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Relationships between Archimedean copulas and Morgenstern
utility functions.

Jaap Spreeuw
Cass Business School, City University London

December 4, 2009

Abstract

The (additive) generator of an Archimedean copula is a strictly decreasing and convex
function, while Morgenstern utility functions (applying to risk aversion decision makers) are
nondecreasing and concave. In this presentation, relationships between generators and utility
functions are established. For some well known Archimedean copula families, links between
the generator and the corresponding utility function are demonstrated. Some new copula
families are derived from classes of utility functions which appeared in the literature, and
their properties are discussed. It is shown how dependence properties of an Archimedean
copula translate into properties of the utility function from which they are constructed.

1 Introduction

Archimedean copulas are constructed using a one-dimensional function, the generator, which
is nonincreasing and convex. Von Neumann-Morgenstern utility functions, on the other hand,
are nondecreasing (decision makers prefer more to less) and concave (decision makers are risk
averse). Therefore, an affine transformation of a utility function, with sign changed, could act
as a generator for an Archimedean copula, subject to some additional conditions. Applying this
methodology can lead to copula families that are either new or well known.

This paper examines relationships between (generators of) Archimedean copulas and Von
Neumann-Morgenstern utility functions. In particular, it will be shown how properties of a utility
function translate into the type of dependence induced by the Archimedean copula generated
from it. For the sake of brevity, we will confine ourselves to notions of positive dependence only.

Section 2 gives a brief definition of generators of Archimedean copulas, while Section 3
elaborates on the aforementioned method of obtaining generators from utility functions.

Avérous and Dortet-Bernadet (2004) derive relationships between dependence properties of
Archimedean copulas and aging properties of their generator. In Section 4, links between copula
and utility function are exhibited. Section 5 considers several utility functions which appeared
in the literature as examples. Particular attention will be devoted to utility functions with
Decreasing Absolute Risk Aversion (DARA), a class that is widely applied in economics and
decision theory. Conclusions are presented in Section 6.

2 Archimedean copulas

We define C (·, ·) to be a two dimensional copula. An Archimedean copula can be specified as:

Cϕ (v1, v2) = ϕ
³
ϕ[−1] (v1) + ϕ[−1] (v2)

´
; 0 ≤ v1, v2 ≤ 1, (1)
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with ϕ nonincreasing and convex, ϕ (0) = 1 and ϕ (s) = 0 for s ≥ s∗ for some nonnegative
s∗. The generator is strict if lim s→∞ϕ (s) = 0 (so s∗ = ∞), and non-strict if s∗ is finite. The
function ϕ[−1] is defined as the generalized inverse of ϕ:

ϕ[−1] (s) =

½
ϕ−1 (s) for 0 < s ≤ 1

s∗ for s = 0
.

Remark 1 In certain literature about Archimedean copulas, the generator is defined in terms
of ϕ[−1] rather than ϕ (“inverse operator inside, rather than outside, the brackets”). However,
we prefer the notation above, as it leads to somewhat simpler expressions. So for instance, the
function s 7→ exp [−s] is used as generator for the independence copula, rather than s 7→ − log [s].

Remark 2 The generator, as specified in this paper, is invariant to multiplication of the argu-
ment by a positive constant. For � > 0, ϕ (s) and ϕ (�s) lead to the same copula. This often
leads to simplifications.

3 Utility functions

A utility function ψ : I→R, with I being a subset of R, is of a von Neumann-Morgenstern type
if it is nondecreasing and concave. In this paper we will assume ψ0 (s) > 0 for s ∈ I. Hence,
the function −ψ : R→R is strictly decreasing and convex. This does not mean that −ψ could
serve as a generator of an Archimedean copula, since in general the combination of additional
requirements ψ (0) = −1 and lims→∞ ψ (s) ≥ 0 is not satisfied.

