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Abstract

In this thesis, we study the modular representations of the special linear group of

degree two over a finite field in defining characteristic. In particular, we study the

automorphisms of derived category of representations. We have been able to obtain a

new type of autoequivalence.

This autoequivalence has some uncommon features. It is more conveniently con-

ceived and proved using the representation theory of its Brauer subgroup but at the

same time it can be very neatly described, using a type of derived equivalence called

perverse equivalence, in global settings.
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Chapter 1

Introduction and Background

1.1 A brief account of the subject

Representation theory started in the mail exchange of Frobenius and Dedekind in

1896 with Frobenius using a group’s mapping into the general linear group of a field to

explain some properties Dedekind discovered in some subsets of matrices. Over time,

other mathematicians like Burnside, Schur, Noether joined in the study of represen-

tations, developing the branch significantly. It started as a study of representations

of groups, in which Maschke laid down the fundamental theorem of semisimplicity of

group representations, which is always true over a field of characteristic 0. In this case,

character theory develops and completely determines representations - the traces of

the image of the group in the general linear group have such good properties that can

determine a representation up to isomorphism when Maschke’s theorem holds. One of

the high points of representation theory is the success of Burnside’s theorem in 1916, in

which representation theory is used to prove group of certain orders cannot be simple,

while no group theoretical approach had yet succeeded.

Brauer started the study of modular representation theory in 1935. It is to study

properties of representations of groups when the characteristic of the underlying field

is positive and when Maschke theorem fails. Although Brauer characters somewhat

successfully generalise character theory, they fail to classify the isomorphism class of a

representation, only the multiplicities of simples as composition factors can be decided.

Brauer’s study points out the general direction to express representations of groups

of more complex structure by smaller subgroups. He contributes two main theorems,

which are collectively known as Brauer correspondence. It links blocks of a group to

blocks of its subgroups. These research results are an important part of this thesis,
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which would be explained in detail in section 1.2.

Category theory was quickly adapted by representation theorists to formalise the

study of representations since its introduction. In particular, for a certain algebra, all

representations form a category that is being called its module category. The language

of category theory allows a more systematic approach to maps between modules. For

example, the introduction of the stable module category provides new developments on

how representations of different algebras can be related. They have explored further

relations between group representations and its subgroups.

In turn, the study of module categories enriched category theory. Examples include

Freyd-Mitchell embedding theorem, stating that every small abelian category can be

embedded as a full subcategory of a module category, and the discovery that the repre-

sentation theory of wild representation type is undecidable, showing that representation

theory actually involves the deepest connection in mathematics.

Later, homological algebra and algebraic geometry were introduced into the field

and they quickly secured a place in representation theory. One of the particular achieve-

ments of this introduction is the construction of derived category. The derived category

of a module category provides an area of study between the defining module category

and the associated stable module category. For example, Broué’s conjecture suggests

a possible relation between representations of a group and its subgroups via Brauer

correspondence.

Conjecture 1.1. If a block of a group algebra has a defect group which is abelian, then

such block is derived equivalent to its Brauer correspondent.

Algebraic geometry is another way to study representation theory, as modules can

be considered as sheaves, allowing research to use techniques in algebraic geometry.

Perverse equivalence, which is a kind of derived equivalence, is inspired through perverse

sheaves in algebraic geometry. These categories, equivalences and their relations will

be formally introduced in section 1.3.

1.1.1 Notations and Conventions

We use the position of the algebra to indicate its side of the the action on the

module. For example an A-module has A-action from the left. A module-B is a right

B-module in the usual sense. An A-bimodule-B means there is an left A-action and

right B-action on the module. In this article we compose functions and functors from

right to left. The following is a general list of notations used:
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• p is a prime number, q = pn a positive power of p;

• G,H are groups;

• SL2(q) is the special linear group of degree two over the field of q = pn elements;

• F is an algebraically closed field, of characteristic p;

• Bolded letters A, B, b for blocks in the later chapters; S, T for sets of simples;

• M , N , U , V are modules, P , Q are projective modules, S, T are simple modules;

• Script letters are for categories. E, F for functors.

• I•, J• are nested sets forming the filtration I and J ;

• X, Y are cochain complexes and Xi the degree ith entry of X.

Throughout the thesis G is a finite group of Lie Type. The characteristic of F is the

defining characteristic of G and this prime number is denoted by p. A G-module means

an FG-module. We always assume all vector spaces are finite dimensional, direct sums

are finite. Hom and ⊗ operations are widely used throughout the paper. We adopt the

following convention for subscripts surrounding Hom and ⊗. Let U , V be an A-module

for an algebra A,

1. HomA(U, V ) means the set of A-module maps between U and V .

2. When there is no symbol beneath, then Hom(U, V ) is the set of maps between U

and V as vector spaces.

3. Let U , V be G-modules. We will treat Hom(U, V ) and U ⊗V as G-modules

automatically. See group algebra section for details.

1.1.2 Structure of the thesis

The remaining part of chapter 1 is split into two main parts. The first part is to

introduce representation theory, in particular for group algebras. We shall focus on the

relation between representations of a group and those of its subgroup. That includes

restriction and induction, block theory and Brauer correspondence. The second part

is to introduce categories related to our thesis. That includes module category, stable

module category, derived category and their properties. In particular we will focus on

the equivalences of different types of categories and the relations between them. Finally

we shall introduce perverse equivalence.
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Chapter 2 is a detailed account of representations of special linear group of degree

2 over a finite field in their defining characteristic and their local subgroups, in this

case Borel subgroups. We will find out their simple modules, introduce their projective

modules if possible and explore extension groups between these modules.

Chapter 3 consists of the main idea and proof of the thesis, which utilise the methods

introduced in chapter 1 and data in chapter 2 to obtain a perverse autoequivalence.

We shall discuss the interesting properties at the end of this chapter.

Chapter 4 further develop the new perverse autoequivalence obtained in chapter 3

using a relatively new idea of poset perverse equivalence. This will lead to other new

autoequivalences and some interesting observations.

Chapter 5 is dedicated to the smallest non-trivial example, the special linear group

of degree 2 over a field of four elements.

Lastly there is an appendix to demonstrate how our perverse autoequivalence works

in slightly larger groups. It hopes to give readers a point of reference upon reading the

extension lemmas in chapter 2 and the proof of proposition 3.2 in chapter 3.

1.2 Background Part I: Representation

Let F be an algebraically closed field. Let A be a finite dimensional F-algebra. A

representation ρ of an F-algebra A is an F-algebra homomorphism

ρ : A→ End(V )

where V is a vector space over a field F and End(V ) is the endomorphism algebra of V .

The map ρ induces a structure of A-module on V by left multiplication: a.v = ρ(a)(v).

Conversely, if V is an A-module, we define the map ρ by mapping a ∈ A to the

endomorphism of the underlying vector space of A given by left multiplying a. This

gives a correspondence between representations of algebra A and A-modules. So for

an algebra A it is enough to study A-module structure of vector spaces to understand

representation theory of A. For G a finite group, a group representation: G→ End(V )

can be extended linearly on F, the underlying field of V and understood as an algebra

representation:

ρ : FG → End(V )

14



1.2.1 Modules

One of the principal results is the Krull-Schmidt theorem, which describes unique-

ness of decomposition of modules:

Theorem 1.2. (Krull-Schmidt) Let M be an A-module and

M ∼=U1 ⊕ U2 ⊕ ...⊕ Ur

M ∼=V1 ⊕ V2 ⊕ ...⊕ Vs

where U, V are indecomposable A-modules, then r = s and Ui∼=Vi after suitable re-

indexing.

Simple module is an important idea in studying representation theory.

Definition 1.3. A simple A-module is a module with only zero module and itself as

submodule. A semisimple A-module is a direct sum of simple A-modules.

These modules are easier to study. To see that we have Schur’s lemma:

Lemma 1.4. Let S and T be two simple A-modules, then

1. Hom(S, T ) = 0 if S is not isomorphic to T .

2. End(S) is a division algebra; and

3. if further A is an F-algebra with F algebraically closed, then End(S) = λIdS,

where λ ∈ F.

To analyse the structure of a non-semisimple module we introduce the radical of an

algebra.

Definition 1.5. The radical of A, denoted by radA, consists of elements of A which

annihilate every simple A-module. This is equal to

1. The unique minimal submodule of A whose quotient is semisimple

2. The intersection of all maximal submodules of A.

3. The maximal nilpotent ideal of A.

The radical radA help us to analyse the structure of an A-module by the following:

Proposition 1.6. If M is an A-module then the following are equal

15



1. (radA).M ;

2. The unique minimal submodule of M whose quotient is semisimple;

3. The intersection of all maximal submodules of U .

Definition 1.7. The module with these equivalent description is denoted by rad(M).

The semisimple quotient M/ rad(M) is denoted by head(M).

From this proposition we can form a series of modules descending from M , by

defining radn(M) recursively as (radA)n.M . It follows that there is a descending chain

of submodules

M = rad0(M) ⊃ rad(M) ⊃ rad2(M) ⊃ . . . .

The minimal integer l > 0 with radl(M) = 0 is called the radical length of M .

A similar construction can be done using submodules of an A-module M instead of

quotients of M .

Proposition 1.8. If M is an A-module the following are equal:

1. The set of m in M with (rad A)u = 0;

2. the largest semisimple submodule of M ;

3. The sum of all the simple submodules of M .

The submodule described is called the socle of M and written as soc(M). Consid-

ering iterative definition of soci(M) =soc(M/soci−1(M)) and soc0(M) = 0, we formed

a socle series

0 = soc0(M) ⊂ soc1(M) ⊂ ...

with socle length defined by the smallest l with socl(M) = M . For finite-dimensional

modules the radical length and socle length exists and coincides, which is called Loewy

length.

One very natural example of an A-module is A itself. It is of particular importance.

Definition 1.9. An A-module is free if it is a direct sum of copies of A (as A-module).

An A-module is projective if it is a summand of a free module.

Projective modules satisfy the following universal property. Some literature use this

as its definition.
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Proposition 1.10. Let P be a projective A-module. Let M , N be A-modules with a

surjective map f : M → N and π : P → N . Then there exists a map g : P → M such

that fg = π.

Every A-module is a quotient of some projective A-module. The indecomposable

projective modules are of particular importance.

Proposition 1.11. Let P be a projective indecomposable A-module. Then the follow-

ings hold.

1. P/rad(P ) is simple.

2. P is a direct summand of A as an A-module.

3. There is a one-to-one correspondence between the set of isomorphism classes of

simple A-modules and the set of isomorphism classes of indecomposable projective

A-modules.

Proof See Chapter 5, Theorem 3 of [Alperin11].

1.2.2 Group algebra

Given finite dimensional algebra A, the category of finitely generated (left) A-

modules, denoted by A-mod, is an abelian category (see next section) with enough

injectives and projectives. That is, any finitely generated module is a submodule of an

injective module, and a quotient module of a projective module.

Definition 1.12. Let A be an algebra. The opposite algebra, denoted by Aop, is an

algebra with the same set of elements as A but with multiplication ab for a, b ∈ Aop

defined as ba in A.

For any finite dimensional algebra A, there is a contravariant functor

Hom(−,F) : A -mod→ Aop -mod

which is an equivalence. We denote

A∗ = Hom(A,F)

as the F-dual of A.

Definition 1.13. An algebra A is self-injective if A is injective as an A-module.

17



Since A, as an A-module is free and projective by definition, the definition of self-

injective algebra is equivalent to saying that injective and projective modules coincide.

Definition 1.14. A symmetric algebra A is an algebra with a linear map λ : A → k

such that

• ker(λ) contains no non-zero left or right ideals of A.

• λ(ab) = λ(ba) for all a, b ∈ A.

Example 1.15. A group algebra FG is a symmetric algebra where λ is given by

λ(
∑
g∈G

αg(g)) = α1.

Proposition 1.16. An algebra A being symmetric is equivalent to any of the following:

1. A∼=A∗ = Hom(A,F) as A-bimodule-A.

2. For any A-module M , there is a isomorphism

Homk(M,k)∼= HomA(M,A).

This isomorphism is natural, as functors from A-mod to Aop-mod.

3. For a finitely generated projective A-module P and an arbitrary A-module M we

have a natural isomorphism

HomA(P,M)∼= HomA(M,P )∗

One consequences of the proposition is that a finitely generated projective module

P of a symmetric algebra has the same top and socle, namely

soc(P )∼=P/rad(P ),

by putting M as a simple module in the last statement.

The representation theory of group algebras relies on the study of groups. When

the characteristic of the field F is zero or does not divide the order of G, Maschke’s

theorem states that the algebra FG is semisimple. Then the regular representation

maps FG to a direct sum of simple matrix algebras as a consequence of Schur’s lemma.
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Thus any indecomposable module is simple and there are no non-zero maps between

non-isomorphic simples. In this semisimple case, the associated character

χ : G→ F, χ(g) = tr(ρ(g))

where tr denotes the trace of an endomorphism, uniquely determines ρ up to isomor-

phism. Since there are no non-trivial maps between non-isomorphic simples, the tools

introduced in the rest of this chapter will not give further insight because maps between

modules are direct sums of maps between simple modules. When the characteristic of

the field F divides the order of G, however, Maschke’s theorem fails and modules are

not necessarily semisimple.

Any group algebra has a Hopf algebra structure, so we can define FG-module struc-

tures on the tensor products and duals of FG-modules.

Definition 1.17. Let M , N be a left FG-modules. We define

1. M ⊗N is equipped with a left FG-module structure with action given by g(m⊗n) =

gm⊗ gn.

2. Hom(M,N)∼=M∗⊗N is equipped with a left FG-module structure with action

given by g(φ)(m) = gφ(g−1(m)).

Remark. We use comultiplication in Hopf algebra in defining the above tensor product

as FG-module. The antipode is further used in defining Hom-space as FG-module

What the definition above does is to utilise the group structure to make new repre-

sentations out of the known ones. Also the functors −⊗M , Hom(M,−) and Hom(−, N)

are all exact endofunctors of FG -mod. The first two are covariant functors while

the third is a contravariant functor. That is, given an exact sequence of modules

0→ L′ → L→ L′′ → 0 we have

0→ L′⊗M → L⊗M → L′′⊗M → 0

0→ Hom(M,L′)→ Hom(M,L)→ Hom(M,L′′)→ 0

0→ Hom(L′′, N)→ Hom(L,N)→ Hom(L′, N)→ 0.

With groups involved, one natural question is the relation between representations

of a group and those of its subgroups. We shall consider this through induction and

restriction, and some correspondences between the representations.
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1.2.3 Restriction and Induction; Green correspondence

Consider a group G and U a FG-module. Let H be a subgroup of G. One way to

obtain representations of H is to look at the module U as a vector space with (only)

H-action. To do this we define:

Definition 1.18. Let G be a group, let H ≤ G be a subgroup of G and U be a FG-

module. Define U↓H , the restriction of U (from G) to H, to be the FH -module with the

same underlying vector space and action by FH .

If instead we have a FH -module V , there is a way to construct a FG-module too.

Definition 1.19. Let G be a group, let H ≤ G be a subgroup of G and V be a FH -

module. Define V↑G, the induction of V (from H) to G, as FG ⊗FH N with the action

of G via g(a⊗ v) = (ga)⊗ v.

One can check thisG-action well-defined in the tensor space by considering g(ah⊗ v−

a⊗hv) = gah⊗ v − ga⊗hv.

Remark. This is not the tensor product defined via Hopf algebra structure, where

instead g acts diagonally.

Restriction and induction have very good properties. One that is crucial in this

exposition is the fact that they are left and right adjoint to each other.

Lemma 1.20. (Frobenius Reciprocity) Notation as in definition above, we have:

1. HomkG(V↑G, U)∼= HomkH(V,U↓H).

2. HomkG(U, V↑G)∼= HomkH(U↓H , V ).

It is worth mentioning that if H is a normal subgroup of G there are extra properties

that can be very useful. This is usually referred to as Clifford theory.

For a subgroup H, we can generalise the notion of free modules/projective modules

to relatively H-free/projective modules. For our purpose, we only introduce the latter:

Definition 1.21. Let U be a FG-module and H be a subgroup of G. Then U is

relatively H-projective if any of the following equivalent conditions hold:

1. If V is a G-module with ϕ : V → U a surjective homomorphism, then ϕ is split

(surjective) whenever ϕ is split as FH -homomorphism.

2. U is a direct summand of (U↓H)↑G.

20



A projective module is just a relatively 1-projective module, where 1 stands for the

trivial subgroup. The following theorem suggests that p-subgroups affect projectivity:

Theorem 1.22. If H is a subgroup of G containing a Sylow p-subgroup, then any

FG-module is H-projective.

Theorem 1.23. Let U be an indecomposable FG-module. Then there exists a p-

subgroup Q of G, unique up to conjugacy in G, such that U is relatively H-projective

if and only if H contains a conjugate of Q.

This subgroup Q is called a vertex of U ; it is a p-group, as this theorem indicates.

A vertex of a module measures how far an indecomposable module is away from being

projective (a module has vertex 1 if and only if it is projective). Also, the concept of

vertices plays a very important role in establishing a link between modules of a group

and its subgroups. This relationship is explained by the Green correspondence. For

further details see [Alperin11, Section 11]. In this thesis, we use a special case of such,

namely when the Sylow p-subgroups P of G have ‘trivial intersections’. That is, when

P ∩ gPg−1 is either P or 1. When this holds, the Green correspondence reads

Theorem 1.24. (Green correspondence for trivial intersections) Let G be a group with

trivial intersection property and P be a Sylow p-subgroup and let L = NG(P ). Then

there is a one-to-one correspondence between the isomorphism classes of non-projective

FG-modules U and the isomorphism classes of non-projective FL-modules V such that

U and V have the same vertices, and

U↓L ∼=V ⊕Q

V↑G ∼=U ⊕ P

where P , Q are projective FG and FL-modules respectively.

For details and proofs see [Alperin11, section 10].

1.2.4 Blocks and Brauer Correspondence

Theorem 1.25. An algebra A has a unique decomposition into the direct sum of two-

sided ideals

A = A1 +A2 + ...+An

where each Ai is an indecomposable ideal.
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These indecomposable ideals are called the blocks of A. Note that each ideal Ai

above is also a unital algebra in its own right. Thus a block is also an algebra, with no

non-trivial two-sided ideals by definition. Now consider an A-module M and let AiM =

Mi. Then one can decompose M = M1 + ...+Mn as direct sum of A-modules; where

each Mi can also be regarded as an Ai-module. In particular, if M is an indecomposable

A-module, there must exist i such that AiM = M and AjM = 0 for all j 6= i. We say,

in this case, that M is lying in the block Ai. To determine which block of A a certain

indecomposable module is lying in, the following proposition states that it depends on

the simple constituents of the module in question.

Proposition 1.26. Let S and T be simple A-modules. Then S and T lie in the same

block if and only if there is a sequence of simple A-modules

S = T0, T1, ..., Tn = T

such that there is a non-split extension between Ti and Ti+1 for all i = 0, 1, . . . , n− 1.

