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1 Introduction

All types of statistical data may contain particular observations that are in some way inconsistent

with the rest of the sample. When such observations lie outside the range of the remaining data

they are known as outliers. In general the presence of these aberrant observations has an impact

on subsequent analyses. In time series applications, the strength of such effects depends on the

type of time series, type(s) of outlier(s), its (their) location and the distribution of the rest of

the data, as well as on the purpose of the analysis. Thus outlier detection is very important in

applied econometrics and in empirical finance, as well as challenging.

When data are expected to be sampled independently and to be identically distributed (IID),

outlying values are usually defined in terms of standard deviations apart from the mean. In

this way Verhoeven and McAleer (2000) define extremes as observations between two and three

standard deviations away from the mean, and outliers as those observations more than three

standard deviations away. Basmann (2003) discusses the use of quantile-based definitions, which,

for the Normal distribution, can be expressed in terms of the standard deviation, but notes that

such definitions are inappropriate for non-Normal data, and argues in favour of a more flexible

definition based on the tail probability.

The first papers in outlier detection for IID data concentrated on outliers in Normal dis-

tributions. Some of these important contributions are Grubbs (1950, 1969), Ferguson (1961),

or Rosner (1975) focusing on multiple outlier detection. Other more recent papers are Hawkins

(1980), or the surveys of Beckman and Cook (1983) and Barnett and Lewis (1994). Also, due to

the development in recent years of extreme value theory and literature on stable laws and heavy

tails, some articles based on these methodologies have pursued the topic of outlier detection.

Some examples are Mittnick, Rachev and Samorodnitsky (2001), Doornik and Ooms (2005) or

Schluter and Trede (2008) in risk management.

Alternatively, in fields as labor economics or robust statistics is standard practice to use ad-

hoc trimming in the tails. The practice of discarding some fraction of the observations in the

tails has the advantage of reduction in parameter estimation bias produced by the influence of

outlying observations. Unfortunately, most of the methods introduced in the literature also face

efficiency losses due to the trimming of useful information obtained in the tails. Some pioneering

works are due to Bickel (1965) and Stigler (1973). More recent studies on robust statistics are
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the monographs of Rousseeuw and Leroy (1987) and Maronna, Martin and Yohai (2006).

The contributions of this paper are twofold. First, using a definition of outlier based on

extreme value theory we propose a hypothesis test that permits to disentangle the occurrence

of outliers from extreme values in finite samples. We divide our analysis in two scenarios; one,

in which observations are generated by an exponentially decreasing distribution, and a second

case in which observations are drawn from distribution functions with heavy tails. Given that

in practice, the knowledge of the parent distribution F or even the rate of tail decay, are not

known, our second contribution is to propose a test statistic in this case. Here, we study the

effects of outliers in the estimation of the tail index, the parameter determining the rate of tail

decay and hence characterizing whether a distribution decays exponentially or polynomially, and

propose a filtering technique to clean masking effects derived from the presence of outliers. Both

contributions, the hypothesis test and the filtering technique, are combined in an algorithm that

permits to detect and remove, iteratively, outliers in finite samples.

The paper is structured as follows. Section 2 introduces a hypothesis test to detect outliers in

an IID environment, and that makes allowance for parent distributions that decrease exponentially

and polynomially. Section 3 studies the statistical power of both versions of the test for F known

and also when the distribution function is not known and the tail index needs to be estimated. We

also introduce in the section an algorithm that allows to detect and filter, iteratively, the presence

of outlying and influential observations. Finally Section 4 concludes and discusses extensions of

this research.

2 Outlier Detection Tests Based on EVT

We define outliers as those observations with a negligible probability of belonging to the data

generating process. For independent and identically distributed (IID) observations the data gen-

erating process is a common distribution function F . To make the concept of outlier operational

we need some basic extreme value theory (EVT).

Let M0
n = max(X1, . . . , Xn) be the sample maximum of an IID sequence of length n, and xF

be the right end point of F , defined as xF = sup{x|F (x) < 1} ≤ ∞. The regularity condition

lim
x↑xF

1− F (x)
1− F (x−)

= 1, (1)
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guarantees that there are no jumps in the right tail of the distribution F of the data, see Em-

brechts, Klüppelberg, and Mikosch (1997) for details.

