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ABSTRACT 

The behavior of Fiber-Reinforced Polymer strengthened Reinforced Concrete (FRP RC) members 

under shear is still not fully understood due to the complexity associated with the behavior. The 

main reason is the lack of accurate stress strain relationships for the components constituting the 

composite members. This paper presents the experimental and analytical investigations of stress 

strain relationships of concrete and steel in FRP RC members under uniaxial tension. These 

stress strain relationships are required in the equations of the softened truss model theory to 

predict the shear behavior of the FRP RC element. Thirteen full scale FRP RC prismatic 

specimens with different FRP, steel reinforcements and FRP wrapping schemes were tested. The 

results show that the tensile behavior of the concrete and steel was altered due to the externally 

bonded FRP sheets. Modified analytical expressions were proposed taking into account the 

interaction between the materials. Moreover, as a key issue in serviceability, the crack spacing 
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and crack width were also presented. The observed results were compared with the existing code 

provisions. 

KEYWORDS: FRP; uniaxial tensile loading; reinforced concrete; stress strain relationships; 

crack spacing; crack width 
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1. INTRODUCTION 

Fiber-Reinforced Polymer (FRP) materials have being widely used in civil engineering 

applications for more than three decades. Well established analytical models are already 

available for FRP strengthened beams and columns under flexural and axial loadings. However, 

the behavior of such members under shear stress field is still under investigation due to the high 

level of complexity associated with the shear behavior (Zararis 2003). Most of the available 

analytical models for predicting the shear behavior of FRP RC members resulted in relatively 

large discrepancies when compared to experimental results (Belarbi et al. 2011). The most 

important reason for this is the lack of accurate stress strain relationships for FRP RC elements. 

In the previous developed models and design codes, the shear contributions of concrete, internal 

steel reinforcements and externally bonded FRP reinforcements were derived independently. 

However, the high level of interaction between these materials should be considered 

(Bousselham and Chaallal 2008; Chen et al. 2010). To accurately predict the behavior of FRP 

RC elements in shear, the stress - strain relationships of each component and the interactions 

among them have to be carefully investigated. 

Stress - strain relationships of concrete, steel and FRP in tension are required in the equations of 

theories needed to predict the behavior of the FRP RC element under shear. It has been observed 

by several researchers that the presence of the externally bonded FRP typically alters the crack 

patterns and bond condition of the member under uniaxial tensile load, which leads to the change 

of the main characteristics of the stress - strain relationships of concrete and steel reinforcements 

(Ueda et al. 2002; Ceroni et al. 2004; Farah and Sato 2011). In this paper, these stress - strain 

relationships were studied by testing thirteen full-scale FRP RC prismatic specimens. On the 

basis of the stress - strain relationships in Softened Membrane Model (SMM), the modified 
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mathematical expressions for concrete and steel in uniaxial tension were proposed. The effects of 

the FRP reinforcement ratio, steel reinforcement ratio, and the wrapping scheme were studied. 

Although most frequently neglected by researchers, shrinkage of concrete was identified as 

another important factor that affects the tensile behavior of the member (Bischoff 2001; 

Kaklauskas et al. 2009; Kaklauskas and Gribniak 2011). In this paper, shrinkage has been 

considered in the derivation of the stress - strain relationships. 

Moreover, as a key issue to warrant the functionality of the FRP RC members in serviceability 

state, the knowledge of crack spacing and crack width is still not fully developed (Ceroni and 

Pecce 2009). Several codes provide formulas to calculate crack width for RC elements in 

serviceability conditions, including EC2-04, ACI 318-95, JSCE 2001, and CSA 2004. However, 

limited resources are available for the crack width and spacing predictions in design codes for 

FRP - strengthened RC structures (Lee et al. 1999; Sato et al. 1999; Yoshizawa et al. 1999; Tripi 

et al. 2000; Matthys 2000; Ueda et al. 2002; Ceroni and Pecce 2009). The only available code 

formula for the prediction of mean crack spacing and width in FRP - strengthened RC members 

is presented in fib Bulletin 14 (fib 14 2001), which is based on the work presented by Matthys 

(2000). In this paper, the crack spacing and width were captured by a digital image correlation 

(DIC) system, ARAMIS (GOM MbH., Germany). The comparison between experimental results 

and the predictions from several codes and provisions are presented and discussed. 