For group algebras, to determine its blocks one can consider FG as an F[G × G]-

module with action given by (g1, g2)a = g1ag
−1
2 . This gives the following:

Theorem 1.27. If B is a block of FG, then as F[G×G]-module, B has a vertex of the

form

δ(D) = {(d, d)|d ∈ D}

where D is a p-subgroup of G.

This p-subgroup D in the theorem above is unique up to conjugacy in G and is

called a defect group of B. If D has order pd, then the block B is also said to have

defect d. Similar to the notion of vertex, defect groups measure how far a block B is

from being semisimple.

Theorem 1.28. Let B be a block of G with a defect group D, then any indecomposable

G-module lying in B has a vertex contained in D.

In fact, a defect group D can also be defined as a maximal vertex over all inde-

composable B-modules. Furthermore, the vertex of a simple module in a block is very

restrictive, by Knörr’s theorem [Knorr79]:

Theorem 1.29. Let B be a block of group algebra FG with defect group D, S be a
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simple B-module. Then S has a vertex Q such that

CD(Q) ≤ Q ≤ D.

In particular, if D is abelian then we always have Q=D.

Remark. Knörr’s theorem can be stated in a stronger form, namely Q is centric in D

with respect to the fusion system of B.

The correspondence of blocks from a group to its subgroups is more intriguing than

their module counterparts. Let H be a subgroup of G, b and B be blocks of H and G

respectively. We say B correspond to b, denoted by B = b
G, if B is the only block of

G such that b is a direct summand of B↓H×H as H × H-module. In particular, this

correspondence is well-defined for a block b of a subgroup H with defect group D such

that CG(D) ⊂ H. We can establish Brauer’s theorems:

Theorem 1.30. Let D be a p-subgroup of G and H ≤ G be a subgroup containing

NG(D). Then there is a one-to-one correspondence between the blocks of H with defect

group D and those of G with defect group D.

In the prospect of this thesis, D is a Sylow p-subgroup of G and H = NG(D),

thus the one-to-one correspondence of blocks is guaranteed. The (special case) Green

correspondence indicates the correspondence of FG-modules and FH -modules have

some good properties, that is particularly useful when viewed in stable category, which

we will see in the next section.

1.3 Background Part II: Categories and Equivalences

The notion of category was developed during the 1950’s to unify different descrip-

tions in different fields of mathematics. This tool has been applied quickly to repre-

sentation theory by considering modules of an algebra as objects in a category. In this

chapter, we will eventually focus on the case when the algebra is a symmetric algebra,

in particular, the blocks of group algebras. These will form the basic language we use

in later chapters.

Recall, as in the last section, all algebras are over F and finite dimensional.
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1.3.1 Module category

Definition 1.31. For an algebra A, The category of (left) A-modules, denoted by

A -mod, is a category with

Objects: Finitely generated A-modules.

Morphisms: A-module homomorphisms.

The set of morphisms from an object M to an object N in A -mod is denoted by

HomA(M,N).

For any F-algebra A, A -mod is an F-linear abelian category. That is, we have the

following properties:

1. HomA(M,N) is an F-vector space.

2. Finite products of objects, i.e. direct sum of modules, exist.

3. The kernel and cokernel of a map exists.

4. Any monomorphism or epimorphism is normal (i.e. is a kernel or cokernel of some

map).

Remark. A category with the first property is an F-category, with the first two is an

F-linear category and the first three a F-linear pre-abelian category.

In abelian categories, exact sequences arise naturally as the consequence of 4.

Definition 1.32. For an abelian category C , an exact sequence is a sequence of objects

C1, ..., Cn with maps fi : Ci → Ci+1 such that Im(fi) = ker(fi+1) for 1 ≤ i ≤ n− 1.

A short exact sequence is an exact sequence of the form

0→ C1 → C2 → C3 → 0.

Definition 1.33. Let C and D be two categories. A functor F : C → D maps an

object C ∈ C to an object F (C) ∈ D and a morphism f ∈ C to F (f) ∈ D , such that

composition of morphisms are compatible in C and D .

A functor can be either covariant: for f : C0 → C1, F (f) is a map from F (C0)→

F (C1). Then the compatibility of morphisms is expressed as

fg = h in C ⇒ F (f)F (g) = F (h) in D .

Or a functor can be contravariant: for f : C0 → C1, F (f) is a map from F (C1) →

F (C0).

24



In this case the compatibility of morphisms is

fg = h in C ⇒ F (g)F (f) = F (h) in D .

Definition 1.34. For a covariant functor F : C → D and every short exact sequence

0→ C1 → C2 → C3 → 0 in C ,

1. If 0→ F (C1)→ F (C2)→ F (C3)→ 0 is always an exact sequence in D then we

say the functor F is exact.

2. If 0 → F (C1) → F (C2) → F (C3) is always an exact sequence in D then we say

the functor F is left exact.

3. If F (C1) → F (C2) → F (C3) → 0 is always an exact sequence in D then we say

the functor F is right exact.

For any left (resp. right) exact functors there exist right (resp. left) derived functors

RnF (resp. LnF ) for all n > 0 such that (for covariant functors)

0→ F (C1)→ F (C2)→ F (C3)
δ−→ R1F (C1)→ R1F (C2)→ R1F (C3)

δ−→ R2F (C1)→ ...

and

...→ L2F (C3)
δ−→ L1F (C1)→ L1F (C2)→ L1F (C3)

δ−→ F (C1)→ F (C2)→ F (C3)→ 0

are exact sequences for every short exact sequence 0→ C1 → C2 → C3 → 0 with δ the

(naturally occur) connecting homomorphisms.

Remark. To define exactness and derived functors of a contravariant functor, we ex-

change all C1 and C3 in the above definition.

Example 1.35. Let A be an algebra, and let K be an A-module. Then HomA(K,−),

defined by post-composition of maps, is a left exact covariant functor. Its nth right-

derived functor is denoted by ExtnA(K,−). In particular, for a short exact sequence of

A-modules

0→ L→M → N → 0

we have an exact sequence

0→ HomA(K,L)→ HomA(K,M)→ HomA(K,N)→ Ext1
A(K,L)→ . . . .
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These functors will be central to our construction. Next, we characterise algebras

whose module categories are equivalent.

Definition 1.36. We say two algebras A and B are Morita equivalent if they possess

equivalent module categories. That is, there exist (covariant) functors F : A -mod →

B -mod and G : B -mod → A -mod such that FG is naturally isomorphic to IdB, the

identity functor of B -mod and GF is naturally isomorphic to IdA, the identity functor

of A -mod.

This equivalence was first studied by Kiiti Morita in 1958, and he gave a criterion

for two algebras to be Morita equivalent.

Definition 1.37. For any algebra A, a finitely generated projective generator, or

progenerator P of A is a finitely generated projective module such that for any finitely

generated A-module M there exists a surjective homomorphism P⊕i → M for some

i > 0.

Theorem 1.38. Let A and B be two algebras. The following are equivalent.

1. A and B are Morita equivalent.

2. A∼= EndB(PB), where PB is a progenerator of B.

3. There exist an A-bimodule-B AMB and a B-bimodule-A BNA such that M ⊗B N ∼=A

as A-bimodule-A and N ⊗AM ∼=B as B-bimodule-B.

In particular, M ⊗B − : B -mod → A -mod and N ⊗A− : A -mod → B -mod are

functors defining the Morita equivalence between A and B.

Morita equivalence is a quite restrictive condition. Especially it seldom happens

that two non-isomorphic groups will have Morita equivalent group algebras over prime

characteristic. One way to study relationship between group algebras and its subgroup

algebras, is via the stable module category.

1.3.2 Stable module category

Definition 1.39. For an A-module map f : M → N , we say f factors through pro-

jectives if there is a projective A-module P such that there exist maps g : P → N and

h : M → P such that f = hg. That is,

M
f //

g

  

N

P

h

>>
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commutes.

We denote the set of maps fromM toN that factor through projectives as HomPr
A (M,N).

Observe that the set of maps that factor through projectives is an ideal of A-module

maps. Taking the quotient by this ideal gives the stable module category.

Definition 1.40. The stable module category of A-modules, A -mod is a category with

Objects: Finitely generated A-modules.

Morphisms: HomA(M,N)/HomPr
A (M,N) = HomA(M,N)

Any projective module P is isomorphic to 0 in the stable category, since the image

of the identity morphism idP is zero as it factors through P .

Since projective modules are zero objects, we cannot distinguish projectives in the

stable module category. When considering equivalence in stable module categories

there are no ’progenerators’ to generate the other category as in Morita equivalence.

However we can still define a type of stable equivalence similar to Morita equivalence.

Definition 1.41. Suppose A and B are two algebras. If there exists an A-bimodule-B

M and a B-bimodule-A N such that

M ⊗B N ∼=A⊕ P as A-bimodule-A

where P is a projective A-bimodule-A and

N ⊗AM ∼=B ⊕Q as B-bimodule-B

where Q is a projective B-bimodule-B, then we say that A and B are stably equivalent

of Morita type. In such case, functors M ⊗B − and N ⊗A− induce mutually inverse

equivalence B -mod→ A -mod and A -mod→ B -mod.

Asashiba claims in [Ashashiba99] that there are stable equivalences that cannot

be described by this way. With this in mind, the advantage for stable equivalence of

Morita type is then that two algebras of such equivalence are still similar enough, as

manifested by Linckelmann’s theorem[Linckelmann96].

Theorem 1.42 (Linckelmann’s Theorem). Let A and B be two self-injective algebras

with no simple projective summands. If A and B are stably equivalent of Morita type,

and one of such equivalences sends simple A-modules to simple B-modules, then A and

B are Morita equivalent.
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Okuyama has used this theorem to prove Broué’s conjecture (Conjecture 1.1) for

the blocks of SL2(pn) [Okuyama97][Yoshii09].

Example 1.43. Recall the Green correspondence in the case of trivial intersections (see

1.24), there is a one-to-one correspondence between the isomorphism classes of non-

projective FG-modules and the isomorphism classes of non-projective FH -modules. Fur-

thermore, induction and restriction induces such correspondences between non-projective

FG-modules and FH -modules. It is worth to note that induction and restriction induce

stable equivalence of Morita type in trivial intersection case, thus makes the corre-

spondence functorial. That is, the map preserves morphisms between modules that

correspond, given by

HomFG(U1, U2)∼= HomFH (V1, V2)

where U1, U2 are FG-modules and V1, V2 are FH -modules.

Another main functor in the stable module category is the Heller functor. To start

with, we define Ω as an A-bimodule-A.

Definition 1.44. Let Ω = ker(A⊗A→ A) be the A-bimodule-A given by the kernel of

the multiplication map. The Heller functor is the functor: Ω⊗A− : A -mod→ A -mod.

Proposition 1.45. Let A be a symmetric algebra with no semisimple summands, then

the functor Ω⊗A− induces a stable autoequivalence of Morita type of A-modules.

Proof Note that we have an exact sequence

0→ Ω→ A⊗A→ A→ 0,

by definition. Taking F-duals we have

0→ A→ A⊗A→ Ω∗ → 0

as A∼=A∗ as A-bimodule-A (Proposition 1.16). Apply functor −⊗A Ω∗ to the first

short exact sequence we have

0→ Ω⊗A Ω∗ → A⊗Ω∗ → Ω∗ → 0.

Note that the functor −⊗A Ω∗ is exact since Ω∗ is a projective A-module as Ω is
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projective as module-A. Then now we have

0 // Ω⊗A Ω∗ // A⊗Ω∗ // Ω∗ //// 0

0 // A // A⊗A // Ω∗ // 0

and notice that since A⊗Ω∗ and A⊗A are both projective A-bimodule-A, we have

(A⊗Ω∗)⊕A∼=(Ω⊗A Ω∗)⊕ (A⊗A)

as A-bimodule-A by Schanuel’s lemma. Now consider the composition factors of Ω⊗Ω∗

as A-bimodule-A. The only non-projective summand on the left hand side is A, hence

Ω⊗Ω∗ has to be isomorphic to a copy of A with other projective summands, by Krull-

Schmidt theorem (Theorem 1.2). Thus we have established Ω and Ω∗ induced a stable

autoequivalence of Morita type, using the definition.

Remark. The proposition should also be true when A is a self-injective algebra.

Now we consider how Heller functor applies to A-modules.

Definition 1.46. Let M be an A-module. Define ΩM as the A-module without projec-

tive summands such that ΩM ⊕ P ∼= Ω⊗AM , where P is a projective A-module. The

module ΩM is called the Heller translate of M .

It is obvious that ΩM ∼= Ω⊗AM in the stable category of A-modules since all

projectives are zero objects.

Proposition 1.47. We have the short exact sequence of A-modules

0→ ΩM → PM →M → 0

where PM is the projective cover of M (minimum projective module which surjects to

M).

Proof Consider the short exact sequence

0→ Ω→ A⊗A→ A→ 0

of A-module-A. Tensor the sequence by −⊗AM we have

0→ Ω⊗AM → A⊗M →M → 0
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since A is free module-A. Note that A⊗M is projective and ΩM has no projective

summands, we can obtain the short exact sequence required.

The stable module category is a triangulated category - there are ‘triangles’ inside

this type of category which mimics the role of exact sequence in an exact category, such

as module category of group algebras. See section 1.3.4 for details.

With the Heller functor, we can evaluate ExtnA(M,N) using Hom-spaces when A is

self-injective. Recall that Ext1
A functor is the right derived functor of HomA. Consider

the short exact sequence

0→ ΩM
f−→ P →M → 0

in A -mod. Applying the contravariant functor Hom(−, N) yields a long exact sequence

0→ HomA(M,N)→ HomA(P,N)→ HomA(ΩM,N)→ Ext1
A(M,N)→ Ext1

A(P,N)→ .

Since Ext1
A(P,N) = 0 and the image of g ∈ HomA(P,N) in HomA(ΩM,N) is gf

which can factor through a projective P , hence it is contained in HomPr
A (ΩM,N).

On the other hand, consider a map gh ∈ HomPr
A (ΩM,N) such that g : Q → N

and h : ΩM → Q where Q is a projective module. Since Q is also injective, there

exists a map p from P to Q with h = pf . Thus gh = gpf is the image of the map

gp ∈ HomA(P,N). Thus we have

HomA(ΩM,N)∼= Ext1
A(M,N)

1.3.3 Derived category

The derived category is difficult to define and to do calculation in. However, it is

a very important notion in category theory since the derived functors arise naturally.

Many authors such as Rickard and Broué suggest that the derived category is the right

place to consider representation theory. This is enhanced by the fact that one can

generalise Morita’s equivalence theorem in the derived category. At the same time

a formulation is possible in the form of Broué’s conjecture 1.1 to describe a relation

between representations of a group and of its subgroups. In this section, we first define

the homotopy category and then we have the derived category as the localisation of

the former given by inverting quasi-isomorphism. After that we shall look at derived

equivalence. First we define some terms and operations.

Definition 1.48. Let C be an abelian category. A cochain complex X with objects in
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C is a collection of objects (..., X−1, X0, X1, ...) with a differential map (of degree 1)

diX : Xi → Xi+1 such that di ◦di−1 = 0 for all i. The terms of X can be more precisely

written as

· · · → X−1 d−1

−−→ X0 d0−→ X1 → . . . .

A cochain map f : X → Y is a collection of maps f i such that f i : Xi → Y i is a mor-

phism of objects Xi and Y i in C and each square in the following diagram commutes.

. . . // X0
d0X //

f0

��

X1
d1X //

f1

��

X2 //

f2

��

. . .

. . . // Y 0
d0Y // Y 1

d1Y // Y 2 // . . .

Remark. These are the type of complexes we shall use throughout the thesis, so we

shall drop the word cochain. This is also because cochains complex and chain complex

are essentially equivalent.

The condition d ◦ d = 0 allows us to define homology.

Definition 1.49. Let X be a complex. Define Hn(X), the nth homology of X by

Hn(X) = ker(dn)/ Im(dn−1).

Two distinguished classes of complex is of special interest:

Definition 1.50. A complex X is acyclic if Hn(X) = 0 for all n; A complex Y is

contractible if it is the direct sum of two-term complexes of the form

...→ 0→ Z → Z → 0→ ...

where the map: Z → Z is the identity map.

Remark. A contractible complex is acyclic (but not vice versa in general).

The following are some ways to generate new complexes with known complexes:

Definition 1.51. A left shift [1] of X is a complex X[1] defined by X[1]i = Xi+1 and

differential diX[1] = −di+1
X ; If f : X → Y is a chain map, then the cone of f , denoted

cone(f), is a complex with terms X[1]⊕Y (i.e. cone(f)n = Xn+1⊕Y n) and differential

map

−dn+1
X f

0 dnY

. Or pictorially, the complex cone(f):

... // cone(f)−1
d−1
cone(f) // cone(f)0

d0
cone(f) // cone(f)1 // ...
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is equal to

... //

!!

X0
−d0X //

f0

!!

X1
−d1X //

f1

!!

X2 //

  

...

⊕ ⊕ ⊕

... // Y −1
d−1
Y // Y 0

d0Y // Y 1 // ...

.

It is easy to see that d ◦ d = 0 in cone(f). With complexes defined, one of the ways

to describe a module M is to use projectives to approximate it.

Definition 1.52. Let M be an A-module. A projective resolution of M is a complex

PM = · · · → P 2 → P 1 → P 0 → 0

where P i is in degree −i for i ≥ 0, and

Hn(PM )∼=


M if n = 0

0 otherwise.

The following definition is inspired from topology.

Definition 1.53. Two chain maps f, g : X → Y are chain homotopic if there exists a

collection of degree -1 maps hi : Xi → Y i−1 such that f − g = dh+ hd. Or specifically

on each degree,

f i − gi = di−1
Y hi + hi+1diX .

Two complexes X,Y are homotopy equivalent if there exist chain maps f ′ : X → Y

and g′ : Y → X such that f ′g′ is chain homotopic to the identity chain map idY of Y

(i.e. Identity map on every term Y i.) and g′f ′ is chain homotopic to the identity chain

map idX of X.

Definition 1.54. Let C be an abelian category. Its homotopy category, denoted by

K(C ), has

Objects: Chain complexes with objects in C .

Morphisms: Chain maps modulo all chain homotopies.

The set of morphisms from object X to Y in homotopy category is denoted by HomK(C )(X,Y ).

Two complexes that are homotopy equivalent are isomorphic objects in the homo-

topy category, but this equivalence is not quite enough for our purpose. In particular,
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we want a module being ‘isomorphic’ with its projective resolution. In that case the

complexes are quasi-isomorphic: They have the same homology and there exist maps

that induce isomorphisms in homology from one to the other, but there does not nec-

essarily exist such a map in the other direction, thus failed to be homotopic equivalent.

Definition 1.55. Let X and Y be two complexes of an abelian category C . X and Y

are said to be quasi-isomorphic if there exists a chain map f : X → Y which induces

an isomorphism on their homologies. That is, for all n,

fn : Hn(X)→ Hn(Y )

is an isomorphism. Such a map f is called a quasi-isomorphism.

Example 1.56. A module M , regarded as a complex concentrated at degree zero, and

a projective resolution of M are quasi-isomorphic. Two complexes that are homotopy

equivalent are quasi-isomorphic.

Now we can define the derived category using quasi-isomorphisms.

