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This article presents lower and upper bounds on the prices of basket options for a general class of
continuous-time financial models. The techniques we propose are applicable whenever the joint char-
acteristic function of the vector of log-returns is known. Moreover, the basket value is not required to
be positive. We test our new price approximations on different multivariate models, allowing for jumps
and stochastic volatility. Numerical examples are discussed and benchmarked against Monte Carlo sim-
ulations. All bounds are general and do not require any additional assumption on the characteristic
function, so our methods may be employed also to non-affine models. All bounds involve the computa-
tion of one-dimensional Fourier transforms, hence they do not suffer from the curse of dimensionality
and can be applied also to high dimensional problems where most existing methods fail. In particular we
study two kinds of price approximations: an accurate lower bound based on an approximating set and
a fast bounded approximation based on the arithmetic-geometric mean inequality. We also show how to
improve Monte Carlo accuracy by using one of our bounds as a control variate.

Keywords: Basket option, Option pricing, Fourier inversion, Control variate

JEL Classification: C63, G13

Basket options are popular derivative contracts which are becoming increasingly widespread in
many financial markets, for example equity, FX and commodity markets. Given a vector of weights
w = (w1, . . . , wn) ∈ Rn, the basket is defined as the weighted arithmetic average of the n stock
prices S1(t), . . . , Sn(t) at time T :

An (T ) =
n∑
k=1

wkSk (T ) .

We assume, without loss of generality, that
∑n

k=1wk = 1. A basket call option gives the holder
the right, but not the obligation, to purchase the portfolio of assets at a fixed price K, known
as the option’s strike price. We consider European-style options, where the buyer has the right to
exercise the option only at maturity T . Hence, the basket option payoff at time T is (An (T )−K)+.
Another important example is the spread option, where the payoff involves the difference of two
or more underlyings, see e.g. Carmona and Durrelman (2003) and Caldana and Fusai (2013). The
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time t no-arbitrage fair price of the basket option is

CK(t) = e−r(T−t)Et
[
(An (T )−K)+] , (1)

where the t-conditional expectation is computed with respect to a risk-neutral measure and r is a
constant riskless interest rate.

A basket option is similar to an Asian claim, where the payoff is determined by the average
underlying price over some predetermined period of time. In most contributions from the literature
on the valuation of such products the underlying asset prices are assumed to follow lognormal
processes. However, the celebrated Black and Scholes (1973) formula cannot be easily extended to
the basket option case, since the lognormal distribution is not closed under summation. Several
approaches have been proposed to solve the problem, including Monte Carlo simulations, tree-
based methods, partial differential equations, and analytical approximations. The last category is
the most appealing because most other methods are computationally expensive due to the large
dimension of the problem. In addition, it is not easy to extend such methods to a non-Gaussian
setting.

Under the assumption that the dynamics of the underlying follows a multivariate geometric Brow-
nian motion, several accurate analytical approximations are available. Curran (1994) introduces
the idea of a conditioning variable and conditional moment matching. In particular, he proposes
a method based on conditioning on the geometric mean. Assuming Λ is a random variable corre-
lated with An and satisfying An ≥ K, whenever Λ ≥ κ for some constant κ, the option price is
decomposed into two parts:

Et
[
(An (T )−K)+] = Et [(An (T )−K) I(Λ > κ)] + Et

[
(An (T )−K)+ I(Λ < κ)

]
,

where I(·) is the indicator function, taking unit value whenever the argument is true and zero
otherwise. By choosing Λ to be the geometric average, the first part can be calculated exactly.
The second part can be computed approximately by means of the conditional moment matching
method. A similar conditioning argument has been used by Rogers and Shi (1995), where lower
and upper bounds for Asian options are derived. Since the approach for Asian options can be easily
adapted to basket options and vice-versa, Thompson (1999) and Beisser (2001) extend to basket
options the idea of Rogers and Shi (1995) and examine the bound

Et
[
(An (T )−K)+] ≥ Et

[
(E [An (T ) |Λ]−K)+] . (2)

The approximation in formula (2) can be computed in closed-form in the lognormal framework.
It is a lower bound but it turns out to be very close to the true option value in many practical
situations. Rogers and Shi (1995) also give an upper bound to the true value, which was later
improved by Nielsen and Sandmann (2003) as

Et
[
(An (T )−K)+] ≤ Et

[
(E [An (T ) |Λ]−K)+]+1

2
Et [var(An (T ) |Λ)I(Λ < κ)]1/2 Et [I(Λ < κ)]1/2 .

Other bounds proposed in the literature exploit comonotonicity. In this case the central idea
consists in replacing the original basket by another one, with a simpler dependence structure. The
newly introduced basket involves the components of the comonotonic version of the original random
vector, see for example Dhaene et al. (2002b) and Dhaene et al. (2002a). Vyncke et al. (2004) pro-
pose a two-moment matching approximation with a convex combination of the comonotonic lower
and upper bounds for Asian options while Vanmaele et al. (2004) suggest a similar approximation
for basket options. Deelstra et al. (2004) develop a general framework for pricing basket and Asian
options via conditioning and derive lower and upper bounds based on comonotonic risks. The case
of Asian basket option is discussed in Deelstra et al. (2008). All mentioned bounds are derived in
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the lognormal framework.
Other authors tried to approximate the basket by using the so-called moment matching method.

The idea is to approximate An (T ) via Ân (T ), where Ân (T ) is a random variable with a suit-
able distribution, chosen to be “close” to the distribution of An (T ). For example, Gentle (1993)
approximates the arithmetic average in the basket payoff by a geometric average. The fact that
a geometric average of lognormal random variables is again lognormally distributed allows the
application of a Black–Scholes-type valuation formula for pricing the approximating payoff. Vorst
(1992) uses the arithmetic-geometric mean inequality to produce lower and upper bounds to the
option price and proposes an approximation lying between bounds. Levy (1992) approximates the
distribution of the basket by a lognormal distribution such that its first two moments coincide with
those of the original distribution of the weighted sum of the stock prices. Huynh (1993) applies the
Edgeworth expansion method to basket option valuation for Asian options. Milevsky and Posner
(1998a) use the reciprocal Gamma distribution as an approximation for the distribution of the bas-
ket. The motivation is the fact that the distribution of correlated lognormally distributed random
variables converges to a reciprocal Gamma distribution as the dimension of the basket increases,
under special assumptions about the covariance structure. Milevsky and Posner (1998b) use dis-
tributions from the Johnson (1949) family as state–price densities to match the higher moments
of the arithmetic mean distribution. Ju (2002) considers a Taylor expansion of the ratio of two
characteristic functions: the one of the arithmetic average and the one of an approximating lognor-
mal random variable. Such Taylor expansion is computed around zero volatility. Zhou and Wang
(2008) approximate the basket distribution by a log-extended-skew-Normal distribution. Further
extensions and applications are discussed by Lord (2006).

Many of the methods listed above have limited validity or scope. They may require a basket with
positive weights or they may not identify the sensitivities with respect to each basket component.
In this regard, Alexander and Venkatramanan (2012) derive a general analytic approximation for
pricing basket options expressing each option’s price as a sum of the prices of various compound
exchange options. They derive an analytic approximation for the price of the compound exchange
option, first under the assumption that the underlying assets of these options follow correlated
lognormal processes, and then under more general assumptions for the asset price processes. The
case of a basket where not all assets have positive weights (wk < 0 for some k) is discussed by
Borovkova et al. (2007), Li et al. (2010) and Deelstra et al. (2010) in a lognormal setting. Borovkova
et al. (2007) approximate the basket distribution by using a generalized family of lognormal dis-
tributions. Li et al. (2010) provide an extended Kirk approximation and a second-order boundary
approximation for pricing spread options on a basket. Deelstra et al. (2010) develop approxima-
tions formulae based on comonotonicity theory and moment matching methods for spread options,
basket spread options, and Asian basket spread options.

Few results are available in the non-Gaussian setting. Flamouris and Giamouridis (2007) propose
the use of a simplified jump process, namely, a Bernoulli jump process, and obtain approximate
basket option valuation formulas. Xu and Zheng (2009) show that a lower bound similar to that of
Rogers and Shi (1995) can also be calculated exactly in a special jump diffusion model with constant
volatility and two types of Poisson jumps. An asymptotic expansion with a variance approximation
and a lower bound to basket option values for local volatility jump diffusion models are studied by
Xu and Zheng (2010, 2014), respectively.

In practice, it is sometimes useful to have model free pricing methods. This part of the literature
considers the set of all models consistent with observed prices of vanilla options and recovers
distribution free upper and lower bounds to the basket option price. The seminal paper is Bertsimas
and Popescu (2002). Then, in a series of papers, Laurence and Wang (2004, 2005), Hobson et al.
(2005b,a) and D’Aspremont and El Ghaoui (2006) derived distribution free bounds in the case of
basket options with positive weights. Model free upper and lower bounds to the basket spread option
are investigated in Laurence and Wang (2008). Lower and upper bounds based on comonotonicity
theory are theoretically applicable to general dynamics, but research of such methods outside the
lognormal setting is still in its early stage.
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Another approach assumes the knowledge of the model characteristic function. In such a frame-
work, Hurd and Zhou (2010) propose a general pricing method for a two-dimensional spread option
and describe how to generalize it to a multidimensional payoff. Their pricing method is exact and
based on an explicit formula for the Fourier transform of the spread option payoff in terms of
the Gamma function. Lord et al. (2008) and Jackson et al. (2008) proposed a general fast Fourier
transform (FFT) pricing framework for multi-asset options. All these methods require some partic-
ular assumptions on the characteristic function specification, ruling out important models such as
mean-reverting models. The work of Jackson et al. (2008) has been later generalized by Jaimungal
and Surkov (2011) to a cross-commodity modeling framework, allowing pricing for mean-reverting
assets. The main drawback of all these methods is that they need an n-dimensional FFT to price
an n-dimensional basket option. To this end, Leentvaar and Oosterlee (2008) propose a parallel
partitioning approach to tackle the so-called curse of dimensionality when the number of underly-
ing assets becomes large. However, they did not provide results for baskets with dimension greater
than seven in their paper.

Readers interested in other basket option pricing methods, based on partial differential equations,
Monte Carlo simulations, binomial trees and lattice techniques, are referred to the list of references
given in Zhou and Wang (2008).

In conclusion, the existing literature on basket option approximation methods has three weak
points:

(i) Many methods have limited applicability because they require the positivity of the basket
weights, so they cannot deal with the basket spread option case.

(ii) Most studies are limited to the lognormal case. The study of general pricing methods is
still limited.

