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cDept. of Mechanical Engineering and Aeronautics, City University London, UK6

Abstract

Cantilever beams are increasingly applied as sensory structures for force and

flow measurements. In nature, such hair-like mechanoreceptors often occur

not as single hairs but in larger numbers distributed around the body-surface

and with different mechanical properties. In addition, reconfiguration of such

structures with the flow changes their response and mutual interaction. This

rises the question how it affects the signal conditioning on each individual sensor.

Simple configurations involving single and tandem pairs of flexible cylinders

(of aspect ratio 10) are studied as elementary units of such sensor arrays at

Reynolds numbers of order Red=O(1-10). Experimental reference studies were

carried out with a tandem pair of up-scaled models using flexible cylinders

mounted on a flat plate and towed in a viscous liquid environment. Direct

numerical simulations (DNS) are used to determine the local drag along the

rigid cylinders (pillars) for different orientations of the tandem relative to the

main flow direction at steady flow conditions. The bending is then computed via

beam bending theory. A prediction model based on the cross-flow velocity and

an empirical relation for the drag coefficient is proposed and tested. The results

show good agreement of the bending lines with the experiments and the direct

numerical simulations for single and tandem configurations. It is then used to

illustrate the expected sensor response at any point in a given complex flow

field. This study contributes to the understanding of pre-conditoning effects in

a sensor array measuring near-wall flow.
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1. Introduction

Cantilevered beams and their interaction with the surrounding fluid in a low-12

Reynolds number environment became of interest with the invention of atomic

force microscopy, where the beams act as sensors. The fluid-structure interaction14

is often of passive nature and studies have been carried out to determine the

damping factor for the static and dynamic response of such sensors. Meanwhile,16

the technique has also been transferred to other disciplines such as aerodynamic

measurements, where flexible micro-cantilever beams are attached to a surface18

to measure the distributed wall-shear stress WSS [1]. Therein, the latter acting

on the beams is measured optically via imaging of the tip-displacement or using20

micro-electromechanical systems (MEMS) technology at their base.

In nature, such sensors occur as mechano-sensors in a wide range of differ-22

ent species [2]. To gain the information they need, animals have developed a

stunning diversity of such hair-like sensors [3]. For example, fishes and aquatic24

amphibians use arrays of neuromasts along the lateral line systems and on the

surface to detect minute water motions [4]. Other types of mechano-sensors26

are the filiform hairs, which are located on the cerci of crickets and enable the

crickets to sense air movements generated by approaching predators [5]. Sim-28

ilar structures exist on the surface of the wings of a bat [3], [6]. It was found

that these hairs are used by the bat to detect the flow pattern along the wing30

during their flight to enhance navigation and aerial manoeuvres like steep bank-

ing, hovering and landing upside-down [7]. This rapid detection of small-scale32

air-flow variations via the hair-shaft deflection of a single sensor or as part of

distributed arrays contributes to natural flyers having greater flight agility than34

current engineering systems and is the inspiration for further investigations of

such flow-sensing systems.36
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For a better understanding of the mechanisms of signal detection of such

structures, standing either isolated or in arrays, a mathematical description of38

their response would be highly welcome, including the influence of the wall. For

single shaft-hinged sensory hairs a model based on the Euler-Bernoulli/Timoshenko40

beam theory and Oseen’s approximation for the viscous drag forces has been

described in [8] and was later also applied to flexible micropillar-type WSS sen-42

sors [1]. A recent summary of the mathematical model of sensory hairs has been

given in [9] and for flexible aquatic vegetation in [10]. These authors proposed44

a fluid-structure reaction model of the individual hair structure through a non-

dimensional analysis of the hair model and they identified five non-dimensional46

parameters that directly determined the hair response. With this model they

could simulate the response of a carpet of hairs along the circumference of a48

cylinder in cross flow. The results showed a time- and space-accurate represen-

tation of the surface flow patterns as long as the hairs are small enough. For50

the length of hairs considered (1/100th of the cylinder diameter), they found

that the visualisation of the near surface flow topology was similar to the image52

of wall-shear-stress distribution. Therefore, wall-shear stress patterns can be

detected via imaging of properly designed micro-pillars as demonstrated in [11].54

However, these mathematical studies could not provide any insight into the

effect of mutual interaction and coupling between sensors.56

The purpose of the present work is to improve our understanding on the

interaction of flow within an array of flexible structures of micro-scale for sen-58

sory application such as the flexible micro-pillars used for WSS imaging. To

understand the complexity of the interaction a combined experimental and di-60

rect numerical simulation study has been performed. In experiments, largely

up-scaled models of the hair sensors were built in the form of slender, wall-62

mounted circular beams of aspect ratio h/d = 10 : 1, where h is the length of

the pillar and d the diameter, which bend under the action of the fluid forces64

in a towing tank system with a high-viscosity liquid. The cantilever beams

were analysed in different flow conditions and configurations (single and tan-66

dem configuration) for the range of Reynolds numbers from 1 to 60 where vortex
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shedding is still absent. Additionally, Direct Numerical Simulations were carried68

out to investigate the rigid pillar-pillar interactions in the tandem configuration

for different orientations in detail. Furthermore, a mathematical model of such70

flexible sensors is proposed, predicting the bending of arbitrarily placed sensors

and estimating the sensitivity of the response signal by means of calculated72

bending lines.

