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ABSTRACT

Measurements are often provided in the presence of noise and uncertainties that require optimal filters to
estimate processes with highest accuracy. The ultimate iterative unbiased finite impulse response (UFIR)
filtering algorithm presented in this paper is more robust in real world than the Kalman filter. It com-
pletely ignores the noise statistics and initial values while demonstrating better accuracy under the mis-
modeling and temporary uncertainties and lower sensitivity to errors in the noise statistics.
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1. Introduction

Optimal estimation of system state is often required when mea-
surements are provided in the presence of noise. If the process and
its measurement are both linear and noise is white Gaussian, then
the Kalman filter (KF) is recognized to be the best estimator. How-
ever, real life dictates that the conditions cannot always be satis-
fied for the KF. Therefore, it may produce extra errors, even
unacceptable. In order to improve the KF performance big efforts
were made over decades. Cox in [1] has derived the extended KF
(EKF) for nonlinear models by linearizing the state-space equa-
tions. For highly nonlinear systems, Julier and Uhlmann employed
the unscented transform [2] and proposed the unscented KF (UKF).
Both EKF and UKF have then been used extensively. In [3], the EKF
was developed to the invariant EKF for nonlinear systems possess-
ing symmetries (or invariances). For high-dimensional systems, the
ensemble KF was proposed by Evensen in [4] and, for systems with
sparse matrices, the fast KF applied by Lange in [5]. The robust Kal-
man filter was designed by Masreliez [6,7] for linear state-space
relations with non-Gaussian noise referred to as heavy tailed noise
or Gaussian one mixed with outliers. Essential contributions to
robust and highly robust estimation were also made in [8-10].
Most recently, Li et al. have developed in [11] an advanced robust
unscented KF with an adaptive ability to changes in noise
covariances.
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Many other modifications have also attracted researches atten-
tion, just a few to mention. An efficient restoration Kalman-like
algorithm was designed by Basseville et al. in [12] for hidden Mar-
kov trees. In [13], the KF was developed by Soken et al. for the con-
ditions of small satellite attitude estimation with missed
measurements. Ait-El-Fquih and Desbouvries applied in [14] the
Kalman-like approach to triple Markov chains. Kalman filtering
was also developed by Vaswani in [15] and Carmi et al. in [16]
for sparse signals with unknown and time-varying sparsity pat-
terns. An efficient Kalman-like tracking algorithm [17] was applied
to the autoregressive channel process estimation with fading by
Stefanatos and Katsaggelos. In [18], Becis-Aubry et al. discussed
the two-step estimation algorithm with a switching gain matrix.
In [19], Carli et al. employed the concept of the centralized KF for
state estimation in the complex wireless sensor networks. Rawicz
et al. reported in [20] explicit Kalman-Bucy-like solutions for two-
state H,, and Hj; filters. In [21], Jwo and Cho have made several use-
ful remarks regarding the linearized and extended Kalman filters,
and we meet new useful solutions each year.

Notwithstanding the fact that the KF is definitely the best linear
real-time estimator and in spite of a number of its essential
improvements, the KF still may suffer of unacceptable errors when
the model does not match the system exactly, the process implies
uncertainties, noise is not white Gaussian, and the noise statistics
are defined imprecisely. Jazwinski has resumed in [22] that poor
performance of the KF in real world has a lot to do with its infinite
impulse response [22] and that finite impulse response (FIR) filter-
ing is more successful in accuracy under the real-world conditions.
He also formulated the key motivation to develop FIR filters:



A limited memory filter appears to be the only device for preventing
divergence in the presence of unbounded perturbation in the system.

That means that the FIR filter is inherently more robust than the
IR (Kalman) filter as it does not project “old” errors to the esti-
mate. In the subsequent decades, FIR filtering has been investi-
gated profoundly to offer several important solutions. Kwon and
Han have developed the theory of the bias-constrained receding
horizon (one-step predictive) control [23] utilizing measurement
data from the horizon [k — N, k — 1], where k is the current discrete
time index and N is the horizon length. Diverse receding horizon
FIR solutions were proposed in [24-28]. Shmaliy et al. have devel-
oped FIR filtering on the horizon [k — N + 1, k] that has resulted in
several optimal, unbiased, and in-between solutions [29-33]. Most
recently, receding horizon FIR filtering has been developed by Ahn
et al. in [34-38] and Zhao et al. have found fast iterative forms for
FIR filters in [39,40].

