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Abstract Language learners encounter numerous opportu-
nities to learn regularities, but need to decide which of
these regularities to learn, because some are not produc-
tive in their native language. Here, we present an account
of rule learning based on perceptual and memory primi-
tives (Endress, Dehaene-Lambertz, & Mehler, Cognition,
105(3), 577–614, 2007; Endress, Nespor, & Mehler, Trends
in Cognitive Sciences, 13(8), 348–353, 2009), suggesting
that learners preferentially learn regularities that are more
salient to them, and that the pattern of salience reflects the
frequency of language features across languages. We con-
trast this view with previous artificial grammar learning
research, which suggests that infants “choose” the regular-
ities they learn based on rational, Bayesian criteria (Frank
& Tenenbaum, Cognition, 120(3), 360–371, 2013; Gerken,
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Cognition, 98(3)B67–B74, 2006, Cognition, 115(2), 362–
366, 2010). In our experiments, adult participants listened
to syllable strings starting with a syllable reduplication and
always ending with the same “affix” syllable, or to syllable
strings starting with this “affix” syllable and ending with the
“reduplication”. Both affixation and reduplication are fre-
quently used for morphological marking across languages.
We find three crucial results. First, participants learned
both regularities simultaneously. Second, affixation regular-
ities seemed easier to learn than reduplication regularities.
Third, regularities in sequence offsets were easier to learn
than regularities at sequence onsets. We show that these
results are inconsistent with previous Bayesian rule learn-
ing models, but mesh well with the perceptual or memory
primitives view. Further, we show that the pattern of salience
revealed in our experiments reflects the distribution of reg-
ularities across languages. Ease of acquisition might thus
be one determinant of the frequency of regularities across
languages.

Keywords Perceptual or memory primitives · Bayesian
learning · Rule-learning · Artificial grammar learning · Edges

Introduction

Acquiring language involves learning multiple regularities
about the internal structures of linguistic units, such as
words, phrases and sentences. These regularities can apply
to different properties of linguistic units, for instance their
identity, their position and the relations between them, and,
more often than not, multiple regularities apply to any given
linguistic object. For example, a word in a sentence con-
forms to regularities about its sound structure, its intonation,
its morphology, its relation to other words, the social and
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pragmatic context of the sentences and so on. Further, the
regularities can also differ in their scope, some applying
to only a few items, others to entire categories of items,
with or without exceptions. Given these complexities, it is
nothing short of astounding that infants manage to become
competent speakers of their native language.

Understanding how learners extract grammatical regu-
larities from speech has been the focus of much research
in cognitive science in the last decades (e.g., Christophe,
Nespor, Guasti, & Van Ooyen, 2003; Endress, Nespor,
& Mehler, 2009; Gervain, Nespor, Mazuka, Horie, &
Mehler, 2008; Kovács & Endress, 2014; Lidz, Gleitman, &
Gleitman, 2003; Morgan, 1986; Morgan & Demuth, 1996;
Onnis, Waterfall, & Edelman, 2008; Peña, Bonatti, Nespor,
& Mehler, 2002; Saffran & Wilson, 2003; Toro, Bonatti,
Nespor, & Mehler, 2008). However, we still do not have a
full account of the acquisition of grammar, and we know
even less about how learning proceeds when learners are
faced with several regularities simultaneously.

In one of the few studies on this question, Gerken (2006)
presented infants with syllable triplets that conformed to
two regularities. First, the first two syllables of each triplet
were repeated. Second, all triplets ended with /di/, yielding
triplets like /leledi/. We will refer to these patterns as AA/di/
patterns. (Other infants were presented with an A/di/A pat-
tern, where the first and the last syllable were identical, and
the middle syllable was /di/. For ease of exposure, we will
gloss over these conditions).

Although both humans and non-human animals can learn
repetition-patterns (for humans: see e.g., Gervain, Macagno,
Cogoi, Peña, & Mehler, 2008; Kovács & Mehler, 2009;
Marcus, Vijayan, Rao, & Vishton, 1999; Saffran, Pollak,
Seibel, & Shkolnik, 2007; for non-human animals: see
e.g., Giurfa, Zhang, Jenett, Menzel, & Srinivasan, 2001;
Hauser & Glynn, 2009; Martinho & Kacelnik, 2016; van
Heijningen, Chen, van Laatum, van der Hulst, & ten Cate,
2013) and regularities about the first and the last position
of sequences (for humans: see e.g., Endress & Wood, 2011;
Seidl & Johnson, 2006; Gervain, Berent, & Werker, 2012;
for non-human animals: Chen, Jansen, & Ten Cate, 2016;
Endress, Cahill, Block, Watumull, & Hauser, 2009), infants
appeared to learn only one of the regularities in the Gerken
(2006) study: they learned only that triplets had to end in /di/.

Do such results imply that people can learn only one reg-
ularity at a time? This possibility seems unlikely, because,
in some situations, both adults and infants do learn multi-
ple regularities at the same time (e.g., Endress & Bonatti,
2007; Endress & Wood, 2011; Marchetto & Bonatti, 2013;
Peña et al., 2002). Gerken (2010) tested this issue by first
familiarizing infants to the AA/di/ (or A/di/A) pattern as
described above. Crucially, however, infants were then pre-
sented with three examples of an AAB pattern (where
the last syllable was no longer /di/), intermixed with the

last five familiarization stimuli. Under these conditions,
infants learned the repetition-pattern. In a critical control
condition, Gerken (2010) asked whether infants learned
the repetition-pattern just based on the last five examples,
and replaced the AA/di/ familiarization with music. Results
showed that, under these conditions, infants did not learn the
repetition-pattern.

Together, these results thus suggest that infants have a
trace of the repetition-pattern also when familiarized with
an AA/di/ pattern; however, they will show generalization
only if also familiarized with items that do not conform to
the /di/ pattern. Gerken (2010) suggested that infants use
rational decision criteria for their generalizations, and make
the narrowest possible generalization that is compatible with
the familiarization.

Bayesian approaches to rule learning

Frank and Tenenbaum (2013) formalized this idea using a
Bayesian model. Specifically, with S syllables, one can form
S2 triplets that end in /di/ (or (S −1)2 triplets if the first two
syllables cannot be /di/). Likewise, one can form S2 triplets
where the first two syllables are identical (or S(S − 1) if
the last one has to be different from the first two). Thus,
considered separately, the two rules allow for equally broad
generalizations. However, Frank and Tenenbaum (2013)
proposes that infants do not only represent these two atomic
patterns, but also a conjunction pattern where the first two
syllables are repeated and the last one is /di/. One can
form S such triplets (or S − 1 if the first two syllables
cannot be /di/). Hence, the conjunction pattern generates
fewer potential triplets. Following Tenenbaum and Griffiths
(2001), infants should thus choose the conjunction pattern,
as it provides the narrowest possible generalization. This
is called the size principle, and is a frequent assumption
in Bayesian models of cognition (see, among many others,
Denison, Reed, & Xu, 2013; Gweon, Tenenbaum, & Schulz,
2010; Navarro, Dry, & Lee, 2012; Xu & Tenenbaum, 2007a,
b). This conjunction pattern is important, because it is at the
root of Frank and Tenenbaum’s (2013) model’s success.

This model represents a tradition where learners —
explicitly or implicitly — “optimize” what they learn from
examples. An alternative view is that some rules might be
learned by perceptual or memory primitives (e.g., Endress
et al., 2007; Endress, Scholl, & Mehler, 2005; Endress,
Nespor, & Mehler, 2009). According to the latter view, some
rules just pop out by their salience, and we learn whatever
is salient to us.

The perceptual primitives approach to rule-learning

In line with the latter view, Endress (2013) proposed an
alternative account for the aforementioned data. He made
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three main hypotheses. First, repetitions and items in edges
of sequences are tracked by independent mechanisms, the
former by some kind of repetition-detector and the latter
by processes of serial memory (Endress & Mehler, 2009).
As a result, infants might not represent a conjunction rule;
they might just notice that items end in /di/ and start with a
repetition. In other words, the regularities to which a string
conforms might essentially be treated as features of that
string.

