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Abstract The important biological problem of how groups of animals should allocate them-
selves between different habitats has been modelled extensively. Such habitat selection
models have usually involved infinite well-mixed populations. In particular, the model of
allocation over a number of food patches when movement is not costly, the ideal free dis-
tribution (IFD) model, is well developed. Here we generalize (and solve) a habitat selection
game for a finite structured population. We show that habitat selection in such a structured
population can have multiple stable solutions (in contrast to the equivalent IFD model where
the solution is unique). We also define and study a “predator dilution game” where unlike in
the habitat selection game, individuals prefer to aggregate (to avoid being caught by predators
due to the dilution effect) and show that this model has a unique solution when movement is
unrestricted.

Keywords Structured populations - IFD - Multi-player games - Best response dynamics

1 Introduction

Animals of many types interact in groups in a number of ways [21]. These might be long-
standing social groups, as in the case of many species of primate [41], or packs of wild
dogs [45,46]. Alternatively, they might be more transitional in nature, for instance foragers
gathering at a food patch, see Krijger and Sevenster [22] for the case of insects and Steele
and Hockey [39] for the case of birds. In long-standing groups, there can be complex social
relationships and the individuals often form themselves into dominance hierarchies. In more
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transitional groups, relationships will generally be simpler if the members of the group have
no prior information about the others. This is the case for the foraging examples that we
mentioned above, but also in the case of egg laying as in Prokopy and Roitberg [36]. It is this
more transitional type of interaction that is the focus of this paper.

For patch foraging, assuming that individuals are free to move between any of the available
food patches, at effectively no cost, animals should follow the ideal free distribution (IFD)
over the patches. The simplest single species model was developed by Fretwell and Lucas
[14], Fretwell [13] (see also [10]), with a closely related model developed by Parker [35].
More complex cases, including for multi-species [15,23], individuals with different abilities
[19,40] and for more complex payoff functions, including the Allee effect [12,25], have also
been considered.

It has been shown [9,11,23] that the IFD is an evolutionarily stable strategy [30]. In all
of the models above, the population has been infinite, and all foraging patches are reachable
by all individuals. Real populations are finite, of course (although large populations can be
well modelled as being infinite), but they generally also contain structure. For instance in
the case of the wild dogs of Woodroffe et al [45], individuals will only be able to access a
subset of the available places (at least without paying a significant cost). Recently, models of
populations which are not well mixed, but have some structure, have been developed to take
this into account. Evolutionary graph theory models [1,2,5,26-28,42,43] embed standard
games such as the prisoner’s dilemma within a graph structure [17,34,37]. The interactions
within such a structure are restricted to be pairwise, however, and so are unsuited to the
type of aggregated situations that we envisage. A more general framework of interactions of
populations with restricted movement was introduced in Broom and Rychtéi [6]. In that paper,
a finite population of individuals distributed themselves over available places subject to their
individual restrictions, leading to interactions within the groups on those places, with rewards
depending upon the composition of the group, and potentially also on the composition of the
groups at other places. More generally the paper introduced a new framework for modelling
the evolution of structured populations using multiplayer games (see also [4,8]). In the
current paper, we build upon this model by analysing an important class of models, where an
individual’s movements are strategically chosen and its rewards depend only upon the size
of its own group.

2 The Territorial Movement Game
2.1 Game Setting

We consider a population of N individuals /1, .. ., Iy who can move between and potentially
interact on a number of M distinct places Pi, ..., Py. The scenario can be illustrated as
bipartite graphs as in Fig. 1 where a link connects an individual /,, and a place P,, if and
only if the place P, can be visited by individual 7, [6]. A collection of all places P,
that can be visited by an individual 7,, will be called the ferritory of I,, and denoted by
Pn = {m; I, can go to P,}. Let Z,, denote the set of individuals that can go to place P,,,
ie. Z,, = {n; I, can go to P, }, which we shall call the (potential) visitors to P,,. If every
individual can go everywhere, we will call the population unstructured.

