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Summary 

This paper presents outcomes from a cognitive engineering project addressing the 

design problems of computerised monitoring in neonatal intensive care. Cognitive 

engineering is viewed, in this project, as a symbiosis between cognitive science and 

design practice. A range of methodologies has been used: interviews with neonatal 

staff, ward observations, and experimental techniques. The results of these 

investigations are reported, focusing specifically on the differences between junior 

and senior physicians in their interpretation of monitored physiological data. It was 

found that the senior doctors made better use than the junior doctors of the different 

knowledge sources available. The senior doctors were able to identify more relevant 

physiological patterns and generated more and better inferences than did their junior 

colleagues. Expertise differences are discussed in the context of previous 

psychological research in medical expertise. Finally, the paper discusses the potential 

utility of these outcomes to inform the design of computerised decision support in 

neonatal intensive care. 

 

1. Introduction 

Advances in medical informatics offer considerable potential for improving the 

quality of medical and nursing care in a variety of health care domains. However, 
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there is extensive evidence to suggest that computerised aids in medicine are not 

always readily accepted or widely used by medical or nursing staff, and often fail to 

produce the sought-for clinical improvements (Green, Gilhooly, Logie, Ross, 1991; 

Cunningham, Deere, Simon, Elton, & McIntosh, 1998; Morgan, Takala, DeBacker, 

Sukuvaara, Kari, 1996). The most common reason given for these difficulties has 

been a failure in system design to incorporate an adequate knowledge of the 

cognitions and working practices of the eventual users (see e.g. Coiera, 1994). 

One way of addressing the problem is to use cognitive engineering. This discipline 

has been traditionally characterised as the application of theories and models 

developed by cognitive psychologists to inform the design of human-computer 

applications (Norman, 1986). In the last two decades, a great deal of effort has gone 

into this enterprise. However there are strong suggestions that psychological 

knowledge has not had a significant impact on system design (see e.g. Barnard & 

Harrison, 1988; Carroll, 199; Landauer, 1987). This has led to new characterisations 

of cognitive engineering which essentially exclude psychological practices from 

human-computer studies (e.g. Long & Dowell, 1989, 1996). In contrast, we argue that 

cognitive psychology can play an important role in engineering design, and that 

system design and psychological theories and methods can support each other by 

maintaining a symbiotic relationship (Alberdi & Logie, 1998).  

In our view, cognitive science can play (and, in fact, has played) important roles in 

the development of usable knowledge for human-computer interaction. If rightly 

applied, a great deal of what is known about human cognition can have important 

implications for design. The application of a cognitive model (e.g. Card, Moran, & 

Newell, 1983; Wickens, 1992), coupled with a sound analysis of the application 

domain and extensive empirical psychological investigations, has often resulted in 

successful contributions to the design process (e.g., Edworthy & Stanton, 1995; Egan, 

Remde, Gomez, Landauer, Eberhardt, & Lochbaum, 1990; Gray, John, & Atwood, 

1993; Green, Logie, Gilhooly, Ross, & Ronald, 1996). Additionally the results of 

design-oriented task-specific psychological investigations can feed back into the 
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cognitive theory from which they were generated. The drive to develop a particular 

piece of technology has often forced questions on the psychological theories which 

informed the development. And, as a result, these theories have been refined and 

enhanced. Hence our view of cognitive engineering as a symbiosis between cognitive 

science and design practice.  

We have used this approach to deal with the problems of computerised monitoring 

in neonatal intensive care (Logie, Hunter, McIntosh, Gilhooly, Alberdi, Reiss, 1997; 

Alberdi, Becher, Gilhooly, Hunter, Logie, Lyon, McIntosh, & Reiss, 1999). 

Specifically, we have conducted a series of investigations in the neonatal intensive 

care unit (ICU) of the Simpson Maternity Hospital in Edinburgh (UK), where a PC 

based trend monitoring system (MARY
TM

)
1
 has been in use for more than 10 years 

(McIntosh, Ducker, & Bass, 1989). The computerised system was generally welcomed 

by the clinical staff, who positively valued its utility (Deere, Cunningham, McIntosh, 

1992). However, recent studies at the unit have shown that the presence of a 

computerised trend monitoring system does not in itself result in better outcomes in 

terms of morbidity and mortality (Cunningham et al., 1998). 

The goal of these investigations was to study the users’ (physicians and nurses) 

cognitions and working practices, with a view to evaluating the usability of the 

currently implemented system and contributing to the design of computerised decision 

support in intensive care. Our work has been partly guided by psychological theories 

of medical expertise (e.g., Gilhooly, 1990). Expertise differences are undoubtedly 

relevant to the design problem we are dealing with. Typically, computerised systems 

are designed by medical experts but the main users are nursing and junior medical 

staff in training. It is likely that these staff have different personal knowledge bases 

and so interpret data in different ways from the experts. Therefore, we need to know 

how the front-line users of the system differ from experienced clinicians in the way 

they interpret data and use their knowledge. 

                                                           
1
 MARY

TM
 is a trademark of Meadowbank Medical Systems. 
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In consonance with current research in complex naturalistic decision making 

environments (including intensive care; see e.g. Patel, Kaufman, & Magder, 1996), 

our approach has been to use a range of methodologies, namely, interviews with and 

observations of clinicians (physicians and nurses) working in the neonatal unit, as well 

as experimental work (“off-ward” simulations) to study the cognitions of the 

clinicians.  

The rest of this paper is organised as follows. The next section presents a brief 

introduction to the problems of computerisation in neonatal intensive care, focusing 

on the monitoring system under study. This is followed by a review of the 

psychological literature on medical expertise. The following section presents a brief 

report of results from the interviews and observations. Next the “off-ward” 

simulations are discussed in detail. A discussion follows which highlights the 

implications of our results for cognitive psychology and for the design of human 

computer interaction in neonatal intensive care. 

 

2. Computerisation in the neonatal ICU 

The clinical monitoring of patients in the neonatal ICU has three objectives: (1) to 

confirm that the baby is stable and responding appropriately to therapy; (2) to allow 

early detection of abnormal physiological events, with a view to rectifying problems 

before they become too established; (3) to detect situations in which the baby is not 

responding appropriately to treatment thereby requiring alternative action. 

Information technology is intended to assist in the achievement of these objectives, 

and intensive care wards for both adults and infants have seen a rapid increase in the 

data available to the clinical staff. Current monitoring systems can display information 

on a variety of physiological parameters: heart rate, blood pressure, blood gases, 

respiratory rate, body temperature, etc. Often each physiological parameter is 

displayed on a separate monitor and in a different format. However, physiological 

conditions can be indicated by changes in several of these parameters; such an 
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arrangement can therefore result in significant complications for scanning and 

assimilating the data displayed. 