Second, infants expect items to conform to all general-
izations they have picked up (see Gerken, Dawson, Chatila,
& Tenenbaum, 2015, for an empirical confirmation of this
point). As a result, they might consider triplets as a vio-
lation if any of the rules is violated. For example, when
familiarized with AAB triplets (where the last syllable is not
systematically /di/), infants should be sensitive to violations
of the repetition-pattern, because this is the only regular-
ity present in the data. In contrast, when familiarized with
AA/di/ triplets, both AAB and ABB triplets are violations,
since they do not conform to the /di/ regularity. Third, some
generalizations are more salient than others, and might be
more likely to drive behavior. For example, if the /di/ reg-
ularity is more salient than the repetition pattern, infants
might accept violations of the repetition-pattern as long as
the /di/ regularity is respected.

If this account is correct, the role of the five additional
familiarization triplets in Gerken’s (2010) studies might
be to familiarize infants with items not containing /di/,
which, in turn, would allow them to reveal their learning of
the repetition-pattern in the subsequent test phase without
showing surprise at triplets not containing /di/.

Predictions of the Bayesian and the perceptual
primitives approaches

Here, we investigate under what conditions simple rules can
be learned, and more specifically test the aforementioned
views on rule learning. The Bayesian accounts above differ
from Endress’s (2013) model in two key predictions.

First, if infants choose the narrowest possible general-
ization, they have no reason to prefer the /di/ pattern over
the repetition pattern; as mentioned above, the number of
potential triplets conforming to these patterns is identical.
In contrast, Endress (2013) specifically proposes that some
patterns might be more salient than others, for no obvi-
ous formal reason but just as a consequence of how our
mental apparatus happens to have evolved.1 Intuitively, one

1While the saliency of different patterns can, in principle, be incorpo-
rated in Bayesian models as well (e.g., Frank & Goodman, 2012), it
does not follow from any extant model of rule-learning. At minimum,
an empirical determination of rule saliency will, therefore, provide
the opportunity to construct better models for an important aspect of
language acquisition.

could expect that the /di/ regularity might be easier to pro-
cess than the repetition pattern, because it involves a single
item, while repetitions involve, among other things, some
mechanisms that compare two items.

Importantly, this intuition cannot be justified by formal
considerations that do not depend on other assumptions
about our mental architecture. More generally, formal con-
siderations are often poor guides to estimating the relative
complexity of two cognitive operations. For example, divid-
ing numbers is hard for humans but easy for a computer,
while spatial rotations are relatively easy for humans but
require substantial computing power in a computer (see
Endress et al., 2007, for discussion).

Second, the Bayesian accounts crucially rely on the exis-
tence of a conjunction rule to explain the infant data, as it is
only the conjunction rule, and not either of the single rules
alone, that produce fewer triplets, i.e. a narrower generaliza-
tion. But what does it mean for two simple rules to be joined
into a conjunction rule? The predictions of this assumption
are somewhat unclear. Formally speaking, the truth condi-
tions of conjunction (‘and’) require learners to reject items
as soon as any of the patterns they picked up is violated.
After all, violating either the /di/ regularity or the repetition
pattern violates the conjunction rule as well. Hence, if learn-
ers represent a conjunction rule and preferentially learn the
narrowest generalization and discard other generalizations,
they should show a binary response pattern, accepting only
items that conform to both rules, and equally rejecting items
that violate either or both of the component rules.

It is not inconceivable in this framework to predict that
there might be a gap between the rejection rate for items
that violate both regularities and items that violate only one,
and, in fact, Frank and Tenenbaum’s (2013) model predicts
just such a gap, at least with certain analyses.

Be that as it might, under the perceptual or memory prim-
itives view, things like item repetitions and items in edges
are independent features of strings. As a result, Endress’s
(2013) account predicts a more graded response profile,
with learners accepting items that conform to both rules,
rejecting items that violate both rules, and showing an inter-
mediate response for items that violate only one of the rules;
further, learners should be more likely to reject items that
violate the more salient rule.

The current research

Here, we explore these issues in a population of adult learn-
ers. We test adults because the larger sample size and larger
number of test items that can be used with this population
make it inherently easier to reveal graded responses in adults
than in infants. To make the experiments somewhat more
challenging, we used longer strings than those employed in
Gerken’s (2006) study with infants.



Mem Cogn (2017) 45:508–527 511

Fig. 1 Design of Experiments 1 and 2

Specifically, we ask how two regularities similar to those
used by Gerken (2006) are learned simultaneously under
different conditions. One regularity concerns the presence
and the serial position of a constant syllable (i.e., /di/) in
6-syllable-long sequences generated by an artificial gram-
mar. The other regularity concerns the presence and the
serial position of a syllable repetition in the same artificial
grammar sequences.

The design of the experiments is shown in Fig. 1. In
Experiment 1, we test the relative complexity of detecting
violations of the presence of either regularity or both. That
is, ungrammatical test items did not contain /di/, a repetition,
or either regularity. In Experiment 2, we tested the saliency
of violations of the sequential position of either regularity
or both. That is, all ungrammatical test items did contain
both /di/ and a repetition, but /di/, the repetition or both were
located in incorrect sequential positions. As a comparison
to human performance, we evaluated the predictions of dif-
ferent versions of Frank and Tenenbaum’s (2013) Bayesian
model of rule learning.

Experiments

Experiment 1: Violation of presence

Methods

Participants Participants were 40 monolingual native
English-speaking adults (30 females, 10 males, mean age:
20.8 years, range: 18-30 years), recruited at the University
of British Columbia, Vancouver, Canada, for course credit.2

2Originally, 10 additional participants were tested in the repetition-
di condition. To equate for the number of participants between the
repetition-di and the di-repetition conditions, data from these partici-
pants were not used for analysis. However, the results do not change
when data from these participants is also included.

Participants reported no history of neurological, language or
hearing impairment. Participants were randomly assigned to
the two grammar conditions (see below), with half of the
participants taking part in either condition (‘di-repetition’ or
‘repetition-di’, depending on the relative order of the two
repetitions in the sequence).

Stimuli Two artificial grammars generating six-syllable
long sequences were created to be used in the familiar-
ization phase of the study. In strings generated by the
‘di-repetition’ grammar, sequences started with the constant
syllable /di/ and ended with an immediate repetition of a
syllable, yielding strings of the form /di/ABCDD, where
A, B, C and D represent CV syllables. Strings generated
by the ‘repetition-di’ grammar started with an immediately
repeated syllable and ended in /di/, yielding strings of the
form AABCD/di/.

For the familiarization sequences, categories A and B
used possible combinations of the consonants /m/, /n/, /l/,
/r/, /p/ and /g/ with the vowels/diphthongs /eI/, /aI/, /OI/, and
/oU/. Categories C and D used the consonants /f/, /v/, /s/, /z/,
/b/, and /k/ with the vowels /A/, /U/, /o/, and /aU/.

For the test sequences, the consonants were exchanged
between the categories such that categories A and B used the
consonants /f/, /v/, /s/, /z/, /b/, and /k/ with the vowels /eI/,
/aI/, /OI/, and /oU/, while categories C and D used consonants
/m/, /n/, /l/, /r/, /p/ and /g/ with the vowels /A/, /U/, /o/, and
/aU/. Both for familiarization and test, the sequences were
created in such a way that the A and B syllables within the
same word always used both different Cs and different Vs
to ensure discriminability. The same constraint was applied
to D and E syllables within the same word.

For familiarization, 36 sequences were generated for each
order, e.g. /di/ABCDD: /digOIpeIkobAbA/, /digeIlaIkAsUsU/,
/dirOIlaIzosAsA/; AABCD/di/: /fAfAvomeInOIdi/,
/vUvUfAnaImeIdi/, /nOnOIgoUvokaUkaUdi/.