The individuals play the game as follows. Each individual 7, chooses a place P, in its
territory to move to. All individuals make the choice at the same time or, equivalently, without
knowledge of what others do. Once the individual has made its choice and visits the place
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Fig. 1 General situation represented as a bipartite graph. A link connects an individual 7, and a place P, if
and only if the place Py, can be visited by individual 7,

Py, it receives a reward R, (k,,) (sometimes later denoted just by R,,) that, for the purpose
of this paper, depends solely on the place, P,, and the (total) number of individuals, &,
occupying the place. Specifically, the reward does not depend on which individuals share the
place and how the other individuals are distributed on the other places; we shall call this the
local aggregation assumption.

Unpacking this assumption, we are assuming the following. Places can be different of
differing quality and of differing accessibility to individuals. Individuals, however, can differ
only in the fact that different individuals can (potentially) access different places. This means
that once on a particular place, which individuals are there does not affect the payoffs, except
through the size of the group. Individuals are only concerned about their immediate payoff,
i.e. about what is happening at their current place (and not about what is/or is not happening
at other places).

The strategic element of the game involves the movement of the different individuals;
each can employ different moving strategies and their aim is to maximize their payoff.

2.2 Game Theoretical Definitions

In the setting of the Territorial Movement Game, we will use the following definitions which
are just the appropriate modification of the usual game theoretical notions (see for an example
[(7D).

An individual pure strategy is the choice of a particular place in a territory.

Given the territorial restrictions, different individuals may have different sets of available
strategies to employ.

The occupancy functionisafunction O : {1,2,..., N} — {1,2,..., M} where Pg,) for
O (n) € Py isaplace to which an individual 7, has moved. For every such occupancy function,
we define its distribution function as an ordered M -tuple (k,, )%’: | withky,, = |{n; O(n) = m}|
being the number of individuals at place P,.

We say that two occupancy functions Oy and O, are one move apart (by an individual
Iy) if O1(n) = O2(n) for all n # ng while O1(ng) # O2(no), i.e. if the difference between
the occupancies is exactly in one individual changing its position.

The occupancy function O is termed stable if any individual would receive a lower payoff
when it unilaterally changes its position (given the fixed positions of other individuals); i.e.
if for every n

RO(n)(kO(n)) > Ry (ky + 1), forallm € P, \ O(n). (1)

The set O of occupancy functions is termed a stable set if it is a maximal set with the
following properties
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(i) if 0, O’ € O, then there is a sequence O = 01, O3, ..., O = O’ of elements in O
such that each pair O; and O,y is one move apart.
(ii) for all O, O’ € O that are one move apart by an individual 1,,;, Ry (ko) =
RO’(n()) (k/O’(no))’
(iii) forall O € O and O’ ¢ O that are one move apart, there must be at least one individual
I,, such that O and O’ are one move apart by I,, and R ng) (k0 (ng)) > RO’(no)(k/o/(no))'

In general it does not make sense to talk about a stable distribution function, as opposed
to a stable occupancy function. Two occupancy functions can have the same distribution
function, but one may be stable and the other not, because the possible moves depend upon
the sets of territories of the individuals at each of the places, which will be different for each
occupancy function. The exception is for the well-mixed population, where the territory of
each individual is the full set of places, and consequently if an occupancy function is stable,
so is any other occupancy function with the same distribution. Thus for the well-mixed
population we say that a distribution function is stable if any occupancy function with that
distribution function (and hence all of them) is (are) stable.

Often when considering evolutionary game theory, we assume that we have so-called
generic games (see for example [3,7]). Essentially, assuming that payoffs are derived from the
natural world with its underlying variation, we can treat each payoff as if it is the realisation
of a random variable, and so we ignore special sets of parameters that would occur with
probability 0. This is useful, as the most problematic mathematical cases often occur on such
parameter sets. In particular, equalities of distinct payoffs can cause problems. Here we shall
call a game generic if

Ry(kp) = Ry (k,). if and only if k,, = k/, and m = m’ )

i.e. if different patches yield different payoffs (irrespective of the group size) and the same
patch yields different payoffs for different group sizes. In subsequent sections, we give results
that hold for both generic and non-generic games where we can, but sometimes it has proved
necessary to restrict ourselves to consideration of generic games only. We clearly indicate at
the appropriate point whether generic games are assumed.