Among different kinds of FIR filters developed during decades,
the unbiased FIR (UFIR) filter is most robust. This filter [32,28]
appears as a solution to the unbiasedness constraint [24] or as a
special case of the optimal FIR (OFIR) filter [30] when the model
is noiseless. The UFIR filter has the embedded bounded input/
bounded output (BIBO) stability and its algorithm completely
ignores the noise statistics and initial conditions. The UFIR filter
does not guarantee optimality, but the variance of its estimate
diminishes as a reciprocal of the averaging horizon of N points.
Accordingly, it becomes practically optimal when N > 1 and this
is in agreement with the Gauss’s ordinarily least squares (OLS).

Advantages of the iterative UFIR algorithm go along with the
requirements of the optimal horizon of Ny points which is applied
to minimize the mean square error (MSE). Of practical importance
is that a single tuning factor N, can be determined in a way much
easier than for the noise statistics: using reference measurements
or even via observations without a reference model [31]. The bad
side is that iterations require about N, times more computation
time and this price paid for the advantages may be an issue in
real-time applications. But using parallel computing can make
the UFIR algorithm as fast as the KF.

Although diverse forms of the UFIR filter have been discussed in
many papers [32,33,41-43], its most demanded linear algorithm
still has not been addressed to the engineer in a simple form. In
this technical note, we introduce the ultimate iterative UFIR filter-
ing algorithm suitable for immediate use.

2. Measured process and estimates

A big class of engineering problems can be solved if to represent
the process and its measurement with the K-state space linear
model as

Xi = FiX_1 + W, (1)
Vi = HiX + vy, (2)

where X, € R¥ is the system state vector, F, € R*X is the state tran-
sition matrix, y, € R is the observation vector, and H, € RM*€ s
the measurement matrix. The process noise wy € R ~ .17(0,Q,)
and the observation noise v, € RM ~ .1°(0,R;) are both zero mean
and white Gaussian with covariances, Q, and Ry. Vectors w; and
v, and the initial state are uncorrelated and independent at each
time step. For our purposes, we assign Xy, to be an estimate of x;
at time-index k via measurements from past up to and including
at time-index r. We will also employ the following variables:

X;; £ Xyi_1, the a priori (prior or predicted) state estimate given
observations up to and including at time k — 1;
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P, £ Pyio1 = E{(Xx — X)) (Xx — ﬂ;)T}, the a priori (prior or pre-
dicted) estimate covariance given observations up to and
including at time k — 1;

X, £ Xy, the a posteriori or posterior state estimate given obser-
vations up to and including at k;

P 2 Py = E{ (X — i) (Xk — Xk)T}, the a posteriori or posterior
error covariance matrix given observations up to and including
at k.

The KF applied to (1) and (2) produces estimates recursively in
one step and is the best optimal engineering solution among other
known real-time estimators. It is also simple in programming. But,
in order for the KF estimate to be optimal, the initial X, and Pq as
well as the noise covariances, Q, and Ry, must be given that is typ-
ically not the case in practice. Experience dictates that the imple-
mentation of optimal KF is difficult due to the inability in getting
good estimates of these values and the KF is thus suboptimal for
all practical purposes.

2.1. Unbiased FIR filtering estimate

In contrast to the KF, the UFIR filter operates at once with N
measurements on a horizon from m=k—-N+1 to k and does
not require neither the initial state x,, and error P, nor the noise
statistics Q; and R;, i € [m, k]. Instead it claims that N must be opti-
mal, Nop, in order to minimize the MSE and produce near optimal
estimate. To run the iterations, the UFIR algorithm self determines
the state X,,,x_; at m+ K — 1 in a short batch form, where K is the
number of the system states. It then updates estimates iteratively
using recursions to reach the best value at k. The estimate X;
obtained in such a way is called in [33] the optimal UFIR (OUFIR)
estimate. Note that the estimation error covariance P, is not
involved to the algorithm that is an important advantage against
the KF.

2.1.1. Batch UFIR estimate
The cost function for the UFIR filter is the unbiasedness
condition

E{X} = E{X}, 3)

which means that the average of the state estimate is required to be
equal to the average of the state. In the OLS format, the UFIR esti-
mate can be written on a horizon [m, k] as [30]

N -1
Xe = (€ Cmk) i Yims (4)

where the extended observation vector Y,,, and mapping matrix
C,.x are represented as

T
Yok = [Yn¥me1 - Vil 5 (3)
Hn(7f)
Hp o (772)
cm,k = : ) (6)
Hk—lFlz1
Hy

and the product of system matrices is depicted as
FrFr—l v Fg> g < T,

F78={1, g=r+1 , (7
0, otherwise.

