress-slip relation used for both the prestress transfer bond and the 

flexural bond follows the same trend, and is based on approximate values given by 

Tabatabai and Dickson (1993). Such assumption is considered correct because both types 

of bond are derived from the same physical source, that is the interaction between the 

tendon and the surrounding concrete. Any load application after the completion of the 

pretensioning operation will result in bond stress increments additional to the prestress 
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transfer bond stress. The distributions of tendon force and bond stress obtained thus far 

have proven to be realistic when compared to experimental results as described next. 

Numerical Example: Pre-tensioned Concrete Beams by Mitchell et al. (1993) 

Mitchell et al. (1993) tested a series of pretensioned concrete beams to investigate 

the influence of concrete strength on the transfer length and development length of 

pretensioning strands. Two of the beams are selected for this study. The dimensions and 

loading arrangements of the test beams are shown in Figure (4). 

Each beam contained a single 15.7 mm diameter low relaxation strand having an 

ultimate strength of 1793 MPa and a yield strength of 1639.3 MPa. The elastic modulus 

was 204.9 GPa with a strain hardening ratio of 0.028. Each beam had identical cross 

section dimensions, with the center of the strand located 50 mm above the bottom face. 

The material properties and reinforcement details of the test beams are listed in Table (2). 

¢fc  is the compressive strength of concrete, tf ′  is its tensile strength, Ap  and Pp  are the 

area and perimeter of the strand respectively, and fpi  is the initial prestress in the strand 

prior to transfer. No tension stiffening effect was considered in the analysis. 

The strand was instrumented with electrical resistance strain gauges to monitor its 

strains. The strand was released in a gradual manner by slowly reducing the pressure in 

the hydraulic stressing rams. The testing of each beam was carried out with either a 

single-point load or with two-point loads, as shown in Figure (4). Each beam was 

supported on 100 mm long, 13 mm thick neoprene bearing pads at each end. 

The finite element models used for the analysis consist of 6 prestressed concrete 

finite elements per half span for the first beam and 7 elements per half span for the second 
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beam. The cross section of the beam-column element is made up of 10 concrete layers at 

5 control sections. Model analysis is carried out under displacement control.  

The bond parameters used for the analysis are shown in Figure (5), and are based on 

approximate data given by Tabatabai and Dickson (1993). 

 The transfer length of the strand is the distance from the end of the member over 

which the stress in the strand builds up to the effective stress. The flexural bond length is 

the distance over which the stress in the strand builds up from the effective stress to the 

maximum stress at ultimate strength of the member. The development length is the sum 

of the transfer and flexural bond length. 

Figure (6) shows the analytical global load-displacement response for beam 16/31-

1865. No similar experimental plot is given in the reference. Before the application of the 

load, the displacement shows a negative value, referred to as camber, which is due to the 

prestressing force. Yielding of the tendon starts at a load value that equals 32 kN. The 

specimen then shows a ductile behavior. Figure (6) also shows the response of the beam 

if perfect bond is assumed between the tendon and concrete. This was obtained using a 

regular fiber-based beam element in which the prestressing was simulated with an initial 

strain applied to the tendon. In this case, the camber at transfer is much larger due to the 

higher prestressing activities taking place near the supports. However, the stiffness and 

strength are also larger than in the case of bond-slip. Figure (7) shows the strains 

measured by the strain gauges glued to the prestressing strand in beam 16/31-1865 at 

different load levels. The maximum measured strand strain was 0.0187, which 

corresponds to a stress in the strand of 1716 MPa. This beam failed by flexural crushing 

at a maximum moment of 46.6 kNm (P=51.35 kN). The distribution of the main 
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parameters of the problem, namely the strand strain, the strand stress, the slip, the bond 

stress and the curvature, using the proposed model are shown in Figures (8) to Figure (14) 

at different load stages. In order to allow for proper comparison with the experimental 

data, these load stages correspond to the load values of Figure (7), and are identified in 

the above mentioned global response of Figure (6). 

The distribution of the strand strain shown in Figure (8) shows that the transfer and 

development lengths of the strand are very well estimated by the model. However the 

effective strand strain after transfer is slightly overestimated. This is mainly due to the 

fact that the model does not take into account long term prestress losses due to concrete 

creep and shrinkage. Such losses are significant in this case as a result of the relatively 

low concrete strength, and the fact that testing was performed at age of 65 days. In 

addition, the dead weight of the beam was ignored in the analysis, which would have 

further contributed to that discrepancy. The strain at ultimate loads is localized in the 

region near the midspan, where the maximum bending moment occurs. The analytical 

strand force distribution after transfer shown in Figure (9) follows the same trend as the 

corresponding analytical strand strain distribution, and the maximum value is slightly less 

than the initial prestressing force due to elastic shortening. The analytical strand force 

distribution shows the build up of strand force due to flexure up to the ultimate load. 