A stable occupancy function is always a stable set (of one element). If payoffs are constant
and the population is unstructured, the set of all occupancies is a stable set. If the payoffs are
generic, a stable set has only one element, and this element is a stable occupancy function.

In Sect. 2.3, we shall see that there is always at least one stable occupancy function for
our game, providing that the local aggregation assumption holds. This is not generally true
if it does not hold, as we see in the following example.

Example 1 A stable occupancy function may not exist without the local aggregation assump-
tion. Consider two individuals, a predator and its prey, both of whom can go to one of two
available places. The first individual, the predator, wants to be with the prey, but the prey
wants to avoid the predator. The predator receives payoff 1 (0) if it is (not) at the same place
as the prey, the prey receives 0 (1) if it is (not) at the same place as the predator. Note that the
payoffs depend on who else is on the place, not only on the number of occupants. Clearly,
no pair of pure strategies form a stable occupancy function.

2.3 Existence of a Stable set for the Territorial Movement Game
Here we show that there is always at least one stable set for the Territorial Movement Game.

We will consider two Markov processes on the set of all occupancy functions. For the strong
Markov process, we will consider a transition from occupancy O (with a distribution function
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(ki) nA;I: 1) to an occupancy O’ (with a distribution function (k,) nﬂfz 1) to be allowable if they
are one move apart by ng and the individual /,, would improve its payoff. Thus, there is a
potential transition if and only if there are m, my € {1, ..., M} such that

(1) Zwy NZyn, # 9, 1.e. there is an individual that could go to both P,,, and P,,
(i) k,’nl = ky, — 1, i.e. the individual is (potentially) leaving Py, ,
(ii1) k;nz = ki, + 1, i.e. the individual is (potentially) coming to Py, ,
(iv) Ru, (km;) < R, (k,/nz), i.e. the payoff the individual gets at P,,, is higher than the one
it got at Py, and
(V) k,, =k, for all m # my, my, i.e. nobody else has changed their position.

Note that for the strong process, there cannot be transition from the state O to O’ and from
O’ to O for any pair of states. Furthermore in the generic case, there is no potential transition
under the strong process if and only if O is stable.

For the weak Markov process, we will consider a transition to be allowable if the conditions
(i)—(v) are satisfied, but the inequality in (iv) is not strict. Note that in either process we do
not specify the probability of a transition occurring, except that any allowable transition has
probability greater than zero.

We shall show the existence of a stable set in two stages.

(a) Let us first define .A; to be the set of all absorbing states of the strong Markov process.
We claim that A, # @.

Suppose that A; = . Then we could easily find a cycle
01, 02, O3, ..., Or = O such that transitions can occur from O; to O;4 in the strong
Markov process. This yields the existence of the sequences (m ;) tT:_ll and (m2 ;41 )tT:_ll such
that

le., (kmlyl,t) < Rm27,+1(km2.,+1,l+1) (3)

corresponding to the fact that at time ¢ there were ky,, ,, individuals in place Py, , and one
of them was able to improve its position by moving to place Py, ,,,. For every transition
at step ¢, we will have one inequality (3). Let us now look at the sequence (km,,)szl for a
specific m. The sequence is generally constant with occasional jumps by 1. Any time an
individual leaves a place Py, we have k,, ; > ki 41 = km, — 1, and the term Ry, (k1)
appears on the left-hand side of an inequality (3). Similarly, any time an individual moved to
place Py, k.t < k141 = ks + 1, the term R, (kj, ;+1) appears on the right-hand side of
an inequality (3). Since the sequence (k;,, ,)tT:] begins and ends at &y, 1, the term R, (ky, ;)
has to appear on the left-hand side of (3) as many times as on the right-hand side of (3). So
adding those inequalities together (for all ¢) yields a contradiction.

So, we have shown that there is at least one occupancy O € A,. If O, O’ € Ay are one
move apart by an individual I, there is no transition from O to O’ or from O’ to O in
the strong Markov process and thus condition (ii) for a stable set is satisfied for all pairs of
elements in Ay. Consequently, when O, O’ € Ay, there is a transition (both ways) under the
weak Markov process between O and O'.