2. Prediction model74

The sensory structures considered in this study are the WSS sensors based

on flexible silicone cylinders of micro-scale as described in [1]. Because of their76

small scale, the Reynolds number Red based on the diameter d of the sensor is

typically in the order of O(10) or less:78

Red =
U∞d

ν
, (1)

where U∞ is the flow velocity at the sensor tip and ν the kinematic viscosity

of the fluid. Direct numerical simulation (DNS) of a turbulent boundary layer80

containing a micro-sensor array with two-way fluid-structure coupling is still

impossible because of the widely different scales between the sizes of the inte-82

gration domain, the different size of eddies in the flow and the sensor diameters.

This raises the question whether it would be possible to predict the bending of84

the sensors using a simplified model.

The basic idea for that is to consider a slender, wall-mounted cantilever86

beam of cylindrical cross section and finite length l which is treated as a one-

dimensional Timoshenko beam in a two-dimensional, steady cross-flow boundary88

layer. The beam’s drag can be estimated from the velocity of the cross flow and

the beam’s deflection then computed from Timoshenko beam theory:90

EI
d4w(y)

dy4
= q(y)−

EI

κAG

d2q(y)

dy2
, (2)

where y is the coordinate along the beam’s length, E Young’s modulus, I the

moment of inertia, G the shear modulus, q(y) the line load, w(y) the bending92
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line, and κ the shear rate coefficient (κ = 0.9). Young’s modulus E and the

shear modulus G are taken from the experimental data summarized in Tab. 1.94

Our intention is to limit application of the present model to finite deflections

from the vertical which could be used as a flow-sensor signal. For this, it is96

necessary that the sensor’s tip remains within a limited distance from its base

that can be resolved by some kind of optical measurement technique. Equally98

important is that the flow sensor does not leave the area of interest due to

reconfiguration. In order to avoid extremely non-linear effects, the sensor should100

not be allowed to bend with the flow like a hair or a blade of grass.

A useful non-dimensional parameter for this constraint is the Cauchy number102

Ca, i.e., the ratio of drag force exerted by the fluid versus the restoring force of

the beam due to stiffness. Following Luhar & Nepf [10], the Cauchy number is104

defined as:

Ca =
1

2

ρflu
2cDdh

3

EI
, (3)

where ρfl is the density of the fluid, u the velocity and CD the drag coefficient. It106

is clear that a beam will extensively curve with the flow if the load exerted by the

drag force gets much larger than its restituting force. Therefore, for the present108

applications the Cauchy number must always remain limited. Investigations

of the influence of Cauchy number on reconfiguration of plants are published110

in de Langre [12] and Luhar & Nepf [10], for instance. Especially the latter

indicates that higher-order effects (which we don’t consider here) slowly start112

after Ca ≥ 1 − 10. Our worst case scenario will be shown in Figure 8 further

down for Reynolds number Red = 12 and a maximal bending of w/d ≈ 7 or114

w/h ≈ 0.07 respectively. The corresponding Cauchy number is Ca = 7. A

comparison with predictions of the present model shows that this case can be116

faithfully computed using our ansatz. To remain on the safe side, care is taken

not to exceed Ca = 7 in the remaining investigations.118

The higher fluid forces for larger Reynolds numbers can be easily compen-

sated by a larger stiffness of the beam. As everything else is already fixed, this120

can only be done by changing the material properties, that is the elasticity mod-
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ulus E. As a rule, E should be chosen according to the expected tip deflection,122

i.e. small for flows at small Reynolds numbers Red and large for large Reynolds

numbers. This choice will guarantee that the sensor-tip displacement remains124

measurable in different applications without undue higher-order effects due to

reconfiguration of the cylinder, like changes of cross section and orientation of126

bending line.

In contrast to a similar work by Jana et al. [13] the second-order theory128

(quasi-steady Timoshenko beam theory) used here takes changes in rotational

inertia and shear deformation due to bending into account. Compared to linear130

Euler-Bernoulli theory it is more appropriate when structures are not slender

anymore or if deflection gets large. Comparisons of first and second-order the-132

ory results with experimental results shown further down has confirmed the

superiority of second order theory for the cases studied here.134

The procedure for calculation of the bending line by a section-wise approach

is sketched in Fig. 1. The line-load force q(y) on the beam is then based on the136

standard ansatz

q(y) = cd(y)
ρ

2
u(y)2d dy, (4)

where ρ is the fluid density, u(y) the local cross-flow velocity at the chosen138

y-position, d the pillar diameter, and dy the height of the considered section.

U∞ S
e
g
m
e
n
ts

y

cd(y)

y/d

w(y)

y/d

q(y)

y/d

u(y)

y/d

Figure 1: Sketch of cantilever beam in a cross flow u(y), local drag force q(y), local drag force

coefficient cd(y) and resulting bending line w(y).