Definition 1.57. Let C be an abelian category. Its derived category, denoted by D(C ),

has

Objects: Chain complexes with objects in C .

Morphisms: Chain maps modulo all chain homotopies (as in homotopy category), added

with formal inverses for all quasi-isomorphisms. The set of morphisms from object X

to Y in derived category is denoted as HomD(C )(X,Y ).

Note that adding the inverse for quasi-isomorphism means there are some non-

obvious maps between complexes. For example let f : X → Y be a quasi-isomorphism

and let g : X → Z be another chain map. Then HomD(C )(Y, Z) contains the composi-

tion g ◦ f−1 : Y → Z.

X

Y Z

X

Y Z

Definition 1.58. Consider a complex X.

1. X is right bounded if Xn = 0 for n >> 0.

2. X is left bounded if Xn = 0 for n << 0.
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3. X is bounded if it is both left and right bounded.

We define K+(C ), K−(C ), Kb(C ), D+(C ), D−(C ), Db(C ) by restricting the set of

objects respectively in their respective categories.

Remark. Some authors define these categories by correspondingly bounded homologies.

For example Db(C ) is defined by complexes in C with non-zero homology in finitely

many degrees. These definitions lead to categories equivalent to the one we have defined

here.

The original abelian category C can be embedded into K(C ) and D(C ) by regarding

an object in C as a complex concentrated in degree 0.

Now similar to the last section, we define derived equivalence. In the case of self-

injective algebras, the equivalence of derived category and bounded derived category is

essentially the same. For simplicity we consider bounded derived category.

Definition 1.59. Let A and B be two algebras. If Db(A -mod) is equivalent to Db(B -mod)

as triangulated categories (see section 1.3.4) then we say that A and B are derived

equivalent.

Notation. When A is an algebra we use the shorthand D(A) for D(A -mod), similarly

for homotopy category K(A) and all their bounded versions.

The following generalisation of Morita theory and tilting theory are due to J. Rickard

[Rickard89], which describes the condition for two algebras to be derived equivalent.

Definition 1.60. A complex T is a one-sided tilting complex of an algebra A if it

satisfies

1. T is a bounded complex with T i being a finitely generated projective A-module for

all i;

2. HomDb(A)(T, T [i]) = 0 for all i 6= 0;

3. The direct summands of T generate Kb(A -proj), the chain homotopy category of

projective A-modules, as a triangulated category (see 1.3.4).

Definition 1.61. A complex X is a two-sided tilting complex of A-bimodule-B if

1. X is bounded.

2. When regarded as complex of left A-module, every term of X is finitely generated

projective, and B∼= EndDb(A)(X) as an algebra via the natural map.
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3. When regarded as complex of right module-B, every term of X is finitely generated

projective, and A∼= EndDb(B)(X) as an algebra.

4. There exist a complex Y of B-bimodule-A such that

X ⊗B Y ∼=A⊕ V

for A as a A-bimodule-A complex concentrated at degree 0 and V a contractible

complex. Similarly for

Y ⊗AX ∼=B ⊕W.

Theorem 1.62. The following are equivalent

1. A and B are derived equivalent.

2. B∼= EndDb(A)(T ), the endomorphism ring of a one-sided tilting complex T of A-

modules.

3. A∼= EndDb(B)(T
′), the endomorphism ring of a one-sided tilting complex T ′ of

B-modules.

4. There exists a two-sided tilting complex X of A-bimodule-B.

Further from the last condition, X ⊗B − : Db(B)→ Db(A) is an equivalence.

1.3.4 Triangulated category

Both the stable module category and the derived category we have introduced are

examples of triangulated categories. The distinguished triangles in these category is

playing a role like short exact sequences from their related abelian category, and their

structure mimics those of long exact sequences.

Definition 1.63. A triangulated category is an additive category C with

1. A translation functor Σ : C → C which is an autoequivalence.

2. A class of distinguished triangles: each of these consists of 3 objects X, Y , Z

and morphisms u : X → Y , v : Y → Z, w : Z → ΣX. Written as

X
u−→ Y

v−→ Z
w−→ ΣX

or simplified as

X → Y → Z  ,
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such that the following axioms are satisfied.

(a) For any object X there is a distinguished triangle

X
id−→ X → 0 .

(b) For any morphism u : X → Y there is an object Z = cone(u), a mapping

cone of u that forms a distinguished triangle

X
u−→ Y → Z  .

(c) Any triangle isomorphic to a distinguished triangle is distinguished.

(d) Given two distinguished triangles

X
u−→ Y

v−→ Z
w−→ ΣX; X ′

u′−→ Y ′
v′−→ Z ′

w′−→ ΣX ′

and maps f : X → X ′ and g : Y → Y ′ such that gu = u′f . There exists a

map h : Z → Z ′ such that all squares in the following diagram commute.

X
u //

f
��

Y
v //

g

��

Z
w //

h
��

ΣX

f [1]
��

X ′
u′ // Y ′

v′ // Z ′
w′ // X ′[1]

(e) If

X
u−→ Y

v−→ Z
w−→ ΣX

is a distinguished triangle, then the rotated triangles

Y
v−→ Z

w−→ ΣX
−Σu−−−→ ΣY ;

Σ−1Z
−Σ−1w−−−−−→ X

u−→ Y
v−→ Z

are distinguished triangles.

(f) (Octahedral axiom) Let u : X → Y and v : Y → Z be morphisms and vu :

X → Z the composition of u and v. Denote by Z ′ = cone(u), Y ′ = cone(vu)

and X ′ = cone(v) as in (b). (These are well-defined by (d) and five-lemma).
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Then there exists maps f : Z ′ → Y ′ and g : Y ′ → X ′ such that

→ Z ′ → Y ′ → X ′  

is a distinguished triangle. Furthermore, all triangles and squares formed by

f , g commutes.

The last axiom is called octahedral axiom because it is best depicted using an

octahedron:

Z ′

X ′

Y ′

Z

X

Y

f

g

u

v

vu

[1]

[1]

[1]

[1]

The axiom is equivalently saying that given u and v on the left (and hence all compo-

sitions and distinguished triangles) there exists f and g on the right to complete the

octahedron, such that all squares and triangles either commute or are distinguished

(determined by direction of arrows).

Example 1.64. The stable module category of a self-injective algebra A is a trian-

gulated category. The translation functor Σ is the inverse of Heller functor Ω−1 and

pushout of A-module map X
f−→ Y :

0 // X //

f

��

I(X) //

��

Ω−1X // 0

0 // Y // Z // Ω−1X // 0

generates standard triangles

X
f−→ Y → Z → ΣX  .

All distinguished triangles in A -mod can be generated by this way up to isomorphism
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of triangles.

A derived category is also triangulated. The translation functor can be taken as

the left shift [1] of complexes and distinguished triangles are obtained using the cone

construction: for X
f−→ Y , cone(f) completes the triangle

X
f−→ Y

inj−−→ cone(f)
proj−−→ X[1]

and all distinguished triangles arise in this way up to isomorphism of triangles.

Definition 1.65. A set of objects S generates a triangulated category, if every object

in the triangulated category can be represented /constructed as iterated cones of maps

and translations by objects in S .

Example 1.66. The set of simple A-modules generates both A -mod and Db(A) as

triangulated categories. This can be seen by the fact that for a short exact sequence

0→ K → L→M → 0, the object L can be generated by the cone of the map Σ−1M →

K. For Db(A), each A-module of a certain degree can be generated by the above, shifted

to the correct degree using translations and connected using cones of maps.

Definition 1.67. A triangulated functor from (triangulated) category D to (triangu-

lated category) D ′ is an additive functor such that it commutes with translation and

preserves distinguished triangles. That is (for a covariant functor), a distinguished

triangle in D :

X
u−→ Y

v−→ Z
w−→ ΣDX

becomes

F (X)
F (u)−−−→ F (Y )

F (v)−−−→ F (Z)
F (w)−−−→ ΣD ′F (X)

a triangle in D ′.

One way to construct triangulated functors is to consider the quotient category of a

triangulated category which respects its triangulation. First we define the correct kind

of triangulated subcategories such that a quotient can be formed.

Definition 1.68. A thick (triangulated) subcategory S of a triangulated category D

is a full subcategory consisting of subsets of objects and morphisms of D , such that

1. It is closed under translation Σ.

2. If two objects of S belong to a distinguished triangle of D so is the third object

belongs to S .
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3. It is closed under direct summands, that is if X ⊕ Y is in S then both X and Y

are in S .

If S is a thick subcategory, then one can form a category D /S , called the Verdier

quotient. Just as one might expect all objects in the thick subcategory are zero in the

quotient.

Example 1.69. Passing from K(A) to D(A), where A is an algebra, is a Verdier

quotient by the thick subcategory of acyclic complexes in K(A).

Definition 1.70. An object (an complex) of Db(A) is perfect if it is quasi-isomorphic

to a bounded complex of projective modules. The full subcategory of Db(A) whose ob-

jects are perfect complexes is denoted by Dpc(A). It can be checked using properties of

projective A-modules that Dpc(A) is a thick subcategory.

Theorem 1.71 (Rickard’s theorem). Let A be a self-injective algebra. The quotient

category Db(A)/Dpc(A) is equivalent naturally to A -mod as a triangulated category.

That is, there exists an equivalence A -Mod → Db(A)/Dpc(A) the following square

commutes:

A -mod �
� //

��

Db(A)

��
A -mod oo

∼ // Db(A)/Dpc(A)

Using this, every derived equivalence F : Db(B)→ Db(A) between two self-injective

algebras induces a stable equivalence F : B -mod → A -mod. In particular F is of

Morita type if F is induced by a two-sided tilting complex.

For a triangulated category we can construct its Grothendieck group as follows.

Definition 1.72. Let C be a triangulated category. The Grothendieck group of C ,

denoted by K(C ), is the abelian group generated freely by every object in C modulo the

following relation: If objects A,B,C in C form a distinguished triangle

A→ B → C  ,

then we have the relation [A] + [C]− [B] = 0 in K(C ), where [A] is the group element

generated by [A].

When C is the derived category of A-modules, its Grothendieck group K(C ) is

freely generated by the set of isoclasses of simple A-modules, regarded as complexes
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concentrated in degree 0. A derived autoequivalence of C always yield a group au-

tomorphism on K(C ). When C is the stable module cateogry of a self-injective alge-

bra A, its Grothendieck group K(A -mod) can be regard as a further quotient of the

Grothendieck group of its derived category, K(Db(A)), by the relation indicating the

simple constituents, counted with multiplicity of a projective A-module add up to zero.

For group algebra, this makes the Grothendieck group of the associated stable module

category a finite group by the fact that Cartan matrix is of full rank. See Chapter 5

for example.

1.3.5 Perverse equivalence

Perverse equivalence is a type of derived equivalence that can be constructed by

some combinatorial data. It has its origins from algebraic geometry - the construction

of perverse sheaves. This tool is very recently developed to facilitate the description of

some derived equivalences. However, it does not cover all types of derived equivalences,

and composition of perverse equivalences might fail to be perverse. It is an open

question whether any derived equivalence is a composition of perverse equivalences.

Although it has a broad application to various type of categories, we shall only define

the perverse equivalences for derived categories of abelian categories to simplify things

and allow us bypass some technicalities (such as t-structures and hearts). Then we shall

give some examples to explain perverse equivalences for module categories of symmetric

algebras. We start by the notion of Serre subcategory of an abelian category:

Definition 1.73. Let C be an abelian category and D be a full subcategory. D is a

Serre subcategory if given any exact sequence 0 → K → L → M → 0 in C , L ∈ D if

and only if K,M ∈ D . Denote by Db
D(C ) the full subcategory of Db(C ) of objects with

cohomology in D .

Remark. It is easy to check (using definition 1.68) that Db
D(C ) is a thick subcategory

of C .

This is the right notion for quotient categories of abelian categories:

Definition 1.74. Let C be an abelian category, let D be a Serre subcategory of C , then

we can define quotient category C /D such that the objects of C /D are those of C and

the morphisms is the direct limit:

HomC /D(X,Y ) = lim HomC (X ′, Y/Y ′) (1.1)
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for subobjects X ′ ⊂ X and Y ′ ⊂ Y such that X/X ′, Y ′ ∈ D . The quotient category

constructed above is an abelian category.

Let C and C ′ be two abelian categories. Consider two filtrations

0 = C−1 ⊂ C 0 ⊂ · · · ⊂ C r = C and 0 = C ′−1 ⊂ C ′0 ⊂ · · · ⊂ C ′r = C ′

of Serre subcategories and a function π : {0, ..., r} → Z.

Definition 1.75. An equivalence F : Db(C )→ Db(C ′) is perverse relative to (C •,C
′
•, π)

if the following holds:

• F restricts to equivalences Db
C i

(C )→ Db
C ′i

(C ′).

• F [−π(i)] induces equivalences C i /C i−1 → C ′i /C ′i−1.

That is, with the natural embedding from C i /C i−1 to Db
C i

(C )/Db
C i−1(C ) we have

Db
C i

(C )/Db
C i−1(C )

F // Db
C i

(C )/Db
C i−1(C )

C i /C i−1

?�

OO

F [−π(i)] // C ′i /C ′i−1

?�

OO

(c.f. [Chuang, Rouquier13, Definition 2.53]).

Given an equivalence F perverse relative to (C •,C
′
•, π), the filtration C ′• is deter-

mined by C • and F via C ′i = C ′ ∩F (Db
C i

(C )).

Proposition 1.76. Let F : Db(C )→ Db(C ′) be perverse relative to (C •,C
′
•, π).

1. (reversibility) F−1 is perverse relative to (C ′•,C •,−π).

2. (composability) Let F ′ : Db(C ′) → Db(C ′′) be perverse relative to (C ′•,C
′′
•, π
′),

then F ′ ◦ F is perverse relative to (C •,C
′′
•, π + π′).

3. (refineability) Let C̃ • = (0 = C̃−1 ⊂ · · · ⊂ C̃ r̃) be a refinement of C •. Define the

weakly increasing map f : {0, . . . , r̃} → {0, . . . , r} such that C̃ • collapses to C •

under f (i.e. C f(i)−1 ⊂ C̃ i ⊂ C f(i)). Then F is perverse relative to (C̃ •, π ◦ f).

4. If π = 0 then F restricts to an equivalence C → C ′.

5. The information (C •, π) determine C ′ up to equivalence.

Notation. From 5, since (C •, π) determine C ′ we might sometimes simplify and say

a perverse equivalence F is perverse relative to (C •, π)
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Proof The first three can be read off directly from the definition. The fourth

involves t-structures and hearts so we omit the proof here (see [Chuang, Rouquier13]

for a proof). For the fifth, consider two maps with such information, composing one

with the inverse of the other (made possible by 1 and 2) to obtain the result (by 4).

When every object in an abelian category C has finite composition series, each

object can be broken down to a collection of simple objects components via short ex-

act sequences. Then, by definition, a Serre subcategory is generated by the collection

of all simple objects inside it. Thus we can use filtration of simple objects to re-

place the filtration of Serre subcategories, making the description more concrete. (c.f.

[Chuang, Rouquier13, 2.2.6])

Definition 1.77. Let C and D be abelian categories with finite composition series.

Let S be the set of non-isomorphic simple objects in C . We say that an equivalence

F : Db(C )
∼−→ Db(D) is perverse relative to (S•, π) when it is perverse relative to

(C •, π) where S• is a filtration of isomorphism class of simple objects defined by C •.

Lemma 1.78. Let C , D be abelian categories with finite composition series,

S• = (∅ = S−1 ⊂ S0 ⊂ · · · ⊂ Sr = S) and T• = (∅ = T−1 ⊂ T0 ⊂ · · · ⊂ Tr = T)

be filtrations of isomorphism class of simple objects on C and D respectively. Let

p : {0, . . . , r} → Z be a function. An equivalence F : Db(C )
∼−→ Db(D) is perverse

relative to (S•,T•, p) if for every i the following holds.

• Given M ∈ Si − Si−1, the composition factors of Hr(F (M)) are in Ti−1 for r 6=

−p(i) and there is a filtration L1 ⊂ L2 ⊂ H−p(i)(I(M)) such that the composition

factors of L1 and of H−p(i)(F (M))/L2 are in Ti−1 and that of L2/L1 are in

Ti−Ti−1.

• The map M → L2/L1 induces a bijection Si − Si−1
∼−→ Ti−Ti−1, hence there is

a bijection βF : S→ T.

For proof see [Chuang, Rouquier13, 2.64].

We put forward an important example of perverse equivalence of symmetric alge-

bras. First we have to define:

Definition 1.79. Let S′ ⊂ S. Given M ∈ A -mod, φM : PM → M a projective cover.

Denote by MS′ the largest quotient of PM by a submodule of kerφM such that all
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composition factors of the kernel of the induced map MS′ →M are in S′. Similarly for

M → IM be the injective hull. Denote by MS′ the largest submodule of IM containing

M such that all composition factors of MS′/M are in S′.

In this (very important) example, we first define a one-sided tilting complex, then we

concern how the simple modules are being corresponded, Since the Serre subcategories

are defined by subsets of simple objects as generators.

Example 1.80. Let A be a symmetric algebra. Let S be a simple A-module, PS be

the projective cover of S. Take S′ to be a subset of isomorphism classes of simple A-

modules, We define XS, a chain complex of projective A-modules depending on S′ as

follows.

1. If S ∈ S′, we define

XS = (QS
α−→ PS → 0)

where α is a presentation of SS′, QS is in degree 0. Note that this forces all

composition factors of head(QS) not belong to S′.

2. For S /∈ S′,

XS = (PS → 0),

where PS is in degree 0.

Now consider

XI :=
⊕
S∈S′

XS .

It is easy to check this is a one-sided tilting complex (c.f. 1.60). Using 1.62, setting

B = EndDb(A)(XI) we have a functor

F : Db(A)
∼−→ Db(B)

inducing such equivalence. Denote by T the set of simple B-modules. We have a

bijection between S and T and have S′ correspond to T′, a subset of T. with F (XS) =

PT , the projective cover of T as B-modules.

Note that F (XI) = B, consider Hom(XI , S) for all S ∈ S we have

F (S) =


T [−1] if S ∈ S′

TT
′

otherwise

and F−1(T ) =


S[1] if T ∈ T′

SS′ otherwise.
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Since the set of non-isomorphic simple modules generates the derived category as tri-

angulated category and subsets of simple modules generate Serre subcategories, this

correspondence of (simple stalk) complexes has equivalently defined the tilting by XI .

Remark. This example characterises elementary perverse equivalences for symmetric

algebras. F is perverse relative to (0 ⊂ S′ ⊂ S, 0 ⊂ T′ ⊂ T, ε : {0 → 1; 1 → 0}). See

[Chuang, Rouquier13, 2.71] (shifted by 1 globally on perversity function).
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Chapter 2

Representation theory of our

groups

2.1 Introduction and Notation

In this chapter we lay down the detailed information of special linear group of

finite fields of degree 2 and its block structure. From the viewpoint of local-global

correspondent we refer it as the ’global’ case. Except one semisimple block in SL2(q)

modules, we have only one conjugacy class of defect group (Sylow p-subgroup) for

other blocks. Using Brauer correspondent we can instead study the representation of

the normaliser of Sylow p-subgroup, refer as ’local’ modules. This information on global

and local modules will be needed in constructing our derived equivalence. Although it

styled as a autoequivalence of derived category globally, the proof nevertheless waded

into the local group. In particular, we need the extensive use of a tensor functor by a

local simple module, which we will define later.

