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Modelling the probability of failure on demand (pfd) of a 1-
out-of-2 system in which one channel is “quasi-perfect” 

 
Xingyu Zhao, Bev Littlewood, Andrey Povyakalo, Lorenzo Strigini, David Wright  

Centre for Software Reliability, City University London 
 

Abstract 
Our earlier work proposed ways of overcoming some of the difficulties of 
lack of independence in reliability modeling of 1-out-of-2 software-based 
systems. Firstly, it is well known that aleatory independence between the 
failures of two channels A and B cannot be assumed, so system pfd is not a 
simple product of channel pfds. However, it has been shown that the 
probability of system failure can be bounded conservatively by a simple 
product of pfdA and pnpB (probability not perfect) in those special cases 
where channel B is sufficiently simple to be possibly perfect. Whilst this 
“solves” the problem of aleatory dependence, the issue of epistemic 
dependence remains: An assessor’s beliefs about unknown pfdA and pnpB 
will not have them independent. Recent work has partially overcome this 
problem by requiring only marginal  beliefs – at the price of further 
conservatism. Here we generalize these results. Instead of “perfection” we 
introduce the notion of “quasi-perfection”: a small pfd practically equivalent 
to perfection (e.g. yielding very small chance of failure in the entire life of a 
fleet of systems). We present a conservative argument supporting claims 
about system pfd. We propose further work, e.g. to conduct “what if?” 
calculations to understand exactly how conservative our approach might be 
in practice, and suggest further simplifications. 

 

KEY WORDS: Fault-free software; program perfection; quasi-perfection; 
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1 Introduction and background 
Software-based systems are used in an increasing number of applications where their 
failures may be very costly, in terms of monetary loss or human suffering. As a result, 
such systems often have very high dependability requirements. For example, for 
flight-critical avionics systems in civil transport airplanes there is a requirement of 
less than 10-9 probability of failure per hour of operation (FAA 1988). Some demand-
based systems have similarly stringent requirements: e.g. the claimed probability of 
failure on demand (pfd) for the combined control and instrumentation safety systems 
on the UK European Pressurised Reactor (UK EPR) is 10-9 (HSE 2011). To achieve 
this kind of ultra-high dependability is not only a difficult task of design and 
implementation, but poses even harder problems of assessment. Direct black-box 
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operational testing, for example, would require infeasible times on testing (Littlewood 
and Strigini 1993). 
Design diversity has been proposed as a promising way of achieving high 
dependability for software-based systems. The intuitive explanation is that if we force 
two or more systems to be built differently, their resulting failures may also be 
different. So if, in a 1-out-of-2 protection system (1-o-o-2 system), channel A fails on 
a particular demand, there may be a good chance that channel B will not fail. Thus, 
diversity in computer-based, safety-critical systems is popular in some industrial 
sectors (e.g. avionics, rail, nuclear), and mandated or highly recommended, for highly 
critical functions, by various standards and regulators (Wood and Belles 2010). Some 
of these systems have exhibited remarkable dependability in operation. For example, 
the safety-critical flight control systems of Airbus fleets have experienced massive 
operational exposure (Boeing 2013) with apparently no critical failure (note, however, 
that these continuously operating systems have a different architecture from the 1-o-o-
2 on-demand1 systems we treat in this paper). Of course, an absence of accidents due 
to software failures could be due to extreme rarity of the latter (as these system are 
built to very stringent quality standards) rather than their having occurred and having 
been tolerated thanks to diversity. But experience gives no evidence against the 
current views that support the use of diversity (Littlewood, Popov et al. 2001). 
On the other hand, evidence like this is only available after the fact. Assessing the 
reliability of such a design-diverse system before it is deployed remains a very 
difficult problem. It is difficult because it requires an understanding of (and a formal 
representation of) two different kinds of uncertainty: aleatory uncertainty and 
epistemic uncertainty. Informally, the first of these concerns uncertainty in the world 
– in our case, uncertainty about the channel failures and their impact upon system 
failure. Because it is a property of “the world out there”, this kind of uncertainty can 
be thought of as irreducible. In contrast, epistemic uncertainty can be thought of as 
uncertainty about the world – for example, about the values of parameters in our 
model of aleatory uncertainty in the world. It may, for example, involve statistical 
inference; it may thus be reducible (by acquiring more evidence), but generally cannot 
be eliminated completely.  
We begin by looking first at the problem of aleatory uncertainty concerning 
dependence of channel failures in our problem. We know, from experimental work 
(Knight and Leveson 1986, Eckhardt, Caglayan et al. 1991) and theoretical modeling 
(Eckhardt and Lee 1985, Littlewood and Miller 1989) that we cannot claim in general 
that there is independence between the failures of multiple software-based channels of 
a system. Thus for a 1-o-o-2 system, if channel A fails on a randomly selected 
demand, this may increase the likelihood that the demand is a “difficult” one and so 
increase the likelihood that channel B also will fail. So even if we know the marginal 
probabilities of failures of the two channels from extensive testing, say PA and PB, we 
cannot simply multiply them and claim the system pfd is PA × PB. 
In recent work by Littlewood and Rushby (Littlewood and Rushby 2012), hereafter 
LR, the authors proposed a new way to reason about the reliability of a special kind of 
1-o-o-2 systems architecture. Here channel A is conventionally engineered and 

                                                
1 The requirements for critical flight control systems are expressed in terms of a continuous-time failure rate – i.e. 

10-9 per hour of operation (FAA 1988). Interestingly, though, accident statistics are reported in (Boeing 2013) in 
terms of numbers of departures, which equate to numbers of flights. It could be argued that a probability of 
failure per demand, ie. per flight, is the most appropriate way of expressing a reliability requirement here.. 
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presumed to be sufficiently complex that it will contain design faults. It must 
therefore be assumed that it will (eventually) exhibit failures, so its reliability will be 
expressed as a claim about its probability of failure on demand (say pfdA). Channel B 
on the other hand has been designed to be extremely simple and has been extensively 
analyzed. It is therefore open to a claim of being “possibly perfect”; the claim about 
this channel is consequently a probability of non-perfection, pnpB. Littlewood and 
Rushby show that: 
P(system fails on randomly selected demand | pfdA, pnpB ) £ pfdA ´ pnpB   (1) 

The result depends on the fact that there is conditional independence between the 
events “A fails on a randomly selected demand” and “B is not perfect,” given that  
the probabilities of these events, respectively pfdA and pnpB, are known. This is a 
conservative bound for the system’s probability of failure on a randomly selected 
demand (pfdsys), and the conservatism arises by assuming that if B is imperfect, it 
always fails when A does. The result is useful because it allows multiplication of two 
small numbers to obtain a very small (bound on) pfdsys (cf the product of pfdA and pfdB 
above which has the same intent, but requires the generally unsupportable assumption 
of independence of channel failures). The expectation is that stronger claims about the 
pfd of a system can be made than would be possible via direct, black-box evaluation. 
The LR result, (1), can be seen as “solving” our problem of aleatory uncertainty here 
– concerning in-the-world dependence between failures – but it is, of course, a bound 
on a conditional probability. In reality, an assessor would not know pfdA and pnpB 
with certainty. This brings us to the problem of epistemic uncertainty about the 
numerical values of these model parameters.  
In principle, an assessor could represent his epistemic uncertainty (i.e. his subjective 
beliefs) here via a complete bivariate distribution for the two unknowns. In practice 
people find this kind of thing very difficult, if not impossible. A major source of this 
difficulty concerns, as in the case of aleatory uncertainty above, dependence. Even if 
assessors are able to make informed statements about their marginal beliefs about the 
two parameters, individually, they will usually be unable to say anything about their 
dependence. 
Littlewood and Povyakalo address this problem in (Littlewood and Povyakalo 2013), 
hereafter LP. They obtain results that require only an assessor’s marginal beliefs 
about the individual numbers, i.e. they do not require the assessor to say anything 
about dependence between his beliefs about the two numbers. The price paid here is 
further conservatism, in addition to that arising from the LR result. 
The results of LR and LP, then, have reduced the problem of assessing the pfd of this 
kind of special 1oo2 system to one concerning simply marginal beliefs about the 
parameters pfdA and pnpB. There is a large literature on the assessment of pfd from 
statistical analysis of operational tests, e.g. (Littlewood and Wright 1997), so the first 
of these parameters could be easily assessed, e.g. in terms of a Bayesian posterior 
distribution. That leaves pnpB, which was the subject of our earlier paper (Zhao 2015). 
The question upon which we concentrated in that paper was what can be claimed 
about probability of perfection from seeing many failure-free tests. We develop a 
probability model for this problem, and illustrate it with some numerical examples. 
Our approach starts from the premise that real assessors can generally only provide 
limited prior belief, rather than a complete distribution; for example, a probability 
mass at the origin (representing prior confidence in perfection, which is also required 
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in later sections of this paper), and one percentile for the rest of the distribution. In the 
face of this difficulty, our approach is conservative: from the many (generally an 
infinite number of) distributions that satisfy the limited prior constraints, we choose 
the one(s) that give the most conservative results for the system’s posterior pfd. 
Unfortunately, such results are often very conservative – in fact too conservative to be 
useful. In fact, in the worst case, confidence in perfection does not increase even after 
observing an infinite number of successful tests. We comment that this is because, 
whilst extensive failure-free working may be a result of a program’s perfection, it 
could also be because the program – although not perfect – has a very small pfd. We 
propose some ways around this problem, essentially by pruning the large class of 
allowable prior distributions by excluding ones that seem “unreasonable” in general 
ways. Of course, in a real application, the assessor would need to accept the 
reasonableness of these further constraints on his prior beliefs. 
In the work to be described in the remainder of this paper we propose a different way 
around this difficulty. The idea is to exploit the fact that “perfection” and “extremely 
small pfd” are effectively indistinguishable as explanations for extensive failure-free 
working. We introduce the notion of “quasi-perfection” of a channel: that the pfd of 
the channel is smaller than some small given number For example,  could be 
chosen so that over the entire lifetime of the system (or fleet of systems) there would 
be only a small chance of failure, i.e. the lifetime behavior of the system would be 
anticipated to be identical to that of a perfect one.2 
In this paper we show that for some combinations of parameters, the conservative 
bounds for reliability of a 1-o-o-2 system, based on claims about quasi-perfection of 
one of its channel, are more sensitive to Bayesian update of their parameters and less 
conservative than the bounds based on claims about pure perfection in our earlier 
work. 
The idea in this work is a generalization of an observation by Strigini and Povyakalo 
(Strigini and Povyakalo 2013). The usefulness of probability of perfection transcends 
its application to the LR model of a 1-out-of-2 system: in fact it is a lower bound on 
the probability of failure-free operation of a system over any arbitrarily long period 
of operation (Bertolino and Strigini 1998). The reliability of a program, R(t) – its 
probability of surviving failure-free for time t – satisfies R(t) ≥ P(program is perfect) 
however large t is. Strigini and Povyakalo observed that forms of mathematical 
arguments based on probability of perfection can be extended to using probabilities of 
“quasi-perfection”, a notion that we exploit in what follows. 