We will assume hereafter this regularity condition as our minimum set of assumptions on the

distribution function F. Under these regularity conditions on the upper tail of F , the finite-sample

distribution of the standardized version of M0
n satisfies that

P{a−1
n (M0

n − bn) ≤ x} = Fn(anx + bn) −→ G(x), (2)

where an and bn are normalizing sequences associated with F , and G(x) is an extreme value

distribution that can be one of only three types, see Fisher and Tippet (1928) and Gnedenko

(1943). Further, given that our interest is in detecting outliers, and we identify these observations

with elements of the random sample with a very low probability of being generated by F , below

we will limit ourselves to cases where xF = ∞. In this framework there are just two possible

classes of limiting distributions for the standardized sample maximum:

Type I: (Gumbel) G(x) ≡ Λ = exp(− exp(−x)), −∞ < x < ∞,

Type II: (Frèchet) G(x) ≡ Φξ =





0 x ≤ 0,

exp(−x
− 1

ξ ) x > 0, ξ > 0.

The Frèchet class of distributions is governed by the so-called tail index ξ, that describes the

heaviness of the tails of the parent distribution F if this decays polynomially. More formally,

1− F (x) = x−1/ξL(x), (3)

where L(x) is a slowly varying function, that is, L(tx)/L(x) → 1 for every t > 0 as x → xF . On

the other hand, if the parent distribution, F , is exponentially decreasing in the upper tail, the

limiting distribution of the maximum of a sample of size n properly standardized is Gumbel and

ξ = 0. These two extreme value distributions along with the Weibull family of extreme value

distributions can be gathered in the so-called generalized extreme value distribution:

G(x) = exp

(
−

(
1 + ξ

x− µ

σ

)− 1
ξ

)
. (4)
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Finally note that if the distribution of the standardized sample maximum converges to one of

these extreme value distributions we will say that F belongs to the maximum domain of attraction

of G(x), F ∈ MDA(G).

2.1 Hypothesis test

The question of interest is to determine if the maximum observation of a random sample of size n

can be statistically the sample maximum of an IID sequence of same size drawn from F . If this

claim is true we will retain the observation in our sample; if, however, it is proven to be wrong

we will discard the observation and treat it as an outlier. This technique can be of much interest

for improving the estimation of parameters in statistics and regression models. By discarding

outlying observations we reduce the bias in the parameter estimates. On the other hand, by

retaining the extreme values we improve the efficiency of estimators.

Definition: Let Mn be the maximum of an IID sample of size n, with common distribution

function F for at least n− 1 observations. Then, the hypothesis test to determine statistically if

Mn is an outlier is the following:





HO,n : Mn is an observation of F ,

HA,n : Mn is an outlying observation.
(5)

To make this hypothesis test operational we propose the following test statistic

Tn,G = a−1
n (Mn − bn), (6)

with critical value, Gα, at an α significance level given by the 1 − α cumulative quantile of the

extreme value distribution G(x), and satisfying

lim
n→∞PH0{Tn,G > Gα} = α. (7)

For illustration purposes we will divide our analysis in an IID framework between parent

distributions F that are exponentially decreasing and parent distributions that decay to their

right end point xF , polynomially. Thus, for F exponentially decreasing in the upper tail the
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corresponding limiting distribution G(x) is a Gumbel extreme value distribution, and the sample

maximum is an outlier if G(Tn,Λ) > 1 − α. Note that we use Tn,Λ to denote the test statistic

in this case. The corresponding rejection region at an α significance level is {Tn,Λ > Λα}, with

Λα := −ln(−ln(1 − α)), obtained from the inverse of the Gumbel extreme value distribution.

Note that the hypothesis test is not restricted to detect outliers in a Normal framework as in

most of literature on outlier detection, but in the large family of exponentially decreasing distri-

bution functions. Other paper using a similar methodology for outlier detection for exponentially

decreasing distributions in time series models is Doornik and Ooms (2005).

For F heavy-tailed distributed the limiting distribution of the standardized maximum is not

Gumbel but Frèchet, implying a test statistic Tn,G that is no longer parameter-free, in fact the

asymptotic critical value at an α significance level is Φξ,α := 1
(−ln(1−α))ξ , with ξ > 0. Nevertheless,

we can exploit the following relationship between the two extreme value distributions to obtain a

test statistic that is parameter-free. Other papers studying alternative outlier detection methods

for heavy-tailed distributions are for example Mittnick, Rachev and Samorodnitsky (2001) for

stable law processes, or Schluter and Trede (2008) for detecting multiple outliers in financial time

series.