Now recall p is a prime number, n ≥ 1 is a natural number and q = pn. Let Fq

be the field of q elements (which is unique up to isomorphism). Particularly when we

say Frobenius automorphism we mean the map σ : Fq → Fq sends an element x to

xp. F = Fq be the algebraic closure of Fq (with characteristic p). Let G = SL2(q) be

the special linear group of finite field of q elements in degree 2. It is the collection of

matrices of the form

a b

c d

 with a, b, c, d ∈ Fq and ad − bc = 1. Group operation

is matrix multiplication. Let P be the set of the unipotent upper triangular matrices1 ∗

0 1

. It forms a p-subgroup of G since its order is pn. Furthermore it is a Sylow

p-subgroup since G has order (q + 1)q(q − 1). Note that P is an abelian group.
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Let H = NG(P ) be the normaliser of P in G. It is the subgroup of upper triangular

matrices of the form

d−1 ∗

0 d

 in G, with d 6= 0.

Base-p numbers are very useful in labelling the related modules. For the rest of the

chapter we will conveniently use the base-p presentation of integers (just like using 12

as 10+2 in base-10 setting) as defined below:

Definition 2.1. For any integer a, 0 ≤ a ≤ q − 1, define a0, a1, ..., an−1 to be n − 1

integers between 0 and p− 1 inclusive such that

a =
n−1∑
i=0

piai

is the base-p expression of a. On the other hand, an n-tuple of base-p digits (a0, a1, ..., an−1)

uniquely determine an integer a between 0 and q − 1.

2.2 Representations of G and H

We start by describing the simple FG-modules. Let V be the natural two dimen-

sional representation of FG . More precisely for a vector

x
y

 of V , the action ofa b

c d

 of G is given by left multiplication.

a b

c d

x
y

 =

ax+ by

cx+ dy

 .

Denote by V i the ith symmetric power of V . (Note it is NOT the tensor product of i

copies of V .) Frobenius automorphism σ acts on G by sending

a b

c d

 to

ap bp

cp dp

.

Define the jth Frobenius twist on V i, σj(V i) to be the G-module whose underlying

space is V i but for g ∈ G, the action is defined as g(v′) = σj(g)(v) for all v.

Steinberg tensor product theorem describes all the simple modules of SL2(q).

Definition 2.2. For 0 ≤ a ≤ q − 1 define

Sa =
n−1⊗
i=0

σi(V ai). (2.1)

Theorem 2.3. Sa are simple for 0 ≤ a ≤ q − 1, mutually non-isomorphic. They form
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a complete set of mutually non-isomorphic simple FG-modules.

Furthermore, Sq−1 is (simple and) projective. In block theory of SL2(q), the Stein-

berg block is the block of defect zero containing Sq−1. The block itself is not very much

of our concern since its Brauer correspondent is itself. However, we will use the fact

that Sq−1 is projective in some (strange) manner later.

For p = 2, all the remaining simple modules fall into one full defect block, the

principal block B0. For odd primes they fall into two distinct full defect blocks. The

principal block, B0, has all evenly numbered simple modules S0, S2,..., Sq−2 and the

non-principal block B1 consists of all oddly numbered simple modules S1, S3,..., Sq−2.

To unify the description disregarding parity of primes,

Definition 2.4. The direct sum of the full defect blocks of FG is denoted B. Denote

the complete set of non-isomorphic simple B-modules by

S = {Sa | 0 ≤ a ≤ q − 2}

Remark. B is the algebra such that FG = St⊕B, where St is the Steinberg block.

The Sylow p-subgroup of G has trivial intersection [Alperin11], so the restriction

functor from FG-modules to FH -modules induces a stable equivalence between blocks

and their Brauer correspondents. Utilising this we define:

Definition 2.5. For an integer a, 0 ≤ a ≤ q − 1, denote Ma the FH -module Sa↓H

given by restricting the corresponding simple FG-module.

Now we discuss the representation theory of group H, all of whose block(s) is(are)

the local Brauer correspondent(s) of the full defect block(s) of FG . H as a group is

Cnp o Cq−1. It is quite easy to obtain its simple modules - they are all 1-dimensional.

Let α be a generator of Fq. Define Ui to be the 1-dimensional FH -module on whichα−1 ∗

0 α

 acts on Ui by multiplying every vector by αi. It is obvious that Ui is

isomorphic to Uj if and only if i ≡ j (mod q − 1). Every simple FH -module arises in

this way.

Remark. Most literature (except Holloway in the list of referenced authors) define the

simple FH -modules Ui by having the matrix

α−1 ∗

0 α

 acts on Ui by multiplying α−i

instead. In other words the conventional Ui defined in other literature will be our U−i

instead. We use Holloway’s convention to avoid many negative signs, for example, in

the tables in the Appendix.
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The Frobenius automorphism of G restricts to an automorphism to H. So it twists

also FH -modules. Simple calculation shows that σ(Ui)∼=Upi.

The block structure of FH is similar to B. Concretely, for p = 2, the whole group

algebra FH forms a single block. For odd primes, FH decomposes into two blocks,

the principal block containing evenly numbered simple modules U0, U2,..., Uq−3 and

non-principal block containing oddly numbered simple modules U1, U3,..., Uq−2.

Consider Ui⊗− as a functor from FH -mod to itself. Since Ui is one-dimensional,

the following conclusion can be easily checked:

1. Ui⊗Uj ∼=Ui+j ;

2. Ui⊗− induces a Morita self-equivalence with inverse functor U−i⊗−;

3. The endo-functor on FH -mod induced by Ui⊗− is exact.

Notation. We omit the tensor product symbol from Ui⊗F− for convenience. For the

rest of this paper we almost always treat Ui as a functor.

Recall that G has ‘trivial intersection’ Sylow p-subgroups and H ∼=NG(P ). So using

the Green correspondence 1.24 we have the following,

Lemma 2.6. Let M and N be FG-modules. Then

HomFG(M,N)∼= HomFH (M↓H , N↓H).

Hence, FG -mod, B -mod and FH -mod are stably equivalent. This equivalence,

since given by induction and restriction functors, is of Morita type.

The ultimate aim is to explore extensions in FG -mod. A natural choice is to look

at distinguished triangles in Db(FG). However, it turns out to be extremely difficult.

In fact, the piece of information in question is too cryptic in FG -mod. Luckily in

FH -mod, we have the nice series of functors Ui⊗− to aid calculations which is enough

for our job. In order to do so we consider the restriction of simple FG-modules to

FH -modules. Using Steinberg tensor product theorem (c.f. 2.1) and the fact that the

restriction of V i is a uniserial FH -module with 1-dimension components for 0 ≤ i ≤ n−1

(see Chapter 5 of [Holloway01] for its proof), it is not hard to obtain the structure of

these restrictions. They are indecomposable modules with a ’hypercuboid shape’, see

Appendix for details.

The remaining sections in this chapter consists of the needed work of tailoring the

intrinsic structure of the related categories into useful lemmas and corollaries. These
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calculation of possible extensions for all possible cases are highly combinatorial, but

these cases can be simplified into two lemmas, with the extensions represented by

certain distinguished triangles in FH -mod.

2.3 Triangles in the stable module categories of blocks

In this section, we fix n to be greater than 1. All tensor products are over F unless

otherwise stated.

Definition 2.7. Consider the ith digit of the base-p presentation ai with 0 ≤ ai ≤ p−2.

1. Define a′i to be p− 2− ai;

2. For an integer a with 0 ≤ ai ≤ p− 2 for some i,

• define a(i′) = (a0, ..., ai−1, a
′
i, ai+1, ..., an−1) to be the number acquired by

replacing the digit ai by a′i.

• a(i) = (a0, ..., ai−1, p− 1, ai+1, ..., an−1) be the number acquired by replacing

the digit ai by p− 1.

Remark. Note that a′′i = ai. Using this we will define a pairing (later) between integers

0 ≤ a ≤ q − 2 which we will often use later.

We are going to build up some lemmas, culminating to a general description of

certain distinguished triangles of FH -mod for further calculation.

Lemma 2.8. Let i be an integer with 0 ≤ i ≤ n− 1. Let l be any integer and t be an

integer with 0 ≤ t ≤ p − 2. Let j = l − pi(p + 1 + t) and j̆ = l − pi(p − 1 − t). Then

any non-zero FH -homomorphism from UjV
p−1 to Uj̆V

p−1 has a cokernel isomorphic

to UlV
t
i .

Proof See Lemma 4 of [Chuang01] (further referenced to Lemma 2.1 and 2.2 of

[Carlson83]). Note the proof from [Chuang01] can be directly adapted for arbitrary i.

Also note Ui in [Chuang01] becomes U−i here.

Lemma 2.9. We have non-split short exact sequences of the following FH -modules:

0→ U−pi+1V
b′i
i → U−pi(p−1−bi)V

p−1
i → V bi

i → 0

0→ U−pi+1Mb(i′) → U−pi(p−1−bi)Mb(i) →Mb → 0. (2.2)
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Recall that Ma is the restriction of Sa from G-modules to H-modules.

Proof The two short exact sequences can be obtained similarly to the proof of

Lemma 6 of [Chuang01]: Using the previous lemma we have an exact sequence

UjV
p−1
i → Uj̆V

p−1
i → Upi(p−1−bi)V

p−1
i → V bi

i → 0

where j = −pi(p − 1 − bi + 2p) and j̆ = −pi(p + 1 + bi). Using the previous lemma,

the first homomorphism has a cokernel isomorphic to U−pi+1V b′i which gives the first

sequence. The second sequence is obtained by tensoring the first sequence at each term

with V b0
0 , ..., V

bn−1

n−1 except V bi
i . Then using (2.1) and restriction to see this is the desired

result.

Lemma 2.10. Let bi be an integer with 0 ≤ bi ≤ p − 2 with 0 ≤ i ≤ n − 1. Then we

have the following triangle in FH -mod:

Upi(1+b′i)
ΩMb(i) → Upi+1ΩMb(i′) →Mb  (2.3)

Proof The short exact sequence (2.2) in FH -mod induces a triangle

U−pi+1Mb(i′) → U−pi(p−1−bi)Mb(i) →Mb  

in FH -mod. To obtain the stated triangle from the short exact sequence, we take it as

a triangle in the stable module category and perform the following steps:

1. Tensor throughout the triangle obtained by Upi+1 ,

2. Relabel bi by b′i (and vice versa).

3. Rotate the triangle (c.f. definition 1.63(c)) two places to the left. (Put the

rightmost term to the leftmost and shift by Σ−1. In stable FH -module category

Σ−1 is represented by applying Ω; perform this twice.).

Remark. This triangle does lie in a particular block of FH , depending on the parity of

b. When Mb(i) is the Steinberg module (i.e. b(i) = q − 1), we regard that module as

zero module. That is partly justified by the fact the Steinberg module restricts to a

projective module.
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Indecomposable FH -modules Ma with a = (a0, ..., an−1) and all but one ai equal

to p− 1 have periodic Heller translates. Furthermore, every such Heller translates are

isomorphic to UiMb for some suitable i and b. More precisely:

Lemma 2.11. Fix i to be an integer with 0 ≤ i ≤ n−1. Let bi be integers such that 0 ≤

bi ≤ p−2. m is an integer. Then


ΩmM(p−1,...,bi,...,p−1)

∼=U−mpi+1M(p−1,...,b′i,...,p−1) if m is odd.

ΩmM(p−1,...,bi,...,p−1)
∼=U−mpi+1M(p−1,...,bi,...,p−1) if m is even.

Proof We only need to prove ΩM(p−1,...,bi,...,p−1) = U−pi+1M(p−1,...,b′i,...,p−1), since

both cases are only the mth iteration of it. Using (2.2) with all digits as p − 1 except

bi we have

0→ U−pi+1M(p−1,...,b′i,...,p−1) → U−pi(p−1−bi)Mpn−1 →M(p−1,...,bi,...,p−1) → 0.

Since the middle term is projective it is regarded as zero in stable module category.

Hence the first term is isomorphic to the Heller translate of the last term by the axioms,

which is exactly the desired equation.

Remark. The highlight in the preceding lemma is the −mpi+1 subscript of U regardless

of whether subscript of M has bi or b′i as its ith digit.

2.4 Extension lemmas

We have to determine the possible extension of some FG-modules. This is for us to

work through perverse equivalence later. To achieve this, we transfer FG-modules to

FH -modules using the restriction functor. Since

Ext1
FG(M,N) = HomFG(ΩM,N) = HomFH (ΩM↓H , N↓H),

to find out the necessary extension needed in our construction later we introduce two

lemmas. First, we follow the route in [Chuang01] and utilise Carlson’s calculations on

Ext groups of simple FG-modules [Carlson83], then we adapt the result to FH -mod

using the restriction functor and generalises it. We end up with a refinement similar to

the one in [Chuang01, lemma 6]. Second, we need another piece of information which

turns out to be a direct calculation of stable homomorphism group (Hom) of some

modules, which generalises a lemma from Holloway [Holloway01].

Lemma 2.12. For 0 ≤ i ≤ n − 1, suppose bi, ci ranges from 0 to p − 1 and j, j̆ are
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integers. Then the dimension of

Ext1
FH (UjMb, Uj̆Mc)∼= HomFH (ΩUjMb, Uj̆Mc)

is determined by the number of n-tuples (l, k0, ..., kn−1) of integers satisfying:

bl, cl ≤ p− 2,

j − j̆ +
n−1∑
i=0
i 6=l

pi(bi − ci + 2ki) + pl(−bl − cl + 2kl − 2) ≡ 0 (mod pn − 1) (2.4)

with also

max{0, ci − bi} ≤ ki ≤ ci

for i 6= l and

max{0, bl + cl + 2− p} ≤ kl ≤ min{bl, cl}.

Proof The proof is similar to the proof in [Chuang01]. Consider the summation

n−1∑
i=0
i 6=l

pi(bi − ci + 2ki) + pl(−bl − cl + 2kl − 2) ≡ 0 (mod pn − 1). (2.5)

Adapt Carlson’s theorem [Carlson83, Theorem 4.1] in Ext groups of simple FG-modules.

Fixing r = 1, it splits into two cases.

1. When p is odd, condition (1) forces ei = 0 and fi = 0 except for one fi, record

this subscript as l. Condition (3) gives the first constraint, and the condition 2.4

is a simplified version after substitution.

2. When p = 2, fixing r = 1 forces all but one ei to be 0, again we record that

subscript l, this forces bl = cl = 0. The requirements on ki in our version is

a precise replacement of (3’) in [Carlson83]. Then, in order to see the last two

equations here agree with the original, note we factored the first term −2(2l)

(since el = 1) into the summand to yield the −2 in pl term. With the fact that

bl = 0, the terms inside bracket of pl are indeed equal.

Finally, the j − j̆ term in (2.4) is introduced using a spectral sequence argument as in

[Chuang01], and our proof is complete.

Lemma 2.13. The dimension of the stable morphism group HomFH (UjMb, Uj̆Mc) is

equal to the number of n-tuples (k0, ..., kn−1) of integers satisfying:
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1. max{0, ci − bi} ≤ ki ≤ ci for all i.

2. There exists an integer l such that kl < b′l.

3.

j − j̆ +
n−1∑
i=0

pi(bi − ci + 2ki) ≡ 0 (mod pn − 1) (2.6)

Proof Considering the restriction of FG-simple modules are of a special class of

FH -modules with the shape of hypercuboids. The FH -modules Mb has irreducible top

Ub and the length of its sides (1 + b0, 1 + b1, ..., 1 + bn−1). All components within the

cuboid is decided by its position (c.f. [Holloway01, pg.35]). Now consider HomB(UjMb, Uj̆Mc),

it has become a consideration of the head of UjMb’s position in Uj̆Mc. A two-dimensional

illustration (cuboid becomes rectangle) is shown here [Holloway01, figure 5.2]:

s

t

1 + c0 1 + c1

k1
k0

UjMb

Uj̆Mc

p− 1

where s = j̆ + c and t = j + b.

Condition (1) restricts the position of the modules such that UjMb contains the

socle of Uj̆Mc. Condition (2) rules out the possibility of such a map factoring through

the injective hull of UjMb. Shown by dashed line in the figure, if the injective hull,

which is known to have size (p − 1, ..., p − 1), covered Uj̆Mc, the map factors through

projectives (=injectives) hence quotiented out of Hom(UjMb, Uj̆Mc). Lastly condition

(3) locate the head of UjMb in the component of Uj̆Mc.

Remark. The proof is a generalisation of [Holloway01, Theorem 5.2.1 (2)].

These two lemmas build up arithmetic constraints for a certain type of extension.

Now we would tailor the lemmas into two of particular situation. But first we have

to decode the modulo equations (2.4) and (2.6) in both of the lemmas. Temporarily

ignore the term j − j̆ in (2.4) and (2.6) and regard p as an indeterminate. We define

the pi-digit to be the coefficient with the term pi. The following two inequalities aim

at looking at these pi-digits.
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Lemma 2.14. With bi, ci, ki, l, p as defined and restricted under lemma 2.12 and

lemma 2.13, we have

0 ≤ |bi − ci| ≤ bi − ci + 2ki ≤ bi + ci ≤ 2p− 2 (2.7)

−p ≤ −bl − cl + 2kl − 2 ≤ −2. (2.8)

Proof This statement is a technicality mentioned but not shown explicitly in

[Carlson83, Theorem 4.1]. Without loss of generality assume bi ≥ ci. For the inequality

signs in (2.7), the first sign is obvious, second sign because 0 ≤ ki, third sign because

ki ≤ ci and fourth as bi, ci ≤ p− 1. We turn to (2.8) and the maximum value is

−bl − cl + 2cl − 2 = cl − bl − 2 ≤ −2.

Considering the minimum value of (2.8), we split into two cases:

1. When bl + cl ≤ p− 2 we have −bl − cl − 2 ≥ −p

2. When bl+cl > p−2 we have −bl−cl+2(bl+cl+2−p)−2 = bl+cl+2−2p ≥ −p.

Combining all the arguments gives the two inequalities.

In the next part we will be defining some new symbols and terms that are needed

to express clearly the upcoming results. These end up with two corollaries of Lemma

2.12 and Lemma 2.13, which show that the triangles (2.3) are exactly what are needed

to verify our main theorem. The proof of the arguments are much like [Carlson83,

Theorem 4.1] with extra consideration for subscripts of U expressed in the statement

by the term j − j̆.

Definition 2.15. Recall S is the set of non-isomorphic simple B-modules (Definition

2.15). Define sets

Ii = {Sa | ai+1 = ... = an−1 = p− 1}

for 0 ≤ i ≤ n− 1 to be subsets of simple B-modules.

Note that In−1 = S since we have no restriction on Sa, and a filtration

I• = (∅ = I−1 ⊂ I0 ⊂ I1 ⊂ . . . ⊂ In−1 = S)

on the complete set of non-isomorphic simple B-modules.
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Definition 2.16. Fix a prime p. We say a simple module Sa is in layer i if Sa ∈

Ii+1 − Ii. We also define that an integer a and the FH -module Ma are in layer i if Sa

is.