In the following, we shall present an empirical formula for cd as a function140

of local Reynolds number only

Reloc =
u(y) d

ν
. (5)
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The intention behind this proposal is to predict sensor signals (beam deflections)142

in spatially or temporally varying cross-flows solely on the basis of the unper-

turbed flow field. Of course, this is only possible if the diameter d of the beam144

is small compared to the relevant scales of the cross-flow, e.g., its boundary-

layer thickness. The empirical formula will be established via direct numerical146

simulations (DNS) of flows around wall-mounted cylinders and validated by

comparisons of the bending lines with experiments.148

3. Model Validation

For validation of the above model towing-tank experiments and CFD simu-150

lations have been performed with up-scaled wall-mounted flexible cylinders, first

for single cylinders, then for tandems. The experiment and the numerical set-152

up will be presented in the following subsections. In the following description

we shall use the term ‘rod’ for the flexible cylinders in the experiment which154

bend and the term ‘pillar’ for the rigid cylinders in the numerical simulation

because the latter are not allowed to bend. However, the bending of these sim-156

ulated beams is computed via Timoshenko beam theory based on the actually

obtained drag forces along the pillars’ axes.158

3.1. Experiments

The experiments were carried out in a transparent basin made of perspex160

(length: 3000 mm, depth: 250 mm, length: 400 mm) filled with a viscous

working fluid, as shown in Fig. 2. On top of the basin is a traverse with a support162

cart that can be towed along the traverse up to maximum speeds of 1 m/s. A

plate with a clamped beam is mounted on the support cart and immersed into164

the fluid. A high-speed camera records side views of the beam while the cart is

towed. Images of the high-speed camera are then post-processed to determine166

the resulting bending line of the neutral fibre and the corresponding tip-bending.

The working fluid consists of pure glycerin to reduce the Reynolds number168

to the required low level. As glycerin is a hygroscopic fluid it is going to dilute

7



glycerine

plate

beam

7.5d 7.5d

a) b)

Figure 2: Experimental setup of towing-tank experiments

with time. Therefore, prior to every run a fluid sample is taken from the tank170

and its current state of viscosity is measured.

The up-scaled models of typical wall-shear stress sensors are cast from sil-172

icone as flexible rods with a diameter of d = 20 mm and a free length in the

fluid of l = 200 mm. Since silicone has a similar density as the working fluid, no174

significant buoyancy forces occur. These models are then clamped at one end

to the wall of a flat plate with sharp leading edge that is towed along the open176

fluid surface in the tank. A colored thread marks the centerline of the rod to

facilitate interpretation of the experimental bending lines. Material parameters178

and dimensions of the experiments are listed in Table 1.

Table 1: Material parameters and dimensions

Parameters Dimensions Parameters Dimensions

Rod diameter d 20 mm Elasticity modulus E 1.23 MPa

Rod length l 200 mm Poisson ratio 0.3

Moment of inertia I 7.85e−9 m4 Shear modulus G 0.473 MPa

Aspect ratio l/d 10 : 1 Density ρrod of rod mat. 1030 kg/m3

Dyn. viscosity glycerine 1 kg/ms Density ρfl of fluid 1220 kg/m3

Two typical experimental results for the single-beam configuration mounted180

in the center of the plate towed at different Reynolds numbers Red are shown

in Fig. 3. For consistency with the simulation results further down these images182

were turned by 180◦. As can be seen, the bending of the rod increases with

increasing velocity. However, not in a linear manner.184
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a) b)

Figure 3: Bending lines of single flexible rods in experiment at two different Reynolds numbers

3.2. Numerical Simulation

For solving the Navier-Stokes-Equation, the CFD toolbox OpenFOAM is186

used. Due to the low Reynolds numbers, a laminar viscous fluid model is chosen,

resulting in a DNS simulation. In contrast to the experiment the numerical188

model considers rigid beams, i.e., no fluid-structure interaction. To distinguish

these non-flexible structures in DNS from the flexible ones in the experiments we190

name the former ‘pillars’ instead of ‘beams’ or ‘rods’. The purpose of the DNS

is to provide the fluid force distribution along the pillar which is not accessible192

in the experiments. These forces are then used as a line-load profile q(y) in

equation (2) for prediction of the pillar’s bending line under load, cf. Fig. 1. In194

addition, the DNS leads to additional insight into the three-dimensional flow

field around the pillars.196

The integration domain for the numerical simulation is presented in Fig. 4.

As the coordinate system of the simulation is fixed to the moving plate with198

surface-mounted pillar, the towing tank transforms to a channel with rectan-

gular cross section. A boundary layer develops at the leading-edge of the flat200

plate, as in the experiment. All dimensions and parameters are chosen to simu-

late the experiments as close as possible. For an efficient simulation the lateral202

sides of the domain, the top wall and parts of the bottom are implemented as

slip walls. The ground plate and the pillar itself are defined as a friction wall.204

Inlet and outlet conditions are set to freestream and zero-gradient conditions,

respectively. In single-beam configuration, the pillar is mounted in the center206

(7.5d) of the plate.