(iii) Analytical formulas are available in the non-Gaussian case but they involve an n-
dimensional FFT and, in practice, they are of little help for applications involving a large
number of assets.

This article presents lower and upper bounds for the basket option price, assuming very general
dynamics for the n underlyings. The only quantity we need to know explicitly is the joint char-
acteristic function of the log-returns of the assets. All bounds are general and do not require any
additional assumption on the characteristic function specification. In particular, we do not assume
that the characteristic function is exponential affine with respect to the initial state of the log asset
price vector. Our procedure allows the computation for a very large class of stochastic dynamics
like mean reverting and non-affine models. Moreover, the basket weights are not required to be
positive. Our bounds involve the computation of a univariate Fourier inversion, hence they do not
suffer from the curse of dimensionality. This makes our methodologies particularly appealing for
higher dimensional problems. To our knowledge, no other general method is successfully applicable
to the basket option pricing problem when the basket dimension is large. In general all existing
methods face unaffordable computational cost. The only feasible alternative to our approximations
is Monte Carlo simulation. However, by using one of our bounds as a control variate, we can also
significantly improve the accuracy of the Monte Carlo method itself. In particular we study two
kinds of price approximations: an accurate lower bound based on an approximating set, and a fast
bounded approximation based on the arithmetic-geometric mean inequality. We test the bounds
on different models, including non Gaussian ones. Numerical examples are discussed and bench-
marked against Monte Carlo simulations. The wide range of contexts in which basket option pricing
problems arise means that the relevance of our result falls also beyond exotic option valuation. For
example, the probability distribution of a basket is required in portfolio allocation problems as
well. For such problems, a weight optimization is often required, thus a fast procedure to compute
the portfolio distribution is needed.

The article is outlined as follows: Section 1 discusses an accurate lower bound based on an
approximating set. Section 2 put forward a fast bounded approximation obtained through the
arithmetic-geometric mean inequality. The geometric Brownian motion case is discussed in Section
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3 and some non-Gaussian models are shown in Section 4. Finally, Section 5 presents numerical
experiments.

1. An accurate lower bound through an approximating set

Lower bounds to spread and basket option price can be obtained by approximating the option
exercise region via an event set defined through a suitable random variable. Examples in the
lognormal framework are Rogers and Shi (1995), Thompson (1999), Carmona and Durrelman
(2003) and Bjerksund and Stensland (2014). Extensions to some jump diffusion models are given
in Xu and Zheng (2009, 2014). The contribution of this section is the original extension of this
popular category of lower bounds to a characteristic function framework. Caldana and Fusai (2013)
provide a similar extension, limiting their analysis to options written on the spread between two
assets.

Given the set A = {ω ∈ Ω : An (T ) > K}, the value of the basket option price is

CK(t) = e−r(T−t)Et
[
(An (T )−K)+] = e−r(T−t)Et [(An (T )−K) I(A)] . (3)

For any event set G ⊂ Ω

Et [(An (T )−K) I(G)] ≤ Et
[
(An (T )−K)+ I(G)

]
≤ Et

[
(An (T )−K)+] .

Applying the positive part and discounting, it follows that

CGK(t) = e−r(T−t)Et [(An (T )−K) I(G)]+ ≤ CK(t), (4)

Depending on the set G, the value of CGK(t) is a lower bound to the basket option price CK(t). We
define the set G using the geometric average Gn (T ) of the underlying prices,

Gn (T ) =

n∏
k=1

Sk (T )wk .

Being Yn (T ) = lnGn (T ), we set G = {ω : Yn (T ) > κ}. This choice, which is intuitive and
technically convenient, also turns out to be very accurate. We address the choice of the parameter
κ shortly. Let Xk (T ) be the log-return over the period [t, T ]:

Xk (T ) = ln

(
Sk (T )

Sk (t)

)
.

We assume that the risk-neutral joint characteristic function of the n stock returns is known:

ϕT (γ) = Et
[
ei
∑n
k=1 γkXk(T )

]
, (5)

5
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where γ = [γ1, γ2, ..., γn]. Simple algebra shows that

Yn (T ) =

n∑
k=1

wk lnSk (T )

=

n∑
k=1

wkXk (T ) +

n∑
k=1

wk lnSk (t)

=
n∑
k=1

wkXk (T ) + Yn (t) .

so the joint characteristic function of the log-returns and the log-geometric average is

ΦT (γ0,γ,w, Yn(t)) = Et
[
ei
∑n
k=1 γkXk(T )+iγ0Yn(T )

]
(6)

= Et
[
ei
∑n
k=1(γk+wkγ0)Xk(T )+iγ0Yn(t)

]
= eiγ0Yn(t)ϕT (γ + γ0w)

and γ + γ0w is the vector with components γk + γ0wk. In particular, the characteristic function of
the log-geometric average is given by ΦT (γ0,0,w, Yn(t)). Following Lee (2004), we denote by AX

the interior of the set {
ν ∈ Rn| Et

[
ei
∑n
k=1 νkXk(T )

]
<∞

}
.

The explicit computation of the lower bound in (4) is given in the following proposition.

Proposition 1.1 Let δ > 0 and assume that {ek, δw + ek} ∈ AX, ∀k = 1, · · · , n, for ek denoting
the k-th element of the canonical basis in Rn. A lower bound to the basket option price is given by
the following formula

CGK(t) = max
κ∈R

CGK(t,κ), (7)

where

CGK(t,κ) =

(
e−δκ−r(T−t)

1

π

∫ +∞

0
e−iγκΨT (γ; δ)dγ

)+

, (8)

ΨT (γ; δ) =
1

iγ + δ

[
n∑
k=1

wkSk (t) ΦT (γ − iδ,−iek,w, Yn(t))−KΦT (γ − iδ,0,w, Yn(t))

]
. (9)

Proof: See Appendix A.
Some remarks are in order about the above formula. First, the computation of the lower bound

requires an univariate Fourier transform inversion and an optimization with respect to the param-
eter κ. The damping factor exp(−δκ), for δ > 0, is introduced in (8) to ensure the existence of the
Fourier transform, as Carr and Madan (2000) do. However the numerical inversion is not restricted
to this approach and can be performed by using alternative representations, as in Lewis (2000) and
Lee (2004). In particular, by following Lee (2004), it is possible to write the lower bound for any
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δ ∈ R.
Second, if the characteristic function ΦT is explicitly known, then the Fourier transform of the

lower bound can be expressed in closed form as well in terms of the complex function ΨT . The
integral in (8) can be easily computed using standard numerical quadratures (e.g. NIntegrate in
Mathematica or quadgk in Matlab) or via an FFT algorithm.

The third remark is relative to the characteristic function. The only requirement we set on it is
its availability. In particular, we do not require the characteristic function to be exponential affine
with respect to the initial value of the state variables. In contrast to this, existing Fourier-based
methods for basket options are limited to affine models. In addition, no assumption on the sign of
basket weights is introduced in our case.

The fourth remark is about the optimal value of κ = κ∗. Figure 1 shows a typical shape for
CGK(t,κ), as a function of the parameter κ.

Our lower bound requires the maximization of CGK(t,κ). In practice, the optimization can be
accelerated by using a one-dimensional FFT to bound the optimization interval and to guess
the starting optimization value κstart. Therefore we adopt a two-step strategy which results in a
significant time saving:

Step 1 – Bounding the search domain We compute formula (8) via FFT and we obtain
CGK(t,κ) on an equally spaced grid {κ1, . . . ,κM}. Then we perform a grid search to find
κm such that

κm = arg maxκ∈{κ1,...,κM}C
G
K(t,κ),

i.e. an estimate of the lower bound on such a grid. Since CGK(t,κm) is the best approximation
we can get via FFT, we select κm as the starting point of the optimization routine in the
second step. Extensive numerical tests show that the target function is unimodal, so the
maximum of CGK(t,κ) should lie in the interval [κm−1,κm+1]. If the maximum is not unique
(i.e. it is achieved on two different points of the grid), we restrict the optimization to the
interval delimited by these two values and we use their average as starting point.

Step 2 – Constrained optimization We perform an optimization for the integral in (8) to all

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

8

Figure 1. Lower bound CGK(t,κ) as a function of the parameter κ for a mean reverting jump diffusion model. The
basket is composed by four assets. Parameter values are as in Table 4 and strike price K = 30.
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Figure 2. Optimization procedure for a mean reverting jump diffusion model. The basket is composed by four assets.
Parameter values are as in Table 4 and strike price K = 30. The blue line indicates the values CGK(t,κ) as a function
of the parameter κ. The red markers refer to values obtained via FFT. The black marker indicates the optimized
lower bound CGK = 7.5059. The search domain is restricted to the red segment. The true price estimated via Monte
Carlo simulation is 7.5768.

κ in the range [κm−1,κm+1]. We assume that the numerical quadrature is performed using
a grid with N integration points. Given the integration grid and a maturity T , we notice
that all evaluations of the function ΨT in (9) do not depend on the variable κ over which
the optimization is performed. Hence it is possible to evaluate and store all instances of
this function computed on the quadrature nodes and then use the stored values in the
optimization.

Figure 2 shows the two-step procedure with reference to a mean reverting jump diffusion model.
The lower bound can also be used for the computations of Greeks. The envelope theorem guaran-

tees that changes in the optimizer of the objective do not contribute to the change in the objective
function, see Takayama (1974) page 160. Therefore, assuming that interchange of differentiation
and integration is allowed, the first-order sensitivity of the basket option price to a change in the
spot price of a generic asset is given by

∂CGK(t,κ∗)
∂Sk

= I

(∫ +∞

0
e−iγκ∗

ΨT (γ; δ)dγ ≥ 0

)
e−δκ

∗−r(T−t) 1

π

∫ +∞

0
e−iγκ∗ ∂ΨT (γ; δ)

∂Sk
dγ,

Similar formula can be computed for other Greeks.
Finally, the main point concerning formula (7) is that the approximated option price is always

obtained through the optimization of a univariate Fourier inversion. The computational cost of the
method is O(n2N+M log(M)), and increases quadratically with the number of assets n composing
the basket. Therefore our technique does not suffer from the curse of dimensionality as it happens
for many other Fourier inversion methods proposed in the literature (Hurd and Zhou (2010), Lord
et al. (2008), Jackson et al. (2008) and Jaimungal and Surkov (2011)). These methods provide an
exact solution but, requiring a multivariate FFT, they have a cost that is of order O(nNn log(N)).
Due to their computational cost, they are not applicable to the basket option problem when the
basket dimension is high. Indeed, the largest dimension of the basket we found in the literature
seven and the result is obtained by means of a parallel partitioning approach, see Leentvaar and
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Oosterlee (2008).
Looking at the remaining literature, the model free bounds of Hobson et al. (2005b) and Laurence

and Wang (2008) are the only bounds so general to cover all the models and the basket sizes we
are interested in. Such model free bounds require one to compute prices of European call and put
on each underlying and solve an optimization problem. However numerical experiments, available
upon request, show that their performance in terms of computational speed and accuracy is very
poor with respect to the pricing problem under examination.

