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Configuring Hierarchical Layouts to Address Research Questions

Aidan Slingsby, Jason Dykes, and Jo Wood, Member, IEEE

Abstract—We explore the effects of selecting alternative layouts in hierarchical displays that show multiple aspects of large mul-
tivariate datasets, including spatial and temporal characteristics. Hierarchical displays of this type condition a dataset by multiple
discrete variable values, creating nested graphical summaries of the resulting subsets in which size, shape and colour can be used to
show subset properties. These ‘small multiples’ are ordered by the conditioning variable values and are laid out hierarchically using
dimensional stacking. Crucially, we consider the use of different layouts at different hierarchical levels, so that the coordinates of
the plane can be used more effectively to draw attention to trends and anomalies in the data. We argue that these layouts should
be informed by the type of conditioning variable and by the research question being explored. We focus on space-filling rectangular
layouts that provide data-dense and rich overviews of data to address research questions posed in our exploratory analysis of spatial
and temporal aspects of property sales in London. We develop a notation (‘HiVE’) that describes visualisation and layout states and
provides reconfiguration operators, demonstrate its use for reconfiguring layouts to pursue research questions and provide guidelines
for this process. We demonstrate how layouts can be related through animated transitions to reduce the cognitive load associated

with their reconfiguration whilst supporting the exploratory process.

Index Terms—Geovisualization, hierarchical, layout, guidelines, exploratory, notation.

1 INTRODUCTION

Hierarchical layouts can be used to generate rich views of multi-
variate data by conditioning datasets into multiple facets at differ-
ent hierarchical levels and then presenting nested visual summaries
of each facet. For example, a map of the world coloured by popu-
lation in which each country contains its population age-structure as
a pie-chart by age category can be considered as a two-level hier-
archy. The first level (country) takes population data, conditions
them by country and displays them in a Cartesian geographical lay-
out using colour to show population. The second level (ageGroup)
conditions each country’s population by age group, displaying them
using polar coordinates nested within the first level. If we were in-
terested in the gender balance for each country, we might consider
placing a pair of pie-charts in each country by inserting gender
into the hierarchy with the effect of conditioning population by gen-
der followed by age category. If we were interested in studying the
geographical distribution of age categories of population, we might
move ageGroup to the base of the hierarchy, resulting in a pie-chart
whose slices contain country maps coloured by population and con-
ditioned by the age group of the corresponding pie chart slice. Since
pie-chart slices are likely to be inappropriate containers within which
to show maps, we may wish to change the layout to a more appro-
priate tabular layout in which cell contains a map (as a small multi-
ple) for its age group. In terms of attribute hierarchy, we have gone
from country-ageGroup to country—-gender—ageGroup to
ageGroup—-country—gender, choosing layouts in response to
the nature of the data and angle of the research in each case.

This example illustrates how we often implicitly, yet informally use
hierarchical graphics, reconfiguring layouts and hierarchies to address
particular tasks that relate to particular messages or questions in hand.
We propose that if we are explicit in considering these as hierarchical
representations with the reconfigurable properties of hierarchy, lay-
out (at each level) and other visual variables such as colour — we can
navigate the design and data spaces using these layouts and make visu-
alisation design decisions from a more informed perspective to address
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particular research questions.

Friendly and Kwan [11] demonstrate the importance of display con-
figurations being related to the task in hand and call for more research
in this area. We respond to this call by exploring the effects of se-
lecting layouts for addressing research questions. We develop ‘HiVE
(Hierarchical Visualisation Expression)’ — a notation for describing
visualisation states and their reconfiguration — and demonstrate its use
through the exploration of a 1.25 million record dataset of property
transactions. We propose layout guidelines based on this example and
show how well-designed interactions and animated transitions can be
used to support visual exploratory analysis.

2 MULTIVARIATE DATA AND HIERARCHIES

The example above uses more than one attribute of population data to
condition data into subsets —e.g. US—male—over60 (conditioned by
country, then gender, then age group) — summarised using colour. This
is a well-established approach to handling multivariate data and is the
basis of online analytical processing using OLAP cubes [13]. The re-
sulting conditioned subsets are often presented as trellis displays [2],
multi-panelled displays in which each panel contains a conditioned
subset of the data; e.g. small multiples [33], scatterplot matrices [7]
or multiform matrices [22]. Where there are two conditioning vari-
ables, these are often arranged into the rows and columns of a matrix.
Where more conditioning variables are in use, dimensional stacking
[19] can be used in which the set of conditioning variables is treated
as a hierarchy, each nested within its parent. This is an important char-
acteristic of mosaic plots [14, 10, 31] and treemaps [27]. Our layouts
can be considered as hierarchical trellis displays that use dimensional
stacking, in which individual parts can be reconfigured independently.