(b) Now, let B,, C A be the set of occupancies that cannot, after any finite number of
transitions in the weak Markov process, reach the set A, the complement of A;. As above,
there must be an occupancy function O € B,,; otherwise, we would again get a cycle (and
although we could now potentially have equalities in (3), we would have at least one strict
inequality).

Since By, C A, By, satisfies condition (ii) for a stable set. Now assume that it does not
satisfy condition (iii), i.e. that there is O € B, and O’ ¢ By, i.e. O and O’ are one move by
I, apart so that R () (ko (ngy)) < RO/("O)(k/O’(nO))' But this means that there is a transition

Birkhauser



Dyn Games Appl

from O to O’ in a weak Markov process, and thus, there is a sequence of transitions from O
through O’ to an element of AfS, a contradiction with the fact that O € B,,.

A maximal “connected” component of 5, (i.e. the set of occupancies which one can get
from any element of 5, by a sequence of changes) is then a stable set.

Remark 1 Here we illustrated with an example the concept of the sets A and BB, from the
proof above. Consider 80 individuals with unrestricted movements that can go to two patches
with payoffs R1(80) = R2(80) = 1 and Ry(k) = R2(79 — k) = 0 for 0 < k < 79. Then
A, corresponds to the set of all states but (79, 1) or (1, 79) and B,, consists of (80, 0) and
(0, 80).

Whilst the above results hold for generic and non-generic games, the results from here
until the end of Sect. 2.3 apply to generic games only.

Remark 2 For the generic territorial movement game, consider the algorithm “start with any
occupancy function, and make transitions as in the strong Markov process until no further
moves can be made”. As previously noted, for the generic case this yields a stable occupancy
function. However, there may be of the order of M” occupancy functions and thus the
algorithm can take a long time to finish. We note that which O is chosen next will in general
depend upon the transition probabilities of the strong Markov process, which would need to
be specified.

Unfortunately, it is not the case that the maximum improvement decreases every step and
it cannot thus be used as an indicator of the fact that the process is already converging to the
stable state. For example, consider a population of two individuals. Individual 7, currently
at Py can goto Py and P», individual /5, currently at P> can go to P, and Ps. Let the payoffs
be R1(1) = 0.5, Ry(1) = 1, R2(2) = 0.51, R3(1) = 0.99. The only improvement that can
be made is that individual /; moves from place P; to place P,, increasing its payoff by
0.01. That move, however, sharply decreases the payoff of individual /5 from Ry(1) = 1to
R>(2) = 0.51. The next move would be by individual 7, from P, to Ps, increasing its payoff
by 0.48 to R3(1) = 0.99.

Remark 3 An alternative way to show the existence of a stable occupancy function in the
special case of the predator dilution game is shown in Sect. 4.3.

We have shown here that there is at least one stable occupancy function, but in general
there may be many, as we see in the following example.

Example 2 Consider a game where individuals prefer to be in groups of even numbers, and
the payoff to an individual is 1 (0) if it is (not) in a group of even-numbered size. Let there
be 2n individuals and m places such that all individuals can go to all places. The number of
distributions of individuals over the places is (2”+T1_ 1) (see [7] Exercise 9.1). The number of

m
e . . T . . C 1 +m—1
stable distributions can be obtained by sending individuals to places in pairs, yielding (" m’fl )

stable states. If n >> m, then the number of distributions is roughly (21n)"™~! /((m—1)!) and the
number of stable distributions is (2)”~'/((m — 1)!) so the proportion of stable distributions
is2!-m,

When m = 2, the proportion of stable distributions is exactly (n 4+ 1)/(2n + 1). Thus we
can have two-thirds of distributions as stable if we have two individuals on two patches. We
conjecture that two-thirds is the largest possible proportion of stable distributions. Note that
in this example the proportion of stable occupancy functions for n = 1, m = 2 is actually
1/2, since the two stable distributions are each associated with a single occupancy function,
but the single unstable distribution is associated with two.
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3 A Habitat Selection Game

3.1 Game Setting

Consider M places Py, Pa, ..., Py and N individuals 7y, ..., Iy. If there are &, individuals
at place P,,, the payoff to each of these individuals will be
Rm (km) =By — fm (km) (4)

where B,, > 0 is the basic suitability of place P, and f;, is a nonnegative, increasing and
continuous function, with f;,,(0) = 0. This corresponds to selecting a habitat to forage on,
and as the number of individuals on a given patch increases, the actual yield of the patch
decreases. However, the yield does not depend on the particular occupants of the patch. In
the unstructured population case where every individual can go everywhere, the game has
been described for example in Cressman et al. [10], see also Kfivan et al. [23].