However, generators of Archimedean copulas can be constructed from affine transformations
of utility functions. An important measure for risk perception in utility theory is the degree of
absolute risk aversion, defined by Pratt (1964) as

rψ (s) = −
ψ00 (s)

ψ0 (s)
≥ 0, s ∈ R. (2)

(The subscript ψ in rψindicates that the degree of absolute risk aversion is related to the utility
function). We define u (s) = α + βψ (s), with α and β real, β > 0. It is easy to verify
that ru (s) = rψ (s), so risk perception is invariant up to an affine transformation. Then for
s ≥ 0, max [−u (s) , 0] could serve as a generator of an Archimedean copula, provided that: a)
u (0) = −1; b) lims−→∞ u (s) ≥ 0. Applying the first condition gives α = −1 − βψ (0). The
corresponding generator will then be

ϕ (s) = max [1 + β (ψ (0)− ψ (s)) , 0] , s ≥ 0. (3)

A necessary condition for strictness of the generator is that lims→∞ ψ (s) = ψ (∞) <∞. Then
satisfaction of the second condition requires β ≥ (lims→∞ ψ (s)− ψ (0))−1, and a strict generator
is obtained for β = (lims→∞ ψ (s)− ψ (0))−1, reducing (3) to

ϕ (s) =
ψ (∞)− ψ (s)

ψ (∞)− ψ (0)
, s ≥ 0. (4)

In all other cases, and also in all cases with lims→∞ ψ (s) =∞, the generator is not strict. The
inverse of the generator is

ϕ[−1] (s) = ψ−1
µ
ψ (0) +

1− s

β

¶
.
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Remark 3 Obviously, we can only derive generators in this way for ψ (0) well defined and
finite. This condition is e.g. not met for the widely applied utility functions ψ (s) = log s, and
ψ (s) = −s1−γ with γ > 1.

Three observations can be made regarding the role of the parameter β:

1. As defined in Nelsen (2006), the upper tail dependence coefficient, denoted by λu, is

λu = 2− lim
s↓0

1− ϕ (2s)

1− ϕ (s)
= 2− lim

s↓0

ψ (2s)− ψ (0)

ψ (s)− ψ (0)
,

implying that λu does not depend on β.

2. According to Nelsen (2006), a sufficient condition for the copula generated by (3) to be
negatively ordered in terms of β (in the sense that Cβ1 ≤ Cβ2 for β1 > β2, where Cβi

indicates the copula with parameter βi, i ∈ {1, 2}) is that
³
ϕ
[−1]
β1

´0
(s)

Á³
ϕ
[−1]
β2

´0
(s) is

nondecreasing for s ∈ (0, 1) (here ϕ[−1]βi
(s) indicates the inverse generator with parameter

βi, i ∈ {1, 2}). We have that

∂

³
ϕ
[−1]
β1

´0
(s)

Á³
ϕ
[−1]
β2

´0
(s)

∂s

=
¡
ψ−1

¢0µ
ψ (0) +

1− s

β1

¶¡
ψ−1

¢0µ
ψ (0) +

1− s

β2

¶
⎛⎝r−1

³
ψ (0) + 1−s

β2

´
β2

−
r−1

³
ψ (0) + 1−s

β1

´
β1

⎞⎠ , (5)

defining

r−1 (x) =

¡
ψ−1

¢00
(x)¡

ψ−1
¢0
(x)

, x ∈ (ψ (0) , ψ (∞)) .

Note that r−1 (x) ≥ 0, since
¡
ψ−1

¢0
(x) ≥ 0 and

¡
ψ−1

¢00
(x) ≥ 0 for all x ∈ (ψ (0) , ψ (∞))

(the inverse of a nondecreasing and concave function is nondecreasing and convex). Hence,

(5) is nonnegative for r−1
³
ψ (0) + 1−s

β

´.
β decreasing in β. It will transpire that all the

copulas obtained from the generators derived as above in this paper are negatively ordered
in β.

3. Assuming that the assumption of r−1
³
ψ (0) + 1−s

β

´.
β decreasing in β (as in Observation

2 above) holds, Theorem 4.4.7 of Nelsen (2006) can be applied to find out if this family
includes W (Fréchet-Höffding’s lower bound) as a limiting member for β →∞. Applying
this Theorem 4.4.7 leads to

lim
β→∞

ϕ[−1] (s)¡
ϕ[−1]

¢0
(t)

= lim
β→∞

ψ−1
³
ψ (0) + 1−s

β

´
¡
ψ−1

¢0 ³
ψ (0) + 1−t

β

´
β−1

.
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Using de l’Hopital’s rule gives

lim
β→∞

ϕ[−1] (s)¡
ϕ[−1]

¢0
(t)

= lim
β→∞

¡
ψ−1

¢0 ³
ψ (0) + 1−s

β

´
(s− 1)β−2¡

ψ−1
¢0 ³

ψ (0) + 1−t
β

´
β−2 +

¡
ψ−1

¢00 ³
ψ (0) + 1−t

β

´
(1− t)β−3

= (s− 1) lim
β→∞

¡
ψ−1

¢0 ³
ψ (0) + 1−s

β

´
¡
ψ−1

¢0 ³
ψ (0) + 1−t

β

´ 1

1 + r−1
³
ψ (0) + 1−t

β

´
(1− t)β−1

.