3 SPACE-FILLING RECTANGULAR DISPLAYS

We focus on space-filling rectangular layouts because of rectangles’
ability to tessellate and nest to form space-efficient data dense displays
but we also make reference to non-rectangular layouts (e.g. Fig. 5).

Mosaic plots and treemaps are space-filling rectangular displays in
which each rectangle corresponds to a conditioned subset of the data,
characterised by one of more of its dimensions, colour [10] and po-
sition [3]. Both use dimensional stacking such that the hierarchy of
data subsets is represented through the nesting of rectangles — in the
case of mosaic plots, conditioning variables apply alternately to the x
and y axes [14]. Treemaps are most commonly used as compact repre-
sentations of tree structures but can also be used for detecting broader
patterns in multivariate data (e.g. [17, 36, 30]). We use treemaps as
both 1D and 2D layouts are supported and consider them to be a gen-
eralised form of mosaic plot.



Table 1. Hierarchical Visualisation Expression (HiVE) states & operators

STATE OPERATOR
Parameters are ordered by level with unspeci- Operates on level n only (except in-
fied levels inheriting from the previous. teraction expressions).
§ sHier (/,varl,var2,..) oInsert(/,n,var) Hierarchy of condi-
E tioning variables
p:z oCut (/,n) Remove level n
=
72} oSwap (/,nl,n2) Swap levels n1 and n2

oLayout (/,n, lay) Layout presets (here

we use SQ, VT, HZ,

sLayout (/, layl, lay2,..)

3] OS, SP, SA, PG)

E sOrder (/,varl,var2,..) oOrder(/,n,var) Order/position

5 sShape(/,varl,var2,..) oShape(/,n,var) Shape

E sSize(/,varl,var2,..) oSize(/,n,var) Size (variable or FIX)

Colour (variable or @)
Colour rules (r1)
Highlight
(identify elem as a
path; see section 5.4)

sColor (/,varl,var2,...) oColor (/,n,var)
sColorMap (/,rll, rl2,..)

sHighlight (elem)

oColorMap(/,n,rl)
oHighlight (elem)

elements

Zoom to one or more
elements

‘/’ (root) indicates that the expression applies to all branches. Section 5.3 shows how the
expression can apply to an individual branch. @ is NULL.

sZoom (elem) oZoom (elem)

INTERACTION

Cartograms are maps whose cartographic coordinate space is dis-
torted to accommodate some non-geometrical property of geographi-
cal data (e.g. population). The Gastner cartogram [12] in Fig. 5D sizes
geographical areas by the number of properties sold whilst attempting
to preserve shape. Rectangular cartograms [24, 34] use rectangles in
order to make relative size comparison easier.

4 DATA

Individual property transactions in London between 2000 and 2008
are the focus of our analysis. The 1.25 million records contain prop-
erty type (flat, terraced, semi-detached or detached), price, location
and date of sale. We aggregate these spatio-temporal data into spatial
units of varying resolution and geometry [1]. The spatial units are bor-
oughs (administrative units; $br), wards (smaller administrative units
that nest inside boroughs; $wd) and 4km? grid cells ($gd). Tem-
poral variables are derived by aggregating into years ($yr), months
of any year (e.g. July; $mn) and months of a particular year (e.g.
May 2002; $my). We summarise these subsets using number of sales
($sal), average price (Sprc) and coefficient of variation of price
($vpr). We also calculate signed chi-statistics for the number of sales
($xsl) and average price ($xpr) — elaborated upon later. $abr
represents the area of a borough and is used in Fig. 5. The data
were obtained from http://www.houseprices.co.uk/ (used with permis-
sion) and prices have been standardised to remove the effects of infla-
tion. The rectangular space-filling layouts are produced by treeMappa
(http://www.treemappa.com/).