For test, novel grammatical and ungrammatical
sequences were created. The grammatical sequences were
just like the familiarization sequences, except that they used
novel syllables. The ungrammatical sequences either did
not contain the syllable /di/, did not contain a repeated syl-
lable, or contained neither the syllable /di/ nor a repetition.
In the following, we will call these kinds of violations vio-
lations of presence, because the regularities are not present
in the strings. This resulted in four types of test items: (i)
grammatical items (/di/ABCDD or AABCD/di/, depending
on the grammar a participant had been familiarized with),
(ii) repetition violations (/di/ABCDE or ABCDE/di/), (iii)
/di/ violations (EABCDD or AABCDE), and (iv) violations
of both the repetition and di (ABCDEF). The additional E
and F foil syllables needed for the ungrammatical items
were randomly chosen from the A, B, C, and D categories
in a counterbalanced fashion, making sure that a category is
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not inadvertently directly repeated as a result, e.g. a syllable
from category D was never used as a category E syllable.
For each test item type, 9 items were created, for a total of
36 test items per condition.

The sequences were synthesized using the us3 voice of
the MBROLA text-to-speech synthesizer (Dutoit, 1997).
Each phoneme was 116 ms long, resulting in sequences of
1.392 s. The sequences had a monotonous pitch of 135 Hz.

Procedure Participants were tested individually in a quiet
room, seated in front of a computer that delivered the
stimuli and recorded participants’ responses. Sound stimuli
were presented through high-quality headphones. Partici-
pants were informed that they would first listen to a sample
of an unknown language (“Martian”), and would then be
tested on their knowledge of the ‘sentences’ of the language.
Following this, participants were instructed to simply listen
to the familiarization sentences.

The familiarization consisted of 36 sentences separated
by an inter-stimulus interval of 1 s, presented in a different
pseudo-random order for each participant. The familiariza-
tion lasted 1 min 44 s. After familiarization, participants
passed immediately onto the test phase. In each of the 36
test trials, they heard a novel sentence, and they had to indi-
cate whether it was a Martian sentence. Responses were
collected from two predefined keys. No feedback was given
after the test trials.

Among the 36 test items, 9 were grammatical, respecting
both regularities, 9 violated the repetition regularity, 9 vio-
lated the di regularity and 9 violated both regularities. The
order of presentation of the 36 test items was randomized for
each participant with the constraint that no more than three
items from the same item type could occur consecutively.

Results

The rejection rates for the four test item types are shown in
Fig. 2 (left panel). We present the statistical analyses below

according to the main questions outlined above: (i) did par-
ticipants learn the regularities? (ii) which factors determine
the relative ease of a generalization? and (iii) do participants
discriminate between single and double violations?

Did participants learn the regularities? To determine
whether participants learned the regularities of the two
artificial grammars at all, we conducted three types of
comparisons.

First, we compared the rejection rates for the four test
item types, separately, to chance performance, operational-
ized by a chance level of 50% as participants completed a
yes/no judgment tasks. That is, above chance performance
means that participants should reject grammatical items less
often than expected by chance, and violations more often
than expected by chance. By contrast, we will refer to
below-chance performance when participants reject gram-
matical items more often than expected by chance, or when
they reject violations less often than expected by chance. We
analyzed the two order conditions separately, as subsequent
analyses (in Experiment 2, see below) revealed a statistically
significant difference between them.

As shown in Table 1, participants performed signifi-
cantly better than chance (after Bonferroni correction for
multiple comparisons) in both the repetition-/di/ and the
/di/-repetition condition for the grammatical test items, and
for those violating both regularities. Performance for single
violations did not differ from chance.

Second, we compared the rejection rates for the gram-
matical items with those for the three types of ungrammat-
ical items, as performance on grammatical items can be
considered as indicative of maximum learning performance.
The results are shown in Table 2. In the repetition-/di/
condition, this comparison was significant for the items
violating the /di/ regularity and both regularities, but not
for the items violating the repetition regularity. In the /di/-
repetition condition, this comparison was significant for all
three ungrammatical item types.
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Fig. 2 Average rejection rates for the four test item types in Experiments 1 and 2. Error bars represent between-subjects standard errors
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Third, we compared rejection rates for test items violat-
ing a single regularity to those violating both regularities to
test whether the latter were better learned than the former.
The results are shown in Table 3. For the items violating
the repetition regularity, this comparison was significant in
the repetition-/di/ condition and marginally significant after
Bonferroni correction in the /di/-repetition condition, due to
lower rejection rates to these single violation items than to
the double violation items. The rejection rates for single vio-
lations of the /di/ regularity did not differ significantly from
those for double violations.

Which regularities are easier to learn? To directly com-
pare how easily the two types of regularities are acquired,
we compared the rejection rates for the test items contain-
ing single violations (either a /di/ or a repetition violation,
but not both) in an ANOVA with Regularity (/di/ vs. repe-
tition) as a within subject factor and Order (repetition-/di/
vs. /di/-repetition) as a between-subject factor. The ANOVA
yielded a main effect of Regularity, F(1, 38) = 7.76,
p = .008, η2

p = .1696 due to items violating the /di/ reg-
ularity incurring higher rejection rates than items violating
the repetition regularity. No other main effect or interaction
was significant. These results suggest that the /di/ regularity
was retained better than the repetition-regularity.

Do participants discriminate single from double viola-
tions? We compared rejection rates for the means of the
two types of test items violating a single regularity with
rejection rates for the test items violating both regularities.
An ANOVA with within-subject factor Order (repetition-
/di/ vs. /di/-repetition) and Violation Type (single/double)
yielded a highly significant main effect of Violation Type,
F(1, 38) = 43.2, p < .0001, η2

p = .5319, as double vio-
lations were more often rejected than single violations. No
other main effect or interaction was significant.

Discussion

The results of Experiment 1 suggest that participants can
learn artificial grammars implementing two regularities
simultaneously, as they are better than chance at correctly
rejecting test items that violate both regularities and at
correctly accepting fully grammatical test items. Their per-
formance is at chance for test items violating only one
regularity, but they tend to correctly reject items violating
the /di/ regularity more often than those violating the repeti-
tion regularity. These results suggest that the affixation-like
/di/ regularity is easier to learn than a regularity requiring
the comparison of two items. Further, the results indicate a
graded response pattern, with good performance on double
violations and poorer performance on single violations.
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To further probe learning patterns, we tested them in the
context of a more subtle type of violation in Experiment 2.
In this experiment, ungrammatical test items violated the
position rather than the presence of the regularities. For
example, strings that violated the /di/ regularity did con-
tain the syllable /di/, but in the second rather than the first
position.

Experiment 2: Violation of position

Methods

Participants Participants were 40 monolingual native
English-speaking adults (31 females, 9 males, mean age:
22.50 years, range: 19-42 years), recruited at the University
of British Columbia, Vancouver, Canada for course credit.3

Participants reported no history of neurological, language
or hearing impairment. Half of the participants were ran-
domly assigned to the /di/-repetition condition and half to
the repetition-/di/ condition.

Stimuli The two artificial grammars that generated the
sequences presented in the familiarization phase were iden-
tical to those used in Experiment 1.

For the test phase, novel grammatical and ungrammatical
sequences were created. In contrast to Experiment 1, where
the ungrammatical strings did not implement one regular-
ity or both, the ungrammatical sequences in Experiment 2
implemented the regularities, but in an incorrect, non-edge
position. We call this a violation of position. Specifically,
the ungrammatical sequences could violate the repetition
regularity, the /di/ regularity or both. This resulted in four
types of test items: (i) grammatical items, identical to those
used in Experiment 1 (/di/ABCDD or AABCD/di/, depend-
ing on the grammar participants had been familiarized
with), (ii) repetition violations (/di/ABCCD or ABBCD/di/),
(iii) /di/ violations (A/di/BCDD or AABC/di/D), and (iv)
violations of both the repetition and the /di/ regularity
(A/di/BCCD, ABBC/di/D). For each test item type, 9 items
were created, for a total of 36 test items for condition.
The sequences were synthesized in the same way as in
Experiment 1.

Procedure The procedure was identical to Experiment 1.

3Originally, 10 additional participants were tested in the repetition-
/di/ condition. To equate for the number of participants between the
repetition-/di/ and the /di/-repetition conditions, data from these partic-
ipants were not used for analysis. However, the results do not change
when data from these participants is also included.

Results

The rejection rates for the four test item types are shown in
Fig. 2 (right panel). We present the statistical analyses in the
same way as for Experiment 1.