Result 1: Y
d∼ Φξ ⇔ ln Y

1
ξ

d∼ Λ, for Y a random variable, and where d∼ denotes equivalence

in distribution, see Embrechts, Klüppelberg and Mikosch (p. 123, 1997).

Under HO,n, if F is heavy tailed the transformed version of the test statistic Tn,G is

Tn,Φξ
:= ln (a−1

n (Mn − bn))1/ξ, (8)

and follows a Gumbel extreme value distribution. The advantage of this transformation is that the

asymptotic critical value of the relevant test is, as before, Λα. Furthermore, in the polynomially

decaying case the tail index is ξ > 0 and the normalizing sequences are universally defined as

an = F−1(1− 1
n) and bn = 0, see Embrechts, Klüppelberg and Mikosch (p. 130, 1997).

The finite-sample properties of the two versions of this hypothesis test require further study.

The next subsection studies the asymptotic power for both tests and Section 3 discusses estimation

effects and the presence of influential observations.
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2.2 Study of Power function of the Tests

For the study of the asymptotic power function of the outlier test we will start with the exponential

scenario. Here, Mn denotes the sample maximum from a serially independent sequence of random

variables and M0
n the maximum of a sample of same size with all observations following a common

distribution function F . Let ηn,Λ := Mn−M0
n; the relevant test statistic Tn,Λ can be decomposed

as

Tn,Λ = a−1
n (M0

n − bn) + a−1
n ηn,Λ = TO

n,Λ + a−1
n ηn,Λ, (9)

with TO
n,Λ the test statistic under HO,n.

Although every distribution function F with tail exponentially decaying belongs to the maxi-

mum domain of attraction of the Gumbel extreme value distribution, the asymptotic convergence

of the test statistic is characterized by the normalizing sequences an and bn that are idiosyn-

cratic to F . As a result, the power function of the test statistic Tn,Λ will depend on the rate of

convergence an, and on ηn,Λ.

Proposition 1: Let F be a distribution function exponentially decaying in its tail, and satisfying

the above regularity condition (1). Then, the hypothesis test (5) is consistent under the alternative

hypothesis HA,n if and only if an = o(ηn,Λ).

Proof. Consider a significance level 0 < α < 1/2. The proof immediately follows from observing

that

lim
n→∞P{Tn,Λ > Λα} = 1− exp(− exp(−(Λα − a−1

n ηn,Λ))) + oP (1),

and

exp(− exp(−(Λα − a−1
n ηn,Λ))) = (1− α)exp(a−1

n ηn,Λ) −→ 0, as n →∞, (10)

if and only if an = o(ηn,Λ). ¤

Note from this result that the power of the test for distribution functions F in which an =

o(1) (Normal, Lognormal) is greater than for distribution functions with an = O(1), as Exp(λ)

or Gamma(a, b), see Embrechts, Klüppelberg and Mikosch (pp. 153-157, 1997) for rates of

convergence of different exponentially decreasing distributions.

Consider now the heavy tailed case described by a parent distribution F belonging to the
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maximum domain of attraction of a Frèchet distribution. In this scenario, and for ease of calculus,

we define the ratio ηn,Φξ
:= Mn

M0
n
− 1, and decompose the relevant test statistic as

Tn,Φξ
=

1
ξ
lnM0

n +
1
ξ
ln(1 + ηn,Φξ

)− 1
ξ
lnF−1(1− 1

n
). (11)

This statistic can be expressed in terms of of the test statistic under HO,n, denoted hereafter

TO
n,Φξ

, as

Tn,Φξ
= TO

n,Φξ
+

1
ξ
ln(1 + ηn,Φξ

). (12)

Proposition 2: Let F be a distribution function polynomially decaying in its tail, and satisfying

the above regularity condition (1). Then, the hypothesis test (5) is consistent under the alternative

hypothesis HA,n if and only if η−1
n,Φξ

= o(1).

Proof. Consider a significance level 0 < α < 1/2. The proof follows immediately from observing

that

lim
n→∞P{Tn,Φξ

> Λα} = lim
n→∞P{TO

n,Φξ
> Λα − 1

ξ ln(1 + ηn,Φξ
)}.