Our method guarantees faster approximations. Basket options can be easily priced also for high
dimensions, and a broader class of problems can be considered. Up to our knowledge, the only
feasible alternative to our approximations is Monte Carlo simulation. However, using the bound
CGK(t) as a control variate1, we can also improve the accuracy of a Monte Carlo method. Indeed,
we rewrite Eq. (1) as

CK(t) = CGK(t) + e−r(T−t)Et
[
(An (T )−K)+]− e−r(T−t)Et [(An (T )−K) I(G)]+ .

We calculate CGK(t) via formula (7) on the optimal approximating set G and we use Monte Carlo
simulation to compute the two expected values, which are highly correlated. In this way the simula-
tion error is considerably reduced. Our formula provides a ready-to-use control variate estimate that
allows us to improve the accuracy of Monte Carlo simulations. The accuracy of our lower bound as
well as our control variate are proved via extensive numerical tests on a battery of different models
in section 5.

2. A fast bounded approximation through the arithmetic-geometric mean
inequality

We discuss here new upper and lower bounds to the basket option price and we propose a price
approximation lying between such bounds, exploiting the so-called geometric-arithmetic mean in-
equality. This consists in a generalization of the Vorst (1992) approach to a characteristic function
framework, allowing the basket weights to be negative.

Denoting Jpos and Jneg the sets of the indices corresponding to the positive and negative weights
respectively, the basket can be rewritten as

An(T ) =
∑
k∈Jpos

wkSk(T )−
∑

k∈Jneg
|wk|Sk(T ) = cposAposn (T )− cnegAnegn (T ), (10)

where

Aposn (T ) =

∑
k∈Jpos wkSk(T )∑

k∈Jpos wk
, Anegn (T ) =

∑
k∈Jneg |wk|Sk(T )∑

k∈Jneg |wk|
, (11)

and

cpos =
∑
k∈Jpos

wk, cneg =
∑

k∈Jneg
|wk|. (12)

We define wpos the vector having as k-th component wposk = wk/
∑

k∈Jpos wk, when k ∈ Jpos and
0 when k ∈ Jneg. Similarly, we define wneg the vector having wnegk = |wk|/

∑
k∈Jneg |wk| in the kth

1See e.g. Glasserman (2003).
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position when k ∈ Jneg and 0 when k ∈ Jpos. We also define

Gposn (T ) =
∏

k∈Jpos
Sk(T )w

pos
k , Gnegn (T ) =

∏
k∈Jneg

Sk(T )w
neg
k ,

Y pos
n (T ) = lnGposn (T ) and Y neg

n (T ) = lnGnegn (T ).
Assuming K > 01, we can now provide upper and lower bounds to the basket option price. We

also obtain an approximation lying between such bounds, in this way generalizing Vorst (1992).

Proposition 2.1 A lower bound LAGK (t), an upper bound UAGK (t) and an approximation CAGK (t)
to the basket option value (1), such that LAGK (t) ≤ CAGK (t) ≈ CK(t) ≤ UAGK (t), are obtained as

LAGK (t) = e−r(T−t)Et[(cposGposn (T )− cnegGnegn (T )−K)+] +

cnege−r(T−t){Et[Gnegn (T )]− Et[Anegn (T )]}, (13)

UAGK (t) = e−r(T−t)Et[(cposGposn (T )− cnegGnegn (T )−K)+] +

cpose−r(T−t){Et[Aposn (T )]− Et[Gposn (T )]}, (14)

CAGK (t) = e−r(T−t)Et[(cposGposn (T )− cnegGnegn (T )−K∗)+], (15)

where

K∗ = K − Et[cposAposn (T )] + Et[cposGposn (T )] + Et[cnegAnegn (T )]− Et[cnegGnegn (T )]. (16)

Proof: See Appendix B.
In the spirit of Vorst (1992), approximation CAGK (t) replaces the random variable cposAposn (T )−

cnegAnegn (T ) −K with cposGposn (T ) − cnegGnegn (T ) −K∗ in the basket spread option payoff. Then
the strike price K∗ is corrected as in formula (16), so that the unbiasedness condition on the first
moment is guaranteed.

We observe that pricing formulae (13), (14) and (15) depend on the value of a call option written
on the difference between cposGposn (T ) and cnegGnegn (T ), that is

e−r(T−t)Et[(cposGposn (T )− cnegGnegn (T )−K)+].

Therefore, we need the pricing of a spread option, that can be easily performed via the
Hurd and Zhou (2010) method or through the approximation in Caldana and Fusai (2013),
that we recall in Appendix C. These methods require the joint characteristic function of
[ln(cposGposn (T )), ln(cnegGnegn (T ))]ᵀ, that we state here for the sake of completeness:

Et[eln(iγ1cposGposn (T ))+iγ2 ln(cnegGnegn (T ))] = eiγ1 ln(cposGposn (t))+iγ2 ln(cnegGnegn (t))ϕT (γ1w
pos + γ2w

neg).

When the basket is strictly positive, Gn(T ) = Gposn (T ) and cpos = 1 by assumptions. We have
then the following corollary:

Corollary 2.2 When the basket is strictly positive, a lower bound LAGK (t), an upper bound
UAGK (t) and an approximation CAGK (t) for the basket option value (1), such that LAGK (t) ≤ CAGK (t) ≈

1The strike price K ≤ 0 leads to Et[(An(T )−K)+] = Et[(An(T )]−K for a positive basket.

10
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CK(t) ≤ UAGK (t), are obtained as

LAGK (t) = e−r(T−t)Et[(Gn(T )−K)+], (17)

UAGK (t) = e−r(T−t)Et[(Gn(T )−K)+] + e−r(T−t){Et[An(T )]− Et[Gn(T )]}, (18)

CAGK (t) = e−r(T−t)Et[(Gn(T )−K∗)+], (19)

where

K∗ = K − Et[An(T )] + Et[Gn(T )]. (20)

Proof: We consider Proposition (2.1) with Gposn (T ) = Gn(T ), cpos = 1 and cneg = 0.
When weights are positive, pricing formulae (17),(18) and (19) require the pricing of a call option

written on Gn(T ), rather than pricing a spread option. The call price is easily computed via Fourier
inversion as

e−r(T−t)Et[(Gn(T )−K)+] =
e−δ lnK−r(T−t)

π

∫ ∞
0

e−iγ lnKΨG
T (γ; δ)dγ, (21)

where the characteristic functions ΨG
T of lnGn(T ) is

ΨG
T (γ; δ) =

ΦT (γ − i(δ + 1),0,w, Yn(t))

δ2 + δ − γ2 + iγ(2δ + 1)
, (22)

and the parameter δ tunes the damping factor.
Lower and upper bounds LAGK (t) and UAGK (t) in formulae (13), (14), (17) and (18) provide an

interval for the approximation error of CAGK (t). Depending on the expected differences between the
arithmetic and the geometric average, such an interval may be small or wide.

The main advantage of pricing based on the arithmetic-geometric mean inequality is its compu-
tational speed. In the positive basket case, the computation of the bounded approximation requires
one-dimensional integrations. The basket spread option case requires two-dimensional FFTs using
the Hurd and Zhou (2010) method, or one-dimensional integrations using the approximation in
Caldana and Fusai (2013). The computation of LAGK (t), CAGK (t) and UAGK (t) is very fast, regardless
of the basket dimension. Its computational cost is linearly increasing in the number of assets, rather
than quadratically as for the lower bound of section 1.

Proposition 2.1 and Corollary 2.2 provide very general bounded approximations, that can be
computed when the model characteristic function is known. Numerical experiments in Section 5
show that the approximation CAGK (t), based on the arithmetic-geometric mean inequality, is in
general less accurate than the lower bound CK(t) discussed in Section 1. However the former is
much faster than the latter and computing LAGK (t), CAGK (t) and UAGK (t) may be very useful in all
applications involving a large number of underlyings.

3. The geometric Brownian motion case

This section discusses in greater detail the geometric Brownian motion case and the explicit com-
putation of the previously introduced price approximations.

We consider a multivariate Black–Scholes model. The dynamics are given by

dS(t) = Diag(S(t))
(

(r1− q)dt+
√

ΣdW(t)
)
, (23)

11
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where r is the risk-free rate, q is the vector of dividend yields for each asset, 1 is a vector whose
entries are all equal to one, Σ is the covariance matrix, and W is an n-dimensional Brownian motion.
The risk-neutral joint characteristic function of the n stock returns in the geometric Brownian
motion case is

ϕT (γ) = eiγᵀm(T−t)− 1

2
γᵀΣγ(T−t), (24)

where

m = r1− q− 1

2
V ec(Σkk) (25)

and V ec(·) is the vectorization operator. From (6), the joint characteristic function of the log-
returns and the log-geometric average is

ΦT (γ0,γ,w, Yn(t)) = eiγ0Yn(t)+i(γᵀ+γ0wᵀ)m(T−t)− 1

2
(γᵀ+γ0wᵀ)Σ(γ+γ0w)(T−t). (26)

Expression (26) can be used to compute the proposed lower and upper bounds; however, in
the geometric Brownian motion setting, all formulas can be explicitly computed, see details in
Appendix D. The lower bound CGK(t) given in formula (8) becomes

CGK(t) = max
κ

e−r(T−t)

(
n∑
k=1

wkSk(t)e
(r−qk)(T−t)N (ak

√
T − t− d)−KN (−d)

)+

(27)

where

d =
κ −wᵀ (ln(S(t)) + m(T − t))

σ∗
√
T − t

, ak =

∑n
j=1wjΣkj

σ∗
, σ∗ =

√
wᵀΣw

and we indicate with N (·) the standard Normal distribution function. The following value for κ is
a good starting point to implement the maximization in (27)

κstart = σ∗
K −

∑n
k=1wkSk(t)e

(r−qk)(T−t)∑n
k=1wkakSk(t)e

(r−qk)(T−t) +
n∑
k=1

wk

(
lnSk(t) +

(
r − qk −

Σkk

2

)
(T − t)

)
.

The expectations Et[An(T )] and Et[Gn(T )] are

Et[An(T )] =
n∑
k=1

wkSk(t)e
(r−qk)(T−t) and Et[Gn(T )] = G(t)e

(
wᵀm+σ∗2

2

)
(T−t)

.