3.2 A Unique Distribution in an Unstructured Population

The following reasoning, up until the end of Sect. 3, applies to both generic and non-generic
games; note, however, that as shown in Remark 4 below, we do not necessarily have unique-
ness in non-generic cases. A known solution to this game for effectively infinite populations is
the so-called ideal free distribution [14] (ideal =rational individuals, free = no cost or restric-
tion on movement). Typically, conditional on being at a particular place, the individuals want
to be with as few other individuals as possible.

(a) Firstly, we show how to find a solution to the habitat selection game in finite unstruc-
tured population. Rather than assuming that individuals all make their choice at the same
time, let the individuals choose sequentially. The first individual will choose a place P,,, that
yields the highest payoff; i.e.

Ry (1) = max {Ru (D)} (&)

Clearly, individual I cannot do any better; and if no other individual arrives, we have the
stable occupancy function if there is a strict inequality in (5), i.e. a unique place with best
reward. If there are k places which satisfy (5), then there will be a stable set including k
distinct occupancy functions. In this case, assuming that N > k, the first k individuals must
choose the k solutions to (5), since after each choice, the value of the chosen place will
decrease, and no longer yield the highest payoff to subsequent individuals. Now, assume that
individuals 11, I, ..., I; made their choices in a sequence, so that there are k,, individuals
at place P,, and that no individual could do better by unilaterally moving to a different place.
The individual /; 11 will pick Py, such that

Ry (ki +1) = max {Ryy (kyy + D} (6)
m'#miy

Clearly, in addition to individual /; | being unable to increase its reward, none of the other
individuals /; for j < i + 1 can increase their reward by unilaterally moving to a different
place either. Indeed, if ;1| went to the same place as [}, then I; must be at the best possible
position it could now be (otherwise, I;11 would have chosen a different one). Also, if I; is
at a different place to /; 1, then it cannot improve its payoff by going anywhere else because
the move to any other place had not been optimal for /; even before /; | arrived (and now
the payoff at P, , has become even smaller due to the presence of 11, whilst the payoffs

Birkhauser



Dyn Games Appl

Fig. 2 Method showing the existence for the habitat selection game in an unstructured population cannot
be adopted for structured populations. In all instances, we assume that the payoffs are such that Ry (1) >
R3(1) >R4(1)> Ry;(1) > R2(2) >R3(2). a and b show different stable occupancy functions for different
orders at which individuals choose their places. ¢ Shows that there is an order under which no stable occupancy
is reached (one can still follow the procedures from Sect. 2.3 to reach a stable occupancy function in several
steps)

at other places have not changed). In this way, we can continue to place the individuals until
all have made a choice.

(b) Now we show that while there will usually be many stable occupancy functions
(depending on the sequence in which the individuals will make their choice), in unstruc-
tured populations and generic games, these will all yield the same distribution (k) f‘le.

To see the last statement, assume to the contrary that two stable occupancy functions O
and O’ yield different distributions k = (km)nﬂle and k' = (k],) rﬂr{:l' Because k # k’ and
2 km = 2, ky,» there must be m and my such that k,, > k;, and k, < k;,,. Since the
payoffs R,,, and R,,, are monotone, we have

Ry (ky + 1) = Ry (K, 7
Ry (k4 1) = Ry (k). ®)

Since O and O’ are stable occupancy functions, we have

Rupy (k) > Ry (ki + 1), ©))
Ry (kpy) > Ry (yy 4+ 1). (10)

Thus, by (7), (8), (9), and (10), we get Ry, (km;) > Ry, (k;n,) which is a contradiction.
Consequently, the stable occupancy functions O and O’ must yield the same distributions k
and k'

Remark 4 In a non-generic game, different occupancies (even in the same stable set) may
yield different distributions. For example, consider an unstructured population of three indi-
viduals and two places with R{(1) > R1(2) > R;(3) = R2(1) > R2(2) > R»(3). Then
occupancies yielding a distribution (3, 0) and a distribution (2, 1) are both in the same stable
set.

