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Abstract 

Compressor plant frequently operates under unsteady conditions. This is due to 

pressure fluctuations, variable flow demand, or unsteady inlet conditions, as well as 

shaft speed variation. Also, following demand, compressor plants often work 

intermittently with frequent starts and stops. This may cause premature wear, decrease 

of compressor performance and even failure, which might cost millions of pounds to 

industry in downtime. However, there is still a lack of published data which describes 

intermittent plant behaviour, or predicts the effects of unsteady operation upon 

compressor plant performance. Thus, there appears to be a need to develop a 

mathematical model to calculate compressor plant performance during intermittent 

operating conditions and to verify this model with experimental data.  

Accordingly, this thesis describes an experimental and analytical study of screw 

compressor plant operating under unsteady conditions. For this purpose a one-

dimensional model of the processes within a compressor was used, based on the 

differential equations of conservation of mass and energy, extended to include other 

plant components, such as storage tanks, control valves and connecting pipes. The 

model can simulate processes in both oil-free and oil-injected compressor plants 

during transient operation, including the effects of sudden changes in pressure, speed 

and valve area. Performance predictions obtained from the model gave good 

agreement with test results.  

This model can, therefore, be used to predict a variety of events, which may occur in 

everyday compressor plant operation.  
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1. Introduction 

Screw compressors are extensively used in industry and their application is so wide 

that it is difficult to overestimate the role that they play in the contemporary 

engineering world. As described by Stosic et al (2003), during the past 30 years 

traditional reciprocating compressors have been replaced, by those of the twin screw 

type, in many applications.  Since most of them operate mainly under unsteady 

conditions, there has been an increasing need to investigate their behaviour under 

transient conditions. Despite this, there is still a lack of published information on both 

predictive methods and test results that describe how they operate under such 

conditions.  

 

Figure 1: Twin screw compressor  

As shown in Figure 1, screw compressors are rotary positive displacement machines 

of simple design, with their moving parts comprising only two rotors revolving in four 

to six bearings. Their working principle is described in Appendix 1. Due to their pure 

rotary motion, they are capable of efficient operation at high speeds over a wide range 

of operating pressures and flow rates. They are thus both compact and reliable. 

Consequently, the majority of industrial positive displacement compressors now 
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produced are of this type. Their remarkable success is due to improvements in their 

rotor profiles, detailed computer modelling of the flow processes within them, and the 

development of profile milling and grinding machine tools that produce rotor profiles, 

with linear tolerances of less than 10 μm, at an economic cost. Machines can thus be 

manufactured with rotor interlobe clearances of 30-50 μm, thereby greatly reducing 

internal leakages and, consequently making them more efficient than other types. 

Gas compression constitutes a core part of many industrial processes, such as 

refrigeration, air conditioning, ice and snow production, food processing, the oil and 

gas industries, power generation, chemical factories, and mining. Also, compressed 

air is widely used to operate control systems. 

 

Figure 2: Oil-injected process screw compressor plant, the compressor is on the right, 

the oil-separator on the left, the suction pipe on the top and service ladders in the 

middle (Courtesy of Howden. Compressors) 

A typical industrial compressor plant is presented in Figure 2. This includes a screw 

compressor, together with an electric drive motor, an oil-separator/oil tank, oil or gas 

coolers, pumps, pipes, filters and automatic controls.  The power input for such 

systems varies from 100kW to 3MW depending on required flow. Large industrial 

compressor plants can cost millions of pounds and their failure usually causes the plant 



 
16 

 

to shut down.  This can result in production losses that cost more than the equipment 

itself. So, simulation of their performance under extreme operating conditions is vital 

at the design stage in order to choose all the components correctly, to reduce 

equipment cost and to avoid plant failure. Thus, the plant design process should 

include performance estimates under varying, as well as steady state conditions. 

Various general commercial software packages have therefore been developed for this 

purpose.  Those, which treat power and process plant dynamics, are well known by 

their commercial names, such as Aspen Hysys by Aspen Technology, Dynsim by 

Schneider Technology and Scada by Inductive Automation.  These and other similar 

programs are available to determine and follow dynamic plant behaviour. Their 

specialists constantly stress the importance of dynamic studies. Nicholas Brownrigg, 

AspenTech, says that “dynamic simulation of gas processing and petroleum refining 

processes is vital for the prevention of catastrophic equipment occurrences; the 

protection of compressors from mechanical failure is essential to maximise operating 

time and ensure safer operations”. 

However, their role is limited to the estimation of overall plant dynamics and this does 

not to include the dynamic behaviour of the compressor plant in sufficient detail for 

reliable detailed design of the compressor and its associated components.  

Apart from their insufficient detail in the treatment of compressors, these generalised 

software packages, usually, do not contain detailed information about the models, used 

to describe the plant elements and, in general, do not give the equations used in them 

and their methods of solution, while they operate through predefined menus, which do 

not contain enough information to define the compressor itself. Thus it is only possible 

to use these programs to check predefined situations without understanding the model 

on which the processes is based. Moreover, none of these solvers use detailed 

compressor models, but are usually based on empirical data. 

Thus there is a clear need for a detailed analysis of the compressor process, included 

in a complete plant dynamic study.  
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1.1. Phenomena Associated with Transient Behaviour of Screw 

Compressors 

The most significant transients and their effect on a compressor system, during 

unsteady plant operation, are summarised in Table 1 below. 

Table 1: Types of screw compressor plant and their associated transient phenomena 

Transient Type Area of Occurrence Effect 

Frequent startup and 

shutdown  

Small air and refrigeration 

compressor plants 

Increased power 

consumption, premature wear 

and failure 

Effect of parameter 

changes: pressure 

fluctuations, shaft 

speed variation, 

variable flow 

demand and 

variable inlet 

conditions 

Offshore platforms, 

Chemical and Process gas 

plants, Refrigeration plants, 

Air-conditioning 

Use of overdesign factors 

from previous experience 

leads to equipment cost 

increase. Curves and 

diagrams used for extreme 

cases lead to risk of early 

failure.               Compressor 

work in off-design mode 

leads to compressor 

performance decrease. 

 

1.2. Thesis Outline 

This thesis has been prepared in 10 Chapters. Chapter 1 gives a detailed explanation 

of the motivation for this research, stresses the value of dynamic simulation studies 

and also describes phenomena associated with the transient behaviour of compressor 

plant. Chapter 2 contains a literature review and describes the problems of compressor 

dynamic modelling and the effects of transient behaviour on compressor performance. 

Chapter 3 states the research aims, objectives and the contribution made. Chapter 4 

describes the experimental work done.  This includes a description of the test rigs used. 

Chapter 5 describes the mathematical model developed for the analysis of screw 
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compressor plant. Chapters 6 and 7 describe the results of 2 major experiments, and 

how these compare with the model predictions. Chapter 8 describes a number of 

simulated cases of screw compressor plant intermittent behaviour. Chapter 9 gives 

conclusions, derived from the work carried out and Chapter 10 suggests some 

proposals for further investigation.  
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2. Literature review 

2.1. Transient behaviour and its effects 

     2.1.1. Startup and Shutdown of Process Plant 

Ogbonda (1987) investigated the dynamic simulation of chemical plant and stated that 

“information about the stability of the startup and shutdown processes can help process 

engineers to evolve better startup and shutdown procedures”. The Honeywell 

Dynamic Engineering Studies Group (2012) confirmed that dynamic models of new 

plant designs, their review and testing, can make shorter commissioning, thus making 

significant money and time savings for large process plants. 

Jun and Yezheng (1988, 1990) carried out experimental studies on the effects of 

working fluid migration in a refrigeration system operating with a reciprocating 

compressor, during the startup and shutdown processes. They developed a program to 

estimate energy losses and how to calculate their effect, with the aim of reducing 

energy consumption.  

Fleming et al (1996) published a paper on the simulation of shutdown processes in 

screw compressor driven refrigeration plant. Their idea was to investigate the 

replacement of a suction non-return valve by a reverse rotation brake because a non-

return valve causes an additional pressure drop in the line and is prone to malfunction, 

caused by the accumulation of debris in the refrigerant. A reverse rotation brake holds 

the compressor rotors stationary, to avoid backflow into the evaporator and prevents 

the compressor being driven like a motor in reverse by the high-pressure gas.  

However, for safe system shutdown, the shutdown torque should not exceed the 

normal running torque. Thus, a reverse rotation brake is a good option in the case of 

off-loaded compressor shutdown but in the case of an emergency shutdown, it might 

cause plant failure. A mathematical model was presented in this paper, but without 

experimental validation.  

Li and Alleyne (2009) investigated transient processes in the startup and shutdown of 

vapour compression cycle systems, operating with semi-hermetic reciprocating 

compressors. They established a model of a moving boundary heat exchanger and 

validated it experimentally. Ndiaye and Bernier, 2010 developed a dynamic model for 
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a reciprocating compressor during on-off cycle operation and validated it as a part of 

an experiment to justify water-to-air heat pump models. A recent paper, by Link and 

Deschamps (2011), deals with numerical methods and the experimental validation of 

their results, during transient startup and shutdown processes in reciprocating 

compressors. 

     2.1.2. Effects of Parameter Changes 

Mokhatab (2007) confirmed the purpose and relevance of plant dynamic modelling. 