In the positive basket case, call option values involved in bounds through the arithmetic-geometric
mean inequality can be obtained using a Black–Scholes formula. Indeed, each asset price Sk(T )
is lognormally distributed. Since G(T ) is a product of lognormally distributed variables, it is also
lognormally distributed

G(T ) ∼ LN (ln(G(t)) + wᵀm(T − t), σ∗2(T − t))

and clearly also eXk(T ) is lognormally distributed

eXk(T ) ∼ LN (mk(T − t),Σkk(T − t)).

12
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Then, given a lognormal distributed random variable Z ∼ LN (µ̂, σ̂2),

E[(Z −K)+] = eµ̂+σ̂2/2N
(
µ̂− ln(K) + σ̂2

σ̂

)
−KN

(
µ̂− ln(K)

σ̂

)
.

Trivial modifications occur to compute the bounded approximation for basket spread options, see
Caldana and Fusai (2013).

4. Non-Gaussian price models

This section presents several price models on which we analyze the performance of our novel bounds.
For each model, we give a brief description and we provide the risk-neutral joint characteristic
function of asset log-returns ϕT (γ). The joint characteristic function of the log-returns and the
log-geometric average ΦT (γ0,γ,w, Yn(t)) used in the bounds computation is then immediately
obtained via formula (6).

4.1. A jump diffusion stock price model

Let us consider a generalization to an n-dimensional case of the two-dimensional jump diffusion
process with asymmetric Laplace distributed jump size discussed in Huang and Kou (2006), with
reference to the pricing of two dimensional barrier options in equity markets.

The components of the stock price vector, for k = 1, . . . , n, have the form

Sk(t) = Sk(0) exp

[(
r−qk−

σ2
k

2
−λκk−λkκZk

)
t+σkWk(t)+

Nk(t)∑
mZ=1

Zk(mZ)+

N(t)∑
mY =1

Yk(mY )

]
, (28)

where σk > 0, for k = 1, . . . , n, and Wk,Wj are risk-neutral Brownian motions with instantaneous

correlation ρkj , |ρ| < 1, for k, j = 1, . . . , n. In addition,
∑Nk(t)

mZ=1 Zk(mZ), for k = 1, . . . , n, are n uni-
variate compound Poisson processes driven by the Poisson processes Nk with intensity rate λk. This
jump component is unique to each stock and describes the idiosyncratic shocks for that particular
asset only. The idiosyncratic jump sizes Zk are independently and identically distributed according
to an asymmetric Laplace distribution AL(αkk, ξ

2
kk). The model also allows for macroeconomic

shocks described by

N(t)∑
mY =1

Y(mY ) =

 N(t)∑
mY =1

Y1(mY ), . . . ,

N(t)∑
mY =1

Yn(mY )

ᵀ

,

which is a n-dimensional compound Poisson process with intensity rate λ. Under the risk-neutral
measure Q the jump sizes Y are assumed to be independently and identically distributed according
to a multivariate asymmetric Laplace distributionMAL(α,ΣY ), where α = (α1, . . . , αn)ᵀ and ΣY

is an n× n matrix whose elements are defined as

(ΣY)k,j = ξkξjρ
Y
kj , k, j = 1, . . . , n.

Finally, the quantities κk and κZk , k = 1, . . . , n, in (28) are, respectively,

κk =

∫
R2

[eyk − 1]mQ(dy) =

∫
R
[eyk − 1]mQ(dyk) =

1

1− αk − ξ2
k/2
− 1,

13
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κZk =

∫
R
[ezk − 1]mQ(dzk) =

1

1− αkk − ξ2
kk/2

− 1.

Proposition 4.1 The joint characteristic function of the log-returns for the asymmetric Laplace
jump diffusion model is

ϕT (γ) = exp
[
(T − t)

(
iγᵀη − 1

2γ
ᵀΣγ + λ

1−iγᵀα+γᵀΣYγ/2 − λ+∑n
k=1

(
λk

1−iγkαkk+γ2
kξ

2
kk/2
− λk

))]
, (29)

where (Σ)k,j = σkσjρk,j and ηk := r − qk − σ2
k/2− λκk − λkκZk , k = 1, . . . , n.

Proof: Straightforward generalization of Huang and Kou (2006) to the n-dimensional case.

4.2. Mean-reverting jump diffusion model

The third model is a mean-reverting jump diffusion that generalizes the model proposed by Hambly
et al. (2009) to describe the electricity spot price in energy markets. For k = 1, . . . , n, the spot
price process Sk(t) is defined as the exponential of the sum of three components: a deterministic
function fk(t), a Gaussian Ornstein–Uhlenbeck process Xk(t), and a mean-reverting process with
a jump component Yk(t):

Sk(t) = exp (fk(t) +Xk(t) + Yk(t)) ,
dXk = −αkXk(t)dt+ σkdWk,
dYk = −αkYk(t−)dt+ J+

k dN
+
k − J

−
k dN

−
k .

The parameter σk is strictly positive and Wk is a risk-neutral Brownian motion. We assume a
speed of mean reversion αk > 0 for both the diffusion process Xk(t) and the jump process Yk(t).
The Brownian motions Wk and Wj have instantaneous correlation ρkj , |ρkj | < 1 for k 6= j and
equal to 1 for k = j. We denote with N+

k and N−k Poisson processes with intensity λ+
k and λ−k ,

respectively, and describe the positive and negative jump arrivals separately. The terms J+
k and

J−k are independent identically distributed random variables representing the jump size and we
assume they are exponentially distributed with parameters 0 < µ+

k < 1 and µ−k > 0, respectively.
We denote with η(T ) the vector having elements

ηk(T ) = (Xk(t) + Yk(t))(e
−αk(T−t) − 1) + fk(T )− fk(t)

and Σ(T ) the matrix having elements

Σkj(T ) = ρkj
σkσj

αk + αj

(
1− e−(αk+αj)(T−t)

)
.

Assuming independence between the jump processes we get the following result:

Proposition 4.2 The joint characteristic function of the log-returns for the mean reverting jump

14
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diffusion model is

ϕT (γ) = exp

[
iγᵀη(T )− 1

2
γᵀΣ(T )γ +

n∑
k=1

λ+
k

αk
ln

(
1− iµ+

k γke
−αk(T−t)

1− iµ+
k γk

)
+

n∑
k=1

λ−k
αk

ln

(
1 + iµ−k γke

−αk(T−t)

1 + iµ−k γk

)]

Proof: Generalization of Hambly et al. (2009) to the n-dimensional case.

4.3. FX stochastic volatility model

To provide a coherent framework for the evaluation of FX basket options, we consider the model
by De Col et al. (2013). The idea is to introduce a foreign exchange market featuring n currencies.
De Col et al. (2013) start by considering the value of each of these currencies in units of an artificial
currency that can be viewed as a universal numéraire. The model is initially introduced under the
risk neutral measure defined by the artificial currency. In this setting, S0,i(t) denotes the value
at time t of one unit of the currency i in terms of the artificial currency. Each artificial exchange
rate S0,i is modeled via a multi-variate stochastic volatility model with d independent square-
root components, V(t) ∈ Rd. According to De Col et al. (2013), the dimension d can be chosen
according to the specific problem. A further assumption is that the stochastic volatility components
are common between the different S0,i. Formally, we write

dS0,i(t)

S0,i(t)
= (r0 − ri)dt− (ai)>

√
Diag(V(t))dZ(t), i = 1, . . . , n; (30)

dVk(t) = κk(θk − Vk(t))dt+ ξk
√
Vk(t)dWk(t), k = 1, . . . , d; (31)

where κk, θk, ξk ∈ R are parameters in a square root dynamics.
√

Diag(V) denotes the diagonal
matrix with the square root of the elements of the vector V in the main diagonal. In each monetary
area i, the money-market account, based on the deterministic risk free rate ri, satisfies the following
ODE

dBi(t) = riBi(t)dt, i = 1, . . . , n.

Finally, De Col et al. (2013) assume an orthogonal correlation structure between the stochastic
drivers

d〈Zk,Wh〉(t) = ρkδkhdt, k, h = 1, . . . , d, (32)

together with d〈Zk, Zh〉(t) = δkhdt and d〈Wk,Wh〉(t) = δkhdt.
The philosophy behind this approach is that each exchange rate is driven by several independent

noises Zk (k = 1, .., d), each with an independent stochastic variance factor Vk, to which Zk is
partially correlated via ρk. The vectors ai (i = 1, . . . , n) describe how much each of the different
volatilities contributes to the dynamics of S0,i.

Following De Col et al. (2013), we now turn our attention to the exchange rate Si,j between two
different currencies, say i and j. We set by definition Si,j = S0,j/S0,i.

The resulting dynamics of Si,j =
(
Si,j(t)

)
t≥0

under the Qi risk neutral measure is shown to be
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equal to

dSi,j(t) = Si,j(t)
(

(ri − rj)dt+ (ai − aj)>
√

Diag(V(t))dZQi(t)
)
. (33)

The valuation of vanilla FX options can be performed using standard Fourier based techniques,
see De Col et al. (2013). In the sequel, we provide the characteristic function of the log-returns in
order to approximate FX basket options.

Proposition 4.3 The joint characteristic function of the log-returns in the model of De Col et al.
(2013) is given by

ϕT (γ) = eA(τ)+
∑d
k=1Bk(τ)Vk(t), (34)

where, for τ = T − t we have

A(τ) =
n∑

j=1,j 6=i

(
ri − rj

)
iγjτ +

d∑
k=1

κkθk
ξ2
k

[
(Qk − dk) τ − 2 log

1− cke−dkτ

1− ck

]
,

Bk(τ) =
Qk − dk
ξ2
k

1− e−dkτ

1− cke−dkτ
,

dk =
√
Q2
k − 4RkPk,

ck =
Qk − dk
Qk + dk

,

Pk =
1

2

n∑
j,l=1,j,l 6=i

iγj iγl
(
aik − a

j
k

)(
aik − alk

)
− 1

2

n∑
j=1,j 6=i

(
aik − a

j
k

)2
iγj ,

Qk = κk −
n∑

j=1,j 6=i
iγjBk(τ)

(
aik − a

j
k

)
ρkξk,

Rk =
1

2
ξ2
k.

Proof. See De Col et al. (2013).