For
¡
ψ−1

¢0
(ψ (0)) 6= 0, this limit equals s− 1, which means that W is then obtained as a

limiting member for β →∞ .

4 Relationships between properties of utility functions and prop-
erties of generators

Using concepts from reliability theory, Avérous and Dortet-Bernadet (2004) derive several rela-
tionships between type of dependence of a copula, and aging properties of the generator, which
is in fact a survival function. Given the expressions (3) and (4), these aging characteristics trans-
late into properties of the corresponding utility function. In this Section, links between type of
dependence of copulas and behavior of corresponding utility functions will be investigated.

For the sake of brevity, we will restrict ourselves to concepts of positive dependence. All
notions of positive dependence that appeared in the literature, including the weakest one of
Positive Quadrant Dependence (PQD) as defined by Lehmann (1966), require the generator to
be strict.

For this reason we will focus on strict generators. It should be stated that most applications
in the literature are based on copulas with a strict generator. A non strict generator implies
that C (u1, u2) = 0 for some u1, u2 > 0. It can sometimes be hard to justify that two events have
a nonzero chance of happening individually, but cannot happen jointly. Furthermore, applying
the pseudomaximum likelihood method as in Genest et al. (1995) requires the copula to be
absolutely continuous, which is implied by a strict generator.

In the sequel, we consider two continuous random variablesX and Y , and either an Archimedean
distribution copula Cϕ with generator ϕ defined in (1) such that
Pr [X ≤ x, Y ≤ y] = Cϕ (Pr [X ≤ x] ,Pr [Y ≤ y]), or an Archimedean survival copula defined asbCϕ with generator bϕ such that Pr [X > x, Y > y] = bCϕ (Pr [X > x] ,Pr [Y > y]). The notationbψ refers to the Morgenstern utility function, from which the generator bϕ is constructed, just as
in (4).

Apart from PQD, we will consider SI (Stochastically Increasing) (also from Lehmann, 1966)
and both LTD (Left Tail Decreasing) and RTI (Right Tail Increasing) (from Esary and Proschan,
1972) as notions of dependence. The definitions are as below:

Definition 4 (X,Y ) is PQD ⇔ Pr [X ≤ x, Y ≤ y] ≥ Pr [X ≤ x] Pr [Y ≤ y]

Definition 5 Y is LTD in X ⇔ Pr [Y ≤ y |X ≤ x ] is nonincreasing in x for all y.

Definition 6 Y is RTI in X ⇔ Pr [Y > y |X > x ] is nondecreasing in x for all y.

Definition 7 Y is SI in X ⇔ Pr [Y ≤ y |X = x ] is nonincreasing in x for all y.
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As pointed out in Avérous and Dortet-Bernadet (2004), SI implies LTD and RTI, each of
which in turn imply PQD. This can also be shown by using (conditional) hazard functions.
Assuming X and Y to be continuous random variables, we define the unconditional hazard
functions μY in the usual way

μX (x) =
∂
∂x Pr [X ≤ x]

Pr [X > x]
; μY (y) =

∂
∂y Pr [Y ≤ y]

Pr [Y > y]
.

Furthermore, we define some conditional hazard functions. For instance, we define

μY (y |X = x) =

∂
∂y Pr [Y ≤ y |X = x ]

Pr [Y > y |X = x ]
, (6)

as the conditional hazard function of Y at y given X = x. In a similar way, we define the
conditional hazard functions X at x given Y = y as

μX (x |Y = y ) =
∂
∂x Pr [X ≤ x |Y = y ]

Pr [X > x |Y = y ]
.

Likewise, we define the conditional hazard functions μY (y |X ≤ x) and μY (y |X = x) and so
on. This leads to the following propositions, proofs of which are straightforward. Note that X
and Y can be interchanged.