An important development in the last decade has been the use of computers to 

collect data from different monitors and to display them in a more uniform format 

(Green et al., 1996). Computer systems offer a means to avoid some of the 

information overload arising from multiple monitors through use of integrated and 

flexible displays. The computerised system used in our studies (Cunningham, Deere, 

Elton, McIntosh, 1992) is a good example of this type of software. One of the most 

distinctive features of this system is its presentation of monitored physiological data 

as trend graphs. The system shows physiological trends over long periods of time, in 

contrast with most conventional monitors which only present the value at a particular 

moment in time. Data presentation in the form of trends is deemed to facilitate 

clinicians’ assessment of the data and propitiate rapid and effective decision making 

in emergency situations (Cunningham et al., 1992). The system allows continuous 

collection of physiological information which is automatically recorded and displayed 

on a PC at the cotside. It allows the display of real time and previously recorded trend 

data: when monitoring in real time, data from any period of the infants’ monitored 

stay in the ICU can be recalled. Important features of the system are the flexibility of 

its display and the ease with which this can be manipulated. Furthermore, the user can 

enter information or comments in real time by a cursor in the recorded trend data; 

nursing staff are encouraged to enter comments about procedures and tests performed 

on a baby, as well as about relevant clinical events occurring to an infant. The whole 

system is based on menus, which the users can access using a standard keyboard. 

A further potential contribution of computer technologies is the development of 

decision support systems to assist in the interpretation of monitored data (Coiera, 

1993). Such systems can support medical decision making by optimising the display 

content and format for the physiological condition of the patient, by detecting patterns 

of change or stability in several different parameters, and by recording parameter 

values for cumulative displays. The major difference between a computerised 
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monitoring system and a decision support system is in the level of interpretation, 

organisation and selection of available data. The medical decision support system in 

the ICU has to meet all of the objectives of the monitoring system, but also has to 

make data available in a form which facilitates decision making. Advances in artificial 

intelligence (e.g., Salatian & Hunter, 1996; Taboada, Arcay, Arias, 1997) and in the 

World Wide Web (e.g., Nenov & Klopp, 1996; Norris, Dawant, Geissbuhler, 1997) 

are contributing to the development of medical decision support in intensive care. 

However, as suggested above, a common concern is that much of this work is still 

technology-driven rather than user-driven (Coiera, 1994; Gremy & Bonnin, 1995). 

 

3. Literature on expertise and medical reasoning 

A great deal of the psychological research conducted in medical reasoning has been 

aimed at determining the nature of expertise in diagnostic thinking. Research expertise 

in a range of non-medical domains suggests the following (Ericsson and Charness, 

1997; see also, Feltovich, Ford and Hoffman, 1997; Ericsson and Smith, 1991; Chi, 

Glaser and Farr, 1988): (1) experts perform better than novices because they possess 

superior domain knowledge accumulated after many years of extensive practice, and 

not because of superior basic capacities (Ericsson and Lehman, 1996); (2) because 

they have a richer repertoire of relevant schemata, experts can remember more new 

information in their field than novices (Chase and Simon, 1973), and (3) have better 

problem representations in terms of the deep structure of the problem whereas novices 

are led by the surface features of the problem (Larkin, 1983); (4) experts tend to work 

forwards (i.e. from the starting state to the goal state), whereas novices work 

backwards from the unknown to the givens (Larkin, McDermott, Simon and Simon, 

1980). 

Two significant discrepancies between research on medical problem solving and 

general research in expertise have been noted (Gilhooly,1990; Patel and Groen, 1986, 

1991; Patel, Arocha and Kaufman, 1994; Patel and Ramoni, 1997). One discrepancy 
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is that medical experts do not seem to show a strong tendency to work forward to a 

goal state. In pioneering studies of diagnostic thinking (Elstein, Shulman, & Sprafka, 

1978), it was found that expert physicians generated hypotheses very early in the 

process, after seeing just a few signs or symptoms; these hypotheses were then tested, 

checking for the presence or absence of symptoms deduced from the hypotheses. This 

approach, which can be characterised as one of hypothetico-deductive reasoning, 

involves reasoning backwards from the goal (the hypothesis) to the given (the 

symptoms). A reasonable explanation for this type of processing is that in diagnostic 

thinking not all the necessary information is presented initially; hence, the task 

requires information search, and this search is usefully guided by hypotheses (see 

discussions in: Gilhooly, 1990; Elstein, Shulman, & Sprafka, 1990; Patel and Ramoni, 

1997). 

A second discrepancy between research on medical diagnosis and general expertise 

research is that medical experts do not always remember more information about new 

cases than less experienced subjects. These findings have emerged from studies in 

which subjects with various degrees of expertise are presented with a short text 

containing details of a clinical case and, after a brief study period, are requested to 

recall the text and state the most likely diagnosis. Such studies show that subjects of 

intermediate levels of expertise recalled case information better than either more 

expert or less expert subjects (e.g., Claessen & Boshuizen, 1985; Patel & Groen, 

1986). This pattern of results is generally known as the “Intermediate Effect” on 

memory (Schmidt, Boshuizen, & Hobus, 1988; Schmidt and Boshuizen, 1993; Patel 

and Groen, 1991). However, even if experts have poor memory for the specifics of a 

case, the diagnoses produced by them for that same case tend to be more accurate than 

those produced by less experienced subjects. This data pattern has been explained by 

the different forms of knowledge brought to bear on the task by expert and less expert 

subjects (Schmidt, Norman and Boshuizen, 1990). Experts seem to use what is usually 

referred to as “clinical knowledge”, that is, compiled knowledge in the form of 

“illness scripts” which contain prototypical information about diseases (Feltovich & 
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Barrows, 1984). This usually allows a reasonable diagnosis with little processing of 

the textual (case) information. On the other hand, subjects with intermediate levels of 

expertise seem to rely on “biomedical knowledge”, that is, knowledge of underlying 

pathophysiology and anatomy. Since such knowledge is not grounded on the personal 

experience of the subjects, they have to reason from first principles, resulting in a 

slower and often less accurate processing of the information. 

Many studies on medical reasoning support the notion that less experienced subjects 

make extensive use of biomedical knowledge whereas expert subjects use it sparingly 

(e.g., Boshuizen and Schmidt, 1992; Elstein et al., 1978; Lemieux and Bordage, 

1986). However these findings are contradicted by research that looks at diagnostic 

tasks involving the interpretation of visually presented patient data, such as radiology 

and ECG interpretation. For example, in studies dealing with the interpretation of X-

rays, Lesgold and colleagues (Lesgold, 1984; Lesgold, Glaser, Rubinson, Klopfer, 

Feltovich & Wang, 1988) found that expert subjects made more explicit use of 

biomedical knowledge. Their studies suggest that experts’ diagnostic reasoning is, in 

fact, opportunistic and will exploit whatever knowledge sources are available in the 

task. Similarly, Gilhooly and colleagues, (Gilhooly, McGeorge, Hunter, Rawles, 

Kirby, Green, and Wynn, 1997) in a study of the interpretation of ECG traces found 

that expert subjects used both clinical and biomedical knowledge more frequently than 

novices or intermediates. In contrast, less experienced subjects tended to generate a 

larger proportion of trace descriptions. Furthermore, novices and intermediate subjects 

were less likely to reach hypotheses than were the more experienced subjects, and 

when they reached hypotheses they were less likely to evaluate them by biomedical 

knowledge than the experts. Gilhooly and colleagues explained their findings, and 

those from Lesgold and colleagues, by noting that radiology and ECG interpretation 

tasks usually involve uncontextualised information: the experimental tasks were 

tackled without provision of background clinical information, in contrast with the 

other studies discussed, in which such information was available (e.g., Feltovitch & 

Barrows, 1984; Boshuizen & Schmidt, 1992). They argued that, when interpreting 
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uncontextualised perceptual information, experts may need to use biomedical 

knowledge to discriminate amongst hypotheses that make similar predictions about 

the surface appearance of the data. Gilhooly and colleagues’ conclusion is that experts 

do indeed use the “short-cuts” (e.g., application of “illness scripts”) facilitated by their 

acquired clinical knowledge if relevant contextual information is available. However, 

when such information is missing, experts can effectively reason from underlying 

principles (i.e., application of biomedical knowledge).  

