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Abstract 

This paper assesses the economic value of modelling conditional correlations for 

mean-variance portfolio optimization.  Using sector returns in three major markets 

we show that the predictability of models describing empirical regularities in 

correlations such as time-variation, asymmetry and structural breaks leads to 

significant performance gains over the static covariance strategy.  Investors would 

be willing to pay a fee of up to 983 basis points to switch from the static to the 

dynamic correlation portfolio and about 100 basis points more for capturing 

asymmetries and shifts in correlations. The gains are robust to the crisis, transaction 

costs and are most pronounced for monthly rebalancing.   
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1. INTRODUCTION 

Volatility and correlation among asset returns are central to portfolio allocation and 

risk management.  A burgeoning literature in financial economics has focused on 

time series models for asset return volatility and their comovement.  Various 

Multivariate Generalized Autoregressive Conditional Heteroskedasitciy (MGARCH) 

models, such as the Dynamic Conditional Correlation (DCC) model of Engle (2002), 

have been developed to capture the well-documented time variation in correlations 

and other dynamic aspects of comovement between financial risks.   

 Correlation asymmetry is one regularity that has been widely found in the 

second moment of equity returns although the economic rationale behind the 

clustering of bad news is relatively less researched.  Longin and Solnik (2001) show 

that correlations rise in bear markets.  Ang and Bekaert (2002) document the 

presence of a high volatility-high correlation regime in the US, UK and Germany, 

which coincides with a bear market and refutes the benefits of international 

diversification.  Cappiello et al. (2006) find support for asymmetry in the correlations 

of international equity and bond returns, while Bekaert et al. (2005) attribute jumps 

in cross-market correlations during crises to dependence on a common factor. 

Structural breaks have also been documented in correlations and can have a 

fundamental impact on global markets.  Billio and Pelizzon (2003) find that 

correlations of European markets increased following the European Monetary Union 

(EMU).  Longin and Solnik (2001) suggest that the level and structure of global 

correlations shifted considerably over time.  Cappiello et al. (2006) find significant 

correlation rise post-EMU not mirrored in conditional volatility indicating greater 

market integration.   
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There has been growing consensus that employing static long-term historical 

relationships between assets in portfolio management may lead to substantial 

underperformance in the face of increased market volatility, changing correlations 

and frequent regime shifts.  This study assesses the economic merit of forecasting 

return correlation dynamics for sector allocation.  We seek to generate profitable 

trading strategies through correlation predictability, that is, correlation timing, a 

notion introduced by Engle and Colacito (2006).  The contribution to the literature is 

twofold.  First, we investigate the economic value of capturing stylized facts of asset 

correlations such as time variation, asymmetry and structural breaks.  To do so we 

employ a dynamic mean-variance framework, which incorporates investor risk 

aversion, transaction costs and different rebalancing frequencies.  Second, as the 

value and viability of market timing strategies during the recent financial crisis has 

often been questioned, we empirically examine the benefits of correlation timing 

over the crisis period (2007 – 2009) and its aftermath (2009 – 2012). 

The pertinent empirical literature mainly focuses on the economic value of 

volatility timing (Fleming et al., 2001; 2003; Della Corte et al., 2009).  The evaluation 

of conditional correlation estimators has largely focused on statistical metrics and 

less attention has been paid to the economic value of capturing the empirical 

regularities in correlations.  Engle and Sheppard (2001) show that the DCC model 

outperforms the industry standard RiskMetrics exponential smoother on the basis of 

residual normality and lower portfolio standard deviations.  Engle and Colacito 

(2006) show that the efficiency loss of mean-variance portfolios decreases with 

correlation accuracy and that assuming constant correlation during volatile 

correlation phases is costly.  But important issues such as the profitability of 
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correlation predictability, the impact of transaction costs on active allocation and the 

value of the latter during market downturns or for different risk-aversions have not 

been examined as yet.1   

Our analysis is based on daily prices from ten sector indices in three major 

markets (Japan, UK, US) over July 1996 to April 2012.  The findings suggest that 

correlation timing is fruitful to sector investors.  Dynamic correlation strategies 

deliver significant out-of-sample gains in risk-adjusted returns, which are more 

pronounced for monthly rebalancing and are robust to reasonable transaction costs.  

Risk-averse investors are willing to pay a fee of up to 983 basis points (bp) to switch 

from the static covariance portfolio to the dynamic DCC portfolio and up to an 

additional 100bp to also account for correlation asymmetries and regime shifts.  The 

Sharpe Ratio (SR) accrual of dynamic portfolios can be as high as 0.48 and rises a 

further 0.08 when asymmetries and structural breaks are captured.  Exploiting 

correlation dynamics appears more beneficial during the crisis: risk-adjusted returns 

rise to 0.60 in excess of the static portfolio and performance fees largely increase.   

The remainder of the paper is organized as follows.  Section 2 describes the data.  

Section 3 delineates the conditional correlation models and the performance 

evaluation framework.  Section 4 presents the empirical results.  Section 5 concludes.  

2. DATA 

The empirical analysis is based on daily prices for ten sector indices from the Nikkei 

225, FTSE-All and S&P500 obtained from Thomson Reuters DataStream International, 

namely, Energy (ENG), Basic Material (BML), Industrial (IND), Consumer Goods 

                                                        
1 While DeMiguel et al. (2009) argue that the naïve 1/N diversification strategy is able to outperform the mean-
variance asset allocation, their findings have been questioned by Kirby and Ostdiek (2012) who document that 
active mean-variance timing is superior to naïve diversification but can be severely affected by transaction costs. 
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(CGS), Health Care (HCR), Consumer Service (CSV), Telecommunication (TEL), 

Utility (UTL), Financial (FIN) and Technology (TEC).  The sample spans the period 

from July 1, 1996 to April 30, 2012, which amounts to a total of around 3900 daily 

logarithmic returns (in local currency) for each sector portfolio.  The three-month 

Japanese interbank loan rate, the UK LIBOR, and the US Treasury bill rate proxy the 

risk free asset.  The descriptive statistics in Table 1 show positive mean daily returns 

for most sectors. 

[Insert Table 1] 

All daily returns are non-normally distributed, particularly in the form of 

leptokurtosis.  The extent and direction of skewness differs across sectors and equity 

markets.  Most of the sector returns in the three markets are significantly negatively 

skewed.  The Augmented Dickey-Fuller (ADF) test strongly rejects the hypothesis of 

a unit root for all return series.  The Ljung-Box Q-statistic on raw/squared daily 

returns portrays serial dependence in all sectors.  The strong evidence of volatility 

clustering supports the stylized fact that there is far more predictability in 

conditional volatility than in returns.  

The analysis is based on domestic sector portfolios in each of the three markets 

and so within-country sector correlations are of relevance.  The unconditional sector 

correlations over the sample period are significantly positive.  The average sector 

correlation within Japan, UK and US is 59.7%, 48.1% and 62.9%, respectively.2  

Consumer services and industrials exhibit the highest correlation with other sectors 

in their respective markets at 65.8% and 64.7%, while utilities are the least correlated. 

