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Abstract 
 

 The objective of this thesis is to carry out a survival analysis for patients with breast cancer. 

Using data from the Nanakaly and Hewa hospitals in the cities of Erbil and Suleimaniah, 

respectively, cases where there is hidden censoring on survival time were investigated. The 

aim of this study was to identify the main risk factors and quantify the overall risk for breast 

cancer. We developed a new Markov chain-based method for generating survival curves and 

hazard functions. In particular we adjusted the Kaplan Meier analysis to find a survival curve 

with hidden censoring of the data, and also estimated a survival function from the biased one 

obtained directly from the data by generating new models in two cases; with and without 

censoring. To ensure the validity of the suggested model we considered different simulation 

techniques applied to the Nanakaly data. Because of the availability of a good survival 

function, we chose to work with a German data set. As a result we conclude that our model 

performs well in many circumstances, and its predictions, even when less accurate, are always 

an improvement on considering the apparent survival curves from the unadjusted data.    

For the data from Nanakaly hospital, the only variable we had to consider was age at diagnosis 

and the survival results showed that this was a significant variable. With far more detailed 

reports available for Hewa hospital, we were able to identify estrogen abundance, smoking 

habits and tumour grade, as having a statistically significant impact on the incidence of breast 

cancer. On the other hand, when analysing the Nanakaly and Hewa data for comparison with 

German data, in all three cases the survival curve is greater among younger patients. The 

suggested models may be verified using cross validation or by using new data.  

Finally, we note that it would be preferable to have accurate data to applying our methods to 

imperfect data. Therefore we established both a general and a specific flowchart to collect the 

data in the future. Encouraging the implementation of the recommended procedures might 

serve to obtain the data needed to develop a more comprehensive understanding of breast 

cancer in Kurdistan.     
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1 CHAPTER 1: Introduction 

1.1 Introduction 

In general, cancer is a type of disease which makes the cells divide, grow and multiply 

uncontrollably. The cancer is named after the part of the body which it starts from. Breast 

Cancer means the unregulated growth of the cells which arise in the breast tissues and its 

multiplication and spread. Infected cells which divide and multiply rapidly may form a mass 

of extra tissues. These mass tissues are called tumors. The tumours are either cancerous 

(malignant) or (benign). The malignant tumors multiply and invade the intact tissues of the 

body (Carol 2005). 

Most kinds of breast cancer start from the inner lining of milk ducts and therefore are known 

as ductal carcinomas, whereas so called lobular carcinomas appear in the lobules. When breast 

cancer starts to spread outside the breast, the cancer cells reach the lymph nodes under the 

armpit. In this case, the cancer starts to spread to all body lymph nodes (Carol 2005). 

The age-adjusted method had been used by Althuis et al. (2005) from 1973-77 to 1993-97. 

Based on their study the incidence of breast cancer appears to be increasing world-wide, as it 

rose by 30-40% from the 1970s to the 1990s in most countries. According to information 

collected by the American cancer society program of the National Cancer Institute (NCI) it is 

estimated that 246,660 women will be diagnosed with, and 40,450 women will die of, cancer 

of the breast in 2016 in the USA (Rebecca et al. 2016).  

In Western countries there is plenty of information about breast cancer which shows an 

increase in breast cancer cases but declining mortality. This may be due to the increasingly 

effective treatments and early detection (Rennert 2006).  

Information about non-Western countries is limited and there are problems with accuracy, 

however, breast cancer may still be on the rise (Rennert 2006). The cultural tendency in the 

West of late marriages and limited childbearing results in fewer children being raised and 

breastfed, which is actually an activity protective against breast cancers forming after 

menopause (Rennert 2006). Although the studies are limited, Egypt is believed to have  the 

highest rate of breast cancer in the Middle East, with the largest increase in women aged 30 to 

60 (McCredie et al., 1994; Rudat et al., 2013). 

In Iran and most of Middle Eastern countries, age is considered a main risk factor for breast 

cancer. For example a study in Iran found that women who were never married and women 

http://www.ncbi.nlm.nih.gov/pubmed?term=Althuis%20MD%5BAuthor%5D&cauthor=true&cauthor_uid=15737977
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whose family members have suffered from breast cancer have a significant increase in the risk 

of breast cancer (Montazeri et al., 2003).  

The age distribution of breast cancer patients in Iraq was quite similar to that in Iran, Egypt, 

Jordan, and among Israeli Arabs (Ebrahimi et al., 2002: Montazeri et al., 2003). In these 

countries, age at diagnosis had an average and median of less than 50 with a quarter of them 

being less than 41 years of age. In comparison to the United States, the median is 61 years of 

age, 65% are older than 55, and 10.6% less than 44 years of age (Ries et al., 2008).  

A study by Hussein and Aziz (2009) suggests that decreased child birth could possibly 

increase the risk in Kurdish women of older age because patients more than 50 years of age 

who had never been pregnant or given birth to fewer children in comparison to the controls 

had breast cancer. The prevalence of age specific breast cancers for Jordanian and Israeli Arab 

women is around 25 to 50% less than that in the United States up until the age of 40 to 44 

years (Rennert 2006).  

Traditionally, Middle-Eastern cultures have had large families which may imply that increased 

childbearing protects younger women against those breast cancers that develop when they are 

older. In comparison to the controls, Kurdish patients with a family history of breast cancer 

were more likely to suffer from it according to (Othman et al., 2011). Almost 20% of the 

Kurdish breast cancer patients have a family history of breast cancer but this high figure is 

offset by lower rate of 7.1% reported by the control which is much lower than Western 

standards of 17% (Majid et al., 2012). There were near equal age distributions between 

patients and controls ruling out the possibility that there may have been a large proportion of 

pre-menopausal women with breast cancer. 