A structured mesh is used to discretize the flow field around the pillar.208
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H

h

d x

z

y

outlet

bottom

side U∞

plate

U∞

U∞

12.5d

7.
5d

7.
5d

Figure 4: Computational domain to simulate towing tank experiments. Blue area represents

ground plate towed through tank together with cylindrical pillar.

Equidistant wedge elements are used around the pillar and the cross-flow bound-

ary layer resolution uses around 60 elements. In the far field Cartesian grids210

are used and the finite end at the top of the pillar is closed by a butterfly mesh.

To avoid high aspect ratios in tandem configurations, a hybrid mesh approach212

is applied then. A grid convergence study following Roache [14] was conducted

to evaluate discretization errors with determination of the Grid Convergence214

Index (GCI). The error stays within an error band of 0.5 %.

For calculation of the bending line the local drag forces Floc(y) acting on216

the pillar’s surface are needed. For this purpose the pillar is subdivided into

individual disk-like segments of length dy in y-direction, cf. Fig. 1. The local218

force is then extracted from the DNS data for each slice at y = const. according

to220

q(y) =

∫
S

(p(y)− p∞) n̂ · îdA+

∫
S

τwxz
(y) t̂ · îdA, (6)

where p(y) is the local pressure, p∞ the ambient pressure, n̂ the vector normal to

the surface, τw(y) the local wall shear stress, t̂ the tangent vector, î the unit vec-222

tor, dA = d ·dy the projected area normal to the flow, and S the surface integral

of the segment. Determining the local pressure, the Semi-Implicit Method for224

Pressure-Linked Equations (SIMPLE) which comes with OpenFOAM is used.

It allows coupling of the Navier-Stokes equations with an iterative procedure226
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correcting the velocity on the basis of the newly calculated pressure field in a

fractional manner.228

The ratio of the pressure drag coefficient Cp to friction drag coefficient Cf

integrated over the pillar’s length l is given in Tab. 2. While for Red = 1.0 the230

ratio of Cp/Cf is 1.09 it increases with higher Reynolds numbers in a non-linear

manner up to 2.26 for Red = 60. Here, the pressure drag coefficient Cp gets232

more dominant while the friction drag coefficient Cf decreases.

Table 2: Change of drag ratio (Cp/Cf ) with Reynolds number

Red 1.0 6.0 12.0 60.0

Cp/Cf 1.09 1.22 1.39 2.26

For comparison with literature the mean drag coefficient CD = Cp + Cf of234

the pillar is computed via

FD =

∫ l

0

q(y) dy (7)

CD =
2FD

ρU2
∞l · d

, (8)

where FD is the total drag force acting on the pillar in streamwise direction.236

As shown in Fig. 5, the DNS results for the global drag coefficient CD com-

pare well with the empirical drag-coefficient curve for circular cylinders in two-238

dimensional flow (Tritton [15]). For Reynolds numbers below Red ≈ 10 the drag

coefficient is somewhat larger than this reference while it is lower for Red > 10.240

The present DNS results are well confirmed by the towing-tank experiments in

the range where experimental results are available. The curve fit of Jana et242

al. [13] is intended to provide an improved estimation for the global drag coeffi-

cient CD of slender cantilever beams in a cross-flow in the range of 1 ≤ Red ≤ 63244

to Tritton’s empirical ansatz. Their curve is shown in Fig. 5 as a green dashed

line. Still, a slight offset of Jana et al.’s fit to the present results is observed.246

However, this can be corrected by using different constants compared to those

given in [13], see equation (9).248

lnCD = 2.71− 0.80 ln(Red) + 0.06 ln(Red)
2 (9)
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Figure 5: Comparison of global drag coefficient CD versus Reynolds number Red between

simulation (DNS), experimental data (X), literature, and own fit.

The new fit meets the numerical results within the range of 1 ≤ Red ≤ 63

nearly perfect. It will be used to model cd(y) as a function of local Reynolds250

number Reloc for prediction of beam-bending using the model described in sec-

tion 2, i.e.,252

ln cd(y) = 2.71− 0.80 ln(Reloc) + 0.06 ln(Reloc)
2. (10)

Beforehand, however, we shall compare this formula to actually obtained

drag coefficients in Fig. 6 and discuss those effects which are responsible for254

differences of the present flow field with respect to two-dimensional flow around

a circular cylinder.256

The local drag coefficients cd(y) have been computed from q(y) via inversion

of eqn. 4 and compared with eqn. 10 for four representative cases with different258

Reynolds numbers Red. The primary effect of the Reynolds number is that the

cross-flow boundary layer becomes thinner with increasing Red such that the260

part of the pillar that protrudes the boundary layer becomes larger for increas-

ing Red. This leads to constant cd(y) versus y in Fig. 6, especially for Red = 60.262

Despite the fact that the modeled cd(y) is based on the mean drag, there is an

excellent agreement of cd in the free-stream for all Reynolds numbers. Modeled264
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and real curves do not fully agree within the cross-flow boundary layer and di-

rectly at the pillar’s tip. The mismatch at the tip is clearly insignificant and the266

mismatch at the bottom depends on Reynolds number. Fortunately, a larger

quantitative difference in the large-Reynolds-number case is compensated by a268

smaller extent of the boundary layer there, while the quantitative difference is

less severe for the smallest Reynolds number where the boundary layer stretches270

almost over the complete length of the pillar. The ratio of δ99/h, where δ99 is

calculated by the laminar boundary layer solution of Blasius and h the length272

the pillar, is given for Red = 1, 6, 12 and 60 in Table 3. Jana et al. [13] men-

tioned already that tip effects can be faithfully neglected because they lead to274

a deviation of less than 5 % for the tip bending.