It is important to note that not all the findings arising from studies of diagnostic 

thinking reflect significant expertise differences. Some results suggest important 

commonalities in the reasoning processes of experienced and less experienced 

clinicians. For example, early studies (Elstein et al., 1978) found no skill-related 

differences in diagnostic process between experts and less qualified subjects. In 

particular, no quantitative differences were found in hypothesis processing or 

information use patterns between the two groups. Similarly, in a recent study of 

mammography interpretation, Azevedo (1998) found that experts and non-experts did 

not differ in the types of problem solving operators and diagnostic plans they used, or 

in the number and types of errors they committed. Differences were found, however, 

in terms of processing speed: experts scanned the radiological information 

significantly faster than the less experienced subjects. Similar results were also found 

by Joseph and Patel (1990). 

To sum up, the literature on expertise differences in diagnostic thinking seems to 

suggest the following major patterns: (a) experts perform better than novices not 

because they use superior skills, but because they possess superior domain knowledge 

(a richer repertoire of schemata); (b) as a consequence, experts have a better 

representation of the domain than do novices; this allows them to focus on those 

aspects of the task which are more relevant, and thus process information faster and 

more accurately; (c) experts’ problem solving is opportunistic: they make better use 

than novices of whatever sources of information are available and relevant to the task, 

and search effectively for relevant missing information. 
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4. Study 1: Interview and Ward Observation 

All the studies reported in this paper were conducted in the neonatal ICU of the 

Simpson Maternity Hospital in Edinburgh (UK). The unit has 12 intensive care cots, 

14 high dependency cots and 14 special care cots, with about 650 admissions per year. 

Four general paediatric surgeons and 6 consultant neonatologists, among other staff, 

work regularly at the unit. 

As noted earlier, we will focus here on data relating to expertise differences between 

senior and junior physicians. Other findings from our interviews and observation 

sessions are reported elsewhere (Alberdi, Becher, Gilhooly, Hunter, Logie, Lyon, 

McIntosh, Reiss, in press). 

 

4.1 INTERVIEWS 

The purpose of the interviews was to obtain a subjective view of working practices, 

staff attitudes and perceived expertise, as well as information about their data 

interpretation procedures and their use of information sources.  

Participants 

Seven senior and eight junior physicians, working in the Neonanatal Unit of the 

Simpson Maternity Hospital, participated in our interviews. Five of the senior 

physicians were the consultants working at the time in the unit. They had an average 

of 12 years of experience (minimum five years, maximum 26 years) in neonatal care. 

The other two senior doctors were senior registrars who had had five and nine years of 

experience respectively in neonatal care. On the other hand, six of the junior 

physicians were senior house officers (SHOs), whose experience in neonatal care 

ranged from 4 months to 2 years (an average of less than one year). Two of the junior 

physicians occupied slightly more senior positions, namely, a registrar with less than a 

year of experience in neonatal intensive care, and a staff grade doctor who had worked 

in neonatal intensive care for less than five years.  
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Procedure 

The questions asked during the interviews covered the following areas: (a) position 

and clinical experience of the interviewees as well as their responsibilities at the unit; 

(b) sources of information used to make clinical decisions on the ward; (c) the ways in 

which staff deal with monitoring artefacts (i.e., changes or disturbances of the 

monitored data which do not reflect the real state of the baby); (d) experience with 

computers, attitudes towards the computerised monitor, and the ways of interacting 

with the system. 

 

Results 

The most relevant findings from the interviews can be summarised as follows: 

1. Most staff (94-95%) reported that the system (MARY) was useful and noted that 

trend monitoring (one of the most distinctive features of the system) was very 

helpful for their decision making.  

2. Fewer junior doctors (75%) mentioned the system as a source of information they 

would consider when making decisions about the state of a baby, compared with 

100% of the senior doctors. 

3. In contrast, when asked specifically about how often they used the system, more 

junior doctors (75%) reported using the system “very frequently” or “constantly”, 

compared with the senior doctors (57%). 

4. Junior doctors were less likely (25%) to know how to alter various aspects of the 

data display on the computer monitor than were senior doctors (71%).  

5. Only a small proportion of the junior doctors (37.5%) was able to suggest ways in 

which the computerised monitor could be improved; in contrast all senior doctors 

suggested improvements.  

6. Whereas all the senior physicians reported being able to identify at least some of 

the most frequently occurring monitoring artefacts, only 33% of the junior doctors 

reported that they were able to do so.  
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7. Few of the interviewees reported receiving any training on the system (14% of the 

senior doctors, and 37.5% of the senior doctors); but the junior doctors were 

clearly more concerned about lack or shortage of training (100%) than were the 

senior doctors (57%).  

8. More junior physicians (75%) reported having experience with various computer 

applications (other than MARY), compared with the seniors doctors (57%). 

9. The following sources of information were suggested by interviewees (especially 

senior physicians) as data they would like to have online to take better advantage 

of trend monitoring: (a) information about test results (e.g., arterial samples, X-

rays); (b) information about ventilator and incubator settings; and (c) in general, 

all information about the history of the baby and the mother, as well as nursing 

and medical notes, to get rid of paper notes altogether. 

 

4.2 OBSERVATIONS 

We conducted extensive observations of the neonatal ward to obtain a more objective 

picture of clinicians’ working habits and performance. The observations provided an 

interesting contrast to some of the interview data. 

 

Procedure 

We conducted 8 observation sessions at the neonatal unit of the Simpson Maternity 

Hospital. Each session lasted from 1 to 2 hours, giving a total 13 ½ hours worth of 

observation data. Many of the members of staff who participated in the interviews 

were present at the ward during the observation sessions. In a preliminary session, the 

observer sat at the unit and noted all the different activities that staff conducted. This 

produced an encoding scheme which was used in the following sessions. In each 

session, a record was kept of the frequency with which each activity was conducted by 

different members of staff.  
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Results 

The following activities were identified: interacting with the computerised monitor, 

looking at the baby, handling the baby, handling equipment and substances, talking to 

colleagues, writing/reading paper notes, dealing with the alarms, and “other” rarely 

observed activities (i.e., supervising the ward, interacting with relatives, and looking 

at X-rays). 

Table 1 summarises observation data, including information about nurses. The table 

suggests that the junior doctors were the staff group who interacted the least with the 

computerised monitor, compared with the senior doctors (and even the nurses). 

Furthermore, interaction with the computer was one of the least frequently observed 

activities amongst the junior doctors. The use of the system accounted for only 4.5% 

of the activities conducted by them. Furthermore, this small percentage accounted for 

all the interactions with the system that occurred in only two of the eight observation 

sessions. Many of the junior doctors were never seen using the system at all. In 

contrast, the senior doctors were the staff group who used the system most frequently. 

Interaction with the system amongst the senior doctors accounted for 13.50% of all the 

recorded activities and was the fourth most frequent activity undertaken by them.  