Our empirical framework is designed to assess the economic differences 

                                                        
2 The three mean correlations are strongly significant with t-statistics 58.7, 39.6 and 65.8. The t-statistic is 
computed as ρ√(T-2)/(1-ρ2) and follows a Student-t distribution with (T-2) degrees of freedom. 
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materializing from rival correlation forecasting approaches.  The sample is divided 

into an in-sample estimation period from July 1, 1996 to June 30, 2005 (T= 2274, 2266, 

2209 days, respectively, for the Japanese, UK and US sector portfolios) and a holdout 

evaluation period from July 1, 2005 to April 30, 2012 (T*= 1676, 1727, 1720 days, 

respectively, for the three domestic sector portfolios).  The choice of out-of-sample 

period enables us to evaluate the performance of correlation timing over three 

distinctive phases of the recent global financial crisis, i.e. the pre-crisis (July 2005 – 

July 2007), crisis (August 2007 – February 2009), and post-crisis (March 2009 – April 

2012) periods.  The conditional correlation models are re-estimated over a rolling 

window of length-T to generate one-step-ahead covariance matrix forecasts.3   

3. METHODOLOGY 

The analysis builds upon the recursive construction of optimal mean-variance sector 

portfolios in the Japanese, UK and US markets and their out-of-sample performance 

based on incremental utility and risk-adjusted returns.  For this purpose daily sector 

correlation and volatility forecasts, the main inputs alongside expected returns for 

active mean-variance allocation, are generated using the models outlined below.   

(i) The Conditional Covariance Structure 

Let rt denote the day t logarithmic close-to-close return vector on n risky assets and 

ξt-1 be the information set available at the end of day t-1.  The [n × 1] conditional 

expected return vector of rt is defined as µt ≡µt|t-1 = E[rt |ξt-1], while Ht ≡ Ht|t-1 = E[(rt - µt) 

(rt - µt)’|ξt-1] is the symmetric [n × n] asset conditional covariance matrix.  The return 

generating process is conceptualized as .  We characterize 

                                                        
3  According to Clark and McCracken (2001), the ratio between the out-of-sample and in-sample period 
observations (π) should not be too large or small. In the current study, π is ranging from 0.74 to 0.78, thereby 
leaving a sizeable number of observations in each of the in-sample and out-of-sample portions.    
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the covariance dynamics Ht using variants of MGARCH models that account for 

correlation asymmetries and structural breaks. 

Conditional correlation models rely on decomposing the conditional 

covariance into conditional standard deviations and conditional correlation.  The 

simplest model is the Constant Conditional Correlation (CCC) introduced by 

Bollerslev (1990) which imposes time invariant correlation and covariance that 

changes over time proportionally to the time-varying volatilities.  The CCC model is 

estimated in two steps.  First, a univariate GARCH (p,q) model is fitted to each 

return series to obtain the conditional variance hit , i = 1,…, n.  Second, the 

conditional covariance is specified as  

Ht = Dt R Dt      (1) 

, where ( )nttt hhdiagD ,...,1=  and R is a positive definite [n × n] correlation matrix 

typically estimated by the unconditional in-sample correlation matrix. 

The constant correlation assumption has been found to be too restrictive in 

several empirical studies (e.g. Ang and Bekaert, 2002), and so the covariance 

decomposition in (1) has been extended to allow for dynamics in the correlation 

matrix.  Among the many specifications proposed for the evolution of Rt the DCC 

model of Engle (2002) is the most popular. 4  The DCC model has the same first step 

as the CCC approach, but for each series the standardized errors, εit, are generated 

alongside the conditional variance.  In the second step, the εit are used to estimate 

the time-varying correlation matrix via  

Rt = (Qt*)-1 Qt (Qt*)-1      (2) 

                                                        
4 The out-of-sample nature of the ensuing analysis and long evaluation period renders the recursive estimation 
and forecasting based on diagonal DCC models computationally intensive., thus, we focus on the scalar versions.  
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 Qt = ( QbQaQ 22 −− ) + a2 εt-1 ε’t-1 + b2 Qt-1   

, where�Q = E[εtεt’] is the unconditional covariance of standardized innovations and 

Qt*= diag(√qit,…,√qnt) to ensure that Rt has the structure of a correlation matrix.  

The Asymmetric DCC (A-DCC) of Sheppard (2002), extends (2) by allowing for 

asymmetries in the conditional covariance as follows 

         Qt = C + a2 εt-1 ε’t-1 + b2 Qt-1 + g2 ηt-1 η’t-1    (3) 

, where ηt = I[εt<0] ⊗  εt , ⊗  indicates the element-by-element Hadamard 

product, NgQbQaQC 222 −−−= and�N = E[ηtη’t], where the expectation is replaced 

by its sample analogue.  Model (3) allows joint negative shocks to have a stronger 

impact on correlations than positive shocks of the same size and nests the symmetric 

DCC.   

We also extend (3) to accommodate structural breaks in the long-run mean and 

dynamics of correlations (A-DCC-Break) as in Cappiello et al. (2006).  The A-DCC-

Break model accounts for three covariance regimes as follows 

Qt = d1 Q1t  + d2 Q2t + (1 - d1 – d2) Q3t 

             Qjt  = Cj + a2j εt-1 ε’t-1+ b2j Qt-1 + g2j ηt-1 η’t-1; and j = 1, 2, 3  (4) 

, where d1 and d2 are two structural break indicators defined as d1 = 1 for t ∈ [July 

1996; December 1998] and 0 else, d2 = 1 for t ∈ [January 1999; July 2007] and 0 else. 

Model estimation is by quasi maximum likelihood (QML).  Inferences are based 

on Bollerslev-Wooldridge non-normality robust standard errors (Bollerslev and 

Wooldridge, 1992).  Individual significance tests are based on t-statistics. 

(ii) Dynamic Asset Allocation using Correlation Timing Strategies   

We consider an investor with a short-term investment horizon who allocates funds 

across n = 10 risky assets (domestic sector indices) and a riskless security (3-month 
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domestic interbank rate).  Mean-variance optimization is deployed to construct a 

distinct domestic sector portfolio for each market using the conditional covariance 

matrix forecast and the expected return as inputs.  We consider two portfolio 

optimization strategies: a) maximize expected return subject to a target expected 

volatility (Max-R), and b) minimize conditional variance subject to a target expected 

return (Min-V).  The optimal portfolio weights vary through time as both µt and Ht 

change as follows 

    , for the Max-R strategy, 

    , for the Min-V strategy, 

where σp* and µp* are the target expected volatility and return, respectively; wt is an 

[n × 1] vector of weights on the risky assets, rf is the return on the risk free asset, I is 

an [n × 1] vector of 1s, and the weight on the risk free asset is (1 – twʹ I). 

At the opening of each trading day, the conditional covariance matrix Ht is 

forecasted using price information up to day t-1 and used as input in the models to 

compute the optimal sector weights in each market.  When the conditional expected 

return µt and conditional covariance Ht are perceived time varying, investors will 

rebalance their portfolio weights following the dynamic strategies outlined above to 

produce a daily sequence of optimal mean-variance portfolios spanning the out-of-

sample period. Expected returns are notoriously hard to predict, and so we follow 

De Pooter et al. (2008) in assuming a constant expected return given by the average 

realized return over the three sample periods: pre-crisis, crisis and post-crisis.  The 

target expected return and volatility ( are set at 10% per annum. 

The CCC model amounts to a volatility timing strategy and is adopted by 
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investors who believe that changes in covariance are driven by changes in volatility, 

while correlations are constant through time.  The DCC family can generate 

correlation timing strategies embedding various stylized facts of correlations such as 

time variation, asymmetry and structural breaks.  The static benchmark strategy, 

adopted by an investor who believes that the covariance is constant over the out-of-

sample period, is based on the realized unconditional covariance matrix and reflects 

the ex post optimal static allocation.   