Table 3: Ratio of boundary layer thickness δ99 and length h of pillar with respect to Reynolds

number

Red 1.0 6.0 12.0 60.0

δ99/h 1.34 0.54 0.38 0.17
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y/d
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103

104
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Figure 6: Comparison of local drag coefficients cd between direct numerical simulation (DNS)

and model (eqn. 10) for Reynolds number Red = 1, 6, 12, and 60.

A closer look at the flow around the pillar is presented in Fig. 7 for Red = 6276
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and 40. For low Reynolds numbers Red ≤ 10, the flow field in the upstream

part of the pillar is dominated by a down-wash effect near the bottom wall278

which bends the streamlines near the pillar down to the wall and leads to a

three-dimensional flow structure. This effect decreases with higher Reynolds280

numbers. Between the region of high velocity gradients at the wall and the tip

a quasi two-dimensional flow regime is observed. A typical up-wash effect of the282

flow near the tip occurs as well. The pillar’s tip generates high velocity gradients

and accelerates the fluid locally. The lee-side of the pillar is characterized by an284

up-wash effect from the wall towards the tip, whereas a weak down-wash near

the tip is seen.286

For higher Reynolds numbers, a significant increase of the rear-side effects

is observed, as seen in Fig. 7b) for Red = 40. Additionally, a steady separation288

bubble appears along the pillar’s length on the rear-side and a huge down-wash

starts from the tip. The latter one leads to higher velocity gradients of the290

flow further downstream in the wake of the pillar. These flow features are

also observed in experiments as shown in Fig. 7c), which exhibits an excellent292

agreement of the flow patterns observed in DNS (Fig. 7d).

4. Results294

4.1. Single-Beam Configuration

A comparison between measured and calculated bending lines is presented296

in Fig. 8 for Red = 6 and 12. Bending lines calculated from the DNS with pillars

are shown as solid lines whereas the modeled load profiles using the correlation298

given in equation (10), where Reloc is calculated from the undisturbed cross-flow

velocity, i.e., a DNS without pillars is marked with filled circles. These curves are300

in excellent agreement with each other and also with the experimental results

(×). This shows that both, DNS-based bending lines and modeled bending lines302

can be used for further investigations.

Fig. 9 shows further comparisons of results using the prediction model with304

results based on the actual drag forces from DNS for the complete range of
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Figure 7: Visualisation of three-dimensional flow features for a) Red = 6, b) Red = 40, c)

experimental flow visualisation and d) Line Integral Convolution (DNS) for Red = 30
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Figure 8: Comparison of bending lines w/d from experiments (×), direct numerical simulation

(–––) and model prediction (◦) for Red = 6 and 12. Note that horizontal axis is stretched

with respect to vertical one for visualisation purposes.
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investigated Reynolds numbers 1 ≤ Red ≤ 60.306

As discussed above Young’s modulus E has been increased for these inves-

tigations by a factor of 100 with respect to the value given in Table 1 in oder308

to keep the Cauchy number below 7.

The maximum relative difference at y = 10d is less than 3.9 % for all310

Reynolds numbers. These deviations are caused by neglecting tip effects within

the prediction model, as shown in Fig. 6. The relative error is largest for the312

smallest Reynolds numbers in agreement with the difficulties of fitting a uni-

versally valid drag curve through the data of Fig. 6 with equation (10). As a314

result, a non-linear connection between tip deflection and Reynolds number is

observed. Due to the fact that the drag coefficient decreases while the force in-316

creases with the velocity, the tip deflection wtip increases with Red. The present

results indicate that the tip displacement scales to the power of 1.6 with respect318

to Red in the investigated range of 1 ≤ Red ≤ 60.
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Figure 9: Comparison of bending lines w/d from prediction model (◦) with those obtained by

using the drag from direct numerical simulation with pillars (–––) for Red = 1 to 60. Elasticity

modulus E scaled by factor 100. Note that horizontal axis is stretched with respect to the

vertical one for visualisation purposes.
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4.2. Tandem-Beam Configuration320

The previous section showed that the introduced prediction model is able

to predict the bending of an isolated slender rod in a boundary layer cross-flow322

reasonably well. Our next step now will be to evaluate if the model can be used

to predict the bending of a second beam that is positioned at some distance324

to the first one as well. The motivation for this investigation is based on the

need to quantify interaction effects of sensors which are arranged in an array.326

Using two beams is the basic element of such an array and a method for easy

quantifications of mutual interactions would be very valuable for the design of328

sensor arrays.