Did participants learn the regularities? To determine
whether participants learned the regularities of the two
artificial grammars at all, we conducted three types of com-
parisons. First, we compared the rejection rates for the four
test item types separately to chance performance. As shown
in Table 1, participants performed significantly better than
chance (after Bonferroni correction for multiple compar-
isons) in the repetition-/di/ condition for the grammatical
test items, the /di/ violations, and double violations. How-
ever, they performed significantly below chance for the
repetition violation; in other words, they had a tendency
to treat them as legal items. In the /di/-repetition condi-
tion, they performed significantly better than chance for the
grammatical test items, and for the items violating both reg-
ularities, but their performance was indistinguishable from
chance for the single violations.

Second, we compared the rejection rates for the gram-
matical items with those for the three types of ungram-
matical items. The results are shown in Table 2. In the
repetition-/di/ condition, this comparison was significant for
the items violating the /di/ regularity and both regularities,
but not for the items violating the repetition regularity. In
the /di/-repetition condition, this comparison was significant
for all three ungrammatical item types. These results thus
parallel those of Experiment 1.

Third, we compared rejection rates for test items violat-
ing a single regularity to those violating both regularities
to test whether the latter were better learned than the for-
mer. The results are shown in Table 3. For items violating
the repetition regularity, this comparison was significant
in both the repetition-/di/ condition and the /di/-repetition
condition. For the items violating the /di/ regularity, this
comparison was marginally significant after Bonferroni cor-
rection in the /di/-repetition condition, and non-significant
in the repetition-/di/ condition.

Which regularities are easier to learn? To directly assess
which of the two types of regularities was retained better,
we compared the rejection rates for the test items contain-
ing single violations (either a /di/ or a repetition violation,
but not both) in an ANOVA with Regularity (/di/ vs. repe-
tition) as a within subject factor and Order (repetition-/di/
vs. /di/-repetition) as a between-subject factor. The ANOVA
yielded a main effect of Regularity, F(1, 38) = 9.21,
p = .0043, η2

p = .1951 due to items violating the /di/ reg-
ularity incurring higher rejection rates than items violating
the repetition regularity. The main effect of Order showed
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a trend towards significance, F(1, 38) = 3.61, p = .065,
η2

p = .0868. The Regularity × Order interaction was also

significant, F(1, 38) = 6.94, p = .012, η2
p = .1544. As

LSD post hoc tests showed, this interaction was carried by
higher rejection rates for the /di/ violation than for the rep-
etition violation in the repetition-/di/ order, p = .0003, and
by higher rejection rates for the repetition violation than for
the /di/ violations in the /di/-repetition order, p = .008. In
other words, violations of the sequence-final regularity were
easier to detect.

Do participants discriminate single from double viola-
tions? We compared rejection rates for the means of the
two types of test items violating a single regularity with
rejection rates for the test items violating both regularities.
An ANOVA with within-subject factor Order (repetition-
/di/ vs. /di/-repetition) and Violation Type (single vs. dou-
ble) yielded a significant main effect of Violation Type,
F(1, 38) = 109.1, p < .0001, η2

p = .7417, as double vio-
lations were more often rejected than single violations. No
other main effect or interaction was significant.

Discussion

Like in Experiment 1, participants in Experiment 2 showed
an overall ability to learn the artificial grammars they were
exposed to. Unlike in Experiment 1, however, their perfor-
mance was modulated by order effects. In the repetition-/di/
order, they showed rejection rates that were lower than
chance for the repetition violations, indicating incorrect per-
formance, but rejection rates that were better than chance
for the /di/ violations. It thus appears that, when more subtle
violations are involved, order effects related to memory con-
straints on serial order play an important role: the repetition-
based regularity, which already proved less salient in the
violation of presence condition in Experiment 1, became
even more challenging for participants when it appeared in
a sequence-initial position. This result is not predicted by
either account, but it is not unexpected under a perceptual
and memory primitive based account. We will discuss it
further below.

The difference between single vs. double violations
shows the same pattern as in Experiment 1, with double
violations being more readily rejected than single violations.

Are sequence-final regularities easier to learn than
sequence-initial regularities?

In Experiment 2, we found that violations of the repetition-
pattern were more easily detected in sequence-final posi-
tions than in sequence initial positions. Furthermore, visual
inspection of Fig. 2 shows that there is at least a numeric
advantage for single violations of a regularity when it occurs
at the sequence-end as compared to when it appears at the
onset.

To further analyze this impression, we jointly analyzed
the rejection rates for single violations from Experiments 1
and 2 in a generalized linear mixed model, fitted to trial-by-
trial data, using a binomial link function. The initial model
comprised fixed factor predictors for Violated Regularity
(/di/ vs. repetition), Order (repetition-/di/ vs. /di/-repetition)
and Violation Type (presence vs. position, i.e., Experiment 1
vs. Experiment 2) as well as all of their interactions. We
included random intercepts for participants and trials. We
kept only those interactions and random intercepts that con-
tributed to the model likelihood. In the final model, we
included the three main effects, the interaction between
Order and Violation Type as well as a random intercept for
participants.

The results of the model are shown in Table 4. This
model revealed that violations of the /di/-regularity led to
significantly higher rejection rates than violations of the
repetition-regularity, β = .45, SE = .13, Z = 3.34, p =
.0008, confirming that the /di/-regularity was more salient.
We also found that rejections rates in the repetition-/di/ con-
dition were significantly lower than in the /di/-repetition
condition, β = −1.15, SE = .24, Z = 4.73, p < .00001,
and, importantly that rejection rates in the repetition-/di/
condition were increased for violations of the /di/-regularity,
β = 1.64, SE = .23, Z = 7.16, p < .00001. This latter
result reflects the recency effect discussed above. To see this
recency effect more clearly, we excluded the main effect of
order from the above model.

Table 4 Results of a generalized linear mixed model with binomial link function, restricted to trials with single violations

β SE Z p

Intercept 0.23 0.18 1.25 0.21

Order = repetition-di −1.15 0.24 −4.73 < .00001

Violation Type = Position 0.14 0.21 0.68 0.494

Violated Regularity = di 0.45 0.13 3.34 .0008

(Order = repetition-di):(Violated Regularity = di) 1.64 0.23 7.16 < .00001

The final model specification was Rejection Order + ViolationType + ViolatedRegularity + Order:ViolatedRegularity + (1 | Participant)
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Table 5 Results of the overall analysis of Experiments 1 and 2, using a
model with the specification Rejection Order + ViolationType + Vio-
lationOfRepetition + ViolationOfDi + Order:ViolationOfRepetition

+ Order:ViolationOfDi + ViolationType:ViolationOfDi + Viola-
tionOfRepetition:ViolationOfDi + (1 | Participant)

β SE Z p

Intercept −1.67 0.19 −9.00 < .00001

Order = repetition-di −0.54 0.24 −2.26 .024

Violation Type = Position −0.11 0.20 −0.56 0.578

Violation of Repetition = yes 2.03 0.14 14.69 < .00001

Violation of di = yes 2.19 0.16 13.45 < .00001

(Order = repetition-di):(Violation of Repetition = yes) −0.62 0.18 −3.48 .0005

(Order = repetition-di):(Violation of di = yes) 0.96 0.19 5.16 < .00001

(Violation Type = Position):(Violation of di = yes) 0.55 0.17 3.23 .001

(Violation of repetition = yes):(Violation of di = yes) −0.90 0.17 −5.23 < .00001

The results of this restricted model are shown in Table 5.
The model revealed again that violations of the /di/-
regularity led to significantly higher rejection rates than
violations of the repetition-regularity, β = .45, SE = .13,
Z = 3.34, p = .0008. Crucially, the interaction between
Order and Violation Type revealed that, when the repeti-
tion regularity was violated, rejection rates were reduced
in the repetition-/di/ condition compared to the in the /di/-
repetition condition, β = −1.15, SE = .24, Z = 4.73,
p < .00001, while, when the di-regularity was violated,
rejection rates received a small boost in the repetition-/di/
condition, β = −.49, SE = .25, Z = 1.98, p < .047.4