(iii) Performance Evaluation Framework 

The adequacy of the dynamic strategies based on alternative covariance forecasts is 

judged on the basis of incremental utility relative to the static benchmark strategy.  

We follow the utility-based evaluation framework of Fleming et al. (2001) assuming 

that at a given point in time, one estimate of conditional covariance is better than 

another if it leads to higher average utility.  The incremental value of correlation 

timing vis-a-vis the static benchmark is assessed by the return that would render an 

investor indifferent between the two strategies as follows 

  (5) 

where Rd,t+1 and Rs,t+1 denote returns for the dynamic and static strategies.  Equation 

(5) implies that the investor would incur a daily expenseΔ for the dynamic strategy, 

which is the maximum performance fee (PF) in annualized basis points the investor 

is willing to pay to switch from the static to the dynamic strategy.  

We statistically evaluate the risk-adjusted performance of the strategies by 

assessing the significance of the observed SR differential of the dynamic strategy and 

the static benchmark.5  In order to test the null hypothesis H0: (SRd - SRs) = 0 we 

                                                        
5 We calculate the SR of the strategies using the mean and standard deviation of the realized portfolio excess 
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employ the asymptotic variance of the SR differential, , 

derived by Opdyke (2007) under very general conditions of time-varying volatilities, 

serial correlation and non-iid returns.  Since the SR statistic is asymptotically 

unbiased and normally distributed, the Central Limit Theorem implies that 

. 

(iv) Transaction Costs 

Transaction costs play an important role when assessing the profitability of active 

trading strategies.  Accurate estimation of the size of transaction costs is challenging 

since it requires information on the type of investor and broker and the value of 

transaction.  In order to sidestep this issue we follow Han (2006) and compute break-

even transaction costs (BTC) per trade as the proportional cost that renders the 

investor with quadratic utility function indifferent between the dynamic strategy at 

hand and the static strategy.  We compute the average monthly turnover rate (TO) as 

the proportion of the portfolio value rebalanced each day, that is, 

. 

Sector index trading can be effectively replicated with Exchange Traded Funds 

(ETFs) at a relatively low cost.  For frequent traders of ETFs the trading cost depends 

primarily on the bid-ask spread and the cost of market impact as the other cost 

components (total expense ratio and commission) are relatively small for large 

transactions (Jares and Lavin, 2004).  Bid-ask spreads tend to be wider at the end of 

the trading day since traders face a higher risk that their order might not be executed 

(McInish and Wood, 1992).6  This implies that using the end-of-day bid-ask spread 

                                                                                                                                                                            
returns as in Fama and French (2002).  It is worth noting that realized SR tends to overestimate the conditional 
risk as it uses the sample standard deviation of the realized portfolio returns.  
6 The higher bid-ask spread of the last trade can also be attributed to the introduction of the closing auction on 



12 
 

would inflate the actual trading cost.  To circumvent this issue we use intraday price 

quotes and compute the bid-ask spread on day t as Bid-Askt = min(ΔPjt)/LowPt  for j 

= 1,…, M intraday intervals, where min(ΔPjt) is the smallest intraday bid-ask spread 

observed during day t and LowPt  is the lowest bid price.  The estimated average 

Bid-Ask for SPDR US Sector ETFs ranges from 1.8 to 4.5bp, and is slightly higher for 

financials.  The Daiwa JPN TOPIX Sector ETFs average Bid-Ask is found to be 28bp, 

whereas it is 48bp for the SPDR MSCI Europe Sector ETFs.  The cost of market 

impact when trading large cap index ETFs is typically around 2bp.7 Thus, the total 

trading cost of sector ETFs for traders in the US, Japan and UK markets, respectively, 

is approximately 7, 30 and 50bp per trade. 

4. EMPIRICAL RESULTS 

(i) The Dynamics of Sector Correlations 

The covariance matrix for each of the three domestic sector portfolios is estimated 

over the entire sample period, July 1, 1996 to April 30, 2012.  For each portfolio we 

use the fitted GARCH (1,1) conditional volatilities alongside equations (1) to (4) to 

estimate the conditional correlations.8   

In order to account for potential structural breaks in the dynamics of sector 

correlations, we follow the pertinent literature (Baele, 2005; Billio and Pelizzon, 2003 

inter alios) and introduce a structural break corresponding to the EMU introduction 

on January 1, 1999.  Cappiello et al. (2006) provide evidence to support that the 

exchange rate harmonization of 1999 has increased national return correlations not 

                                                                                                                                                                            
most of the exchanges. The bid-ask spread or terms of trade is determined by the number of informed traders in 
the market. If it the latter increases, the terms of trade will worsen especially when opinions are diversified.  The 
closing auction will attract more informed traders into the price discovery process that possess more information 
about the underlying asset and could form a better strategy in the auction (Admati and Pfleiderer, 1988). 
7 See Frontier Investment Management report at http://www.frontierim.com/files/file/download/id/592. 
8 An EGARCH (1, 1) model was also fitted to the daily return series but no evidence of asymmetry was found. 
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only within EMU countries but also outside the EMU including the UK possibly 

signaling stronger economic ties.  The increase in correlation between major 

European markets and other non-EMU markets implies that shocks to the 

underlying country fundamentals (e.g. business cycle and default risk) that drive 

sector comovements are now easier to transmit from EMU to non-EMU markets.  

The literature has also documented direct sector contagion effects between 

international equity markets (Baca et al., 2000; Phylaktis and Xia, 2009).   

We also account for regime shifts in correlation dynamics triggered by the recent 

financial crisis by specifying a second break point on August 1, 2007.9  Our focus on 

the EMU introduction and the recent crisis as structural break points is driven by 

their long-lasting and systemic impact on global financial markets.  Multivariate 

conditional correlation models are quite data intensive due to the large number of 

parameters (our DCC models involve around 35 parameters) and so we need 

enough observations over both the pre- and post-break sub-periods in order to be 

able to estimate the models.  Second, events that have a global impact would allow 

us to apply the same model across the markets/sectors considered. 

Empirical likelihood ratio tests reported in Table 2 provide strong evidence for 

the presence of structural breaks in sector correlation dynamics in the three markets.   

[Insert Table 2] 

Asymmetry in sector correlations is also borne out by a significant increase in the 

value of the log-likelihood function upon inclusion of the asymmetric term.  On the 

other hand, the Akaike Information Criterion (AIC) and Schwarz Information 

Criterion (SIC) that trade-off fit and parsimony point towards the DCC, the most 

                                                        
9 The credit event of BNP Paribas in August 2007 is typically taken to mark the onset of the recent financial crisis 
by worsening global liquidity conditions. 
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parsimonious among the correlation models.  

The parameter estimates for the conditional correlation models are set out in 

Table 3.  Most parameters are statistically significant at the conventional levels.   

[Insert Table 3] 

We find evidence of correlation asymmetry in sector correlations in all three markets 

indicated by the significance of the asymmetry parameter g during the post-EMU 

period.  The findings also indicate a change in the dynamic structure of conditional 

correlations following the introduction of the EMU and the recent financial crisis.  

Conditional correlations become more persistent after the introduction of the EMU, 

which implies that joint sector shocks have longer lasting effects on the conditional 

correlation.  Short-run persistence increases in the crisis period, implying that recent 

news have a bigger impact on conditional correlations in the post-crisis period. 