1.2 Problem statement 

Cancer incidence is increasing all over the world (Curado et al., 2007). Despite new advances 

in cancer research, the ethiology of many types of cancer is still unknown. Some independent 

reports from different cities of Iraq had showed an increased incidence of different types of 

cancer; (Al-Humadi 2009) showed increase in risk of colon cancer in Iraq of 25% to 50% 

during a 30 year period (1965-1994). (Habib et al., 2007) demonstrate overall increase in 

incidence cancer rate as compared to previously reported figures in Basrah. Additionally, their 

study showed a high cancer incidence rate especially among females compared to 

neighbouring countries, with an age standardized rate (ASR) of 123.4 and ASR of 114.3 for 

both males and females respectively (Habib et al., 2007). The Kurdistan Region as a part of 
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Iraq has been exposed to many environmental and epidemiological changes that predispose it 

to an increase in the risk of cancer in this region. On one hand, there is a shift toward the 

western-style of living and dietary habits, on the other hand there are the effects of chemical 

hazard of the Iraqi/Iranian War for 8 years from (1980-1988) and use of chemical weapons 

against Kurdish people from the Central Government for example the chemical bombardment 

of Halabja City in Kurdistan on 1988 (Salih 1995). In Kurdistan, North of Iraq, no research 

has been undertaken to identify the incidence rate of cancer and to highlight the increased risk 

of malignancy in this region.  

There are numerous studies on Survival Analysis in different countries, on various types of 

diseases.  However, there are hardly any Survival Analysis studies performed on breast cancer 

by Iraqi researchers in general and researchers in the Kurdistan Region in particular. Because 

of the importance of this for both society and the individuals, this work considers this subject, 

in order to bring it to the attention of the policy makers in the Ministry of Health and 

providing the doctors with ways and tools to control the incidence of cases of breast cancer in 

the region.  

1.3 Research question and significance of the study 

These questions are as follows: 

1. What are the main risk factors in breast cancer in the region? 

2. What are the factors that have a big influence in breast cancer’s increase in the region? 

3. How can we construct an applicable survival function model with limited or problematic 

data? 

4. How can we collect better data in the future? 

The main goal of this study is to inform the Kurdish Government and Ministry of Health on 

the treatment of breast cancer, as the Government is the largest provider of health care in the 

region. 

In this study we construct a new model based on data from the Nanakaly and Hewa hospitals, 

which can be used to compensate for problems with the existing data. This analysis was then 

helpful with analysing this data.  

From the available data we generated two new models, presuming censoring and disregarding 

it for Nanakaly and Hewa data. For the first case, we estimate only the number of observations 

while in the second one we additionally estimate the number of deaths. These models might 

serve to advance healthcare infrastructure in various respects, specifically the collection of 
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data. This model can also be useful to scientists and public servants from all sectors in 

identifying any possible gap in their datasets.  

1.4 Research aims and objectives 

The project is strongly focused on the Kurdistan Region of Iraq. The aim is to find whether 

there has been an increase in the incidence of breast cancer in Kurdistan, to quantify the risk, 

and to identify the main risk factors for breast cancer in Kurdistan. Thus the research will 

directly benefit the community. 

Objectives: 

1. Carry out an extensive literature review regarding breast cancer in Kurdistan and more 

generally, and on survival analysis methodology as applied to breast cancer. 

2. Carry out work in preparation for obtaining the data from Kurdistan (see objective 3): in 

particular obtaining ethical approval, using SPSS for data analysis, choosing the appropriate 

survival analysis methodology (see chapter 4 for more detail). 

3. Collect the breast cancer data from two main hospitals in Kurdistan; Nanakaly and Hewa, 

both of which specialize in all types of cancer. 

4.  Carry out a systematic analysis of the data obtained in objective 3 by using SPSS program 

package version 22. 

5. Develop new Markov models to deal with problems related to censoring and recorded 

deaths with the data. 

6. Develop a methodology for collecting better data in the future. 

1.5 Methodology  

Classical survival analysis is applied to this data, including Cox regression to determine the 

significant risk factors, the Kaplan-Meier method to find the survival curve for the chosen 

significant variable and log-rank tests to compare within each specific variable. These 

methods are described in detail in chapter four. The type of data supplied by each hospital 

required us to develop a new Markov chain based model in order to properly carry out the 

above analysis, and in particular to find the survival function as described in chapter five.  

In this study we encountered some problems while attempting to apply classical survival 

analysis, due to the limitations of the data collected. The reports from Nanakaly hospital 

featured instances of individuals being lost to the study, the implications of which for the 

statistical analysis are described in detail in chapter six. For the data set from Hewa hospital, 
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in addition to the problems of lost individuals, the definitive times of death were not recorded. 

We discuss the shortcomings of the data in detail in chapter six, specifically their effects on 

the validity of the models. These limitations of the data are to some extent expected because 

most of the reports are recorded on paper rather than electronically in a database.  

1.6 Structure of the thesis 

This thesis is comprised of eight chapters: Chapter One contains an introduction, problem 

statement, research question and significance of the study, research aims and objectives, 

methodology, scope and limitation of the study and finally the structure of the thesis. Chapter 

Two deals with a review and critical analysis of selected literature relevant to the study topic 

which will help determine the current state of research in the areas of breast cancer. Chapter 

Three discusses the theoretical concepts of Survival Analysis. Chapter Four explains the basic 

features of the data.  