A slight modification of the experimental and numerical setup has been per-330

formed compared to Fig. 2 and Fig. 4. Now we consider two rods that are towed

through the tank, see Fig. 10. The first rod (termed ‘luv’) is positioned at a dis-332

tance of 2.5d from the leading edge of the flat plate and the second rod (termed

‘lee’) at a distance of 10d from the first. The center of the coordinate system is334

still in the middle between both rods for reference. Experiments with this tan-

dem configuration were limited to lower towing speeds U∞ ≤ 0.3 m/s because336

the tandem generates a larger disturbance in front of the plate that modifies

the inflow conditions. For comparison with the direct numerical simulations,338

the case with Red = 6 is taken as reference.

h

d x

z

y

U∞

plate
2.5d

10d

2.5d

luv

lee

Figure 10: Model modification used for tandem-beam configuration

In experiment both flexible rods bend with the flow. As before, our ability340

to simulate this in CFD is restricted to flows without fluid-structure interaction,

i.e., rigid pillars. The influence of the luv pillar on the lee one will be estimated342
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first. For this, two simulations have been compared. One where both pillars are

straight and normal to the plate and one where the luv pillar is bent towards344

the lee one according to the bending line predicted by our model.

Flow field visualisations of both cases are shown and compared in Fig. 11a)+b).346

It can be seen, that the bending (reconfiguration) of the first beam leads to a

stronger up-wash effect of the streamlines on its rear side. A slight increase of348

the axial velocity near the tip area is observed as well. Comparing the spatial

development of the wake behind the luv beam of the vertical relative to the bent350

configuration, a streamlining effect is observed, as shown in Fig. 11c)+d). The

bent configuration leads to higher curvature of the flow along the pillar‘s length.352

Yielding a more streamlined shape of the luv beam, the overall drag decreases

up to 11 % relative to the vertical one.354

a) b)

0 0.225 0.55 0.875 1.2
ux/U∞

c) d)

Figure 11: Flow field of tandem configuration a) first pillar vertical, b) first pillar bent, c)

first pillar vertical (LIC) and d) first pillar bent (LIC)

However, as shown in Fig. 12, this does not affect the resulting bending line
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of the lee pillar significantly. The expected tip bending of the lee beam is only356

slightly lower in case of a pre-bent luv pillar compared to the case with a straight

first pillar.358
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Figure 12: Comparison of bending lines of first and second beam for two different shapes of

the luv pillar at Red = 6. Note that horizontal axis is stretched with respect to the vertical

one for visualisation purposes.

Fig. 13 shows the two rods mounted in tandem configuration for the present

setup in the experiment. For reference the corresponding image without cross-360

flow is shown as well (Red = 0).

a) b)

Figure 13: Experimental results of inline tandem configuration (a) at rest and (b) for Red.

The black arrows indicate the towing direction during experiments.

The luv beam always bends more than the lee one, because it receives the362

full load of the cross-flow while the lee beam is in the wake of the luv, see Fig. 14.
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The beam bending lines of the DNS (–––) are obtained by integration of the364

actual forces of each pillar in a simulation of the full tandem configuration. In

contrast to this, the prediction model uses either flow-field data from a simula-366

tion without any pillar for prediction of the luv beam or data from a simulation

with the luv pillar only for prediction of the lee beam. Apparently, our model368

performs remarkably well for both beams. Experimental results are also in close

agreement for both beams with the theoretical predictions.370
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Figure 14: Comparison of bending lines w/d between experiments (×), DNS (–––) and model

estimation (◦) for Red = 6. Note that horizontal axis is stretched with respect to vertical one

for visualisation purposes.

4.2.1. Influence of Distance and Position

Now, the bending of a second beam in the wake of a first one is investigated372

for various relative positions. In the experiment, the lee rod is placed at a fixed

distance relative to the luv rod on the plate but at different angular positions,374

see Fig. 15a). The polar angle ϕ is varied in equal steps between ϕ = 0o and

30o.376

The color contours of ∆u = u − U∞ from the DNS flow field with a single

pillar at the position of the luv beam in Fig. 15a) visualise the influence of the378
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first pillar on the surrounding flow field at a typical y-position. The flow field

resembles the flow around a two-dimensional circular cylinder with a velocity380

decrease in the stagnation area, areas of increased velocity on the sides of the

pillar, and a Reynolds number dependent wake. It is clear that placing a second382

beam in the flow field of the first one will lead to lower or higher deflection of the

second depending on its load which is a function of the velocity profile. This384

expectation will be quantified further down with the beam-deflection model

presented above. Beforehand, we present the same validation steps for the386

tandem case as before for the single pillar setup.