(ii) Timing the Correlation Signals 

In order to investigate whether accurately characterizing the time varying 

correlations can be economically significant, mean-variance sector portfolios are 

recursively constructed based on the rolling one-day-ahead conditional covariance 

matrix forecasts obtained from models (1) to (4), while the static portfolio is based on 

the realized unconditional covariance matrix.  Table 4 presents the out-of-sample 

evaluation of the correlation timing strategies against the static benchmark strategy.  

[Insert Table 4] 

First we appraise the standard portfolio performance measures.  Reported for each 

sector portfolio is the annualized mean portfolio return (µ), return standard 

deviation (σ) and SR, and the associated p-values for Opdyke’s (2007) test of equality 

of SR.  A significant test statistic denotes rejection of H0: SRd = SRs in favour of the 
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alternative that the dynamic strategy increases the SR.  Bold denotes the best 

performing model under each criterion.   

The results suggest that the dynamic strategies are able to deliver performance 

gains over the static benchmark strategy in all markets.  The best model for the 

Japanese and UK sector portfolios is the A-DCC, which accrues significant SR gains 

of 0.62 (0.46) and 0.37 (0.09), respectively, in excess of the static Max-R (Min-V) 

strategy.  For the US, structural breaks seem to matter as the A-DCC-Break model 

achieves the highest significant SR increase of 0.50 (0.25).  The results based on Min-

V strategy further underline the improvement in terms of lower portfolio volatility.   

We now turn attention to the economic value of the covariance forecasting 

models on the basis of annualized PF of the strategy at hand vis-à-vis the static 

benchmark.  We find large and positive performance fees across all portfolios 

providing overwhelming evidence that the dynamic strategies outperform the static 

constant covariance strategy in all three markets.  Interestingly, the results provide 

evidence that accounting for correlation asymmetries and, in the US case also for 

breaks, enhance performance gains.  A risk-averse Japanese sector investor would be 

willing to pay up to a maximum of 869bp per annum for the relative benefits of the 

dynamic A-DCC strategy.  A US investor would opt for a dynamic strategy that 

accounts for asymmetries and also breaks and, in particular, she would willing to 

pay up to 596bp to switch from the static benchmark portfolio to the A-DCC-Break 

portfolio.  When the focus is on minimizing risk the dynamic Min-V strategies 

produce relatively lower performance fees, but are able to reduce volatility, which 

implies accrued accuracy in the covariance matrix forecasts. 

(iii) Turnover Rate and Break-Even Transaction Costs  
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The empirical results thus far suggest that the dynamic strategies outperform the 

static strategy in terms of SR and performance fees for risk-averse investors with 

quadratic utility.  Active trading strategies, however, are prone to high turnover and 

so their performance can be substantially impeded by transaction costs.  In order to 

demonstrate the trading intensive nature of the dynamic strategies, Figure 1 plots 

the weights derived from the A-DCC and the static covariance strategy for two 

indicative sectors (i.e. industrial and financial) and for the risk free asset.10  

[Insert Figure 1] 

As expected the weights of the dynamic strategies are very volatile.  The monthly 

turnover (TO) for each strategy can be seen in Table 4.  The TO of the static strategy 

that rebalances to maintain constant weights is 0.38 – 0.56 (Max-R) and 0.17 – 0.28 

(Min-V), or equivalently 38% - 56% and 17% - 28% of total portfolio value.  The 

monthly turnover for the conditional correlation strategies is considerable, ranging 

at 3.53 – 6.15 (Max-R) and 1.51 – 2.43 (Min-V) across models/portfolios.  The strategy 

with the lowest TO employs the CCC model that responds only to volatility changes.  

The differences in turnover rate among dynamic strategies have important 

implications for their post-transaction cost economic value, which is summarized by 

the break-even transaction costs (BTC).  The results in Table 4 indicate that a highly 

risk-averse US sector investor using the least trade intensive CCC model faces 

economically plausible BTC of 7.20bp per trade under Max-R.  For DCC-type models 

under Max-R the BTC are also higher than the assumed level of transaction costs for 

US sector ETFs.  Therefore, US portfolio managers opting for conditional correlation 

models can get net performance gains.  Nonetheless, in the UK and Japan the BTC 

                                                        
10 In the interest of space, only the results based on the US domestic sector portfolio are illustrated. The graphs 
for the other two markets are available from the authors upon request.  
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are below the indicated trading costs for sector-linked ETFs.  Thus, the gains of the 

dynamic strategies are wiped out by the high trading costs facing investors in these 

markets in line with DeMiguel et al. (2009) and Kirby and Ostdiek (2012). 

(iv) Rebalancing Frequency and the Performance of Dynamic Strategies  

Daily traders engaging in dynamic correlation strategies are confronted with high 

turnover, which casts doubt on the practical feasibility of the strategies.  Lower 

rebalancing frequency can reduce the turnover allowing investors to effectively 

implement the dynamic strategies.   

In order to investigate the impact of rebalancing frequency on the performance 

of the dynamic asset allocation strategies, we repeat the analysis for monthly and 

weekly investment horizons based on the overlapping rebalance approach.  

Portfolios are rebalanced daily based on the covariance matrix forecast and the new 

portfolio is held for an m-day holding period, where m = 5 for a weekly horizon and 

m = 21 for a monthly horizon.  This overlapping approach assumes that, on each 

trading day, the investor will hold multiple portfolios simultaneously, each formed 

one day apart, but only one of the m portfolios will be revised.11  The overall day-t 

return is calculated as the weighted average return of the m portfolios held on day t. 

The turnover ratio of the total asset holding on each day is equal to the turnover of 

the revised portfolio multiplied by its weight.  The advantages of the overlapping 

approach is that it uses information from all the daily covariance forecasts and 

eliminates the bias arising from the day of the week/month effect and accounts for 

performance variability from the choice of rebalancing day. 

Table 5 sets out the impact of lowering the rebalancing frequency from daily to 

                                                        
11 The overlapping method to evaluate the performance of stock picking techniques with different rebalancing 
frequencies is inspired by Rouwenhorst’s (1998) early work on portfolio trading strategies. 



18 
 

monthly on the out-of-sample performance of the dynamic strategies.  

[Insert Table 5] 

Portfolio volatility increases slightly when the investment horizon increases, in line 

with De Pooter et al. (2008).  In terms of risk-adjusted performance, we find that the 

SR decreases with the investment horizon consistent with the evidence in Fleming et 

al.  (2003), who use artificially generated returns.  However, the incremental gains in 

risk-adjusted rewards over the static strategy are still significant and can be as high 

as 0.48.  Furthermore, the benefits in risk-adjusted performance over the static 

strategy are robust to the different out-of-sample sub-periods: pre-crisis, crisis/post-

crisis period and period excluding the crisis years (August 2007 to February 2009).12   

The incremental utility-based performance gains of dynamic strategies relative to the 

static benchmark are more pronounced at lower rebalancing frequencies.  Monthly 

correlation timing generates PF of 1015bp, 420bp and 620bp (Max-R) for the Japanese, 

UK and US markets, respectively, which is an increase of 7% to 18% relative to daily 

rebalancing.13  This can be attributed to the fact that dynamic portfolios benefit more 

than the static one from longer revision intervals, which implies that investors are 

prepared to pay higher fees to switch from static to dynamic strategies when 

rebalancing less often.  Risk-averse investors are willing to pay a fee of up to 983bp 

to switch from the static covariance portfolio to the dynamic DCC- portfolio and up 

to100 bp more for correlation asymmetries and regime shifts.   