5 PROPERTIES OF HIERARCHICAL LAYOUTS

We have developed HiVE (Table 1), a notation for describing hier-
archical visualisation states (‘s’ prefix) and operators (‘0’ prefix) for
reconfiguring these states. As such, HiVE goes beyond encoding the
layouts themselves; it provides operators that can be used as part of
the data exploration process. States are described for part A of each
figure and operators are used for subsequent parts. However, each fig-
ure part can be described by a state as shown in the accompanying
video (http://gicentre.org/hierarchical layouts/). HiVE is not intended
to be comprehensive at this stage — rather to make the design choices
in our hierarchical views explicit, to enable us to compare designs, to
consider the scope of the design space and to move through it as we
explore design alternatives.

5.1 Structure

The order in which variables are dimensionally stacked (attribute hier-
archy) has a strong effect on the perception of patterns and trends [10]

because it controls the way in which the dataset is conditioned. For ex-
ample, in Fig. 1A, average price by year is available per property type,
but not all types by year. Some sets of variables have an inherent hier-
archy of granularity; e.g. $yr, $mn (temporal) or $br, $wd (spatial;
Fig. 5B), but most do not. The attribute hierarchy also affects the size
and visual prominence of elements; e.g. in Fig. 1A, property types
are prominent because they are at the root of the hierarchy, whereas
months are harder to resolve. Rectangle colour can usually only be
used effectively at the hierarchy leaves in space-filling representations
— the ability to interactively switch and change the depth of hierarchies
are ways to address these issues [17, 30].

The attribute hierarchy is specified using sHier (Table 1) and the
oInsert, oCut and oSwap operators modify the hierarchy at the
specified hierarchical level (i.e. conditioning attribute).

5.2 Appearance

Appearance can be described in terms of Bertin’s visual variables [4]
and reconfiguring these for appropriate parts of the display is key
to our work. Informed choices for doing this should strive to pro-
duce ‘cognitively plausible’ [29] layouts which exploit similar image
schemata to those used in human reasoning [21, ch. 4]; e.g. contain-
ment for categories, part-whole and up-down schemas for hierarchies
and linear order schemas for ordered data [18, p283]. The use of
cartographic principles are advocated to produce cognitively plausible
layouts through the use of spatial metaphors [28, 29] and Tobler’s First
Law of Geography [32] that the relatedness of objects is proportional
to their spatial proximity. Some properties of hierarchical relationships
— such as the arbitrary nature of partition adjacency at different levels
of the hierarchy (e.g. 2006 flats and 2002 semi-detached in Fig. 1) — vi-
olate the distance-similiarily metaphor [29]. Using gaps or borders to
separate hierarchical levels [14], using more appropriate layouts [36]
and using interaction [30] help address these problems. There is a
danger that introducing different layouts at different levels of the hier-
archy may increase the cognitive load of the user. However, we argue
that the cognitive plausibility comes from the well-understood concept
of containment [18, p283] and the use of layouts that reflect the nature
of the variation in the data. For example, in Fig. 4, a spatial layout is
used for the boroughs within which are ‘calendar views’ (section 5.2;
months ordered top to bottom within years ordered left to right). This
uses spatial and temporal layout at different levels of the hierarchy, but
the logical ordering allows us to detect temporal patterns with a focus
on changes at an annual resolution (see Fig 3B for an alternative layout
that does not focus on annual trends).

5.2.1

We use the following seven layouts (the first five are space-filling):

Layout

e VT & HZ: The ‘slice-and-dice’ algorithm [27] partitions space
into horizontal (HZ) or vertical (VT) rectangles retaining 1D or-
der (e.g. Fig. 1B), but may result in narrow rectangles that are
difficult to resolve visually.

e SQ: The ‘squarified’ algorithm [6] (e.g. Fig. 1A) has rectangles
with aspect ratios close to 1 (easier to visually resolve). They are
ordered from top left to bottom right in descending order of size
by alternately filling vertical and horizontal strips from the top
left. Particularly appropriate when size-ranking is of interest.

e 0S: The ‘ordered squarified’ algorithm [36] (e.g. Fig. 3B) pro-
duces rectangles whose aspect ratios are close to 1 and retains
1D ordering using a distance-based measure from top left (more
consistent ordering than in SQ).

e SP: The ‘spatially-ordered’ algorithm [36] attempts to retain a
2D ordering (with good aspect ratios), designed to preserve the
geographical configuration of elements, producing space-filling
hierarchical rectangular cartograms (e.g. Fig. 5B).

e SA: Uses SP, but shifts the rectangles to their absolute geograph-
ical locations (Fig. 5C) resulting in overlap.