After the onset of yielding, there is minimal change in strand force distribution up to the 

ultimate load. Figure (10) shows the strand force distribution if perfect bond was assumed 

between the concrete and tendon. At transfer, the strand force is constant along the entire 

beam length, and is also slightly less than the initial prestressing force due to elastic 

shortening. The strand force distribution at higher load levels is quite different than in the 
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case of bond-slip, since the build up of force due to flexure starts from the initial transfer 

force. Figure (11) shows the curvature distribution. The curvature localization in the 

region near midspan is successfully described by the model. The slip and bond stress 

distributions are shown in Figures (12) and (13) respectively for all load stages of Figure 

(6). The slip is maximum at the beam ends, and zero at the midspan. The bond stress 

distribution after transfer shows almost constant maximum bond stress occurring within 

the transfer lengths, and low values for the remaining part of the strand. Therefore, bond 

slip during transfer is confined to the portion of the strand within the transfer length. The 

bond stress at ultimate loads shows a considerable increase due to the increase in tendon 

strain in the region near the midspan. Figure (14) shows the concrete strain distribution at 

the very bottom fiber of the section, along with the assumed cracking strain. The figure 

could be used to identify the cracked region along the beam length at different load levels.   

 Figure (15) shows the global load-displacement response for beam 16/65-1150. As 

in the case of the first test beam, a camber is observed due to prestressing. Yielding of the 

steel starts at a load level that equals 40 kN, and the behavior afterward becomes ductile. 

Figure (16) shows the strand force distributions. The build up of the strand force due to 

flexure is consistent with the bending moment distribution. Figure (17) shows the 

experimental steel strain distributions. The maximum measured strand strain is 0.022, 

which corresponds to a stress in the strand of 1732 MPa. This beam failed by flexural 

crushing at a maximum moment of 49.2 kNm (P=44.73 kN). The analytical strain 

distribution is shown in Figure (18). The comparison between the analytical and 

experimental distributions shows that the transfer and development lengths are estimated 

well by the model. The strains at ultimate loads are localized and have a constant value in 
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the constant moment region in between the loads. The slip and bond stress distributions 

are shown in Figures (19) and (20) respectively for all load stages. As for the previous 

test beam, the slip is maximum at the end beam, and zero at the midspan, and the bond 

stress distribution after transfer shows almost constant maximum bond stress occurring 

within the transfer lengths, and low values for the remaining part of the strand. The bond 

stress at the ultimate load shows a considerable increase due to the increase in tendon 

strain in the constant moment region near the midspan. Figure (21) shows the curvature 

distribution. The curvature is localized and has a constant value in the constant moment 

region in between the loads. 

Conclusion  

A model for inelastic analysis of pretensioned prestressed concrete beams is 

presented. The model is derived from a two-field mixed formulation with independent 

approximation of forces and displacements. The nonlinear response of the concrete and 

tendons is based on discretization of the section into fibers with uniaxial hysteretic 

material models. Bond between the concrete and tendons is modeled with a distributed 

interface element that uses specific bond stress-slip relations. The model ignores though 

the effect of dead weight, prestress losses, and concrete tension stiffening. Simulation of 

the prestressing operation is accounted for by carrying out the analysis at several time 

steps, each representing a specific stage of the operation. Correlation studies with 

experimentally tested pretensioned beams are performed. The studies confirmed the 

accuracy and efficiency of the proposed model. 
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Notation 

a( )x  = Vector of displacement interpolation functions  

b(x) =  Vector of force interpolation functions 

( )xD  = Vector of forces at a distance x 

( )xd  = Vector of section deformations at a distance x 

F = Element flexibility matrix 

( )s xf = Section flexibility matrix 

jh = Distance between centroid of concrete and tendon j 

ρ j = Perimeter for tendon j 

i = Newton-Raphson iteration number  

K b  = Bond element stiffness matrix 

M  = Bending moment 

,c sjN N  = Axial force for concrete and tendon j respectively 

P  = Vector of externally applied loads 

q = Vector of element forces 

( )b xS  = Bond-slip at distance x 

T = coupling matrix between displacement and internal force degrees of freedom 

( ), ( )c sju x u x  = Concrete and tendon axial displacement respectively 

( )v x  = transverse displacement 

v = Vector of element displacements 

e ec s, = concrete and tendon axial strain respectively 

c  = beam curvature 
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Figure Captions 

FIGURE 1 PRETENSIONING OPERATION 

FIGURE 2 ANALYTICAL TENDON FORCE DISTRIBUTION DURING PRETENSIONING  

FIGURE 3 ANALYTICAL BOND STRESS DISTRIBUTION AFTER PRESTRESS TRANSFER 

FIGURE 4 MITCHELL TEST BEAMS 

FIGURE 5 BOND PARAMETERS 

FIGURE 6 GLOBAL RESPONSE OF BEAM 16/31-1865 

FIGURE 7 EXPERIMENTAL STRAND STRAIN DISTRIBUTION FOR BEAM 16/31-1865 

FIGURE 8 ANALYTICAL STRAND STRAIN DISTRIBUTION FOR BEAM 16/31-1865 

FIGURE 9 ANALYTICAL TENDON FORCE DISTRIBUTION FOR BEAM 16/31-1865 (BOND-SLIP) 