2. EXPERIMENTAL PROGRAM 

Thirteen full-scale FRP RC specimens were tested under uniaxial tensile loading. Fig. 1 presents 

the test setup and dimensions of the specimens. The specimens were 1397 mm long prisms with a 

cross section of 257 mm × 178 mm. The rebar was welded onto a pre-embedded connector insert 

that was bolted to a connector yoke. At each end of the specimen, two hydraulic actuators with a 
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total capacity of 1780 kN were used to apply tensile loading to the specimens through the pin 

connections on the connector yokes. FRP sheets with a width of 203 mm were applied on two 

opposite sides of the specimen. To prevent the premature failure at the loading zone, several 

confining plates were installed at the end region of the specimen. Two Linear Variable 

Differential Transformers (LVDTs) were installed on North and South side to measure the 

average deformation of the specimen. In order to monitor the effect of bending, two additional 

LVDTs were installed on the top and bottom surface of the specimen. Strain Gauges (SG) were 

applied on the rebar and FRP sheets to monitor the local strains along these materials. 

Three different wrapping schemes were used, including Side Bond (SB), Fully Wrap (FW) and U-

wrap with FRP Anchors (FA), as shown in Fig. 2a-2c. For simplicity, U-wrap with FRP anchor 

was referred to as FRP Anchor (FA) in this paper. The FRP anchor was fabricated by a bundle of 

the same carbon fiber as the FRP sheets to provide compatibility between the materials used. 

After saturating the FRP anchor into epoxy resin, one end of the anchor was inserted through a 

pre-drilled hole on the concrete surface, and the fibers on the other end were then fanned out on 

top of the FRP sheet as shown in Fig. 2c. 

Standard material tests were conducted to obtain the mechanical properties. Type III cement was 

used for concrete casting, standard 152 mm × 305 mm cylinders were tested under compression as 

per ASTM C39. Grade 60 ASTM A706 low-alloy steel deformed bars were used as internal 

reinforcements. The FRP sheets were made of unidirectional carbon fibers with the material 

properties determined from coupon tests according to ASTM D3039. The wet lay-up system was 

used for installation of FRP sheets. The specimen was grinded, sandblasted and power washed to 

provide proper concrete surface conditions that would develop the necessary bond strength 

between the concrete and FRP sheets. Putty and primer were applied first on the surface, the 
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sheets were then impregnated by epoxy resin and applied in-situ. Specimens were then cured at 

least 72 hours before testing. Pull-off tests were carried out to verify proper bond strength as per 

ASTM D7522. The tensile strength p  obtained from the pull-off tests shall be at least 1.4 MPa 

as per ACI 440.2R-08. Details of the material properties are presented in Table 1. The specimens 

are identified by steel rebar sizes (#3, #4, #5), FRP thicknesses (0.6 mm and 1 mm, i.e., 0.025 in 

and 0.040 in), and wrapping schemes (Fully Wrap, Side Bond, U-wrap with FRP Anchor). As an 

example: S4-025-SB stands for the specimen with #4 rebar, 0.6 mm (0.025 in) thick FRP sheet 

and Side Bond wrapping scheme method. REF-R3/R4/R5 are reference specimens with #3, #4 

and #5 rebars respectively. The shrinkage strains for concrete and steel reinforcements in each 

specimen were also shown in Table 1, the details of the calculation are presented in the following 

section. 