2 A new bound for the reliability of a 1oo2 system based on the 
possible “quasi-perfection” of one channel 
Our interest centres on the probability of failure of a 1-out-of-2 system with channels 
A and B. Our knowledge of the channels is such that we shall make a claim about 
probability of failure on demand for channel A (pfdA), and probability of not-quasi-
perfect for channel B (pnqpB). 

                                                
2 Consider the example of a single channel of a nuclear reactor protection system. We might anticipate something 

like 2 demands on the protection system on average per year, with an anticipated lifetime of 50 years. For 99% 
confidence of seeing no failures in the expected 100 demands, should be about 10-4.
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It is useful to start here with an account of the underlying probability model. We shall 
do this via that cliché of elementary probability theory – the random selection of 
coloured balls from urns. 
Consider first urn A. This is filled with balls representing all possible demands that 
the system can encounter. Balls are either white or black. A black ball represents a 
demand that channel A cannot execute correctly, i.e. A fails on such a demand. White 
balls represent demands on which A succeeds. Selection of balls – i.e. demands – is 
determined by the operational profile, and successive selections are statistically 
independent. In general, different balls have different probabilities of selection. For a 
ball randomly selected via the operational profile, the probability that it is black is 
simply the probability of failure on demand of channel A, pfdA. A “frequentist” 
interpretation of this probability is that it is the limiting relative frequency of demands 
for which channel A fails in an infinite sequence of independently selected demands 
Note that in this model some care needs to be taken in the definition of “demand” to 
satisfy the requirement that successive ball-drawings are independent. It is a property 
of the world rather than of the computer system. In the example of the reactor 
protection system, a demand will be a trajectory through the input space (of 
temperatures, pressures, flow-rates, etc), from departure from safe operation to shut-
down. For example, a demand will not simply be a control loop cycle. Demands will 
be separated by long periods of safe operation, so it is reasonable to expect that a 
demand now will be independent of one several months ago.  
Now consider the second urn, B. This is filled with balls representing all possible 
programs that could be developed to solve the problem at hand, using the 
development process that characterizes B. Each such program will be either quasi-
perfect (qp) or not quasi-perfect (nqp). Let white balls represent qp programs, black 
balls nqp programs. The development of a program can now be seen as the random 
selection of a program from this urn. Again, different balls – programs – will have 
different probabilities of selection. For a ball selected at random – i.e. a program 
developed using the process B – the probability that it is black is simply the 
probability that the program is not quasi-perfect, pnqpB. Once again, a frequentist 
interpretation of this probability is that it is the limiting relative frequency of nqp 
programs in an infinite sequence of independently selected (i.e. developed) programs. 
These interpretations of the parameters, pfdA and pnqpB, of course involve thought 
experiments. We can never actually see an infinite number of demands, much less an 
infinite number of programs. Readers may be more comfortable with the limiting 
relative frequency interpretation of pfdA than that of pnqpB. The latter is essentially 
the same idea as that used in LR (Littlewood and Rushby 2012) to define pnpB (the 
probability that channel B is not perfect). The first uses of the notion of “randomly 
selected” program seem to be due to Eckhardt and Lee (Eckhardt and Lee 1985) and, 
in a later generalization, Littlewood and Miller (Littlewood and Miller 1989). In the 
old experiments on multi-version software – see e.g. (Knight and Leveson 1986, 
Eckhardt, Caglayan et al. 1991) – the multiple software versions were modeled as 
random samples from populations of programs.  
For our purposes here, the kind of hypothetical replication of programs, to form the 
population from selection would take place in our thought experiment, would require 
that they all aim to solve this particular problem under examination, using 
development teams of comparable competence and experience, and using the same 
development process (i.e. the same software engineering practices). This allows us to 
interpret the limiting relative frequency of qnp programs in a sequence of selected 
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programs to be the pqnp for this problem, and a similar development team, using the 
same development processes. 
The experiment we conduct now is the independent selection of a ball from urn A and 
a ball from urn B. The events “ball from A is black” and “ball from B is black” are 
then assumed conditionally independent for given values of pfdA and pnqpB (say 
pfdA=pA, pnqpB=pB, respectively).  
In the terminology of our reliability problem: the events “channel A fails on a 
randomly selected demand” and “program B is not quasi-perfect” are conditionally 
independent given pfdA=pA, pnqpB=pB, say. This conditional independence 
assumption is the key to the proof of the theorem that follows. It is similar to the 
conditional independence assumption in LR; in that paper it concerns independence 
between “A fails” and “B not perfect”. 
Such conditional independence is, we believe, a realistic assumption for this situation. 
Imagine that you have built program B (i.e., in our thought experiment, selected it 
randomly from the population of process-B programs). You now execute a randomly 
selected demand on program A. You should not expect the outcome of the demand 
selection to be influenced by the outcome of the B selection. It follows that whether or 
not A fails should not be influenced by whether or not B was quasi-perfect. 
Note that the events “channel A fails on a randomly selected demand” and “program 
B is not quasi-perfect” are not unconditionally independent in general. Informally, 
seeing A fail on a demand may suggest to an assessor that the problem being solved 
by both programs is a “difficult” one, and this may change his subjective belief that B 
will be quasi-perfect. That is, learning something about A’s probability of failure on 
demand (e.g. by seeing an A failure), may tell us something about B’s probability of 
being not quasi-perfect. This is an issue of epistemic dependence between the 
assessor’s beliefs about the model parameters, pfdA and pnqpB, which we shall address 
later in the paper. 
We can now return to the object of our interest: the probability of system failure on a 
randomly selected demand. We begin with the conditional probability of failure given 
pfdA=pA, pnqpB=pB: 
 
Theorem 1 
P(System fails | pfdA = pA, pnqpB = pB ) £.(1- pB )+ pA.pB      (2) 

Proof: 
P(System fails | pfdA = pA, pnqpB = pB )
= P(System fails | A fails, B is nqp, pfdA = pA, pnqpB = pB )´
P(A fails, B is nqp | pfdA = pA, pnqpB = pB )
+P(System fails | A fails, B is qp, pfdA = pA, pnqpB = pB )´
P(A fails, B is qp | pfdA = pA, pnqpB = pB )
+P(System fails | A succeeds, B is nqp, pfdA = pA, pnqpB = pB )´
P(A succeeds, B is nqp | pfdA = pA, pnqpB = pB )
+P(System fails | A succeeds, B is qp, pfdA = pA, pnqpB = pB )´
P(A succeeds, B is qp | pfdA = pA, pnqpB = pB )    (3)

 



1-out-of-2 system in which one channel is “quasi-perfect” 7 

 

and the last two terms on the right hand side of the expansion (3) are zero trivially, 
since if A succeeds the 1-out-of-2 system cannot fail. 
Now, if B is not qp, it is conservative to assume that it fails whenever A does, so the 
first term on the right hand side of the expansion (3) is 
£1´ P(A fails, B is nqp | pfdA = pA, pnqpB = pB )  

= P(A fails | pfdA = pA, pnqpB = pB )´P(B is nqp | pfdA = pA, pnqpB = pB ) 

= pA ´ pB           (4) 

because “A fails” and “B is nqp” are independent given pfdA = pA  and pnqpB = pB . 

The second term in the expansion is  
P(System fails | A fails, B is qp, pfdA = pA, pnqpB = pB )´
P(A fails, B is qp | pfdA = pA, pnqpB = pB )
= P(A and B fail | A fails, B is qp, pfdA = pA, pnqpB = pB )´ pA ´ (1- pB )

 

(where we have relabelled the event “System fails” as “A and B fail”, without change 
of meaning) because “A fails” and “B is nqp” are independent given 
pfdA = pA  and pnqpB = pB .  Now making explicit the conditioning on event “A fails” 
in this expression: 

= P(A and B fail | B is qp, pfdA = pA, pnqpB = pB )´ pA ´ (1- pB )
P(A fails | B is qp, pfdA = pA, pnqpB = pB )

 

and considering in the numerator that “A and B fail” is a subset of “B fails”: 

£ P(B fails | B is qp, pfdA = pA, pnqpB = pB )´ pA ´ (1- pB )
P(A fails | B is qp, pfdA = pA, pnqpB = pB )

 

= P(B fails | B is qp, pfdA = pA, pnqpB = pB )´ pA ´ (1- pB )
pA

 

because “A fails” and “B is qp” are independent given pfdA = pA, pnqpB = pB ; and 
seeing that if B is qp, its probability of failure is ≤ for any (pA,pB): 

£ .pA.(1- pB )
pA

= .(1- pB )          (5)

 

So finally we have, by substituting (4) and (5) into (3): 
P(System fails | pfdA = pA, pnqpB = pB ) £.(1- pB )+ pA.pB   

QED 
 
Note that this result is a generalization of the one in LR (Littlewood and Rushby 
2012): we obtain this earlier result by putting = 

3 Conservative reasoning about the epistemic uncertainty 
The result above concerns what happens at the aleatory level in the model. In practice, 
of course, the parameters of the model will not be known with certainty. Ideally, an 



1-out-of-2 system in which one channel is “quasi-perfect” 8 

 

assessor would describe his epistemic uncertainty about these unknowns – pfdA and 
pnqpB – in terms of a complete bivariate distribution: 
FpfdA , pnqpB

(pA, pB )= P(pfdA £ pA, pnqpB £ pB )      (6) 

The unconditional probability of system failure is then 

P(System fails)= EpfdA, pnqpB
P(System fails | pfdA = pA, pnqpB = pB )( )  

£ EpfdA , pnqpB
.(1- pnqpB )+ pfpA. pnqpB( )  

= .(1- pB )+ pA.pB( )òò dFpfdA, pnqpB
(pA, pB )

      (7)
 

In reality, it is unlikely that a real-world assessor would be willing or able to offer 
such a complete bivariate distribution to represent his beliefs about the unknowns of 
the model. In particular, it is known that people find it hard to express the dependence 
between their beliefs. In this section, therefore, we obtain some results that are based 
only on marginal beliefs; the price paid for this simplification of the assessor’s task is 
further conservatism in the results. These results about quasi-perfection generalise 
those of LP (Littlewood and Povyakalo 2013) about perfection. 
Once again we expect that an assessor will not be able to provide complete subjective 
distributions, even to represent his marginal beliefs about the unknown parameters. 
As in LP, then, the different theorems here give results for the system pfd based on 
different kinds of limited marginal beliefs that the assessor may be able to express 
about the unknown parameters.  