The low frequency with which staff were seen interacting with the computerised 

monitor is particularly significant if we consider that most (or all) of the staff being 

observed knew that the observer was involved in a research project related to the 

computer system. There was no indication that staff tended to use the system more 

often while being observed than they normally would. 

 

In summary, our interview and observation data suggest that junior doctors use the 

computerised monitor less frequently than do the senior doctors and are thus less 

likely to benefit from the monitoring information provided by the system.  

 

Table 1 
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5. Study 2: Off-ward simulations 

The purpose of the off-ward simulations was to study, in an experimental setting, the 

cognitions of clinical staff while interpreting monitored data. Our simulations are a 

substantial simplification of the interactions that staff may have with the monitoring 

system in real life. During the experiments, staff had to rely mostly on the information 

provided by the monitored trends. Our aim was not to replicate in detail the complex 

decision making scenario of a neonatal unit. Rather we wanted to assess how much 

could be inferred about the condition of a baby by using only monitoring information. 

The participants were allowed to request extra information from the experimenter only 

after they had exhausted all the interpretations they could derive from the trends. One 

of our goals was to find out what other information they needed, in addition to the 

monitored trends, to make decisions efficiently about a patient.  

 

5.1 METHOD 

Participants 

The data reported in this paper correspond to the off-ward simulations run with 5 

senior doctors and 5 junior doctors. All the senior doctors who took part in the 

simulations had previously participated in the interviews reported above. The junior 

doctors were all Senior House Officers (SHOs) who had been recently appointed in 

the unit and had less than six months of experience in neonatal intensive care. 

 

Material 

Each staff member viewed on the computer screen 14 different physiological traces 

recorded from previous patients (babies) on the ward. The traces were selected by 

clinical experts (McIntosh & Reiss) from a database kept at the Simpson Maternity 

Hospital. Each trace comprised two hours of recorded data. In all traces, the same five 

physiological measurements were displayed in the following order (from top to 

bottom): heart rate, trans-cutaneous oxygen, trans-cutaneous carbon-dioxide, toe-core 
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temperature differential, mean blood pressure. For those trace samples in which a 

given parameter was not monitored, the parameter would still be shown on the screen 

(although blank).  

The vertical axes of the parameter graphs were scaled to show the appropriate 

physiological range for each baby. This range was determined by the clinicians 

involved in the selection of the stimuli (as well as running the experiments). 

Each trace (with the exception of two control traces) contained a key clinical “event” 

that the participants were expected to identify. In particular, four types of “key events” 

(or “non-events”) were used on the traces: 

  Baby’s reaction to the administration of drugs 

• Traces 1 & 2 contained the key event “administration of surfactant” 

• Traces 3 & 4 contained the key event “administration of dopamine” 

  Spontaneously occurring pathological key events 

• Traces 5 & 6 contained the key event “developing pneumothorax” 

• Traces 7 & 8 contained the key event “blocking of the endo-tracheal 

tube” 

  Baby’s reaction to regular procedures 

• Traces 9 & 10 contained the key event “electrode change” 

• Traces 11 & 12 contained the key event “all care” (i.e., a regular 

procedure which involves cleaning the baby, reapplying or fixing 

tubes, electrodes & probes, and various other activities) 

  The last two traces (Traces 13 & 14) were “control traces” that only contained 

artefacts.  

In addition to the “key event”, each trace contained several other clinically 

significant events or noteworthy artefacts which ought to be identified by qualified 

staff. These were recorded by a clinical advisor (McIntosh) prior to the running of the 

simulations. In this paper, we will refer to these secondary, but noteworthy, patterns as 

the “relevant patterns” or the “relevant events”, to differentiate them from the “key 

events”. 
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The traces were selected in such a way that, when possible, they all possessed the 

following characteristics: a) they all have elements of ambiguity, that is, the 

identification of the event is not obvious; b) they all contain roughly the same number 

of artefacts; c) the onset of the “key events” does not appear in the same place on all 

traces. 

All participants saw the same 14 traces, but the presentation order was randomised 

for each participant: each saw a different sequence of traces. Figure 1 shows an 

example of the 7-minute blocks of monitored data used during the simulations.  

 

Procedure 

Each participant was told that the goal of the experiment was to study how 

computerised trend data influence the way s/he thinks about the neonatal ICU patients. 

The participant was then informed that s/he was going to view some trends of past 

babies on the computer screen, and that some of those trends were going to be 

uneventful, some were going to show normal events, and that some were going to 

show developing pathology. The participant was told that s/he was going to see in all 

traces the same five channels of data, scaled physiologically, and in two different time 

scales.  

The participant was instructed to think aloud while looking at the traces, reporting 

everything that went through her/his mind. S/he was instructed to point at the 

abnormalities or artefacts that s/he saw on the traces and, if possible, to provide an 

interpretation. 

Each trace, which contained 2 hours worth of data, was shown on a computer screen 

as a series of seven minute blocks of data; subsequently, the trace was shown again on 

a different time scale, namely as two 1.5 hour blocks (with ½ hour overlap) of 

compressed data.  

The experimenter had full control over the manipulation of the computer display 

(i.e., scrolling between blocks of data, modifying the graph scales, etc.). The 

participant was told that s/he was allowed to ask the experimenter to scroll back and 

Figure 1 
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look at what had happened earlier, but was also informed that the experimenter would 

never scroll forward to the next block of data until the participant had said all s/he 

wished to say about the trace to that point. S/he was informed that at that point s/he 

could ask for more information which would be given to her/him if it would have 

been available at that time clinically. The participant was instructed to clearly state 

when s/he wanted to move on to the next block of data. Prior to the presentation of 

each trace, the participant was given a card with basic information about the baby 

from whom the trace was derived. This information consisted of: a) baby’s weight; b) 

baby’s gestation; c) baby’s age; d) whether the baby was ventilated; e) percentage of 

ventilating air given to the baby at the start (if ventilated). 

The only way in which the participant could interact with the computer system was 

by pointing at the display to clarify what specific physiological patterns s/he was 

referring to in her/his speech. All sessions were recorded on video to capture the 

computer display with the participant on the side speaking and pointing at the screen. 

The participant’s speech was captured by a microphone attached to the video camera. 

 

5.2 RESULTS 

The simulation sessions generated a total of 140 video-recorded protocols (i.e., 14 

protocols per participant). Two of those protocols (one from one senior doctor and one 

from one junior doctor) could not be used in the analyses because of technical 

problems. The analyses we report below were conducted on the remaining 138 

protocols.  

The study was a mixed between and within-participants design; with expertise as the 

between-participants factor and trace as the within-participants factor. 

 

Protocol analyses 

The resulting video-recorded think-aloud protocols were transcribed and analysed 

using standard protocol analysis procedures (Ericsson and Simon, 1984). 
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The transcription of the protocols involved: (a) transcribing verbatim the 

participants’ verbal reports to reflect as accurately as possible their speech, as well as 

noting non-verbal aspects which may be meaningful (e.g., pauses, emphasis, etc.); (b) 

dividing the transcript into as many paragraphs as trace segments were seen by the 

participants in each trace – that is, into about 19-21 paragraphs, corresponding to the 

17-19 “seven minute blocks” plus the two “compressed” blocks; each transcript 

paragraph was marked with a time interval which denoted its corresponding time 

segment on the trace; (c) noting on the transcript whether a participant points at the 

screen, and marking the parameter change s/he is pointing at, as well as the time that 

change is taking place on the trace. 