Proposition 8 (X,Y ) is PQD ⇔ μY (y |X > x) ≤ μY (y) ≤ μY (y |X ≤ x) for all x and y.

Proposition 9 Y is LTD in X ⇔ μY (y |X ≤ x) ≥ μY (y |X = s) for all x and s with x < s.

Proposition 10 Y is RTI in X ⇔ μY (y |X > x) ≤ μY (y |X = s) for all x and s with s < x.

Proposition 11 Y is SI in X ⇔ μY (y |X = x) is nonincreasing in x for all y.

The representation in terms of hazard functions also shows that SI is closely related to the
notion of long-term dependence as defined in Hougaard (2000).

Definition 12 Let X and Y be continuous random variables representing lifetimes. Then X
and Y exhibit long-term dependence if μX (x |Y = y ) is constant or decreasing as a function of
y ∈ [0, x] (or alternatively, if μY (y |X = x) is constant or decreasing as a function of x ∈ [0, y]).

When comparing definitions, one sees that SI requires the conditional hazard function
μY (y |X = x) to be nonincreasing also for x > y. This condition is not required for long-term
dependence.

Remark 13 Whether or not long-term dependence is a desirable feature in a model is a dif-
ferent question. As discussed in Spreeuw (2006), long-term dependence seems to be a realistic
assumption in many applications of reliability theory. For coupled lives, on the other hand, the
presumption of long-term dependence seems dubious. The “broken heart syndrome”, experienced
in some empirical studies, indicates that bereaved lives whose partner died recently have a higher
mortality than those who lost their partner years ago.

The following proposition shows the connection between the dependence properties of either
the distribution copula Cϕ or the survival copula bCϕ, and the risk perception properties of the
utility functions ψ and bψ, respectively.
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Proposition 14 i) Cϕ or bCϕ is PQD
⇐⇒ (ψ (∞)− ψ (s)) (ψ (∞)− ψ (t)) ≤ (ψ (∞)− ψ (s+ t)) (ψ (∞)− ψ (0))

or
³bψ (∞)− bψ (s)´³bψ (∞)− bψ (t)´ ≤ ³bψ (∞)− bψ (s+ t)

´³bψ (∞)− bψ (0)´, respectively;
ii) Cϕ is LTD⇐⇒ log [ψ (∞)− ψ (s)] is convex in s;

iii) bCϕ is RTI⇐⇒ log
hbψ (∞)− bψ (s)i is convex in s;

iv) Cϕ or bCϕ is SI ⇐⇒ rψ (s) = −ψ00(s)
ψ0(s)

is nonincreasing in s or r
ψ
(s) = −ψ

00
(s)

ψ
0
(s)

is nonin-

creasing in s, respectively.

Proof. i) and iv) Follows from the proofs of Proposition 1 in Avérous and Dortet-Bernadet
(2004), in connection with Equation (4).

ii) Follows from the proof of Proposition 3 in Avérous and Dortet-Bernadet (2004), in con-
nection with Equation (4).

iii) Observe that bCϕ has the RTI property if and only if

bϕ³bϕ[−1] (s) + bϕ[−1] (t)´
s

≥
bϕ³bϕ[−1] (s0) + bϕ[−1] (t)´

s0
∀0 < t < 1; ∀0 < s < s0 < 1.

Following the proof of Proposition 3 in Avérous and Dortet-Bernadet (2004), it follows

that − log bϕ (s) is concave in s, and hence log
hbψ (∞)− bψ (s)i is convex in s.

Remark 15 For survival copulas (of the Archimedean type) Spreeuw (2006) shows that long
term dependence is equivalent to r

ψ
(s) nonincreasing in s.

There seems to be general consensus in the economic literature that the coefficient of absolute
risk aversion should be decreasing (or at least nonincreasing) in terms of wealth. Arguments in
favor of this property were already given in Arrow (1971) and Pratt (1964). For this reason, most
utility functions share the property of Decreasing Absolute Risk Aversion (DARA). This means
that several utility functions can be used to construct copulas with the SI property, provided
that ψ (∞) is finite.

Most examples of utility functions as given in the next Section, do feature DARA. As we
shall see, the generators constructed from some utility functions belong to well established copula
families, but new generators do arise as well.