Remark. This is equivalent to saying a has base-p presentation (a0, ..., ai, p−1, ..., p−1)

with ai 6= p− 1, or by base-p arithmetic,

pn − pi+1 ≤ a ≤ pn − pi − 1.

Definition 2.17. Fix a prime p. Let a be an integer with 0 ≤ a ≤ q − 2 with base-p

presentation (a0, ..., an−1). Let a be an integer in the layer s. That is, we have

a = (a0, ..., as, p− 1, ..., p− 1) with as ≤ p− 2.

The partner of a, denoted a′ (see notation below for clarification of use), is

a(s′) = (a0, ..., a
′
s, p− 1, ..., p− 1);

The completion of a, denoted a, is

a(s) = (a0, ..., as−1, p− 1, p− 1, ..., p− 1).

(c.f. Definition 2.16 and Definition 2.7)

Notation. Recall that we defined a′i = p− s− ai. It will not contradict if we apply the

following: If there is a subscript on the letter concerned, the prime treats it as a base-p

digit i.e. a′i = p − 2 − ai. Otherwise it is treated as the partner of the integer defined

just above, i.e. a′ = (a0, ..., a
′
i, ..., an−1) for i the layer of a.

Remark. The partner defined here turns out to be the correspondence of simple B-

modules used for our trick later. For odd primes, an even number is a partner of an

odd number of the same layer, and vice versa. For p = 2, the partner of every integer

is itself. We also point out that under this involution, the filtration in Definition 2.16

is fixed.

Definition 2.18. For an integer m with 1 ≤ m ≤ pn−1, define rm to be the integer

such that prm divides m with a p′-integer quotient. Let

m =

n−1∑
i=0

pimi =
n−1∑
i=rm

pimi
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be its base-p expression. For an integer s, define

bmcs :=

n−1∑
i=s

pimi,

the floor of m at s and

dmes =
n−1∑
i=s

pimi + ps,

the ceiling of m at s.

Remark. We hide the subscript m of r when it is obvious which m we are referring to.

Note that for any m, the floor(resp. ceiling) of m at s is the nearest integer smaller(resp.

greater) than or equal to m that is divisible by ps.

Proposition 2.19. Let m be an integer with 1 ≤ m ≤ pn−1. Let Mc be a module in

layer i for some i ≤ r = rm, and Mb be a module in layer s with s > r.

(a) If m and b satisfy ms−1 + bs < p− 1, then

HomFH (UbmcspMb, UmpMc) = 0;

(b) If m and b satisfy ms−1 + bs = p− 1 and ms−2 = ... = m0 = 0, then

HomFH (UbmcspMb, UmpMc)

is of dimension 1 when c = b. The corresponding unique non-split extension of

UmpMc by UbmcspMb is represented by a distinguished triangle

UmpΩMc → UdmespΩMb′ → UbmcspMb  

in FH -mod.

Proof The condition (2.6) in Lemma 2.13 requires

bmcsp−mp+
n−1∑
i=0

pi(bi − ci + 2ki) ≡ 0 (mod pn − 1)

for some ki satisfying condition 1 in Lemma 2.13 and a particular kl for condition 2 in

Lemma 2.13 if a non-zero stable homomorphism exists. Note that

bmcsp−mp = −
s−1∑
i=r

pi+1mi = −
s∑

i=r+1

pimi−1.
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Merging the term mp− bmcsp (the j − j̆ term) into the last expression, we have that

r∑
i=0

pi(bi − ci + 2ki) +

s∑
i=r+1

pi(bi − (p− 1) + 2ki −mi−1) +

n−1∑
i=s+1

pi(2ki) (2.9)

has to be divisible by pn − 1. Now we consider the actual value of expression (2.9).

From (2.7), the pr+1 to ps digits lie between −(p− 1) and 2(p− 1) and other digits lie

between 0 and 2(p− 1). Hence, for a possible extension to exist, (2.9) evaluates to one

of the four following values: 0, pn−1, 2pn−2 or −pn+1. Firstly, it cannot be −(pn−1)

because it requires (2.9) to have all terms at −(p−1) (this is the smallest possible value

of any pi-digits in 2.9) but it must have a non-negative p0 term. Secondly note that

cl = p− 1 will force b′l < p− 1− bl ≤ kl. So, the range of l mentioned in condition 2 of

theorem 2.13 is restricted to 0 ≤ l ≤ r. For this particular l, we have

bl − cl + 2kl ≤ bl − cl + b′l + cl = p− 2.

This rules out the possibility for (2.9) to be 2pn−2. Thirdly, the last inequality indicates

the sum up to pl-term:
l∑

i=0

pi(bi − ci + 2ki)

(since l cannot be greater than r as bl, cl ≤ p − 2) lies between 0 and pl+1 − 2, which

can never be −1 modulo pl+1. Adding up the remaining terms of (2.9) will not change

this. However, if the expression (2.9) is equal to pn − 1, we have the expression equal

to −1 modulo pl+1, creating a contradiction. Thus, the argument above boils down to

the conclusion that (2.9) is zero. Now we split into the following two cases:

(a) If the condition ms−1 + bs < p − 1 holds, it forces the value of the ps-digit to be

at least 1. Since the sum

r∑
i=0

pi(bi − ci + 2ki) +

s−1∑
i=r+1

pi(bi − (p− 1) + 2ki −mi−1) (2.10)

must be greater than −(ps − p), adding the next term ps will make the subtotal

r∑
i=0

pi(bi − ci + 2ki) +
s∑

i=r+1

pi(bi − (p− 1) + 2ki −mi−1) (2.11)

strictly greater than zero. With other pi-digits (i > s) non-negative, we conclude

that it cannot be zero hence the dimension of HomFH (UbmcspMb, UmpMc) is zero.

57



(b) Note that the other condition requires mi−1 = 0 on every digit except the ps-digit.

Hence from (2.7) each digit has to be non-negative. Furthermore, ps-digit is non-

negative too, so every digit has to be zero. We can conclude that bi = ci for every i

by (2.7) (with ki = 0) except when i = s, in which case we have bs = p−1−ms−1.

Note that the condition 2 in lemma 2.13 is automatically satisfied by kr in this

case, which is shown by the fact cr ≤ p − 2 in the definition. Thus, we have

b′r = p− 2− cr ≥ 0 = kr.

Now we consider the only possible non-trivial extension. The conditions require c such

that ci = bi for 0 ≤ i ≤ n− 1 except when i = s and cs = p− 1 as given by (b), which

means that c = b. Now put i = s, tensor the sequence (2.3) by Ubmcsp, it induces the

triangle

Ups(1+b′s)UbmcspΩMb → UpsUbmcspΩMb′ → UbmcspMb  .

The indices of the two Ui’s in the middle term add up to the ceiling of m by s. Now

by assumption, bs = p− 1−ms−1, so

ps(1 + b′s) + bmcsp = psms−1 + (m−ms−1p
s−1)p = mp.

The previous triangle becomes

UmpΩMb → Udmer+1pΩMb′ → UbmcspMb  .

Proposition 2.20. Let m be an integer, 1 ≤ m ≤ pn−1. Let Mc be a module in layer

i with i ≤ r = rm, and Mb in layer s with s > r such that ms−1 + bs ≥ p− 1. Then

HomFH (UdmespΩMb′ , UmpMc) = 0.

Proof Applying our assumption to Theorem 2.12, the condition requires

dmesp−mp+
n−1∑
i=0
i 6=l

pi(bi − ci + 2ki) + pl(−bl − cl + 2kl − 2) (2.12)

to be divisible by pn − 1 for an l with 0 ≤ l ≤ r < s, by condition 1 of 2.12. We are

going to show that there is no solution, by considering all the possible values. We have

dmesp−mp+ ps(b′s − (p− 1) + 2ks)− pl(−bl − cl + 2kl − 2) ≥ pr+1 + ps − pr(p) > 0,
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so the expression (2.12) must be greater than zero.

Note that b′s −ms−1 ≤ −1. So the maximum value of the expression is

ps+1 + ps(b′s + p− 1−ms−1) +
n−1∑
i=0
i 6=l,s

2(p− 1)pi − 2pl <
n−1∑
i=0

2(p− 1)pi = 2pn − 2.

The only remaining possibility is that the expression (2.12) is equal to pn − 1. Similar

to proposition 2.19 we consider the partial sum of the expression up to the pl-digit

inclusive. In view of the inequality on pl-digits in (2.8), it should lie between −pl+1

and −2. However, if the whole expression is equal to pn − 1 it should have remainder

−1 modulo pl+1, a contradiction.
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Chapter 3

Main construction and proof

The non-trivial perverse autoequivalence suggested at the start of the thesis will be

described and proved in this chapter. Then we shall discuss some consequences of this

autoequivalence. We shall approach this by constructing a string of algebras such that

• all of these algebras have equivalent derived categories (hence also their associated

stable module categories),

• the derived equivalences between successive algebras are elementary perverse, and

• the last one is Morita equivalent to the first one

to give the aforementioned perverse autoequivalence. In this chapter we shall first show

the autoequivalence is a composition of elementary perverse equivalences, while we shall

prove it is itself a perverse equivalence in chapter 4.

We have defined the following notation: Let p be a prime number and n be a natural

number, q = pn. Fq is the (unique) finite field of q elements, F = Fq the algebraic

closure of Fq, which is a field of characteristic p. The group G = SL2(q) is the special

linear group of degree two over Fq. Denote the normaliser of a Sylow p-subgroup in

G by H, which is also a Borel subgroup of G. The direct sum of all full defect blocks

of FG is denoted by B and FH is the direct sum of local Brauer correspondents of

the constituents of B. Let Sa for 0 ≤ a ≤ q − 1 be the non-isomorphic simple FG-

modules and Ma their restrictions to H. Let Ui for 0 ≤ i ≤ q − 2 be representatives

of non-isomorphic FH simples, all of which are one-dimensional. We also have endo-

functors of FH -mod: Ui⊗− for 0 ≤ i ≤ q − 1 and we abbreviated them as Ui for

convenience. These functors induce non-trivial self-Morita equivalences. Recall base-p

notation (Definition 2.1) is used to represent natural numbers. Simple FG-modules have

been indexed by base-p n-tuples using the Steinberg tensor product theorem (Theorem
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2.1) and a filtration is defined on the set of simple modules (Definition 2.15). We have

defined a partner a ↔ a′ between integers from 0 to q − 2 (Definition 2.17) which is

an involution mapping odd to even numbers (and vice versa) when p 6= 2 and is the

identity map on natural numbers when p = 2. Also we have set up floor(resp. ceiling)

at s for an integer as the nearest integer below(resp. above) it divisible by ps (definition

2.18).

3.1 Construction and proof

First we define our successive elementary perverse tilts of algebras (see Example

1.80). We then explore their induced equivalences in their stable module categories to

prove our main theorem.

Definition 3.1. Define inductively a string of algebras Am, 1 ≤ m ≤ pn−1, and a

bijection βm of the complete set of non-isomorphic simple Am-modules, Sm, to the

complete set of non-isomorphic simple B-modules, S, by the following.

First, define A0 = B with the identical bijection β0 := S→ S0. Suppose Am−1 and

βm−1 is already defined, let Am be a symmetric algebra such that Am is a perverse tilt

from Am−1 with derived equivalence

Fm : Db(Am−1)→ Db(Am)

perverse relative to

(βm−1(0 ⊂ Irm ⊂ S), ε : p(0) = 1; p(1) = 0).

Such algebras Am are symmetric [Rickard89] and defined up to Morita equivalence by

Proposition 1.75. Now we also define a bijection βm : S → Sm via βFmβm−1, the

composition of the earlier induced bijection and the bijection of simple modules required

in the perverse equivalence (Lemma 1.77). We also transfer the numbering of simple

modules from S to Sm.

We also define specially Apn−1 = A and F : Db(B)→ Db(A) as the composition of

Fm for 1 ≤ m ≤ pn−1.

We say execute step m when we apply functor Fm on the derived categories of Am−1

and Am. The above construction and our main proposition later can be illustrated by

the following diagram.
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B -mod� _

��

. . . Am−1 -mod� _

��

Am -mod� _

��
Db(B)

Fm−1...F1 //

��

Db(Am−1)
Fm //

��

Db(Am)

��
B -mod

∼=
��

Am−1 -mod
F−1
1 ...F−1

m−1oo Am -mod
F−1
moo

FH -mod

Referring to the above plan, we study the simple modules of the new algebra Am

from an inductive approach from the previously defined algebras. The idea is to describe

the image of simple Am-modules in FH -mod. More concretely let Mm
a be the image of

simple Am-modules Ta in the stable module category expressed as FH -mod. Now we

can describe Mm
a using induction from Mm−1

a , with the rules introduced in Example

1.80.

It turns out the terms and extensions are controllable and the result is being sum-

marized into the proposition below. In the following proposition and lemma when we

say a module we mean an FH -module.

Proposition 3.2. Fix a number m between 0 and pn−1. The set of all FH -modules

Mm
b , the correspondents of simple Am-module Tb in FH -mod for 0 ≤ b ≤ q− 2, can be

partitioned into three sets

Jm ∪Km ∪ Lm

such that, depending on parity of ks = bmcs/ps (of m),

1. Jm consists of Mm
b in layer s ≤ rm. The module Mm

b ∈ Jm is isomorphic to


UmpMb if ks is even.

UmpMb′ if ks is odd.

2. Km consists of Mm
b of layer s > rm, with


ms−1 + bs ≥ p− 1 if ks is even.

ms−1 + b′s ≥ p− 1 if ks is odd.
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The module Mm
b ∈ Km is isomorphic to


UdmespΩMb′ if ks is even.

UdmespΩMb if ks is odd.

3. Lm consists of the remaining modules, that is, those with b of layer s > rm with


ms−1 + bs < p− 1 if ks is even.

ms−1 + b′s < p− 1 if ks is odd.

The module Mm
b ∈ Lm is isomorphic to


UbmcspMb if ks is even.

UbmcspMb′ if ks is odd.

Remark. We can check this is indeed a partition by considering modules in layers. Jm

contains every module of layer ≤ rm, Km and Lm splits modules in layers > rm. Note

that for p = 2 the statements are the same disregarding parity of ks since b = b′ and

bs = b′s = 0.

We will prove this by induction. It is a two-step approach for each inductive step

on m. The scheme of the two steps approach is illustrated via the following diagram:

Start Jm−1

layer 0

��

layer>0

))

Km−1

dm−1es=m

zz

dm−1es>m

��

Lm−1

��

Lemma 3.3

Pre-extension J ′m

Ω−1

��

2.20

++

22 2.19 ,,K ′m

��

L′m

extend by 2.19

recheck by 2.20

zz

no extension

��

Extension

End Jm Km Lm

First, we have to rewrite the partition. Note that since the partition (based pri-

marily on the parameter r) depends on m and subscripts such as dmes and bmcs are

involved, the induction assumption (from m − 1) is not in a very usable form for m.
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Hence the first job is to rewrite it into a new partition (with respect to m)

{Mm−1
b | 0 ≤ b ≤ q − 2} = J ′m ∪K ′m ∪ L′m

such that J ′m corresponds to simple Am-modules that makes up the foundation of the

perverse equivalence Fm. The first step is concluded in the following lemma:

Lemma 3.3. The set of Mm−1
a , rewriting in the perspective of m and ks of m (instead

of m− 1), reorganised from the partition in Proposition 3.2, is partitioned into

1. J ′m consists of Mm−1
b with the layer of b ≤ rm. Mm−1

b is isomorphic to


UmpΩMb if ks(m) is even.

UmpΩMb′ if ks(m) is odd.

2. K ′m consists of Mm−1
b of layer s > rm, with


ms−1 + bs ≥ p− 1 if ks is even.

ms−1 + b′s ≥ p− 1 if ks is odd.

Mm−1
b is isomorphic to


UdmespΩMb′ if ks is even.

UdmespΩMb if ks is odd.

3. L′m consists of the remaining modules, that is, those with b of layer s > rm with


ms−1 + bs < p− 1 or (ms−1 + bs = p− 1 and mi = 0 for 0 ≤ i ≤ s− 2) if ks is even.

ms−1 + b′s < p− 1 or (ms−1 + b′s = p− 1 and mi = 0 for 0 ≤ i ≤ s− 2) if ks is odd.

Mm−1
b is isomorphic to


UbmcspMb if ks is even.

UbmcspMb′ if ks is odd.

Before we prove these, we need a proposition concerning counting in base-p numbers.
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Proposition 3.4. Let m be an integer, 1 ≤ m ≤ pn−1 − 1, mi be the ith digit of

its base-p presentation. The following must hold for a certain natural number r with

0 ≤ r ≤ n− 2. (It will be the rm in Definition 2.18.)

1. m/pr is a p′-integer.

2. 0 < mr = (m− 1)r + 1 < p.

3. m is divisible by ps for all integers s with 0 ≤ s ≤ r.

4. 0 = ms < (m− 1)s = p− 1 for all s with 0 ≤ s < r.

Proof This is the nature of counting (adding 1) by base-p numbers, especially

when carrying happens on some digits. In particular, r indicates the first place without

a carry when m− 1 is added by 1.

Any perspective viewing the parameters in proving Lemma 3.3 and Proposition 3.2

are included in this proposition. It is worth noting that we only introduce the parameter

ks for precision of statements. One might refer to Table A.4 and A.5 to reference how

these work in real terms. It is easier to understand the argument with the tables. In

the following proofs, we shall only argue for the statement starting with ks even. It is

easy to see similarly for odd ks by exchanging b↔ b′.

Proof of Lemma 3.3 The idea of this proof is to construct J ′m from the (new)

layer constraint and K ′m and L′m according further to the inherited format as FH -

modules.

• Consider J ′m: since rm ≥ 0, Mm−1
b with b of layer 0 always belongs to J ′m, thus

their FH -mod correspondents, using 2.11, can be written as

U(m−1)pMb
∼=UmpΩMb′ .

Note that k0 changes parity from m − 1 to m. If rm = 0, then we have already

found the whole set J ′m. If rm > 0, we have rm−1 = 0 and (m− 1)s−1 = p− 1 for

0 < s ≤ rm. Hence for b of layer s, all of Mm−1
b is in Km−1. From the condition

we have also

Udm−1espΩMb′
∼=UmpΩMb′

since dm− 1es = m for 0 < s ≤ rm. Note that ks is again of different parity since

the floor function is differed by ps.
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Combining both, now we have grouped into J ′m modules of form Mm−1
b of layer

s < rm and isomorphic to UmpΩMb′ with ks odd.

• Now we consider the set K ′m ∪ L′m, consisting of Mm−1
b with layer of b greater

than rm. We have to consider all 3 sources from the (m−1)th statement. First we

translate the expressions and conditions to direct terms of m (so to avoid digits

of m− 1 in the subscript).

– First we form the set K ′m, which we consider to include all modules of Mm−1
b

maintaining a ceiling U -subscript. They must come only from Km−1 since

by increasing m neither Jm−1 nor Lm−1 can contribute a ceiling U -subscript.