Subsequently, each protocol was segmented. This involved dividing a participant’s 

comments into statements, and listing them one per line. A statement represents a 

single idea, a basic unit of thought. Typically a statement contains a comment which 

refers to only one of the 5 physiological parameters displayed on the screen (example: 

“There is a significant drop of pO2 towards the end of the screen”). This process 

yielded 17,888 statements (11,278 for the senior doctors and 6,610 for the junior 

doctors).  

A major component of the protocol analysis was the generation of an encoding 

scheme to characterise the cognitive processes used by the participants. The 

development of the encoding scheme involved two procedures. The first procedure 

was generating a label to describe the behaviour represented in each statement. The 

labels were meant to be mutually exclusive. However, often the same statement could 

involve two different behaviours, in which case two different labels were applied. 

Following with the example above, the statement comprises two behaviours: the 

description of a physiological change (i.e., “drop in pO2”), and an interpretation of 

that change (i.e., “significant”). The second procedure involved generating a list of the 

labels, including a description of the behaviour associated with each label. 

Table 2 
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As a result, 10 labels/categories were generated. This set was produced after 

analysing the first protocol of the first participant (a consultant) and was partly guided 

by the authors’ previous experience in a similar investigation (Gilhooly et al., 1997). 

Since the creation of an encoding scheme is always a dynamic process, the scheme 

suffered a few minor refinements as new protocols were analysed. Eventually, a set of 

criteria was established to determine the application of a code to a statement; these 

criteria are outlined in table 2.  

Using this scheme, a total 20,608 codes were generated for the whole set of 

protocols (12,850 codes for the senior doctors and 7,758 for the junior doctors). A 

highly significant correlation was found between the percentages of code frequencies 

for the senior doctors and the corresponding proportions for the junior doctors [r(8) = 

0.99; p < .001]. This strongly suggests that both groups used essentially the same 

processes, and with equivalent relative frequencies, during the simulations. The most 

frequently identified processes for both groups were “Describe”, “Interpret” and 

“Hypothesis”. They account for 68% of all the coded behaviours. The category 

“Other” also accounts for an important proportion of the codes; but, as noted, this 

category comprises many other sub-processes which were not deemed to be relevant 

behaviours individually.  

The data in Table 3 suggest some differences between the two staff groups. For 

example, the usage of “Describe” and “Interpret” accounted for a larger proportion of 

junior doctors’ behaviours than those of the senior doctors, although the differences 

were not statistically significant (see column 4). In contrast, the proportions with 

which the remaining types of behaviour were used were always higher for the senior 

doctors than for the junior physicians. The only behaviour for which there were 

statistical differences between senior and junior doctors was the frequency with which 

they noted artefacts (see column 4). 

Table 2 

Table 3 
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Requests for “extra information”  

We noted earlier that, during the simulations, staff were allowed to ask for extra 

clinical information to complement the information provided by the monitored data. 

As reported earlier, about 6% of the statements produced by the senior doctors and 4% 

of the statements of the junior doctors contained requests for extra information. Those 

statements were analysed in detail to identify the most common types of information 

requested. We focus here on those aspects of these analyses which are relevant to 

expertise differences. More details can be found elsewhere (Alberdi et al., in press). 

The analyses showed that staff required information about: (a) the baby, more 

specifically, its state and appearance; (b) procedures conducted on the baby, for 

example, whether the baby has been handled in some way or some drug has been 

administered; (c) the settings of the machinery attached to the baby, more specifically, 

the ventilator settings and the incubator settings; (d) clinical tests and examinations 

conducted on the baby, for example, arterial blood samples and X-rays; (e) changes to 

the computerised monitor display, for example, requests to change the axis scale or 

requests to scroll back to previous data blocks; (f) colleagues’ impressions or 

knowledge about the state of the baby; (g) the calibration of probes or leads, that is, 

whether the probes are correctly calibrated and whether they show real physiological 

values; and (h) finally, “other” statements where a person indicates that s/he would 

need further information but does not clearly specify what that required information 

is.  

A tally was made of the number of times each type of extra information was 

requested in the protocols. Interesting differences were found between senior and 

junior doctors. On the one hand, the most frequent requests by senior doctors were to 

change the displays on the monitoring system (42% of the requests); they requested 

this information considerably more often than did junior doctors (11.50%). On the 

other hand, the most frequent requests from the junior doctors concerned information 

about procedures conducted on the baby (33% of their requests); in contrast with the 
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senior doctors, who did not request this information quite so often (7%). Further, the 

second most frequently requested type of information by the junior doctors was 

information about the baby (19%), which suggests that the junior doctors are more 

likely to rely on the information obtained from a direct contact with the baby than on 

other sorts of information (e.g., the information provided by the computerised 

monitor). The senior doctors did not request information about the baby as often as 

did the junior doctors (14% of the requests). As regards the other types of information 

noted, the differences between senior and junior doctors were not remarkable.  

It is interesting that much of the information requested during the simulations 

coincided with what many staff members reported in the interviews when asked about 

the additional information they would like to find online in a computerised monitoring 

system (see Section 4).  

 

Identification of “key events” 

As noted earlier, each of the traces (except the control traces) contained a key clinical 

“event” that the participants were expected to identify. A participant was said to 

identify one of these events if s/he generated a hypothesis containing the name of the 

event (or a synonym), and this hypothesis was generated to explain the physiological 

changes on the trace associated with the event. An expert clinical advisor (McIntosh) 

assisted in the analysis. The control traces (13 & 14) were excluded from the analyses. 

It was found that the senior doctors identified, as an average, 8.30 out of the 

remaining 12 “key events” (sd= 1.30; 69%), whereas the junior doctors recognised 

7.80 (sd= 1.64; 65%). ANOVA showed no influence of seniority [F <1].  

There is no conclusive evidence to suggest that the more experienced doctors have 

any advantage over the more junior staff when detecting “key” physiological events. 

In fact, the event recognition standards of both groups were fairly low. However, as 

shown below, more obvious expertise differences arise when more fine-grained data 

analyses are involved. 
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Detection of relevant patterns 

As noted earlier a medical expert (McIntosh) identified, for each trace, a set of 

“relevant events” in addition to the “key event”. The clinical expert generated a total 

of 314 events, with an average of 22 events per trace (minimum: 1 event for the 

control trace 14; maximum: 42 events for trace 10). In his records of “relevant 

events”, the medical expert noted: (a) the time each event started; (b) the duration of 

the event; (c) the nature of the event (i.e., what physiological parameter changed and 

the type of change); (d) an inference about the possible causes for that parameter 

change or whether it is an artefact.  

The records of events generated by the expert advisor were used as a “gold standard” 

with which to compare the participants’ performance during the simulation. For each 

trace, a tally was made of the number of events reported by each participant that 

matched the events recorded by the expert. A participant is said to report an event that 

matches an event recorded by the expert if s/he either: (a) describes a change on a 

physiological parameter on the trace and this pattern coincides (both in its nature and 

the time of occurrence) with an event reported by the independent expert; or (b) does 

not describe a pattern but provides an interpretation or inference which refers to a 

particular monitoring pattern noted by the independent expert, hence it can be 

assumed that the participant has detected the pattern. 