The decrease in turnover rate when switching to monthly rebalancing is quite 

dramatic.  The TO of monthly portfolios is less than a quarter of the TO of the daily 

                                                        
12 The results for the three sup-periods are available from the authors upon request.  Similarly, for the weekly 
rebalancing results which are qualitatively similar to the monthly ones. 
13 In our framework, lower rebalancing frequency does not imply lower sampling frequency as daily price 
information is still used in the correlation forecasting process in order to exploit the persistence of correlation 
and volatilities as investors move from daily to monthly frequencies. 
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portfolios.  As an example, the daily dynamic strategy based on DCC forecasts under 

Max-R has a TO rate 5.41 for the US sector portfolio whereas the TO rate of the 

corresponding monthly portfolio is curtailed to 1.10. 

A direct implication of enhanced performance fees and lower turnover is the 

higher BTC associated with lower rebalancing frequencies, which suggests that 

dynamic portfolios are more likely to maintain post-transaction cost benefits if they 

are revised less frequently.  Depending on the model and risk-aversion, the BTC of 

conditional correlation models with monthly rebalancing range from 34bp to 104bp 

per trade (Max-R) and from 14bp to 33bp per trade (Min-V), notably higher than 

their daily counterparts.  Thus, monthly correlation timing under Max-R becomes 

feasible and economically meaningful for investors in all three markets.  Monthly 

Min-V correlation timing is also feasible for Japanese and US investors with BTC of 

about 30bp and 20bp, respectively.  While in the UK the BTC of dynamic strategies 

are of similar magnitude, they do not exceed the rather high transaction costs; the 

gain from less frequent rebalancing is nonetheless noticeable.   

In order to directly evaluate the effect of rebalancing frequency on the dynamic 

strategies we compute the maximum return an investor is willing to forfeit to switch 

from daily to monthly rebalancing.  Table 6 presents these performance fees. 

[Insert Table 6] 

The largely positive PF (between 12bp and 140bp) suggest that monthly correlation-

based rebalancing outperforms the daily one regardless of the risk-aversion level.14   

(v) Economic Value of Correlation Asymmetry and Structural Breaks  

In order to explicitly evaluate the economic value of capturing the well-documented 

                                                        
14 The only exception pertains to Japan where the daily Min-V dynamic portfolios outperform their monthly 
counterparts possibly due to the slight decrease in return for the monthly Min-V dynamic portfolios.  
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stylized facts of correlation in the context of asset allocation, we further compute the 

PF and BTC of the correlation timing strategies with asymmetries and/or structural 

break features against those without. 15   The results for daily and monthly 

rebalancing are summarized in Table 7 for the high risk-aversion case (γ = 10).  

 [Insert Table 7] 

The findings suggest that considering asymmetries and breaks in conditional 

correlation forecasts delivers performance gains, especially for monthly rebalancing.  

Embedding structural breaks in the correlation process is economically most 

relevant for US investors - the break feature yields a performance fee of 100bp with 

BTC of 80bp.  US investors can also benefit from substantial increase in the SR of 0.07 

to 0.09 from incorporating structural breaks, while asymmetric effects do not seem to 

deliver any gains.  On the other hand, the value of modelling structural breaks in 

correlations disappears in Japan, whereas exploiting correlation asymmetries alone 

amounts to a PF of 32bp per year and a SR increase of 0.02.  In the UK both 

asymmetries and breaks improve portfolio performance, with PF of 18bp and 30bp, 

respectively.  Finally, the BTC that render investors indifferent about asymmetric 

effects or structural breaks in the already time varying correlations by and large 

exceed the assumed levels of transaction costs.   

The performance gains (unreported due to space constraints) of correlation 

timing appear more prevalent during the crisis, especially for the Min-V strategy, 

and are economically viable with BTC of around 50 - 100bp per trade.16  The SR gains 

reach 0.48 in excess of the static strategy over the whole out-of-sample period, and 

                                                        
15 For instance, in order to evaluate the effect of capturing correlation asymmetry, we contrast the A-DCC (or A-
DCC-Break) portfolio against the DCC (or DCC-Break) portfolio. 
16 González-Hermosillo (2008) claims that investor risk-aversion increases dramatically under extreme market 
conditions, which indicates the relevance of minimum risk strategies during crisis periods. 
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0.64 during the crisis. The PF are also notably higher (twofold or threefold).  

(vi) Robustness Tests  

The results so far were based on assuming a certain level of target return or volatility 

in the mean-variance portfolio optimization.  In the presence of a risk-free asset 

using an arbitrary target return/volatility has no qualitative impact on the SR 

performance of the dynamic portfolio against the static one as long as the capital 

market line (CML) of the former lies above that of the latter.  Portfolios on the CML 

provide the highest possible SR among all efficient portfolios and different target 

settings simply change the allocation between the optimal risky portfolio and the 

risk-free asset along the CML.  Figure 2 shows the risk-return performance of the 

daily optimal dynamic portfolios in Table 4 against the CML of the static strategy.  

[Insert Figure 2] 

The results suggest that correlation-timing portfolios outperform the static ones 

irrespective of the target settings, as they provide higher SRs than any portfolio on 

the static CML.  We check the effect of changing the targets on the incremental utility 

of the dynamic portfolios by reproducing Table 4 using lower (5%) and higher (20%) 

levels of target return/volatility.  The results (not reported due to space constraints) 

show that varying the target settings does not affect the value of correlation timing.  

Realized portfolio return and volatility change proportionally with the target so that 

their ratio remains constant and most portfolios outperform the static benchmark in 

terms of utility-based performance measures under the alternative target settings.17   

We assess the asset allocation implication of the covariance matrix forecast 

accuracy by contrasting the frontiers from dynamic and static strategies in Figure 3.  
                                                        
17 This is true if there are no transaction costs. In fact increasing the target return of the portfolio leads to higher 
turnover and, therefore, lowers the net risk-adjusted return. However, relative to the static benchmark the BTC of 
each of our dynamic portfolios remain the same across different target settings. 
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[Insert Figure 3] 

The efficient frontiers of the best performing dynamic strategies embrace the static 

frontier, which implies that all efficient dynamic portfolios can achieve a better risk 

return trade-off than the efficient static portfolios and confirms that the 

outperformance of the dynamic strategies is attributed to more accurate covariance 

matrix forecasts and is not an artefact of the portfolio strategy.  

5. CONCLUSIONS 

Drawing on the growing realization that static, long-term correlation estimates are 

no longer appropriate in the rapidly changing financial markets this paper explores 

the economic value of correlation timing in sector allocation. We evaluate dynamic 

mean-variance strategies based on DCC-type forecasts that allow for time variation 

in both volatility and correlation against a static covariance strategy.   

Our study offers important insights into the economic significance of correlation 

predictability with interesting industry implications.  The findings suggest that the 

predictability of conditional correlation models leads to more efficient sector 

portfolios.  Fund managers can enhance risk-adjusted returns by accurately 

capturing correlation time variation, especially during market downturns when 

asset correlations are the highest.  Investors are willing to pay a fee up to 983bp to 

switch from the static to the dynamic strategy, and up to a further 100bp to capture 

asymmetric effects and breaks in correlations.  The gains are more pronounced for 

monthly rebalancing, are robust to transaction costs and the choice of target return.   