That paper describes the dynamic simulation of offshore production plant where the 

parameters, such as flow, may change frequently. A dynamic model to predict the 

effects of severe slugging or unstable flow of the offshore process plant was 

developed. That model was verified by experiment and it is shown that the model can 

be used as “a useful engineering tool for the reliable simulation of separation facilities 

during normal transients and more serious upsetting conditions”. Another benefit of 

this model, which has been confirmed by other authors, is that “by using this model 

one can check whether the production system handles unstable flows or if the proposed 

production control system is stressed”. It is mentioned that slugging leads to unstable 

plant operation and even to its shutdown and restart. Also, it is said that it is very 

important to have an accurate dynamic model, which allows for the accurate design of 

the separator size, to avoid over-dimensioning, because every kilogram of material 

counts on offshore platforms.  

The same paper mentions two other unstable types of plant behaviour: “At the 

conceptual design stage, dynamic simulation studies are particularly valuable in 

evaluating process design options and carrying out controllability studies. During the 

detailed design phase, dynamic simulation can be used as a tool to check and develop 

startup and shutdown procedures and examine case scenarios”.   

     2.1.3. Control Systems Design 

The Honeywell Dynamic Engineering Studies group (2012) worked on various aspects 

of dynamic simulations, including compressor control and process design and 

controllability. They stressed that “the cost of damage to compressor systems can 

quickly run into tens of millions of dollars, not only due to the cost of equipment but 

also due to the loss of profit during plant downtime”. Also, it is stated that it is essential 
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for large process plants to be shut down just once in 2-3, sometimes even in 5 years. 

That is why it is critically important to provide dynamic models which include detailed 

compressor models, as well as valves, tanks and pipes to know answers to questions 

of the type “what would happen if..” Some of these answers can be provided by 

dynamic simulation studies and will play a vital role in decision making in 

improvement of the design, or in testing of new designs before they are built, as it was 

concluded by Ogbonda (1987). 

Bezzo et al (2004), who studied both steady state and dynamic simulation of the 

purification stage for a vinyl chloride synthesis industrial plant, stated that dynamic 

modelling is a powerful tool to assess control system performance and for hazard 

analysis in case of abnormal events. Dynamic simulators can be used to design a 

control system and to verify its effectiveness. Also that paper demonstrated that both 

steady state and dynamic simulations can be used by plant engineers for better 

understanding of process behaviour.  Similar conclusions were drawn by other authors 

mentioned above. 

2.2. Dynamic modelling 

Some issues of screw compressor dynamic modelling have been considered, as 

simulation potential was increased, due to the availability of much more powerful 

computers. The papers of Sauls, Weathers and Powell (2006) presented a transient 

thermal analysis of screw compressors. A control volume model based on the 

principles of conservation of mass and internal energy was applied in the first instance 

and then the derived values of pressure and temperature were used as boundary 

conditions for a 3-D Finite Element Method. Detailed descriptions of such methods 

are presented in books by Stosic et al, 2005 for the chamber model and Kovacevic et 

al, 2007 for the 3-D Computational Fluid Dynamics. An integrated model was 

presented at the IMechE Conference by Kovacevic et al (2007). This model combines 

the benefits of both methods and enables faster calculation than from full 3-D CFD 

modelling with more accurate results than from 1 quasi-dimensional modelling. 

Krichel and Sawodny (2011) presented a model for the dynamic simulation of an oil-

injected screw compressor. They split the plant into four subsystems, namely: throttle-

valve, motor, screw compressor block, and oil/air separator, and presented them as 

separate mathematical models. It was emphasized in that paper that the warm-up and 
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shutdown phases require a lot of energy and that this is often ignored when studying 

steady state compressor plant operation. This again confirms that screw compressor 

transient operation is worth investigating and that both existing and advanced 

mathematical models should be adapted, extended and improved in order to predict 

compressor performance during unsteady operation.  
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3. Aims of the Research and its Contribution to Science and 

Engineering 

3.1. Aims of the research  

The aim of the studies described in this thesis was to investigate, develop and verify a 

mathematical model suitable for the analysis of screw compressor plant operating 

under transient conditions. To achieve this, the following objectives were set: 

 Development of a mathematical model and additional procedures to predict 

compressor plant system performance, when operating under unsteady 

conditions; 

 To determine how variable operation parameters influence compressor system 

performance; 

 The development of software that enables various kinds of unsteadiness, which 

may appear during the plant operation, to be simulated; 

 Validation of the results obtained from simulation by comparison with 

measurements obtained from real screw compressor plant. 

 The desired outcome of this research was to develop a tool for everyday use 

by engineers and other specialists to identify and study the unsteady behaviour 

of real screw compressor plant. 

 

3.2. Contribution to Science and Engineering 

As a result of the work described in this thesis the following original contributions 

have been made to the modelling of compressor plant when operating under unsteady 

conditions: 

 Development of a finite difference model, based on the differential equations 

of the conservation of internal energy and mass continuity of a complex 

compressor plant which consists of a screw compressor, low pressure and high 

pressure tanks and communications between them and auxiliary equipment, 

like valves or pumps. It is, up to now, the only model available in the open 
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published literature, which describes the whole compressor plant, including a 

detailed screw compressor model.  

 

This was done by combining the full compressor model with the finite 

difference description of a lumped tank and tube process. The difference of 

this approach, to that of the classical tank and tube, was in its ability to acquire 

dynamic characteristics of the compressor plant. Moreover, since the plant 

time constant was far larger than the compressor time constant, these two 

dynamic processes were coupled together by two independent time scales, the 

compressor, solved in its time, fully converges within one plant time step.  

This then marches with the compressor results as boundary conditions. An 

application of this type is not known to have been published for any kind of 

compressor. 

 

 The model was verified by tests on an experimental compressor plant, during 

unsteady operation, using both oil-injected and oil-free screw compressors.  

This included startup, speed and pressure variation. A variety of experimental 

data for different compressor types, different speeds and different startup 

scenarios is available, on request, for further analysis. The data acquisition 

system was modified to register dynamic changes within the plant, which 

required a new time scale to be introduced compared with previous 

measurements. Apart from that, the screw compressor startup process was 

measured.  This has not been found in other publications. 

 

 Sample cases, and how they vary in the different scenarios that may occur in 

compressor plant, were calculated, together with a comprehensive study of the 

plant response in each case. 

 

The developed model has a wide range of applications within the screw compressor 

field including both oil-injected and oil-free types.  It can be used in compressed air 

plant, process plant or refrigeration plant, with different types of working fluid, such 

as gas or refrigerant or a gas-liquid mixture.  In addition, the effects of water or 

refrigerant injection can be considered; and, finally, all operating parameters can be 
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varied in this model to predict plant performance during non-steady modes of 

operation. 

 

The results of the investigation performed in this thesis will reside at the Compressor 

Centre as an engineering design tool to help those who wish to include unsteady 

aspects of complex plant behaviour in their performance and design calculations.     
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4. Experimental Studies 

To investigate and identify the parameters, which are significant for transient 

performance analysis, experimental studies were carried out prior to the mathematical 

model development. These have already been described by Chukanova et al (2012). 

Further experimental work was then done in order to verify the mathematical model 

after its development. This chapter describes the equipment used and an overview of 

the parameters tested. Four sets of tests were carried out over a period of 3 years. All 

were performed on the air compressor test rig in the Compressor Centre Laboratory.  

This is shown in Figure 3. Two startup investigations and two speed variation tests 

were performed.  

 

Figure 3: Laboratory Air Compressor Test Rig for both oil-free and oil-injected 

machines 
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4.1. Test Rig Description 

Two air compressor test rigs with some common shared facilities were available, so 

that it is possible to test either oil-injected or oil-free air compressors. In both cases 

atmospheric air is induced externally through a common flue pipe. Accordingly, it was 

possible to check both types of compressor plant.  All the pressure transducers and the 

torque meter were recalibrated for the tests and the calibration results were input to 

the data acquisition software. More details of the rig and its instrumentation are given 

in Appendices 2 and 3. 

4.1.1. Oil-Injected Air Compressor Plant 

 

Figure 4: Schematic view of oil-injected compressor test rig – Computer screen 

A schematic layout of the oil-injected air compressor test plant is shown in Figure 4. 

The compressor is driven by a six-band belt drive coupled to a 75 kW electric motor. 

The speed is controlled by a frequency inverter. The two stage oil separator, shown in 

Figure 4, consists of two separator tanks, which are limited to operate at a maximum 
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working pressure of 15 bars.  The combined volume of the two tanks is 325 cubic 

litres. The oil cooler is a water cooled shell and tube heat exchanger. This system does 

not have a pump, the oil is injected into the compressor by means of the pressure 

difference between the oil separator and compressor working chamber. A motor driven 

throttle valve, after the oil separator, controls the air pressure inside the oil separator. 

The compressor tested is shown in Figure 5.  It has a 4/5 lobe configuration (4 male 

rotor lobes and 5 female rotor lobes).  The main rotor diameter is d=128mm, while the 

length to diameter ratio, L/d=1.55.  

Figure 5: Oil-injected screw compressor tested 

The first tests were concerned with a study of the plant during startup, when the 

rotational speed changes, during the first few seconds, from zero to 3,000rpm, before 

attaining steady conditions. Details of the tests carried out, together with an analysis 

of their results are given in Chapter 6.  

On completion of the startup tests, a study was carried out on the effects of speed 

variation, while maintaining a fixed starting pressure of 4 bar.  Step changes in speed 

of 1000rpm, were made between 2000rpm and 5000rpm.  A time interval of 60 
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seconds was made between tests in order to enable the pressure to stabilise after each 

speed change.  Table 2 shows the final pressures achieved for each selected speed. 