3.1 Conservative bounds on mean system pfd 
Theorem 2 
Assume the assessor could only give us a single percentile of his marginal belief for 
each distribution: 
஺݂݀݌)ܲ ≤ ஺ܲ) = 1 −  ஺                         (8)ߙ
஻݌ݍ݊݌)ܲ ≤ ஻ܲ) = 1 −  ஻                         (9)ߙ
where	0 ≤ ஺ߙ , ஻ߙ ≤ 1, and we assume ஺ܲ ≥  i.e that the value of the assessor’s ,ߝ
 used to ߝ percentile for pfd of the A channel exceeds3 the threshold-(஺ߙ-1)100
define quasi-perfection of the B channel. 
Then 
(௦௬௦݂݀݌)ܧ ≤ ߝ + ( ஺ܲ − (ߝ ஻ܲ + (1 − ஺ܲ) ஻ܲߙ஺ + ( ஺ܲ − 1)(ߝ − ஻ܲ)ߙ஻ + (1 − ஺ܲ)(1 − ஻ܲ)ߙ௠   (10) 

where ߙ௠ = min	(ߙ஺,  ஻). This bound equates either toߙ
(௦௬௦݂݀݌)ܧ ≤ ߝ + ( ஺ܲ − (ߝ ஻ܲ + (1 − ஺ܲ)ߙ஺ + ( ஺ܲ − 1)(ߝ − ஻ܲ)ߙ஻																									(11) 

if	ߙ஺ ≤ ஻ߙ ,  or to 
(௦௬௦݂݀݌)ܧ ≤ ߝ + ( ஺ܲ − (ߝ ஻ܲ + (1 − ஺ܲ) ஻ܲߙ஺ + (1 − 1)(ߝ − ஻ܲ)ߙ஻         (11a) 

if	ߙ஻ ≤    ஺ߙ
(see Appendix for proof). 

                                                
3 A modified but similar bound, which we omit here for brevity, applies in the other, we think less likely, case. 
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Example 1 
The assessor has chosen =10-7 to define quasi-perfection, i.e. if pfdB is smaller than 
this, he will regard channel B to be quasi-perfect.If the assessor is 95% confident that 
pfdA is smaller than 10-5, and 95% confident that pnqpB is smaller than 10-2, we have 
from (11): 

(௦௬௦݂݀݌)ܧ ≤ ߝ + (10ିହ − 10ି଻)10ିଶ + (1 − 10ିହ)0.05 

+(10ିହ − 10ି଻)(1 − 10ିଶ)0.05 ≈ 0.05          (12)  

which is, of course, very conservative. It is easy to see that the value of the mean 
system pfd in (11) is dominated by the smallest doubt, i.e. ߙ஺.  

To overcome this problem, we consider in Theorem 3 a case where the assessor is 
able to provide, in addition to the percentile constraints above, upper bounds for the 
parameters about which he is certain: 

Theorem 3 

If, in addition to the beliefs (8), (9) in Theorem 2, and retaining  assumption ஺ܲ ≥  ,ߝ
the assessor also believes: 
஺݂݀݌)ܲ < ஺ܲ

௎) = 1                          (13) 
஻݌ݍ݊݌)ܲ < ஻ܲ

௎) = 1                         (14) 

That is, he has 1-ߙ஺ confidence that the pfd of channel A is smaller than PA, but he is 
certain that it is smaller than PU

A; and he has 1-ߙ஻ confidence that the pnqp of 
channel B is smaller than PB, but he is certain that it is smaller than PU

B, then we have 
(௦௬௦݂݀݌)ܧ ≤ ߝ + ( ஺ܲ − (ߝ ஻ܲ + ( ஺ܲ

௎ − ஺ܲ) ஻ܲߙ஺ + ( ஺ܲ − )(ߝ ஻ܲ
௎ − ஻ܲ)ߙ஻ + ( ஺ܲ

௎ − ஺ܲ)( ஻ܲ
௎ − ஻ܲ)ߙ௠ 

               (15) 
where ߙ௠ = min	(ߙ஺,  ஻). This bound equates either toߙ
(௦௬௦݂݀݌)ܧ ≤ ߝ + ( ஺ܲ − (ߝ ஻ܲ + ( ஺ܲ

௎ − ஺ܲ) ஻ܲ
௎ߙ஺ + ( ஺ܲ − )(ߝ ஻ܲ

௎ − ஻ܲ)ߙ஻												(15a) 

if	ߙ஺ ≤ ஻ߙ ,  or to 
(௦௬௦݂݀݌)ܧ ≤ ߝ + ( ஺ܲ − (ߝ ஻ܲ + ( ஺ܲ

௎ − ஺ܲ) ஻ܲߙ஺ + ( ஺ܲ
௎ − )(ߝ ஻ܲ

௎ − ஻ܲ)ߙ஻         
(15b) if	ߙ஻ ≤  ஺ߙ
(see Appendix for proof).  
 
Example 2 
This adds the two pieces of “certainty” belief to Example 1. That is, as before, =10-7, 
the assessor is 95% confident that pfdA is smaller than 10-5, and 95% confident that 
pnqpB is smaller than 10-2. Additionally, he is certain that pfdA is no worse than 10-3, 
and pnqpB is no worse than 10-1. Then we have, by substitution into (15): 
(௦௬௦݂݀݌)ܧ ≤ 0.00000519355           (16) 

Clearly this bound, using the two further constraints, is much better than that in 
Example 1, (12). In fact it is more than an order of magnitude better than the product 
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of the assessor’s worst case values for pfdA and pnqpB (respectively, 10-3 and 10-1): 
which is the LR result (i.e. =0) for this worst case situation. 
Of course, the numbers chosen for these examples are merely illustrative, and not 
meant to represent what actual assessors would believe in real-life situations. 
However, the reader may think that the choice of the “certainty” bounds here is itself 
conservative: if an assessor is 95% confident that pfdA is smaller than 10-5, it may be 
reasonable for him to believe it is certainly not two orders of magnitude worse than 
that (and similarly for pnqpB not more than one order of magnitude worse). 
In the previous theorems, the assessor expressed his beliefs about the parameters in 
terms of (a small number of) percentiles of his marginal distributions. The following 
theorem treats the case where the assessor’s limited beliefs are expressed in terms of 
the first two moments (mean and variance) of these distributions.  
 
Theorem 4 
(௦௬௦݂݀݌)ܧ ≤ ߝ]ܧ × (1 − (஻݌ݍ݊݌ + ஺݂݀݌ ×  [஻݌ݍ݊݌

= ߝ − ߝ × (஻݌ݍ݊݌)ܧ + ஺݂݀݌)ܧ ×  (஻݌ݍ݊݌

< ߝ − ߝ × (஻݌ݍ݊݌)ܧ + ඥ(ܧ(݂݀݌஺)ଶ + ଶ(஻݌ݍ݊݌)ܧ)((஺݂݀݌)ݎܸܽ +  ((஻݌ݍ݊݌)ݎܸܽ
               (17) 
< ߝ − ߝ × (஻݌ݍ݊݌)ܧ + 	(஺݂݀݌)ܧ) + 	(஻݌ݍ݊݌)ܧ)((஺݂݀݌)ܦܵ +  ((஻݌ݍ݊݌)ܦܵ
               (18) 
(see Appendix for proof).  

Example 3 

If we know, 

(஺݂݀݌)ܦܵ < (஻݌ݍ݊݌)ܦܵ	݀݊ܽ	(஺݂݀݌)ܧ4 <  (஻݌ݍ݊݌)ܧ4

Then we have from (17) 

(௦௬௦݂݀ܲ)ܧ < ߝ − ߝ × (஻݌ݍ݊݌)ܧ + 17 ×  (஻݌ݍ݊݌)ܧ	(஺݂݀݌)ܧ

Finally, for this subsection, the next theorem treats the case where the assessor 
provides a single percentile, and a special bound on the mean, for each marginal 
distribution. 

Theorem 5 
If 
஺݂݀݌)ܲ ≤ ஺ܲ) = 1 −  ஺ߙ
஻݌ݍ݊݌)ܲ ≤ ஻ܲ) = 1 −  ஻ߙ
and  
(஺݂݀݌)ܧ ≤ ஺ܲ ≤  ஺ߙ
(஻݌ݍ݊݌)ܧ ≤ ஻ܲ ≤  ஻ߙ
Then  
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(௦௬௦݂݀݌)ܧ ≤ ߝ − ߝ × (஻݌ݍ݊݌)ܧ + 

ඥ(1 + ஺ܲ)ܧ(݂݀݌஺) − ஺ߙ ஺ܲ ×		 

ඥ(1 + ஻ܲ)ܧ(݌݊ݍ݌஻) − ஻ߙ ஻ܲ                    (19)  

≤ ߝ − ߝ × (஻݌ݍ݊݌)ܧ + ඥ ஺ܲ
ଶ + ஺ܲ(1 − (஺ߙ × ඥ ஻ܲ

ଶ + ஻ܲ(1 − ஻)       (20)ߙ
    
(see Appendix for proof).   
 
Example 4 
If, as in example 1: 

஺ܲ = 10ିହ, ஺ߙ = 0.05	and	 ஻ܲ = 10ିଶ, ஻ߙ = 0.05, ߝ = 10ି଻ 
and the assessor also told us that	ܧ(݂݀݌஺) ≤ ஺ܲ, (஻݌݊ݍ݌)ܧ ≤ ஻ܲ

	 , then we have 
(௦௬௦݂݀ܲ)ܧ ≤ 10ି଻ − 10ି଻ × 10ିଶ + 

√10ିଵ଴ + 10ିହ × 0.95 × √10ିସ + 10ିଶ × 0.95 = 0.000302094       (21) 
which is again  better than the result in example 1 and worse than the one in example 
2.  
Of course, both Theorem 3 and Theorem 5 need extra information compared with 
Theorem 2. However, it could be argued that the extra information may be easy to 
justify: there is no need to know the exact mean values in the theorem, merely that the 
marginal means are smaller than the corresponding percentiles (even if the exact 
values of some of these are not known to the assessor). 

3.2 Confidence bounds for system pfd 
Instead of obtaining a mean value, we could also – as in LP – get a conservative 
confidence bound for system pfd using only an assessor’s marginal knowledge of pfdA 
and pnqpB. The following theorem does this using only a single percentile for each   
distribution. 
Theorem 6 
Given a single percentile of the marginal belief for each distribution, 
஺݂݀݌)ܲ ≤ ஺ܲ) = 1 −  ஺                          (22)ߙ
஻݌ݍ݊݌)ܲ ≤ ஻ܲ

	 ) = 1 −  ஻                         (23)ߙ
we have 

ܲ൫݂݀݌௦௬௦ < ߝ × (1 − ஻ܲ
	 ) + ஺ܲ × ஻ܲ

	 ൯ > 1 − ஺ߙ) +  ஻)        (24)ߙ

Example 5 
If, as before, ஺ܲ = 10ିହ, ஺ߙ = 0.05	and	 ஻ܲ = 10ିଶ, ஻ߙ = 0.05, ߝ = 10ି଻ 
then we have 

ܲ൫݂݀݌௦௬௦ < 1.99 × 10ି଻൯ ≥ 0.9           (25) 

(see Appendix for proof) 
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Example 6 
If the assessor can provide two (or more) percentiles for each distribution, then 
multiple conservative percentiles can be generated for the distribution of pfdsys. So if, 
in addition to the two percentiles above, the assessor is 99% confident that pfdA is 
smaller than 10-3, and 99.9% confident that pnqpB is smaller than 10-1, the following 
conservative percentiles apply to his beliefs about the system pfd: 

1. ܲ൫݂݀݌௦௬௦ < 1.0009 × 10ିସ൯ ≥ 0.989 
2. ܲ൫݂݀݌௦௬௦ < 1.09 × 10ି଺൯ ≥ 0.949 
3. ܲ൫݂݀݌௦௬௦ < 1.008 × 10ିହ൯ ≥ 0.94 
4. ܲ൫݂݀݌௦௬௦ < 1.99 × 10ି଻൯ ≥ 0.9 

Notice that even though the result 2 has a stronger claim than 3, it still has a higher 
confidence. This is because all these confidence bounds are conservative rather than 
exact values, and the degree of conservatism can vary from case to case. 