Note that the formation of the set J ′m takes away all modules of layer s ≤ rm

from Km−1. They are precisely those with dm− 1es = m. Note further that

dm− 1es cannot be m− 1 since this will force a contradiction with its own

condition1. Thus every ceiling U -subscript from the set Km−1\J ′m has to

stay and we take K ′m−1 = Km−1\J ′m. Thus modules in K ′m have the form

UdmespΩMb′ if ms−1 + bs ≥ p− 1. (3.1)

The last condition can be switched from m− 1 to m directly because of the

proposition 3.4: The only case where they differ is ms−1 < (m − 1)s − 1,

which is equivalent to ps divides m and those modules are moved away from

Km−1 to J ′m.

– Now we consider the remaining set L′m, which consists of modules with a

floor U -subscript. Since m is only increased by 1, modules in Km−1 will

not be rewritten2 into L′m. First we consider modules coming from Lm−1.

To rewrite the U -subscript from m− 1 into m we need to consider the case

bm−1cs 6= bmcs. However this only happens when m is divisible by ps hence

(m − 1)s−1 = p − 1 thus this case is not included in Lm−1. We can safely

change the subscript bm − 1cs from modules in Lm−1 to bmcs. Secondly

we consider modules coming from Jm−1. If there are such modules then

rm−1 > s > 0 and hence rm = 0. Their expression U(m−1)pMb, translate to

m is equal to

UbmcspMb, with (m− 1)s−1 + bs = bs < p− 1.

1(m− 1)s−1 = 0; bs ≤ p− 2 forces (m− 1)s−1 + bs < p− 1
2dm− 1es cannot be m− 1 and if dm− 1es = m it has been assigned to J ′m.
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This expression coincides with those coming from Lm−1. In conclusion we

have the modules in L′m isomorphic to

UbmcspMb with (m− 1)s−1 + bs < p− 1. (3.2)

Translating (m− 1)s−1 + bs < p− 1 in terms of m (instead of m− 1) cause

it to split into two:

ms−1 + bs < p− 1 or ms−1 + bs = p− 1 and ms−2 = ... = m0 = 0.

(3.3)

It is easy to check that ks does not change when rm < s. By these arguments we have

successfully re-partitioned Mm−1
b as indicated in the lemma.

Of course, the re-partition in Lemma 3.3 is tailored such that we can apply the

correspondence in perverse equivalence in a fairly convenient manner. The set J ′m

corresponds to the foundation of the perverse equivalence Fm. K ′m and L′m is grouped

by expression and needed to check for extensions.

Proof of Proposition 3.2 Now we start the main proof by considering the al-

gebra A0 = B. The module M0
b is simply Mb and the set of such modules is partitioned

as J0 ∪ K0 ∪ L0 = S ∪ ∅ ∪ ∅. Thus the statement is true at m = 0 (assuming large

enough r0), which allows us to start the induction for m ≥ 1. Now assume the state-

ment is true for an m− 1. Let Sb ∈ Sm−1 be a simple Am−1-module corresponding to

a simple Am-module Tb ∈ Sm. The induction step requires us to find the image of Tb

in FH -mod via Mm−1
b . Using the stable category equivalent of Example 1.79, we have:

F−1
m (T ) =


Ω−1S if βm(T ) ∈ Irm

SS′ otherwise.

• For βm(Tb) ∈ Irm is equivalent to say b is of layer between 0 and rm inclusive.

The corresponding FH -module of Sb is in the set J ′m. Then Tb corresponds to

Ω−1(UmpΩMb)∼=UmpMb

in FH -mod which proves the statement for the set Jm.

• Before we argue on the modules that require us to check for extensions, note that

J ′m includes all modules of layer ≤ rm, hence we disregard b or b′ when considering
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extensions. Further see that we can replace b by b′ in Proposition 2.19 and 2.20

thus they always apply to L′m and K ′m regardless of the parity of ks.

• For the remaining Tb’s such that βm(Tb) /∈ Irm , we need to find the universal

extension of Sb by the set S′, where βm−1(S′) = Irm , which is equivalent to

consider the universal extension of any element inK ′m∪L′m by J ′m in FH -mod. For

any module in L′m we first use Proposition 2.19 to check the required extension.

Only modules corresponding to (3.2) satisfying the last condition in (3.3) have

one-dimensional extensions. The module after extension is isomorphic in FH -mod

to

UdmespΩMb′ (3.4)

according to triangle (2.3). The rest of the modules in L′m satisfying the first con-

dition in (3.3) are not extendible, so have their corresponding expression remains

the same. With this, we show Proposition 3.2 is true for Lm. Now note that

(3.4) has exactly the same expression as those in K ′m, see (3.1). Their respective

condition can be joined up perfectly as ms−1 + bs ≥ p− 1, exactly what the mth

proposition statement and Proposition 2.20 required. Now Proposition 2.20 has

shown that all modules have no more available extensions. This has formed the

required Km part of the partition of the induction statement.

Thus we have successfully show that the statement for m is true for all three parts of

the partition. Hence it is true by induction up to Apn−1 .

Corollary 3.5. The image of simples Sa of A = Apn−1 in FH -mod is UqMa′
∼=U1Ma′.

Proof By the induction statement all modules correspond to Jpn−1 for A. So all

the simple modules correspond to FH -modules UqM
′
a, since ks = pn−1−s is an odd

number for odd primes. When p = 2, a = a′ so it makes no discrimination.

Now our desired result is imminent.

Theorem 3.6. There is an derived autoequivalence of the direct sum of all full defect

blocks B of FG exchanges the principal block with the non-principal block for odd primes.

The derived autoequivalence can be realised by

F : Db(B)→ Db(B)
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which is the composition of elementary perverse tiltings Fm with filtration

(∅ ⊂ Irm ⊂ S)

and perversity function ε(0) = −1, ε(1) = 0 for 1 ≤ m ≤ pn−1.

Remark. Since we are going to prove A and B are Morita equivalent, F : Db(B) →

Db(A) will be consider as an equivalence

F : Db(B)→ Db(B).

Proof This theorem is immediate after we show that A is Morita equivalent with

B. Now consider the image of simple A-module in its stable category,

A -mod FH -mod
U−1⊗−

=
// FH -mod

Ind
=
// B -mod

Ta U1Ma′
� //Ma′

� // Sa′

Note that both the functor U−1⊗− and induction (the functor is BBFH ⊗FH −) are

stable equivalences of Morita type, and their composition maps simple A-modules to

simple B-modules. Thus using Theorem 1.42 we conclude that A is Morita equivalent

to B. This has proved the first half of the theorem. For the second half consider the

principal block B0 through the perverse tilts yields one of the blocks in B. Similar to

the proof of theorem above, note that corollary 3.5 indicate that the even-numbered

simple B-modules have stable images that are odd-numbered simple B-modules. Thus

the block obtained by tilting B0 using 3.1 should be B1.

The following corollary is also obvious.

Corollary 3.7. For an odd prime p, the principal block and non-principal block of

FSL2(q) are derived equivalent.

This construction can also be seen as a generalisation of Morita equivalence for the

two full defect blocks in FSL2(p). For odd prime p, the two blocks are known to be

Morita equivalent as Brauer Tree algebras.

Example 3.8. When n = 1, there are no layered structure of simples (all belongs to

the same layer). Our construction suggests a global shift of [1], which by properties of

perverse equivalence is a Morita equivalence. Or to see it directly, apply Linckelmann’s
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theorem (1.42) to the functor Ω−1. The pairing 2.17 agrees with the result given by

Brauer tree algebras.

Remark. The last step of our construction (m = pn−1) is combinatorically viable but

actually redundant in the sense that it is always a global shift. So Apn−1−1, Apn−1

and B are Morita equivalent. Sometimes we might want to use the reduced version

(without the last step). We define F ′ = Fpn−1−1 ◦ · · · ◦F1. Unless otherwise stated, our

discussion is on F (the full version).

The smallest non-trivial example is SL2(22). See the dedicated chapter later. There

is also an appendix of further examples using (and explaining) a more intuitive approach

of the construction.

3.2 Remarks

This construction has some intriguing properties that can be explored. The most ex-

tensive one would be considering this composition of elementary perverse equivalences.

This we shall leave until the next chapter to better introduce tools and techniques in

perverse equivalences to handle these problems. In this section, we explore how the

construction fits into current knowledge.

3.2.1 Relations with other known constructions

The first thing worth discussing is whether this construction is the lift of U1 in

derived category. This is one of the motivation we start our construction. From the

proof, F is being constructed, or precisely we obtain A from B via the functor U1⊗−

in stable category. Hence it is natural to ask whether we can find an equivalence

Y : Db(B)→ Db(b) such that

Db(B)
F //

OO

∼Y
��

Db(B)
OO

∼Y
��

Db(b)
U1 // Db(b)

commutes. For that, we have a negative answer.
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Proof If the picture does commute, by iterating the construction q − 1 times,

Db(B)
F //

OO

∼Y
��

Db(B)
OO

∼Y
��

F // . . .
F // Db(B)

OO

∼Y
��

Db(b)
U1 // Db(b)

U1 // . . .
U1 // Db(b)

and this amounts to

Db(B)
F q−1

//
OO

∼Y
��

Db(B)
OO

∼Y
��

Db(b)
Uq−1=U0 // Db(b)

which U0⊗− is the identity functor. Consider F q cannot be identity as the perversity

function is non-zero (we shall prove F q is a perverse equivalence in chapter 4), we

obtain a contradiction.

This has shown that there is no canonical perverse equivalence effectively lifting

the functor U1 from local derived category, because such perverse equivalence cannot

have finite order. We will show later for SL2(4) it is a lift of U1 with addition of two

spherical twists.

3.2.2 Role of the Steinberg block

Consider from the perspective that we use extensively the Steinberg module (al-

though as zero module) in our proof, one might wonder what is the role the Steinberg

module would play in all these constructions. It is the very fact that it is being used

as zero module to obtain an unified expression that makes its role interesting yet hard

to identify in the construction. Furthermore, the restriction of the Steinberg module

in FH is projective, and it is not considered in Green or Brauer correspondence, but it

comes up naturally in the triangles in our exposition as zeroes.

Example 3.9. Consider the general construction on B, there is exactly one module

extended by the Steinberg module in each step, except the last general shift. To a certain

extent, one can even regard the last step has a zero extended by zero. In particular for

SL2(4), we have use in step 1, the triangle (St = 0 → cone(V → 0)[−1] → V  ) on

V .

We have, in the process, always regarded it as zero due to its projective nature.

However on the other hand, it is not hard to seek a generalisation of our construction

by guessing its perversity. One might take the Steinberg module having perversity pn.
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Or one might regard Steinberg module having infinite perversity - from the fact that

we lost the correspondence in local categories, or by the fact that its base-p subscript

is an infinite cycle of p − 1’s - a view better observed in next chapter. It is tempting

to include it into the construction due to the fact that we might almost complete

the filtrations and posets (also explained in next chapter) by introducing it as the

minimal element. However we leave it out at this moment since the real consequence

is not known and there is ambiguity in defining such autoequivalences including simple

projective modules.
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Chapter 4

Composition of the construction

To further explore the construction, we need to consider the composition of elemen-

tary perverse tilts for Fm defined in 3.1.

While it is not easy to decide in general whether the composition of two (or more)

perverse equivalences is a perverse equivalence, for the composition of the equivalences

Fm for 1 ≤ m ≤ pn−1 it is quite easy. We notice that the filtrations of these elementary

perverse equivalences form a chain of nested sets. That will show our construction F

is, in essence, one perverse equivalence altogether.

Theorem. There exists an equivalence F : Db(B) → Db(B) perverse with respect to

(I•, I•, π) where

I• = (∅ = I−1 ⊂ I0 ⊂ · · · ⊂ In−1 = S)

and Ir is defined as 2.15. The perversity function is

π : i 7→ −pn−1−i.

Remark. The correspondence of simple is b ↔ b′ but the filtrations remains the same

on both sides.

Proof Using refineability of Proposition 1.76, we can always refine the filtration

defined by Fm to the one in Definition 2.15. By composability from the same proposition

we just need to add up the perversity function according to the new filtration, which

amounts to counting for i the number of integers between 1 and pn−1 divisible by pi

(c.f. the definition of Fm).

In order to handle further compositions, we will introduce the notion of poset

perverse equivalence. Mentioned by Chuang-Rouquier in [Chuang, Rouquier13] and
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explored by Dreyfus-Schmidt[Dreyfus-Schmidt13], poset perverse equivalence allows

a better perspective to consider compositions of perverse equivalences. Considering

the dual construction and Frobenius automorphism, we can also obtain an interesting

Frobenius invariant perverse equivalence Db(B)→ Db(B).

4.1 Poset Perverse Equivalence

Considering whether the composition of perverse equivalences continues to be per-

verse in a natural way, the most important aspect is whether the filtrations of Serre

subcategories of the equivalences concerned are compatible (c.f. Definition 1.75). In

other words, if we can find filtrations of Serre subcategories in each step, such that the

perverse equivalences being composed can work on this common filtration, then this

composition concerned is perverse. In abelian categories with finite composition series,

we can study these using the concept of poset perverse equivalence. The forthcoming

definition (Definition 4.1) focuses on the fact that the composition factors of Hr(F (S))

are the only guidance and restriction on how to stack up quotients of Serre subcate-

gories, and these naturally form a poset structure on it. As it turns out, poset perverse

equivalences give a more natural setting to discuss whether composing two perverse

equivalences results in a perverse equivalence naturally. Or even further it might be a

more precise way to describe a perverse equivalence (but not without setbacks). In this

chapter we assume all categories have finite composition series upon objects and a finite

number of non-isomorphic simple objects. The following definition is a generalisation

of Definition 1.77.

Definition 4.1. Let C be an abelian category with S the set of non-isomorphic simple

objects. Let D be another abelian category with T the set of non-isomorphic simple

objects. A derived equivalence F : Db(C ) → Db(D) is perverse relative to (S,≺, ω),

where ≺ is a poset structure on S and ω : S→ Z, if and only if

1. There is a one-to-one correspondence βF : S→ T.

2. Define S≺ = {T ∈ S | T ≺ S}. The composition factors of Hr(F (S)) are in

β(S≺) for r 6= −ω(S) and there is a filtration L1 ⊂ L2 ⊂ H−ω(S)(F (S)) such that

the composition factors of L1 and of H−ω(S)(F (S))/L2 are in β(S≺) and L2/L1

is isomorphic to β(S).

When considering a perverse equivalence F : Db(C ) → Db(D) we can transfer the

partial order structure on S to T via βF .
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One obvious problem of introducing a new definition is the compatibility of two

notions. It is not hard to notice that they are interchangeable, provided that the poset

perverse equivalence exists.

Lemma 4.2. A derived equivalence E : Db(C ) → Db(D) that is perverse relative to

(S,≺, ω) is also perverse relative to (I•, φ) for a certain filtration on simple objects I•

and perversity function φ. On the other hand, given a derived equivalence E perverse

relative to (I•, φ), E is also perverse relative to (S,≺, ω) for certain partial order <

and perversity function ω.

Proof If E is a poset perverse equivalence with respect to a partial order ≺, refine

to a total order and let I• be the corresponding maximal filtration on S. That is, for

each i, Ii − Ii−1 = {Si} Ii−1. Now define perversity function φ(i) = ω(Si). Conversely,

if E is perverse relative to (I•, φ), we define a partial order on S: Define Si ≺ Sj if and

only if there exist a layer Ik such that Si ∈ Ik and Sj /∈ Ik. Now define ω(Si) = φ(k)

for the only k satisfying Si ∈ Ik − Ik−1. One can easily check each definition makes

each fulfil the other description of perverse equivalence.

Definition 4.3. We say that the datum (S,≺, ω) is compatible with the datum (I•, φ)

if the following conditions hold

1. If Sa ≺ Sb then there exists an i such that Sa /∈ Ii, Sb ∈ Ii.

2. If Sa, Sb ∈ Ii − Ii−1 then ω(Sa) = ω(Sb) = p(i).

Let E : Db(C )→ Db(D) be a perverse equivalence (filtered or poset). Consider the

image of E(S) with S running through all simple objects in C . We can define a partial

order ≺ by

S ≺ S′ if H∗(E(S′)) contains a copy of S in its composition factors.

This is defined as the coarsest partial order on E. The following is an example written

as a proposition.

Proposition 4.4. The coarsest relation on the perverse equivalence F is

a < b if a = b.

Proof The coarsest relation for Fm is the relation that express the extension

happened in the proof of Proposition 3.2, which is a module Sa extended by Sa(c.f.

definition 2.17). Consider all modules have been extended by this way we are done.
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We call a proposition similar to 1.76 for the properties of poset perverse equivalence.

Proposition 4.5. Let C be an abelian category with finite composition series and a

complete set of non-isomorphic simple objects SC . Let E : Db(C ) → Db(C ′) be an

equivalence perverse relative to (SC ,≺, ω).

1. E−1 is perverse relative to (βE(SC ), βE(≺),−ω ◦ β−1
E ).

2. Let E′ : Db(C ′)→ Db(C ′′) be perverse relative to (βE(SC ), βE(≺), ω′) then E′ ◦E

is perverse relative to (SC ,≺, ω + ω′)

3. If ω = 0 then E restricts to an equivalence C → C ′.

Proof The proof is the same as Proposition 1.76 except for item 2. Consider

the homology H∗(E(S)) of the image of a simple object S under E. The composition

factors of H∗(E(S)) contain a copy of βE(S) in the −φI(S)th degree and the rest of

the factors R satisfy β−1
E R ≺ S. Similarly, the homology H∗(E′E(S)) has a copy of

βE′βE(S) at degree −ω(S) − ω′(S), and all the remaining composition factors R′ of

the homology satisfy β−1
E β−1

E′ R
′ ≺ S. Then by Definition 4.1 the derived equivalence

E : Db(C )→ Db(C ′′) we have constructed is perverse relative to (S,≺, ω + ω′).

In the above proposition and proof, one might see the clumsiness of the notations.

Provided that a perverse equivalence exists between two categories, they should share

the information defined such as the bijection or the partial order. In the next section

we shall suggest a way to improve this.

4.2 Composing Perverse Equivalences

Let A be a finite dimensional symmetric algebra and SA the complete set of simple

A-modules. Any filtration on SA and perversity function φ always generate another

finite symmetric algebra[Rickard89]. This property makes it ideal to consider continu-

ally applying two or more filtrations and perversity functions to generate new algebras.

To facilitate this, we abstract a perverse equivalence into data.

Definition 4.6. Let A be a symmetric algebra. We say A is n-indexed, if A has n

non-isomorphic simple A-modules indexed by the set {0, . . . , n− 1}. We denote by βA

the bijective function {0, . . . , n− 1} → SA induced by the index, where SA is the set of

non-isomorphic simple A-modules.
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We define a perverse n-datum I to be a pair (I•, φ) which consists of a filtration

I• = (∅ = I0 ⊂ I1 ⊂ ... ⊂ Ir = {0, . . . , n− 1})

on the set {0, . . . , n− 1} and a perversity function

φ : {0, . . . , r} → Z .