e PG: Non-space-filling polygon-based layout that attempts to re-
tain the given shape for each element (e.g. Fig. 5E).
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Fig. 1. A: Hierarchical space-filling rectangular layout coloured by average price, conditioned by property type then year (2002 highlighted) and
sized by number of sales: sHier (/,$ty,S$yr); sLayout(/,SQ); sSize(/,$sal); sColor(/,d,$prc); sHighlight (/%/2002/)
B: Using temporal ordering (2008 highlighted): oLayout (/,2,VT); oHighlight (/x/2008/). C: Using calendar views (May highlighted):
oInsert (/,3,%mn); oLayout(/,3,HZ); oColor(/,2,@); oColor(/,3,$sal); oHighlight (/+/x/May/). ‘/x/«/May/ refers to

all values of $ty, all values of syr and the ‘May’ value of $mn.

These can be considered as layout presets that encompass Bertin’s
visual variables [4] of ‘position’ (sOrder) and ‘shape’ (sShape),
with ‘size’ and ‘colour’ described below. Other visual variables
could be supported with additional states and operators in HiVE (e.g.
sOrientation and sTexture). In all our examples, the order-
ing of rectangles is derived from the conditioning variable (except for
SQ where it is based on size), but sOrder can be used to specify an
alternative order.

‘Calendar views’ refer to the layout sHier (/, $yr, $Smn);
sLayout (/, VT, HZ), where years are in vertical strips and months
are contained within these as horizontal strips, as in Fig. 1C.

5.2.2 Size

In the majority of our examples, we base the size of elements on the
number of sales ($sal). This value accumulates through the hierarchy
(e.g. sales in 2002 is the sum of its monthly sales in Fig. 1C) and as
such, size is comparable between hierarchical levels as well as within.
Where this is not the case, interpretation may be difficult. We fix the
size of elements in some of the figures (using F IX) where we wish to
produce consistent small-multiple-like arrangements (e.g. Fig. 6) or to
show each element with equal prominence (e.g. Fig. 2C).

5.2.3 Colour

sColor specifies the variable which is mapped to a colour through
the sColorMap. We use the sequential ColorBrewer [5] colour
schemes of ‘RdPu’ for $sal, ‘YIOrBr’ for $prc, ‘OrRd’ for Svpr
and the diverging colour schemes of ‘RdBu’ for $xs1 and ‘BrGB’
for $xpr consistently throughout the paper, with logarithmic scal-
ing for $sal and linear scaling otherwise, to appropriate minimum
and maximum values for the view. These aspects are controlled by
sColorMap, omitted from the figures for brevity.

5.3 Applying expressions to individual branches

HiVE can be applied to individual branches of the hierarchical tree by
replacing the */’ with a path (file path analogy) to a particular element.
For example, the whole of Fig. 1 can be considered a multipanel
display with $panel as a conditioning attribute at the base of the
hierarchy with the values ‘A’, ‘B’ and ‘C’. sHier (/, $panel);
sLayout (/, VT) describes the three panels. Branch ‘A’ can be spec-
ified thus - sHier (/A/,S$br,S$yr); sLayout (/A/,SQ);
sSize(/A/,$sal); sColor(/A/,d,Sprc); sHigh-
light (/A/*/2002/) — with other branches specified similarly.

5.4 Relating layouts using interaction and animation

We advocate the exploration of data through reconfiguring hierarchi-
cal displays as suggested by various authors (e.g. [20, 26, 38, 8]). Our
operators can be used to define Yi et al’s interactions [38] such as

‘explore’ (show different subsets of data; oCut and oInsert), ‘re-
configure’ (reordering elements; oOrder), ‘encode’ (change to a dif-
ferent visual encoding; e.g. oLayout to change between rectangular
and non-rectangular displays as in Fig. 7C).

Cook et al’s [8] ‘projection pursuit guide tour’ uses animated tran-
sitions to move through different projections of multivariate space for
data exploration. Heer ef al [15] found that some types of animation
are effective means for showing how layouts relate and Robertson et
al [25] found that although animation is a poor means of trend discov-
ery, it is an effective way to demonstrate change. For operators that
change geometrical properties of the layout, we use simple transitions
that morph between these states as suggested by Florisson et al [9]
accompanied by gradual colour blending for changes in colour. In all
other cases we use fading as illustrated in the accompanying video.