Table 2: Oil-injected compressor experimental plan: Initial pressure and speed values 

are not highlighted.  Experimentally obtained pressure values are highlighted in grey 

№ Pressure, 

bar 

Shaft Speed, 

rpm 

1 4 2000 

2 6.0 3000 

3 7.8 4000 

4 9.3 5000 

5 7.8 4000 

6 6.0 3000 

7 4 2000 

 

4.1.2. Oil-Free Air Compressor Test Plant 

 

Figure 6: Schematic view of oil-free compressor test rig – Computer screen 
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The experimental test rig for an oil-free compressor, as shown in Figure 6, has many 

parts in common with the oil-injected compressor test rig, but the oil-free compressor 

is driven through a gearbox.  There is no oil supply or oil cooler but an air cooler is 

included to reduce the temperature of the discharged air. 

The compressor tested is shown in Figure 7. This has a 3/5 lobe configuration. The 

main rotor diameter is d=127mm, while the length to diameter ratio is L/d=1.6.  

Figure 7: Tested oil-free machine 

Tests were carried out, varying the speed of the male rotor between 3000 rpm and 

8500rpm with a time interval of 30 seconds between tests. The results of the tests are 

shown in Table 3, where the intial values are not highlighetd but the final pressures 

obtained, as a result of the change in speed are highlighted grey.  
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Table 3: Oil-free compressor experimental plan: Initial pressure and speed values are 

not highlighted. The final obtained pressures are highlighted in grey 

 

№ Pressure, 

bar 

Shaft Speed, 

rpm 

1 1.2 3000 

2 1.45 5000 

3 1.85 7000 

4 2.2 8500 

5 1.85 7000 

6 1.45 5000 

7 1.2 3000 
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5. Mathematical Model of the Screw Compressor Plant 

The previous chapter described the experimental work which was done to verify the 

model developed for analysing unsteady screw compressor plant operation. The 

mathematical approach used in this model is explained in this chapter, and describes 

separately a model for the compressor itself and a model for the whole plant.  

The algorithm of the thermodynamics and flow processes in a screw compressor, 

described by Stosic et al (2005), is based on a mathematical model, defined by a set 

of differential equations, which describe the physics of the complete process in a 

compressor. The equation set consists of the equations for the conservation of energy 

and mass continuity together with a number of algebraic equations defining the flow 

phenomena in the fluid suction, compression and discharge processes.  Also included 

are differential kinematic relationships, which describe the instantaneous operating 

volume and its change with the shaft rotation angle or time. The model accounts for a 

number of 'real-life' effects, which may influence the final performance of a 

compressor and validate it for a wider range of applications.  Any gas or liquid-gas 

mixture of known properties can be used as a working fluid.  The model takes account 

of heat transfer, between the gas and the compressor rotors and its casings, and leakage 

between rotor-to-rotor and rotor-to-casing.  

 

5.1 Equations governing the screw compressor process 

The working chamber of a screw machine, together with the suction and discharge 

plenums, can be described as a flow system in which the mass flow varies with time 

and for which the differential equations of conservation laws for energy and mass are 

derived using Reynolds Transport Theorem. More details are given in Appendix 4. 

The following are the simplifications that were made: 

 Fluid flow in the model is assumed to be quasi one-dimensional; 

 Kinetic energy changes of the working fluid within the working chamber are            

negligible compared to internal energy changes; 

 Gas or gas-liquid inflow to and outflow from the compressor ports is assumed 

to be isentropic; 
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 Leakage flow of the fluid through the clearances is assumed to be adiabatic. 

A feature of the model is to use the unsteady flow energy equation to compute the 

effect of variation of influential parameters upon the thermodynamic and flow 

processes in a screw machine in terms of rotational angle, or time.  

The following conservation equations have been employed in the model.  

The conservation of internal energy: 

               in in out out

dU dV
m h m h Q p

d d
 

 

 
    

 
                                     (1) 

Where θ is angle of rotation of the main rotor, h=h(θ) is specific enthalpy, 

 m m  is mass flow rate, p=p(θ) is fluid pressure in the working chamber control 

volume,  Q Q   is heat transfer between the fluid and the compressor surrounding 

and  V V   is local volume of the compressor working chamber. Flow through the 

suction and discharge ports is calculated from the continuity equation:  

in out

dm
m m

d



                                                                (2) 

The suction and discharge port fluid velocities are obtained through the isentropic flow 

equation. The computer code also accounts for reverse flow. This is calculated through 

equation 3: 

             2 12( )w h h                                                                                        (3) 

Leakage in a screw machine is an important part of the total flow rate and affects the 

compressor delivery, i.e. the volumetric and adiabatic efficiencies; the gain and loss 

leakages are considered separately. The gain leakages come from the discharge 

plenum and from the neighbouring working chamber with a higher pressure. The loss 

leakages leave the chamber towards the suction plenum and to the neighbouring 

chamber with a lower pressure. 

An idealized clearance gap is assumed to have a rectangular shape and the mass flow 

of leaking fluid is expressed by the continuity equation:  

            l l l l gm w A                                                                                     (4) 
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where  and w are density and velocity of the leaking gas, Ag = lg.δg is the clearance 

gap cross-sectional area, lg is the leakage clearance length, δg is the leakage clearance 

width or gap and μ=μ(Re,Ma) is the leakage flow discharge coefficient. 

The leakage velocity through the clearances is considered to be adiabatic Fanno-flow 

through an idealized clearance gap of rectangular shape and the mass flow of leaking 

fluid is calculated from the continuity equation. The effect of fluid-wall friction is 

accounted for by the momentum equation with the friction and drag coefficients 

expressed in terms of the Reynolds and Mach numbers for each type of clearance: 

              

2

0
2

l

l l

g

wdp dx
w dw f

D
  

                                                                          (5) 

where f(Re,Ma) is the friction coefficient which is dependent on the Reynolds and 

Mach numbers, Dg is the effective diameter of the clearance gap, 2g gD   and dx is 

the length increment. 

The injection of oil or other liquids for lubrication, cooling or sealing purposes, 

modifies the thermodynamic process substantially. The same procedure can be used 

to estimate the effects of injecting any liquid but the effects of gas or its condensate 

mixing and dissolving in the injected fluid or vice versa should be accounted for 

separately.  

The solution of the droplet energy equation in parallel with the momentum equation 

yields the amount of heat exchange with the surrounding gas.  

The equations of energy and continuity are solved to obtain U(θ) and m(θ). Together 

with V(θ), the specific internal energy and specific volume u=U/m and v=V/m are 

now known. T and p, or x can then be calculated. All the remaining thermodynamic 

and fluid properties within the machine cycle are derived from the pressure, 

temperature and volume directly. Computation is repeated until the solution 

converges. 

For an ideal gas, the internal thermal energy of the gas-oil mixture is given by: 

      
1

oilgas oil oil

mRT
U mu mu mc T


   


                                    (6) 
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Hence, the pressure or temperature of the fluid in the compressor working chamber 

can be explicitly calculated by the equation for the oil temperature Toil. 

 

In the case of a real gas the situation is more complex, because the temperature and 

pressure cannot be calculated explicitly. However, since the equation of state 

p=f1(T,V) and the equation for specific internal energy u=f2(T,V) are decoupled, the 

temperature can be calculated numerically from the known specific internal energy 

and the specific volume obtained from the solution of differential equations, the 

pressure can then be calculated explicitly from the temperature and the specific 

volume by means of the equation of state.  

 

These equations are in the same form for any kind of fluid, and they are essentially 

simpler than any others in derived form. In addition, the inclusion of any additional 

phenomena into the differential equations of internal energy and continuity is 

straightforward. A full account of the compressor model used in this work can be 

found in Stosic et al (2005). 

 

5.2 The unsteady process in a lumped volume of the plant reservoirs 

and connecting pipes 

The screw compressor plant model is represented in Figure 8. The detailed screw 

compressor model, described in section 5.1, is shown within the small red rectangle. 

The whole plant program, described in this section, is shown in the large red rectangle.  

All connecting pipes in the compressor plant are considered to be short enough, for 

their volumes, together with the reservoir volumes, to be summed up into one lump 

tank volume. This assumes that all the thermodynamic properties are uniform within 

such a control volume. Thus the conservation equations of continuity and energy 

already used in equation (1) for the compressor model may be utilized for the tank 

calculations. 

in in out out

dU dV
m h m h Q p

d d
 

 

 
    

   
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Since the heat transfer Q  and the compressor work 
dV

p
d




 do not exist in the tank 

system, this equation now takes the following form: 

in in out out

dU
m h m h

d




 
  

 
 

 

Figure 8: Screw compressor plant model used for transient analysis 

The tank filling/emptying equations for that analysis derived from equations (1) and 

(2) in the form of finite differences are now as follows: 

 
 

 

2 2 1 1

2 1

in in out out

in out

m u m u m h m h t

m m m m t

   

   
                                                         (7) 

where indices 1 and 2 denote the start and end times of filling/emptying respectively 

and Δt is the time difference between them. 

The ideal gas case may serve as an illustration in which the finite difference equations 

of thermodynamic and flow parameters can be written as: 

 
2 1  ( )in in out out

R t
p p m T m T

V

 
                                                                    (8)
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 2 02    2 ( )outm A p p     
 2

2 2
2

2

m

V

p
T

R



                                    (9)

 

To estimate the unsteady behaviour of a compressor plant system, the tank equations 

are coupled with the compressor model equations and solved in sequence to obtain a 

series of results for each time step.  

The algorithm used in the developed program is presented in Figure 9. When the 

pressure p2 in the tank at each time step is known, the flow and temperature min and 

Tin, at the compressor discharge, can be calculated. These derived values are then taken 

as the input parameters for the next time step. When the tank pressure p2 is calculated, 

mout is either known, or calculated, as for the flow through the exit throttle valve to 

pressure p0, and T2 becomes Tout in the next time step. The calculation is repeated until 

the final time is reached. 