Remark 5 1t seems that the same method as presented above would work for the case where
individuals could visit only some of the places; the only modification needed being to take
the maximum in (5) and (6) only over the allowable places. This is not the case, however, as
shown in Fig. 2. Consequently, we have seen that even the well-understood habitat selection
game can get more complex if we put restrictions on individual movements.

The fact that the habitat selection game (and Territorial Movement Game in general) has
a stable occupancy function no matter what the exact structure was shown in Sect. 2.3. There
seems to be no clear argument on how to obtain the solution for a general population in this
game, however. This is in contrast to the game that we now consider in Sect. 4.
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4 A Predator Dilution Game
4.1 Game Setting

Consider M places Py, Pa, ..., Py and N individuals 7y, ..., Iy each of which can move to
some (but potentially not all) of the places where the payoffs R,, (k;,) are increasing functions
of k;,,. This corresponds to the following scenario. Each day each individual selects a place. At
some point during the day, a predator arrives in the general area, picks a place at random (i.e.
with probability 1/M) and attempts to eat one individual that is on that place. Each individual
at the chosen place P, is equally likely to be eaten, with probability A, /(1 + A,,k;,), using
the Holling type II predation function K¥ivan [18], where A,, corresponds to the rate at which
the predator finds any given prey (assuming unit available searching time). If there is no
individual present, the predator stays hungry. Note that we assume that, unlike in [24], there
is no refuge, i.e. A, > 0O for all m.
The individual payoff for staying at place P, is thus

1 Am

Ry (km) = By — — ——2
m (Kin) "M T ko,

an

where B, is a baseline payoff. Many other payoff functions are possible, as long as R,, are
all increasing functions of &, .

In contrast to the habitat selection game, the individuals are now better off if they aggregate
(although this would not be the case for a Holling type III function, see for example Garay
and Mori [16]). In particular, in the special case where all places are of identical quality
and individuals can go to all places, there can be M stable occupancy functions (each with a
unique distribution), corresponding to all individuals being at a single place (in contrast to the
habitat selection game when different stable occupancy functions yield the same distribution).

Note that if we assumed that the predator keeps searching until it finds an occupied patch,
the payoff to an individual could depend on the positions of others and thus violate the local
aggregation assumption. For example, consider the case with large N and M with N < M,
and a focal individual being alone. The payoff to the focal individual would be different if
the others are all together (it will be killed with probability 1/2) or if they are all alone (it
would be killed with probability 1/N). For our game defined above, this probability is 1/ M
irrespective of the distribution of the others (as long as they are at different places to the focal
individual).

4.2 All Solutions to the Predator Dilution Game

Here we present a method of finding all possible stable occupancy functions of the predator
dilution game. The methodology in this section applies to generic games only. The fundamen-
tal feature of the payoffs is that they increase with group size. Consequently, the individuals
will want to aggregate as much as possible. In other words, they will try to fill up an already
occupied place to its maximal capacity.

(a) Let us pick a permutation 7 on indices 1, 2, ..., M and define the occupancy function
O by filling the places to the maximum in the order prescribed by the permutation as follows.
We partition {1, 2, ..., N} into a disjoint union of {Z/Inll; m=1,..., M} where

ul =Zr), (12)
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m—1
Z’{l{z =Zxm) \ U Tamy; 1 <m <M. (13)
m'=1

In the above, U] corresponds to all individuals that can go to Py(1) and U/, corresponds to
all individuals that can go to Py () but not to any Py, for m’ < m. Define

O(n) = w(m); whenever n € Z/Inl1 (14)

This yields a distribution kx(n) = |U4};]. To check for the stability of O, first note that an
individual in Py ;) cannot physically move to Py ;) fori < j (since if O(n) = 7(j), then
nel ]I and thus n ¢ Z(;)). Consequently, an occupancy O will be stable if and only if

Rrr(i)(kn(i)) > Rn(j)(kn(j)) wheneveri < j and Irr(i) UIH(]‘) 75 @ (15)

(b) We claim that by going through all the permutations 7, identifying the partitions {4! },
defining the occupancy functions by (14) and discarding any non-stable ones (those that do
not satisfy (15)), we will get all the stable occupancy functions.