A digital image correlation (DIC) system, ARAMIS (GOM MbH., Germany) was used to obtain 

the displacement and deformation field on one side of the specimen. Through this DIC-based non-

contact measurement system, the crack spacing and crack width of the specimen were captured in 

real time. Load was measured with the load cells installed on each hydraulic actuator. Testing 

initially started using load control up to first cracking and then switched to displacement control 

until failure of the specimen. 

3. AVERAGE STRESS STRAIN RELATIONSHIP OF CONRETE IN TENSION 

The applied tensile force P  is resisted by concrete, steel and externally bonded FRP sheets. In 

the pre-cracking stage, steel, FRP, and concrete are elastic. The cracking strength of concrete is 

determined by: 
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cr
cr s s cr f f cr

c

P
f E E

A
       (1) 

where s  and f  are the reinforcement ratios of steel and FRP, respectively; sE  and fE  are the 

modulus of elasticity of steel and FRP, respectively; cr  is the cracking strain in the specimen 

and 
crP  is the cracking load; 

cA  is the gross area of the cross-section. It was found that the best 

expressions that fit the test results are: 

'0. MP )3 ar cc ff  （  (2) 

'3900 MPa)c cE f （  (3) 

These equations were first proposed by Belarbi and Hsu (1994). Fig. 3 shows the comparison 

between the experimental results and Eqns. (2) and (3). 

In the post-cracking stage, the stress distribution along the length of the member was altered. At 

the crack location, the tensile stress was carried only by FRP and steel. Between the cracks, the 

tensile stress was transferred to concrete gradually through the bond action between concrete and 

reinforcements (steel and FRP). Since the concrete cracked at a lower level of strain, the steel 

and FRP are still in the elastic range and therefore the calculations of average stresses are given 

as follows: 
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where 
s

  and 
f

  are the average stresses of steel and FRP, respectively;  s
x  and  f

x  are 

the local strains for steel and FRP at a distance x  from the crack, respectively; 
1
  is the average 

strain of the member (considering the crack width); L  is the length between two cracks. 

Hence, the total applied tensile load 

1 1 /( )s s f f c cP E E A        (6) 

Average stress in concrete can then be calculated from Eqn. (6) as: 

1 1c s s f f

c

P
E E

A
        (7) 

In this paper, the short-term (creep effect insignificant) shrinkage effect was considered using the 

approach proposed by Kaklauskas and Gribniak (2011). A fictitious axial force was proposed to 

evaluate the effect of the shrinkage on the specimen. Based on this approach, the shrinkage 

strains in the concrete and steel can be expressed as: 

 

,
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where 
sh
  is the shrinkage strain in a plain concrete specimen. Gribniak (2009) suggested to 

calculate the initial shrinkage strain 
sh
  of concrete by Eurocode 2 method. The same approach 

was applied in this paper to account for the effect of shrinkage for each specimen. Details of the 

shrinkage strain are presented in Table 1. 

3.1 Experimental results for concrete in tension 
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With the load P  and the average strain 
1
  measured from the test, the average stress strain 

relationships of concrete in tension were obtained, see Fig. 4. The average stress 
c

  was 

normalized by the tensile strength 
crf  of the specimen.  

Fig. 4a and 4b indicate that the FRP reinforcement enhanced the descending portion of the stress 

strain curve when compared to the reference specimen. It could be also stated that the increase in 

tension stiffening is more significant in specimens with lower FRP reinforcement ratio. Similar 

conclusions were also put forward by other researchers (Farah and Sato 2011) and explained as 

below: the average concrete stress is developed by bond actions between concrete and the 

reinforcements (FRP and steel). When the specimen is strengthened with smaller amount of FRP, 

the bond stress between FRP and concrete increases while the bond stress between steel and 

concrete decreases, the increase of the FRP bond is dominant so the tension stiffening increases 

compared to un-strengthened RC elements; when the amount of FRP reinforcements increases, 

the crack spacing decreases, which caused a greater deterioration of steel bond, this deterioration 