Overall analysis

In the next analysis, we analyze all conditions of the com-
bined results of Experiments 1 and 2 (and not only the
data for single violations, as in the previous analysis), fit-
ting a generalized linear mixed model with a binomial link
functions to trial-by-trial rejection data. The initial model
specification included the fixed factors Order (repetition-
/di/ vs. /di/-repetition) and Violation Type (presence vs.
position), Repetition Violation (yes vs. no), di Violation (yes

4These results were confirmed in an ANOVA with Regularity (/di/
vs. repetition) as within-subject factor, and Order (repetition-/di/ vs.
/di/-repetition) and Violation Type (presence/position, i.e., Exper-
iment 1/Experiment 2) as between-subject factors. The analysis
revealed a significant main effect of Regularity, F(1, 76) = 16.9,
p < .0001, as /di/ violations were better detected than repetition viola-
tions. Further, the interaction Regularity × Order was also significant
F(1, 76) = 7.6, p = .007, due to better performance for the /di/
regularity than for the repetition regularity in the repetition-/di/ order
(p < .0001), as well as to better performance for the repetition regu-
larity in the /di/-repetition than in the repetition-/di/ order (p = .006).
These results suggest that the /di/ regularity was better retained over-
all than the repetition regularity, and performance on this latter was
further impaired when it was in a sequence-initial position.

vs. no), all interactions as well as random intercepts for par-
ticipants and trials. We retained only those interactions and
random intercepts that contributed to the model likelihood.
The final model included the four main effects and inter-
actions between Order and Repetition Violation, between
Order and di Violation, between Violation Type and di Vio-
lation and between Repetition Violation and di Violation.
We included only a random intercept for participants.

This model revealed that rejection rates were higher
when the di regularity was violated, β = 2.19, SE = .16,
Z = 13.45, p < .00001, and when the repetition regularity
was violated, β = 2.03, SE = .14, Z = 14.69, p < .00001.
An interaction between these factors suggested that rejec-
tion rates were somewhat lower when both regularities were
violated than would be expected from simply adding the
contributions of the two rejection rates, β = −.90, SE =
.17, Z = 5.23, p < .00001.

Rejection rates were somewhat lower in the repetition-
/di/ condition, β = −.54, SE = .24, Z = −2.26, p = .024.
An interaction with Repetition Violation suggested that this
effect was somewhat more pronounced when the repetition
regularity was violated, β = −.62, SE = .18, Z = −3.48,
p = .0005, and substantially less pronounced when the di
regularity was violated, β = .96, SE = .19, Z = 5.16,
p < .00001. This result reflects the recency effect discussed
above.

Finally, an interaction between Violation Type and di
Violation suggested that rejection rates were somewhat
higher when positional violations were used and the di viola-
tion was violated, β = .55, SE = .17, Z = 3.23, p = .001.

To what extent are extant Bayesian models consistent
with the data?

We now take advantage of the explicit nature of Frank
and Tenenbaum’s (2013) model to ask to what extent it is
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compatible with the results of the current experiments. In
Appendix A, we derive the equations for the posterior prob-
abilities of the test items. Specifically, in line with Frank and
Tenenbaum’s (2013) models, we assume that the model con-
siders four kinds of rules: (i) a default rule that is true of all
strings (and thus of S6 possible 6-syllable strings generated
from S strings); (ii) a repetition rule that detects repeated
syllables in a specific position in a string (and that is com-
patible with S5 strings); (iii) an affixation rule that detects
specific syllables in specific positions (and that is compat-
ible with S5 strings); and (iv) the conjunction rule of the
latter two rules (that is compatible with S4 strings).

In order to evaluate their model, Frank and Tenenbaum
(2013) used “surprisal” as a measure of the model out-
put for yes/no grammaticality judgments (e.g., of Endress
et al.’s (2007) experiments), which indicates how “surpris-
ing” a test item is after having heard the familiarization
items. (Formally, surprisal is the negative logarithm of the
posterior probability of a test item, and reflects how much
information is carried by the test item in the context of
the prior familiarization). We will thus adopt this metric
as one of the measures to evaluate our own simulations.
However, this is not an appropriate measure to compare to
empirical acceptance or rejection rates of strings, as it is
not a probability (M. Frank, personal communication). In
addition to surprisal, we thus evaluate the model with the
posterior probability of the test items, given the training
items.

However, raw posterior probabilities are extremely low,
predicting that all items should rejected. To circumvent
this problem, we also evaluate the model as if the exper-
iments used three-alternative forced choice tasks between
test items, where participants (or the model) are familiarized
with the training strings, and then have to choose between
grammatical items, single violations and double violations.
Modeling a forced choice task thus allows us to use the rel-
ative likelihoods of the test items, and thus to work around
the low posterior probabilities.

We analyze two versions of the model, the original one
with the conjunction rule, as well as a version without the
conjunction rule, in order to better assess the contribution of
this rule to fitting experimental data.

Original model

The posterior probabilities and surprisals for grammatical
items, violations of a single feature (repetition or affixa-
tion pattern) and violations of both features are calculated
in Appendix A, where |T | is the number of training items
and S is the number of syllables. We then treated the differ-
ent test items as if participants had to choose among them
as alternatives in a three-way forced choice task. That is, we

assumed that the model was familiarized with the training
items, and then had to choose in each trial between gram-
matical items, single violations and double violations.5 As
shown in Fig. 3a, we found that the probability of choosing
grammatical items is 1, while the probability of choosing
any other items is zero.

In other words, the model should exclusively choose
grammatical items, and reject all other items. Further, it does
not discriminate between items violating the /di/ regularity
and items violating the repetition regularity, and items vio-
lating both regularities. This behavior contrasts markedly
with that of our participants. To see why this is the case,
consider our mixed model analyses above, and recall that
the slopes and intercepts when predicting endorsement rates
are same as when predicting rejection rates except for the
sign (since a logistic transform has been applied). Frank and
Tenenbaum’s (2013) model predicts that either violation of
either regularity is sufficient for an item to be rejected. As
a result, the interaction between the predictors correspond-
ing to the violations of the two regularities must cancel out
the effect of one of the violations. After all, if one violation
is sufficient to lead to rejection of an item, a second viola-
tion would lead to a rejection rate of more than 100% if it is
not cancelled out by the interaction term. In contrast, in our
mixed model analyses, the coefficient of the interaction was
less than half of that of either violation, suggesting that the
behavior of actual participants is much more gradual than
Frank and Tenenbaum’s (2013) model suggests.

For completeness, surprisal values are shown in Fig. 3b.
The central results are as before: the model does not dis-
criminate between violations of the /di/ regularity and
violations of the repetition pattern, nor between violations
of the presence of a regularity (e.g., strings of the form
ABCDEF after familiarization with AABCD/di/, where nei-
ther regularity exists in the test string) and violations of its
position (e.g., strings of the form ABBC/di/D after famil-
iarization with AABCD/di/, where the test string contains
both a position and the /di/ syllable, but in incorrect posi-
tions). However, at least when equating surprisal to rejection
rates, the model predicts that participants should be about
7.5 times as likely to reject double violations than single
violations.

5Practically, we used Luce’s choice rule (e.g., Luce, 1977) with the
posterior probabilities of the different test items. That is, the probabil-
ity of choosing the first of three items with probability p1, p2 and p3
is p1/(p1 + p2 + p3). We note that, while Luce’s choice rule is often
used to convert probabilities into choice probabilities, it is unclear in
the context of many Bayesian models what the psychological meaning
of such comparisons might be. After all, all posterior probabilities are
very close to zero.
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Fig. 3 Results of a Bayesian model based on Frank and Tenenbaum
(2013). The model results are identical for violations of presence and
of position. To compare the modeling results to our experimental

results, we assume that there is a monotonic relation between pos-
terior probabilities and endorsement rates, and between surprisal and
rejection rates

Model without conjunction rules

Given that Frank and Tenenbaum’s (2013) explanation
of Gerken’s (2010) data relies on the specificity of the
conjunction rule, we also calculate the posterior proba-
bilities of a model that does not comprise such conjunc-
tion rules to allow for a more general evaluation of the
model.