4   Epistemic uncertainty: confidence bounds for pnqpB 
To use the theorems in the previous section an assessor needs to provide numerical 
values for his beliefs about the parameters pfdA and pnqpB, expressed in terms of 
(some of) percentiles (confidence bounds), means, variances. 
It is well-known how to do this for pfdA, for example based on evidence from 
operationally representative statistical testing: see, e.g., (Littlewood and Wright 1997). 
In this section we shall consider inference about pnqpB. We shall restrict ourselves 
initially to the problem of finding a confidence bound, rather than mean or variance, 
for pnqpB so that we can use Theorem 6 of the previous section to obtain a confidence 
bound for the system pfd. 
We begin by recalling the urn model of Section 2. The development of the present 
program is here treated as the random selection of a program (ball) from the B urn. 
Programs in this urn have different pfds (some will be zero), so the selection of a 
program is also a selection of a pfdB. That is, the outcome of the selection is a random 
variable. Denote by fB(p) the distribution of these pfdBs. If this distribution were 
known, an assessor could compute pnqpB (or even pnpB to use in the LP theorems).  
Note that this is an objective distribution: it is a property of urn B. Extending the 
thought experiment of Section 2 slightly, we could imagine, for each program 
randomly selected from urn B, executing n randomly selected operational demands. 
The proportion of these that fail, as n becomes infinite, is the pfd of that program. 
Now imagine doing this for many independently randomly selected programs from B, 
and forming a histogram of the different pfds. As the number of programs increases, 
this converges to the distribution fB(p). 
Unfortunately, of course, fB(p) will be unknown: an assessor would be uncertain about 
this distribution, and thus about pnqpB. It is this epistemic uncertainty that we wish to 
capture in a confidence bound for pnqpB. 
The reader may think that a way forward at this stage would be to assume that fB(p) is 
a member of a parametric family of distributions – for example a Beta() family. 
In that case the epistemic uncertainty concerns solely the values of the parameters 
 In principle an assessor could obtain a Bayesian (subjective) posterior 
distribution for () in the usual way (based, presumably, upon evidence concerning 
the nature and quality of the development process used to obtain B programs). From 
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this he could compute a posterior distribution for pnqpB and thus his required 
confidence bounds (percentiles of that distribution). However, it does not seem 
reasonable to expect that an assessor could ever be certain that the distribution fB(p) 
was from the Beta (or any other) parametric family: this seems a very strong 
assumption that would be hard to justify. 
We proceed, therefore, to present an example involving much more limited 
assumptions about the form of the unknown fB(p): 
஻݂݀݌)ܲ = 0) =  (26)          																																																			ߠ
஻݂݀݌)ܲ > (ݕ =  (27)               																																													ߙ
ܲ(0 < ஻݂݀݌ ≤ (ߝ =  (28)                																																					ߚ
i.e. essentially three percentiles only: see Figure 1. 
 

pfdB10

θ 

f(p)

ε y

area β  

area α 

 
 
Figure 1 An example showing a hypothetical fB(p) distribution satisfying the constraints (26-28).  

 
Of course, by making only very restricted assumptions like these we do not 
completely characterize a distribution for the pfds from urn B: there will be an infinite 
number of distributions that satisfy (26) to (28). Our approach in what follows will be 
to choose the worst case distribution – i.e. the one that gives the most conservative 
results – in the spirit of our earlier work (Bishop, Bloomfield et al. 2011). 
Here  are unknown parameters, and it is about these that the assessor will 
eventually have to express his subjective beliefs: we have reduced the problem of 
epistemic uncertainty to this problem. We shall treat y and  as given (i.e. known to 
the assessor). In particular  is not a parameter about which an assessor will express 
prior belief, rather it can be regarded as a requirement for the definition of quasi-
perfection here. If pfdB is smaller than  the assessor regards the system to be, 
informally, “effectively indistinguishable from perfect”. The value required for  will 
thus be calculated by the assessor: see footnote 2 for a hypothetical nuclear example. 
We stress that this is only a single example of such a restricted set of assumptions for 
this stage of the reasoning. There are clearly other ways of doing this. There will be 
two main requirements in choosing such assumptions: 

 it needs to be feasible for an assessor to obtain evidence to support 
quantitative beliefs about the unknown parameters;  
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 the conservatism that the assumptions induce in the final results, concerning 
system reliability, should not be so great as to render these results useless. 

Readers may ask why we still need the parameter , representing probability of 
perfection, here in this quasi-perfection model. To recap: with the very limited prior 
beliefs in Figure 1, we have shown that evidence from failure-free operation (or 
operational testing) does not support an increase in probability of perfection that 
would be useful for assessing system reliability. However, we have shown here that 
this evidence, given the same prior beliefs, improves probability of quasi-perfection – 
and this can then be used in system assessment.  
Note that just having a prior confidence in quasi-perfection (together with the other 
confidence bound in Figure 1) would also not support this kind of reasoning: the 
evidence would not help to improve confidence in quasi-perfection. 
From Figure 1, we can see that the probability of quasi-perfection, pqpB, is +, i.e. 
pnqpB=1-(+). Consider now the situation in which n demands have been executed 
without failure. Denoting by pqpB

* the new (conditional) probability of quasi-
perfection, and using Bayes Theorem, we have: 

pqpB
* = P(0 £ pfdB £  | n failure-free demands, fB (p))               

=
 + (1- p)n fB (p)dp

0+



ò

 + (1- p)n fB(p)dp+ (1- p)n fB (p)dp+ (1- p)n fB (p)dp
y+

1

ò
+

y

ò
0+



ò
       (29) 

We can interpret this in terms of our urn-based thought experiment of Section 2 as 
follows. We begin with urn B containing programs with pfds having a distribution 
fB(p). We now take a vector of n randomly selected demands and execute every 
program in the urn on these demands. Some programs will survive all demands, some 
will fail on one or more demands. Remove all the latter from the urn. The remaining 
programs will have pfds with some distribution fB

*(p), different from fB(p). In fact 

fB *( p) = (1- p)n fB ( p)

(1- p)n fB ( p)dp
0

1

ò
            (30)

 

Then pqpB
* is the new probability of quasi-perfection from this new distribution, 

concerning the “n-demand survivor” programs.  
Notice that the Bayesian reasoning here – from pqpB to pqpB

* - concerns this program 
and its ilk (i.e. n-demand survivor programs from urn B). It does not involve any 
Bayesian inference about the model, represented by fB(p): i.e. we are not learning 
about the parameters  that characterise this model. 
Among all the distributions fB(p) that satisfy the assumed constraints above, (26) to 
(28), we can find the most conservative one, i.e. the one that makes the probability of 
quasi-perfection, pqpB

*, as low as possible. It turns out (see proof in the Appendix), 
that this is the distribution with four points of support in Figure 2.4 

                                                
4 Strictly speaking, there may be other distributions that satisfy the constraints and give the same probability of 

quasi-perfection; but there are none that give a smaller value. 
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Using this conservative distribution, we obtain the most conservative – i.e. a lower 
bound on – probability of quasi-perfection:  
 

∗஻݌ݍ݌ ≥
ߠ + (1 − ߚ௡(ߝ

ߠ + (1 − ߚ௡(ߝ + (1 − ௡(1(ߝ − ߠ − ߙ − (ߚ + (1 −  ߙ௡(ݕ

=
ߠ + (1 − ߚ௡(ߝ

ߠ + (1 − ௡(1(ߝ − ߠ − (ߙ + (1 −  (31)																																																																					ߙ௡(ݕ

≥
ߠ

ߠ + (1 − ௡(1(ߝ − ߠ − (ߙ + (1 − 																																																																					ߙ௡(ݕ
(32) 

=1-G(,)  say, 

so that  

pnqpB
* <G(,)                 (33) 
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Figure 2 This four-point distribution gives the smallest posterior probability of quasi-perfection, 
subject to the prior constraints (26), (27), (28). There are four points of support here, but note that the 
mass β and the mass 1-θ-α-β are coincident at ε (strictly speaking the worst case is a limit for the pfd 
value associated to the point mass 1-θ-α-β tending to ε from above). 

 
We give both these results, (31) and (32), because putting =0 in (31) introduces the 
opportunity to simplify the assessor’s task, albeit at the price of further conservatism: 
using (32) reduces the problem of inference to just two parameters,  Of all the 
values in (31) that  might take (i.e. the assessor might believe), =0 is the most 
conservative: it gives the smallest probability of quasi-perfection. We shall use (32) 
rather than (31) in what follows. 
The remaining problem is to obtain a (assessor’s subjective, posterior) distribution for 
the unknown parameter vector (). From this bivariate distribution we could obtain 
confidence bounds for pqpB

*  (or, equivalently, pnqpB
*) using (32). 

Because of the impracticality of eliciting bivariate prior beliefs, from which to 
compute a bivariate posterior distribution for (), we introduce another 
simplification – again at the expense of further conservatism – in the spirit of similar 
results in Section 2 and LP (Littlewood and Povyakalo 2013). In the following 
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theorem we obtain conservative confidence bounds for pnqpB
* based only on 

marginal confidence bounds for the unknown parameters and. 
 
Theorem 7 
If 
P( < z ) = D1               (34) 
and 
P( < z ) = D2               (35) 
then 

P( pnqp* £G(z , z )) ³1- (D1 + D2 )            (36) 
(see Appendix for proof) 
We thus have a confidence bound for the probability that channel B (having survived 
n demands without failure) is nqp, which is what is required, for example for theorem 
6 of Section 3. Using Theorem 6 and Theorem 7 we are now able to obtain a 
conservative confidence bound for pfdsys. 