The standard convolution-based form for the batch UFIR filter
|24] differs from (4) and is the following
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Xy = Rm.kYm.kv (8)

where K, is the UFIR filter gain given by

— -1

Kini = (CpCn)  Coi E)
- chm k* (1 O)

Matrix Gy is known as the generalized noise power gain (GNPG)
[44] computed as

Gk = Km.kKrTn,k
= (CpyCni)

The GNPG plays an important role in FIR filtering. It originates
from the noise power gain (NPG) introduced by Trench in [45] as
a ratio of the FIR filter output noise variance o2, to the input noise
variance 2. As such, the NPG is akin to the noise figure in wireless
communications. Trench has also shown that the NPG for white
Gaussian noise is equal to the sum of the squared coefficients of
the FIR filter impulse response function h(k),

-1 (11)

NPG = °“t th (12)
ll'l

which is the squared norm of h(n). In state space, K, represents

coefficients of the filter impulse response. Therefore, K, KT, is

called the GNPG.

2.1.2. Iterative UFIR estimate
The fast iterative form for (4) was found in [32]. Below, we give
a more simple derivation to the iterative UFIR filtering algorithm.
Consider (4) and represent the inverse of the GNPG

G = (€1, Cry) " as

G.' = CiCok

N-1 o 13
— Z(g—mﬂﬂ) H;HHmH(?;{nﬂﬂ) 1 ( )
i=0

N-2
=H{H + Y (7)) TH, Hoa (7 )
i=0
N 2 (14)

grm+1+i\~ —1
m+1Hm+l(Jk 1 ) Fk .

From (7), we have #2 =0 if g >r+1 and one can find G.',
from (13) as

N-2
- _ i _ i1
Gl = Y (F ) Hy (7 ) (15)
i=0
that is exactly the term in brackets of (14). By combining (14) and
(15), we arrive at the recursion for the GNPG,

T 71,71
Gy = H H + (F,G1F) | . (16)

Similarly, represent the product C;_kYm,k as

N-2
— __ i—T
cm KYmk = leyk + FkT Z(# ;ZI:HIH) Hn Y. 17)
i=0

= Hlyk + FI;TC;‘k—l Ym~’€*1 .
Combine (4) with (17) and write

X = Ge(HRYy + F'Chy Y1) (18)

From (4) taken at k — 1 find Cm 1 Ymko1 = G,:li(k,1 and go from
(18) to

X = Ge(HYi +F G LX), (19)
By simple manipulations with (16), find

G.', = F[(G;' — HH,)F,, substitute into (19), provide the transfor-
mations, and arrive at the recursive Kalman-like form of [32],

X = FiXeoq + Ki (Y, — HilFiXe 1), (20)

in which K = GkH[ is the bias correction gain that is not the Kal-
man gain and the GNPG G; is computed recursively by (16).

As well as in the KF, each recursion in the UFIR filter implies two
phases: “Predict” and “Update”. Following the UFIR filter strategy,
the estimate at time-index k is obtained iteratively with an auxil-
iary variable [ beginning with I = m + K and ending when [ = k. To
run iterations, the initial estimate at [=m+ K —1 is provided
using (4) in a shortest available batch form on a horizon
[m,m + K — 1], because the inverse in (4) does not exist otherwise.

Since the UFIR algorithm does not require the noise statistics,
the predict phase computes only one value - the a priori state esti-
mate X; = FX;_;. Combined with the current state observation to
refine the state estimate, the a priori state estimate is iteratively
updated to the a posteriori state estimate via the following values:
the GNPG (16), the measurement residual z; =y, — HX;, the bias

correction gain K; = GIH,T, which is not the Kalman gain, and the
a posteriori state estimate X; = X; + Kiz;.

The iterative UFIR filtering algorithm is given in Table 1 with a
pseudo code. The only tuning parameter required by this algorithm
is the horizon length N which must be optimal, N, in order to
minimize MSE. There are at least two ways of how to find Nop.
The value of N, can be ascertained at the early stage by minimiz-
ing the trace of the estimation error covariance P as

Nope = argmin{trP(N)}. (21)
N

In this case, the system state x; is measured using test equip-
ment and supposed to be known. Otherwise, Noy: can be estimated
via measurement y, with no reference as shown in [31]:

Nopt 22 argmin 0 trLe(N) }, (22)
N ok

by minimizing the derivative of the trace of the mean square value

L = E{(yx — HiX) (¥ — Hixo) ).