Fig. 3c shows the choice probabilities in a three way
choice. The probability of choosing grammatical items over
single violation or double violation items is about 2/3. (In
this three-way choice, we just represent single-violation
items as a single choice. However, in a choice between items
violating both regularities, items violating the /di/ regularity,

items violating the repetition regularity, and grammatical
items, the choice probability for grammatical items would
be 1/2, and more generally 2/(2 + N), where N is the
number of single violation items entering the choice. In
Frank and Tenenbaum’s (2013) original model, the number
of single violation items does not noticeably affect choice
probabilities).

Finally, Fig. 3d shows the surprisal values. The cen-
tral results are as before: the model does not discriminate
between violations of the /di/ regularity and violations of
the repetition pattern, nor between violations of the pres-
ence of a regularity (e.g., strings of the form ABCDEF
after familiarization with AABCD/di/, where neither regu-
larity exists in the test string) and violations of its position



520 Mem Cogn (2017) 45:508–527

(e.g., strings of the form ABBC/di/D after familiarization
with AABCD/di/, where the test string contains both a
position and the /di/ syllable, but in incorrect positions). Fur-
ther, the model predicts that participants should be about
7.6 times as likely to reject double violations than single
violations.

In sum, extant Bayesian models of rule learning seem
inconsistent with the data presented here. In particular, they
do not predict the graded nature of the response, the dif-
ference between the learnability of the repetition and the
di regularity or the observed order effects. These results
thus add to more general issues that need to be clarified
with respect to such models (see Endress, 2013, for discus-
sion). For example, how do learners “know” which regu-
larity is narrower? According to Frank and Tenenbaum’s
(2013) models, infants keep track of all the syllables they
hear during familiarization, use them to construct all possi-
ble triplets, and check for each triplet whether it is consistent
with any conceivable rule. For example, if infants encoun-
tered a total of three syllables, they would generate all
27 triplets that can be formed with these syllables, and
realize that, of these 27 triplets, 6 follow an ABB pat-
tern (e.g., pu-li-li), 3 follow an AAA pattern (where all
three syllables are identical), and so on. This allows them
to count the number of triplets that is consistent with
each generalization and, therefore, to choose the narrow-
est one. While Frank and Tenenbaum (2013) acknowledged
that this model is implausible, it is unclear how infants
might possibly know the number of triplets consistent with
each generalization if they do not generate all possible
triplets.

Moreover, it is not clear whether infants actually repre-
sent conjunction rules of the type mentioned above. Possi-
bly, they might just have learned that items end in /di/ and
start with a repetition, but without joining these patterns into
a conjunction rule.

In sum, extant Bayesian models of rule learning need
to improve their empirical fit to the data as well as the
psychological meaning/plausibility of their assumptions.

General discussion

In the present study, we investigated how human adults
learn when they are exposed to strings that conform to mul-
tiple patterns simultaneously. Participants were presented
with one of two kinds of strings. They were exposed to
strings that started with a repeated syllable and ended with
/di/ (repetition-/di/ order), or they were exposed to strings
that started with /di/ and ended with a repeated sylla-
ble (/di/-repetition). We obtained three major results. First,
participants learned both regularities simultaneously. They
had a strong tendency to accept novel items that were

grammatical, strongly reject novel items that violated both
regularities, and reject at intermediate rates the items that
violated only one of the regularities. Second, violations
of the repetition-pattern were less salient to participants
than violations of the regularity constraining the start or
end syllables. Third, violations of regularities at the end of
sequences were more salient than violations at the beginning
of sequences.

These results reflect fundamental constraints on the
nature of the processes involved in the acquisition of rule-
like regularities, and give crucial insight into the patterns
of occurrence of certain morphosyntactic regularities across
the world’s languages. We will now discuss these issues in
turn.

How are rule-like generalizations learned

As reviewed in the introduction, there are two major views
on how rules similar to those used here are learned. On the
one hand, learners might rationally optimize some objective
function, and learn the most specific rule that is com-
patible with the data (e.g., Frank & Tenenbaum, 2013;
Gerken, 2010). On the other hand, such regularities might
be detected by simpler perceptual or memory primitives.

The present results clearly support the primitives view,
for at least three reasons. First, the specificity of a rule
does not seem to influence how easily a rule is acquired
(see also Endress, 2013). As mentioned above, there is
an equal number of strings that can be generated with
either the repetition-pattern or the pattern constraining the
initial or final syllable. Nonetheless, participants seem to
learn the syllable-based pattern better than the repetition
pattern.

Second, the relative rejection rates for the test items
fit neither Frank and Tenenbaum’s (2013) original model
of rule learning, nor our version not comprising the con-
junction rule. Specifically, our results show intermediate
rejection rates for items that violate a single rule com-
pared to grammatical test items and test items that violate
both rules. The predictions of Bayesian models of rule
learning seem at odds with these results. First, such mod-
els do not predict any difference between violations of
repetition-patterns and affixation patterns, between viola-
tions of position and of existence, between serial positions,
and so forth. Of course, it is possible to construct a Bayesian
model that does account for such data, for example by
changing the prior probabilities of the rules. However, when
auxiliary assumptions are added without independent moti-
vation, then models become ad hoc, and it becomes hard
to distinguish between predictions that result from ad hoc
assumptions, and predictions that result from the underly-
ing Bayesian machinery. We believe that the perceptual or
memory primitives account is more attractive in this respect
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as rule salience and learnability can be tested and measured
empirically.

Second, when evaluated using Luce’s choice rule
(reflecting a three alternative forced-choice task), Frank
and Tenenbaum’s (2013) predicts that participants should
never choose any items that are not fully grammatical.
This model behavior is due to a combination of two fac-
tors: They assume that learners represent a conjunction rule
(i.e., the conjunction of a repetition-rule and a affixation-
rule), and they assume that participants evaluate rules using
the size principle. These assumptions conspire to make the
posterior probabilities of test items respecting the conjunc-
tion rule many orders of magnitude larger than that of test
items not respecting it, in our experiments by a factor of
3 × 1073. In line with this interpretation, a variant of Frank
and Tenenbaum’s (2013) model not comprising the conjunc-
tion rule predicts that, when choosing between grammatical
items, items with a single violation, and items with a dou-
ble violation, participants should choose the grammatical
item about 2/3 of the time, and the item with the single
violation the rest of the time (though the exact choice prob-
abilities depend on how it is calculated), which is consistent
with the empirical result that the choice between grammat-
ical items and single violations is graded.6 In this model,
the preference for grammatical items over single-violations
is due to the fact that grammatical items conform to two
rules (that happen to be equally specific) rather than a sin-
gle one, which, we believe, is a conclusion that is consistent
with virtually any modeling framework. The current results
suggest that participants do not represent conjunction rules,
and support Endress’s (2013) suggestion that the infants’
difficulty to recognize single-violations as opposed to gram-
matical items in Gerken’s (2010) experiments was due to
the fact that grammatical items conform to two rules rather
than a single one, and not to the specificity of a putative
conjunction rule.

Interestingly, this conclusion also seems to be in line with
what is known about perception in general. In vision, it is
easier to search for targets defined by single features (e.g.,
a blue letter among green and brown letters, or an S among
T’s and X’s) than to search for feature conjunctions (e.g.,
a green T among brown T’s and green X’s; e.g., Treisman
& Gelade, 1980; Wolfe, 2003). In contrast, while Frank and
Tenenbaum’s (2013) model also performs a search, albeit
among possible rules, the model assumes that conjunction
rules should be learned preferentially.

6Specifically, averaged across experiments and conditions, partici-
pants accept 84.58% of the grammatical items, 42.97% of the single-
violation items, and 18.47% of the double violation items. Using
Luce’s choice rule, the choice probabilities in a three-way choice
should thus be 57.92% for grammatical items, 29.43% for single-
violations, and 12.65% for double-violations.