5   Confidence bounds for pfdsys 
Theorem 6 gives a conservative confidence bound for the system pfd in terms of a 
confidence bound on the pfd of channel A and a confidence bound on the pnqp of 
channel B. Theorem 7 gives the latter (conservatively) in terms of confidence bounds 
on and Combining these results we have: 
Theorem 8 
Given 
P(pfdA < PA )=1-A  

and 
P( < z ) = D1

 
and 
P( < z ) = D2

 
we have 

ܲ ቀ݂݀݌௦௬௦ < ߝ × ൫1 − ,ఏݖ)ܩ ఈ)൯ݖ + ஺ܲ × ,ఏݖ)ܩ ఈ)ቁݖ > 1 − ஺ߙ) + ଵܦ +       (ଶܦ
(37) 
(see Appendix for proof) 
 
Example 7 
If we set PA=10-4, A=0.05 and D1=D2=0.05 we obtain the results in Table 1. 
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We should emphasise that the numbers used here are merely illustrative, and intended 
only to give the reader a feel for how all this works. They are not meant to be realistic, 
in the sense that they would relate to any real system5. 
The table shows that confidence in quasi-perfection, and in a small system pfd, both 
grow as n increases – see columns seven and eight. However, this growth is modest 
for the kinds of values of n that might realistically be obtained in practice. Stronger 
claims about , i.e. a bound on z of 0.9 in column 1, seem to make this growth in 
confidence greater.  
We have not yet had the opportunity to investigate in detail how different values of 
the several parameters here influence the results. We leave this for future work. 
However, Table 2, shows an example of the advantage of this quasi-perfection 
approach over the “pure perfection” approach of our earlier work, reported in (Zhao 
2015). 
 
 
 

zθ ε zα y n G(zθ, zα), 
bound on 
pnqpB

*  

Bound on pfdsys in 
left-hand side of 
equation (37) 

Minimum 
confidence 
level: 
right-hand 
side of 
(37) 

0.2222 0.000001 0.07407 0.001368 1 0.7777773251 7.8E-05 0.85 

0.2222 0.000001 0.07407 0.001368 103 0.7646349293 7.67E-05 0.85 

0.2222 0.000001 0.07407 0.001368 105 0.7413143312 7.439E-05 0.85 

0.2222 0.000001 0.07407 0.001368 107 0.0001437642 1.014E-06 0.85 

0.9 0.000001 0.07407 0.001368 1 0.0999087675 1.089E-05 0.85 

0.9 0.000001 0.07407 0.001368 103 0.0473597461 5.689E-06 0.85 

0.9 0.000001 0.07407 0.001368 105 0.0254031346 3.515E-06 0.85 

0.9 0.000001 0.07407 0.001368 107 0.0000013078 1E-06 0.85 

 
Table 1  The 6th column gives the bound on pnqpB

* in (36), and the confidence level here is at least 
90%.  The 7th and 8th columns give, respectively, the upper bound on pfdsys and the minimum 
confidence in that bound. 

 
If we compare the third and last rows of Table 2, based on our earlier “pure perfection” 
work, with the quasi-perfection results of the fourth and eighth rows of Table 1, we 
can see the improvement the latter brings. The bounds on pfdsys in each of these rows 

                                                
5 In fact the numbers we used were loosely based on those obtained in the experiment by Knight and Leveson. 

They had a “population” of 27 versions which could be treated informally as our urn B. By extensively testing 
the members of this population, an estimate could be made of the distribution of pfdB. In the 107 tests, 6 of the 27 
versions had no failures. A point estimate of is 6/27=0.222222. Because we cannot be sure this is the true 
value, we treat it as a 95% lower confidence bound, i.e. z=and D1=0.05 in equation (34). As we say 
above, we do not claim that this informal use of the Knight and Leveson results gives numbers that one would 
encounter in real-life applications. 
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of Table 2 are worse than the quasi-perfection equivalents of Table 1 – by almost two 
orders of magnitude in the first case, by a factor of more than two in the second case.  
  
 

zθ ε zα y n Bound on 
pnpB

*  
Bound on 
pfdsys in LR 
result 

Minimum 
confidence level 

0.2222 0 0.07407 0.001368 103 0.764810913 7.64811E-05 0.85 

0.2222 0 0.07407 0.001368 105 0.760025056 7.60025E-05 0.85 

0.2222 0 0.07407 0.001368 107 0.760025056 7.60025E-05 0.85 

0.9 0 0.07407 0.001368 103 0.047388938 4.73889E-06 0.85 

0.9 0 0.07407 0.001368 105 0.028004277 2.80043E-06 0.85 

0.9 0 0.07407 0.001368 107 0.028004277 2.80043E-06 0.85 

 

Table 2 Results using the same parameter values as Table 1, but based on =i.e. pure perfection 
approach of (Zhao 2015). 
 
 
We do not, of course, claim that the new model will always be superior to the older 
one in this way – in fact this is shown in other comparisons between the tables, where 
the perfection model can be superior to the quasi-perfection one. It seems that it is in 
cases of larger n (e.g. ݊ >  where there is benefit from using the quasi-perfection (ߝ/1
models. In fact, Table 2 suggests that this may be because there is a strong law of 
diminishing returns operating for the pure perfection models. Very large numbers of 
failure-free runs hardly improve the results: e.g. when increasing n from 105 to 107 the 
results remain the same (within the numerical accuracy of the table). In contrast, for 
the quasi-perfection models, similar increases in n produce significant improvements. 
We plan to investigate such issues in more detail in further work.  
Readers should note, however, that from a practical point of view an assessor does not 
need to know a priori which of the different approaches will give superior results for 
his application. For his given value of  (obtained, as we have suggested, from a 
wider safety case) and a particular value of n (i.e. the evidence that has been 
collected), he can apply both the pure and the quasi-perfection models and use the 
better of the two results. Whichever model this comes from, the result is guaranteed to 
be conservative.   

6 Summary, further work and discussion 

6.1 Summary of this modelling 
The work reported here extends that reported earlier, particularly in (Littlewood and 
Rushby 2012, Littlewood and Povyakalo 2013, Zhao 2015). It addresses the problem 
of assessing the reliability – in fact probability of failure on demand (pfd) – for a 
demand-based one-out-of-two system, such as is commonly used for safety protection 
in many industries, including nuclear reactor protection. 
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The technical problems addressed here concern aleatory and epistemic uncertainty, 
particularly difficult issues of dependence. 
1. Aleatory dependence. It is well-known that so-called “independently developed” 

channels of a fault-tolerant 1-o-o-2 system cannot be assumed to fail 
independently of one another. This means that the system pfd cannot be obtained 
simply by multiplying the channel pfds. In the earlier LR work, in which one 
channel was “possibly perfect”, we showed that the product pfdA.pnpB could be 
used as a conservative bound for system pfd. In the present work we generalize 
this result using a concept of quasi-perfection (qp), and prove a simple new 
conservative bound (Section 2) involving pfdA, pnqpB and the computed parameter 
 that defines qp. This generalizes the LR result. 

2. Epistemic dependence. The parameters of this model, pfdA, pnqpB, will be 
unknown. A formal Bayesian treatment requires an assessor to describe his 
uncertainty about them in terms of a bi-variate distribution. It is well-known that 
assessors find it difficult, if not impossible, to describe their uncertainty as a 
complete distribution – and particular difficulty is associated with dependence of 
their beliefs about the two parameters. In Section 3 we prove several theorems 
that allow claims for system pfd to be made in terms of only marginal claims for 
the parameters – i.e. knowledge of epistemic dependence is not required. All these 
results are guaranteed to be conservative. 

3. Limited assessor knowledge. Assessors are unlikely to be able to state even their 
marginal beliefs in terms of complete distributions. The theorems of Section 3, 
then, involve only different kinds of limited beliefs: percentiles, means, variances. 
The price paid here for simplifying the assessor’s task – eliminating dependence 
and using only limited beliefs – is further conservatism. These theorems of 
Section 3 generalise the results of LP. 

4. Confidence bounds for pnqpB  The results of Sections 2 and 3 reduce the problem 
to one of Bayesian statistical inference – based on evidence such as extensive 
testing – about the parameters pfdA, pnqpB treated separately. For the first of these, 
the solutions are well known and simple. For pnqpB things are not so simple, and 
Section 4 provides a solution, again requiring from the assessor only limited 
knowledge. Once again, the results are guaranteed to be conservative.  

5. Final percentile claim for pfdsys. In Section 5 we sketch how all this can be used 
to make a conservative top-level claim for pfdsys, expressed as a percentile.  

In summary, the modeling reported here presents an end-to-end assurance argument 
about the pfd of a 1-o-o-2 system. In doing so it responds to the real difficulties 
encountered in such arguments, namely issues of dependence and limited assessor 
prior belief.  
An important point is that, over the several stages of the end-to-end assurance 
argument, conservatism is guaranteed. One way of looking at this is that 
conservatism is “the price paid” to avoid these traditional difficulties of dependence 
and limited knowledge. Putting it more positively, a guarantee of conservatism is an 
advantage – indeed one could say a necessity – for safety claims about the kinds of 
safety-critical systems for which such arguments will be used. We are not aware of 
other ways of achieving results that are guaranteed to be conservative in this way. We 
shall expand on these comments briefly in the discussion in Section 6.3. 
Before continuing to discuss possible further work, we would like to make clear a 
subtle distinction between the work reported here (and that in the earlier LR/LP 
papers), and previous work on a similar problem reported in (Zhao 2015). In (Zhao 
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2015), we were concerned with uncertainty about an event, “system not perfect”. The 
model we presented there allows an assessor to “learn” about the probability of this 
event: i.e. we showed how the assessor’s subjective prior probability for this event 
became, after collecting evidence, a posterior probability for the event. In contrast, in 
LR/LP and here, we are dealing with (epistemic) uncertainty about “in the world,” 
objective parameters – respectively, probability not perfect and probability not quasi-
perfect. We deal here with subjective beliefs about the numerical values of these 
parameters – and obtain posterior beliefs about them.                           

6.2 Proposed further work 
At various points in the preceding account we have suggested that further work is 
needed. Below we list some of the most important. 

 Where do assessors get beliefs from? This is a question that is always asked 
about Bayesian analysis – particularly prior beliefs. The classical response is 
that assessors must have prior beliefs that they bring to the problem, and the 
only issue is how to “elicit” these accurately. Unfortunately, this is often not 
the case, and we believe applications to safety-critical systems, as here, may 
be such a situation. Furthermore, priors, like any other component of an 
argument, need to be formulated by those making a claim but argued as 
justifiable to those vetting the argument. We expect it will be possible to give 
some guidance, for example, about plausible priors for  from the literature 
and industrial experience on effectiveness of verification methods in use, and 
experience of failure-free operation of systems that have seen massive 
exposure (cf discussion in (Strigini and Povyakalo 2013)). 

 Other kinds of evidence.  Section 4 only uses evidence of failure-free 
working. In practice other kinds of evidence are available and should be used. 
Notable examples include: evidence from verification (see, e.g. (Littlewood 
and Wright 2007)) and evidence of process quality based on past product 
experience. These will typically feed into the priors available before the 
operational testing. We have begun looking at formal models of uncertainties 
in verification, and of the contribution that could be made by knowledge of the 
efficacy of the development processes used (e.g. using operational experience 
from previously developed “similar” systems).  

 “What if?” calculations. We have illustrated our results throughout with 
numerical examples, and one of these is “complete” in the sense that it results 
in a confidence bound for the system pfd. The numbers used in the examples 
are, of course, chosen just to illustrate our approach – in particular to show 
what is needed to populate our whole end-to-end argument numerically. We 
have not so far attempted any substantial “what if?” calculations – e.g. to see 
the relative effects of different aspects of assessor knowledge upon the final 
claim.  