Highlighting similar elements across a hierarchical level [30] en-
ables comparison. For example, the 2002 subsets for each year are
highlighted in Fig. 1A, enabling 2002 sales to be compared for each
property type. The sHighlight (/+/2002/) expression in Fig. 1
specifies elements as described in section 5.3 using “*’ to refer to all
values at that hierarchical level.

6 EXPLORING LAYOUTS

We explore the effects of applying the various hierarchical display con-
figurations supported by HiVE to a dataset of property transactions for
addressing research questions. We then propose guidelines (section 7)
from the issues identified. The exploration process is reflected in the
sequence of figures in this paper and the accompanying video.

6.1 Layouts with size-based orders

The ‘squarified’ layout (SQ) orders rectangles in decreasing order of
size from the top left. The double encoding inherent in size-based
ordering is appropriate for research questions based on ranking, such
as identifying the boroughs with highest sales (Fig. 2 shows this to
be Wandsworth) and years with the least sales (Fig. 1A shows that
this is 2008). In the latter example, the lack of consistency of year
positioning makes it hard to compare specific years between property
types. Highlighting these rectangles helps address this difficulty [30].

6.2 Layouts for ordinal data

Most research questions benefit from using 1D orders that are in-
dependent of rectangle size. For these, slice-and-dice (VT and HZ)
and ordered-squarified OS layouts are suitable. The choice of lay-
out partly depends on the number of ordinal values and the aspect
ratio of the space available. Ordered squarified is particularly suit-
able where there is a large number of values (e.g. the 108 months in
each borough shown in Fig. 3B). Slice-and-dice may be more suit-
able where there are fewer categories. Alternating VT and HZ through
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Fig. 2. A: Sized-based ordering, coloured by average price:

sHier (/, $br, $ty, $Syr, $Smn) ;

sLayout (/,SQ); sSize(/,$sal);

sColor(/,d,d,9d, Sprc). B: Reconfigure to a spatial and temporal layout: oLayout (/, 1, SP); oLayout (/,2,0S); oLayout(/,3,VT);
oLayout (/, 4,Hz). C: Fix the size: oSize(/,1,FIX); oSize(/,2,FIX); oSize(/,3,FIX); oSize(/,4,FIX).D: Remove time, and
colour by deviation from expected sales: oCut (/, 4); oCut (/,3); oColor(/,2,$xsl).

the hierarchy can produce layouts similar to mosaic plots (and ma-
trix diagrams if sizes are fixed). They are particularly suitable where
variables have hierarchical dependencies, such as our calendar views
(sHier ($yzr, $mn)).

6.3 Layouts for time-based data and questions

Temporal data can be considered as ordinal. In Fig. 1A, years are
not arranged temporally; as such, temporal trends are difficult to de-
tect. Rearranging the years into a time-based order using an ordered
space-filling layout [36] (Fig. 1B) makes the increase in annual house
price easier to detect. In Fig. 1C, we have added month to the hi-
erarchy producing calendar views coloured by the number of sales.
Seasonal variations in the numbers of sales are apparent for flats and
terraced housing, however colour rescaling (using oColorMap) or
using colour schemes that are local to individual parts of the hierarchy
are required to detect these patterns where property types have low
sales. Alternatively, colour can be used to show values as a proportion
or deviation from a baseline. Appropriate baselines include those that
reflect the values expected from hypotheses that we might then accept
or reject on the basis of the display. For example, in Fig. 4A (calendar
views), our null hypothesis is that the number of sales does not vary
monthly (expected or baseline values are a twelfth of the sales for each
year). The geographically-consistent seasonal trends that are apparent
might cause us to reject our null hypothesis. Identifying the elements
with statistically-significant levels of variation might help us make that

choice. Fig. 4B shows the deviation of price from the yearly average
(accounting for inflation). Whilst prices rises steadily every year, this
is not the case for 2008 where prices have dropped markedly in the
final quarter, a trend not observed in Westminster.

Nesting the two temporal resolutions of year and month to pro-
duce calendar views is appropriate where we are expecting yearly and
monthly patterns. However, this may obscure other temporal patterns.
In Fig. 3B, we use an ordered squarified layout of all 108 months in
the period ordered from the left top to bottom right (compare with the
calendar views in Fig. 3A). Although both graphics show exactly the
same data, the use of $my and the associated OS layout in Fig. 3B
make the upward trend in prices and subsequent slump more apparent
as it is a continuous trend over the entire period. The result is a more
appropriate layout for research questions that relate to ongoing rather
than periodic change. The additional hierarchical level used in Fig.
3A and alternative layouts are more appropriate for comparing annual
patterns which are overshadowed by the longer term trend in the case
of this attribute. Again, interactive colour rescaling or colouring on
the basis of relative values is required to detect relative rises and falls
in different boroughs.