Chapter Five discusses the Markov-chain model for breast cancer and it includes applications 

of survival analysis for data from Nanakaly and Hewa Kurdish Hospitals, Markov models 

without and with censoring for Nanakaly and Hewa data and simulations for the Nanakaly 

data. This work has been published in Raza and Broom (2016)      

Chapter Six explains survival analysis for breast cancer; survival analysis for Nanakaly, Hewa 

and German data, the connection between German and Nanakaly data, the connection between 

German and Hewa data, the connection between German, Nanakaly and Hewa data and finally 

the connections between unadjusted and adjusted data for Nanakaly and Hewa data.  

Chapter Seven discusses a proposed data collection methodology for Kurdish hospitals, 

including general procedures to collect the data, itemising the data required for survival 

analysis, the feasibility of the plan and presentation to users.  

Finally Chapter Eight presents conclusions and future works. 
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The following, Figure 1.1, presents a brief summary of the chapters involved in this study:  
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2 CHAPTER 2: Literature review 

2.1 Introduction 

Breast cancer is the most frequent cancer diagnosed in women and the second most common 

in all humans (Darendeliler and Ağaoğlu 2003; Ozmen 2008). Nearly 25 million are estimated 

to be living with cancer (Kamangar et al., 2006), and it is a leading cause of death worldwide 

(WHO 2008).  Although its prevalence varies in different societies, it is accepted that one out 

of 8-10 women in Western society is likely to develop breast cancer during her lifespan. Over 

half a million women are estimated to have died in 2004 alone due to breast cancer, and while 

this disease is often regarded as a disease of the West, almost 70% of all breast cancer deaths 

actually occurs in developing countries (WHO 2008). However, the prevalence of the disease 

is notably higher in North American and European countries than the rest of the world 

(Stewart and Kleihues 2003).  

Belgium and North America head the table with age standardized rates of occurrence as high 

as 99.4 per 100,000 women but the rates of breast cancer occurrence vary greatly, with 

Eastern Europe, South America, Southern Africa, and western Asia showing moderate, but 

rising incidence rates. The UK currently has the 11th highest breast cancer rate with 89.1 of 

every 100,000 women every year expected to develop breast cancer (NHS Choices. 2011). 

Breast cancer is also the most commonly diagnosed of all cancers among Malaysian women, 

accounting for 16.5% of all cancer cases registered in 2006 (Omar et al., 2006).  The lowest 

numbers are to be found in most African countries but here numbers are also on the increase.  

Breast cancer survival rates vary in a similar way, ranging from 80% or over in North 

America, Sweden and Japan to around 60% in middle-income countries and below 40% in 

low-income countries (Coleman et al., 2007: 2008). The latter can be explained not only by 

the lack of early detection programmes in poorer countries, resulting in a much higher number 

of women diagnosed only in the later stages of the disease, but also by the lack of sufficient 

diagnosis and treatment facilities available in under-developed countries, especially in Africa.  

In developed countries it is the second most deadly disease, and in developing countries it is 

one of three leading causes of death (Parkin et al., 2005; WHO 2004). Globally breast cancer 

accounts for approximately 23% of all female cancers according to recent research (Parkin et 

al., 2005).  
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The 5-year survival rate of people suffering from breast cancer is 90.3% overall. A study 

carried out by the World Health Organisation (WHO) in 1990 reported that there were 

796,000 breast cancer cases and 482,000 censored due to the disease in 1990. A more recent 

study of the same kind carried out by the International Agency on Cancer Research (IARC) in 

2002 reported 1,152,000 new cases and 741,000 survivals. With all phases of the disease 

considered, the five-year survival rate has been reported as 73% in developed countries and 

53% in developing countries. Early diagnosis via mammography scans and better treatment in 

developed countries may explain this significant difference.  

2.2 The history of breast cancer 

Breasts are made up of fat, connective tissue and thousands of tiny glands known as lobules 

which produce the milk. To allow breastfeeding in women who have given birth, milk is 

delivered to the nipple through tiny tubes called ducts. Bodies are made up of billions of tiny 

cells which grow and multiply in an orderly way under normal conditions. New cells are 

created only when and where they are needed. This process goes wrong and cells begin to 

grow and multiply in an uncontrollable way in cancer. Breast cancer usually shows as a lump 

or thickening in the breast tissue (although most breast lumps are not cancerous). If the lump 

can be detected at an early stage then treatment is usually successful in preventing spreading 

to nearby body parts (Ananya Mandal 2013). 

Even since ancient times, cancers have been known to human beings and indeed have been 

mentioned in almost every period of history. Early physicians were able to record the visible 

symptoms of the disease, especially in the later stages when the lumps progress to tumours. 

This is even more evident in the case of breast cancer because, unlike other internal cancers, 

these lumps most often become apparent as visible tumours in the breast. The ancient 

Egyptians were the first to record the disease more than 3,500 years ago. Both the Edwin 

Smith and George Ebers papyri describe the condition with a good degree of accuracy. One of 

the descriptions refers to bulging tumours of the breast that have no cure. 

In 460 B.C., Hippocrates, known as the father of Western Medicine, described breast cancer as 

a humeral disease. His belief was that the body consisted of four humors - blood, phlegm, 

yellow bile, and black bile and his idea that cancer was caused by an excess of black bile was 

probably based on observations that in appearance, breast cancer was black, since hard 

tumours were seen to burst if left untreated and would produce a black fluid. He named the 
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cancer karkinos, a Greek word for “crab,” because the tumours seemed to have tentacles like 

the legs of a crab. 