5 Examples

5.1 Classical cases

5.1.1 Linear utility

Linear utility is equivalent to risk neutrality. The corresponding generator of an Archimedean
copula is ϕ (s) = max [1− βs, 0] reducing to max [1− s, 0], (since, as stated above, a generator
determines a copula, up to a constant positive factor) being the generator of the Fréchet-Höffding
lower bound copula C (v1, v2) = max [v1 + v2 − 1, 0]. Linear utility corresponds to r (s) ≡ 0.

5.1.2 Constant Absolute Risk Aversion (CARA)

CARA functions correspond to ψ (s) = − exp [−γs] , γ > 0. They derive their name from
r (s) ≡ γ, being independent of s. The corresponding generator of an Archimedean copula is
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therefore ϕ (s) = max [1− β (1− exp [−s]) , 0], requiring β ≥ 1, generating the copula C (v1, v2) =
max

h
1
βv1v2 +

³
1− 1

β

´
(v1 + v2 − 1) , 0

i
which is Family 4.2.7 of Table 4.1 as in Nelsen (2006).

The family is negatively ordered in β. The generator is strict only if β = 1, giving the indepen-
dence copula.

5.1.3 Constant Relative Risk Aversion (CRRA)

As stated in Pratt (1964), there are three cases of utility functions with CRRA, i.e. s r (s) is
constant (and therefore DARA):

ψ (s) =

⎧⎨⎩
s1−γ if 0 < γ = s r (s) < 1
log s if s r (s) = 1

−s−(γ−1) if γ = s r (s) > 1.

.

CRRA utility functions are widely applied in the economic literature. But in spite of the DARA
property, one cannot derive a generator of a copula that is SI (or features a weaker type of
positive dependence). It is only in the first case that the utility function ψ (s) is well defined
for s = 0. This gives ϕ (s) = max

£
1− s1−γ , 0

¤
, which is Family (4.2.2) of Table 4.1 as in Nelsen

(2006). This generator is not strict, since ϕ (1) = 0.

5.2 The HARA family

This family (Hyperbolic Absolute Risk Aversion), which contains several utility functions dis-
cussed above as special cases, has been introduced in Merton (1971). It is specified as:

ψ (s) =
1− γ

γ

µ
s

1− γ
+ �

¶γ

; γ /∈ {0, 1} ; s

1− γ
+ � > 0; � = 1 if γ = −∞.

This utility function has risk aversion coefficient r (s) =
³

s
1−γ + �

´−1
. Given that the utility

function must be well-defined for s = 0, � ≥ 0 is required, with strict inequality for γ < 0 or
γ > 1. For � = 0 (requiring 0 < γ < 1) we get the CRRA case already seen before. Otherwise,

the generator ϕ (s) = max
h
1 + β 1−γγ

³
1−

³
s
1−γ + 1

´γ´
, 0
i
is obtained. The case γ → 1 involves

linear utility (and henceW ), while γ → ±∞ leads to CARA (and therefore Family 4.2.7 of Table
4.1 as in Nelsen, 2006). Strictness of the generator requires γ < 0, implying DARA, leading to
ϕ (s) = (s+ 1)γ being the generator of the Clayton copula, which is a standard example of an
SI copula.

5.3 The expo power utility

This family has been introduced in Saha (1993). A closely related family (which is essentially
the same) is considered in Xie (2000). The expo-power utility function is as given below:

ψ (s) = α− exp [−δsγ ] ; α > 1; 0 < γ ≤ 1 and δ > 0.

We have r (s) = 1−α+αδsγ
s , which is decreasing in s. We obtain ϕ (s) = max [1− β (1− exp [−sγ ]) , 0].

The family is negatively ordered in both γ and β. For β → ∞, the generator reduces to the
one for Family (4.2.2) of Table 4.1 as in Nelsen (2006) (see above, for CRRA). The generator is
strict for β = 1, leading to the Gumbel-Hougaard copula, which is also a standard SI case.
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5.4 Other examples of Decreasing Absolute Risk Aversion (DARA) as in
Pratt (1964)

Pratt developed a few more examples, that will be discussed below.

5.4.1 Equation (37a) of Pratt

This concerns the case
ψ (s) = arctan [s+ δ] ; δ ≥ 0.