Diversification arguments imply that the risk of a well-diversified portfolio 

depends primarily on asset covariances.  Therefore, exploring whether the value of 

modelling correlation dynamics increases with the number of assets in the portfolio 
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would be an interesting avenue of further research. 
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Figure 1: Weighting schemes of the dynamic and static strategies 
The graphs demonstrate the time varying weighting schemes for the risk free asset 
and the industrial (IND) and financial (FIN) sector indices under the dynamic A-
DCC and the static allocation strategies for the US sector portfolio during the out-of-
sample period (July 2005 – April 2012). Portfolios are rebalanced daily. 
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Panel B: Min-V Portfolio Construction Strategy 
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Figure 2: Dynamic correlation strategies and the static capital market line (CML) 
The graphs demonstrate the relative performance of the correlation timing strategies based on MGARCH models against the CML 
derived from the ex post optimal static covariance benchmark. The annualized risk-return trade-off of the Max-R and Min-V 
correlation timing strategies reported in Table 4 is represented by the blue rectangles.  
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Figure 3: Efficient frontier of dynamic strategies and ex post optimal static strategy 
The graphs illustrate the efficient frontier of the best performing dynamic strategy 
for each sector portfolio against that of the static strategy. Portfolios are aggregated 
over the out-of-sample period by averaging the daily portfolio volatilities for each 
level of expected return.  
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Table 1: Distributional properties of daily sector returns  
Sector Indices 

  ENG BML IND CGS HCR CSV TEL UTL FIN TEC 
Japan 

Mean -0.018 -0.019 -0.006 -0.003 -0.002 -0.019 -0.008 -0.021 -0.045 -0.016 
Maximum 0.126 0.159 0.143 0.130 0.102 0.105 0.103 0.091 0.145 0.134 
Minimum -0.142 -0.127 -0.136 -0.106 -0.117 -0.117 -0.127 -0.159 -0.126 -0.125 
StDev 0.020 0.017 0.017 0.016 0.012 0.012 0.018 0.012 0.020 0.020 
Skewness -0.11*** -0.11*** -0.22*** -0.18*** -0.43*** -0.21*** -0.07** -0.66*** 0.15*** -0.11*** 
Kurtosis 6.06*** 9.88*** 8.42*** 7.79*** 12.12*** 9.18*** 6.99*** 17.66*** 7.01*** 6.02*** 
JB test 1528*** 7672*** 4784*** 3731*** 13595*** 6209*** 2576*** 35061*** 2618*** 1486*** 
ADF test -46.53*** -59.41*** -45.61*** -46.13*** -48.65*** -62.94*** -46.16*** -60.26*** -56.47*** -56.49*** 
LB(5) 16.88*** 19.71*** 21.39*** 22.72*** 51.81*** 26.19*** 21.76*** 27.60*** 63.63*** 48.70*** 
LB2(5) 1288*** 1730*** 1982*** 2153*** 2345*** 1205*** 782*** 613*** 999*** 1626*** 

UK 
Mean 0.024 0.020 0.006 0.017 0.017 0.000 0.013 0.031 0.000 -0.041 
Maximum 0.111 0.187 0.083 0.139 0.078 0.067 0.090 0.109 0.173 0.150 
Minimum -0.088 -0.189 -0.156 -0.109 -0.080 -0.079 -0.121 -0.081 -0.131 -0.232 
StDev 0.016 0.021 0.015 0.017 0.013 0.012 0.018 0.011 0.018 0.025 
Skewness 0.07** -0.17*** -0.55*** 0.07** -0.06** -0.11*** 0.03 -0.04 0.05 -0.48*** 
Kurtosis 6.81*** 13.25*** 9.58*** 8.13*** 6.79*** 6.40*** 5.75*** 9.26*** 10.93*** 10.68*** 
JB test 2417*** 17550*** 7432*** 4394*** 2392*** 1933*** 1263*** 6528*** 10481*** 9977*** 
ADF test -32.57*** -62.03*** -59.14*** -48.10*** -63.02*** -61.25*** -42.34*** -66.54*** -28.61*** -60.98*** 
LB(5) 47.64*** 22.28*** 25.27 23.79*** 28.00*** 34.66*** 59.82*** 33.89*** 38.83*** 10.16*** 
LB2(5) 1751*** 1860*** 344*** 802*** 1098*** 1274*** 808*** 1433*** 989*** 220*** 

US 
Mean 0.034 0.020 0.022 0.011 0.021 0.023 0.002 0.011 0.011 0.028 
Maximum 0.168 0.133 0.096 0.090 0.116 0.114 0.133 0.135 0.144 0.159 
Minimum -0.168 -0.139 -0.096 -0.124 -0.077 -0.106 -0.089 -0.090 -0.170 -0.101 
StDev 0.017 0.018 0.015 0.013 0.011 0.014 0.015 0.013 0.020 0.020 
Skewness -0.27*** -0.29*** -0.26*** -0.20*** -0.10*** -0.12*** 0.08** 0.03 -0.11*** 0.17*** 
Kurtosis 12.17*** 8.98*** 7.51*** 9.25*** 10.63*** 8.91*** 9.46*** 13.41*** 13.64*** 6.97*** 
JB test 14008*** 5987*** 3423*** 6512*** 9663*** 5805*** 6926*** 17983*** 18812*** 2641*** 
ADF test -50.64*** -64.48*** -64.54*** -66.25*** -49.10*** -47.49*** -47.81*** -65.19*** -68.19*** -47.55*** 
LB(5) 61.46*** 15.68*** 19.57*** 25.41*** 35.08*** 26.33*** 18.32*** 18.18*** 38.96*** 15.09*** 
LB2(5) 2133*** 1859*** 1185*** 732*** 1045*** 849*** 1180*** 1712*** 1508*** 767*** 

Mean/Maximum/Minimum returns and StDev are in percentage points. JB denotes the Jarque-Bera test statistic for the null hypothesis of 
normality. ADF is the Augmented Dickey-Fuller test for the null of a unit root with 5% and 1% critical values -2.86 and -3.43, respectively. The 
truncation lag is chosen based on a max lag of 1/2√T = 30 and a downward selection procedure based on the SIC until no serial correlation is 
present. LB(p) and LB2(p) are the Ljung-Box Q-statistics on the residuals and squared residuals, respectively, for the null of no serial correlation 
up to a lag of p days.  *, **, *** indicate significance at the 10%, 5%, 1% level, respectively. The sample period is June 1, 2005 to April 30, 2012. 
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Table 2: Empirical likelihood ratio tests for correlation dynamics 
Model (H1) LLF

CCC 126300
DCC 127938
A-DCC 127944
DCC-BreakEMU & Crisis 128169
A-DCC-BreakEMU & Crisis 128183

Japanese Sectors

AIC SIC LR test

126.51 568.55
40.48 229.09 3276
42.48 236.98 11
48.48 260.66 461
54.48 284.34 478

Japanese Sectors

Model (H0) Inference

CCC Time variation
DCC Asymmetry
DCC Break (a, b)
A-DCC Break (a, b, g)

Japanese Sectors

CCC 124222
DCC 125329
A-DCC 125342
DCC-BreakEMU & Crisis 125546
A-DCC-BreakEMU & Crisis 125547

UK Sectors
126.54 570.71
40.52 230.03 2215
42.52 237.96 24
48.52 260.70 433
54.52 284.38 410

UK Sectors

CCC Time variation
DCC Asymmetry
DCC Break (a, b)
A-DCC Break (a, b, g)