Beyond these approaches, the correlation method was
employed in [46] to find N,y and an advanced technique was
developed in [47] to specify the minimum acceptable N. Note that,
for nonlinear and time-variant systems, No,c must be specified at
each time index k.

Provided N, the initial values of the GNPG and estimate are
computed at k — N + K and Algorithm (Table 1) produces the first
estimate at N — 1. Recursions are organized based on (14)-(16)
and the output is taken when the iterative variable reaches the cur-
rent time index, | = k. One may thus deduce that a lack of informa-
tion about noise, initial values, and error covariances is
compensated in the UFIR algorithm by setting properly the GNPG
which tunes the bias correction gain most closely to the Kalman
gain, by Nyp.. Note that the minimal horizon length for the initial
batch estimate is equal to the number K of the states that makes
the GNPG almost unity. Therefore, the initial GNPG in many cases
can be substituted with an identity matrix without essential loss in
accuracy.



Table 1
Iterative UFIR filtering algorithm.
Data: y;
Result: X,
1: begin
2: fork=N-1:00 do
3: m=k-N+1, s=m+K-1;
4 G=(ChCny)
5. X =GCl Y
6: forl=s+1:k do
-1
7: G = HH, + (G F) |
8: % =FX_1 + GH] (v, - HFX_q)
9: end for
10: Xy = X
11:  end for
12: end

2.2. Estimation errors

Even though the UFIR filter does not require the error covari-
ance P, to update the estimate, the latter may be needed to evalu-
ate estimation accuracy and precision. An iterative form still has
not been proposed to compute P, precisely in view of mathemati-
cal issues. But the error upper bound has a computationally simple
form [33] as shown in Table 2.

Provided Py, recursions in this algorithm are organized with one
value in each phase. The algorithm first predicts the estimation
error over the system noise covariance Q; and then updates it over
the measurement noise covariance R; and the bias correction gain
K = GIH,T taken from Table 1. The value produced by the algorithm
(Table 2) is overestimated for the worst case and thus an actual
error should be expected to be smaller.

2.3. Properties of UFIR filter

Looking for a good estimator we naturally desire to have one
that is optimal, robust, universal for different signals in diverse
environments, and (!!!) simple. As well as the KF, the UFIR one
is a universal linear estimator, so let us look at its ability to fulfil
other requirements and measure up to optimal Kalman estimate.
Before providing a comparative analysis, it is a proper place to
stress again that the optimal KF is challenged by the unbiased
FIR filter that is potentially lesser accurate. But this is when the
operation conditions are ideal. In real world any filter falls short
of the requirements in some items and the question arises of
how far. The KF has the recursive IIR structure in which the feed-
back plays a key role. On the contrary, the UFIR filter is a transver-
sal estimator relying on the input-to-output relation with no
feedback. Many properties of these estimators are due to their dif-
ferent structures.

Table 2
UFIR filter estimation error upper bound.

Data: N, P;, Q;, Ry, K,
Result: P,

1: begin

2: fork=N-1:00 do

3 s=k—-N+K;

4 for[=s+1:k do

5 P, =FP_F +Q

6: P, = (I-KH)P; (1- KH)" + KRK'
7 end for

3 P, =P,

9: end for

10: end
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Unbiasedness vs. optimality: Unbiasedness is the necessary con-
dition of any good estimate. But the unbiased estimate may suffer
of extra noise because the sufficient condition - minimal variance
- is not applied. In turn, the optimal estimate guarantees the min-
imal MSE as a compromise between the bias and variance. Opti-
mality in the KF and OFIR filter results in very consistent
outputs. In turn, the UFIR filter produces a bit different and lesser
precise estimate, although the difference between the unbiased
and optimal estimates may practically be insignificant.

System model: The KF applies only to stochastic models. That is
when both Q,, and R, have zeroth components, the KF cannot oper-
ate. In contrast, the UFIR filter serves equally well for both the
stochastic and deterministic systems. Both the KF and UFIR filter
have extensions to nonlinear systems in the first and second order
of approximations [1,48,49]. As was observed in Section 1, the KF
has been extended to deal with many other practical issues. In this
regard, the UFIR filter is still under the development.