6.4 Geographical layouts

Spatially-ordered layouts (SP) have rectangles that are arranged ac-
cording their geographical locations. The effect of this layout can be
seen by comparing the non-spatial layout in Fig. 2A with the spatial
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Fig. 4. Boroughs containing calendar views, coloured by deviation from ‘expected’. A: Red indicates higher sales than the yearly average; blue
indicates fewer sales: sHier (/, $br, $yr, $mn); sLayout (/,SP,VT,HZ); sSize(/,S$sal); sColor(/,d,@, Sxsl). B: Brown indicates
higher prices than average for the year; turquoise indicates lower prices: oColor (/, 3, $xpr).

layout in Fig. 2B, in which flats overwhelmingly dominate sales near
Central London whereas sales of other types are proportionally higher
in peripheral areas, sometimes exceeding those of flats. Fig. 3 also
uses a spatial layout, facilitating the detection of spatial patterns in av-
erage price trends — south and east London have the lowest prices and
central and southwestern areas have the highest prices.

Spatially-ordered layouts can also apply to multiple levels of a hi-
erarchy. In Fig. 5B, a hierarchy of two spatial units of increasing
granularity are nested and spatially arranged. High spatial variation
is apparent within boroughs. For example in Lambeth, wards with the
highest average price are closer to Central London, the converse is true
in the case of Camden. The space-filling nature of these cartograms
often results in positional inaccuracies which can be conveyed using
displacement vectors [36]. Where absolute locations are required for
research questions, these can be encoded using a perceptually-constant
2D colour-space [36] or by using a different layout.

We use animated transitions to relate the layouts in Figs. 5C, 5D
and 5E (this method for relating layouts has been found to be effective
[9]) — see video. The layouts that use absolute space show more of
the spatial subtleties of the patterns, e.g. the high average house prices
linearly arranged from the centre to the southwest. However, occlud-

ing layouts such as Fig. 5C are difficult to interpret on their own but
may be useful when animated transitions are provided to other layouts
and layouts whose geometrical elements do not fill space completely,
produce less data-dense graphics when dimensionally stacked.

oSwap is a useful operator for OD-maps [37] which are
raster-based origin-destination maps — sHier (/,$oc, $dc);
sLayout (/,SP); sSize(/,FIX); sColor(/,$fl) - in
which $Soc is the originating grid cell, $dc is the destination grid
cell and $£1 is the volume of flow between the given origin and des-
tination cells. oSwap enables directionality in the origins and desti-
nations to be explored. This example also illustrates that datasets may
have multiple locations, both of which may be added to the hierarchy,
in this case producing raster maps of destinations embedded in raster
maps of origins.

Comparing layouts where space is discretised differently is one way
of studying the effect of the modifiable areal unit problem [23]. Fig. 6
shows a spatial arrangement where instead of conditioning the data by
administrative unit, we use 4km? grid squares, in which we embed cal-
endar views (sLayout (/,VT, HZ) ; sHier (/, $yr, $mn) ). Fix-
ing the size of both the spatial units and rectangle sizes and using a
spatial arrangement results in a layout that imposes a regular tesselated
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Fig. 5. Cartograms and maps. A: Rectanglar cartogram: sHier (/, $br); sLayout (/,SP); sSize(/,$sal); sColor(/,$prc). B: Hi-
erarchical rectangular cartogram: oInsert (/,2, $wd); oLayout(/,2,SP)]; oColor(/,1,%@); oColor(/,2,sprc). C:As B, but using
absolute positioning: oCcut (/,2); oLayout (/,1, sA). D: Gastner cartogram (polygon layout; sized by sales): oLayout (/,1,PG). E: Map (as
D, but using geographical shape): oSize (/, $abr). $abr is the borough area.

grid on absolute geographical space (at the $gd level) upon which ge-
ographical boundaries can be drawn.