Now note that

lim
n→∞P{TO

n,Φξ
> Λα − 1

ξ ln(1 + ηn,Φξ
)} =

(
1− (1− α)(1+ηn,Φξ

)1/ξ
)

+ oP (1),

where (1−α)(1+ηn,Φξ
)1/ξ −→ 0 as n →∞, if and only if η−1

n,Φξ
= o(1), and given that ξ > 0. ¤

In contrast to the exponential case the power function for heavy tailed distributions depends

on an extra parameter gauging the speed of decay in the right tail of the parent distribution. In

particular, the heavier the tail of F less power of the test against outlying observations. This

finding is consistent with our definition of outliers, since heavier tails can produce observations of

bigger magnitude belonging to F and that can be confounded with outliers, therefore diminishing

the power of the test to reject the latter observations as exogenous to the distribution of the data.

As a byproduct of these propositions we can determine the minimum sample size n necessary

for the outlier candidate not to be statistically rejected. We only elaborate on the case of F

polynomially decaying. For exponentially decaying distributions this result depends on the form

of the distribution function F and on the normalizing sequences an and bn.
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Corollary 1: Let Mn be a possible outlier for a sample of size n and generated from a distribution

function F polynomially decaying characterized by a tail index ξ. Then, the minimum sample n∗

necessary for Mn not to be an outlier of F , at an α significance level, is

n∗ =
1

1− F (Mn exp(−ξΛα))
, (13)

with Λα the corresponding asymptotic critical value.

Proof. The critical point that characterizes an outlier, at an α significance level, for F heavy-

tailed is

1
ξ lnMn − 1

ξ lnF−1(1− 1
n) = Λα.

After some algebra we have that

F−1(1− 1
n) = exp(lnMn − ξΛα),

and by applying F to both terms and further algebra the result follows. ¤

The following section extends this study to the situation where F is not known and we need

to estimate the tail index in order to find out the rate of decay of the parent distribution.

3 Estimation effects on the Hypothesis Tests

The hypothesis test introduced in the previous section is very convenient and shows strong power

for different parent distribution functions F . This test depends on the knowledge of the normal-

izing sequences an and bn that unfortunately are not usually known, and have to be estimated.

In particular for the exponentially decaying case this has to be done on a case-by-case basis.

Thus, whereas for the Normal distribution there are no nuisance parameters to be estimated

since an = (2lnn)−1/2 and bn = a−1
n − ln(4π)+lnlnn

2(2lnn)1/2 , see Embrechts, Klüppelberg and Mikosch (p.

156, 1997); for an exponential distribution as F (x) = 1 −K exp−λx, the relevant sequences are

an = λ−1 and bn = λ−1ln(Kn) that can be estimated using sample estimates of K and λ.

For the heavy-tailed case, given that an = F−1(1 − 1
n) and bn = 0, the estimation of these

normalizing sequences boils down to estimating the inverse of the parent distribution F. There

are nonparametric as well as parametric techniques in the literature to estimate F . Whereas the
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former techniques are appealing by their generality and, in contrast to parametric methods lack of

model risk, these methods are usually very intensive in the use of data, their convergence towards

F is very slow and are rather inaccurate in the tails of the distribution. We choose instead a

semi-parametric estimator of the parent distribution based on the following decomposition of F

given by the conditional probability theorem;

F (x) = P{X ≤ x} = P{X ≤ x|X ≤ u}P{X ≤ u}+ P{X ≤ x|X > u}P{X > u}, (14)

for every x in the domain of F and with u a threshold value.

We are concerned, in particular, with estimating the
(
1− 1

n

)
-quantile of the distribution

function F . Further, as n increases, one can assume with no loss of generality that

(x = an =)F−1(1− 1
n) > u and hence obtain the following equation

1
n

= P{X > an|X > u}P{X > u}. (15)

From here the quantile of interest an is

an = inf
x∈[u,∞)

{
x | P{X > x |X > u} ≥ 1

n(1− F (u))

}
. (16)

A natural semi-parametric estimator for this sequence is obtained by approximating the con-

ditional distribution function by a distribution of Pareto type (Pareto, Generalized Pareto) as

proposed by Pickands (1975) and Balkema-de Haan (1974), and F (u) by the nonparametric em-

pirical distribution function. Balkema-de Haan (1974) and Pickands (1975) theorems (BHP )

show that the conditional excess distribution function defined by F and u is approximated by a

Generalized Pareto distribution when u converges to infinity at a certain rate. Therefore, we will

assume hereafter u := un being a threshold sequence that converges to infinity.