Initial conditions: The UFIR filter does not require the initial con-
ditions but produces the first estimate at N — 1. On the contrary,
the KF requires X, and P, at k = 0 and updates these values at each
next time step. Theory argues that there are no transients in the KF
under the ideal conditions. However, transients in the KF may last
much longer than in the UFIR filter in real world applications.

Noise environments: The key requirement that follows behind
the derivation of the Bayesian KF estimator is that noise must be
Gaussian and uncorrelated in both the state and observation equa-
tions. The Kalman filter is best under such conditions provided that
the noise statistics are known exactly. Otherwise, it does not guar-
antee optimality. In contrast, the UFIR filter does not impose any
restrictions on noise distribution and covariance and produces
unbiased estimates if noise is just zero mean.

In order to produce optimal estimates, the KF requires the noise
statistics at each time point. Because of this requirement and prac-
tical inability to obtain good estimates of Q, and Py, the KF is sub-
optimal for all practical purposes. Fig. 1 gives an idea about the KF
immunity to errors in the noise statistics in the worst case. Actual
covariances are substituted here with Q, /o> and o?P,, where o
indicates an error in the noise standard deviation. As can be seen,
errors in the KF grow rapidly with o and may become unaccept-
able, especially if a system is nonlinear [50].

In contrast, the UFIR filter ignores the noise statistics (except for
the zero-mean assumption) but requires Nop points in order to
minimize the MSE. Note that Nop: can be measured in a way much
easier than for the noise statistics [31]. Furthermore, the difference

6
3 7
4 " /
B S "\

4 g ra

X s
N 0.7<a <1.6 o KF
UFIR ST
2 KN e
8 s
A Nopl =31
0 H P
0.1 1.0 10
o

Fig. 1. Effect of errors in the noise covariances on KF estimates. The KF and UFIR
estimates are poorly distinguishable when « = 1 and A becomes insignificant with
Nope > 1.
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Fig. 2. Robustness of the UFIR filter against temporary model uncertainty in a gap
of 400 < k < 440 for a two-state polynomial model. As can be seen, the KF
demonstrates poor robustness.

between the optimal and unbiased estimates becomes negligible if
Nope > 1. This means that, invoking no information about noise,
the UFIR filter is able to produce virtually optimal estimates.

Robustness: Two issues require robustness from an estimator.
The model may not match a process accurately that causes mis-
modeling errors. Temporary uncertainties in the process and mea-
surements may also lead to errors. Fig. 2 illustrates typical
responses of the KF and UFIR filter to temporary uncertainties in
the 2-state polynomial model. As can be seen, under the ideal con-
ditions (o = 1) both filters act quite similarly, except that the KF
may have lasting transients owing to IIR. A situation changes dra-
matically if to admit errors in the noise statistics with o > 1. In this
case, the KF falls very short of the UFIR filter and its performance
becomes particularly poor. An overall conclusion that can be made
is that in real world the UFIR filter may demonstrate much better
robustness than KF.

Stability: Both the KF and UFIR filter are stable filters but the
transversal UFIR filter structure has the imbedded BIBO stability.
For linear systems, neither the KF nor UFIR filter can pretend to
be essentially advantageous in this plane under the ideal condi-
tions. For nonlinear systems, extended versions of both these filters
become unstable close to borders of high nonlinearities. It has also
been observed in many nonlinear systems that the KF is more
stable under the ideal conditions and it loses to the UFIR filter
and may even diverge otherwise.

Computational complexity: Any digital estimator links its com-
putation time directly to the computational complexity. From this
standpoint, the KF has the lowest complexity ¢(1) and is the fastest
one. The full-horizon UFIR algorithm [30,33] which iteratively
updates the estimate over all time also has low complexity ¢(1)
and thus operates as fast as the KF. The iterative UFIR algorithm
(Table 1) has medium complexity ¢(N). It operates much faster
than the batch UFIR algorithm but loses to the KF. Finally, the batch
UFIR filter (7) having highest complexity ¢(N?) is definitely not a
real-time estimator when N >> 1. Fig. 3 sketches the computation
time measured as function of N in all these estimators using the
same computer and software. The dependence on N is clearly seen
here and we notice that this picture is typical.