First, it is clear that any occupancy function we get by the above procedure is stable.
Conversely, if O is a stable occupancy function with the distribution (km)f,‘fz |» consider a
permutation 7 so that the sequence (RH(,,,)(kﬂ(,,,)))’/,‘;’:1 is decreasing. The place Py (1) must
be fully occupied; otherwise, any individual in Z; 1) but not currently at Pr(;y would do

better by moving to Py ) since for all m

Reykzy + 1) > Rpy(kn(1)) = Ry (k). (16)

Consequently, all individuals with Py 1) in their territory must go there. Similarly, the remain-
ing individuals with Py () in their territory have to go to Py(2) and so on. So, the above
procedure with the permutation 7r indeed recovers the stable occupancy function D, and any
stable distribution which satisfies (15) must have an occupancy function defined by (12) and
(13).

4.3 Existence of Stable Occupancy Functions for the Predator Dilution Game

Following Sect. 2, we know that there is at least one stable set (a stable state for the generic
game) for the general territorial movement game, and so in particular for the predator dilution
game. In Sect. 4.2, we have seen a way of finding all solutions to the predator dilution game,
but there may be few or many, and each case needs to be searched one by one. Here we show
a method to efficiently find at least one solution to the predator dilution game (particularly
useful for large populations/ structures).

The existence of stable occupancy functions for the Territorial Movement Game has been
already shown in Sect. 2.3. However, due to the monotonicity of rewards in the predator
dilution game, we can provide an explicit recursive method to identify a stable occupancy
function.

We will define a permutation v on {1, ..., M} as follows. At the beginning, consider that
all individuals are unplaced and all places unoccupied, and so define the sets of unoccupied
places and unplaced individuals at step O as

Vi=11,2,...,N}, (17)
W=112,...,M}. (18)
Then in each recursive step, we find a place that gives its occupants maximal reward (from

all unoccupied places) when occupied by a maximum number of (yet unplaced) individuals.
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This means that once VLI and V,}: | are defined, for some ¢ > 1, we pick 7 (¢) € V,’i | such
that
Re(y(1Zey NV_11) = max Ry (1Zn NV ). (19)

meV,_,

In principle, in (19) we may have to evaluate R, (0) for some m and for simplicity we define

it as R, (0) = —o0. When 7 (1) is chosen, we define
th = th—l \ I and (20)
vl =vP N\ iro), 1)

corresponding to the fact that now place Py () is fully occupied and individuals that could go
to Pr(;) are now placed.

We repeat the process until V! = . Since we are filling the places to their maximum,
VtP = {J implies V[’ = (. Also, each step of the above procedure will make exactly one more
place occupied and we are also assigning at least one individual to such a place. Consequently,
the procedure is well defined and will stop in no more than min{N, M} steps. If the above
procedure has not defined v on the whole {1, ..., M}, we will just define = to be the (unique)
increasing numerical sequence on the remaining elements.

Once the permutation 7 is defined, we use it to construct the occupancy function O as
done earlier in Sect. 4.2 by (14) together with (12) and (13). The occupancy function O is
clearly stable. Indeed, the individuals that go to P (1) cannot do any better as this place is fully
occupied and it is the place that yields a payoff higher than at any other fully (and thus also
arbitrarily) occupied place. The individuals at place Py (2 also cannot do any better, because
they cannot move to Py (1) but are at the place that is fully occupied and yields the highest
reward of all other places occupied fully (and thus also arbitrarily) by those that cannot go
to Pr(1); and so on.