A larger proportion of the “relevant events” (N = 304 excluding the events in the 

control traces) was identified by the senior doctors (mean = 206.72; sd = 41.22; 68%) 

than by the junior doctors (mean = 164.16; sd = 47.80; 54%). ANOVA (2 x 12) 

showed significant influence of seniority [F(1, 8) = 8.21; p < 0.05] and trace [F(11,88) 

= 4.55; p < 0.001]; but no trace x seniority interaction [F<1] was found. The control 

(13 & 14) traces were excluded from the analyses because each of them contained a 

very small number of events (9 & 1 respectively). 
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Inferences about relevant patterns 

As noted earlier, the records of relevant events generated by the expert clinical advisor 

included, when possible, inferences to explain the underlying causes for the 

physiological changes characterising the events. The expert provided causal inferences 

for 179 (57%) of the events he recorded (a mean of 12.5 per trace; maximum 23, 

minimum 1; sd = 7.3). A tally was made of the number of events (out of this subset of 

events) identified by each participant. Subsequently, the protocol statements were 

analysed to determine whether the participant had provided an inference for each of 

the identified events and, if so, whether the participant’s inference matched the 

inference recorded by the clinical advisor. The clinical expert was partly involved in 

these analyses, providing advice in those cases in which the participants’ reports were 

unclear. 

Again the control traces were excluded from the analysis. A larger proportion of 

inferences that agreed with the expert’s inferences (N= 172 excluding the control 

traces) was provided by the senior doctors (mean = 96.60; sd = 11.03; 56%) than by 

the junior doctors (mean = 48.50; sd = 26.88; 28%). ANOVA (2x12) showed 

significant influence of seniority [F(1,8) = 14.06; p < 0.001] and trace [F(11,88) = 

2.15; p<0.05]; but no seniority x trace interaction was found [F(11, 88) = 1.02, NS]. 

These differences can be partly explained by the fact that the senior doctors identified 

a larger proportion of relevant patterns and generated many more inferences than did 

the junior doctors. 

 

6. Discussion 

The results of our investigations can be summarised as follows: 

1. Both senior and junior doctors used essentially the same cognitive processes, and 

with equivalent relative frequencies.  



 24

2. Senior doctors showed a superior ability to focus on relevant aspects of the 

monitored data; the senior doctors, for example, were able to identify more 

relevant events than the junior doctors and tended to note a larger number of 

relationships among physiological parameters (see “Correlate” code in Table 1) 

than did their junior counterparts. 

3. The junior doctors seemed to focus on more superficial aspects of the 

physiological data: the proportion of merely descriptive statements (“Describe” 

code) was higher among the junior doctors than among the senior doctors. 

4. In contrast, the senior physicians generated more inferences (“Hypothesis” code) 

and their hypotheses tended to be of better quality than those generated by the 

junior physicians. 

5. The senior physicians tended to revise their hypotheses more often than did the 

junior doctors (“Test/Revise” code) and generated a larger number of statements 

in which they showed uncertainty (“Uncertainty” code). 

6. The senior doctors generated many more requests for extra information than did 

the junior physicians. Further, the senior doctors were far more likely to request 

modifications to the monitoring display than were the junior doctors. 

7. The senior doctors knew how to take advantage of the information provided by the 

monitoring system better than did the junior physicians. The interviews showed 

that they were more familiar with the functionality of the system than were the 

more junior staff; in our observations we saw that they interacted with the system 

more often than other members of staff; the simulations showed, for example, that 

the senior doctors were far likelier to recognise monitoring artefacts than were 

their junior counterparts. 

8. Some of the above differences may be a consequence of lack or shortage of 

training with the computerised system on the ward; in the interviews, junior staff 

were more likely to highlight this as a limitation than were the senior staff. 
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In the rest of this section we discuss the implications of these results for cognitive 

psychology and for the design of human computer interaction in neonatal intensive 

care. 

6.1 IMPLICATIONS FOR COGNITIVE PSYCHOLOGY 

The results of our investigations are essentially consistent with the literature on 

expertise and diagnostic thinking, as reviewed in Section 3. They corroborate the 

conclusions from previous research that differences in expertise are not so much due 

to skill or processing differences as to differences in domain knowledge and 

knowledge representation. Our data support the generally accepted view that experts 

possess superior domain knowledge and, as a consequence, a superior representation 

of the domain. Additionally, our studies support the view that medical experts’ 

reasoning is opportunistic ( Gilhooly et al., 1997; Lesgold et al., 1988). The senior 

doctors seemed to make more efficient use than the junior doctors of whatever 

knowledge source was available and relevant. This is especially apparent in the 

differences between senior and junior doctors in their requests for extra information 

(consistent with e.g., Faremo, 1997).  

The fact that the senior doctors were far more likely to request modifications to the 

monitoring display than were the junior doctors highlights an aspect of the 

participants’ expertise which is not normally considered in studies of medical 

reasoning, namely, their experience with the data presentation devices. Because the 

senior doctors were far more familiar with the features of the computerised monitor 

they knew, better than their junior colleagues, what changes to the monitoring display 

would be most helpful for data interpretation and were better prepared to recognise 

artefacts. This is particularly relevant if we consider that overall the junior doctors 

were, by self report, more computer literate than the senior doctors. 

Our data are also consistent with the conclusions of studies of diagnostic thinking in 

visual domains, such as radiology (Lesgold et al., 1988) and ECG interpretation 

(Gilhooly et al., 1997), in that the senior doctors seemed to make more use of 
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biomedical knowledge than did the junior doctors. Although the off-ward simulations 

were not specifically designed to investigate expertise differences in the use of 

biomedical versus clinical knowledge, our findings reveal interesting patterns. 

Arguably, the usage of biomedical knowledge is indicated in the participants’ 

protocols by the statements in which they recognise the relationships between two or 

more parameters (“Correlate” code). When noting relationships among parameters 

(especially if those relationships are used as the basis for a hypothesis), a participant is 

invoking and processing knowledge about neonatal pathophysiology. The senior 

doctors generated, as an average, more than twice as many such statements as did the 

junior doctors (see Table 3). As noted in Section 3, this is at odds with the generally 

accepted conclusion from studies of non-visual diagnostic domains that novices make 

more use of biomedical knowledge than do experienced clinicians (see, e.g., 

Boshuizen and Schmidt, 1992; Elstein et al., 1978; Lemieux and Bordage, 1986). 

Gilhooly et al. (1997) argued that, in visual diagnostic domains, experts may need to 

invoke biomedical knowledge to make sense of surface physiological patterns that can 

be plausibly explained by more than one hypothesis. This indeed applies to the task 

(and experimental stimuli) in our simulations. The senior doctors seemed to be more 

aware of the ambiguity associated with the traces than were the junior doctors. The 

fact that they generated more hypotheses than the junior doctors indicates that they 

were able to think of more alternative explanations for the monitored data. This is 

further supported by the senior physicians’ greater tendency to revise their hypotheses 

and to generate a larger number of “uncertainty” statements than their junior 

counterparts. 