Result 2: BHP theorem:

lim
un→∞

[
P{X ≤ an|X > un} −GPDξ,σun

(an − un)
] −→ 0, as n →∞, (17)
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and where

GPDξ,σun
(an − un) =





1− (1 + (an−un)
ξσun

)−
1
ξ if ξ 6= 0,

1− exp
(−(an−un)

σun

)
if ξ = 0,

(18)

is the so-called Generalized Pareto distribution (GPD), with F a distribution function satisfying

the above regularity condition (1), and ξ and σun the location and scale parameters, respectively.

This result can be further refined if F decays polynomially since in this case there exists a

reparametrization of the GPD distribution into a Pareto distribution.

Result 3: BHP theorem for F polynomially decaying:

lim
un→∞

[
P{X ≤ an|X > un} −

(
1−

(
an

un

)− 1
ξ

)]
−→ 0, as n →∞. (19)

We concentrate on the second result. Expression (19) along with the nonparametric estimator

of F (un) given by
(
1− nun

n

)
, with nun the number of exceedances of the threshold sequence un by

the observations X1, X2, . . . , Xn, yield the following semi-parametric candidate to approximate

the normalizing sequence an;

ân = un(nξ̂n
un

), (20)

where ξ̂n a consistent estimator of the tail index ξ. Pickands (1975) proposed an estimator for the

tail index based on the Generalized Pareto distribution, other alternative estimators are found

in Dekker, Einmahl and de Haan (1989) or Huisman, Koedijk, Kool, and Palm (2001) better

suited for small sample sizes. Nevertheless, due to its simplicity and applicability the Hill (1975)

estimator, defined by

ξ̂Hill(un) =
1
kn

kn∑

i=1

lnMi:n − ln un, (21)

with {Mi:n}n
i=1 the sequence of decreasing order statistics and kn denoting the number of ob-

servations exceeding un, is still considered as benchmark for estimating ξ. Clearly, this statistic

is a function of the threshold sequence, whose choice introduces bias and inefficiencies into the

estimation of ξ. To minimize these effects Pickands (1975) proposed a candidate for this sequence

based on the distance of the supremum between the empirical version of P{X ≤ an|X > un}
and the Generalized Pareto distribution. Other methods are proposed by Hall and Welsh (1984),
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Guillou and Hall (2001) or Gonzalo and Olmo (2004). In practice this sequence can be chosen as

an intermediate order statistic of the sequence of data, with kn →∞ and kn = o(n).

The relevant test statistic is in this case

Tn,Φ
ξ̂n

=
1

ξ̂n

lnMn − 1

ξ̂n

ln un − ln nun . (22)

The following subsection studies the effects of outlying observations in the estimation of the

tail index.

3.1 Detection of Influential observations

In this section we concentrate on parent distributions with ξ > 0. In this case when the dis-

tribution function F is not known the relevant test statistic is Tn,Φ
ξ̂n

, shown above. Under the

null hypothesis of no outliers this estimator converges in distribution to a Gumbel extreme value

distribution. Note, however, that under the alternative hypothesis HA,n the presence of outliers

produces two opposite effects on the value of the test statistic. On the one hand, the sample

maximum is larger than it should be under no outliers, and on the other hand the outlier also

produces estimates of ξ that consistently overshoot the true parameter. If the second effect is

stronger than the first effect the outlying observations are masked, and due to estimation effects,

cannot be detected. Observations in this category are usually termed influential observations.

The next paragraphs investigate the effect of these observations on our hypothesis test for

heavy tails. Further, in order to illustrate these effects more clearly and for ease of calculation,

we will ignore the effect of estimating F−1(1− 1
n) and write the relevant test statistic as in (11);

Tn,Φ
ξ̂n

=
1

ξ̂n

lnM0
n −

1

ξ̂n

lnF−1(1− 1
n

) +
1

ξ̂n

ln(1 + ηn,Φξ
), (23)

where ηn,Φξ
= Mn

MO
n
− 1.