Fixing the sizes of rectangles reduces their individual information-
carrying capacity but facilitates more consistent overall layouts. It
also reduces the cartogram effect, resulting in data of lower signif-
icance (low sales, therefore low sample sizes) being displayed with
equal prominence. The average prices shown in row 5, col 9 of Fig.
6B correspond to low sales (see corresponding cell in Fig. 6A) but
they are given more prominence in layouts where rectangles are sized
by sales. As such, this (equally valid) view of the data must be inter-
preted slightly differently — perhaps in conjunction with a version that
is coloured by the number of sales. We suggest side-by-side compari-
son or animated transition to help relate these views such as these.

Geography does not necessarily have to be at the base of the hierar-
chy. In Fig. 7, we place boroughs at the second level of the hierarchy,
apply the oSize (FIX) operator to fix the size of rectangles, remove
the final two hierarchical levels and reconfigure level 2 to map-based
layouts (Fig. 7C). This small multiple map layout allows the recognis-
able shapes of boroughs to be preserved, but at the expense of space-
efficiency and space-efficient dimensional stacking.

6.5 Layouts for nominal data

We recommend that a consistent ordering be used for nominal values.
In Figs. 2B, 2C and 2D, we consistently order flats, terrace, semi-
detached and detached types. The ordering used should be selected to
reflect some ordinal sequence to encourage comparison (unlike in Fig.
2A — see Redbridge). We have ordered these by likely floor-space.
The numbers of sales vary markedly between the property types,
resulting in some rectangles sizes (e.g. detached houses in the centre)
being too small to be easily resolvable. In Fig. 2C, we fix the size
of each rectangle (grey shows no data; there are few detached house
sales in the City of London). Fixing the rectangle size may draw more
attention to these than warranted and so these displays should be used

in conjunction with a version that is coloured by sales, either using a
fade transition or placing side-by-side (as is the case in Fig. 6).

To investigate how relative sales of different property types vary
spatially, we can form a null hypothesis that the ratio of sales between
the property types are spatially invariant. To test this hypothesis, we
use the average sales proportions of flats (49%), terraced (31%), semi-
detached (16%) and detached (4%) for the whole area to establish a
baseline and then show the deviation from this. Fig. 2D (this uses a
linear and symmetrical diverging colour scheme) shows that we can
probably reject our null hypothesis. Sales of flats are higher than the
London average in the centre (the consistent ordering ensures flats are
always in the top left), more semi-detached housing than average ex-
ists towards the periphery and no borough has the average proportion.
By modifying the hierarchy (with the oCut, oInsert and oSwap
operators), reconfiguring the layouts (oLayout and oSize), chang-
ing the colour (oColor and oColorMap) and establishing alterna-
tive baselines, alternative hypotheses can be investigated to address
different research questions.

In Fig. 7 we study the consistency of price by type, space and time,
by colouring layouts by the coefficient of variation of price. The in-
stability of colour, suggests that many of the sample sizes are too
small to give reliable estimations of price variation, but nevertheless
colour is relatively consistent by borough and different spatial pat-
terns can be detected for each property type. In Fig. 7C, we fix the
size of the rectangles, remove the temporal attributes from the hier-
archy and switch the layout to polygons. This results in small mul-
tiple choropleth maps conditioned by type (sHier (/, $ty, $br) ;
sLayout (/,0S,PG); sSize(/,FIX,$abr)).

7 GUIDELINES FOR USING HIERARCHICAL LAYOUTS

We propose a number of guidelines based on our observations and
experiences for using and configuring hierarchical layouts to address
research questions.
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Fig. 6. The data are spatially reaggregated into 4km? grid squares. Absolute geographical positioning is employed because node size is fixed
and the correct aspect ratio is used (borough boundaries shown for reference). A: Coloured by number of sales: sHier (/, $gd, $yr, $mn) ;
sLayout (/,SP,VT,HZ); sSize(/,FIX); sColor(/,d,d,S$sal). B: Coloured by average price: oColor (/, 3, $prc).
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Fig. 7. Space is at level 2 of the hierarchy. Coloured by coefficient of variation of price (grey is no sales). A: sHier (/, $ty, $br, Syr, $mn) ;
sLayout (/,0S,SP,VR,HZ); sSize(/,$sal); sColor(/,9,9,d,$vpr). B: Fix rectangle size: oSize(/,4,FIX); oSize(/,3,FIX);
oSize(/, 2,FIX); oSize(/,1,FIX).C: Choropleth maps: ocut (/,4); oCut(/,3); olayout(/,2,PG); oSize(/,2,$abr).

. Reconfigure conditioning hierarchies to explore the data space.
Use oCut, oInsert and oSwap to reconfigure the hierarchy to
explore variation in terms of different conditioning variables. For
example, placing $br above $ty in Fig. 7 allows geographical
variation by property type to be explored.