Further, Gilhooly et al. (1997) noted that an important difference between studies of 

the interpretation of visual medical data (ECG and radiology) and other studies of 

diagnostic thinking was the lack of contextual clinical information in previous studies 

of the former. This was not the case, however, in our off-ward simulations, where the 

stimuli presented to the participants were contextualised . Before being presented with 
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the monitored traces, the participants in our off-ward simulations were given clinical 

information about the babies from whom the traces were derived. Furthermore, during 

their interpretation of the traces, the participants were allowed to request extra clinical 

information. It is interesting that, in spite of having a considerable amount of clinical 

information available, the senior doctors still seemed to make use of biomedical 

knowledge more frequently than did the junior doctors. This data pattern suggests that 

there must be something specific about the interpretation of perceptual physiological 

data (regardless of the presence or absence of contextual information) that elicits 

processes in experts not elicited in other less perceptually based diagnostic tasks. 

 

6.2 IMPLICATIONS FOR HUMAN COMPUTER INTERACTION 

As noted in the introduction, earlier studies in the neonatal ICU where we conducted 

our investigations showed that the implementation of the trend monitoring system did 

not result in better clinical outcomes (Cunningham et al., 1998). This is not surprising 

if, as our observations revealed, the staff who spent most time in contact with the 

patients (i.e., the junior clinicians and nurses) interacted rarely with the monitoring 

system. Further, our off-ward simulations showed that the junior doctors often failed 

to take full advantage of the information provided by the system. 

It was not within the scope of these investigations to provide detailed specifications 

for the design of a particular computer aid. However, the expertise differences 

highlighted by our studies can contribute to the definition of a set of general 

guidelines for the design and implementation of efficient and usable computerised 

monitoring in neonatal intensive care. These guidelines are discussed below. 

We saw that an important difference between senior and junior physicians was the 

formers' superior experience with the monitoring device. It can be argued that their 

ability to modify more efficiently the computer display gave senior doctors an 

advantage over the junior physicians, partly explaining the seniors' superior 
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performance during the simulations. Although more computer literate than the seniors, 

the junior doctors were unaware of many of the display management features of the 

monitoring system. This can be a consequence of the lack or shortage of training on 

the functionality of this specific computer aid. Formal ongoing training has already 

been highlighted by previous human factors research as an essential requirement for 

the successful implementation of a computerised system in an intensive care unit, as it 

may affect staff's acceptance and subsequent usage of a system (Green et al., 1991). It 

is obvious that new staff need to be familiarised with the system in a more systematic 

fashion that has been done to date in the unit. For example, staff should be made 

aware that they can alter the scales of the physiological parameters and shown how 

such action can help optimise the interpretation of trend data.  

However it can be argued that training on the use of sophisticated devices is time 

consuming and can add to the already heavy workload of temporary junior physicians. 

Furthermore, poor training may not be the only reason why junior staff failed to use 

the system efficiently. We saw that a crucial difference between experts and non 

experts is the formers' opportunistic use of knowledge: the senior doctors seemed to 

make more efficient use than the junior doctors of whatever knowledge source was 

available and relevant, whether it was biomedical knowledge, clinical information, or 

experience with monitoring devices. An implication of the discussion thus far is that 

some physiological patterns are easier to identify when displays are in some way 

adapted to them (by e.g. altering the parameter scales). Junior staff may not have the 

time or the abilities to extract this sort of information. Therefore, efforts should be 

made to provide them with monitored data which are easy to interpret without 

requiring sophisticated manipulations. A practical approach would be to design 

displays that are reconfigured automatically for each type of event. 

A related issue is the detection of artefacts. The senior doctors, on average, referred 

to artefacts during the simulations seven times as frequently as did the junior doctors 

(see Table 3). Junior staff need to be made more aware of this limitation of existing 
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monitoring methods. Furthermore, the design of decision support should take this into 

account and introduce mechanisms which either eliminate or minimise artefact, if 

clinically relevant, to highlight its appearance. 

Another characteristic of the seniors' more efficient problem solving was their use of 

biomedical knowledge. We saw that this was reflected in the statements in which they 

noted concurrent changes amongst parameters. This is also an indication of the 

seniors’ superior representation of the domain. Junior doctors were less likely to 

produce such statements. However, concurrent changes are often indicative of relevant 

physiological events and it can be argued that noting them facilitates data 

interpretation and hypothesis generation. Therefore, the juniors’ poorer domain 

representation must be compensated by making this information explicit. A desirable 

feature of decision support would be the presentation of data in such a way that 

relevant links amongst parameters are highlighted.  

We showed that the senior doctors' hypothesis generation and testing was superior to 

that of the juniors. Our data suggest that the senior doctors were more likely to 

generate alternate explanations of the data and tended to revise their hypotheses more 

often than their junior counterparts as they were more aware of the ambiguities 

associated with monitored data patterns. Arguably, this awareness should be 

encouraged in the juniors. The role of decision support, therefore, would be to draw 

the attention of junior staff to alternate competing hypotheses. 

 

Some of the requirements we have just highlighted are being addressed as part of our 

ongoing investigations in artificial intelligence. Specifically, our approach is to use 

temporal trend templates (Coiera, 1990; Haimowitz, Le, & Kohane, 1995; Salatian & 

Hunter, 1996). The goal is to develop a system that provides: (a) algorithms for 

automatically identifying and interpreting relevant monitored patterns and artefact; (b) 

“intelligent” alarming, that is, using the system's interpretations to warn the staff 

working at the cotside on the possible onset of life-threatening clinical events; (c) 
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summarisation of monitored events over an extended period at a high level of 

abstraction. 

A considerable amount of information can be extracted from our simulation data to 

aid in the development of such algorithms. For example: 

(a) The participants' errors during the simulations provide information about the sorts 

of monitored patterns that clinicians (especially junior staff) find most difficult to 

interpret, and must therefore be dealt with by the computerised system.  

(b) Further analyses can be conducted to identify the precise circumstances in which 

the experts requested changes to the monitoring display, in order to discover what 

features of the events they were trying to bring out.  

(c) The senior doctors' protocols will be used as a baseline for the evaluation of the 

data interpreting algorithms; the idea is to develop algorithms that perform at least 

as well as the more experienced clinicians. 

(d) Finally, our interviews and simulations provide insights about the types of 

information that staff would need to have online to interpret developing trend data 

more efficiently. A pending matter, however, is to assess whether incorporating 

exhaustive information in the computer is the best option to propitiate effective 

work. In a decision making environment such as the ICU, the interactions among 

members of staff are crucial. It is therefore arguable whether all the information 

that staff need should be available online, or whether at least some of the data 

should be retained in more conventional methods to encourage exchanges of 

information among staff members, and so guarantee human contact. 

7. Final remarks 

In this paper we have presented outcomes of a cognitive engineering study that looks 

at the problems of computerised monitoring in neonatal intensive care. We have 

focused on those aspects which are relevant to understanding expertise differences in 

the interpretation of physiological monitored data, and we have indicated how the 
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usage of these data can inform the design of human computer interaction in neonatal 

intensive care.  

Our outcomes provide support for an approach to cognitive engineering which views 

the discipline as a symbiotic interaction between cognitive science and human 

computer interaction design (Alberdi & Logie, 1998).  

On the one hand, addressing a specific human computer interaction problem in a 

relatively realistic decision making scenario has provided interesting insights about 

expertise in the interpretation of physiological data. Specifically, our findings support 

the generalisability of many well-known conclusions about expertise. Our data 

corroborate that (a) expertise differences are not so much due to different processing 

skills but to differences in domain knowledge, (b) experts are able to focus on relevant 

domain features better than less experienced subjects, and (c) experts' problem solving 

is opportunistic. Additionally, our data provide further support to the view that the 

interpretation of perceptual clinical data is influenced by certain constraints that make 

it, in some ways, different from other diagnostic tasks - as indicated, for example, by 

the ways in which novices and experts make use of biomedical knowledge (Gilhooly 

et al., 1997). 