Memory consumption: Memory required to complete operation
in digital filtering often depends on the computational complexity.
The batch UFIR filter which process simultaneously N measure-

ments needs about N> more memory and the iterative one about
N times more memory than the KF. If to design the iterative UFIR

10
101 4
Batch UFIR e

;”; ﬁL I
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c /-
] s
©
é. o L\~ lterative UFIR
<) Full-horizon UFIR
(@] orpara[lel/co puting

o ]

KFL
10°
10° 10’ 10°
N

Fig. 3. Computation time measured as a function of N in different UFIR filtering
algorithms and KF using the same computer and software.

filer using parallel computing, then the algorithm will require
about N> more memory than KF. The most “economic” UFIR filter
is full-horizon which does not require much memory. But memory
is no longer an issue in view of the tremendous progress in the
computational resources.

3. Examples of applications

In spite of its engineering potential, UFIR filtering is still a rela-
tively new technique. We thus give two practical examples which
demonstrate advantages of the FIR approach against KF.

3.1. GPS-based UFIR filtering of clock state

Clocks are typically modeled using the two-state or three-state
polynomial model [51]. The first state represents the time-interval
error, the second state the fractional frequency offset, and the third
state the linear frequency drift rate. To estimate the clock state, the
time-interval error can be measured using a time-interval counter
for the reference time provided by the Global Positioning System
(GPS) timing receivers. The GPS time is accurate, but not precise
in view of the GPS time uncertainties and sawtooth noise induced
by the timing receivers. To filter the sawtooth noise out, an optimal
filter can be used as shown in Fig. 4a. But the uniformly distributed
measurement sawtooth noise is not Gaussian and the Kalman filter
can thus produce extra errors. Furthermore, noise in the clock
oscillator has flicker components with the power spectral density
of the 1/f" type that makes hardly possible to specify correctly
the system noise covariance matrix for the Kalman filter. More
details about GPS-based clock estimation and steering using UFIR
filtering can be found in [52].

It was reported in [30,46] that the UFIR filter which ignores the
noise statistics is an efficient alternative to KF. Fig. 4b gives typical
errors produced by the UFIR filter and two-state KF, both applied to
the GPS-based measurements of the time errors of a crystal clock
imbedded in the Stanford Frequency Counter SR620. As can be
seen, there is no time delay between the estimates and the filters
thus have similar time constants. Herewith, the FIR filter demon-
strates better robustness against mismodeling and the GPS time
temporary uncertainty. It also produces smaller noise and lower
regular errors.
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Fig. 4. GPS-based measurements and steering of local clock time errors using the UFIR filter, after [30]: (a) measurement set and (b) estimation errors.

azimuth angle (deg)

1 1
100 150 200
time (sec)

£

uj

g
1

T
1

Fig. 5. Experimental estimation of heading in the INS/GPS system using the IM filter for the initially set zero heading, after [53].

3.2. Error reduction in navigation systems

To avoid large navigation errors and instability in the inertial
navigation system (INS) integrated with GPS, an interacting multi-
ple (IM) filter was proposed in [53] using a multifilter fusion tech-
nique in order to combine advantages of the FIR filter and other
kinds of filters. Experimental estimation of heading using the
unscented KF (UKF) and the IM filter has been provided in [53]
for the GPS-based reference estimate. The unknown initial heading
was set to zero. Fig. 5 shows estimation errors produced by the UKF
and IM filter. As can be seen, the IM filter provides error reduction
at acceptable levels, whereas the performance of the UKF is poor.

Several other applications of UFIR filtering in diverse electronic
systems can be found in [54-59].

4. Conclusions

Unbiased FIR filtering introduced in this article is another
opportunity to provide fast near optimal estimation beyond the
KF. The rules of thumb are the following: (1) the Kalman filter is
best under the ideal conditions and (2) if noise is nonwhite and/
or non-stationary, the noise statistics are not known exactly,
and/or the model undergoes temporary uncertainties and/or
implies mismodeling, then the UFIR filter may produce smaller

errors. That means that the FIR approach is more robust in real-
world. Besides, a discrepancy between the KF and UFIR filter out-
puts reduces with Nop and practically vanishes when Ngp > 1.
Let us also notice that the UFIR approach can easily be applied to
provide smoothing and prediction. As long as the UFIR filter
ignores noise in the algorithm, a smoothed estimate with lag
q > 0 is also the prior estimate X;_q = (Fk...Fk,qH)’lﬁk. In turn,
prediction with step p>0 «can be organized as
ik+p = Fk+p .. -Fkﬂﬁk-
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