4.4. The WASC model

The Wishart Affine Stochastic Correlation (WASC) model, introduced by Da Fonseca et al. (2007),
is a model which is applicable to different asset classes whenever a realistic and analytically tractable
description of instantaneous correlations among state variables is required see e.g. Escobar et al.
(2012). It describes an n-dimensional vector of assets (S1(t), . . . , Sn(t))> , t ≥ 0 according to the
following dynamics:

dS(t) = Diag (S(t))
(
r1dt+

√
Σ(t)dZ(t)

)
, (35)

16



November 20, 2014 Quantitative Finance basket˙option˙qf

where Z(t) ∈ Rn is a vector Brownian motion and the returns’ covariance matrix Σ(t) evolves
according to the following matrix SDE:

dΣ(t) =
(
αQ>Q+MΣ(t) + Σ(t)M>

)
dt+

√
Σ(t)dW (t)Q+Q>dW (t)>

√
Σ(t), (36)

Σ(0) ∈ S+
n , (37)

where S+
n denotes the cones of positive semidefinite matrices endowed with the scalar product

given by the trace operator applied to the matrix product. In the dynamics above, M,Q ∈ GL(n)
and we assume that M has negative eigenvalues, so as to ensure the stationarity of the process.
Furthermore, we assume α ≥ n− 1, see Cuchiero et al. (2011).

The asymmetric correlation effects are modeled by introducing the following correlation structure
among Brownian motions:

dZ(t) =
√

1− ρ>ρdB(t) + dW (t)ρ (38)

where ρ ∈ Rn, with ρ ∈ [−1, 1]n and ρ>ρ ≤ 1. The model belongs to the class of multidimensional
stochastic volatility models. In the following, we follow the approach of Grasselli and Tebaldi (2008)
and Da Fonseca et al. (2007) and report their result on the joint Fourier transform of assets’ returns,
that we adapt to our setting.

Proposition 4.4 Let τ := T − t. Given a real vector γ ∈ Rn, the characteristic function of the
WASC model is given by

ϕT (γ) = exp {A(τ) + Tr [B(τ)Σ(t)]}

where

B(τ) = B22(τ)−1B21(τ),

(
B11(τ) B12(τ)
B21(τ) B22(τ)

)
= exp τ

(
M + iQ>ρ

(
γ>
)

−2Q>Q

Λ −
(
M + iQ>ρ

(
γ>
))>) ,

Λ = −1

2

(γ)
(
γ>
)

+ i
n∑
j=1

(γ)j ejj

 ,

A(τ) = −α
2

[
log(B22(τ)) + τ

(
M + iQ>ρ

(
γ>
))>]

+ iγ>1rτ,

where ejj denotes a matrix with a unique non zero entry along the main diagonal equal to one on
the position jj.

Proof. See Da Fonseca et al. (2007).

5. Numerical results

This section discusses numerical results with reference to the models we introduced in the previous
section. Numerical experiments were coded and implemented in Matlab version 7.14.0 on an Intel
Core i5 2.40 GHz machine running under Mac OS X with 4 GB physical memory. We compute the
fair value of basket option contracts, spanning different strike prices, for the geometric Brownian
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motion case and for each non-Gaussian model presented in Section 4. Numerical results are reported
in Tables (2–11). Results for the positive basket case are given in Tables (2–6). Results for the basket
spread option are in Tables (7–11).

At first we have to select a benchmark. To this aim we consider Monte Carlo simulation, using
the lower bound CGK(t) as a control variate, as described in Section 1. In this way the simulation
error is considerably reduced. The Monte Carlo simulation for the geometric Brownian motion
has been implemented by sampling from the lognormal distribution. For the jump diffusion model
we sample from the Gaussian noise and the jump components. The other three models have been
simulated through the Euler-Maruyama discretization scheme. The number of simulations is chosen
depending on the model, as indicated in each table caption. Columns labeled with C.I. length give
the length of the 95% mean-centered Monte Carlo confidence interval.

Table 1 compares the control variate (MC) and the crude (MCcr) Monte Carlo for each model.
Model parameters are set as in Tables 2–6 and the option strike price K is chosen to be close to at
the money. The confidence interval length of each Monte Carlo simulation is also provided. Using
the lower bound CGK(t) as a control variate in the simulation, the standard error and therefore
the confidence interval of the crude Monte Carlo estimate are significantly reduced. For example
the length of the confidence interval in the geometric Brownian motion model is reduced from
8.2416 × 10−2 to 3.3707 × 10−3. A substantial reduction is also obtained for all other models.
For example in the FX stochastic volatility model the confidence interval length is reduced from
1.2348× 10−1 to 8.8989× 10−4.

The bounds for the geometric Brownian motion in Table 2 and 7 are computed by exploiting the
explicit formulas of section 3. For non-Gaussian models, integrals involved in all lower and upper
bound computations are evaluated by means of a Gauss–Kronrod quadrature rule, using Matlab’s
built-in function quadgk. The optimization involved in the computation of CGK(t) is performed via
the Matlab function fminunc for the geometric Brownian motion and using fminbnd in remaining
cases. Spread options in formulae (13), (14) and (15) have been evaluated using formula (C2) in
Appendix C. For all computations involving a Fourier inversion, we used a damping parameter
δ = 0.75. The bottom line of each table shows the average CPU time of a single option price
evaluation. The quantity is measured in seconds and depends on the model and the pricing method.

The best performances in terms of accuracy are generally obtained by the lower bound CGK(t),
that outperforms the approximation CAGK (t) in most cases. The accuracy of the approximations
depends on the basket distribution and is affected by the basket size and the presence of negative
weights. In particular, the lower bound CGK(t) is usually more accurate when the basket is small and
weights are positive. Indeed, when the basket weights are strictly positive (Tables 2–6), the bound
based on the approximating set argument CGK(t) always outperforms the arithmetic-geometric mean
inequality approximation CAGK (t). In the basket spread case (Tables 7–11), i.e. when weights can

assume negative values, the lower bound CGK(t) still provides good results but it is sometimes
outperformed by the bounded approximation CAGK (t). In particular, CAGK (t) performs better than

CGK(t) for out of the money options in Tables 7 and 6 and for in the money options in Table 8.
In the pure spread option case in Table 10, the bounded approximation becomes exact and it is
always more accurate than CGK(t).

Depending on expected differences between the arithmetic and the geometric average, the interval
between lower and upper bounds [UAGK (t)−LAGK (t)] can be very small or very wide. For example, it
is null in the spread option case of Table 10, providing an exact result. It is very large and practically
useless for basket spread options in table 8. In general, the true price is closer to UAGK (t) when the
option is in the money, while it is closer to LAGK (t) when the option is out of the money.

We consider now the GBM model and we compare Table 2 with the results obtained for different
approximation methods in Krekel et al. (2004) (see tables reported in that paper). Using the same
parameter setting, the lower bound CGK(t) is as accurate as the best methods for a positive basket
(Beisser (2001) and Ju (2002)). Concerning the basket spread option case, we compare Table 7
with the results obtained for different approximation methods in Deelstra et al. (2010) (see tables
reported in that paper). On the same parameter setting, the lower bound CGK(t) is less accurate
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than the best methods they considered for a basket spread option (Borovkova et al. (2007) and
Deelstra et al. (2010)).

The MRJD model, presented in Tables (4) and (6), is a nice example of the generality of our
bounds. Other methods such as Hurd and Zhou (2010), Lord et al. (2008) and Jackson et al.
(2008) cannot cope with this model, because they require assumptions on the model characteristic
function that rule out mean reverting models.

As an example of application, we tested two models calibrated to current market data. Results
in Tables (5) and (10) refer to the stochastic volatility model for currencies of Section 4.3. We take
the parameters from Table 1 in De Col et al. (2013), which features the result of a calibration
performed on market data as of July 23rd 2010. Taking the perspective of a Japanese investor who
seeks protections against fluctuations of both EUR-JPY and USD-JPY, we evaluate the payoff(

w1S
USD,JPY (T ) + w2S

EUR,JPY (T )−K
)+
.

Results in Table (6) refers to a two-asset basket option on FTSE and Eurostoxx 50 modeled with
the WASC process of Section 4.4. The parameters refer to a calibration performed on August 20th

2008, as in Da Fonseca and Grasselli (2011).
The computational cost of our price approximation methods varies depending on the performed

tests. Computations are extremely fast for the GBM, where no numerical integration is required
and in addition we are able to choose a good starting point for the optimization problem. As
the complexity of the model characteristic function increases, the computational cost increases
as well. In Tables 3 and 8 we tested our methods by considering large baskets consisting of ten
and twenty assets. The price approximation is always obtained at a reasonable time cost. Both
methodologies involve the computation of one dimensional integrals, and hence they do not suffer
from the curse of dimensionality, as opposed to the approach of Hurd and Zhou (2010), Lord
et al. (2008), Jackson et al. (2008) and Jaimungal and Surkov (2011). All these latter require an
n-dimensional quadrature, and cannot be used in the practice when the basket dimension is high.

Table 12 investigates the relation between CPU time and basket size, as we increase the number
of assets up to 100. We select a basket with positive weights under the jump diffusion model
of Section 4.1. We consider the two price approximations CGK(t) and CAGK (t) for an increasing

basket size n. Column CPUG provides the CPU time for the lower bound in formula (7). CPU
times for the approximation based on the arithmetic-geometric mean inequality of formula (19)
are given in column CPUAG. The computation of the approximation CAGK (t) is much faster than

the lower bound CGK(t) because its complexity is linear in the basket dimension and it does not
require any optimization. This approximation can be very useful for pricing basket options written
on an high number of underlying assets, in particular when the model characteristic function
valuation is computationally expensive. On the other hand, the lower bound CGK(t) is generally
more accurate and it is also reasonably fast because its CPU time grows quadratically in the
basket dimension. In our experiments, the price for a basket on 100 underlyings is computed in
only 15.53 seconds. Considering basket spread options does not change the above considerations.
Monte Carlo simulation in such a case turns out to be very slow and, given the same time budget
of competing procedures, quite inaccurate. Numerical results are plotted in Figure 3.