Mass inflow and outflow are calculated as pipe flow with restrictions which comprise 

both line and local losses, thereby defining pressure drops within the plant 

connections. Since the tanks are of far greater volume than the connections, which 

results in far lower gas velocities within them, the losses in the tanks are far lower than 

the pipe losses and can be neglected.  

Two levels of programming were applied. Firstly the compressor and plant processes 

were solved separately. The compressor process was calculated through the software 

suite which simulates the screw compressor process. The results from the compressor 

program were used as inputs to the plant program allowing the plant process to be 

calculated. The results were presented in tabular and graphical form by the use of 

Excel, with mutual interchange of their input and output data. This speeded the 

calculation, allowing the bulk estimation of the unsteady behaviour of a screw 

compressor plant under various scenarios.   
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Figure 9: Flow Chart of transient screw compressor plant program  
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6. Startup Test Results and Data Analysis 

The first tests were to investigate the startup characteristics of air oil-injected screw 

compressor plant as a transient process in order to verify the utilisation of the simple 

filling tank program as a first step in the development of a more advanced model in 

the future. 

6.1 Verification of Filling Tank Simulation 

The simulation process of the tests was straightforward, because the discharge valve 

was closed and the analytical model was very simple, while the full model is presented 

in Chapter 5. As shown in Figure 10 and Figure 11, the simulated and measured results 

agree closely. 

 

Figure 10: Measured and predicted rates of pressure rise in the tank during compressor 

startup when the starting pressure is 5 bar  

This indicated that the model could be used to simulate the compressor startup and 

shutdown. The next step was to use this program to simulate some interesting 

situations during the startup as, for example, rapid change of shaft speed, and variation 

of pressure or change in the tank volume. This gave an insight into what happens to 

the system pressure immediately after the parameters are changed. 
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Figure 11: Measured and predicted rates of pressure rise in the tank during compressor 

startup when the starting pressure is 7 bar 

6.2. Data Analysis 

As already stated, the aim of these tests was to determine the behaviour of the 

compressor before oil injection started. It was expected that, during startup, the 

temperature would rise quickly before the oil enters the working chamber.  This might 

result in damage to the rotor surfaces. Frequent start-stop operation may, therefore, 

lead to wear and a rapid decrease in the compressor performance. 

It can be seen from Figure 12 that when the compressor started from atmospheric 

pressure, the temperature increases from 55 up to 100oC and after 8 seconds it 

decreases to 90oC due to the development of oil injection. It needed some time for the 

pressure to build-up in the oil reservoir and for oil to enter the compressor as a result 

of the pressure difference. 

The situation is different when the compressor starts with its discharge pressure higher 

than the inlet pressure, as shown in Figure 13. In this case, when the compressor stops, 

oil flows into the compressor due to the pressure difference, but since the rotors are 

not revolving, the compressor will fill with oil. So, when it starts to rotate, again, the 
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oil within it will flow out through the compressor discharge port and the temperature 

will immediately decrease. Soon afterwards, it stabilises. However, as shown in Figure 

12 and Figure 13 when the compressor stops at atmospheric discharge pressure, the 

discharge port is open and all the oil flows out of it. As a consequence, when the 

compressor starts, it contains no oil and there is no pressure difference to promote its 

flow. This period of dry contact between the rotors, can be reduced by closing both, 

the compressor suction and discharge during the start. When the compressor starts, a 

pressure difference develops immediately due to the pressure drop in the compressor 

suction.  

 

Figure 12: Oil-injected air compressor startup characteristics when discharging at 

atmospheric pressure 
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Figure 13: Oil-injected air compressor startup at increased discharge pressure. 

Decrease of torque between 1.7 and 2 s is due to the improved lubrication after the oil 

flow was established 

The effect of closed suction is shown in Figure 14. This creates a significant 

temperature rise from 50oC up to 90oC in the first 2 seconds due to the high compressor 

pressure ratio caused by low suction pressure. When the pressure difference reaches 

the required level, oil flows in and the temperature decreases. The non-lubricated 

period is decreased from 8 seconds for an ordinary start, as shown in Figure 12, down 

to only 2 seconds when starting with closed suction. After a period of, 32 seconds, as 

shown in Figure 14, the suction was opened manually and the temperature rose again.  

The reason for this second temperature increase is that by opening the suction, the gas 

inflow was increased and the oil flow was insufficient to keep the air temperature at 

the same level. The temperature then increased during the next 2 seconds until the 

pressure difference built-up for enough oil to be injected. The second increase is less 

significant than the first, because the temperature only increased from 55oC up to 70oC 

during this phase. 
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Figure 14: Oil-injected air compressor start with closed suction 

There are other advantages to starting the compressor with closed suction because, as 

the compressor starts in this manner, the suction pressure decreases below atmospheric 

pressure and the air flow is almost zero.  However, the discharge pressure will be equal 

to the atmospheric pressure, as in the case when the discharge is open. As can be seen 

in Figure 15, where the starting torque required  is compared to the case shown in 

Figure 12, and that in Figure 14, it follows that due to the small pressure difference 

between inlet and discharge pressures, the peak torque is approximately one third 

lower than during start with open suction, while the starting torque is approximately 

four times less. As a consequence, this will result in a safer start, lower power 

consumption and, less noise. This procedure is applied by many screw compressor 

manufactures. 
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Figure 15: Comparison of startup with open and closed suction for oil-injected air 

compressor, Upper graph shows Torque, Lower graph shows discharge pressure 
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It was found, from further startup tests with closed suction, that it took a longer time 

to reach 3000rpm as the discharge pressure was increased, as shown in Figure 16 and 

Figure 17. It is clear that the slowest start and the lowest acceleration were achieved 

at 7 bar discharge, which was the highest pressure achieved. It was not possible to start 

the compressor at discharge pressures above this value, due to limitation of the motor 

current.   

 

Figure 16: Startup times for oil-injected air compressor at different discharge 

pressures,  for clarity, the same starting point is assumed fo all cases 
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Figure 17: Startup times for oil-injected air compressor at different discharge pressures 

 

Figure 18: Startup torque variation with discharge pressure for oil-injected air 

compressor  

As shown in Figure 18, the torque variation, during startup, follows a similar trend, 
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at rest, falling.   However, as shown in, there is a reversal in the trend of the startup 

discharge pressure, which  rises, immediately at 5 bar, but which falls initially at 6 bar 

and 7 bar, before starting to rise.   

This follows because the internal discharge pressure of compressor is 4.7 bar but the 

pressure in the pipe was measured straight after the discharge and is shown in Figure 

19. Accordingly, as soon as compressor started running and the discharge port was 

opened, there was a pressure drop when the pressure in the pipe was 6 and 7 bar.  

However, when pressure in the pipe was 5 bar, it started to increase immediately.     

  

Figure 19: Discharge pressure curves for oil-injected air compressor startups at 

different pressures  

 

6.3. Torque Classification and Moment of Inertia Quantification 

The thermodynamic process, the pressure forces acting on the rotors and the shaft 

torque were all estimated using DISCO, the proprietary software package for the 
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are already given in Chapter 5. This was written to predict compressor behaviour 
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during steady state operation, but was used here, in a sequence of calculations, to 

derive values at each discreet time, and thus, to simulate unsteady behaviour and to 

quantify inertial effects during the compressor startup.   

The simulation results obtained from the thermodynamic model are different to those 

obtained from the test data, as shown in Figure 20 for the case of the compressor 

starting at a discharge pressure of 7 bar.  

 

Figure 20: Comparison between simulated and measured Speed and Torque changes 

for oil-injected air compressor at a discharge pressure of 7 bar 

The difference between the simulated torque, with mechanical losses taken into 

account, as extrapolated, and the measured values, during the first 4 seconds can be 

explained as due to rotor inertia in the period between 0.5s and 4s and the increased 

friction torque in the period between 0s and 0.5s. The simulation did not function at 

speeds below 1000 rpm.  

Diagrams for the compressor starting at both atmospheric pressure and increased 

pressure at discharge are presented in Figure 21 and 22.  
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Figure 21: Starting torque diagrams for an oil-injected air compressor discharging at 

atmospheric pressure 

 

Figure 22: Starting torque diagrams for an oil-injected air compressor discharging at 

above atmospheric pressure 

Pressure torque could be estimated by the DISCO software and friction torque can be 

estimated from the assumed mechanical efficiency but inertia torque can only be 

derived from the difference between the measured and predicted values. 
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A qualitative analysis of starting torque curves, based on Figure 21 and Figure 22 is 

given   below, where the torque curves were analysed assuming the following:   

Total torque = Pressure torque plus Friction torque plus Inertial torque 

Table 4: Torque effects during oil-injected air compressor startup 

 Start from Atmospheric 

Pressure at Discharge 

Start from Increased Pressure at 

Discharge 

Pressure 

Torque 

Pressure torque increases 

constantly until maximum 

discharge pressure is 

achieved. 

Pressure torque is high since compressor 

starts rotating. Pressure forces, which 

affect torque, might be even higher in the 

first fraction of a second since 

compressor is full of oil during high 

pressure start.  

Friction 

Torque 

Inertia of moving parts 

affects total torque at the 

very beginning. 

Inertia of moving parts affects total 

torque at the very beginning. Again, as 

compressor is flooded with oil, friction 

torque may also increase.  

Inertia 

Torque 

Inertia forces act while 

compressor accelerates and 

inertia torque tends to zero 

when 3000 rpm is achieved, 

torque drops after 2 seconds 

on diagram. 