In A.D.200 Galen described cancer also suggesting the cause was excessive black bile but 

theorized that some tumours were more dangerous than others. Medications prescribed were 

opium, castor oil, licorice, sulphur, and salves for medicinal therapy. During this time of 

history, breast cancer was regarded as a disease that affected the whole body and so surgery 

was not considered. Galen’s theories on breast cancer held success even into the late 17th 

century when in 1680, a French physician called Francois de la Boe Sylvius realized the 

humoral theory of cancer had to be reconsidered. He hypothesized that cancer did not stem 

from too much black bile but came from a chemical process affecting lymphatic fluids, 

changing them from acidic to acrid, as he described. In the 1730s, a Paris physician Claude-

Deshais Gendron also rejected Galen’s theory and postulated that cancer developed when 

nerve and glandular tissue mixed with lymph vessels and formed hard masses only curable by 

removal. 

Bernardino Ramazzini hypothesized in 1713 that the high frequency of breast cancer in nuns 

was due to lack of sexual intercourse. He said that without regular sexual activity the 

reproductive organs of women, including the breast, may fall into decay and develop cancers 

for this very reason. Friedrich Hoffman of Prussia said that women who had regular sex still 

developed cancer claiming that it must be due to the fact that they were practicing energetic 

sex, which his theory said could lead to lymphatic blockage. 

There have been plenty of other theories about the causes of breast cancer over the years, 

including Giovanni Morgagni who blamed curdled milk, Johanes de Gorter who cited pus-

filled inflammations in the breast, Claude-Nicolas Le Cat from Rouen who held depressive 

mental disorders responsible, Lorenz Heister who mentioned childlessness, others blaming a 

inactive lifestyle to name but a handful. 

It was 1757 when Henri Le Dran, a leading French physician of his time, recommended that 

surgical removal of the tumour could help treat breast cancer as long as the infected lymph 

nodes of the armpits were also removed. Claude-Nicolas Le Cat similarly argued that surgical 

therapy was the only method to combat this type of cancer. By the mid-nineteenth century, 

surgery was available as an option for curing breast cancer and what’s more, the development 

http://www.news-medical.net/health/What-is-Cancer.aspx
http://www.news-medical.net/health/What-is-Breast-Cancer.aspx
http://www.news-medical.net/health/What-is-Cancer.aspx
http://www.news-medical.net/health/What-are-lymph-nodes.aspx
http://www.news-medical.net/health/What-are-lymph-nodes.aspx
http://www.news-medical.net/health/What-is-Cancer.aspx
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of antiseptics, anesthesia and blood transfusion during this time also made survival after such 

a surgery more likely. 

This prescribed course of treatment lasted well into the twentieth century and led to the 

establishment of the radical mastectomy or extensive removal of the breast as the main 

approach to dealing with breast cancer. William Halstead of New York, in particular, made 

radical breast surgery the norm for the next 100 years. He developed a form of mastectomy 

that involved the removal of breast, axillary nodes (nodes in the armpits), and both chest 

muscles in a single en bloc procedure as the only certain means to prevent the spread of the 

cancer if these were removed one-by-one. 

Radical mastectomy was the most common form of treatment for the first four decades of the 

twentieth century but though this radical mastectomy helped women survive longer, especially 

if performed in the early stages of the disease, many women rejected it as an option since it 

left them severely disfigured. In addition, there were related problems caused such as a 

deformed chest wall, lymphedemae or swellings in the arm due to the lymph node removal, 

not to mention not inconsiderable pain. 

In 1895, a Scottish surgeon called George Beatson discovered that removing the ovaries from 

one of his patients led to a reduction in the size of her breast tumour. This he surmised was 

due to the fact that estrogen from the ovaries could be shown to help in the growth of the 

tumour and their removal thus helped reduce the size of breast tumours. As this link became 

more established, many more surgeons began removing both ovaries as a treatment for breast 

cancers.  

Next it was found that estrogen was still being produced in women without ovaries by the 

adrenal glands and so in the 1950s Charles Huggins performed an adrenalectomy, in that way 

removing the woman’s adrenal gland so as to deprive the tumour of any further source of 

estrogen. But Rolf Lefft and Herbert Olivecrona also initiated the removal of the pituitary 

gland as it became known as another site of estrogen production. Again in the 1950s, the 

systemic theory of cancer started to become widespread. George Crile first suggested that 

cancer was not a local disease but instead one that spreads throughout the body. Bernard 

Fisher also recognized a cancer’s capability of metastasizing.  

http://www.news-medical.net/health/What-is-a-Blood-Transfusion.aspx
http://www.news-medical.net/health/What-is-a-Mastectomy.aspx
http://www.news-medical.net/health/What-is-Lymphedema.aspx
http://www.news-medical.net/health/Estrogen-What-is-Estrogen.aspx
http://www.news-medical.net/health/What-Does-the-Adrenal-Gland-Do.aspx
http://www.news-medical.net/health/What-Does-the-Adrenal-Gland-Do.aspx
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Fisher publicized his results in 1976 of using breast-conserving surgery followed by radiation 

or chemotherapy. He proved that his methods of treatment were just as effective, and so 

preferable to, radical mastectomy, which was the method still most widely applied in the fight 

against cancer at that time. However, with the arrival of modern medicine less than 20 years 

later, less than 10 percent of breast cancer-afflicted women would have to undergo a partial or 

full mastectomy. The 1990s also saw the development of more innovative therapies for breast 

cancer including hormone treatments, surgeries and biological therapies. The X-ray of the 

breast (Mammography) was also a significant development for the early detection of the 

cancers and now scientists have even isolated the genes that actually cause breast cancer: in 

particular BRCA 1, BRCA2 and ATM.  