Let I be a perverse n-datum. For an n-indexed algebra A we can define IA to be

another finite dimensional algebra, such that there exists an equivalence E : Db(A) →

Db(IA) that is perverse relative to (βA(I•), φ). By Rickard [Rickard89] IA is a sym-

metric algebra, and by [Chuang, Rouquier13] IA is defined up to Morita equivalence.

Note that we directly regard IA as n-indexed by taking βIA = βEβA (c.f. Lemma

1.78).

A similar definition may be done using poset instead of filtration. But since in that

case IA does not always exist we are not going to define it at all.

Remark. Fixing an index on simple A-modules is very important since different indexing

may lead to different algebras when applying the same perverse n-datum.

We can consider continually applying another perverse n-datum to the new algebra.

This means that combinatorial data can be effectively transferred from one algebra

to another perverse equivalent algebra. The essence of perverse equivalence has not

changed, and all the properties in 1.76 still hold. It is now easier to discuss a string

of perverse tilts since we automated the transfer process of filtrations by pullback to

natural numbers. As an example using the new definition, we can rewrite composability

of 1.76 starting directly from an algebra:

Proposition 4.7. Let I = (I•, φI) and J = (J•, φJ) be two perverse n-data. Suppose

I• = J• and let A be any n-indexed algebra. Then the composition of equivalence

Db(A)→ Db(IA)→ Db(IJA) is perverse relative to (I•, φI + φJ).

To decide whether two (not necessary elementary) perverse equivalences commute

naturally, using filtered perverse equivalences would require a complex expression on

maps of projective modules. However, if using poset equivalence, the condition for it be-

comes tautology. As an example we consider Proposition 2.80 in [Chuang, Rouquier13].

Now using poset perverse equivalence it is actually easier to state the condition, namely
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if both equivalence are compatible to a certain poset. It actually makes the description

in 2.80 a bit cumbersome in hindsight.

Definition 4.8. We say I is an elementary perverse n-datum, if I• is a two-layer

filtration ∅ ⊂ L ⊂ {0 . . . n− 1} and for its perversity function ε, we have ε(0) = 0 and

ε(1) = 1.

Proposition 4.9. Let A be an n-indexed algebra and I, J be elementary perverse n-

data. Their corresponding sets and functions are marked by the subscript I or J . Then

the following are equivalent:

1. The derived equivalence Db(JIA) → Db(IJA) obtained by applying IJI−1J−1 to

JIA restricts to an equivalence between (JIA) -mod and (IJA) -mod.

2. For P any indecomposable projective module with the simple head indexed by an

element in LJ−LI and Q similarly indexed by an element in LI−LJ , every homo-

morphism P → Q and homomorphism Q→ P factors through an indecomposable

projective module R numbered by LI ∩ LJ .

3. For SA the set of simple A-modules, there exists a partial order ≺ on SA such that

the perverse equivalence E : Db(A)
∼−→ Db(IA) is perverse relative to (S,≺, ωI)

and E′ : Db(A)
∼−→ Db(JA) is perverse relative to (S,≺, ωJ), where

ωI(S) =


0 if β−1

A (S) ∈ LI

1 otherwise,

and similarly for ωJ .

Proof We will show (1) ⇔ (2) ⇒ (3) ⇒ (1). In fact, (1) ⇔ (2) is done in 2.80

(c.f. [Chuang, Rouquier13, p.25]) and actually (2)⇒ (3) is implied in the same proof:

(2) ⇒ (3): Since (2) is satisfied, by 2.80 the canonical equivalence Db(A)
∼−→

Db(JIA) exists, and is induced by perverse n-datum (∅ ⊂ (LI ∩ LJ) ⊂ (LI ∪ LJ) ⊂

{0, . . . , n − 1}, φ′) where φ′(i) = i for i = 0, 1, 2. This datum is compatible with

the partial order ≺ on SA defined by S ≺ S′ ≺ S′′ whenever β−1
A (S) ∈ LI ∩ LJ ,

β−1
A (S′) ∈ LI4LJ , β−1

A (S′′) ∈ LI ∪ LJ . Thus (3) holds.

(3) ⇒ (1): Since E and E′ are perverse relative to the same partial order ≺, they

are equivalences by shifting on the same poset structure of Serre subcategories. Thus

we can apply the perverse n-datum J onto IA and the composition Db(A)→ Db(IA)→
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Db(JIA) is perverse relative to (S,≺, ω′) where

ω′(S) =


0 if β−1

A (S) ∈ (LI ∩ LJ)

1 if β−1
A (S) ∈ (LI4LJ)

2 otherwise.

Similarly we have Db(A)→ Db(JA)→ Db(IJA) is perverse relative to (S,≺, ω′). Since

they have the same perversity we can deduce (1) by composing the inverse of one with

the other to form a perversity zero equivalence. Thus the condition (1) hold because

of 4 in 1.76.

Remark. The set I4J = (I ∪ J)− (I ∩ J) is the symmetric difference of I and J .

4.3 Conjugation with other functors

Consider the fact that a perverse equivalence is defined up to Morita equivalence,

given a perverse equivalence, one can compose/conjugate it with some known functor

inducing Morita equivalence to obtain further results. The first one we consider is

the Frobenius automorphism on the module category of B-modules. Then we consider

duality, which give some insights to the nature of F via Grothendieck group.

4.3.1 Frobenius Twist

The equivalence F we have demonstrated so far is not Frobenius invariant. This

can be easily observed, since the Frobenius automorphism on H-modules maps the FH -

module U1 to Up, thus hinting the construction is twisted to another self-equivalence.

However, we can find a self-equivalence which is Frobenius invariant by introducing a

composition of functors generated using the Frobenius automorphism on FG-modules.

To start, we define:

Definition 4.10. Let F be the autoequivalence on Db(B) defined in Theorem 4. The

Frobenius automorphism σ of B induces an automorphism on Db(B), which we also

call σ. Define F σ, the Frobenius conjugate of F , to be the functor σFσ−1. Define

F σ
i

= σiFσ−i similarly for 0 ≤ i ≤ n− 1.

Let E be the composition of functors F σ
i

for i from 0 to n− 1 in that order, i.e.

E = F σ
n−1 ◦ F σn−2 ◦ ... ◦ F σ ◦ F.
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Since σ restricts to an equivalence on B -mod, the new functors F σ
i

introduced are

all perverse equivalences. However, they are associated with different filtrations and

perversity functions. More precisely, F σ
i

: Db(B)→ Db(B) is perverse relative to

(Iσ
i

• , I
σi

• , π : j 7→ −pn−1−j).

Now we want to transcribe F and its Frobenius twists into poset perverse equiva-

lence.

Proposition 4.11. The coarsest partial order ≺i compatible with F σ
i

is

Sa ≺i Sb if pia ≡ pib mod pn − 1.

Proof This is obvious from Proposition 4.3.

We define another partial order on B below. It is a refinement of the earlier partial

order. We can compose F and its Frobenius twists under this partial order.

Definition 4.12. Define a partial order <B on the set S: Sa <B Sb if, for their n-digit

base-p presentations, a has more digits of p− 1 and ai = p− 1 whenever bi = p− 1.

Remark. This partial order is Frobenius invariant because multiplication by p (see

chapter 2) only rotates the digits modulo q − 1. It is also preserved under partner

involution (i.e. βF (<B) =<B) since the partners have same digits of p− 1 at the same

place.

With the partial order being set up we focus on the perversity.

Definition 4.13. Define a map

ω : S→ Z

on simple B-modules such that ω is the composition of the layer map and π. We further

define

ωσ
i

: S→ Z

to be ω pre-composed by σi on the set S.

Proposition 4.14. The equivalence F σ
i

is perverse relative to (Sa, <B, ω
σi

).

Proof What we need is <B compatible with F σ
i
. Since <B is Frobenius invariant,

it equates to be compatible with F , but this is obvious.

Thus we have the following:
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Theorem 4.15. The functor E defined in 4.10 is perverse relative to

(Sa, <B,

n−1∑
i=0

ωσ
i
).

Furthermore, E is Frobenius invariant.

Proof The first assertion comes from the fact that each F σ
i

is compatible with

(S, <B). Now Frobenius conjugation on E yields a functor

F σ
n ◦ F σn−1 ◦ ... ◦ F σ

which is a cyclic permutation of E (note F σ
n

= F ). Since by the first assertion they

are all compatible with the same partial order, they commute by Proposition 4.5. Thus

after rearrangement we get back E. The new perversity function is just the sum of all

perversity functions from F and its Frobenius twists. To see that the sum is Frobenius

invariant, observe that applying σ rotates the sum.

We are going to complete this subsection by showing that we can define a filtration

on B for E which is Frobenius invariant. By doing this we further see we can group

simple B-modules using partitions of n and in our case, the perversity function on Sa

only depends on the partition.

Definition 4.16. Let Sa ∈ S for an integer a, 0 ≤ a ≤ pn − 2. Assign a partition

λa a n to Sa using the following steps.

1. Denote by (Za)i the layer of pia modulo pn − 1

2. Let λ = (λ0, . . . , λn−1) be a n-tuple, where λj is the number of times n − 1 − j

occurred in (Za)i for 0 ≤ i ≤ n− 1.

We can show that λ is indeed a partition, i.e. λ0 ≥ λ1 ≥ · · · ≥ λn−1, by the

following lemma.

Lemma 4.17. Let a be in layer i < n− 1, then pa modulo pn − 1 is in layer j + 1.

Proof If a is in layer j < n− 1 then we have

pn − pj+1 ≤ a ≤ pn − pj − 1.

Multiplying by p we have

pn+1 − pj+2 ≤ pa ≤ pn+1 − pj+1 − p.
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Since i+ 2 < n, pn+1 = pn + p− 1 modulo p, we have

pn − pj+2 + (p− 1) ≤ pa ≤ pn − pj+1 − 1

showing pa is of layer j + 1.

This shows for any (Za)i = j < n−1 we have (Za)i+1 = j+1, hence λ is a partition.

By the above we have defined a map

l : S→ {Partitions of n}

and we defined another function

φ′ : {Partitions of n} → Z

λ = (λ0, . . . , λn−1) 7→
n−1∑
i=0

−λipn−1−i

Proposition 4.18. For the definitions above we have the following:

1. The partial order <B we defined in Definition 4.12 is collapsed by l into the

reverse dominance order of partitions.

2. The map φ′ is injective.

3. φ′(a) < φ′(b) when λa < λb in lexicographical order1.

Proof Let a <B b be two integers and ai = p−1 6= bi for some i. Now notice that

(Za)i+1 < (Zb)i+1 = n − 1. Then by previous lemma we have 1. For two partitions λ

and λ′, let j be the greatest integer such that λj 6= λ′j . Then φ′(a)− φ′(b) 6= 0 mod pj

thus we have 2. The last one is just a check on the sum.

Example 4.19. Consider 77 in pn = 36, its 6-digit base-3 presentation is (2, 1, 2, 2, 0, 0),

then we have

(Za) = (5, 5, 3, 4, 5, 4)

hence 77 correspond to a 6-partition (3, 2, 1). The function q′ ◦ l maps S77 to 3(−1) +

2(−3) + 1(−9) = −18.

Compare 62 under the same setting, it has presentation (2, 2, 0, 2, 0, 0). We have

(Za) = (5, 5, 4, 5, 3, 4)

1i.e. The partition (n) is the last (greatest) term and (1n) is the first (smallest) term.
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hence 62 corresponds to the same 6-partition.

Now we apply the new filtration on simple B-modules and the perversity function

on the filtration.

Definition 4.20. Define I to be a perverse (q− 1)-data by the following: First, assign

any integer a ∈ {0, . . . , q − 2} to the set Jλ, where λ a n is the partition representing

a. Then we order partitions using lexicographical order, ≺ and let

Iλ =
⋃
κ≺λ

Jκ.

and set

I• = (∅ ⊂ I(1n) ⊂ I(1n−22) ⊂ · · · ⊂ I(n) = S).

The perversity function is taken as φ′ defined in Definition 4.16.

Define E′ : Db(B)→ Db(I B) to be a derived equivalence generated by the perverse

q − 1-data on (naturally q − 1-indexed) B.

Remark. We have indexed the filtration by partitions, but this does not affect anything

for using the idea of perverse data.

Lastly, we use a theorem to conclude this Frobenius invariant result.

Theorem 4.21. Let E′ : Db(B) → Db(I B) be the derived equivalence defined using

the above data, perverse relative to

(∅ ⊂ I(n) ⊂ . . . I(1n) = S, φ′)

We have the equivalence E = F σ
n−1

. . . F : Db(B) → Db(B) is compatible with E′.

Therefore

1. I B is Morita equivalent to B.

2. E′ is Frobenius invariant.

3. E′ is of increasing perversity (i.e. The perversity function is strictly increasing,

see[Craven10]).

Proof All these can be achieved as long as we show E′ is actually E, or showing

E′ is compatible with E. First we show the filtration of E′ is a refinement of the poset

order in E. Recall that every extension in E (which comes from various Frobenius
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twists of F ) has more p−1’s in its base-p expression (since it is a composition of F and

its Frobenius twists) and thus maps to a lower filtrate in E′. So the partial order defined

in E is compatible with the filtration of E′. Now it remains to check the perversity

functions of the two equivalences are the same on all simple modules Sa. This is not

difficult to see since

n−1∑
i=0

ωσ
i

=

n−1∑
i=0

−pn−1−(Za)i =

n−1∑
i=0

−λipn−1−i

by rearranging according to p-powers.

Thus we have checked their perversity is equal on all simple modules and thus E and

E′ is compatible. The fact that it is of increasing perversity comes from E′’s perversity

function φ′ is obtained as sum of p-powers from an n-partition.

4.3.2 Duality

Given a perverse equivalence, one can construct a dual perverse equivalence, see

[Chuang, Rouquier13]. Applying to our construction F , it amounts to another autoe-

quivalence F ∗ : Db(Bop)→ Db(Bop) perverse relative to the same filtration (or partial

order) but negative perversity function.

Moreover, we can compose a perverse equivalence with functors that induce Morita

equivalence to produce new equivalence. First, recall that for a finite-dimensional

algebra A one has the duality functor Homk(−, k) (c.f. Definition 1.12) that maps an

A-module to a module-A by (a.f)(m) = f(am). For group algebras we also have an

anti-automorphism g → g−1. These allows us to define contravariant duality:

Definition 4.22. Let A be an finite dimensional algebra with an anti-automorphism

α : A→ A. We have an equivalence

Φ : A -mod // Aop -mod // (A -mod)op

X � // αX � // αX∗

We denote the object αX∗ by X◦.

Let F : Db(B) → Db(B) denote the equivalence in Definition 3.1 which sends

a simple F (S) to a chain complex XS . Now conjugating F with the contravariant
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duality we just defined we have

Db(B -mod)op∼=Db(B -modop)
Φ−→ Db(B)

F−→ Db(B)
Φ−1

−−→ Db(B -modop)∼=Db(B -mod)op

which sends S◦ to X◦S .

Now taking off the opposite, we have established an equivalence G : Db(B -mod)→

Db(B -mod) such that it is perverse relative to (S◦• ,−π).

Observing that the filtration S◦• is the same as S•, we deduce that G is the inverse

of F . Furthermore note that the perverse equivalence G−1F , equivalent to F 2, sends

X◦S to XS . Thus we are able to obtain that F 2 is the identity on the Grothendieck

group.

Lemma 4.23. The functor F 2 induces the identity on the Grothendieck group.

Proof We have seen that F 2 sends X◦S to XS . Consider the generating property

of the simple modules in the derived category, the only remaining task is to show X◦S

corresponds to the same element in Grothendieck group as XS . But this is obvious

since X◦s is just negating the numbering on XS .
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Chapter 5

The case of G = SL2(4)

The first non-trivial equivalence introduced by our construction involvesG = SL2(22).

It is a somewhat special case, since p = 2 and thus we have only one non-semisimple

block instead of two. However it is good enough for us to demonstrate the construction

while decoding some intriguing features. Thus we dedicate a chapter to this example.

The group SL2(4) is isomorphic to the alternating group A5 of five elements. A

Sylow 2-subgroup of A5 is the Klein 4-group, and can be chosen so that its normaliser

in A5 is A4. This example has been studied by many, since its representation type is

tame.

There are 4 non-isomorphic simple FA5-modules: The trivial module k = S0, two

modules V = S1, W = S2 which are two-dimensional and the (4-dimensional) Steinberg

module S3. Their corresponding indecomposable projective covers have Loewy series

as follows:

Pk =

k

V W

k k

W V

k

PV =

V

k

W

k

V

PW =

W

k

V

k

W

St.

We shall ignore S3 as it is lies in the Steinberg block St, a simple block of FG . The

remaining simple modules form a full defect block, the principal block B0. There are

3 non-isomorphic simple FA4-modules. The trivial module k = U0, U1 and U2, all

one-dimensional. Their corresponding indecomposable projective covers have Loewy
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series (with U suppressed) as follows:

Q0 =

0

1 2

0

Q1 =

1

2 0

1

Q2 =

2

0 1

2

.

The restrictions of simple A5-modules to A4 are given by

k↓A4= 0 V↓A4= M1 =
1

2
W↓A4= M2 =

2

1
St↓A4= M3 =

0

1 2

0

= Q0.

Adopting the terminology of ’layers’ from Definition 2.16, W is in layer 0 and the

remaining simple FA5-modules are in layer 1. The only non-trivial step of the procedure

carried out in Definition 3.1 is at m = 1, for which the one-sided tilting complex of

B0-modules is

Pk ⊕ PV ⊕ Pk
α−→ PW

where α : Pk → PW is a presentation of the simple module W . The following is a table

of the images of simple Ai-modules in Db(B0), and in FA4 -mod.

XXXXXXXXXXXXXXXXX
in algebra

simples numbered
0 1 2 0 1 2

B = A0 k V W 0
1

2

2

1

A1

k

W
V W [1]

2 0

1

1

2

1

0

A2 = A
k

W
[1] V [1] W [2] 1

2

0

0

2

in category: Db(B0) FA4 -mod

The benefit of writing in FA4 -mod may not be obvious in this example, but will be

immense when generalised in either p or n. See the appendix for more examples.

5.1 Spherical twist

In section 3.2 we have showed that our automorphism F of Db(B) does not translate

to the autoequivalence U1⊗− of Db(b) via any equivalence Db(B) → Db(b). In this

90



section we show that it does correspond to a composition of U1⊗− with two spherical

twists of Db(b).

The notion of spherical twist comes from algebraic geometry. It mimics the geomet-

ric construction of twisting a sphere - hence it is always an autoequivalence. For a brief

introduction related to our needs, see [Grant10, section 1.3]. For a more systematic

approach to spherical twists see [Seidel-Thomas01].

Definition 5.1. A projective A-module P is called spherical if End(P )∼= k[x]/(x2).

The spherical twist of P is the equivalence Db(A)→ Db(A) given by

ΦP (X) = cone(HomDb(A)(P,X)⊗kX → X),

where the map is the evaluation map.

Here we are only concerned with spherical twists in Db(FA4), in which all the

indecomposable projective modules are spherical. We describe the effect of such twists

on Db(FA4) directly.

Definition 5.2. Define ΦS to be the spherical twist obtained by twisting the spherical

projective module PS, the projective cover of S, which is a simple A4-module.

These spherical twists take the following values on simple FA4-modules.