Since compressor overcomes friction, 

torque drops after 1.5s on the diagram, 

and machine starts accelerating, inertia 

forces affect total torque. Inertia torque 

tends to zero after compressor achieves 

3000 rpm, torque drop between 3.5s and 

4s. 
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7. Screw Compressor Plant Model Validation 

Following the initial tests on the transient behaviour of screw compressor systems, the 

development of a software simulation model and initial comparisons between 

measured and predicted system performance, this chapter contains a fuller comparison 

between them. As was described in Chapter 4, both oil-free and oil-injected air 

compressor plants were modelled and measured. Plant parameters, such as compressor 

speed and starting pressure and temperature were used as initial conditions for 

simulation studies. When the working fluid was assumed to be an ideal gas, one full 

set of 300-800s of real compressor operating time required 5-10 minutes of computer 

calculation time, using a PC with an Intel Core2 Duo CPU 2.33GHz, with 4 GB of 

RAM. When the working fluid was assumed to be a real gas the calculation time took 

eight to ten times longer.   

7.1. Oil-injected compressor 

 

Figure 23: Comparison of estimated and measured pressure changes in oil-injected air 

screw compressor plant. Differences < 5% 

During the experiment the compressor speed was varied from 2000 up to 5000 rpm, 

and back, in step changes of 1000 rpm, each within a time interval of 60 seconds, 

which was sufficient time for the pressure to stabilise after the speed was changed. 

0

1000

2000

3000

4000

5000

6000

0

2

4

6

8

10

12

0 200 400 600 800

P
re

ss
u

re
, 

b
a

r

Time, s

Pressure

Experiment Simulation Speed

S
p

ee
d

, 
rp

m



 
52 

 

Variation of the main parameters with time is presented in following diagrams and 

shows good agreement between experimental and simulated results. 

 

Figure 24: Comparison of estimated and measured temperature changes in oil-injected 

air screw compressor plant. Differences < 5% 

 

Figure 25: Comparison of estimated and measured mass flow rate changes in oil-

injected air screw compressor plant. Differences < 5% 
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Figure 26: Comparison of estimated and measured input power changes in oil-injected 

air screw compressor plant. Differences < 5% 

A comparison between the measured and simulated performance of an oil-injected 

compressor plant is shown in Figure 23 to 26, when increasing and decreasing the 

rotational speed between 2000 rpm and 5000 rpm. The difference between the 

measured and predicted values of pressure, mass flow, power and temperature, are less 

than 5% of the absolute values, in all cases.  This indicates the basic suitability of the 

predictive model for further development The greatest discrepancy was in the 

estimated and measured temperature at a rotational speed of 2000 rpm, when the 

difference was approximately 15oC. A possible reason for this is the low compressor 

speed.  This strongly affects leakage and could therefore have a substantial influence 

on the temperature. 

A further case is demonstrated in Figure 27 to 30, where the compressor speed was 

increased directly from 3000 rpm to 5000 rpm and back.  Even better agreement was 

obtained for the same parameters in this case.  
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Figure 27: Comparison of estimated and measured pressure changes in oil-injected air 

screw compressor plant. Differences < 5% 

 

Figure 28: Comparison of estimated and measured temperature changes in oil-injected 

air screw compressor plant. Differences < 5% 
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Figure 29: Comparison of estimated and measured mass flow rate changes in oil-

injected air screw compressor plant. Differences < 5% 

 

Figure 30: Comparison of estimated and measured input power changes in oil-injected 

air screw compressor plant. Differences < 5% 
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7.2. Oil-Free Compressor 

A comparison between the measured and predicted performance of an oil-free air 

screw compressor plant is shown in Figure 31 to Figure 34. The compressor speed was 

chosen as a variable parameter for transient analysis and it was varied from 3000 rpm 

up to 9000 rpm and then back in steps of 2000 rpm and time intervals of approximately 

30 seconds.  This was sufficient time for the pressure to stabilise after the speed was 

changed. As can be seen, the pressure in the oil-free compressor changed almost 

immediately after the speed was changed, while the pressure in the oil-injected 

changed gradually. The lag in Figure 23, may be due to the oil thickness which creates 

some inertia effect. 

All the parameters shown in Figure 31 to Figure 34 are within acceptable 5% 

difference of their absolute values, although the temperature discrepancy shown in 

Figure 32, is present again, as in the case of the oil-injected machine.  

It can be seen from Figure 32, that the calculated values of temperature are 'symmetric', 

i.e. the acceleration and deceleration values are similar after some time spent at a given 

speed. However, the experimental air temperature values are higher for deceleration 

than for acceleration, because it is necessary to heat the tank and pipes up during 

acceleration.  This requires time, therefore, the air is cooled during that process and it 

will show a lower temperature than it would be if there were` no heat transfer between 

the air and the pipes. During deceleration however, the higher temperature of the 

recently heated pipes causes the air to be heated up during that process and thus it 

shows higher temperature values if compared with acceleration. This confirms, once 

again, that the model is working properly and can be used by other investigators. 
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Figure 31: Comparison of estimated and measured pressure changes in oil free air 

screw compressor plant. Differences < 5% 

 

Figure 32: Comparison of estimated and measured temperature changes in oil free air 

screw compressor plant. Differences < 5% 
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Figure 33: Comparison of estimated and measured mass flow changes in oil free air 

screw compressor plant. Differences < 5% 

 

Figure 34: Comparison of estimated and measured power input changes in oil free air 

screw compressor plant. Differences < 5% 
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8. Screw Compressor Plant Simulation Cases 

As stated in Chapter 3, the aims of this research included the derivation of a simulation 

model to predict the effects of changes of design parameters on both the final steady 

state and transient operating conditions of a complete compressor system   Examples 

are given of how the developed software was used to predict the final steady state 

conditions and response time of a complete system as a result of changes in pressure, 

tank volume and, valve area. This is followed by the effects of sudden changes in valve 

area and speed. 

8.1. The Effects of Plant Parameter Variation in Oil-Injected Air 

Screw Compressor Systems on Response times and Final Steady 

Flow Conditions 

The first simulations were carried out on air oil-injected screw compressor plant by 

varying such parameters as valve area, tank volume and tank pressure. All other 

parameters were maintained constant with time. Answers to such questions as “what 

happens if...”could then be obtained from them.   

     8.1.1. Variation of Valve Area 

From the diagrams on Figure 35 it can be seen how pressure and temperature change 

for different valve areas. For example, with the valve closed, the pressure in the tank 

reaches 33 bar in less than 2 minutes and the air temperature increases from 350K 

(77°C) to 450K (177°C) in just 10 seconds. If the valve is slightly open, the air 

temperature reaches its peak of 400-450K in 10 seconds and then stabilises together 

with the tank pressure. Actually, controlling the valve area is a means of influencing 

the pipe discharge pressure. 
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Figure 35: The effect of varying the valve area in an oil-injected air screw compressor 

plant. The upper graph shows the Tank Pressure, and the lower graph shows the 

Temperature  

 

     8.1.2. Varying the Tank Volume 

It is evident from the diagram in Figure 36 that, for a given throttle valve area, the 

final discharge pressure will be independent of the tank volume and changes in the 

latter will only affect the time required to reach steady stage conditions. Thus with a 
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30 litre tanks steady conditions are attained in 2 seconds, but for a 600 litre tank the 

time taken is about 2 minutes. A similar situation happens with the temperature: when 

its peak value of 420-450K is attained more rapidly with a smaller volume, before 

returnings to the initial value of 350K. 

 

 

Figure 36: The effect of varying the tank volume in an oil-injected air screw 

compressor plant. The upper graph shows the Tank Pressure, and the lower graph 

shows the Temperature 
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     8.1.3. Varying the Tank Pressure 

As shown in Figure 37, regardless of its initial value, the final pressure achieved in the 

tank is determined by the valve area. Thus, as already shown in Figure 36, the final 

discharge conditions in the pipe are a pressure of 4.2 bar and a temperature of 350K, 

whether the initial pressure is higher or lower than this value.  

 

Figure 37: The effect of varying the initial tank pressure in an oil-injected air screw 

compressor plant. The upper graph shows the Tank Pressure, and the lower graph 

shows the Temperature  
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As can be seen from all the given diagrams, the results, obtained from the compressor 

plant model, agree with the laws of Physics and provide a solid basis for extending its 

use for unsteady plant simulation in more complex applications. 

8.2. Closed loop Screw Compressor Plant Simulations 

The single tank model in an open plant system can be adapted to simulate a compressor 

system containing two tanks operating in a closed loop, with gases, refrigerants or air 

as the contained working fluid.  

 

Figure 38: Two tank closed loop screw compressor plant system 

As shown in Figure 38, air, or any other gas, leaves Tank 1 to enter the screw 

compressor, from which it is discharged into Tank 2, to return to Tank1, via a throttle 

valve. It is assumed, for this and all further simulations, that the volume of Tank 1 is 

much larger than that of Tank 2.  

For a given compressor speed, the steady state pressures in the two tanks, attained after 

startup, are determined by the valve area. Thus, reducing the valve area, decreases the 

flow into Tank 1 and then into Tank2, thereby resulting in a lower preessure in Tank 

1.  Conversely, opening the valve will increase the pressure in Tank 1 after the 

compressor starts, but in both cases, for a fixed valve area, the system will stabilise to 

maintain constant pressure in both tanks.  
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     8.2.1. Varying the Compressor Shaft Speed in a Closed Loop 

System 

The effect of varying the compressor rotational speed, for a fixed starting pressure is 

shown in Figure 39. As can be seen, because Tank 1 is much larger than Tank 2, the 

pressure remains constant for shaft speed 4500 rpm and it converges to a higher or 

lower value if the speed is increased or decreased.  