While in earlier years individuals were ashamed to be a victim of breast tumours meaning that 

detection and diagnosis was rare and made the mention of breast cancers in any literature 

beyond those of a medical nature relatively uncommon, recent developments dating back three 

or four decades or so have seen the involvement of more and more women in movements that 

actively bring the disease out into the open thus breaking old taboos. A case in point is the 

1990s’ symbol of breast cancer, the pink ribbon, which brought about a revolution against this 

particular form of cancer, together with several high–profile women like Angelina Jolie going 

public with their personal experiences of this disease. 

2.3 Risk factors of breast cancer 

Breast cancer is a complex disease and no single cause can be isolated but research has 

identified a number of risk factors linked to increased likelihood of this appearing. Reviewed 

studies by Hider and Nicholas (1999) add to the information in the Pullon and MacLeod 

(1996) report and generally endorse the results reported there where family history is 

confirmed as a top-of-the-list high risk factor, as is childhood treatment for cancer. As 

expected, increasing age is also associated with increasing risk. 

However, new research has been done to change our depth of knowledge on lesser risk factors. 

Studies are still being published which investigate the effects of nulliparity (the non-bearing of 

children), and age at first and last birth. These results are consistent with the work published 

by Pullon and MacLeod (1996). A number of studies on diet, alcohol, BMI, smoking and 

exercise have been published in the period covered by this review. Nevertheless, however 

small these risk factors may be, they are modifiable ones of relevance to all women. A number 

http://www.news-medical.net/health/What-is-Chemotherapy.aspx
http://www.news-medical.net/health/What-is-a-Mastectomy.aspx
http://www.news-medical.net/health/What-is-Breast-Cancer.aspx
http://www.news-medical.net/health/What-is-Breast-Cancer.aspx
http://www.news-medical.net/health/What-are-Hormones.aspx
http://www.news-medical.net/health/Mammogram-X-ray-of-the-Breast.aspx
http://www.news-medical.net/health/Genes-What-are-Genes.aspx
http://www.news-medical.net/health/What-is-Cancer.aspx
http://www.news-medical.net/health/What-is-the-BRCA2-Gene.aspx
http://www.news-medical.net/health/What-is-Cancer.aspx
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of additional factors to those discussed in (Pullon and MacLeod 1996) should be noted, such 

as the factor of previous abortions (seemingly a no or very small risk factor), prenatal 

environment (including related factors such as hormone levels), environmental toxins, 

electromagnetic radiation, stress and occupation-linked factors. 

Thus while it is true to say that a number of risk factors for breast cancer have been reasonably 

well documented, for the majority of women with breast cancer, it is not always possible to 

identify risk factors (IARC 2008; Lacey et al. 2009). A family history of breast cancer 

increases the risk by a factor of two or three. Particular mutations like BRCA1, BRCA2 and 

TP53, result in much higher risks of breast cancer. However, these are rare and account for a 

small portion.   

Prolonged exposure to endogenous estrogens related to the reproductive cycle, such as early 

menarche (onset of menstruation), late menopause, and a later age of childbirth for the first 

time are also among the most important risk factors for breast cancer to have been identified. 

Exogenous hormones also suggest a higher risk thereby oral contraceptive and hormone 

replacement therapy users are at a higher risk. On the other hand, breastfeeding has been 

shown to have an inhibitive effect on the likelihood of developing the disease (IARC 2008, 

Lacey et al., 2009). 

Just how various modifiable risk factors, excluding reproductive factors, contribute to overall 

breast cancer incidence was calculated by Danaei et al., (2005). They conclude that 21% of all 

breast cancer deaths worldwide can be blamed on alcohol use, being overweight or obese, and 

lack of physical exercise. High-income countries comprise a higher proportion (27%) of 

global figures with obesity being identified as an important factor. In low and middle-income 

countries, these particular risk factors fall to 18%, and lack of exercise was the most important 

factor (10%).  

The differences in breast cancer incidence in developed and developing countries can also 

partly be explained by dietary differences combined with age at first childbirth, nulliparity 

rates, and duration of breastfeeding (Peto 2001). The conclusion is that the increasing adoption 

of western life-styles in lower and middle-income countries is directly related to the increase 

of breast cancer. 
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2.4 Breast cancer research in developed countries  

Breast cancer incidence rates vary greatly around the world. It is lower in less-developed 

countries and greatest in the more-developed countries (Hussein and Aziz, 2009). It is the 

most commonly diagnosed cancer among women. More than 1.1 million women globally are 

newly diagnosed yearly. It accounts for at least 1.6% of worldwide female deaths annually 

(Lan et al., 2013). 

Annual incidence rates per 100,000 women (figures age-standardized) in the following regions 

have been recorded as follows: Eastern Asia, 25.3; South-Eastern Asia, 31; South Central 

Asia, 24; Western Asia, 32.5; sub-Saharan Africa, 22; North Africa, 32.7; South Africa, 38.1; 

Western Africa, 31.8; Middle Africa, 21.3; North America, 76.7; Central America, 26; South 

America, 44.3; Eastern and Central Europe, 45.3; Western Europe, 89.9; Northern Europe, 84; 

Southern Europe, 68.9; Oceania, 74 and in Australia / New Zealand 85.5 (Stewart and 

Kleihues 2003 and Jemal et al. 2011). In the UK it affects about 48,000 women annually 

where 8 out of 10 are over 50 (NHS 2012).  