UK Sectors

CCC 133619
DCC 135664
A-DCC 135672
DCC-BreakEMU & Crisis 135856
A-DCC-BreakEMU & Crisis 135862

US Sectors
126.39 570.26
40.36 229.75 4091
42.36 237.67 16
48.36 260.54 383
54.36 284.23 380

US Sectors

CCC Time variation
DCC Asymmetry
DCC Break (a, b)
A-DCC Break (a, b, g)

US Sectors

 
The table reports the Likelihood Ratio (LR) test result for the hypothesis that correlation dynamics is 
sufficiently characterized by the model under H0 versus the model under H1. AIC is the Akaike 
Information Criterion, AIC = 2 × k – 2 × ln(LLF), k is the number of parameters and LLF the log-likelihood 
function value, SIC is the Schwarz Information Criterion, SIC = k × ln(LLF) - 2 × ln(LLF).  The EMU & 
Crisis subscript denotes the model that contains two structural breaks on January 1, 1999 and August 1, 
2007. Break (a, b) indicates a structural break in the correlation persistence parameters, while Break (a, b, g) 
indicates a break in either correlation persistence or correlation asymmetry parameters. Bolded is the 
selected model under each criterion. All LR statistics are significant at the 1% level.   
 
 
Table 3: Estimated parameters of dynamic conditional correlation models 
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a b g a b g a b g

DCC-BreakEMU & Crisis 0.020 *** 0.923 *** 0.015 *** 0.978 *** 0.020 *** 0.947 ***

A-DCC-BreakEMU & Crisis 0.020 *** 0.923 *** 0.000 0.011 *** 0.977 *** 0.006 *** 0.018 *** 0.947 *** 0.003

DCC-BreakEMU & Crisis 0.013 *** 0.928 *** 0.014 *** 0.978 *** 0.016 *** 0.948 ***

A-DCC-BreakEMU & Crisis 0.020 *** 0.000 0.000 0.010 *** 0.978 *** 0.005 *** 0.013 *** 0.948 *** 0.005 ***

DCC-BreakEMU & Crisis 0.019 *** 0.925 *** 0.013 *** 0.984 *** 0.023 *** 0.956 ***

A-DCC-BreakEMU & Crisis 0.012 *** 0.935 *** 0.011 *** 0.011 *** 0.984 *** 0.002 ** 0.022 *** 0.957 *** 0.001

US Sectors

Crisis (2007 - 2012)

Japanese Sectors

UK Sectors

Pre-EMU (1996 - 1998) Post-EMU (1999 - 2007)

 
The table presents parameter estimates for the DCC-Break and A-DCC-Break conditional correlation models. The full sample period is July 1, 1996 
to April 30, 2012.  The EMU & Crisis subscript denotes structural breaks on January 1, 1999 and August 1, 2007. *, **, *** indicate parameter 
significance at the 10%, 5%, 1% level, respectively. 
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Table 4: Performance of daily rebalancing portfolios 
Strategy

µ σ SR

Static 19.18 10.78 1.75

Max-R

Japanese Sectors

TO PFγ = 1 BTCγ = 1 PFγ = 10 BTCγ = 10 µ σ SR

0.56 10.00 5.31 1.82

Max-R Min-V

Japanese Sectors

Min-V

Japanese Sectors

TO PFγ = 1 BTCγ = 1 PFγ = 10 BTCγ = 10

0.28

Min-V

Japanese Sectors

CCC 26.39 11.82 2.20
DCC 27.57 11.55 2.36
A-DCC 27.91 11.62 2.37
DCC-Break 26.51 11.36 2.30
A-DCC-Break 26.77 11.42 2.31

Static 20.09 10.58 1.51
UK Sectors

*** 4.24 715.54 16.33 710.71 16.22 11.07 5.03 2.13
*** 4.83 834.87 16.40 831.36 16.33 11.28 4.84 2.26
*** 4.87 869.04 16.90 865.19 16.83 11.32 4.81 2.28
*** 5.41 730.11 12.62 727.48 12.57 11.00 4.84 2.20
*** 5.44 755.40 12.98 752.50 12.93 11.04 4.82 2.22

0.38 10.00 5.10 1.15
UK Sectors

***
***
***
***
***

UK Sectors

1.64 107.13 6.76 107.49 6.80
1.88 129.03 6.90 129.75 6.95
1.88 133.43 7.11 134.18 7.17
2.29 101.08 4.31 101.85 4.35
2.29 105.24 4.49 106.02 4.53

0.17
UK Sectors

CCC 22.00 10.62 1.68
DCC 23.77 10.48 1.87
A-DCC 23.91 10.52 1.88
DCC-Break 23.51 10.62 1.83
A-DCC-Break 23.68 10.66 1.83

Static 20.21 10.34 1.66
US Sectors

*** 3.53 190.81 4.72 190.25 4.71 10.32 5.36 1.15
*** 3.82 367.72 8.62 369.07 8.63 10.42 5.08 1.24
*** 3.86 381.26 8.85 382.48 8.85 10.40 5.06 1.24
*** 3.99 341.00 7.61 341.68 7.61 10.29 5.04 1.22
*** 4.01 358.16 7.97 358.68 7.96 10.29 5.03 1.22

0.55 10.00 4.66 1.49
US Sectors

**
**
**
**

US Sectors

1.51 31.02 1.89 30.40 1.79
1.63 41.84 2.33 41.80 2.32
1.64 39.90 2.18 39.91 2.19
1.67 28.74 1.52 28.81 1.53
1.67 29.17 1.55 29.26 1.55

0.21
US Sectors

CCC 23.74 10.77 1.92
DCC 25.55 10.57 2.13
A-DCC 25.65 10.59 2.13
DCC-Break 26.12 10.69 2.16
A-DCC-Break 26.20 10.70 2.16

*** 4.58 349.83 7.24 348.83 7.20 10.49 5.02 1.48
*** 5.41 531.80 9.18 532.11 9.16 10.79 4.58 1.69
*** 5.43 541.30 9.30 541.53 9.28 10.78 4.57 1.69
*** 6.15 588.09 8.80 588.02 8.78 10.84 4.48 1.73
*** 6.15 596.07 8.91 595.97 8.88 10.84 4.48 1.74

***
***
***
***

1.73 47.75 2.67 46.94 2.63
2.08 78.62 3.58 78.60 3.58
2.08 78.54 3.57 78.54 3.57
2.43 83.85 3.21 84.00 3.22
2.43 84.13 3.22 84.29 3.23  

Reported are the portfolio annualized mean return (%µ), standard deviation (%σ) and Sharpe Ratio (SR) of the static strategy and the correlation 
timing strategies. *,**,*** indicates the SR of the dynamic strategy is significantly higher than that of the static strategy at the 10%,5%,1% level, 
respectively. Performance Fee (PFγ) is the average annualized fee (in basis points) an investor with quadratic utility and constant relative risk-
aversion γ is willing to pay to switch from the static to a dynamic strategy. Break-even Transaction Cost (BTCγ) is the average cost per trade (in 
basis points) that renders the investor indifferent between static and dynamic strategies. TO is the average monthly turnover. Bold indicates the 
best performing model. 
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Table 5: Performance of monthly rebalancing portfolios 
Strategy