DNS simulations containing two pillars were carried out, the drag forces388

along the pillars were extracted for integration of bending lines to obtain the

relative bending at the beam’s tip wtip/d. Fig. 15b) compares these results for390

both beams with those for the single beam. The just mentioned expectation

that the lee beam experiences a large variation of its tip deflection depending on392

its spanwise position is clearly evident. Interestingly the luv beam is deflected

less than the single beam in those cases where the lee beam is within the wake394

of the first. This means that there is a slight upstream effect of the lee beam.
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Figure 15: Investigation of interaction effects. a) Normalized velocity difference due to one

pillar together with investigated positions of the second. b) Computed maximal bending at

tip of different beams wtip/d

Figure 16 presents the actually obtained flow fields for different positions of396

the lee-ward pillar in the DNS. The colour contours visualise velocity defects
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(blue) and velocity excess (yellow) with respect to the undisturbed cross-flow398

(without pillars). The figure series a) to d) nicely illustrates how the flow field

changes when the second pillar leaves the wake of the first. At ϕ = 0o the400

lee-ward pillar is fully in the wake of the first and the flow field is symmetric.

At ϕ = 10o the second pillar is still within the reduced velocity due to the402

wake of the first and hence experiences less drag. At ϕ = 20o and 30o the luv

pillar’s wake disturbs partly still the inflow of the lee pilar, such that the latter404

encounters velocity excess due to fluid displacement around the first pillar which

leads to a higher drag force and hence larger bending of the lee beam.406
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Figure 16: Normalized velocity differences ∆u/U∞ for tandem configuration from DNS at

y = 10d
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4.3. Examination of model prediction

The main purpose of the model described in section 2 is to obtain predictions408

of sensor output signals (i.e., beam deflection at the sensors’ tips) for laminar

or locally averaged flow fields at minimum effort, such that an existing DNS410

flow field can be mapped out by fictive sensors placed at any position in the

flow. This procedure can be applied and tested for the present tandem-pillar412

setup using a flow field that contains only one pillar. According to the model the

velocity profiles u(y) are extracted along a line above a point (x, z) starting from414

the ground plate until y = l, transferred to Reloc via equation (5), then to cd(y)

via equation (10) followed by q(y) to finally yield w(y). Results for the maximal416

bending at the tip of the beam are shown in Fig. 17 both as color contours in

Fig. 17a) and as lines in Fig. 17b). These values can be compared with wtip/d418

at those positions where experimental and DNS results are available from the

simulations used for the previous section. It turns out that the model predictions420

are in surprisingly good agreement with the full simulations and experimental

results, however, at almost no extra costs because one DNS containing one pillar422

is sufficient for the model. This is in strong contrast to the full DNS, which needs

a new grid and an extra simulation run for each pillar position. Apparently, our424

model estimates the tip bending of the lee beam for the investigated angle range

between −30o ≤ ϕ ≤ 30o remarkably well. The maximal relative difference of426

the prediction model to DNS is ≈ 3.7 % and of the experiments to DNS ≈ 6.0 %.

The prediction model is now used to quantify the mutual influence of the428

two pillars via changes in the flow field. For this the relative tip displacement

with respect to a beam sensor in the undisturbed cross-flow is used:430

wrel =
(w − wFlatP late)

wFlatP late
∗ 100 [%], (11)

where w is the tip displacement in the presence of a pillar, and wFlatP late the

corresponding value for flat-plate boundary layer flow without pillar. Since the432

amplification factor of the bending scales by the power of 1.6 in relation to

the Reynolds number, a much clearer presentation of the raising effects to the434

bending than to the velocity can be obtained in Fig. 18 and Fig. 19. This
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Figure 17: Comparison of model prediction for tip bending wtip/d with tip bending obtained

from DNS data at discrete lee-ward pillar positions.

relationship is a useful sensitivity metric for designing sensor arrays in order436

to maximize the bending at the tip by varying the elasticity modulus E or the

diameter d for Cauchy numbers Ca ≤ 10.438

Results are visualised in Fig. 18 in such a way that the mutual influence of

one beam on the other is emphasized. Extra bending due to velocity excess with440

wrel > 0 and reduced bending due to velocity defects wrel < 0 are shown in red

and blue, respectively. The neutral line wrel = 0 is found in the contour lines.442

Fig. 18a) is based on the DNS flow field of the first pillar alone, while subfigure

b) uses the flow field for the second (lee) pillar alone. In Fig. 17b) a subset of the444

data shown in Fig. 18a) has already been discussed. According to the iso-line

values, the influence of one pillar on the sensor signal of a second one can be446

quite large, ranging, for instance from −40% in the immediate wake to +25 % to

the side and slightly behind the first (see contours). If the CFD simulation were448

continued beyond the extent of the flat plate from the towing tank experiment,

i.e., beyond x/d = 7.5, one could observe where the isoline wrel = 0 returns450

to z = 0 thus ending the domain of influence. Since this would be very far

downstream it is much better to use iso lines wrel = const to identify those452

areas where the influence exceeds or stays below a certain threshold. These

lines are already given here.454
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In Fig. 15b) a reduced bending of the luv beam has been observed due to

an upstream influence of the lee one. Whether this effect would be due to an456

upstream influence of the second pillar alone can be evaluated from the iso-

contours in Fig. 18b). There is indeed a reduced area of displacement due458

to the stagnation area in front of the second pillar. However, as the contour

line wrel = 0 does not reach x/d = −5 such a trivial effect can be excluded460

via the model. Thus, both cylinders interact in a non-linear manner when their

domains of influence interfere. This is not accounted for by the prediction model462

but the model is very fast and the prediction errors appear acceptable for those

positions where such non-linear interactions are not dominant. A distance of 10464

diameters is already sufficiently large for the model to be valid according to the

comparisons with the full DNS in the previous subsection.466
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Figure 18: Model predictions of relative bending wrel of a virtual sensor beam for a) first

beam at frontal position (luv) and b) beam at rear position (lee).