All these results mesh well with the primitives view.
The very point of this view is that humans (and other ani-
mals) have propensities to learn certain patterns, and that
some patterns are empirically more salient than others.
Moreover, it is not unexpected that the repetition-pattern
is somewhat harder to learn than the /di/ regularity, possi-
bly because it involves two items rather than one. Likewise,
the gradual difference in rejection rates between single
vs. double violations is not unexpected either, as partici-
pants might notice that there is something “right” about
items that violate a single regularity if they learn both rules
independently. However, a priori considerations are often
misleading and determining the saliency of a pattern or
the relative saliency of two patterns remains an empirical
question.

Importantly, the present results also reveal a finding that
is not predicted by either account: regularities located at
sequence-offsets seem to be more salient than regulari-
ties located at sequence-onsets. In other words, there is
a recency effect for regularities. While we are not aware
of empirical studies investigating how experimental param-
eters affect the relative strength of primacy and recency
effects in the case of memory for serial order, the litera-
ture on item memory suggests that their relative strength
might depend on different factors, for example the ratio of
the retention interval and the interstimulus interval (e.g.,
Knoedler, Hellwig, & Neath, 1999; Neath, 1993). As a
result, it would have been difficult to make straightfor-
ward predictions about this point. However, as we will
discuss in more detail below, this finding explains important
cross-linguistic regularities.

Implications for language

We suggest that the rules presented here are learned through
simple perceptual or memory primitives. These primitives
appear to be shared by non-human animals (e.g., Chen et al.,
2016; Endress, Carden, Versace, & Hauser, 2010; Endress,
Cahill, et al., 2009; Giurfa et al., 2001; Hauser & Glynn,
2009; Martinho & Kacelnik, 2016; Murphy, Mondragon, &
Murphy, 2008; Neiworth, 2013; van Heijningen et al., 2013)
who clearly do not acquire language. It turns out, however,
that these basic mechanisms seem to explain a number of
cross-linguistic generalizations, which, in turn, suggest that
language acquisition and processing might rely on some
similar mechanisms (Endress, Nespor, & Mehler, 2009).

For example, across the languages of the world, pre-
fixation and suffixation patterns are much more frequent
than infixation patterns (such as fan-fucking-tastic; e.g.,
McCarthy, 1982); this observation meshes well with the fact
that in artificial grammar learning experiments, participants
predominantly learn regularities that involve the edges of
constituents as opposed to other positions within sequences.
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Further, when infixation patterns occur, they tend to be
located near edges of constituents or next to a stressed unit
(Yu 2007).

Furthermore, across the languages of the world, the rel-
ative frequency of prefixation and suffixation is reflected
by the experiments presented here. In fact, across the
828 languages that have been identified in the WALS
(http://wals.info/) as having some amount of inflectional
morphology, 529 show some predominance of suffixation
vs. 152 showing a predominance of prefixation (with 147
languages having equal amounts of pre- and suffixation).
Thus, suffixation is about 3-4 times more common than
prefixation (Dryer 2013), which fits well with the recency
effect obtained above (see also Endress & Hauser, 2011 for
more evidence that suffixes are easier to learn than pre-
fixes). Further, reduplication, which our study has found to
be more challenging to learn than single syllable affixation,
is indeed less frequent and/or used for fewer morphological
functions in the world’s languages than the affixation of a
single marker.

Two caveats are in order. First, although our experi-
ments address language learning in general, and intend to
shed light on language acquisition, we nevertheless tested
adult, and not infant participants for the practical rea-
sons mentioned earlier. Infants and adults differ in some
of their language learning abilities, possibly due to their
different cognitive and memory capacities (e.g., Newport,
1990; Newport & Neville, 2001), or because they have out-
grown their critical period for language acquisition (e.g.,
Lenneberg, 1967). For example, having larger memory and
attentional capacities, adults are better able to store indi-
vidual items, exceptions and irregular forms, and may thus
be better statistical learners, while infants, given their lim-
ited memory capacity, might focus on extracting rules and
generalizations in order to capture as much as possible of
a given dataset (e.g., Finn & Hudson Kam, 2008; Gervain
et al., 2013; Hudson Kam & Newport, 2005; Marchetto
& Bonatti, 2013, 2015; Newport, 1990). However, adults
and infants are expected to differ less in their perceptual
and memory primitives. Indeed, sensitivity to repetition has
been found in infants as young as newborns (Antell, Caron,
& Myers, 1985; Gervain, Macagno, et al., 2008; Gervain
et al., 2012). Furthermore, implicit artificial grammars have
been argued to recruit similar neural correlates as natu-
ral languages (e.g., Friederici, Steinhauer, & Pfeifer, 2002;
Bahlmann, Schubotz, & Friederici, 2008).

Second, our adult participants were speakers of English,
and might have brought their language-specific knowledge
to the laboratory. While it is still interesting to note that
those patterns that are easier to learn are also those that
are more frequent cross-linguistically, it is important to test
with young infants and non-human animals whether these
effects can be found irrespective of language experience.

In addition to typological evidence, studies in language
acquisition also suggest that the ends of words are more
salient, and that suffixation may be universally more com-
mon precisely because it facilitates learning. (Slobin 1973),
for instance, makes the empirical generalization, on the
basis of early production data from 40 typologically differ-
ent languages, that post-verbal and post-nominal markers
are acquired earlier than pre-verbal and prenominal ones,
and attributes this to the greater salience of word ends as
compared to word beginnings (operating principle A: “pay
attention to the ends of words”, Slobin, 1973). Indeed, the
analysis of a corpus of child-directed English suggests that
suffixes predict the stems grammatical category with greater
reliability than prefixes, and that participants can better
learn the grammatical category of word stems in an arti-
ficial grammar study on the basis of suffixes than on the
basis of prefixes (St Clair, Monaghan, & Ramscar, 2009).
As a flip side of the idea that word ends are preferentially
attended to when learning morphological regularities, psy-
cholinguistic studies whereby adults needed to learn new
word-object associations suggest that participants associate
word beginning more strongly with the words’ referents
than they do word ends (see Creel & Dahan, 2010 and
references therein). As a result, there does not seem to
be an overall processing advantage for word ends. Rather,
the end advantage we observe seems mostly related to
morphological-like processing.

Conclusion

While language is learned only by humans, certain basic
abilities present in other animals might be the proxi-
mate mechanisms by which crucial aspects of language
are acquired, and might also constrain the expressed
form of language (see also Wang & Seidl, 2015). Given
the amenability of such mechanisms to experimental
manipulations, they might be a unique opportunity to under-
stand the mechanistic and evolutionary basis of certain
crucial aspects of language acquisition and use.
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creativecommons.org/licenses/by/4.0/), which permits unrestricted
use, distribution, and reproduction in any medium, provided you give
appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons license, and indicate if changes were
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Appendix A: General model equations
for the original model

In line with Frank and Tenenbaum’s (2013) conventions, ek

is the kth test item, rj is the j th rule, R is the set of all rules,
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and T is the set of all training strings. |.| denotes the number
of items in a set. Below, we will call Rc the set of rules
that is compatible with all training strings, and Rc

j the set of
rules that is compatible with all training strings as well as
the (test) string j . Further, we have the following equation
(see Frank and Tenenbaum’s (2013) Eq. 8, where the sum
and the product should have been switched):

p(ek|T ) =
∑

rj ∈R

p(ek|rj )p(rj |T ) (1)

Frank and Tenenbaum (2013) assume here conditional
independence of the training strings and the test strings,
given a rule. Further, from their Eqs. 1 to 3, we have:

p(ek|rj ) =
{

1
|rj | if ek is compatible with rj

0 otherwise
(2)

p(rj |T ) = p(T |rj )p(rj )∑
r ′∈R p(T |r ′)p(r ′)

(3)

= p(T |rj )∑
r ′∈R

p(T |r ′)

=
∏

ti∈T p(ti |rj )
∑

r ′∈R

{∏
ti∈T p(ti |r ′)

}

p(rj |T ) =
(

1
|rj |

)|T |

∑
r ′∈Rc

(
1

|r ′|
)|T | (4)

These equations follow from Frank and Tenenbaum’s (2013)
use of a uniform prior over rules, of the conditional inde-
pendence of test strings given a rule, and of the assumption
of strong sampling.