 Worked examples based on realistic numbers.  We need to see what kinds of 
results we get from our modeling when using numbers that are as close to 
realistic as we can make them. One question we would like to investigate 
concerns how conservative our results are in such situations: some may be too 
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conservative to be useful6. We expect that the specific evidence available 
about a specific system will determine which one, among various ways of 
supporting system pfd claims, will give the most favourable, but still 
conservative, result. We intend to interact with the sponsors of this research to 
see whether we can use numbers that are as close to realistic – in their view – 
as possible. 

 Other kinds of system claim; “lifetime measures”. Our worked example here 
concerns only a confidence bound for the system pfd, i.e, using only Theorem 
6 of Section 3. We would also like to work examples using the other theorems 
of Section 3, involving expected values for system pfd. All the results in the 
present paper concern the probability of system failure on (one) demand in 
one way or another. In practice, a wider safety case might be concerned with 
ensuring a high probability of no failures throughout the life of a system, or 
fleet of systems – i.e. over an expected number of demands, rather than a 
single one. Our results do not currently address such questions, but we see 
opportunities for extension in this direction. 

 Choice of simplifying assumptions in Section 4. As we stated earlier, the 
assumptions we use here, (26) to (28), are clearly not the only ones that we 
could have used. To complete the reasoning for this particular end-to-end 
argument, it will be necessary for an assessor to obtain the bounds in (34) and 
(35): the feasibility of doing this (i.e. obtaining the empirical evidence to 
support such claims) will be a test of the practicality of the approach outlined 
here. It seems worthwhile seeking other approaches, however – i.e. other 
simplifying assumptions for this stage of the argument. There are two aims in 
such a quest: that the parameters involved can be estimated from available 
real-world data; that the necessary simplification involved does not induce 
excessive conservatism on the final results.  

 Choice of There is more than one feasible approach to select the value of , 
the pfd bound that defines “quasi perfection”. One may select a value  such 
that the target probability of experiencing no failures over the lifetime of the 
system is satisfied. Alternatively, considering that there are always trade-offs 
between confidence bounds and confidence levels, one can instead, with some 
additional numerical or algebraic calculations, choose  such as to get the most 
favourable claim feasible, within the constraint of required conservatism. 

6.3 Discussion 
We have emphasized at various points in this paper that we have produced a complete 
“end-to-end” argument in support of claims for the pfd of a 1-o-o-2 system, taking 
account of all the different kinds of uncertainty. The different stages of the argument 
each involve conservative assumptions that provide, importantly, a guarantee that the 
final results – claims about the system pfd – are conservative. This chain of 
conservatism may, of course, mean that the results from the overall argument are very 
conservative. This seems to be so in the case of the illustrative example we show in 
Section 5, but it may not be so for a different selection of parameter values, or for 

                                                
6 Of course, even if this is the case, one could respond by saying “so be it”, and challenge an advocate of a 

particular system, who regards our results as too pessimistic, to proffer alternative ways of supporting their 
claims. 
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different simplifying assumptions from the ones in Section 4. For this reason we 
propose to conduct the “what if?” exercise described above. 
Our “complete conservatism” approach in the presence of all kinds of uncertainty is, 
we believe, novel. In particular, we are not aware of any evaluations of real diverse 
systems that are argued in such a way that a claim of complete conservatism can be 
made convincingly. Such evaluations typically deal with pfd claims for both channels, 
in contrast to our approach involving perfection or quasi-perfection for one of the 
channels. They thus have to deal with the problem of failure dependence between 
channels, which precludes the simple claim that pfdsys=pfdA.pfdB. Ways around this 
difficulty tend to be rather informal.  
In fact there are cases where channel failures have simply been assumed to be 
independent, and pfdA.pfdB used for system pfd. Typically, justification of 
independence in such cases is not believable; indeed, we do not know credible means 
of claiming independence. Making such an assumption can, of course, be dangerously 
optimistic.  
We have seen an argument that recognizes the problem of failure dependence 
between channels and deals with it along the following lines: 

“Our claims for the pfds of the two channels are themselves very conservative: 
we know that each system is much better than the numbers pfdA and pfdB that 
we are claiming. So, when we use the product pfdA.pfdB for the system pfd in 
our safety case, we can be sure that this is conservative.” 

The problem here, of course, is that this is a comparison between apples and oranges: 
how can we be certain that the “levels of conservatism” in each of the pfd claims are 
enough to counter the “level of dependence” between the channel A and channel B 
failures? We know of no way to reason about a trade-off between such different 
things so that this claim can be supported rigorously. 
Of course, our approaches in this report and in LR, LP (Littlewood and Rushby 2012, 
Littlewood and Povyakalo 2013), seem likely to bring their own problems. In the first 
place, the reader will have seen that the treatment of epistemic uncertainty here 
(particularly in Section 4), and in LP, is not easy. And of course the full end-to-end 
argument may give very conservative results. 
A perceptive reviewer of an earlier version of this paper asked whether even the 
simplified demands upon the assessor that our new approach entails would be simple 
enough in practice: 

[The reviewer questioned whether] “…the expectation that even the simplified 
reliability argument demonstrated here is any more realistic for use in practice 
than any of the previous ones. The paper’s central premise is that limitations in 
assessor’s prior knowledge about failure probability make it impractical to 
express it as complete distributions. Rather, assessors are asked to speculate 
about marginal values of such distributions. This appears simpler, indeed. But 
when faced with legal consequences of making such assumptions, is the 
authors’ “expectation” that assessors would be any more willing to speculate 
on marginal values of the same distributions they were unwilling/unable to 
describe? The consequences of errors in judgment would be the same.”  

As we say above, we accept that the assessor is still faced with a difficult task. 
However, we maintain that the task is considerably simplified by our approach.  
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So Theorem 1 provides a conservative bound that is not available in the classical case 
where claims are made about pfds for both channels: the difficult problem of aleatory 
dependence (between channel failures) has been eliminated.  
Then, instead of the need to specify a complete bivariate distribution, the assessor 
needs to specify (for example) only a couple of percentiles of univariate marginal 
distributions. Eliminating the need for any assessment of epistemic dependence, in 
particular, is an important simplification.  
The assessor has a complete guarantee that in reducing the problem in this way the 
results will be conservative. In fact, in providing only (say) percentile information a 
nervous assessor has an opportunity to introduce further conservatism – something 
that would be much harder to do if they were required to specify a complete 
distribution. 
We believe that the beliefs required of an assessor here (e.g. a couple of percentiles) 
are the very minimum needed to provide useable claims about the system reliability. 
In fact one view of some of our results here is that they operate within a region lying 
between prior beliefs that are “too minimal to be useful” and ones that are “too 
demanding of an assessor to realistically expect them to be trustworthy.”  
Having said all that, we acknowledge that sometimes an assessor may not be able to 
provide even these minimal beliefs. If that is the case, then so be it. It suggests, we 
believe, that they are not in a position to make trustworthy claims about the reliability 
of the system in question using the reasoning proposed here. In such a case, “refusing 
to speculate” (in our reviewer’s terminology) would be an assessor’s safe and honest 
option. 
We think our approach – in particular its guaranteed end-to-end conservatism – 
provides a rigorous formalism for assessing these kinds of systems. It could be used to 
challenge the trustworthiness of more informal approaches when these result in less 
conservative claims. 
In fact readers might ask whether we need our full end-to-end treatment in order to 
get useful results that are at least an improvement on the classical approach involving 
pfdA and pfdB. 
Indeed, we often see reliability models used assuming that the parameter values are 
correct; a use that may be justified when there is extremely high confidence that they 
are very close approximations to the truth or that they are worst-case bounds. This 
simplification, applied to our approach, would work out as follows. Given point 
estimates of pfdA and pnpB, we would treat each of these as “true” and use a simple 
product of them as a bound on system pfd. Whilst ignoring epistemic uncertainty 
about the parameters in this way is “wrong”, it is nevertheless superior to using the 
naïve product of pfdA and pfdB. Specifically, it ignores only epistemic uncertainty; the 
other approach ignores epistemic uncertainty and failure dependence. That is, if we 
had correct values for pfdA and pnpB7 our result would be a bound on expected system 
pfd. The same is not true of the second approach: even with true values for pfdA and 
pfdB their product is not such a guaranteed bound on system pfd. 

                                                
7 We emphasise again, as earlier in this section, that we do here have a notion of “true value” for these parameters. 

They are “in the world” parameters – i.e. they are not subjective beliefs about the probabilities of events in the 
world. They have unknown values, of course, and our subjective beliefs – and Bayesian analysis – centre upon 
these values. 
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A slightly less crude argument is similar – but superior – to the one in quotes above. 
Suppose we are prepared to believe that the channel claims, pfdA and pnpB, are each 
conservative with certainty, as is reasoned above. In that case their product is, with 
certainty, a conservative bound on expected system pfd. That is, because of the basic 
LR result, we do not need to trade off apples and oranges as in the quoted example. 
The reader may think this kind of reasoning, ignoring epistemic uncertainty 
completely, is too crude. Whilst not defending it, we just remark that such a “plug in 
numbers” approach is quite common in the more classical approaches to these 
problems. 
But we can go further along our conservative chain of reasoning: i.e. we can use less 
crude approximate arguments that still avoid some of the problems of our full end-to-
end approach. Suppose, for example, we were prepared simply to use the theorems of 
Section 3 without taking advantage of the methods of Section 4 for refining 
confidence about  pnpB. The resulting system pfd claims will have taken some 
account of epistemic uncertainty, albeit not as much as the full end-to-end argument. 
We claim, somewhat tentatively, that reasoning like this is superior to anything we 
have seen in arguments based upon claims of pfd for both channels, where epistemic 
uncertainty is ignored completely or treated very informally. At least here we can 
claim that if the numbers we plug in to Section 3 theorems are true, then the resulting 
system pfd claim is guaranteed to be conservative. 
The point here is that our end-to-end argument involves several stages, and there is 
guaranteed conservatism at each stage. This means that the conclusion of the full end-
to-end argument is guaranteed to be conservative, as we have said, but it also means 
that if we stop before completing all stages, we still have conservatism in what we can 
claim.  
Curtailing the full end-to-end treatment of uncertainty in ways like this would make 
the task of the assessor very much easier, but at the price of not ending up with a 
guaranteed conservative claim for the system pfd – because some uncertainty will not 
be accounted for8. Nevertheless, it might be argued that even though not perfect, such 
reasoning is superior to that used in examples such as the ones quoted above. 
 

Appendix 
Proof for theorem 2 
Denote the unknown joint probability P(pfdA > αA, pnqpB > αB), i.e. lying in BCEF in 
Figure A1, by z. 