FIGURE 10 ANALYTICAL TENDON FORCE DISTRIBUTION FOR BEAM 16/31-1865 (FULL 

BOND) 

FIGURE 11 CURVATURE DISTRIBUTION FOR BEAM 16/31-1865 

FIGURE 12 SLIP DISTRIBUTION FOR BEAM 16/31-1865 

FIGURE 13 BOND DISTRIBUTION FOR BEAM 16/31-1865 

FIGURE 14 CONCRETE STRAIN DISTRIBUTION AT BOTTOM FIBER FOR BEAM 16/31-1865 

FIGURE 15 GLOBAL RESPONSE FOR BEAM 16/65-1150 

FIGURE 16 TENDON FORCE DISTRIBUTION FOR BEAM 16/65-1150 

FIGURE 17 EXPERIMENTAL STRAND STRAIN DISTRIBUTION FOR BEAM 16/65-1150 

FIGURE 18 ANALYTICAL STRAND STRAIN DISTRIBUTION FOR BEAM 16/65-1150 

FIGURE 19 SLIP DISTRIBUTION FOR BEAM 16/65-1150 

FIGURE 20 SLIP DISTRIBUTION FOR BEAM 16/65-1150 

FIGURE 21 CURVATURE DISTRIBUTION FOR BEAM 16/65-1150 
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Beam ¢fc  (MPa) tf ′ (MPa) Ap  (mm
2) Pp  (mm) fpi  (MPa) 

16/31-1865 31.0 3.1 146.4 50.0 1286.0 

16/65-1150 65.0 6.5 146.4 50.0 1218.0 

Table 2 Details of Test Beam Specimens 

 

 

  

 

Time Operation Model 

t0  Tendon tensioning in 

stressing bed 

• Beam-column elements inactive 

• Bond elements inactive 

• Tendon elements active 

• Tensioning force applied at end 

node 2 of tendon 

• End node 1 of tendon linked to 

bedding element node 

t1  Transfer of prestress to 

concrete after it has set 

• Beam-column elements active 

• Bond elements active 

• Tendon elements active 

• Tensioning force at end node 2 of 

tendon reduced to zero 

• Removal of bedding element from 

end node 1 of tendon 

Table 1 Pretensioning Stages  
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Figure 1 Pretensioning Operation 
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Figure 2 Analytical Tendon Force Distribution during Pretensioning 
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Figure 3 Analytical Bond Stress Distribution after Prestress Transfer 
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FIGURE 4 MITCHELL TEST BEAMS 
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FIGURE 5 BOND PARAMETERS 
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FIGURE 6 GLOBAL RESPONSE OF BEAM 16/31-1865 
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FIGURE 7 EXPERIMENTAL STRAND STRAIN DISTRIBUTION FOR BEAM 16/31-1865 
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FIGURE 8 ANALYTICAL STRAND STRAIN DISTRIBUTION FOR BEAM 16/31-1865 
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FIGURE 9 ANALYTICAL TENDON FORCE DISTRIBUTION FOR BEAM 16/31-1865  

(BOND-SLIP) 

 

 

 

 

 

 

 

FIGURE 10 ANALYTICAL TENDON FORCE DISTRIBUTION FOR BEAM 16/31-1865  

(FULL-BOND) 
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FIGURE 11 CURVATURE DISTRIBUTION FOR BEAM 16/31-1865 
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FIGURE 12 SLIP DISTRIBUTION FOR BEAM 16/31-1865 
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FIGURE 13 BOND DISTRIBUTION FOR BEAM 16/31-1865 
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FIGURE 14 CONCRETE STRAIN DISTRIBUTION AT BOTTOM FIBER FOR BEAM 16/31-

1865 
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FIGURE 15 GLOBAL RESPONSE FOR BEAM 16/65-1150 
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FIGURE 16 TENDON FORCE DISTRIBUTION FOR BEAM 16/65-1150 
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FIGURE 17 EXPERIMENTAL STRAND STRAIN DISTRIBUTION FOR BEAM 16/65-1150 
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FIGURE 18 ANALYTICAL STRAND STRAIN DISTRIBUTION FOR BEAM 16/65-1150 
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FIGURE 19 SLIP DISTRIBUTION FOR BEAM 16/65-1150 
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FIGURE 20 SLIP DISTRIBUTION FOR BEAM 16/65-1150 
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Figure 21 Curvature Distribution for Beam 16/65-1150 

 