Under the presence of the outlier Mn the tail index can be written as

ξ̂n = ξ̂0
n + νn, (24)

with νn := 1
kn

ln(1 + ηn,Φξ
), and ξ̂0

n the corresponding Hill estimator when there are no outliers in
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the sequence of length n. Now, replacing in the above expression we obtain

Tn,Φ
ξ̂n

=

(
1

1 + νn

ξ̂0
n

)(
1

ξ̂0
n

lnM0
n −

1

ξ̂0
n

lnF−1(1− 1
n

) +
1

ξ̂0
n

ln(1 + ηn,Φξ
)

)
, (25)

and the power function of the test with ξ̂0
n a consistent estimator of ξ can be approximated by

the asymptotic Gumbel extreme value distribution.

Proposition 3: Let F be an unknown distribution function polynomially decaying in its tail, and

satisfying the above regularity condition (1). Then, the asymptotic power function of (5) when

the tail index is estimated is

lim
n→∞P{Tn,Φ

ξ̂n
> Λα} =

[
1− (1− α)(1+ηn,Φξ

)
(1−Λα

kn
) 1

ξ̂0n

]
+ oP (1), as n →∞. (26)

Proof. From (25) we have that

lim
n→∞P{Tn,Φ

ξ̂n
> Λα} = lim

n→∞P{T 0
n,Φ

ξ̂n
> Λα(1 +

νn

ξ̂0
n

)− 1

ξ̂0
n

ln(1 + ηn,Φξ
)}.

The asymptotic distribution of T 0
n,Φ

ξ̂n
is a Gumbel extreme value distribution. Therefore, after

some algebra we have that

lim
n→∞P{Tn,Φ

ξ̂n
> Λα} =

[
1− (1− α)

exp(−Λα
νn
ξ̂0n

)(1+ηn,Φξ
)1/ξ̂0n

]
+ oP (1), as n →∞.

Now, noting that exp(−Λα
νn

ξ̂0
n

) = exp(ln(1 + ηn,Φξ
)
−Λα
knξ̂0n ), and after further simple algebra we

obtain

lim
n→∞P{Tn,Φ

ξ̂n
> Λα} =

[
1− (1− α)(1+ηn,Φξ

)
(1−Λα

kn ) 1
ξ̂0n

]
+oP (1), as n →∞. ¤

This proposition shows that the effects of parameter estimation in the hypothesis test (5) van-

ish asymptotically as kn →∞. In finite sample studies, on the other hand, this effect reduces the

power of the test compared to the version given by ξ known, since the ratio of the approximation

of the power with estimation effects by the power without these effects is less than one.
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Corollary 2: Let F be an unknown distribution function polynomially decaying in its tail, and

satisfying the above regularity condition (1). Then, the statistical power of the test statistic (25)

is smaller than the power of the test statistic (11). More formally, under HO,n,

lim
n→∞

P{Tn,Φ
ξ̂n

> Λα}
P{Tn,Φξ

> Λα} < 1. (27)

Proof. This result can be shown by computing the ratio lim
n→∞

P{Tn,Φ
ξ̂n
≤Λα}

P{Tn,Φξ
≤Λα} and observing that

it is greater than one:

lim
n→∞

P{Tn,Φ
ξ̂n
≤ Λα}

P{Tn,Φξ
≤ Λα} = (1− α)

[
(1+ηn,Φξ

)
(1−Λα

kn
) 1

ξ̂0n −(1+ηn,Φξ
)
1
ξ

]

+ oP (1).

This expression is greater than one if the following exponent is negative;

(1 + ηn,Φξ
)
(1−Λα

kn
) 1

ξ̂0n − (1 + ηn,Φξ
)

1
ξ = (1 + ηn,Φξ

)
1
ξ

(
(1 + ηn,Φξ

)
(1−Λα

kn
) 1

ξ̂0n
− 1

ξ − 1
)

. (28)

For reasonably large n, this expression can be approximated by (1+ηn,Φξ
)

1
ξ

(
(1 + ηn,Φξ

)−
Λα
knξ − 1

)
,

that is clearly negative, provided that ξ > 0. ¤

In what follows we propose an algorithm to detect iteratively the presence of multiple outliers,

and filtering at the same time, the perturbations produced by the estimation of the tail index.

To illustrate this procedure we show first the increase in power obtained from repeating twice

the test. The first time we compute the test statistic with the parameters estimated using n

observations, that is, Tn,Φ
ξ̂n

, and a second time with tail index estimated with n−1 observations,

Tn,Φ
ξ̂n−1

, in which stage we assume there are no estimation effects on ξ, that is, ξ̂n−1 = ξ̂0
n−1.