becomes dominant and caused a decrease of tension stiffening of concrete. The same 

phenomenon was also observed in the author’s tests that the crack spacing decreases with the 

increase of the FRP reinforcement ratio; detail information of cracks is presented in the 

following section of this paper. Fig. 4c and 4d show that the tension stiffening is more evident in 

specimen strengthened with fully wrap method than FRP anchor and side bond. This could be 

attributed to the greater increase of the bond action between FRP sheets and concrete with fully 

wrap as compared to the cases with FRP anchor and side bond. It was also observed from Fig. 4e 

and 4f that the enhancement of descending portion due to FRP is slightly more significant in the 

specimens with higher internal reinforcement ratio. 
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3.2 Proposed equations for concrete in tension 

On the basis of the test results, mathematical expressions for concrete in tension were proposed, 

see Eqns. (10) and (11).  

1 1                 when c c crE      (10) 

1

1

      when 
 

f

cr
c cr crf




  



 
  

 
 (11) 

The chosen format of the tension stiffening model was first proposed by Tamai et al. (1987) and 

verified by Belarbi and Hsu by testing 17 large scale RC panels (1994), f  was determined to be 

0.4 for un-strengthened RC elements. Based on the results in previous section, f  was assumed 

to have a format as: 

 

/f w f sK K   (12) 

where wK  and /f sK  are two factors considering the effects of wrapping scheme and FRP/steel 

stiffness ratio, respectively. 

With mathematical regression of the test results using the proposed format in Eqn. (11), the 

experimental values of ,expf  were obtained. The relationships between ,expf  and the wrapping 

scheme as well as the FRP/steel stiffness ratio are shown in the Fig. 5a and 5b. For simplicity, 

wK was assumed to be 0.9, 1 and 1.6 for FW, FA and SB wrapping scheme, as shown in Eqn. 

(13). By regression of the result shown in Fig. 5b, /f sK  was found to best fit Eqn. (14). The 

comparison of ,expf  and the predictions of Eqn. (11)-(14) is shown in Fig. 5c. 



11 

 
1.6,              Side Bond

1,              FRP Anchor

0.9,              Fully Wrap

wK




 

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 (13) 

0.25 0.15
f f

f

s s

E
K

E





 
  

 
 (14) 

The value of wK  is assigned to describe the effect of different wrapping schemes, as shown in 

Fig. 4c and 4d. As for /f sK , it can be observed from Fig. 5b that the proposed equation was 

verified in the range where /f f s sE E   is between 0.25 and 1.11. The verification of the 

boundary value for the proposed equation requires more test results. Fig. 6 shows the comparison 

between some test results and the proposed equations. An acceptable level of agreement was 

observed. 

4. AVERAGE STRESS STRAIN RELATIONSHIP OF STEEL IN TENSION 

The stress strain curve of the steel embedded in concrete is quite different than that of a bare 

rebar; a reduction of yielding stress was observed by several researchers (Okamura et al. 1985; 

Shima et al. 1987; Tamai et al. 1987; Belarbi and Hsu 1994). Belarbi and Hsu proposed a 

simplified bilinear expression as shown in Eqn. (15)-(20). A so-called apparent yield stress ' 
y

f  

was proposed to describe the reduction of yielding stress.  

'                                                                s s s s yf E      (15) 

    '
0.91 2 0.02 0.25             

s y s ss yf B f B E        (16) 

' '
/

y y s
f E   (17) 
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y y
f fB  (18) 

1.5
 

1
cr

ys

f
B

f


 
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 

 (19) 

   '
0.31 MPa    and    0.15% 

cr c sf f    (20) 

The comparison between the stress strain relationships of steel in FRP RC element and those of 

bare rebars is shown in Fig. 7a-7c. The results show that the apparent yielding stress was altered 

due to the existence of the FRP. It can also be observed that the difference between the yield 

stress of bare rebar and apparent yield stress becomes smaller with the increase of FRP stiffness. 