 

Figure 39: Pressure variation in the discharge Tank, as a result of speed changes in a 

closed loop air screw compressor plant 

At constant speed, the mass flow into the discharge tank (Tank 2) remains constant, 

but as the speed is increased, it may be seen that for the steady case at n=4500 rpm, as 

shown in Figure 39 and Figure 40, as the speed is increased, the mass flow into Tank 

1 rises. Conversely, when the shaft speed is decreased, the mass flow entering Tank1 

decreases until it equals the mass flow into the Tank2, resulting in a rise in pressure in 

Tank 1 and a fall in pressure in Tank 2.  
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Figure 40: Mass flow going to both tanks at different shaft speeds 

     8.2.2. Variation of Shaft Speed during Compressor Operation in 

a Closed Loop System 

The next simulation case was to determine the effects of a sudden change in the 

compressor speed while the system was in operation. The result is shown in Figure 41. 

As soon as the speed increased from 3000 rpm to 6000rpm, the pressure in Tank2 

started to increase slowly but the pressure in Tank 1 remained constant because the 

volume of Tank 1 is much larger than that of Tank 2.   However, as shown in Figure 

42, the mass flow into the Tank 2 is doubled immediately because the inflow is 

proportional to the shaft speed, but it took about 10 seconds for flow into Tank1 to 

reach to the same value. 
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Figure 41: The effect of sudden speed variation on discharge pressure, when changing 

speed from 3000 to 6000rpm 

 

Figure 42: The effect of sudden variation of speed from 3000 to 6000 rpm on the Mass 

flow in and out 

Very interesting results may be seen in Figure 43. It might be expected that as soon as 

the speed is increased, the mass of air in both tanks would increases slowly in both 

tanks. But as it can be seen, due to the pressure rise in Tank 2 and the corresponding 

decrease in pressure in Tank 1, the mass of air contained in Tank 2 is increased, while 

that in Tank 1 is decreased. 
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Figure 43: Change of mass of air in both tanks, as a result of changing speed from 

3000 to 6000rpm 

 

Figure 44: Pressure changes in both tanks, resulting from speed changes from 3000 to 

6000rpm and back to 3000 

Another example is presented in Figure 44 where the compressor speed is suddenly 

increased from 3000 rpm to 6000 rpm and subsequently, suddenly reduced back to 

3000 rpm. The pressure in Tank1 will not change substantially because its volume is 

much larger than of Tank 2. The pressure in Tank 2 increases gradually as soon as the 

speed is increased and returns back to the same pressure of 7 bar when the speed 

returns to 3000rpm. 
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8.3. Simulation of Multiple Tank Screw Compressor Plant  

 

Figure 45: Compressor plant layout for multiple tank configuration 

As has been stated before, the model may be used to simulate all types of configuration 

and consequent unsteady conditions which may be found in real plant.  An example 

of a multiple tank configuration is shown in Figure 45, where there are three tanks.  

This was also investigated assuming the same initial values of starting pressure 

p1=1bar, discharge pressure p2=5bar, and starting temperature T=303K. The 

possibilities considered are presented in Table 5 and examples given for each case.  

Table 5: Scenarios plan 

Scenario 1 Scenario 2 Scenario 3 

V2=V3 V2=V3 V2≠V3 

Δt≠const Av2≠Av3 Av2≠Av3 

 

     8.3.1. Scenario 1: Time Variation 

As shown in Figure 45, Tank1 is much bigger than others, while the volumes of Tank2 

and Tank3 are equal, as well as the valve areas Av2 and Av3. For Case1, the 

compressor speed varies from 3000 rpm to 6000 rpm and back for successive periods 

of 25s in Case1, 50s in Case2 and 100s in Case3.  
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Figure 46: Pressure variation in Tank 2 and Tank 3 for different cycle time Intervals 
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Figure 47: Temperature variation in Tank2 and Tank3 for different cycle time intervals 
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Tank2 and Tank3 are downstream of the compressor and it can be seen from Figure 

46 and Figure 47 how the pressure and temperature vary for each of the three cycle 

times. If Tank2 is considered, it can be seen that pressure would rise further in Case1 

if Δt were longer, but it attains a maximum of 10 bar for Case2 and Case3. Although 

the pressure rose from 5 to 10 bar in both cases 2 and 3, the larger time interval 

between cycles, in Case3, enabled steady conditions to be maintained for a longer 

period . The temperature changes shown in Figure 47 confirm the same trends, namely, 

the maximum and the minimum values are the same for all three cases but the larger 

cycle times enable steady conditions to be attained for longer periods with sharper 

peaks. This is another illustration of the advantages of a dynamic model rather than 

estimating the extreme conditions, using a steady state model. 

 

     8.3.2. Scenario 2: Valve Area Variation 

Scenario 2 includes 5 cases: valve areas are equal in the beginning but then valves 

Av2 or Av3 can be varied, as given in Table 6. 

Cases 1-2-3 and Cases 1-4-5 are considered separately.  

Table 6: Valve area variation cases 

Case № Av2 Av3 

Case 1 1.2 1.2 

Case 2 1.2 0.8 

Case 3 1.2 1.6 

Case 4 0.8 1.2 

Case 5 1.6 1.2 

The pressure and power for these cases are given in Figure 48. As soon as valve Av3 

is closed in Case 2, the power input increases from 62 to 70 kW when the compressor 

speed n=6000 rpm, the pressure in Tank 2 rises from 8 to 10.3bar and in Tank 3 – from 

5.3 to 7.8 bar. The power does not change so significantly when the speed is 3000 rpm. 

When valve Av3 is closed, air starts to accumulate in both tanks and causes both the 

pressure and the input power to rise. When valve Av3 is opened, in Case 3, it can be 

seen that the pressure and power decrease.  
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Figure 48: Pressure in Tank2 and Tank3 and input power for cases 1-5 
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When valve Av2 is closed, air starts to accumulate in Tank 2 and this causes the 

pressure in it to rise from 8 to 10.3 bar at compressor speed 6000rpm and from 4 to 5 

bar at 3000rpm, power rises at high speed only, from 62kW to 70kW, although 

pressure in the Tank3 is similar. Diagrams show that pressure and power drop down 

when valve Av2 open. 

     8.3.3. Scenario 3: Valve Area and Tank Volume Variation 

 

Figure 49: Compressor plant layout for multiple tank configuration 

The multiple tank system presented in  Figure 49 is similar to that in Figure 45, but 

the volume of Tank2 is twice that of Tank3, i.e.V2=2V3. Three different cases were 

considered, when the valve area between the tanks varies; namely: Av2=Av3 in Case1, 

Av2=2Av3 in Case2 and Av3=1.5Av2 in Case3. The initial temperatures and pressures 

are the same as in the previous cases. Again, it can be clearly seen that the pressure 

rise varies for different valve areas, namely: the more the valve is open, the faster the 

pressure rise, as shown in Figure 50. So, it is important to understand plant dynamics 

properly when the system performance is analysed. For Case2, when the second valve 

has a small opening area, the pressure difference between the tanks is the least, at 1-2 

bar, and the final pressure is the highest at 10-12 bar, because air accumulates in the 

tanks due to the small area of Av3. Temperature dynamic is shown in Figure 51. 
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Figure 50: Rates of pressure change in Tank2 and Tank3 for varying valve areas and 

tank capacities 
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Figure 51: Rates of temperature change in Tank2 and Tank3 for varying valve areas 

and tank capacities 
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     8.3.4. Scenario 4: Four Tank Compressor Plant 

 

Figure 52: Four tank compressor plant configuration 

A Further analysis was carried out for a four tank system, as shown in Figure 52 and 

a comparison of the response rates with different numbers of tanks is given in Figure 

53 and 54.  As can be seen, the discharge pressure from the compressor increases with 

the number of tanks in the system. 

 

Figure 53: Pressure in the tank after compressor for 2-, 3- and 4-tank systems 
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Figure 54: Variation of pressure, above, and temperature, below, in three tank 

compressor plant model depending on speed changes 

Pressure and temperature changes in a three tank compressor plant, resulting from 

speed changes, are shown in Figure 54. Although the speed was decreased before the  

pressure stabilised, it can be seen that cycles are repetitive.  
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Figure 55: Variation of pressure and temperature in a four tank compressor plant 

model resulting from step changes in speed. 

An example of speed induced pressure fluctuation in a four tank model is shown in 

Figure 55. 
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     8.3.5. Scenario 5: Simulation of a Plant where the Tanks are 

widely separated 

 

Figure 56: Screw compressor plant with widely spaced tanks 

Scenario 5 does not present any comparison, but give an example of real factory case 

where dynamic program can be used to get any parameter value at any time. The 

developed program is useful for complex facilities with air distribution systems. An 

example of such plant can be illustrated as follows. Compressor and Tank2 are located 

in building 1. There is need for pneumatic instruments in another building 2 where 

Tank3 is located at distance L from building 1, as shown in Figure 56. The model 

enables the dynamic response to parameter changes in both tanks to be investigated. 

If pressure in Tank3 is at its required level and the compressor performance is defined, 

the effects of possible variation in the pipe length L and its diameter dh can be 

calculated. For example, if the compressor provides 5 bar at discharge, while the 

required pressure, for instrumentation, is 4 bar and the distance between building 1 

and building 2 is 15m. Using initial calculation results, a pipe diameter dh=25mm is 

defined.  This pipe can be replaced with a valve, across which the pressure drop is 

equal to pressure drop in the pipe 1” and 15m length. Varying parameters of pressures, 

tank volume, pipe and diameter length, compressor speed, it can be concluded how 
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these changes affect all parts of the system. Mass flow and pressure responses to speed 

changes are shown in Figure 57. 