. Use appropriate layouts to reveal structure in data. Experiment
with alternative layouts to explore the design space. HZ,VT
with fixed rectangle size (see 4) can produce mosaic plots, useful
where combinations of categorical variables are important. OS is
appropriate where there is a large number of values and VI/HZ
where there are fewer values and where the dimensions of the
available space allow good aspect ratios.

. Preserve salient 1D or 2D ordering. Choose appropriate order-
ing for ordinal, temporal and spatial variables for each hierar-
chical level in response to research questions and order nominal
variable values consistently.

. Fix rectangle size at appropriate hierarchical levels to produce
consistent layouts with small-multiple-like properties. The re-
sulting juxtaposed graphical elements with shared layout char-
acteristics can facilitate the side-by-side comparison of graphics,
minimising the work required of the eye and brain.

. Scale colour to data-ranges to different parts of the hierarchy
to explore local and global patterns. Scaling to data-ranges in
localised parts of the hierarchy (e.g. by year in Fig. 4) addresses
research questions based on localised variation, whereas scaling
to the entire data-ranges draws attention to more global patterns.
. Condition datasets by attributes of different granularities at ad-

Jjacent levels of the hierarchy. In the case of time, this allows
us to consider the effects of cyclical temporal patterns (e.g.
$yr, $mn). In the case of space this draws attention to the ef-
fects of spatial resolution and scale.

7. Condition by different aggregations of time and space. This helps
explore the effects of modifiable units on patterns in the data.

8. Reaggregate spatial data to equally-sized grid cells and fix rect-
angle size. This can produce consistent small-multiple-like ar-
rangements (see 4) that retain the properties of the original ge-
ographical coordinate space (e.g. Fig. 6) and can be used to ad-
dress research questions that relate to geographic variation in ab-
solute geographical space.

9. Use dynamic techniques to relate these various states. For exam-
ple, use highlighting to show items across hierarchy and brush-
ing for details-on-demand. Smooth transitions between layouts
can to help reduce cognitive load when relating these.

8 FURTHER AND ONGOING WORK

Although our examples and notation have focussed on space-filling
rectangular layouts, the concepts are applicable to other types of lay-
out as illustrated by our introductory example and our use of some
non-rectangular layouts. HiVE was developed so that we could be
systematic in describing configurations and reconfigurations in layouts
and so we could describe and build interfaces for collaborative visu-
alisation. We are extending this so that it can encode a broader set of
hierarchical layouts that use dimensional stacking by adding states and
operators to represent a wider range of visual variables. For example,



a stacked bar chart and pie-chart can be considered to be equivalent,
except that pie charts use polar rather than Cartesian coordinates [35].

There is also scope for HiVE to be used to document the visual data
analysis process and maintain a history of interactions. This could ei-
ther be used to support users during data exploration (e.g. document-
ing insights, reverting to saved states) or used subsequently to help
increase the understanding of the data visualisation process [16] and
to undertake user studies.

9 CONCLUSION

Many graphical techniques in common use for representing multi-
variate data are hierarchical. Explicitly acknowledging this hierarchy
draws attention to reconfigurable properties, including attribute hierar-
chy, layout and colour. Each strongly affects the salient properties of
the graphic, the patterns and trends revealed and the research questions
that can be addressed.

Our Hierarchical Visualisation Expression (HiVE) notation de-
scribes the hierarchical data and design space, allowing these to be
explored comprehensively and systematically. Independently recon-
figuring layouts for different parts of the hierarchy as an aspect of the
data exploration process is key to our approach. These configurations
should correspond to the data types being represented and the ques-
tions being asked of the data. HiVE embeds this approach, not only
describing the configuration of graphics but also the operators required
to explore data using these layouts.

We illustrate this by visually exploring a spatio-temporal dataset of
1.25 million property transactions, in which we have found temporal
and spatial patterns in property sales. Using HiVE enables us to recog-
nise large-scale patterns (e.g. the 2008 slump), assess their spatial vari-
ability (e.g. the slump in price was not observed in Westminster) and
identify new lines of enquiry (e.g. investigate whether the high West-
minster property prices in 2008 apply to all housing types and price-
bands at a range of spatial and temporal scales). We propose a number
of guidelines based on this example for choosing layouts that address
research questions as part of the interactive data exploration process.
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