This effect is more evident for #3 rebar compared with #4 and #5 rebar. This can be explained 

that in the specimen with a smaller internal steel reinforcement ratio, the FRP tends to work 

more effectively in crack width control. As a result, the local yielding of the rebar at the crack 

location was postponed, which leads to an increase of the apparent yield stress. Based on this 

phenomenon, the steel reinforcement ratio   s  in Eqn. (19) was proposed to be replaced by a new 

ratio called equivalent reinforcement ratio   e , which considered the contribution of FRPs. The 

following equations were proposed to calculate   e : 

e s f f
n     (21) 

f

f

s

E
n

E
  (22) 

Fig. 8 shows the comparison between the proposed equations and the test results. Since #4 and 

#5 rebar have no yielding plateau, the stiffness of the post-yielding portion for the specimen with 
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#4 and #5 rebar was considered same as the post-yielding stiffness of the respective bare rebar. 

Fig. 8 shows an acceptable level of agreement between the proposed model and the test results. 

 

5. COMPARISON OF THE LOAD STRAIN CURVES 

To validate the proposed stress - strain relationships of concrete and steel in tension, comparison 

of the load strain curves between the proposed model and test results was shown in Fig. 9. It can 

be observed that the model predicted the load - strain curve quite well. 

6. CRACK SPACING AND CRACK WIDTH 

At serviceability conditions, in addition to the stress transfer between steel rebar and the 

surrounding concrete, the stress transfer between the externally bonded FRP sheet and the 

concrete substrate significantly modifies the cracking behavior. Also, the number of cracks and 

crack spacing change, depending on the bond behavior at the concrete-FRP interface (Smith and 

Teng 2002), i.e. if number of cracks increases, crack spacing decreases and therefore crack width 

decreases. The development of cracks is progressive and as the load increases new cracks will 

form until a stabilized cracking condition is reached. At this stage, no new cracks will develop 

because the tensile stress in concrete between two cracks is smaller than the tensile strength of 

concrete (Ceroni et al. 2004). In this paper, the crack characteristics including crack width, 

number of cracks, and spacing were all monitored and measured using a DIC system (ARAMIS) 

at the conducted experiments.  

In FRP RC members, average crack widths are generally smaller than for un-strengthened 

members at the same smeared strain level (Fig. 10), due to the additional bond action developing 

at the FRP-concrete interface which reduces the crack spacing. As shown in Fig. 10, fully wrap 

and U-wrap with FRP anchor wrapping schemes provide better control of crack width as 
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compared to side bonding. Furthermore, the thinner FRP (0.6mm, 0.025 in) provides better crack 

control compared to the thicker FRP (1mm, 0.04 in). It can be concluded that the fully wrap 

method with thinner FRP shows a better behavior in terms of crack control compared to the other 

wrapping schemes and FRP thicknesses. As shown previously, the same conclusion was reached 

in terms of tension stiffening.  

Generally, it is assumed that all the deformation of the member when a crack is formed is 

accommodated in that crack. The crack width is primarily a function of the deformation of the 

reinforcement and concrete between two adjacent cracks (fib 40 2007).  When all cracks have 

formed, the crack width is given by the following relationship, which is based on compatibility: 

rm mw S   (23) 

Where w is the average crack width; 
rm

S  is the average crack spacing and 
m
  is the average 

strain. In this paper, the available code guidelines for crack spacing in RC members, EuroCode 

EC2-92 (1992), EuroCode EC2-04 (2004) and for FRP RC members, fib14 (2001) are reviewed 

in order to determine their accuracies for RC elements strengthened with FRP sheets. To 

calculate the crack spacing in RC members, EC2-92 (1992) proposed the following equation: 

1 250 0.25rm

eff

S K K



   (24) 