A group of 4,764 women from Piedmont, Italy, diagnosed with breast cancer between 1979-81 

was studied by Boffetta et al. (1993). It was followed by a study on mortality until 1986 or 

1987. It established that there were better survival rates for women aged 40-49 at time of 

diagnosis. Between one and four years after diagnosis mortality peaked, and was lowest 

between five and seven years. Women aged 80 and over had the lowest survival rates. 

Prognosis for single women was worse than married women. Alternatively, Yang et al., (1998) 

showed that family history has more significant impact in causing breast cancer in the USA 

using a proportional hazard model, logistic regression and line of best fit. 

In a study by Tokunaga, et.al. (1987) relating to mortality rates in breast cancer cases 

associated with radiation, it was indicated that in first four decades of life exposure of female 

breast tissue to radiation, especially in early childhood, can cause breast cancer to develop 

later in life. Moreover, the length of time that tumour promoters such as endogenous 

hormones operate following exposure plays an important role in the future development of 

radiation-induced breast cancer. Similarly, Little and Boice (1999) compared breast cancer 

occurring among Japanese women exposed briefly to atomic bomb radiation and among 

Massachusetts women exposed repeatedly over an extended period of time to medical 
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radiation as part of tuberculosis therapy. Results showed that the excess relative risk of breast 

cancer incidence in the Japanese atomic bomb survivors was significantly higher than that in 

the Massachusetts fluoroscopy patients.  

In a detailed study, Little and Boice (1999) reported the best estimate of the ratio between the 

excess relative risk coefficients for the Massachusetts and Japanese cohorts to be 2.11 (95% 

CI 1.05, 4.95). However, the higher risk can be explained by the lower (baseline) risk among 

all Japanese women in comparison to all Massachusetts women, thus the excess absolute risks 

are statistically the same (two-sided P = 0.32). A significant finding in their study was an early 

appearance of radiation-induced breast cancer among Japanese atomic bomb survivors but not 

in the Massachusetts sample. Differences in the patterns of risk were seen (two-sided P = 

0.04) over the period of time following exposure between two groups who had been exposed 

to radiation in childhood. Overall there is no difference between the Massachusetts and 

Japanese data sets in terms of age and time distribution of risk of radiation-induced breast 

cancer is concerned and their data also provided minimum evidence for a prognosis of reduced 

breast cancer risk after fractionated irradiation (Little and Boice, 1999). 

Studies on the effect of gene mutations on breast cancer survival are contradictory. No 

difference was found by Lee et al (1999). However, Johannsson et al. (1998) found evidence 

that it may be worse for some changes, specifically BRCA1 carriers. Watson et al. (1998) 

confirmed this for a specific situation only. Rubin et al., (1996) found higher probability of 

survival of BRCA1 carriers. Edwin et al. (2000) found the relationship between BRCA1 and 

BRCA2 carrier status and survival after breast cancer by using the Cox proportional hazards 

model. The survival rate of non-irradiated mutation carriers (0.990) is higher than that of non-

carries, more specifically 0.844 for BRCA1 and 0.924 for BRCA2. 

Robson et al. (2004) studied the prognostic significance of germline change in BRCA1 and 

BRCA2 in women with breast cancer. To address the lack of convincing data available in this 

area of research a combined analysis was performed. It was found that BRCA1 mutations are 

associated with reduced survival in Ashkenazi women receiving breast-conserving treatment 

for invasive breast cancer. The poor prognosis related to germline BRCA1 change can be 

removed by more chemotherapy. Observations after 10 years of follow up show that the risk 

of metachronous ipsilateral disease does not amplify in either BRCA1 or BRCA2.  
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Konecny et al., (2003) studied the correlation between HER-2 and hormone receptor 

expression. They analyzed HER-2/neu, estrogen receptor, and progesterone receptor as 

continuous variables in breast cancer cell lines in two cohorts of primary breast cancer 

patients. It was shown that reduced ER/PR expression may be one explanation of relative 

resistance of HER-2 to endocrine therapy. 

A retrospective analysis of records from Surveillance, Epidemiology and End Results (SEER), 

and Medicare claims was considered by Goodwin et al. (2004) to investigate the effect of 

previous history of depression on diagnosis, treatment and survival of older women with 

breast cancer. It was shown that there is a higher risk of death associated with prior diagnosis 

of depression for women receiving treatment. It was found that women with a relatively recent 

diagnosis of depression are at greater risk than others of receiving treatment and have worse 

survival rates after breast cancer diagnosis, and differences in treatment cannot explain worse 

survival rates. 

In a study by Aggarwal et al. (2008) the association of symptoms of depression in 

postmenopausal women with breast or colorectal cancer and both screening rates and stage of 

cancer was investigated. They found that among a self-motivated and healthy cohort of 

women, depressive symptoms reported by the patient herself could be associated with lower 

rates of screening mammography but this was not so in the cases of colorectal cancer 

screening. No association was found as regards stage of cancer at diagnosis. 

Research has indicated that the risk increases by 30% - 50% in obese women. Obesity has 

been shown to be associated with worse health regardless of their menopausal status. There is 

an increased risk of 33% in obese women in comparison to women with acceptable BMI, 

(Rudat et al., 2013). Denmark-Wahnefried et al. (2005) also reported that cancer survivors are 

more likely to be obese and subject to more ongoing diseases than the general population. 