ΦS(T )∼=


T if T 6= S

PT → T , where T is in degree zero, if T = S.

To travel between the global and local derived categories Db(B0) and Db(A4), we

fix an equivalence Ric : Db(B0) → Db(A4) given by the two sided tilting complex of

A5-bimodule-A5

(0→ P → FA5 → 0)∗.

where FA5 is in degree zero, P is a projective A5-bimodule-A5 cover of the augmentation

ideal of FA5 and the star denotes its dual as A5-bimodule-A5. The symbols used below

are defined as in the chapter earlier.
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Note: Non-projective term is in degree zero.

Complex expressed by A5-modules Complex expressed by A4-modules

k 0 (This is the trivial A4-module)

V
1

2
→ Q2 '

2

0
[−1]

W
2

1
→ Q1 '

1

0
[−1]

PW →

W

k

V

'
k

W
[1] 1

PV →

V

k

W

'
k

V
[1] 2

N.B. Equal sign indicates quasi-isomorphic chain complexes on both sides. Conjugating

our construction with Ric yields the following:

A4-simples Ric−1 F Ric−1 RicF Ric−1

0 k
k

W
[1] 1

1
k

W
[1] cone

 k

W
[1]→W [3]

 cone

1→
1

0
[2]


2

k

V
[1]

k

V W
[2]

2 1

0
[1]

This derived equivalence is the same as U1Φ2Φ1, as demonstrated below:

A4-simples Φ1 Φ2Φ1 U1Φ2Φ1

0 0 0 1

1
0 2

1
[1] cone

1 0

2
[1]→

0

1
[1]

 cone

2 1

0
[1]→

1

2
[1]


2 2

1 0

2
[1]

2 1

0
[1]

We need to show

cone

2 1

0
[1]→

1

2
[1]

 and cone

1→
1

0
[2]


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quasi-isomorphic. We rewrite the latter using projective resolution and it is quasi

isomorphic to

1 2 0

0 1
→ Q1

with Q1 in degree -1 and the map takes the composition module 1 in the socle to the

socle of Q1. Now, this complex have a quasi-isomorphic map into

cone

2 1

0
[1]→

1

2
[1]

 ∼=
1 2

0
→

1

2

with the rightmost term in degree -1. Hence proving the two entries in earlier tables

to be quasi-isomorphic.

The Grothendieck group of Db(B) is a free abelian group on 3 generators (the

classes of its simple modules). The group automorphism induced by F ′ is given by

[k] 7→ [k] + [W ]; [V ] 7→ [V ]; [W ] 7→ −[W ].

Thus the automorphism induced by F is

[k] 7→ −[k]− [W ]; [V ] 7→ −[V ]; [W ] 7→ [W ].

This map has determinant 1 when viewed as an automorphism of K(B -mod). The

Grothendieck group of B -mod is a cyclic group of order 4 generated by [k] with [V ] =

[W ] = 2[k] thus the automorphism induced by F is the identity on K(B -mod). Note

that U1 conveniently induces the identity on b -mod. This information agrees with that

for a composition of two spherical twists.
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Appendix A

Further examples

This appendix hopes to illustrate the constructions we have demonstrated in more

detail but with an unofficial flavour. In particular, we will use Loewy layers to exhibit

the structures of various modules used in the paper. We build our Loewy structures

from the socle (bottom) and socle series are arranged horizontally throughout the ap-

pendix. Our aim is to give the reader some more intuition about the content of the

construction, in particular Proposition 3.2 and Lemma 3.3. Although there is also

intuition coming from the quivers we do not go into any further detail here. More in-

formation on quivers and relations of special linear groups of finite fields can be found

in [Koshita98][Koshita94] .

A.1 Restriction of modules

Recall our notation: p is a positive prime, n is an integer and q = pn. F is an

algebraically closed field of characteristic p, G = SL2(q) and V is the natural two-

dimensional representation of G. H is the normaliser of a Sylow p-subgroup of G. For

0 ≤ a ≤ q − 1, Sa is a simple FG-module and they form a complete set of simple

FG-modules. Let Ma be the restriction of Sa as an FH -module. For 0 ≤ a ≤ q− 2, Ua

is a simple one-dimensional FH -module.

Example A.1. For 0 ≤ a ≤ p − 1, the restriction Ma of Sa = V a = Syma(V ) is an

indecomposable uniserial FH -module with top Ua and socle U−a. Each Loewy layer has

the one dimensional module indexed by two less than the module immediately above (for
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the proof of this see [Holloway01, Chapter 5]). That is,

Ma =

Ua

Ua−2

...

U−a

with a+ 1 Loewy layers.

Taking the Frobenius twist of such a module results in multiplying the subscript of

all composition factors by p (see chapter 2). Taking tensor products of these uniserial

modules is simply taking tensor products of each component and crisscrossing them,

since all simple H-modules are 1-dimensional. These facts determine the structure of

Ma, for 0 ≤ a ≤ q − 1, via the Steinberg tensor product theorem.

Example A.2. When p = 5, n = 2, the FH -module M16 = M(1,3) is a tensor product

of M1 and M15 (V 1⊗V 3
1 ). (Recall V n = SymnV .) So we have the following Loewy

structure

M1
∼=
U1

U−1

, M3
∼=

U3

U1

U−1

U−3

and hence

M15
∼=

U15

U5

U−5

U−15

and M16
∼=

U16

U14 U6

U4 U20

U18 U10

U8

.

Notation. For clarity and convenience, we suppress the U ’s in Loewy structures yet

to appear. We have also taken modulo pn − 1 on the subscript when possible because

they are isomorphic (see chapter 2). Note that, from now on, a 0 is representing the

trivial module U0.

As one can see illustrated in the example above, kH-modules restricted from simple

FG-modules always have ‘hypercuboid’ Loewy structures. The Ext group between

simple FG-modules is well-studied, see [Carlson83]. Chuang ([Chuang01]) has extended

this knowledge of modules of the form UiMa using a spectral sequence argument.
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Now we consider the structure of projective kH-modules, using the restriction of

the Steinberg FG-module (which is known to be projective in the defining characteristic

case).

Example A.3. For p = 5, n = 2 the module M24 = M(4,4) is the restriction from G

to H of the Steinberg module (hence projective), which has Loewy structure

0

22 14

20 12 4

18 10 2 18

16 8 0 16 8

6 22 14 6

20 12 4

10 2

0
.

Example A.4. Take M1
∼=

1

23
for p = 5, n = 2. The projective cover of M1, denoted

by P1, is U1⊗M24 (see A.3, add 1 to every number). Thus the Heller translate is given

by the exact sequence

0→ ΩM1 → P1 →M1 → 0,

hence

15

21 13 5

19 11 3 19

ΩM1 = 17 9 1 17 9

7 23 15 7

21 13 5

11 3

1
.

Example A.5. Continuing from Example A.4, by tensoring U1 with the Heller translate

97



of M1 we have the following Loewy structure

16

22 14 6

20 12 4 20

U1ΩM1 = 18 10 2 18 10

8 0 16 8

22 14 6

12 4

2
.

Recall M16 for p = 5, n = 2 from Example A.2. Note that M16 is isomorphic to

the upper-right rectangular part given in the picture (separated by dotted line). The

remainder is isomorphic to M22. That is, using this rather intuitive way we have

obtained a distinguished triangle in the stable FH -module category:

M22 → U1ΩM1 →M16  .

One can check using Proposition 2.12 that Ext1G(S16, S22) is one dimensional. What

the above triangle indicated is that the non-split extension in the stable FG-module

category is isomorphic to the non-projective summand of the induction of U1ΩM1 from

H to G.

An intuitive view would be that the restriction of modules with partner subscripts

(as defined in chapter 2) gives two modules which are complements of each other. The

two partner modules join (not in the form of extension, only shape-wise) together to

form a side (as in rectangles, or hypercuboids for higher dimension) of length p when

presented in the FH -module category. (e.g. M1 and M16 in Example A.2 to A.5.) This

new ’module’ has a strictly ‘lower’ deficit than a projective FH -module which has all

sides of length p as hypercuboids. We will give some further examples for the case

when n = 3 in section A.3. Before that, in the next section we first give a full example

of the modules involved in Proposition 3.3 and Lemma 3.4.

A.2 Tables: SL2(3
2), SL2(5

2) and SL2(3
3)

Here we list the local stable correspondence and the extensions which occur in each

elementary perverse step in our proof when G = SL2(32), SL2(52) and SL2(33). In the

tables for SL2(32) we give the corresponding simple collection and tilting complexes.
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Local stable equivalent tables are enough to remake the process in derived category as

shown in section 1.5 earlier, though the expression of the result in the derived category

is messy, as one would expect from observing table A.1b.
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Table A.1: Case for SL2(32)

(a) The local stable category equivalent for B0(SL2(3
2))

B0(32) Layer 1 Layer 0

A0 M0 M2 M4 M6 = U3ΩM7

step 1 M6 = U3ΩM7 Ω−1

A1 M0 M2 U1ΩM1 U3M7 = U6ΩM6

step 2 U3M7 = U6ΩM6 M8 = 0 Ω−1

A2 U1ΩM3 U1ΩM5 U1ΩM1 U6M6 = U1ΩM7

step 3 Ω−1 Ω−1 Ω−1 Ω−1

A3 U1M3 U1M5 U1M1 U1M7

(b) The construction as in Db(SL2(3
2)) - the corresponding complex for simples

in B0(Am)

B0(32) Layer 1 Layer 0

S0 S2 S4 S6

A0 S0 S2 S4 S6

step 1 map to S6[1] and take co-cone [1]

A1 S0 S2
S4

S6
S6[1]

step 2 map to S6[2] and take co-cone * [1]

A2 co-cone(S0 → S6[2]) S2
S4

S6
S6[2]

A3 cone(S0 → S6[2]) S2[1] S4

S6
[1] S6[3]

*This step take its map to 0 and obtain its cocone - equivalent to doing nothing.

(c) Summands for one sided tilting complex for both blocks in SL2(9)

The underlined term (if it exists) is in the zeroth degree. All terms not shown are zero.

Tilting from B0(SL2(9)) to Layer 1 Layer 0

B0(A0) P0 P2 P4 P6

B0(A1) P0 P2 P4 → P4 → P6 →
B0(A2) P0 P2 P4 → P0 → P4 → P6 →
B0(A3) = B1(SL2(9)) P0[−1] P2[−1] P4[−1] → 0→ P0 → P4 → P6 →

Tilting from B1(SL2(9)) to Layer 1 Layer 0

B1(A0) P1 P3 P5 P7

B1(A1) P1 P3 P5 → P3 → P7 →
B1(A2) P1 P3 P5 → P1 → P3 → P7 →
B1(A3) = B0(SL2(9)) P1[−1] P3[−1] P5[−1] → 0→ P1 → P3 → P7 →
The full one-sided tilting complex from B to Am is the direct sum (of a certain number of

copies) of the tilting complex above.
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Table A.2: Exchanging blocks of SL2(52) under the construction, local stable category equivalent

Shorthand: UiΩ
jMa written as j

iMa U subscripts modulo 52 − 1 = 24

B0(52) Layer 1 Layer 0

S0 S2 S4 S6 S8 S10 S12 S14 S16 S18 S20 S22

A0 M(0,0) M(2,0) M(4,0) M(1,1) M(3,1) M(0,2) M(2,2) M(4,2) M(1,3) M(3,3)
1
5M(3,4)

1
5M(1,4)

step 1 1
5M(1,4)

1
5M(3,4) Ω−1 Ω−1

A1 M(0,0) M(2,0) M(4,0) M(1,1) M(3,1) M(0,2) M(2,2) M(4,2)
1
1M(1,0)

1
1M(3,0)

1
10M(0,4)

1
10M(2,4)

step 2 1
10M(0,4)

1
10M(2,4) M(4,4) = 0 Ω−1 Ω−1

A2 M(0,0) M(2,0) M(4,0) M(1,1) M(3,1)
1
1M(0,1)

1
1M(2,1)

1
1M(4,1)

1
1M(1,0)

1
1M(3,0)

1
15M(3,4)

1
15M(1,4)

step 3 1
15M(1,4)

1
15M(3,4) Ω−1 Ω−1

A3 M(0,0) M(2,0) M(4,0)
1
1M(1,2)

1
1M(3,2)

1
1M(0,1)

1
1M(2,1)

1
1M(4,1)

1
1M(1,0)

1
1M(3,0)

1
20M(0,4)

1
20M(2,4)

step 4 1
20M(0,4)

1
20M(2,4) M(4,4) = 0 Ω−1 Ω−1

A4
1
1M(0,3)

1
1M(2,3)

1
1M(4,3)

1
1M(1,2)

1
1M(3,2)

1
1M(0,1)

1
1M(2,1)

1
1M(4,1)

1
1M(1,0)

1
1M(3,0)

1
1M(3,4)

1
1M(1,4)

A5 1M15 1M17 1M19 1M11 1M13 1M5 1M7 1M9 1M1 1M3 1M23 1M21

B1(52) S1 S3 S5 S7 S9 S11 S13 S15 S17 S19 S21 S23

A0 M(1,0) M(3,0) M(0,1) M(2,1) M(4,1) M(1,2) M(3,2) M(0,3) M(2,3) M(4,3)
1
5M(2,4)

1
5M(0,4)

step 1 1
5M(0,4)

1
5M(2,4) M(4,4) = 0 Ω−1 Ω−1

A1 M(1,0) M(3,0) M(0,1) M(2,1) M(4,1) M(1,2) M(3,2)
1
1M(0,0)

1
1M(2,0)

1
1M(4,0)

1
10M(1,4)

1
10M(3,4)

step 2 1
10M(1,4)

1
10M(3,4) Ω−1 Ω−1

A2 M(1,0) M(3,0) M(0,1) M(2,1) M(4,1)
1
1M(1,1)

1
1M(3,1)

1
1M(0,0)

1
1M(2,0)

1
1M(4,0)

1
15M(2,4)

1
15M(0,4)

step 3 1
15M(0,4)

1
15M(2,4) M(4,4) = 0 Ω−1 Ω−1

A3 M(1,0) M(3,0) M(0,2)
1
1M(2,2)

1
1M(4,2)

1
1M(1,1)

1
1M(3,1)

1
1M(0,0)

1
1M(2,0)

1
1M(4,0)

1
20M(1,4)

1
20M(3,4)

step 4 1
20M(1,4)

1
20M(3,4) Ω−1 Ω−1

A4
1
1M(1,3)

1
1M(3,3)

1
1M(0,2)

1
1M(2,2)

1
1M(4,2)

1
1M(1,1)

1
1M(3,1)

1
1M(0,0)

1
1M(2,0)

1
1M(4,0)

1
1M(2,4)

1
1M(0,4)

A5 1M16 1M18 1M10 1M12 1M14 1M6 1M8 1M0 1M2 1M4 1M22 1M20
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Table A.3: Mapping from principal block to non-principal block of SL2(33), local stable category equivalent.

Shorthand: UiΩ
jMa written as j

iMa U subscripts modulo 33 − 1 = 26

B0(32) Layer 2 Layer 1 Layer 0

S0 S2 S4 S6 S8 S10 S12 S14 S16 S18 S20 S22 S24

b2 b2 = 0 b2 = 1 b2 = 2

b1 b1 = 0 b1 = 1 b1 = 2

A0 = B0 M0 M2 M4 M6 M8 M10 M12 M14 M16 M18 M20 M22
1
3M25

step 1; r = 0 1
3M25 Ω−1

A1 M0 M2 M4 M6 M8 M10 M12 M14 M16 M18 M20
1
9M19

1
6M24

step 2; r = 0 1
6M24 M26 = 0 Ω−1

A2 M0 M2 M4 M6 M8 M10 M12 M14 M16
1
9M21

1
9M23

1
9M19

1
9M25

step 3; r = 1 1
9M19

1
9M21

1
9M23

1
9M25 Ω−1 Ω−1 Ω−1 Ω−1

A3 M0 M2 M4 M6 M8
1
1M1

1
1M3

1
1M5

1
1M7 9M21 9M23 9M19

1
12M24

step 4; r = 0 1
12M24 M26 = 0 Ω−1

A4 M0 M2 M4 M6 M8
1
1M1

1
1M3

1
1M5

1
1M7

1
18M18

1
18M20 9M19

1
15M25

step 5; r = 0 1
15M25 Ω−1

A5 M0 M2 M4 M6 M8
1
1M1

1
1M3

1
1M5

1
1M7

1
18M18

1
18M20

1
18M22

1
18M24

step 6; r = 1 1
18M18

1
18M20

1
18M22

1
18M24 M26 = 0 Ω−1 Ω−1 Ω−1 Ω−1

A6
1
1M9

1
1M11

1
1M13

1
1M15

1
1M17

1
1M1

1
1M3

1
1M5

1
1M7 18M18 18M20 18M22

1
21M25

step 7; r = 0 1
21M25 Ω−1

A7
1
1M9

1
1M11

1
1M13

1
1M15

1
1M17

1
1M1

1
1M3

1
1M5

1
1M7 18M18 18M20

1
1M19

1
24M24

step 8; r = 0 1
24M24 M26 = 0 Ω−1

A8
1
1M9

1
1M11

1
1M13

1
1M15

1
1M17

1
1M1

1
1M3

1
1M5

1
1M7

1
1M21

1
1M23

1
1M19

1
1M25

A9 1M9 1M11 1M13 1M15 1M17 1M1 1M3 1M5 1M7 1M21 1M23 1M19 1M25
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A.3 Brief illustration for SL2(3
3)

Here we demonstrate how the construction is generalised to larger n using an ex-

ample with n = 3. In the following, the horizontal layers are the Loewy layers of the

module, while the skeleton gives the extension relations between simple components.

The first example is a generalisation of the case where n = 2.

Example A.6. When p = 3, n = 3. The following illustrate the module M24, M22 as

well as M22 extended by M24 on step m = 1.

24

18

12

6

0

20

14

8

2

M24

22

20 16

14

4

2 24

22

12

10 6

4 M22

22

20 16

14

4

2 24

22

12

10 6

4

24

18

12

6

0

20

14

8

2

M22 ext. by M24

Consider every projective as a 3× 3× 3 cube. The resulting module (illustrated by

the picture on the right) is isomorphic to the Heller translate of a module with shape

(1, 0, 2), which corresponds to M19. Comparing the socles of M19 and the module which

is isomorphic to M22 extended by M24, one can get a distinguished triangle

M24 → U9ΩM19 →M22  .

When m is a multiple of p(= 3) (with rm = 1) we put the pre-fabricated modules

from previous step to modules 1 layer lower.

Example A.7. Continuing the previous example, M10 is extended by the module formed

above (U9ΩM19) to get a module isomorphic to the Heller translate of U1M1.
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22

20 16

14

4

2 24

22

12

10 6

4

24

18

12

6

0

20

14

8

2

U9ΩM19

10

8 18

16

M10

22

20 16

14

4

2 24

22

12

10 6

4

24

18

12

6

0

20

14

8

2

10

188

16

The extension
(Line and Dash)

(= U1ΩM1)

2

0

This process can be expressed by the distinguished triangle U9ΩM19 → U1ΩM1 →

M10  , which occurs in step 3.
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