5 Discussion

In this paper, we have considered the important problem of how groups of animals should
allocate themselves between different habitats, introducing a method to model this using a
finite population, where the movement of the individuals faces some restriction. We have
considered the general case, showing that there is at least one stable population distribution,
but there can be many. We have also considered a development of the classical ideal free
distribution of optimal foraging to our structure and developed a model of predator dilu-
tion; in each case, we have shown how to find the stable occupancy functions (and that the
corresponding distribution is unique in the case of unrestricted movement for the generic
case).

We have made no explicit mention of evolution for our model. For evolutionary processes
involving finite populations, the specific dynamics involved is generally an important factor,
and the most important concept is the fixation probability. A generalisation of the ESS to a
finite population, involving a combination of the relative fitness of a single mutant individual
when compared to the resident fitness and the fixation probability, was considered in Nowak
[33]. Alternatively, and perhaps more appropriately for the current model, we could consider
an infinite population of individuals, from which random groups of N individuals are selected
to play the above game. In this scenario, strategies that we have termed stable occupancy
functions would become ESSs (and similarly stable sets would become evolutionarily stable
sets). We note, however, that for any complex structure of places and individuals it is unlikely
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that it would be replicated from group to group within the overall population, and so some
more complicated scenario with many possible structures might be needed.

This model reflects real cases where foraging is restricted. An example would be polli-
nators (as the individuals) and plants (as the places), where each pollinator specialises in
a subset of the available plants and some plants specialize for certain pollinators [20,44].
Here the “territories” of individuals are not physical areas in space, but their own set of host
plants. It can also be used to model more general situations, which are not principally about
foraging. A range of activities that apply to group-living animals can be regarded in this way,
for example taking shelter, or migration (where a “place” would be a migration route) or
alternatively mating, where the females may be considered as individuals and the males as
“places”. Currently our model is very general, but it is flexible, and there is the potential to
develop it to model more species-specific situations.

There are a number of ways that the modelling in this paper can be developed. One can
relax the local aggregation assumption as done for example in Maciejewski and Puleo [29]
where authors consider a structured population model where different individuals are best
suited to different regions of their environment. Also, in this paper we have assumed strategies
are pure, so that each individual chooses a place so that given the individuals choices the
occupancy function is determined. An interesting question is, can there be mixed strategies,
where individuals choose a place according to a probability distribution? We note that a
population with only two individuals moving to M patches is a form of bi-matrix game (with
special payoffs). ESSs in such games are always pure, following the work of Selten [38].
When can this result be generalised to our multi-player case, meaning that no mixed strategy
could be stable? It would also be of interest to consider general, and specific, models on
structures of movement with special properties. Models in evolutionary graph theory have
focused on such ideas to significant benefit, and there is potential in our model too.

Further, we note that the habitat selection game and the predator dilution game are effec-
tively two extremes of a more general case, in the sense that the ideal group size for the
habitat selection game was one (i.e. with no groupmates) and for the predator dilution game
individuals prefer to be with as many others as possible. In reality, the ideal group size may
typically be somewhere between these two. For example, if individuals are hunters, then a
group has to be large enough to catch a large prey animal but not so large that the share of
every individual is overly reduced. Similarly, there may be an optimal group size to hide from
predators. If the group is too big, the predator dilution effect is strong, but the group may be
very visible to potential predators. If the group is too small, the dilution effect is small if the
group is found by a predator. Consequently, the optimal group size is neither small nor large.

Thus it would be useful to consider such a generalisation where the best group size is
of intermediate value. This would be appropriate for any population which is subject to the
Allee effect. This type of situation was modelled in the usual infinite population habitat
selection game in Kiivan [25] (see also [31,32]) which demonstrates the strong influence
of the Allee effect upon the population dynamics and also upon the spatial distribution of
the population. A unique IFD exists for low and high population densities, but there can
be up to three IFDs for intermediate densities. Thus even in the case of well-mixed infinite
populations, the number of possibilities is large. Thus we do not expect to be able to generate
similar complete general results for this case as those we found for the previous two models.
Nevertheless we know from Sect. 2.3 that there will always be at least one stable set, and we
envisage that some general results can be found, together with approaches to tackle specific
models, including finding the stable sets, using the methods we have generated in this paper.
It would also be of interest to attempt to combine the analytical methods developed in our
paper with those of Kfivan [25] for the infinite population unrestricted case.
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