 

Figure 57: Rates of pressure and mass flow change in a widely spaced tank system 
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Then Reynolds number is calculated: 

𝑅𝑒 =
𝑤𝑑

𝑣
 

where kinematic viscosity is taken from the table for dry air and temperature 325K, 

𝑣 = 1.807 × 10−5m2/s 

𝑅𝑒 = 1.9 105 

 

Figure 58: Moody diagram 

Then, using the Moody diagram, given in Figure 58, the friction factor f is found, Re 

and relative pipe roughness 0.001 were taken into account. Friction factor f=0.0215, 

so, Darcy friction factor fd=4∙0.0215=0.086. 

Also, as density had to be calculated, pressure and temperature are extracted from 

result file the program.  

𝜌 =
𝑝

𝑅𝑇
 

𝜌 =
5.03 105

287 320
= 5.476 𝑘𝑔/𝑚3 
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Using the Darcy-Weisbach equation, the length of the pipe is found by use of given 

pressure difference, pipe diameter etc. 

∆𝑝 =
8𝑓𝑑𝐿𝑄2

𝜋2𝜌𝑑5
 

Finally, for the diameter 25mm, length of the pipe is found as 15 m. 

If the same procedure is repeated for 50mm pipe, length of the pipe is equal to 420m.  

Similar calculations and simulations can be done for the system with unlimited 

quantity of tanks similar to combination presented on Figure 59. 

 

Figure 59: Alternative screw compressor plant scheme 
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8.4. Simulation of Steady and Intermittent Modes in order to 

Estimate Plant Performance 

A preliminary investigation was also carried out to determine how power consumption 

differs between steady and intermittent operation as a result of varying the valve area. 

 

Figure 60: Pressure variation in the tank resulting from sudden valve area changes 

The results of the analysis of a case where the steady state discharge pressure is 7 bar 

and the valve area is 50mm2 are shown in Figure 60 when the valve area varies 

between 40 mm2 and 60 mm2. The power consumption for both cases was calculated 

and the difference was found to be about 1%.  
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.  

Figure 61: Valve area variation for steady and unsteady modes 

The valve area changes required to effect the pressure changes are shown in Figure 

61.  

 

Figure 62: Pressure in the system for steady and unsteady cases, example 1 

The pressure does not always rise linearly with the valve area, as shown in Figure 62 

which shows the pressure in the system for steady and intermittent modes when the 

valve area at steady conditions is 90mm2, and is varied between 80mm2 and 100mm2. 
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Table 7: System parameter comparison, example 1 

  Steady Intermittent delta, % 

Power kW 15.949 16.065 0.72 

Sp. Power, kW/m3/min 4.081 4.112 0.76 

 

As can be seen from Figure 62 and Table 7 the average power and specific power for 

the steady and intermittent cases differ by approximately 1%. But if larger area 

changes are made as shown in Figure 63 and Table 8, the pressure changes are of the 

order of 12%, and power and specific power consumption change by 8-9%. And as 

can be seen again, the pressure change with area is not linear.  

 

Figure 63: Pressure variation in the system for steady and unsteady cases, example 2 

Table 8: System parameters comparison, example 2 

  Steady Intermittent delta, % 

Power kW 17.044 18.540 8.06 

Sp. Power, kW/m3/min 4.378 4.791 8.62 
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8.5. Pressure Range Limit Simulation 

Another scenario considered was how the pressure varies during intermittent 

shutdown. The plant model was modified to include maximum and minimum speeds 

as well as maximum and minimum pressures as input limiting conditions. The 

program then simulated the process of the pressure rising at maximum speed until it 

achieved its maximum value. The shaft speed then became equal to its minimum 

speed, which was zero in our case since this corresponds to shut off.  The pressure 

then decreased until it attained its minimum value. The shaft speed then increased to 

its maximum value and the entire process was repeated. The results of this study are 

shown in Figure 63 and Table 9. 

 

Figure 64: Pressure for simulated switch off and switch on 

Table 9: Initial parameters of the system 

V 

[m3] 

Speed 

max   

[rpm] 

Speed 

min   

[rpm] 

P max   

[bar] 

P min  

[bar] 

Av 

[mm2] 

Cycle 

length, 

[s] 

Figure 

0.325 6000 0 10.5 7.5 48.5 650 65 

0.325 6000 0 8 6 58.5 25 66 
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Thus, the model enables all kind of scenarios for system shut down to be analysed and 

enables the time it takes for the pressure to drop to pmin and then back to pmax and the 

results are shown in Figure 65. This will vary depending on the tank volume or the 

valve area for different initial values of smax/smin and pmax/pmin. and would be of value 

for control engineers.  

 

Figure 65: Pressure curve for simulated switch repetitive on/off operation  
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9. Conclusions  

The intermittent character of everyday operation of industrial plant, using 

compressors, requires special attention to be paid to ensure their reliable and efficient 

operation. Systems operating with reciprocating and centrifugal machines have 

previously been investigated and computer programs that simulate their operation 

under these conditions already exist. But, due to the complex geometry of screw 

compressors, no such programs were found to be available, in the public domain, to 

analyse the performance of systems operating with these machines.  

Accordingly, the aim of this research was to develop and verify a mathematical model 

to analyse screw compressor driven plant during both continuous and intermittent 

operation.  This has been achieved by:  

 Development of a model, based on the differential equations of conservation 

of mass and energy, which is suitable for air, process gas and refrigeration 

plant by the inclusion of equations for the prediction of real gas properties; 

 The testing of this model by comparison of predicted performance with test 

data. The difference between them is within 5% for all analysed parameters 

and less than 2% for the majority of the cases considered; 

 The use of this model to predict a variety of operating scenarios.  These include 

any number of gas storage tanks of various sizes, located at different positions, 

pressure reduction valves and condensers and evaporators; 

 The model can predict compressor plant performance such as power, specific 

power and efficiency during intermittent operation. This enables the plant 

performance to be estimated at any instant; 

 Startup and shutdown simulation can be performed within defined pressure 

and speed intervals.  This may be useful for control engineers. 
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10. Recommendations for Future Work 

The model can be extended to expand possible options for modelling of screw 

compressor plant operating under intermittent conditions. This includes, refrigeration 

applications, which have been only mentioned in Chapter 8, and multiple tanks in 

parallel, as shown in Figure 66. Also, experimental work can be further extended to 

verify refrigeration plant predictions. 

 

 

 

Figure 66: Multiple tank configuration for further modelling 

.  
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Appendix 1. Screw Compressor Working Principle   

 

 View from Front and Top  View from Bottom and Rear 

Figure 67: Compression process inside of screw compressor 

Screw Compressor working principle description including Figure 67 are taken from 

Stosic et al, 2005. 

Its principle of operation is based on volumetric changes in three dimensions rather 

than two. As shown, it consists, essentially, of a pair of meshing helical lobed rotors, 

contained in a casing. The flutes formed between the lobes on each rotor form a series 

of working chambers in which gas or vapour is contained. Beginning at the top and in 

front of the rotors, shown on the left, there is a starting point for each chamber where 

the trapped volume is initially zero. As rotation proceeds in the direction of the arrows, 

the volume of that chamber then increases as the line of contact between the rotor with 

convex lobes, known as the male rotor, and the adjacent lobe of the female rotor 

advances along the axis of the rotors towards the rear. On completion of one revolution 

i.e. 360o by the male rotor, the volume of the chamber is then a maximum and extends 

in helical form along virtually the entire length of the rotor.  Further rotation then leads 

to reengagement of the male lobe with the succeeding female lobe by a line of contact 

starting at the bottom and front of the rotors and advancing to the rear, as shown on 

the right. Thus, the trapped volume starts to decrease. On completion of a further 360o 

of rotation by the male rotor, the trapped volume returns to zero.   
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The dark shaded portions show the enclosed region where the rotors are surrounded 

by the casing, which fits closely round them, while the light shaded areas show the 

regions of the rotors, which are exposed to external pressure. Thus the large light 

shaded area on the left corresponds to the low pressure port while the small light 

shaded region between shaft between ends B and D on the right corresponds to the 

high pressure port.   

Exposure of the space between the rotor lobes to the suction port, as their front ends 

pass across it, allows the gas to fill the passages formed between them and the casing 

until the trapped volume is a maximum. Further rotation then leads to cut off of the 

chamber from the port and progressive reduction in the trapped volume. This continues 

until the rear ends of the passages between the rotors are exposed to the high pressure 

discharge port. The gas is then expelled through this at approximately constant 

pressure as the trapped volume returns to zero.  

An important feature of such machines is that if the direction of rotation of the rotors 

is reversed, then gas will flow into the machine through the high pressure port and out 

through the low pressure port and it will act as an expander. The machine will also 

work as an expander when rotating in the same direction as a compressor provided 

that the suction and discharge ports are positioned on the opposite sides of the casing 

to those shown since this is effectively the same as reversing the direction of rotation 

relative to the ports. When operating as a compressor, mechanical power must be 

supplied to shaft A to rotate the machine. When acting as an expander, it will rotate 

automatically and power generated within it will be supplied externally through shaft 

A. 
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Appendix 2. Instrumentation and Instruments Calibration 

 All measuring transducers have been calibrated for the compressor test and their 

characteristics were implemented into the data acquisition software input. The torque 

meter was calibrated using an arm of known length and applied load as shown in 

Figure 68. The torque meter readings were found to be in good agreement with the 

applied torque and the results can be seen in Figure 69. 