Ogle et al. (2000) similarly reported 68.7% of comorbidity (the presence of an additional 

disorder) among 15,626 cancer survivors. Chlebowski et al. (2002) stated that comorbid 

conditions are related to reduced survival and increased mortality. The association of both 

obesity and lack of physical activity with cancer recurrence and overall survival in cancer 

survivors is well documented (Holmes et al., 2005; Meyerhardt et al., 2006; Patnaik et. al., 

2011; Pierce et al., 2007). For these reasons, it can be seen that switching to a health-

promoting lifestyle is advisable for cancer survivors to defend against subsequent diseases and 

improve prognosis and survival in addition to bettering their overall health. There are 
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therefore many researchers who recommend this (Blanchard et al. 2003; Patterson et al. 2003; 

Satia et al., 2004). However, many studies also report difficulties in adjusting lifestyle 

(Denmark- Ahnefried et al. 2005; Irwin et al., 2005). Irwin et al., (2005) reported an example 

of this where 68% of women gained weight after being diagnosed. 

Despite the awareness in cancer survivors, few health behaviour differences have been 

reported between them and controls (Bellizzi et al. 2005; Caan et al., 2005; Coups and Ostroff, 

2005). This highlights the need for intervention to promote healthy lifestyles based on the 

evidence of higher rates of comorbidity within cancer survivors and that unhealthy lifestyles 

increase the risk of other cancers. However, data providing evidence when this would be most 

beneficial is lacking (Denmark-Wahnefried and Jones 2008).  

In another study from Denmark (Olsen et at., 2012) examined the possible connection between 

a common major life-changing event such as the loss of a partner, and the repetition of breast 

cancer and all-cause mortality using Cox regression analyses.  It was concluded that women 

who were widows before diagnosis or in the years immediately afterwards did not have a 

significantly higher risk of suffering a return or even dying than women who had not been 

through a similar shock. In other words, the results did not support the fear that a stressful life 

event like the loss of a partner may adversely affects prognosis in breast cancer. 

Desreux et al. (2011) remarked on the fact that Belgium has the highest breast cancer 

incidence of all European countries, with 9,697 new cases in 2008 and 106/100,000 women 

affected per year. The explanation they give for this high incidence is an accumulation of 

lifestyle risk factors, and the impact of screening and registration of cases. The relative 

bearing of each of these factors on statistics cannot be clearly ascertained due to a dearth of 

relevant powerful statistical studies. The rate in Belgium is just above the European mean for 

breast cancer mortality (19.4/100.000 women per year) with an all stages 15-year survival rate 

of 75%. Their article investigates the causes of this high national incidence and reasons for the 

current decrease of cancer incidence recorded in western countries, while reviewing both 

familiar and less known risk factors of breast cancers. 

The American Cancer Society reports that around 250,000 breast cancer cases will be 

diagnosed in the U.S. per year, and of these, almost 10 percent will affect women under the 

age of 45. While this percentage may sound relatively insignificant, in comparison to the total 

http://www.ncbi.nlm.nih.gov/pubmed?term=Olsen%20MH%5BAuthor%5D&cauthor=true&cauthor_uid=22433966
http://www.ncbi.nlm.nih.gov/pubmed?term=Olsen%20MH%5BAuthor%5D&cauthor=true&cauthor_uid=22433966
http://www.ncbi.nlm.nih.gov/pubmed?term=Olsen%20MH%5BAuthor%5D&cauthor=true&cauthor_uid=22433966
http://www.ncbi.nlm.nih.gov/pubmed?term=Desreux%20J%5BAuthor%5D&cauthor=true&cauthor_uid=21826953
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number of women diagnosed annually, it is a noteworthy ratio particularly when compared to 

other cancers. In women under 40 breast cancer is the leading cause of cancer deaths (Ries 

2007). In younger women the disease tends to be more aggressive and diagnosed in its later 

stages. Cancer statistics that have been published by the N.C.I. (National Cancer Institute) 

state, in fact, that the 5‐year relative survival rate is lowest in women below 40 who are 

diagnosed with breast cancer (82 percent) compared to women diagnosed at ages 40 and older 

(89 percent).  Numbers thus separated by age, emphasize the difference in survival rates in 

women under 40 (Ries 2007 see Figure 2.1). 

 
Figure 2-1 Breast cancer survival rate in women by age 

Tumour registry data for Surveillance, Epidemiology, and End Results was linked with data 

on Medicare claims by (Gilligan et al. 2007). To find a relationship between number of breast 

cancer operations performed in a hospital (hospital volume) and all-cause mortality Cox’s 

proportional hazard survival analysis, logistic regression and linear and quadratic components 

was also used. The study found moderate reductions in both all-cause mortality and breast 

cancer–specific mortality for women who were treated in hospitals with annual volumes of 

over 40 operations carried out on Medicare breast cancer patients. Even though careful control 

for possible confounders such as patient characteristics and tumour prognostic characteristics 

were made this was still observed. For the duration of standard 5-year median follow-up time, 

the effect of hospital volume remained measurable. 
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Pritchard et al. (2006) examined the hypothesis that the gene HER2 for epidermal growth 

factor receptor type 2, and the overexpression of its production in breast-cancer cells, could be 

related to responsiveness to anthracycline chemotherapy. Kaplan–Meier estimates of the 

survival rates were made using the presence or absence of increase of HER2 (as referring to 

FISH and PCR results) or overexpression of HER2 (as referring to immunohistochemical 

analysis results) or using the followed treatment regime and comparing it with the aid of a log-

rank test. Moreover, the Cox’s proportional-hazards model with a single covariate produced 

the hazard ratios for relapse or death with associated 95% confidence intervals in order to 

contrast the groups. The Cox model was used with treatment, intensification status and their 

interaction as covariates, to assess the interrelation between treatment type and growth status. 