E(Pfd௦௬௦) ≤ ߝ]ܧ × (1 − (஻݌݊ݍ݌ + ஺݂݀݌ ×  [஻݌݊ݍ݌

= ߝ]ܧ + ஺݂݀݌) − (ߝ ×  [஻݌ݍ݊݌

≤ ߝ] + ( ஺ܲ − (ߝ × ஻ܲ] × (1 − ஺ߙ − ஻ߙ + (ݖ + ߝ] + ( ஺ܲ − [(ߝ × ஻ߙ) −  (ݖ

                                                
8  Or, putting it another way, it places on the assessor a requirement to be certain of the values of certain 

parameters. With such certainty, there will be guaranteed conservatism in the conclusions. 
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ߝ]	+ + (1 − (ߝ × ஻ܲ] × ஺ߙ) − (ݖ + z                                     
(A1) 
= ߝ	 + ( ஺ܲ − (ߝ ஻ܲ + (1 − ஺ܲ) ஻ܲߙ஺ + ( ஺ܲ − 1)(ߝ − ஻ܲ)ߙ஻ + (1 − ஺ܲ)(1 − ஻ܲ)ݖ  
                (A2) 
which yields the result since the z coefficient here is positive, and by definition z 
cannot exceed ߙ஺ or	ߙ஻. 
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Figure A1 

Expression (A1) can be explained as follows. Within the area DEGH, as pfdA ≤ PA, 
and ݌ݍ݊݌஻ ≤ PB, the product ߝ + ஺݂݀݌) − (ߝ ×  is a random variable which	஻݌ݍ݊݌
is everywhere smaller than the value at the top righthand corner ߝ + ( ஺ܲ − (ߝ × ஻ܲ. 
And the probability associated with the area DEGH is (1 − ஺ߙ − ஻ߙ +  Thus the .(ݖ
contribution to system mean pfd associated with DEGH is bounded above by the 
product [ߝ + ( ஺ܲ − (ߝ × ஻ܲ] × (1 − ஺ߙ − ஻ߙ +  .which is the first term in (A1) ,(ݖ
Similarly, within the area ABED, the product ߝ + ஺݂݀݌) − (ߝ ×  ஻ is a random݌ݍ݊݌
variable which is everywhere smaller than	ߝ + ( ஺ܲ − (ߝ × 1, and the probability 
associated with the area ABED is (ߙ஻ −  So the contribution to the mean system .(ݖ
pfd of this rectangle is bounded by [ߝ + ( ஺ܲ − [(ߝ × ஻ߙ) −  which is the second ,(ݖ
term. The same reasoning applied on the BCEF and EFHK gives the whole result 
(A1), the form (A2) of which is then obtained by collecting coefficients of the three 
doubt-related parameters ߙ஺, ߙ஻,	ݖ. 
QED 
 
Proof for theorem 3 
The Proof here is similar to the previous one, but in terms of the four rectangles in 
QSWG. 

E(Pfd௦௬௦) ≤ ߝ]ܧ × (1 − (஻݌݊ݍ݌ + ஺݂݀݌ ×  [஻݌݊ݍ݌
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= ߝ]ܧ + ஺݂݀݌) − (ߝ ×  [஻݌ݍ݊݌

= ߝ] + ( ஺ܲ − (ߝ × ஻ܲ] × (1 − ஺ߙ − ஻ߙ + (ݖ + ߝ] + ( ஺ܲ − (ߝ × ஻ܲ
௎] × ஻ߙ) − (ݖ +	 ߝ]

+ (P஺௎ − (ߝ × ஻ܲ] × ஺ߙ) − (ݖ + ߝ] + ( ஺ܲ
௎ − (ߝ × ஻ܲ

௎] × z 
ߝ	= + ܣܲ) − ܤܲ(ߝ + ܷܣܲ) − ܣߙܤܲ(ܣܲ + ܣܲ) − ܷܤܲ)(ߝ − ܤߙ(ܤܲ + ܷܣܲ) − ܷܤܲ)(ܣܲ −  z(ܤܲ

from which the bound follows just as for Theorem 2. 
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The reasoning about the DEHG is exactly the same with previous one. For the 
rectangle QRDE, is bounded by [ߝ + ( ஺ܲ − (ߝ × ஻ܲ

௎] × ஻ߙ) − z); the contribution 
from EVWH is bounded by [ߝ + (P஺௎ − (ߝ × ஻ܲ] × ஺ߙ) −  that from RSVE is ;(ݖ
bounded by [ߝ + ( ஺ܲ

௎ − (ߝ × ஻ܲ
௎] × z. 

Notice that, when ஺ܲ
௎ = 1	and	 ஻ܲ

௎ = 1  the result here reduces to the result of 
theorem 2. 
QED 
 
Proof for theorem 4 
By the Cauchy–Schwarz inequality, 

൫݂݀݌)ܧ஺ × ஻)൯݌݊ݍ݌
ଶ
≤ ஺݂݀݌൫ܧ

ଶ൯ܧ(݌݊ݍ݌஻ଶ)
= ൫ܧ(݂݀݌஺)ଶ + ଶ(஻݌݊ݍ݌)ܧ൯൫(஺݂݀݌)ݎܸܽ +  ൯(஻݌݊ݍ݌)ݎܸܽ

And 
ଶ(஺݂݀݌)ܧ + (஺݂݀݌)ݎܸܽ < 	(஺݂݀݌)ܧ) + ଶ((஺݂݀݌)ܦܵ , with a similar expression 
involving pnqpB. 
So,  
(௦௬௦݂݀݌)ܧ ≤ ߝ]ܧ × (1 − (஻݌݊ݍ݌ + ஺݂݀݌ ×  [஻݌݊ݍ݌
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= ߝ − ߝ × (஻݌݊ݍ݌)ܧ + ஺݂݀݌൫ܧ ×  ஻൯݌݊ݍ݌

< ߝ − ߝ × (஻݌݊ݍ݌)ܧ + ට൫ܧ(݂݀݌஺)ଶ + ଶ(஻݌݊ݍ݌)ܧ൯൫(஺݂݀݌)ݎܸܽ +  ൯(஻݌݊ݍ݌)ݎܸܽ

< ߝ − ߝ × (஻݌݊ݍ݌)ܧ + 	(஺݂݀݌)ܧ) + 	(஺݂݀݌)ܧ)((஺݂݀݌)ܦܵ +  ((஺݂݀݌)ܦܵ
 
QED 
Lemma 
If 0 ≤ ܺ ≤ 1, ݌ > 0, ܲ(ܺ > (݌ = (ܺ)ܧ	and	ߙ ≤ 	݌ ≤  then ,ߙ

(ଶܺ)ܧ ≤ 	 (1 + (ܺ)ܧ(݌ − α݌ ≤ ଶ݌ + 1)݌ −  (ߙ
Proof for Lemma 
The proof is based on the representation of the distribution of X as a mixture of two 
scaled versions of random variables U and V, distributed, respectively, within the 
intervals U[0, 1] and V(0,1]. Suppose that X has cdf ܨ௑, and let U, V and Z be 
three mutually independent random variables, the first two continuous with respective 
marginal distributions: 

(ݑ)௎ܨ =
ி೉(௣௨)
ଵି஑

; (ݒ)௏ܨ			   =
ி೉(௣ା(ଵି௣)௩)	ି	(ଵି஑)

஑
;    and the third Z a Bernoulli 

distribution with ܲ(ܼ = 1) = 	α.  
Define, in terms of these three, a random variable 
Y = (1-Z) p U + Z [p+(1-p)V].  
It is easily verified that Y is then distributed identically to X. Furthermore, ܻଶ =
(1 − ܷଶ	ଶ݌(ܼ 	+ ଶ݌]	ܼ	 + 1)݌2 − ܸ	(݌ + (1 − 	.[	ܸଶ	ଶ(݌ (For example, one may 
square the expression for Y and use the relations Z(1-Z)=0, Z=Z2, 1-Z =(1-Z)2 
satisfied by the Bernoulli variable Z.) 
We will use this construction to obtain expressions for the first two moments of the 
common distribution of X and Y, relying as we proceed on the mutual independence 
of (U,V,Z) to factorize the expectations of any product terms. Firstly 
(ܺ)ܧ = 1)ܧ	 − (ܷ)ܧ	݌	(ܼ + ݌](ܼ)ܧ + (1 −  [(ܸ)ܧ(݌
		= 			 (1 − α)	݌	ܧ(ܷ) + α	[݌ + (1 −  (A3)                        .  [(ܸ)ܧ(݌
Secondly,  
(ଶܺ)ܧ = 1)	]ܧ − ܷଶ	ଶ݌(ܼ 		+ ଶ݌	]	ܼ		 + 1)݌2 − ܸ	(݌ + (1 −            	[				[	ܸଶ	ଶ(݌
=			(1 − α)	݌ଶ	ܧ(ܷଶ) + α	[݌ଶ + 1)݌2 − (ܸ)ܧ	(݌ + (1 −  [	(ଶܸ)ܧ	ଶ(݌
≤	 (1 − α)	݌ଶ	ܧ(ܷ)	+ α	[݌ଶ + (1 −   (A4)               [	(ܸ)ܧ	(ଶ݌
because E(U2) ≤ E(V2) ,(ܷ)ܧ ≤  Subtracting (1+p) times (A3) from (A4) .(ܸ)ܧ
eliminates E(V), and rearranging the result of this gives  
(ଶܺ)ܧ ≤ (1 + (ܺ)ܧ(݌ − (1 − α)݌	ܧ(ܷ) − α݌ 
≤ (1 + (ܺ)ܧ(݌ − α݌ 
≤ ଶ݌ + 1)݌ − α)                      (A5)                                                                                       
making use, at the last line, of our original assumption, ܧ(ܺ) ≤  .݌
QED 
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Remarks on Attainability of the Upper Bound in this Lemma 
If  ݌ = 1)ܸ]ܧ then the upper bound (A5) of this Lemma is attained when ,	ߙ −
ܸ)] = (ܷ)ܧ = 0, i.e. when P(X = 0) = 1 – α and P(X = 1) = α. 
If ݌ <  then the upper bound (A5) of this Lemma is “asymptotically” attained ,	ߙ
when 1)ܸ]ܧ − ܸ)] = (ܷ)ܧ = 0. For example suppose, for some 0 < ᇱߜ < ௣(ଵିఈ)

ఈ(ଵି௣)
  , 

ܲ(ܷ = 0) = 1,  

ܲ(ܸ = (′ߜ =
1 − (ܸ)ܧ
1 − ′ߜ 	; 

ܲ(ܸ = 1) =
(ܸ)ܧ − ′ߜ
1 − ′ߜ 	; 

(ܸ)ܧ =
1)݌ − (ߙ
1)ߙ −  ,			(݌

So that the associated X then has the discrete three-point distribution, 
ܲ(ܺ = 0) = 1 −  ;ߙ

ܲ(ܺ = ݌ + ′ߜ	 − (݌′ߜ = ߙ
1 − (ܸ)ܧ
1 − ′ߜ =

ߙ − ݌
(1 − 1)(′ߜ −  (݌

ܲ(ܺ = 1) = ߙ
(ܸ)ܧ − ′ߜ
1 − ′ߜ =

1)݌ − (ߙ − 1)ߙ − ′ߜ(݌
(1 − 1)(′ߜ − (݌ 					 ; ′ߜ > 0; ′ߜ → 0. 