µ σ SR

Static 18.26 10.89 1.64

Max-R

Japanese Sectors

TO PFγ = 1 BTCγ = 1 PFγ = 10 BTCγ = 10 µ σ SR

0.15 9.38 5.31 1.70

Max-R Min-V

Japanese Sectors

TO PFγ = 1 BTCγ = 1 PFγ = 10 BTCγ = 10

0.08

Min-V

Japanese Sectors

CCC 27.16 13.37 2.01 ***
DCC 28.23 13.26 2.10 ***
A-DCC 28.56 13.33 2.12 ***
DCC-Break 27.80 12.99 2.11 ***
A-DCC-Break 27.99 13.05 2.12 ***

Static 20.89 10.80 1.55
UK Sectors

0.84 875.06 104.58 862.75 103.10 10.19 5.11 1.93 ***
1.01 983.31 95.43 971.60 94.29 10.50 5.01 2.03 ***
1.02 1015.19 97.58 1003.09 96.42 10.53 4.98 2.04 ***
1.00 941.48 92.31 931.20 91.30 10.41 4.96 2.03 ***
1.00 960.08 93.60 949.51 92.57 10.44 4.95 2.04 ***

0.11 10.26 5.07 1.21
UK Sectors

0.32 81.65 30.06 81.91 30.21
0.39 112.02 32.13 112.43 32.30
0.40 115.21 32.75 115.66 32.93
0.40 103.35 28.53 103.86 28.71
0.41 107.01 29.40 107.55 29.60

0.05
UK Sectors

CCC 23.44 11.36 1.70 ***
DCC 24.67 11.28 1.82 ***
A-DCC 24.82 11.32 1.83 ***
DCC-Break 24.95 11.46 1.82 ***
A-DCC-Break 25.14 11.51 1.83 ***

Static 20.56 10.50 1.67
US Sectors

0.73 251.75 34.54 248.71 34.20 10.77 5.30 1.25
0.81 374.78 44.57 373.54 44.32 10.75 5.10 1.30 **
0.81 389.32 45.95 387.92 45.68 10.74 5.08 1.30 **
0.81 402.08 48.04 400.07 47.69 10.78 5.05 1.32 **
0.82 420.34 50.01 418.13 49.63 10.80 5.05 1.32 ***

0.15 9.96 4.64 1.49
US Sectors

0.30 49.74 18.05 49.14 17.88
0.35 48.17 14.77 48.00 14.74
0.35 47.94 14.61 47.81 14.60
0.33 51.11 16.52 51.03 16.52
0.33 53.45 17.19 53.38 17.20

0.07
US Sectors

CCC 24.21 11.46 1.85 ***
DCC 25.75 11.28 2.01 ***
A-DCC 25.84 11.30 2.02 ***
DCC-Break 26.76 11.36 2.09 ***
A-DCC-Break 26.81 11.38 2.09 ***

0.92 358.61 36.87 355.17 36.40 10.62 5.02 1.51
1.10 513.22 43.05 510.96 42.74 10.77 4.62 1.67 ***
1.10 522.71 43.77 520.37 43.45 10.77 4.61 1.67 ***
1.20 615.16 46.69 611.27 46.39 10.96 4.51 1.75 ***
1.20 620.24 47.01 616.27 46.69 10.96 4.50 1.75 ***

0.35 64.46 18.03 63.58 17.80
0.43 80.53 17.43 80.39 17.44
0.43 80.95 17.52 80.83 17.53
0.47 99.86 19.57 99.90 19.62
0.47 99.97 19.60 100.01 19.65  

See note for Table 4. 
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Table 6: Performance of monthly rebalancing frequency relative to daily rebalancing 

PF  = 1 PF  = 10 PF  = 1 PF  = 10 PF  = 1 PF  = 10 PF  = 1 PF  = 10 PF  = 1 PF  = 10 PF  = 1 PF  = 10

CCC 66.85 58.76 139.54 135.94 43.10 39.89 -87.59 -87.92 45.17 45.20 13.01 12.98
DCC 55.78 47.02 85.65 81.93 15.74 12.53 -79.08 -79.59 32.77 32.66 -1.80 -1.88
A-DCC 53.50 44.70 86.66 82.89 15.73 12.52 -80.30 -80.80 34.49 34.37 -1.29 -1.36
DCC-Break 118.56 110.21 139.68 135.60 59.89 56.72 -59.71 -60.08 48.82 48.69 12.31 12.24
A-DCC-Break 111.89 103.54 140.77 136.67 56.98 53.79 -60.20 -60.57 50.73 50.59 12.13 12.06

Max-R Min-V
Japanese Sectors UK Sectors US Sectors Japanese Sectors UK Sectors US Sectors

 
The table reports for each strategy the Performance Fee (PFγ), in annualized basis points, an investor with quadratic utility and constant relative 
risk-aversion γ = {1, 10} is willing to pay to switch from monthly rebalancing to daily rebalancing.  
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Table 7:  Economic value of asymmetry and structural breaks 
Correlation Dynamics

Asymmetry
A-DCC vs. DCC
A-DCC-Break vs. DCC-Break
Structural Break
DCC-Break vs. DCC
A-DCC-Break vs. A-DCC
Asymmetry
A-DCC vs. DCC
A-DCC-Break vs. DCC-Break
Structural Break
DCC-Break vs. DCC
A-DCC-Break vs. A-DCC
Asymmetry
A-DCC vs. DCC
A-DCC-Break vs. DCC-Break
Structural Break
DCC-Break vs. DCC
A-DCC-Break vs. A-DCC

SRdiff PF BTC SRdiff PF BTC SRdiff PF BTC SRdiff PF BTC

0.02 31.82 60.42 0.02 4.45 84.00 0.01 31.49 312.61 0.02 3.24 119.65
0.01 23.27 69.76 0.02 4.20 NA 0.01 18.31 295.82 0.01 3.71 274.86

- - - - - - - - - - - -
- - - - - - - - - - - -

0.01 12.36 24.87 - - - 0.01 14.37 214.12 - - -
0.01 75.76 70.60 0.00 0.45 2.06 0.01 18.06 537.73 0.01 2.36 301.60

- - - - - - 0.00 26.52 552.99 0.02 3.04 NA
- - - - - - 0.00 30.22 1464.57 0.02 5.59 NA

0.00 8.82 35.06 - - - 0.00 9.41 310.06 - - -
0.00 7.68 77.11 0.00 0.29 0.00 0.00 5.00 198.17 - - -

0.03 53.06 5.75 0.05 5.42 1.29 0.07 100.31 80.06 0.09 19.59 38.18
0.03 51.92 5.72 0.05 5.77 1.38 0.07 95.90 76.80 0.08 19.26 37.78

Japanese Sectors

UK Sectors

US Sectors

Daily Rebalancing Monthly Rebalancing
Max-R Min-V Max-R Min-V

 
The table reports for each pair of confronted models (e.g. A-DCC vs. DCC) the performance fee (PF), in annualized basis points, and break-even 
transaction costs (BTC) per trade an investor with quadratic utility and constant relative risk-aversion (γ = 10) is willing to pay to switch from the 
baseline dynamic correlation strategy (e.g. DCC) to a dynamic strategy with asymmetry and/or structural breaks in correlation (e.g. A-DCC).  The 
difference in the Sharpe Ratio (SRdiff) between the two competing strategies is also reported.  The “-” indicates that incorporating 
asymmetry/structural breaks in the conditional correlation fails to enhance the economic value of the dynamic strategy.  “NA” refers to cases 
where the turnover ratio of the correlation timing strategy with structural breaks is lower than that of the baseline case.     
 

 