Where 1K  is the bond coefficient equal to 0.8 for deformed bars and 1.6 for plain bars; 2K  is the 

coefficient to take into account the type of loading equal to 0.5 for bending and 1.0 for pure 

tension;   is the diameter of steel bar; and eff  is the effective reinforcement ratio. 
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In EC2-04 (2004) the following equation was proposed to evaluate the maximum crack spacing 

for RC elements: 

, 1 23.4 0.425r max

eff

S c K K



   (25) 

Where c  is the concrete cover and 1K , 
2K , , and eff are defined same as in EC2-92 (1992). It 

was found experimentally that a reasonable estimate of the characteristic crack width is obtained 

if the maximum crack spacing is assumed to be 1.7 times the average crack spacing (EC2-04). 

Therefore, based on EC2-04, the average crack spacing, 
rm

S , can be calculated as follows: 

1 22 0.25rm

eff

S c K K



   (26) 

Ceroni et al. (2004) proposed the following expression to consider the effect of externally 

bonded FRP in EC2 equations: 

,

/s f f s

eff

c eff

A A E E

A



  (27) 

Where sA  is the area of steel reinforcement; fA  is the area of the FRP reinforcement; fE  and 

sE  are the Young’s modulus of FRP and steel respectively; ,c effA  is the effective area of concrete 

in tension. 

The following equation was presented in fib 14 (2004) to calculate the average crack spacing in 

RC members strengthened with FRP sheets or laminates.  

,2 ctm c eff

rm

sm s fm f

f A
S

u u 



 (28) 
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Where 
ctmf  is the mean tensile strength of concrete, 

su  and fu  are the perimeters of the steel 

bar and FRP sheets bonded to concrete, 1.8fm ctmf   (CEB-FIP Model Code 1990) and 

1.25sm ctmf   (Holzenkampfer 1994) are the bond stresses along the concrete-steel interface and 

concrete-FRP interfaces, which are assumed constant. 

The experimental results of the tests presented herein, are compared with the aforementioned 

code guidelines in terms of crack spacing in order to review their effectiveness. In Fig. 11. The 

experimental values of mean crack spacing, ,rm expS , are compared with the design values 

provided by EC2-92 (1992), EC2-04 (2004) and fib14 (2001). 

In order to assess the reliability of the code predictions, the mean percentage of deviation, σ%, 

the average ratio of code predictions to experimental results, δ, the standard deviation of variable 

δ, Coefficient of determination, R
2
, and correlation coefficient, r, are shown in Table 2. 

The statistical parameters reported in Table 2 show that for crack spacing the code guidelines of 

EC2-04 and fib 14 present a larger scatter compared to the EC2-92 prediction. The mean variable 

of parameter δ equal to 0.89 and 0.88 for EC2-92 and EC2-04 respectively, shows the 

underestimation of the experimental results. As in fib 14, δ equals 1.12, which shows the 

overestimation of the experimental results. Also, evaluating the R
2
 and r values for EC2-92 

compared to EC2-04 and fib 14 shows that EC2-92 predictions show a better agreement with the 

experimental results. The R
2 

value for fib 14 equals -26.23, which shows that the prediction are 

very scatter compared to the Euro Code guidelines. This can be due to the fact that in fib 14 

predictions, the FRP reinforcement ratio is not considered as an effecting parameter. 

Although the EC2-92 formulation, compared to the EC2-04 and fib 14 guidelines, for crack 
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spacing shows a better prediction in FRP RC members, further research is necessary in order to 

have a more accurate prediction of the crack spacing and ultimately crack widths. The main 

parameters influencing the development of cracks such as rebar diameter, effective area of 

concrete, concrete cover, FRP reinforcement ratios, and parameters such as wrapping scheme 

should be considered in the development of a new expression for the prediction of crack spacing 

and crack width. 

7. CONCLUSIONS 

This paper presented the experimental and analytical investigations of the stress - strain 

relationships of steel and concrete in FRP RC element under uniaxial tension load. The main 

conclusions are as follows. 