To check that the bound is approached, write	ߜ for 1)′ߜ −  so as to simplify a (݌
little to 
ܲ(ܺ = 0) = 1 −  ;ߙ

ܲ(ܺ = ݌ + (ߜ	 =
ߙ − ݌

1 − ݌ −  ߜ

ܲ(ܺ = 1) =
1)݌ − (ߙ − ߜߙ
1 − ݌ − ߜ 					 ; ߜ > 0; ߜ → 0. 

One may confirm directly that this three-point, ߜ -paramterized distribution has 
E(X)=p and  
(ଶܺ)ܧ = ଶ݌ + 1)݌ − (ߙ − ߙ)ߜ −  (݌
which approaches our upper bound from below as ߜ → 0+.   
 
Proof for theorem 5 
In accordance with the lemma: 

஺݂݀݌൫ܧ
ଶ൯ ≤ (1 + ஺ܲ)ܧ(݂݀݌஺) − ஺ߙ ஺ܲ ≤ ஺ܲ

ଶ + ஺ܲ(1 −  (஺ߙ
and 
(஻ଶ݌ݍ݊݌)ܧ ≤ 	 (1 + ஻ܲ)ܧ(݌݊ݍ݌஻) − ஻ߙ ஻ܲ ≤ ஻ܲ

ଶ + ஻ܲ(1 −  .(஻ߙ
Then, by the Cauchy–Schwarz inequality, 

஺݂݀݌)ܧ × (஻݌݊ݍ݌ ≤ ටܧ൫݂݀݌஺
ଶ൯ܧ(݌݊ݍ݌஻ଶ)≤ 
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ඥ(1 + ஺ܲ)ܧ(݂݀݌஺) − ஺ߙ ஺ܲ × ඥ(1 + ஻ܲ)ܧ(݌݊ݍ݌஻) − ஻ߙ ஻ܲ ≤ 

ට ஺ܲ
ଶ + ஺ܲ(1 − (஺ߙ × ට ஻ܲ

ଶ + ஻ܲ(1 −  (஻ߙ

So, 
(௦௬௦݂݀݌)ܧ ≤ ߝ]ܧ × (1 − (஻݌݊ݍ݌ + ஺݂݀݌ ×  [஻݌݊ݍ݌

= ߝ − ߝ × (஻݌݊ݍ݌)ܧ + ஺݂݀݌)ܧ ×  (஻݌݊ݍ݌
≤ ߝ − ߝ × (஻݌݊ݍ݌)ܧ + 

ඥ(1 + ஺ܲ)ܧ(݂݀݌஺) − ஺ߙ ஺ܲ × ඥ(1 + ஻ܲ)ܧ(݌݊ݍ݌஻) − ஻ߙ ஻ܲ

≤ ߝ − ߝ × (஻݌݊ݍ݌)ܧ + ට ஺ܲ
ଶ + ஺ܲ(1 − (஺ߙ × ට ஻ܲ

ଶ + ஻ܲ(1 −  (஻ߙ

QED 
 
 
Proof for theorem 6 
First, the contour plot of the expression ε(1 − y) + x	y is as figure A3  

 
Figure A3 

As  
௦௬௦݂݀݌ ≤ ߝ × (1 − (஻݌ݍ݊݌ + ஺݂݀݌ ×  ஻݌ݍ݊݌

So  

ܲ൫݂݀݌௦௬௦ < ߝ × (1 − ஻ܲ
	 ) + ஺ܲ × ஻ܲ

	 ൯ ≥ ߝ)ܲ × (1 − (஻݌ݍ݊݌ + ஺݂݀݌ × ஻݌ݍ݊݌
< ߝ × (1 − ஻ܲ

	 ) + ஺ܲ × ஻ܲ
	 ) 
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Figure A4 

From the figure A4, we could have 
ߝ)ܲ × (1 − (஻݌ݍ݊݌ + ஺݂݀݌ × ஻݌ݍ݊݌ > ߝ × (1 − ஻ܲ

	 ) + ஺ܲ × ஻ܲ
	 ) 

< ஺݂݀݌)ܲ > ஺ܲ) + ஻݌ݍ݊݌)ܲ > ஻ܲ
	 ) 

This is because the left hand side is the probability mass associated with the area 
above the hyperbola (the one goes through E point) in Figure A4. This is contained in 
the union of the two rectangular parts of the unit square respectively above the 
horizontal green line and to the right of the vertical green line, whose probabilities are 
஺݂݀݌) > ஺ܲ)	and		ܲ(݌ݍ݊݌஻ > ஻ܲ

	 ) . 
Then, 

ܲ൫݂݀݌௦௬௦ < ߝ × (1 − ஻ܲ
	 ) + ஺ܲ × ஻ܲ

	 ൯ 

≥ ߝ)ܲ × (1 − (஻݌ݍ݊݌ + ஺݂݀݌ × ஻݌ݍ݊݌ < ߝ × (1 − ஻ܲ
	 ) + ஺ܲ × ஻ܲ

	 ) 

= 1 − ܲ൫ߝ × (1 − (஻݌ݍ݊݌ + ஺݂݀݌ × ஻݌ݍ݊݌ > ߝ × (1 − ஻ܲ
	 ) + ஺ܲ × ஻ܲ

	 ൯ 

> 1 − ஺ߙ) +  (஻ߙ
QED 
 

Proof of most conservative fB*(p) in section 4 
∗஻݌ݍ݌ = ܲ(0 ≤ ݂݀݌ ≤ ,ݏݐݏ݁ݐ	݁݁ݎ݂	݁ݎݑ݈݂݅ܽ	݊	|	ߝ ஻݂(݌)) 

=
݂݀݌)ܲ = ݂݀݌|ݏݐݏ݁ݐ	݁݁ݎ݂	݁ݎݑ݈݂݅ܽ	݊)ܲ(0 = 0) + ܲ(0 < ݂݀݌ ≤ 0|ݏݐݏ݁ݐ	݁݁ݎ݂	݁ݎݑ݈݂݅ܽ	݊)ܲ(ߝ < ݂݀݌ ≤ (ߝ

(ݏݐݏ݁ݐ	݁݁ݎ݂	݁ݎݑ݈݂݅ܽ	݊)ܲ
 

=
ߠ + ∫ (1 − ௡(݌ ஻݂(݌)݀݌

ఌ
଴ା

ߠ + ∫ (1 − ௡(݌ ஻݂(݌)݀݌
ఌ
଴ା + ∫ (1 − ௡(݌ ஻݂(݌)݀݌

௬
ఌା + ∫ (1 − ௡(݌ ஻݂(݌)݀݌

ଵ
௬ା
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By the mean value theorem for integrals, we could find 3 values, say P1 P2 and P3, 
satisfying the equations below, 

(1 − ଵܲ)௡න ݌݀(݌)ܤ݂
ఌ

଴ା
= න (1 − ݌݀(݌)ܤ௡݂(݌

ఌ

଴ା
 

(1 − ଶܲ)௡න ݌݀(݌)ܤ݂
௬

ఌା
= න (1 − ݌݀(݌)ܤ௡݂(݌

௬

ఌା
 

(1 − ଷܲ)௡න ݌݀(݌)ܤ݂
ଵ

௬ା
= න (1 − ݌݀(݌)ܤ௡݂(݌

ଵ

௬ା
 

Where,  
0 < ଵܲ ≤ ,ߝ ߝ < ଶܲ ≤ ݕ	݀݊ܽ	ݕ < ଷܲ ≤ 1 

And from the prior constraints (26), (27) and (28) in section 4, 

න ݌݀(݌)ܤ݂
ఌ

଴ା
= න,ߚ ݌݀(݌)ܤ݂

௬

ఌା
= 1 − ߠ − ߙ − න	݀݊ܽ	ߚ ݌݀(݌)ܤ݂

ଵ

௬ା
=  ߙ

Then our objective function turns to: 

∗஻݌ݍ݌ =
+ߠ (1− ܲ1)

ߚ݊
+ߠ (1− ܲ1)

ߚ݊ + (1 − ܲ2)݊(1 − −ߠ (ߚ−ߙ + (1 − ܲ3)
ߙ݊

=
1

1 + (1 − ܲ2)݊(1 − −ߠ (ߚ−ߙ + (1 − ܲ3)
ߙ݊

ߠ + (1− ܲ1)
ߚ݊

 

To minimize it is to maximize P1 and minimize P2 and P3. That is let P1=ε, P2=ε+ and 
P3=y+, which is in response to the prior distribution in Figure 2. Then,  

∗஻݌ݍ݌ ≥
ߠ + (1 − ߚ݊(ߝ

ߠ + (1 − +ߚ݊(ߝ (1− 1)݊(ߝ − ߠ − −ߙ +(ߚ (1 − ߙ݊(ݕ

=
ߠ + (1 − ߚ݊(ߝ

+ߠ (1 − 1)݊(ߝ − −ߠ +(ߙ (1 − ߙ݊(ݕ

≥
ߠ

+ߠ (1 − 1)݊(ߝ − −ߠ +(ߙ (1 −  ߙ݊(ݕ

QED 
 
Proof for Theorem 7 
From the main text of the paper, we have: 
∗஻݌ݍ݊݌ ≤ ,ߠ)ܩ  (ߙ
Now ߠ)ܩ,  :is a decreasing function of both θ and α, so (ߙ

ܲ൫pnqp஻∗ ≤ ,ఏݖ)ܩ ఈ)൯ݖ ≥ ߠ)ܲ ≥ ఏݖ , ߙ ≥  (ఈݖ
The joint distribution of θ and α satisfies: 
ߠ)ܲ ≥ ,ఏݖ ߙ ≥ (ఈݖ = 1 − ߠ)ܲ < (ఏݖ − ߙ)ܲ < (ఈݖ + ߠ)ܲ < ,ఏݖ ߙ < (ఈݖ

≥ 1 − ߠ)ܲ < (ఏݖ − ߙ)ܲ < (ఈݖ = 1 − ଵܦ  ଶܦ−

So  
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ܲ൫pnqp஻∗ ≤ ,ఏݖ)ܩ ఈ)൯ݖ ≥ 1 − ଵܦ  ଶܦ−

QED 
 
Proof for Theorem 8 
From the proof of theorem 6, we know that 

ܲ ቀ݂݀݌௦௬௦ < ߝ × ൫1 − ,ఏܼ)ܩ ܼఈ)൯ + ஺ܲ × ,ఏܼ)ܩ ܼఈ)ቁ
≥ 1 − ஺ߙ) + ܲ൫݌ݍ݊݌஻∗ ≥ ,ߠ)ܩ  (൯(ߙ

by replacing PB with ݖ)ܩఏ, ∗൫pnqp஻	ఈ) and αB with ܲݖ ≥ ,ߠ)ܩ  ൯(ߙ
Using the theorem 7 result, we have: 

ܲ ቀ݂݀݌௦௬௦ < ߝ × ൫1 − ,ఏܼ)ܩ ܼఈ)൯ + ஺ܲ × ,ఏܼ)ܩ ܼఈ)ቁ ≥ 1 − ஺ߙ) + ଵܦ  (ଶܦ+

QED 
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