Finally, Figure 4 shows that our approximate methods can be used to compute option Greeks.
We consider the computation of Deltas for a basket spread option with strike price K = 100 and
model parameters as in Table 11. We compare our approximate sensitivities with those computed
via Monte Carlo simulation and a finite difference scheme. Both approximate methods provide
accurate estimates of the Delta. With respect to the Monte Carlo benchmark, the relative error is
smaller than 2%.
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6. Conclusions

Most methodologies in the basket option pricing literature are either restricted to a simple lognor-
mal setting or to a model-dependent framework. In this paper we introduced novel methods which
allow for a fast and reliable approximation of basket options, via lower and upper bounds. Such
bounds rely on a rather weak assumption, i.e. the characteristic function of the vector of log-prices is
known. This assumption is very general as most models which are commonly found in the literature
allow for an explicit expression of this quantity either by means of the Lévy-Khintchine formula
for Lévy processes or systems of (generalized) Riccati equations for affine processes. However, our
approach is not restricted to those classes of models, provided the multivariate characteristic func-
tion is known. We study the case of strictly positive basket weights as well as the negative one,
i.e. the so-called basket spread option. We test our methodologies on different models: a Gaussian
model, a jump diffusion model, a mean reverting jump diffusion model, a multi-factor stochastic
volatility model with common factors among the underlyings and finally a stochastic correlation
model. In particular we study two kinds of price approximations: an accurate lower bound based
on an approximating set and a fast bounded approximation based on the arithmetic-geometric
mean inequality. Both approximations are particularly appealing for higher dimensional problems,
versus most existing methods in the literature that cannot be applied when the basket dimension is
large, due to the significant computational cost. Moreover, by using one of our bounds as a control
variate, we can largely improve the accuracy of the Monte Carlo estimate.

We believe that our solutions opens up the possibility of performing further investigations, for
example in the study of the relationship between the implied volatility of a basket and its con-
stituents, such as the S&P 500 index, and in portfolio selection applications.
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Appendix A: Proof of Proposition 1.1

We denote by f (Xk, Yn) the joint bivariate probability density of Xk(T ) and the log-geometric
average Yn(T ). We consider the lower bound to the basket option payoff in T , as in formula (4):

Et [(An(T )−K) I(G)] ,

where G = {ω : Yn (T ) > κ}. We introduce the damping factor exp(δκ) according to Carr and
Madan (2000) and compute the Fourier transform with respect to κ. We obtain

ΨT (γ; δ) =

∫
R
eiγκ+δκEt [(An(T )−K) I(G)] dκ

=

∫
R
eiγκ+δκ

[
Et

[(
n∑
k=1

wkSk(T )−K

)
I(G)

]]
dκ

=

∫
R
eiγκ+δκ

[
n∑
k=1

wkEt [Sk(T )I(G)]

]
dκ −

∫
R
eiγκ+δκEt [KI(G)] dκ

= Ψ1
T (γ; δ)−Ψ2

T (γ; δ).
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So the first part becomes:

Ψ1
T (γ; δ) =

∫
R
eiγκ+δκ

[
n∑
k=1

wkEt [Sk(T )I(G)]

]
dκ

=

∫
R
eiγκ+δκ

[
n∑
k=1

wk

∫
R

∫ +∞

κ
Sk (t) eXk(T )f (Xk, Yn) dXkdYn

]
dκ

=

n∑
k=1

wk

∫
R

∫
R

[∫ Yn

−∞
eiγκ+δκdκ

]
Sk (t) eXk(T )f (Xk, Yn) dXkdYn

=
1

iγ + δ

n∑
k=1

wk

∫
R

∫
R
ei(γ−iδ)Yn(T )Sk (t) eXk(T )f (Xk, Yn) dXkdYn

=
1

iγ + δ

n∑
k=1

wkSk (t)Et
[
ei(γ−iδ)Yn(T )+Xk(T )

]

=
1

iγ + δ

n∑
k=1

wkSk (t) ΦT (γ − iδ,−iek,w, Yn(t)) .

The second part becomes:

Ψ2
T (γ; δ) =

∫
R
eiγκ+δκEt [KI(G)] dκ

=

∫
R
eiγκ+δκ

[∫
R

∫ +∞

κ
Kf (Xk, Yn) dXkdYn

]
dκ

=

∫
R

∫
R

[∫ Yn

−∞
eiγκ+δκdκ

]
Kf (Xk, Yn) dXkdYn

=
1

iγ + δ

∫
R

∫
R
ei(γ−iδ)Yn(T )Kf (Xk, Yn) dXkdYn

=
1

iγ + δ
KEt

[
ei(γ−iδ)Yn(T )

]
=

1

iγ + δ
KΦT (γ − iδ,0,w, Yn(t)) .

Remembering the damping factor, we read the Fourier inversion as

e−δκ

π

∫ +∞

0
e−iγκΨ(γ; δ)dγ.

Formula (8) is obtained by discounting, taking the positive part and maximizing with respect to
κ. The moment condition {ek, δw + ek} ∈ AX, ∀k = 1, · · · , n, can be easily deduced from (Lee
2004, Theorem 5.1)
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Appendix B: Proof of Proposition 2.1

Due to the arithmetic-geometric mean inequality, Aposn (T ) ≥ Gposn (T ), and Anegn (T ) ≥ Gnegn (T ).
Through the put-call parity we have

(cposAposn (T )− cnegAnegn (T )−K)+ ≥ (cposGposn (T )− cnegAnegn (T )−K)+ =

(cnegAnegn (T ) +K − cposGposn (T ))+ + cposGposn (T )− cnegAnegn (T )−K ≥

(cnegGnegn (T ) +K − cposGposn (T ))+ + cposGposn (T )− cnegAnegn (T )−K =

(cposGposn (T )− cnegGnegn (T )−K)+ + cnegGnegn (T )− cnegAnegn (T ),

and

(cposAposn (T )− cnegAnegn (T )−K)+ ≤ (cposAposn (T )− cnegGnegn (T )−K)+ =

(cnegGnegn (T ) +K − cposAposn (T ))+ + cposAposn (T )− cnegGnegn (T )−K ≤

(cnegGnegn (T ) +K − cposGposn (T ))+ + cposAposn (T )− cnegGnegn (T )−K =

(cposGposn (T )− cnegGnegn (T )−K)+ + cposAposn (T )− cposGposn (T ).

The proof ends taking the expectation of above inequalities and discounting.

Appendix C: Spread option approximation

We recall here the spread option pricing formula proposed in Caldana and Fusai (2013). Let S1(t)
and S2(t) be two stock price processes. The time 0 no-arbitrage fair price of a spread option is

SpreadK(0) = e−rTE
[
(S1(T )− S2(T )−K)+

]
, (C1)

Let u = (u1, u2)ᵀ ∈ R2 and X(t) = (lnS1(t), lnS2(t))ᵀ and consider the joint characteristic
function

ΦT (u) = ΦT (u1, u2) = E
[
eiu1 lnS1(T )+iu2 lnS2(T )

]
= E

[
eiu

ᵀX(T )
]
.

Proposition C.1 The approximate spread option value Ck,αK (0) is given in terms of a Fourier
inversion formula as

Spreadk,αK (0) =

(
e−δk−rT

π

∫ +∞

0
e−iγkΨT (γ; δ, α)dγ

)+

, (C2)

where

ΨT (γ; δ, α) =
ei(γ−iδ) ln(ΦT (0,−iα))

i(γ − iδ)
[ΦT ((γ − iδ)− i,−α(γ − iδ))−

ΦT (γ − iδ,−α(γ − iδ)− i)−KΦT (γ − iδ,−α(γ − iδ))] (C3)
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and

α =
F2(0, T )

F2(0, T ) +K
, (C4)

k = ln
(
F2(0, T ) +K

)
. (C5)

The quantity F2(0, T ) = E[S2(T )] in formulas (C4) and (C5) is the forward price of the second
asset at time 0 for delivery at future date T . Using the characteristic function properties, we can
write F2(0, T ) = ΦT (0,−i). The parameter δ tunes an exponentially decaying term introduced to
allow the integration in the Fourier space.

Appendix D: Proofs for the geometric Brownian motion case

Let us introduce the notation

ln(S(t)) =

 logS1(t)
...

logSn(t)

 .

We consider the set

G = {ω : Yn (T ) > κ}

=

{
ω : wᵀ

(
ln(S(t)) +

(
r1− q− 1

2
V ec(Σkk)

)
(T − t) +

√
ΣW(T − t)

)
> κ

}
.

We see that wᵀ
√

ΣW(T −t) has the same distribution as a univariate Brownian motion σ∗W ∗(T −
t), where σ∗ =

√
wᵀΣw. Considering m as in formula (25), we can write the set G as

G =

{
ω : Z > d =

κ −wᵀ (ln(S(t)) + m(T − t))
σ∗
√
T − t

}
,

where Z is a standard Normal random variable. We can write the expectation in (4) as

Et [(An (T )−K)I(G)]+ = Et [Et [An (T )−K|G] I(G)]+

= Et [Et [An (T )−K|Z] I(Z > d)]+ .

Conditionally to the random variable Z, the vector
√

ΣW(T − t) is distributed like a multivariate
Normal with mean µ and variance V , with their elements defined for k, j = 1, . . . , n as

µk = Zak
√
T − t, Vkj = (T − t)(Σkj − akaj), ak =

∑n
j=1wjΣkj

σ∗
,

and we indicate with Σkj the element of Σ in position (k, j). Due to this fact, S(T )|Z follows a

multivariate lognormal MLN (µ̂, V̂ ), where, for k, j = 1, . . . , n,

µ̂k = lnSk(t) + (r − qk − Σkk/2)(T − t) + Zak
√
T − t,

V̂kj = Vkj .
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We can now compute the inner expectation of the payoff, using the lognormal distribution properties

Et
[
E [An (T )−K|Z] 1(Z≥d)

]+
= Et

[(
n∑
k=1

wke
lnSk(t)+(r−qk−a2

k/2)(T−t)+Zak
√
T−t −K

)
I (Z ≥ d)

]+

.

We solve the above expectation by using the partial expectation property of the lognormal distri-
bution. Discounting and maximizing with respect to κ, we obtain the lower bound

CGK(t) = max
κ

e−r(T−t)

(
n∑
k=1

wkSk(t)e
(r−qk)(T−t)N (ak

√
T − t− d)−KN (−d)

)+

. (D1)

We indicate with N (·) the standard Normal distribution function. The formula above still depends
on maximization with respect to the parameter κ, involved in the definition of d. Maximization
must be carried out by a numerical search, equating to zero the first derivative with respect to κ.
We need to solve the equation

n∑
k=1

wkSk(t)e
(r−qk)(T−t)φ(ak

√
T − t− d)−Kφ(−d) = 0, (D2)

where we indicate with φ(·) the standard Normal density function. Using a linearization argu-
ment, we can provide the starting point κstart of the numerical search. We approximate the term
φ(ak
√
T − t− d) in formula (D2) with a first-order Taylor expansion centered at −d,

φ(ak
√
T − t− d) ≈ φ(−d) + ak

√
T − tφ′(−d) = φ(−d) + dak

√
T − tφ(−d),

obtaining

n∑
k=1

wkSk(t)e
(r−qk)(T−t)

(
1 + dak

√
T − t

)
−K = 0.