On the other hand, the use of psychological theories (models of medical expertise) 

and methodologies (interviews, observations, and psychological experimentation) has 

allowed us to identify some of the limitations of monitoring software currently in use 

and has contributed to the specification of a series of design guidelines for the 

development of computerised decision support in intensive care. For example, our 

data support the well reported need for continuous formal training of staff on the 

functionality of the computer aids implemented in clinical settings. Furthermore, our 

conclusions on expertise have suggested ways in which the presentation of monitoring 

data can be enhanced to facilitate junior staff's trend interpretation; for example, (a) 

the automatic reconfiguration of data displays to feature specific patterns more clearly, 

(b) the elimination or minimisation of non relevant artefacts, (c) the need to highlight 
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relevant concurrent changes in several parameters, and (d) the need to emphasise the 

ambiguity associated with the monitored trends by supporting the generation and 

revision of competing alternate hypotheses. 

In summary, our studies have highlighted knowledge limitations of less experienced 

practitioners which need to be considered when developing systems which are meant 

to facilitate their work. Although we have focused on a particular medical domain, we 

believe our results and, most importantly, our methodologies are applicable to other 

areas of human computer interaction in which expertise may also play a role. 
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TABLE 1. Relative frequencies  

(%s) of activities recorded during observations  

 

Nurses  

Handle baby/equipment 26% 

Talk to colleagues 21.50% 

Deal with alarm 18% 

Write/Read paper notes 16% 

Look at baby 7% 

Other 6.50% 

Interact with 
computerised monitor 

 
5% 

Junior Doctors  

Handle baby/equipment 35% 

Talk to colleagues 25% 

Write/Read paper notes 17% 

Look at baby 8.50% 

Deal with alarm 6% 

Interact with 
computerised monitor 

 
4.50% 

Other 3.50% 

Senior Doctors 

Talk to colleagues 32% 

Handle baby/equipment 21.50% 

Look at baby 16% 

Interact with 
computerised monitor 

 
13.50% 

Other 10.50% 

Write/Read paper notes 5.50% 

Deal with alarm 1.50% 

 

NOTE: Each percentage indicates the proportion of times each type of activity 

was recorded throughout the observation sessions for each staff group. The 

proportions are shown in decreasing order of frequency for each group. 
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TABLE 2. Encoding scheme derived from the protocol analysis  
 

Types of behaviours (codes)  Examples 

Describe Pattern 

Describe a change (rise, drop) or variability/stability 

in a physiological parameter. 

“A dip in heart rate”; “a drop of pO2”; “blood 

pressure is rising”; “CO2 is decreasing” “the heart 

rate is variable”; “the blood pressure stabilises out”; 

Interpret Pattern 

Note whether a change in a parameter is normal, 

abnormal, desirable, worrying, etc. 

“It’s OK”; “It’s worrying”; “It’s acceptable”; “A 

serious problem”; “It’s normal”; “It’s satisfactory”; 

“I wouldn’t get too excited about it”; “there is some 

event happening”; 

Correlate Parameters 

Note the relationship between changes which occur 

on more than one parameter. 

“BP peak coincides with temperature gap opening 

up” “HR dip is associated with rise in BP”; “first a 

drop in pO2 and then a rise in CO2”. 

Hypothesis 

Suggest the cause for a physiological change which 

appears on the screen. 

“Here it seems that the baby is developing 

pneumothorax” “it may as well be worsening lung 

disease at this point”; “there might be the possibility 

of an intra-tracheal haemorrhage that causes that”.  

Artefact 

Explicitly attribute a change on the monitor to a 

mechanical disturbance, as opposed to a “genuine” 

clinical change. 

“That looks like the probe’s off the baby. So that’s 

actually an artefact with the O2 and CO2”. 

Extra Information 

The volunteer explicitly requests extra information 

or states that some further information would be 

necessary to make the right interpretation of a 

physiological change.  

“I don’t know if there is a blood gas available at this 

time to confirm some of these changes”; “I think I 

would be thinking about an X-ray”; “can you re-

scale the screen?”; “was the baby’s inspired oxygen 

increased at this point?”. 

Suggest Action 

State the sort of clinical action which needs be 

conducted to deal with a given clinical condition 

suggested by monitored data.  

“then the baby needs re-intubating”; “how would 

you change ventilation to improve the pO2” 

Uncertainty 

Uncertainty or insecurity on a given interpretation or 

hypothesis. 

“I’m not sure”; “I wonder”; “I don’t know”. 

Test/revise (an hypothesis or an interpretation) 

This rarely used category refers to volunteers’ 

statements in which they are explicitly revising (or 

confirming) a previously stated hypothesis or 

interpretation 

“Against that [hypothesis] is the fact that the 

temperature differential doesn't open”; “these 

[various symptoms] have all been in keeping with 

that [hypothesis]”. 

Other 

Statements which cannot be categorised by any of 

the labels above. 

(a) indications to the experimenter to scroll to the 

next segment; (b) appeal to background knowledge, 

theoretical expectations, or information about the 

baby provided by experimenter; (c) statements not 

related to the task; (d) implicit behaviours; (e) 

repetition of a previous statement; (f) statements 

whose meaning cannot be understood by the coder. 
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TABLE 3. Frequencies and relative frequencies (%s) of protocol codes 
 

  

Senior 

Doctors 

Mean (sd)
a
 

 

Junior 

Doctors 

Mean (sd)
a
 

Senior 

Doctors 

(N= 12,734) 

Mean %
 b
 

Junior 

Doctors 

(N=7,758) 

Mean %
 b
 

ANOVA 

Describe 886.40 
(403.23) 

657.80 
(212.62) 

34.80% 42.39% F(1,8)=1.65; NS 

Interpret 561.00 
(118.21) 

381.80 
(187.28) 

22.03% 24.61% F<1 

Correlate 70.20 
(31.09) 

33.60 
(20.95) 

2.76% 2.17% F<1 

Hypothesis 274.40 
(141.66) 

139.60 
(52.28) 

10.77% 9.00% F<1 

Artefact 107.40 
(32.82) 

14.60 
(17.05) 

4.22% 0.94% F(1,9)=66.91; p<0.001 

Request Info 163.80 
(89.58) 

64.40 
(43.78) 

6.43% 4.15% F(1,9)=1.50; NS 

Suggest Action 16.20 
(15.18) 

8.60 
(9.13) 

0.64% 0.55% F<1 

Uncertainty 60.00 
(35.95) 

22.80 
(11.45) 

2.36% 1.47% F(1,9)=2.43; NS 

Test Hyp. 24.40 
(14.04) 

7.80 
(5.63) 

0.96% 0.50% F<1 

Other 383.00 
(114.55) 

220.60 
(99.37) 

15.04% 14.22% F<1 

a 
Average use of each type of code by participants in each group; the standard deviation (sd) is shown in 

brackets.
 

b 
Average proportion of code use by participants in each group. 

ANOVA was calculated on the percentages. The purpose was to assess whether the frequency with 

which each code was used in relation to the other codes was significantly higher in one staff group than 

in the other.  
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Figure 1. Trend monitoring sample 