Actually, Pratt imposed the restriction δ ≥ 1 to ensure that the utility function features
DARA, but a valid generator is obtained for 0 ≤ δ < 1 as well. We get as generator ϕ (s) =
max [1 + β (arctan [δ]− arctan [s+ δ]) , 0] , s ≥ 0, requiring β ≥ 1

1
2
π−arctan δ . Like all other types

considered in this note, this family is negatively ordered in β, with W attained for β →∞. The
generator is strict if β = 1

1
2
π−arctan δ , reducing the generator to ϕ (s) =

1
2
π−arctan[s+δ]
1
2
π−arctan δ . Kendall’s

tau is in that case 4δ(π−2 arctan[δ])−2
(π−2 arctan[δ])2 +1, which is increasing in δ with lower bound 1− 8

π2 ≈ 0.18943
(for δ = 0) and upper bound 1

3 (for δ →∞) so the range of dependence is limited. This utility
function features DARA (implying SI for the copula) for δ ≥ 1 (the restriction imposed by Pratt)
while convexity of log [ψ (∞)− ψ (s)] (implying LTD or RTI) is obtained for δ ≥ 0.35735.

5.4.2 Equation (37b) of Pratt

This concerns the case
ψ (s) = ln

h
1− (s+ δ)−1

i
; δ ≥ 1.

We get

ϕ (s) = max

∙
1 + β ln

∙
(δ − 1) (s+ δ)

δ (s+ δ − 1)

¸
, 0

¸
, s ≥ 0.

It is required that β ≥
³
ln
h

δ
δ−1

i´−1
. This family is also negatively ordered in β, with Fréchet-

Höffding’s lower bound reached for β approaching infinity. The generator is strict if β =³
ln
h

δ
δ−1

i´−1
leading to ϕ (s) = ln[s+δ]−ln[s+δ−1]

ln[δ]−ln[δ−1] , s ≥ 0. Then Kendall’s tau is equal to

4
2−(2δ−1) ln[ δ

δ−1 ]

(ln[ δ
δ−1 ])

2 + 1, varying in value between 1 (for δ ↓ 0) and 1
3(for δ → ∞). The case

δ →∞ leads to ϕ (s) = (s+ 1)−1 which is the generator of the copula C (v1, v2) = v1v2
v1+v2−v1v2 .

5.4.3 Equation (39) of Pratt

This concerns the case

ψ (s) = −c1e−γs − c2e
−δs; γ, c1, c2, δ > 0.

We get
ϕ (s) = max

h
1− β

³
c1
¡
1− e−s

¢
− c2e

−δs
´i

, s ≥ 0.

This is an example of a generator that has no analytical inverse, so the analysis that can be
performed is limited. It is required that β ≥ (c1 + c2)

−1. The strict generator gives

ϕ (s) =
c1

c1 + c2
e−s +

c2
c1 + c2

e−δs,
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being the Laplace transform of a two point frailty distribution with probabilities c1
c1+c2

at point
1 and c2

c1+c2
and point δ. Since the utility function is DARA, and ψ (∞) is finite, the copula

generated is SI. This is no surprise given that all shared frailty distributions constitute long term

dependence, as pointed out in Spreeuw (2006). Writing c = c1
c1+c2

, we obtain c (1− c)
³
d−1
d+1

´2
as the expression for Kendall’s tau, taking a minimum of zero for c = 0, c = 1 or d = 1.
Comonotonicity is obtained for c = 0.5 and d→∞.

6 Conclusion

A flexible family of Archimedean copulas has been presented that can cover a large range of de-
pendence, including countermonotonicity. In most examples, a strict generator is contained as a
special case. Given the general consensus in economic theory that utility functions should feature
Decreasing Absolute Risk Aversion, the connection between this property and the Stochastic
Increasing notion of the corresponding copula is particularly useful.

Most examples concentrate on strict generators, as this is a requirement for any notion of
positive dependence. In the future, we intend to study (3) in a more general sense, considering
negative dependence as well.

References

[1] Arrow, K.J. (1971). Essays in the Theory of Risk Bearing. Chicago: Markham Publishing.

[2] Avérous, J., and Dortet-Bernadet, J.-L. (2004). Dependence for Archimedean copulas and
aging properties of their generating functions. Sankhyā: The Indian Journal of Statistics,
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