From these equations, we can derive an expression for
the posterior probability of a test item, given the training
strings:

p(ek|T ) =
∑

rj ∈Rc
k

1

|rj |

(
1

|rj |
)|T |

∑
r ′∈Rc

(
1

|r ′|
)|T | =

∑
r ′∈Rc

k

(
1

|r ′|
)|T |+1

∑
r ′∈Rc

(
1

|r ′|
)|T |

(5)

In the numerator, we sum over all rules that are compat-
ible with all training items and with the test item ek . In the
denominator, we sum over all rules that are compatible with
all training items.

Let r̂ be the most specific rule. Then 1/|rj | ≤ 1/|r̂| for
all j . It follows that

p(ek|T ) ≤ 1

|r̂| (6)

In our experiments, the most specific rule generates S4

strings, where S is the number of syllables. With 97 sylla-
bles as in our experiments, the posterior probability of any
test item is thus at most .000001 %. As a result, all test items
should be rejected.

Appendix B: Formulae for the original model

Posterior probability of test items

We now calculate the posterior probabilities for the rules
used here. Let S be the number of syllables. Given that
we use strings with six syllables, there are S6 strings in
total, S5 strings that have a repetition in a given edge or a
specific affix syllable, and S4 items conforming to the con-
junction rule of affix syllable and reduplication. This allows
us to calculate the posterior probabilities for ungrammati-
cal items, items that conform to one of the rules, and items
that conform to both rules. We will call these items ek,0, ek,1

and ek,2, respectively, where the second index refers to the
number of rules to which an item conforms.

In the denominator of Eq. 5, we need to sum over the
default rule, the affixation rule, the repetition rule as well as
the combination rule. This yields (1/S6)|T | + 2(1/S5)|T | +
(1/S4)|T | = (1/S4)|T | ((1/S|T |)2 + 2(1/S|T |) + 1

) =
(1/S4)|T | (1 + 1/S|T |)2

.
In the numerator of Eq. 5, we have to sum over the appli-

cable rules for each item. For ungrammatical items, this is
just the default rule, for items conforming to one rule, we
add the corresponding rule, and for grammatical items, we
need to add a second rule as well as the conjunction rule. In
equations, this yields:

p(ek,0|T ) =
(

1
S6

)|T |+1

(
1
S4

)|T | (
1 + 1

S|T |
)2

(7)

= 1

S2|T |+6

1
(

1 + 1
S|T |

)2
(8)

≈ 1

S2|T |+6
(9)

p(ek,1|T ) =
(

1
S6

)|T |+1 +
(

1
S5

)|T |+1

(
1
S4

)|T | (
1 + 1

S|T |
)2

(10)

= 1

S|T |+5

1 + 1
S|T |+1

(
1 + 1

S|T |
)2

(11)
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≈ 1

S|T |+5
(12)

p(ek,2|T ) =
(

1
S6

)|T |+1 + 2
(

1
S5

)|T |+1 +
(

1
S4

)|T |+1

(
1
S4

)|T | (
1 + 1

S|T |
)2

(13)

= 1

S4

1
S2|T |+2 + 2 1

S|T |+1 + 1
(

1 + 1
S|T |

)2
(14)

= 1

S4

(
1 + 1

S|T |+1

)2

(
1 + 1

S|T |
)2

(15)

≈ 1

S4
(16)

The approximations result from the fact that the dropped
terms are much smaller than 1; for example, with S = 97
and |T | = 36, 1/S|T | = 3 × 10−72.

Further, it is easy to see that, as one increases the number
of syllables, all p(ek|T )’s converge to zero. That is, Frank
and Tenenbaum’s (2013) model makes the prediction that if
one presents participants with the very same training exam-
ples, but makes them aware before the experiment that there
are more possible syllables, they should essentially reject all
test strings. It seems reasonable to conclude that this is not
how actual humans behave.

Surprisal for the test items

Given the above formulae, we can also calculate the sur-
prisal s for each test item. This is given by (where log
represents the logarithm with basis 2):

s(ek,0) = (2|T | + 6) log(S) (17)

s(ek,1) = (|T | + 5) log(S) (18)

s(ek,2) = 4 log(S) (19)

Choice probabilities

Below, we calculate the choice probabilities for test items
as if the experiments were conducted as a choice experi-
ment (while the experiments really use yes/no recognition
judgements). We use Luce’s choice rule, that is, if partici-
pants have to choose among N possibilities associated with
a probability pi , the j th item is chosen with the following
probability:

pj∑N
i=1 pi

(20)

We calculate two kinds of situation, one where grammat-
ical items and items with one violation are pitted against
a baseline of ungrammatical items, and one where partici-
pants have to make a three-way choice among all three types
of items.

Choices against ungrammatical items as a baseline

Below, we show the choice probabilities in two-alternative
choices where one choice is an item with two violations,
and the other item is a grammatical item or one with only
one violation. We report the choice probability for the more
grammatical item.

Pchoice(grammatical items) =
1
S4

1
S2|T |+6 + 1

S4

= 1
1

S2|T |+2 + 1
≈ 1 (21)

Pchoice(1 violation) =
1

S|T |+5

1
S2|T |+6 + 1

S|T |+5

= 1
1

S|T |+1 + 1
≈ 1 (22)

Three way choices

Pchoice(grammatical items) = 1

1 + 1
S|T |+1 + 1

S2|T |+2

≈ 1 (23)

Pchoice(1 violation) = 1

S|T |+1

1

1 + 1
S|T |+1 + 1

S2|T |+2

≈ 0 (24)

Pchoice(2 violations) = 1

S2|T |+2

1

1 + 1
S|T |+1 + 1

S2|T |+2

≈ 0 (25)

Appendix C: Formulae for a model without
conjunction rules

Posterior probabilities for the test items

It is also easy to calculate the posterior probabilities of test
items for a model that does not comprise conjunction rules.
They follow again from Eq. 5. We will call this model the
“simpler” model, and index all probabilities and surprisals
with “simpler”.

psimpler(ek,0|T ) =
(

1
S6

)|T |+1

(
1
S5

)|T | (
2 + 1

S|T |
) (26)

= 1

S|T |+6

1

2 + 1
S|T |

(27)

≈ 1

2

1

S|T |+6

(28)
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psimpler(ek,1|T ) =
(

1
S6

)|T |+1 +
(

1
S5

)|T |+1

(
1
S5

)|T | (
2 + 1

S|T |
) (29)

=
(

1
S5

)|T |+1 (
1 + 1

S|T |+1

)

(
1
S5

)|T | (
2 + 1

S|T |
) (30)

= 1

S5

1 + 1
S|T |+1

2 + 1
S|T |

(31)

≈ 1

2

1

S5
(32)

psimpler(ek,2|T ) = 1

S5

2 + 1
S|T |+1

2 + 1
S|T |

(33)

≈ 1

S5
(34)

Surprisals for the test items

The corresponding surprisals are:

ssimpler(ek,0|T ) = (|T | + 6) log(S) + 1 (35)

ssimpler(ek,1|T ) = 5 log(S) + 1 (36)

ssimpler(ek,2|T ) = 5 log(S) (37)

Choice probabilities

Choices against ungrammatical items as a baseline

The choice probabilities for an item grammatical or 1 viola-
tion items, respectively, against 2 violation items are given
below:

Pchoice(grammatical items) =
1
S5

1
S5 + 1

2
1

S|T |+6

= 1

1 + 1
2

1
S|T |+1

≈ 1 (38)

Pchoice(1 violation) =
1
2

1
S5

1
2

1
S5 + 1

2
1

S|T |+6

= 1

1 + 1
S|T |+1

≈ 1 (39)

Three way choices

The choice probability for the three-way choices are given
below:

Pchoice(grammatical items) =
1
S5

3
2

1
S5 + 1

2
1

S|T |+6

= 2

3 + 1
S|T |+1

≈ 2

3

(40)

Pchoice(1 violation) =
1
2

1
S5

3
2

1
S5 + 1

2
1

S|T |+6

= 1

3 + 1
S|T |+1

≈ 1

3
(41)

Pchoice(2 violations) =
1
2

1
S|T |+6

3
2

1
S5 + 1

2
1

S|T |+6

= 1

3S|T |+1 + 1
≈ 0 (42)
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