Substituting the definition of d and rearranging terms, it is easy to obtain the following approxi-
mation for the value of κ in which the option price is maximum:

κstart = σ∗
K −

∑n
k=1wkSk(t)e

(r−qk)(T−t)∑n
k=1wkakSk(t)e

(r−qk)(T−t) +
n∑
k=1

wk

(
lnSk(t) +

(
r − qk −

Σkk

2

)
(T − t)

)
.
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Figure 3. The CPU time (seconds) for the jump diffusion model of Section 4.1 as a function of the basket dimension.
Numerical values are given in Table 12.
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Figure 4. Deltas for a three-asset basket spread option with strike price K = 100 and model parameters as in
Table 11. We consider sensitivities computed via the approximating set lower bound of Section 1 and via the price
approximation of Section 2. A benchmark is obtained through Monte Carlo simulation and a finite difference scheme.

Table 1. The control variate (MC) and the crude (MCcr) Monte Carlo are compared for each model. Simulation
settings and model parameters are set as in Tables 2–6. The option strike price K is chosen to be close to at the

money. The confidence interval length of the Monte Carlo simulation is also provided.

Model K Parameters MC C.I. length MCcr C.I. lengthcr

GBM 100 Table 2 28.0070 3.3707× 10−3 28.0447 8.2416× 10−2

JD 100 Table 3 18.3813 1.0106× 10−2 18.2822 2.0322× 10−1

MRJD 25 Table 4 10.0060 6.8898× 10−3 9.9641 2.0639× 10−1

FX-SV 100 Table 5 7.4990 8.8989× 10−4 7.4717 1.2348× 10−1

WASC 5000 Table 6 1024.27 2.4257× 10−1 1032.2709 9.6196× 101
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Table 2. Prices of basket options computed for different strikes K in the geometric Brownian motion model of
Section 3. The basket weights are w = [0.25; 0.25; 0.25; 0.25]. The parameter values are T − t = 5, r = 0,

Sk(t) = 100, qk = 0, σk = 40% and ρkj = 0.5, for k = 1, . . . , 4 and k 6= j. Column CGK(t) contains the lower bound
in formula (4). Column LAG

K (t), CAG
K (t) and UAG

K (t) contains the lower bound, the upper bound and the
approximation based on the arithmetic-geometric mean inequality as in formulae (17), (19) and (18), respectively.

Columns MC and C.I. length contain the Monte Carlo prices and confidence intervals for 107 random trials
respectively.

K CGK(t) LAGK (t) CAGK (t) UAGK (t) MC C.I. length
50 54.1580 41.7569 51.9919 55.6861 54.3108 1.4961× 10−3

60 47.2699 35.6507 44.4340 49.5799 47.4805 1.9255× 10−3

70 41.2575 30.4718 37.9328 44.4010 41.5219 2.3448× 10−3

80 36.0411 26.0978 32.4038 40.0270 36.3522 2.7257× 10−3

90 31.5296 22.4084 27.7284 36.3376 31.8765 3.0672× 10−3

100 27.6326 19.2949 23.7836 33.2241 28.0070 3.3707× 10−3

110 24.2664 16.6634 20.4559 30.5926 24.6578 3.6160× 10−3

120 21.3562 14.4344 17.6453 28.3636 21.7626 3.8746× 10−3

130 18.8368 12.5412 15.2667 26.4704 19.2490 4.0523× 10−3

140 16.6519 10.9286 13.2487 24.8578 17.0660 4.2393× 10−3

150 14.7532 9.5511 11.5319 23.4803 15.1638 4.3800× 10−3

Time 0.0451 0.0085 9.4026

Table 3. Prices of basket options computed for different strikes K in the jump diffusion model of Section 4.1. The
basket weights are w = 1

20
120. The parameter values are T − t = 1, r = 1%, Sk(t) = 100, σk = 40%, ξk = 0.5,

ξkk = 0.3, αk = αkk = −0.05, λ = 1, λk = 0.5, ρkj = 0.5 and ρYkj = 0.5 for k = 1, . . . , 20 and k 6= j. The Monte
Carlo price is obtained with 106 simulations. Column labels are as in Table 2.

K CGK(t) LAGK (t) CAGK (t) UAGK (t) MC C.I. length
50 51.3843 40.4134 51.0643 52.1230 51.4620 3.6600× 10−3

60 42.6134 32.2563 41.9998 43.9659 42.7501 5.4294× 10−3

70 34.7380 25.2013 33.6724 36.9109 34.9339 6.9961× 10−3

80 27.9956 19.4182 26.3980 31.1277 28.2421 8.2449× 10−3

90 22.4645 14.8891 20.3784 26.5987 22.7487 9.1949× 10−3

100 18.0726 11.4574 15.6289 23.1670 18.3813 1.0106× 10−2

110 14.6576 8.9072 12.0121 20.6168 14.9775 1.0812× 10−2

120 12.0282 7.0255 9.3174 18.7351 12.3448 1.1089× 10−2

130 10.0046 5.6332 7.3281 17.3428 10.3153 1.1819× 10−2

140 8.4370 4.5925 5.8579 16.3021 8.7358 1.2298× 10−2

150 7.2090 3.8030 4.7614 15.5126 7.4913 1.2342× 10−2

Time 2.0381 0.0430 10.5049
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Table 4. Prices of basket options computed for different strikes K in the mean reverting jump diffusion model of
Section 4.2. The basket weights are w = [0.25; 0.25; 0.25; 0.25]. The parameter values are T − t = 1, r = 0,
fk(T ) = log(25), α = [0.1; 0.2; 0.1; 0.3], fk(t) = Xk(t) = Yk(t) = 0 for k = 1, . . . , 4. Jump parameters are

λ+ = λ− = [0.1; 0.2; 0.3; 0.2], µ+ = µ− = [0.1; 0.1; 0.3; 0.3]. The covariance matrix of the Brownian noise is
[0.5, 0.35, 0.35, 0.25; 0.35, 0.5, 0.475, 0.15; 0.35, 0.475, 0.5, 0.15; 0.25, 0.15, 0.15, 0.5]. The Monte Carlo price is obtained

with 105 random trials and 100 time steps. Column labels are as in Table 2.

K CGK(t) LAGK (t) CAGK (t) UAGK (t) MC C.I. length
5 26.5940 24.0587 26.5936 26.5947 26.5942 2.0449× 10−4

10 21.6486 19.1468 21.6104 21.6829 21.6546 1.4028× 10−3

15 17.0447 14.6763 16.8630 17.2123 17.0666 3.2606× 10−3

20 13.1066 10.9662 12.7435 13.5023 13.1485 5.0113× 10−3

25 9.9462 8.0804 9.4451 10.6164 10.0060 6.8898× 10−3

30 7.5059 5.9190 6.9338 8.4551 7.5768 8.0097× 10−3

35 5.6608 4.3327 5.0748 6.8688 5.7404 1.0593× 10−2

40 4.2798 3.1793 3.7181 5.7154 4.3615 1.1832× 10−2

45 3.2497 2.3431 2.7337 4.8792 3.3314 1.2047× 10−2

50 2.4809 1.7364 2.0200 4.2724 2.5603 1.2114× 10−2

55 1.9054 1.2945 1.5013 3.8306 1.9791 1.2693× 10−2

Time 0.6525 0.0461 6.9586

Table 5. Prices of basket options computed for different strikes K in the stochastic volatility model of Section 4.3.
The basket weights are w = [0.4; 0.6]. The parameter values are T − t = 1, SJPY,USD = 86.90, SJPY,EUR = 112.29,

V1 = 0.0137, V2 = 0.0391, aUSD
1 = 0.6650, aUSD

2 = 1.0985, aEUR
1 = 1.6177, aEUR

2 = 1.3588, aJPY
1 = 0.2995,

aJPY
2 = 1.6214, κ1 = 0.9418, κ2 = 1.7909, θ1 = 0.0370, θ2 = 0.0909, ξ1 = 0.4912, ξ2 = 1, ρ1 = 0.5231 and

ρ2 = −0.3980. The Monte Carlo price is obtained with 105 random trials and 100 time steps. Column labels are as
in Table 2.

K CGK(t) LAGK (t) CAGK (t) UAGK (t) MC C.I. length
50 52.2555 51.1796 52.2871 52.2988 52.2560 3.3805× 10−4

60 42.3929 41.3311 42.4279 42.4503 42.3939 4.6861× 10−4

70 32.6765 31.6344 32.7076 32.7536 32.6782 6.5341× 10−4

80 23.2842 22.2763 23.2967 23.3955 23.2873 7.7204× 10−4

90 14.6123 13.6795 14.5812 14.7986 14.6172 1.0181× 10−3

100 7.4935 6.7392 7.3923 7.8584 7.4990 8.8989× 10−4

110 3.0988 2.6440 2.9503 3.7631 3.1043 9.6854× 10−4

120 1.2843 1.0498 1.1551 2.1690 1.2883 8.6991× 10−4

130 0.6279 0.4926 0.5318 1.6117 0.6305 7.0428× 10−4

140 0.3561 0.2672 0.2845 1.3863 0.3581 7.4411× 10−4

150 0.2237 0.1601 0.1689 1.2793 0.2250 6.7663× 10−4

Time 0.7684 0.0260 2.9647

29



November 20, 2014 Quantitative Finance basket˙option˙qf

Table 6. Prices of basket options computed for different strikes K in the WASC model of Section 4.4. The basket
weights are w = [0.5; 0.5]. The parameter values are T − t = 1, S(t) = [5371.80; 3295.28],

Q = [0.3296, 0.2866; 0.3446, 0.3524], M = [−0.9886,−0.3631;−0.4464,−0.7599], ρ = [−0.2675;−0.5496],
β = 10.8247 and r = 0. The Monte Carlo price is obtained with 104 random trials and 100 time steps. Column

labels are as in Table 2.