 

 

 

Figure 68: Torque meter calibration 

The calibration of the pressure transducer was done by Budenberg hydraulic dead 

weight tester, Figure 70. Several sets of measurements of known pressures were made 

and the corresponding output of the transducers, in millivolts, was recorded. Then a 

calibration coefficient of each pressure transducer was obtained. 

Torque meter 

Applied weight 

1 m arm length 
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Figure 69: Torque meter calibration results 

 

 

 

 

Figure 70: Hydraulic dead weight tester 
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The digital tachometer on the shaft of the compressor was verified with an optical 

tachometer and both readings were found to be in good agreement with each other. 

Where appropriate the K-type thermocouples were verified with either a mercury or 

infrared thermometer. 

 

Table 10 below gives the list of installed instruments used for measurement the 

operating parameters of a compressor.  

Table 10: Description of the test rig instruments 

Measured 

Parameter 

Instrument Specifications 

Compressor 

Speed, n 

Tachometer                                              

(RPM transducer) 

6  0 TTL pulses per revolution,  

    Accuracy= 0.1% 

Compressor 

Torque, M 

TRP-500 torque meter                                       

(strain gauge transducer) 

max torque: 500Nm,   Calibration  

level: 335Nm  Range = 0 - 6000 rpm,  

Supply volt=10v dc, Accuracy= 0.25 % 

of max torque 

inlet pressure, p PDCR 110/w -pressure 

transducer                      

(piezoresistive type)                       

Operating  range = 3.5bar(abs)                                                        

Excite voltage=10V dc,     Accuracy 

=0.6%,                                                                  

inlet 

temperature , T1 

K- type thermocouple                         

(based on Ni/Cr-Ni/Al alloy ) 

Range= -2000C to 13000C,  Accuracy= 

2.20C sensitivity = 41 µV/°C 

outlet pressure, 

p 

PDCR 922-pressure 

transducer 

(piezoresistive type)                        

Operating  range =15 bar (abs)                                                        

Excite voltage=10V dc,     Output 

voltage= 100 mV  Accuracy =0.6%                                                                  

outlet 

temperature, T2 

K- type thermocouple                               

(based on Ni/Cr-Ni/Al ) 

Range= -2000C to 13000C,  

Accuracy= 2.20C sensitivity = 41 

µV/°C 
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Appendix 3. Data Acquisition and processing 

All the data from the transducers were collected by a data acquisition system. It 

consists of a National Instrument Compact-RIO, CRIO-9022 Real-Time with an 8 

slots chassis CRIO-9114. It has an industrial 533 MHz real-time processor for reliable 

real-time applications. Compact _RIO has 256 MB of DDR2 RAM and 2 GB of non-

volatile storage for holding programs and logging data. The unit also permits the 

acquisition of signals from the measurement transducers simultaneously during the 

experiment that are inputs to the unit itself and connected to a computer via an Ethernet 

cable. The programming was done using LabVIEW Field Programmable Gate Array 

which is suitable for high frequency data acquisition. The measurements obtained 

from the transducers are acquired on the CRIO and send to the PC which is 

programmed to instantaneously calculate values of the compressor power 

consumption, air flow rate, specific quantities and efficiency. All required information 

is displayed on a computer monitor in real time as presented in Figure 4 and Figure 6. 

Measurement records were collected twice a second and saved in a separate file which 

was used for further analysis. Before the measurements, the compressor and its plant 

were run for 30 minutes to obtain steady temperature in the compressor casing and to 

bring the oil temperature to its working level. 
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Appendix 4. Reynolds Transport Theorem 

Reynolds Transport Theorem defines a change of variable  in a control volume V 

limited by area A which vector of local normal is dA and which travels at local speed 

v. This control volume may, but not necessarily coincides with the engineering or 

physical material system. The rate of change of variable in time within the volume 

is: 

  
V V

dV
t t




  
 

  
        (1) 

Therefore, it may be concluded that the change of variable  in the volume V is caused 

by: 

- change of the specific variable =/m in time within the volume because of 

sources (and sinks) in the volume, dV
t

 
 
 

which is called a local change and  

- the movement of the control volume which takes new space with variable  in 

it and leaves old space, causing a change in time of  for v.dA and which is 

called convective change. 

The first contribution may be represented by a volume integral: 

 

V

dV
t



         (2) 

while the second contribution may be represented by a surface integral: 

A

d  v A         (3) 

Therefore: 

 

V V V A

d
dV dV d

t dt t


 

 
    

  
   v A    (4) 

which is a mathematical representation of Reynolds Transport Theorem. 

Applied to a material system contained within the control volume Vm which has 

surface Am and velocity v which is identical to the fluid velocity w, Reynolds 

Transport Theorem reads: 
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 

Vm Vm Vm Am

d
dV dV d

t dt t


 

 
    

  
   w A    (5) 

If that control volume is chosen in one moment to coincide with the control volume 

V, the volume integrals are identical for V and Vm and the surface integrals are 

identical for A and Am, however, the time derivatives of these integrals are different, 

because the control volumes will not coincide in the next time interval. However, there 

is a term which is identical for the both times intervals: 

 
   

V Vm

dV dV
t t

  


         (6) 

therefore, 

Vm VAm A

d d
t t

 
 

    
       

    
 w A v A    (7) 

or:  

 
Vm V A

d
t t

 


    
      

    
 w v A      (8) 

If the control volume is fixed in the coordinate system, i.e. if it does not move, v=0 

and consequently: 

 

V V

dV
t t

  
 

  
        (9) 

therefore: 

 

Vm V A

dV d
t t




 
   

  
  w A      (10) 

Finally application of Gauss theorem leads to the common form: 

 
 

Vm V V

dV dV
t t




 
   

  
  w     (11)  
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As stated before, a change of variable  is caused by the sources q within the volume 

V and influences outside the volume. These effects may be proportional to the system 

mass or volume or they may act at the system surface. The first effect is given by a 

volume integral and the second effect is given by a surface integral.  

 V A V A

Vm Vm Am V V

q dV q d q q dV qdV
t

 
      

 
   A   (12) 

q can be scalar, vector or tensor.  

A combination of the two last equations gives: 

 

 
 

or

0

V A V

V

dV d qdV
t

q dV
t








  



 
   

 

  



w A

w

    (13) 

Omitting integral signs gives: 

 
 

  0q
t





  


w       (14) 

This is well known conservation law form of variable . Since for =1, this 

becomes continuity equation:   0
t





  


w  finally it is: 

 

   

 

0 orq
t t

D
q

dt t

 
    

 
  

  
         


   



w w

w

   (15) 

D/dt is the material or substantial derivative of variable. This equation is very 

convenient for derivation of particular conservation laws. As previously mentioned 

=1 leads to continuity equation, =u to momentum equation, =e, where e is specific 

internal energy, leads to energy equation, =s, to entropy equation and so on. 

If the surfaces where fluid carrying variable  goes into or exits from the control 

volume can be identified, a convective change may conveniently be written: 
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    in outin out

A

d dm m m          w A    (16) 

 where bar denotes the variable average at entrance/exit surface sections. This leads to 

macroscopic form of the conservation law: 

 
 

   in out in out
V V

dd
Q m m Q

dt dt


 

  
         

   
 (17)  

which states in words: (rate of change of )=(inflow )-(outflow )+(source of ) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
105 

 

Appendix 5. Publications  

Attended Conferences and published papers are presented in Table 11 below. 

Table 11: Attended conferences  

Conference/Journal Date Paper 

City University Student 

Research Simposium 2012, 

CUL, London 

June 2012 

Investigation of Start Up Process 

in Oil Flooded Twin Screw 

Compressors 

21st International Compressor 

Conference at Purdue 

University, USA 

July 2012 

Investigation of Start Up Process 

in Oil Flooded Twin Screw 

Compressors 

ASME Congress 2012, Texas, 

USA 

November 

2012 

Identification and Quantification 

of Start Up Process in Oil Flooded 

Screw Compressors  

International Conference on 

Compressors and their Systems, 

City University London 

September 

2013 

Numerical Analysis of Unsteady 

Behaviour of a Screw Compressor 

System 

Compressor Engineering 

Refrigeration and Air 

Conditioning Conference at 

Purdue 

July 2014 

Modelling and Experimental 

Investigation of Unsteady 

Behaviour of a Screw Compressor 

Plant 

 

Published papers: 

E. Chukanova, N. Stosic, A. Kovacevic and A. Dhunput, “Investigation of Start Up 

Process in Oil Flooded Twin Screw Compressors,” in International Compressor 

Engineering Conference at Purdue, Purdue, USA, 2012. 

E. Chukanova, N. Stosic, A. Kovacevic and S. Rane, “Identification and 

Quantification of Start Up Process in Oil Flooded Screw Compressors,” in ASME 

Congress, 2012. 
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E. Chukanova, N. Stosic, A. Kovacevic, “Numerical Analysis of Unsteady 

Behaviour of a Screw Compressor System,” in International Conference on 

Compressors and their Systems, City University London, 2013. 

E. Chukanova, N. Stosic , A. Kovacevic (2013). Experimental Investigation and 

Numerical Modelling of Dynamic Behaviour of Screw Compressor Plant. Universal 

Journal of Engineering Science, 1 , 68 - 79.  

E. Chukanova, N. Stosic, A. Kovacevic, “Modelling and Experimental Investigation 

of Unsteady Behaviour of a Screw Compressor Plant” in International Compressor 

Engineering Conference at Purdue, Purdue, USA, 2014. 

E. Chukanova, N. Stosic, A. Kovacevic, “Verification and Calibration of Dynamic 

Model of Screw Compressor Plant” in ASME Congress, 2015. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