4.4. Examination of Tandem Beam Configurations

The results of the previous subsection have shown how the prediction model468

can be used for mapping of complex flow fields by placing a virtual beam-sensor
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probe at any position in a given flow field. This possibility is further illustrated470

in Fig. 19 where the four DNS flow fields already shown in Fig. 16 containing

two pillars have been used. The already introduced iso lines and colour contours472

give a clear overview of increased and decreased bending due to local velocity

increases and defects. Much clearer than the colour contours in Fig. 16.474
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Figure 19: Model predictions of relative bending wrel for flow fields containing two pillars.
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5. Conclusions and Outlook

A prediction model of bending of flexible wall-mounted beams in a boundary476

layer flow is presented. This is an update of the prediction model published

by Jana et al. [13] as it differs firstly, by the use of second-order Timoshenko478

beam theory and secondly, by the slightly modified constants for the empirical

correlation of the drag coefficient with Reynolds number that take herein into480

account the wall-effect. The model has been successfully validated with respect

to towing-tank experiments of up-scaled beams (flexible rods) and numerical482

simulations of the flow around rigid cylinders (pillars).

Such wall-mounted flexible beams can be used to probe a flow field with484

the tip deflection of a beam as sensor-signal output. Using the computed flow

field around one pillar a fictive beam has been employed to investigate the486

interaction effects of two sensors as a basic element of a sensor array. These

interaction effects are mainly caused by local changes of the flow field due to488

the presence of a sensor which leads to areas of velocity defects and excesses

compared to the undisturbed flow. If another sensor happens to be in these490

areas its signal output is either accordingly decreased or increased. When the

signal output is expressed as the relative error to a sensor in the undisturbed492

cross-flow, these influences can be clearly visualised with the prediction model

as a second sensor. Areas of increased and decreased sensor-signal output have494

been mapped out by this method for flow fields with two pillars at different

relative positions as well.496

Some interesting conclusions with respect to using sensor tandems as im-

proved flow sensors can be drawn from the present results: if the two sensors498

are placed at a certain distance from each other along the mean flow direction,

like 10d as suggested here, then the luv sensor is not much affected by the500

presence of the lee one and its signal can be used as a reference for the other.

Normally, the luv signal falls below the lee signal since the lee sensor is in the502

wake of the luv. As lateral flows appears, it may happen that the lee signal gets

higher as it comes into areas of high-speed fluid that surround the luv wake.504
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A calibration could be derived from results like those shown in Fig. 17b) such

that the sensor pair can be calibrated to measure the yaw angle of mean flow506

direction relative to the axis of the tandem. The velocity magnitude is still

obtained via the tip displacement of the luv sensor. The directional sensitivity508

of a sensor pair could also be exploited by combining a single sensor with a

passive structure (e.g., a rigid pillar) in its luv, such that the sensor is in the510

wake of the obstacle in the reference position. Then, if sidewinds occur such

that the lee sensor leaves the wake, there will be a large increase of sensor sig-512

nal which is much easier to detect than changes of flow direction using a single

sensor element alone. A rough estimate yields a three-times higher sensitivity514

of such a tandem pair against a single sensor regarding the detection of yaw

angle. These effects could probably be used to construct sensor arrays which516

are optimized for detecting certain flow events. An according investigation has

already been performed using a modification of the towing-tank setup presented518

here. Results of these investigations will be published in a separate article.

The prediction model has been validated here for cross flows with a bound-520

ary layer thickness in the order of the sensor length l. In future we shall return

to applications where such sensors are applied to measure instantaneous wall-522

shear stress fields and detect wall-events in turbulent flows. For that purpose

the sensors will have lengths in the order of the thickness of the viscous sublayer524

and they will encounter velocity profiles similar to plane Couette flow. For that

purpose the prediction model must be re-calibrated for plane Couette flow. Ear-526

lier practical applications of flexible micro-pillars in turbulent boundary layers

as WSS sensors have already used plane Couette flow for calibration of the tip528

displacements with respect to the wall shear stress magnitude, cf. [1]. Using

the prediction model together with DNS of the investigated flows will be helpful530

to understand the connection of near-wall events and wall shear signals. The

model will then be used to device sensor arrays which ‘fire’ when a specific event532

occurs. Such information is important for flow control if a control actuator is

to be used that is optimized for such an event. The idea behind this concept is534

similar to the situation in biology where a predator senses his prey in complete
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darkness solely on the basis of optimized, sudden sensor signals which might536

come from specifically designed and arranged sensor hairs on his skin.
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