 The existence of FRP enhances the tension stiffening effect of concrete in FRP RC element. 

The magnitude of the increase is affected by the FRP/steel reinforcement ratio and the 

wrapping scheme. 

 The apparent yielding stress was altered due to the externally bonded FRPs. The difference 

between the yield stress of bare rebar and apparent yield stress becomes smaller with the 

increase of FRP stiffness. 

 Mathematical expressions were proposed for both concrete and steel in tension taking into 

account the interaction between the materials. The proposed equations provide an acceptable 

prediction when compared to the experimental results. 

 The EC2-92 formulation, compared to other guidelines for crack spacing, shows a better 

prediction in FRP RC members. Further research is necessary in order to have a more 

accurate prediction of the crack spacing and ultimately crack widths, considering all the main 
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parameters which affect the cracking phenomena in such members.  
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Figures 

 

 

Fig. 1. Test setup and specimen layout 
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a) Side Bond     b) Fully Wrap 
 

 
c) U Wrap with FRP Anchor 

 

Fig. 2. Wrapping scheme and anchorage system detail 

  



25 

     

Fig. 3. Comparison between the test results and Eqn. (2) and (3) 

 

 

 
                         a)                                           b)                                            c) 

 

 
                         d)                                           e)                                             f) 

 

Average Tensile Strain (mm/mm) 

 

Fig. 4. Average stress strain curve of concrete 
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        a)                                                                b) 

 

              c) 

Fig. 5. Parameters studies of the tension stiffening equations 
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Average Tensile Strain (mm/mm) 

 

Fig. 6. Comprasion of the experimental results and Eqns. (10)-(14) 
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        a)             b) 

 

 c) 

Fig. 7. Stress strain relationships of steel in the test 
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Fig. 8. Comparison of the stress strain relationships in steel  
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Fig. 9. Comparison of the load strain relationships 
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Fig. 10. Crack width details 
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a) 

 
b) 

 
c) 

Fig. 11. Comparison of experimental and code values of crack spacing:(a) EC2-

92;(b) EC2-4;(c) fib14(2001) 
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Tables 

 

Table 1. Summary of the Material Properties 

Specimen 

Name 

'

cf

(MPa) 

s

(%)

syf

(MPa) 

sE

(GPa) 

f

(%)

fuf

(MPa) 

fE

(GPa) 

p

(MPa) 

 

,c sh
  

(m/m) 

 

,s sh


(m/m) 
REF-R3 42 0.31 458 189 0 — — — 3 155 

REF-R4 42 0.55 462 190 0 — — — 6 147 

REF-R5 42 0.87 469 195 0 — — — 9 134 

S3-025-FA 46 0.31 458 189 0.56 827 83 4.2 3 141 

S3-040-FA 46 0.31 458 189 0.90 876 72 4.2 3 156 

S4-025-FA 48 0.55 462 190 0.56 827 83 4.7 5 145 

S4-040-FA 46 0.55 462 190 0.90 876 72 4.2 6 182 

S5-025-FA 46 0.87 469 195 0.56 827 83 4.2 9 155 

S5-040-FA 48 0.87 469 195 0.90 876 72 4.7 12 211 

S4-025-SB 42 0.55 462 190 0.56 827 83 3.8 6 156 

S4-040-SB 48 0.55 462 190 0.90 876 72 4.7 6 175 

S4-025-FW 42 0.55 462 190 0.56 827 83 3.8 6 161 

S4-040-FW 48 0.55 462 190 0.90 876 72 4.7 7 192 
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Table 2. Statistical Parameters of Code Guidelines and Experimental Results 

Comparison 
 

Crack spacing n σ% δ σδ R
2
 r 

Srm (EC2-92) 13 19.42 0.89 0.16 0.67 0.86 

Srm (EC2-04) 13 24.97 0.88 0.22 -1.37 0.46 

Srm (fib 14) 10 21.39 1.12 0.17 -26.23 0.39 

 