The increase in statistical power is given by observing that lim
n→∞

P{Tn,Φ
ξ̂n
≤Λα}

P{Tn,Φ
ξ̂n−1

≤Λα} is greater than

one. This is shown in the following formulas;

(1− α)(1+ηn,Φξ
)
(1−Λα

kn
) 1

ξ̂0n

(1− α)(1+ηn,Φξ
)

1
ξ̂0n−1

= (1− α)


(1+ηn,Φξ

)
(1−Λα

kn
) 1

ξ̂0n −(1+ηn,Φξ
)

1
ξ̂0n−1



. (29)

Following the same argument as before it is easy to see that the limiting ratio of probabilities is

greater than one if the exponent is negative. Further, for n sufficiently large, the two estimators
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of the tail index converge to the true parameter ξ, and therefore

(1 + ηn,Φξ
)

1
ξ

(
(1 + ηn,Φξ

)−
Λα
knξ − 1

)
< 0.

In the algorithm we repeat this procedure tol times for each outlier candidate, with tol deter-

mined a priori, in order to filter the effects of estimating ξ with possible influential observations

M1:n,M2:n, . . . , Mtol−1:n. Also note that m denotes the maximum number of order statistics tested

as possible outlier candidates. The algorithm is as follows.

Algorithm: (Outlier detection under the presence of influential observations)

1. j = k = n; iter = 0; tolo = 0.

2. Let Mj := max{X1, . . . , Xj}. Choose kj as a fraction of j to estimate the tail index ξ.

iter = iter + 1.

3. tolo = tolo + 1. Estimate ξ̂kj with Mj+1−k:j , . . . , Mj+kj−k:j and un := Mj+kj−k+1:j .

4. Compute Tj,Φ
ξ̂kj

= 1

ξ̂kj

lnMj − 1

ξ̂kj

ln un − ln nun , with nun the number of exceedances of

the sequence {Xi}n
i=1 by un.

5. If Tj,Φ
ξ̂j

> Λα, reject HO,j . Then

(a) report ”Mj is an outlier.”

(b) j −−; k = j; tolo = 0.

(c) If iter < m, go to step 2.

(d) Otherwise report END.

6. Otherwise,

(a) If tolo ≤ tol, k −−. Go to step 3.

(b) Otherwise, if iter < m go to step 2.

(c) Otherwise report END.

4 Conclusions

In applied statistical and econometric problems it is important to distinguish between observations

produced by the process generating the data from observations that are obtained exogenously to
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the process. Whereas observations in the first group have a positive probability of happening

again, and due to their magnitude, can have a considerable impact on the process under study,

observations in the second group should be neglected from the analysis. The effects of assum-

ing that these observations are extreme values rather than outliers are important from various

standpoints. Thus, standard estimation methods and statistical inference, as confidence intervals

and hypothesis tests, can be heavily affected and yield misleading results. Also, the conclusions

drawn from looking at the data can be very different from identifying these observations in one

group or another.

We show that extreme value theory provides a very powerful device to detect and identify

the presence of anomalies in the largest observations of a sample of a given length. In particular

the mechanism introduced in this paper allows to exploit available information in a more efficient

manner than robust trimming methods by discarding not a fixed fraction of observations in the

tails, but only those that fail to pass our hypothesis test. At the same time, the method minimizes

bias problems produced by including observations that do not correspond to the data generating

process.

The implemented detection methods can be applied to general forms of the distribution func-

tion only satisfying very weak regularity conditions implying smoothness in the tails. Further, the

hypothesis tests and algorithms developed in this paper make allowance for estimation effects, and

permit to filter for influential observations masking the occurrence of outliers. As a byproduct of

the study of the statistical power of the test we show that for tests based on extreme value theory

the power depends on the magnitude of the outlier, but also on the rate of convergence of the

sample maximum and on the degree of polynomial decay (heaviness) of the parent distribution.

Extensions of this research are manyfold. These methods can be applied very easily to de-

tecting outliers in regression models and time series models by simply filtering the corresponding

residual sequences and re-estimating the model parameters. Note also that no comparison study

with other existing methods for outlier detection has been carried out in the paper. Another

interesting extension is, therefore, to do this for different detection methods and under different

alternative hypotheses.
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