K CGK(t) LAGK (t) CAGK (t) UAGK (t) MC C.I. length
4000 1389.46 1291.48 1348.57 1428.48 1389.78 1.9805× 10−1

4500 1192.76 1102.68 1151.49 1239.68 1193.17 2.5758× 10−1

5000 1023.87 941.50 983.14 1078.50 1024.27 2.4257× 10−1

5500 879.12 804.14 839.61 941.14 879.52 2.8705× 10−1

6000 755.22 687.22 717.40 824.22 755.60 2.9166× 10−1

6500 649.24 587.76 613.43 724.76 649.55 2.4128× 10−1

7000 558.60 503.16 525.00 640.16 558.91 2.5190× 10−1

7500 481.09 431.20 449.78 568.20 481.42 3.0524× 10−1

8000 414.79 369.97 385.78 506.97 415.18 3.0420× 10−1

8500 358.04 317.83 331.30 454.83 358.50 3.7031× 10−1

9000 309.43 273.40 284.88 410.41 309.69 2.1837× 10−1

Time 3.6146 0.3652 85.9311

Table 7. Prices of basket spread options computed for different strikes K in the geometric Brownian motion model
of Section 3. The basket weights are w = [1;−1;−1]. The parameter values are T − t = 1, r = 5%

S(t) = [100; 63; 12], q = [0; 0; 0], σ = [0.21; 0.34; 0.63], ρ12 = 0.87, ρ13 = 0.3, ρ23 = 0.43. Column CGK(t) contains the
lower bound in formula (4). Column LAG

K (t), CAG
K (t) and UAG

K (t) contains the lower bound, the upper bound and
the approximation based on the arithmetic-geometric mean inequality as in formulae (13), (15) and (14),

respectively. Columns MC and C.I. length contain the Monte Carlo prices and confidence intervals for 107 random
trials.

K CGK(t) LAGK (t) CAGK (t) UAGK (t) MC C.I. length
5 25.6962 23.6509 24.6434 27.8943 26.7762 4.6745× 10−3

10 21.3408 20.0257 21.3284 24.2691 23.0466 6.1873× 10−3

15 17.2434 16.7488 18.3674 20.9922 19.6852 7.7895× 10−3

20 13.4984 13.8257 15.7524 18.0691 16.7042 9.4315× 10−3

25 10.1955 11.2470 13.4645 15.4904 14.1003 1.1021× 10−2

30 7.4021 8.9929 11.4781 13.2363 11.8478 1.2448× 10−2

35 5.1488 7.0373 9.7641 11.2807 9.9260 1.3713× 10−2

40 3.4223 5.3509 8.2927 9.5943 8.2952 1.4684× 10−2

45 2.1695 3.9039 7.0345 8.1473 6.9192 1.5344× 10−2

50 1.3100 2.6671 5.9622 6.9105 5.7612 1.5659× 10−2

55 0.7528 1.6132 5.0507 5.8567 4.8008 1.5656× 10−2

Time 0.1748 0.0295 2.8915
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Table 8. Prices of basket spread options computed for different strikes K in the jump diffusion model of Section
4.1. The basket weights are w = [1; 1; 1; 1; 1; 1; 1; 1; 1; 1;−0.9;−0.9;−0.9;−0.9;−0.9;−0.9;−0.9;−0.9;−0.9;−0.9].
The parameter values are T − t = 1, r = 1%, Sk(t) = 100, σk = 20%, ξk = 0.25, ξkk = 0.15, αk = αkk = −0.05,

λ = 1, λk = 0.1, ρkj = 0.75 and ρYkj = 0.75 for k = 1, . . . , 20 and k 6= j. The Monte Carlo price is obtained with 106

simulations. Column labels are as in Table 7.

K CGK(t) LAGK (t) CAGK (t) UAGK (t) MC C.I. length
50 59.7381 47.9137 59.9191 71.2563 60.2348 1.7135× 10−2

60 52.4154 40.5551 52.4967 63.8976 52.8422 1.5334× 10−2

70 45.6244 33.7432 45.6139 57.0857 45.9951 1.4100× 10−2

80 39.4076 27.5264 39.3213 50.8690 39.7330 1.2740× 10−2

90 33.7918 21.9352 33.6515 45.2777 34.0936 1.1653× 10−2

100 28.7861 16.9788 28.6166 40.3214 29.0839 1.1070× 10−2

110 24.3817 12.6459 24.2075 35.9884 24.6909 1.0848× 10−2

120 20.5538 8.9062 20.3964 32.2487 20.8955 1.1240× 10−2

130 17.2644 5.7151 17.1400 29.0577 17.6438 1.1814× 10−2

140 14.4663 3.0185 14.3852 26.3611 14.8924 1.2630× 10−2

150 12.1067 0.7576 12.0735 24.1002 12.5764 1.3666× 10−2

Time 6.3236 0.2214 12.3182

Table 9. Prices of basket spread options computed for different strikes K in the mean reverting jump diffusion
model of Section 4.2. The basket weights are w = [2; 1;−1;−1]. The parameter values are T − t = 1, r = 0,
fk(T ) = log(25), α = [0.1; 0.2; 0.1; 0.3], fk(t) = Xk(t) = Yk(t) = 0 for k = 1, . . . , 4. Jump parameters are

λ+ = λ− = [0.1; 0.2; 0.3; 0.2], µ+ = µ− = [0.1; 0.1; 0.3; 0.3]. The covariance matrix of the Brownian noise is
[0.5, 0.35, 0.35, 0.25; 0.35, 0.5, 0.475, 0.15; 0.35, 0.475, 0.5, 0.15; 0.25, 0.15, 0.15, 0.5]. The Monte Carlo price is obtained

with 105 random trials and 100 time steps. Column labels are as in Table 7.

K CGK(t) LAGK (t) CAGK (t) UAGK (t) MC C.I. length
5 27.7176 23.9716 27.4510 32.5504 28.6940 1.0589× 10−1

10 24.2968 20.2235 23.9533 28.8024 25.0622 9.6171× 10−2

15 21.2185 16.8882 20.8709 25.4671 21.8236 8.6890× 10−2

20 18.4747 13.9634 18.1838 22.5423 18.9433 6.6397× 10−2

25 16.0482 11.4209 15.8554 19.9997 16.4535 6.2356× 10−2

30 13.9159 9.2207 13.8434 17.7996 14.2959 5.9968× 10−2

35 12.0514 7.3206 12.1065 15.8995 12.4334 4.8932× 10−2

40 9.0178 4.2637 9.3106 12.8425 10.8217 4.3863× 10−2

45 10.4277 5.6804 10.6068 14.2592 9.4338 4.3187× 10−2

50 7.7966 3.0386 8.1888 11.6175 8.2514 4.2944× 10−2

55 6.7404 1.9777 7.2163 10.5566 7.2224 4.3764× 10−2

Time 0.5670 0.2531 7.5675

31



November 20, 2014 Quantitative Finance basket˙option˙qf

Table 10. Prices of basket spread options computed for different strikes K in the FX stochastic volatility model of
Section 4.3. The basket weights are w = [2;−1]. The parameter values are T − t = 1, SJPY,USD = 86.90,

SJPY,EUR = 112.29, V1 = 0.0137, V2 = 0.0391, aUSD
1 = 0.6650, aUSD

2 = 1.0985, aEUR
1 = 1.6177, aEUR

2 = 1.3588,
aJPY
1 = 0.2995, aJPY

2 = 1.6214, κ1 = 0.9418, κ2 = 1.7909, θ1 = 0.0370, θ2 = 0.0909, ξ1 = 0.4912, ξ2 = 1,
ρ1 = 0.5231 and ρ2 = −0.3980. The Monte Carlo price is obtained with 105 random trials and 100 time steps.

Column labels are as in Table 7.

K CGK(t) LAGK (t) CAGK (t) UAGK (t) MC C.I. length
5 56.5638 56.7048 56.7048 56.7048 56.7049 6.8517× 10−5

10 51.5996 51.7630 51.7630 51.7630 51.7631 1.8136× 10−4

15 46.6555 46.8368 46.8368 46.8368 46.8371 2.4466× 10−4

20 41.7420 41.9396 41.9396 41.9396 41.9402 4.8875× 10−4

30 32.0764 32.3139 32.3139 32.3139 32.3158 7.9035× 10−4

40 22.8299 23.0913 23.0913 23.0913 23.0947 1.0828× 10−3

50 14.4695 14.7121 14.7121 14.7121 14.7184 1.3303× 10−3

60 7.8445 8.0167 8.0167 8.0167 8.0300 2.3239× 10−3

70 3.7239 3.8079 3.8079 3.8079 3.8255 3.2946× 10−3

75 2.5116 2.5589 2.5589 2.5589 2.5768 3.5316× 10−3

80 1.6886 1.7073 1.7073 1.7073 1.7287 4.4332× 10−3

Time 0.6483 0.2401 2.4542

Table 11. Prices of basket spread options computed for different strikes K in the WASC model of Section 4.4. The
basket weights are w = [1; 1;−1]. The parameter values are T − t = 1, S(t) = 100 · 13, Q = 0.25 · I3, M = −0.5 · I3,
ρ = −0.3 · 13, β = 10.8247 and r = 0. The Monte Carlo price is obtained with 104 random trials and 100 time steps.

Column labels are as in Table 7.

K CGK(t) LAGK (t) CAGK (t) UAGK (t) MC C.I. length
50 64.3911 55.0700 64.0552 67.6858 65.2016 2.1340× 10−1

60 57.4289 48.4728 56.8742 61.0886 58.3278 2.3614× 10−1

70 50.9008 42.3712 50.1516 54.9870 51.7403 2.2825× 10−1

80 44.8258 36.7837 43.9182 49.3995 45.6697 2.3646× 10−1

90 39.2168 31.7180 38.1950 44.3338 40.0216 2.2475× 10−1

100 34.0799 27.1708 32.9926 39.7866 34.9146 2.2828× 10−1

110 29.4146 23.1290 28.3108 35.7448 30.2865 2.3272× 10−1

120 25.2135 19.5703 24.1386 32.1861 26.0794 2.3005× 10−1

130 21.4630 16.4654 20.4561 29.0812 22.4785 2.5191× 10−1

140 18.1441 13.7799 17.2356 26.3957 19.3800 3.0061× 10−1

150 15.2327 11.4761 14.4440 24.0919 16.4885 3.0263× 10−1

Time 4.8373 1.1070 98.7995
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Table 12. The CPU time (seconds) for the jump diffusion model of Section 4.1 is given. We consider the two
classes of price approximations for an increasing basket dimension n. The basket weights are w = 1

n
1n. The

parameter values are T − t = 1, r = 1%, Sk(t) = 100, σk = 40%, ξk = 0.5, ξkk = 0.3, αk = αkk = −0.5, λ = 1,
λk = 0.5, ρkj = 0.5 and ρYkj = 0.5 for k = 1, . . . , n and k 6= j. The strike price is K = 100.

n CPUG CPUAG

2 0.299 0.067
5 0.644 0.071
10 1.029 0.073
20 1.874 0.075
30 2.800 0.075
40 3.788 0.077
50 4.905 0.081
60 6.347 0.081
70 9.273 0.128
80 10.564 0.115
90 13.004 0.122
100 14.152 0.123
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