Using the Cox model, multivariable analyses were use and adjusted for a number of variables: 

age (below 50, over 50), number of positive lymph nodes (<3 - ≥4): estrogen-receptor level 

(≥10 -. <10 fmol/mg (femtomole /per milligram), type of surgery (total or partial mastectomy), 

tumour size according to the tumour node metastasis staging system (T1, T2, or T3). A 95% 

associated confidence intervals and a kappa statistics were used to measure the agreement 

betwwen the four assays of HER2. In conclusion, the authors claimed a clear association of 

HER2 growth (or its over expression) in breast cancer cells with clinical responsiveness to 

anthracycline-type chemotherapy. It was shown that there was a greater benefit from CEF than 

CMF as adjuvant chemotherapy. 

Dunnwald et al. (2007) looked at hormone receptor ER/PR status (positive or negative) and 

the relative risk of mortality according to demographic or clinical variations. They examined 

data from 11 population-based cancer registries taking part in the Surveillance, Epidemiology, 

and End Results program and included in their study 155,175 women from the years 1990 to 

2001, who were over 30 years old and had a primary diagnosis of invasive breast carcinoma. 

The goal of their study was to determine relations between joint hormone receptor status and 

breast cancer mortality risk and the Cox proportional hazards model was implemented to 

compare results within categories divided by diagnosis year, diagnosis age, ethnicity, 

histologic tumour type, stage at time of study, size and grade, and axillary lymph node status. 

Results showed that in comparison to women with ER+/PR+ tumours, women with ER+/PR-, 

ER-/PR+, or ER-/PR- tumours experienced higher risks of mortality, irrespective to a great 

extent of the various demographic and clinical tumour characteristics assessed. The higher 

relative mortality risks noted among joint ER/PR negative patients with low-grade or small 
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tumours raises the question of whether there may be an effective role for adjuvant 

chemotherapy in this group of patients. 

Miecznikowski et al. (2010) state that one in eight (12%) women in the United States will 

develop breast cancer in their lifetime and even though advancements in treatment options, 

with regards to both surgery and chemotherapy, breast cancer is still the cancer with the 

second highest number of deaths in women. They investigated five data sets concerning breast 

cancer by means of gene set analysis with cancers being categorized into subsets according to 

a scoring system that was based on their genetic pathway activity. Their comparative survival 

study used the Cox proportional hazards regression model to discover significant variables 

correlated with risk with reported P values based on the sample estimate obtained from the 

Wald statistical test. Multivariate survival and univariate analysis were performed to select the 

clinical variables and/or their interactions significant for each separate dataset.  

A study from Jerusalem, Israel (al-Quds University) by Ora et al. (2004) looked at the 

incidence of cancer among women with and without a history of pre-eclampsia. It was 

determined that cancer developed in 91 women who had suffered pre-eclampsia and in 2204 

who had not (hazard ratio 1.27, 95% confidence interval 1.03 to 1.57). Risk of site-specific 

cancers was greater than before, particularly in cases of the stomach, ovary Epithelium, breast, 

and lung or larynx. These particular incidences of cancer increase in women with one child at 

study entry who had a pre-eclampsia history. Increased overall risk of cancer and incidence at 

several sites is correlated with a history of pre-eclampsia, which may be explained by 

environmental and genetic factors. 

To test further the differences in survival among breast cancer subgroups, univariate Cox 

regression was performed to estimate the hazard ratios for basal-like breast cancer instead of 

luminal A, and for HER2+/ER− breast cancer instead of luminal A. Powerful calculations 

were performed using a computer program developed by Dupont and Plummer. These 

computations concluded that the estimation was at least 70%-80% or excellent (>80%) for the 

majority of comparisons. Statistical analysis was performed with the here of Reliability 

Centered Maintenance. This population-based study concluded that there is a higher frequency 

of Basal-like breast tumours among pre-menopausal African American patients than in 

postmenopausal African American and non-African American patients. The poor prognosis of 
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young African American women with breast cancer could be due to a higher frequency of 

basal-like breast tumors and a lower prevalence of luminal a tumours (Carey et al., 2006). 

In another study, (Gennari et al., 2008), compared different treatments: two dose levels of 

epirubicin plus cyclophosphamide vs cyclophosphamide, methotrexate, and 5-fluorouracil 

(CMF). Inverse variance weighting was used to pool the hazard ratios for the two epirubicin-

based arms versus CMF. Log hazard ratios for overall survival and disease-free status were 

pooled across the studies, and both in relation to respective HER2 status overall by inverse 

variance weighting. In each study, formal tests for treatment by HER2 status interaction were 

implemented and test results were compared with the results of interaction tests reported by 

the individual studies. Publication bias was assessed by way of visual evaluation of direct 

plots mapped for study size versus treatment effect and also with the Egger regression 

asymmetry test. Sensitivity analyses were also done to determine if the strength of interaction 

between HER2 status and efficacy of adjuvant anthracycline treatment was in any way related 

to the method of HER2 assessment used, the type of anthracycline-based regimen 

implemented, or proportion of patients assessed for HER2 status. According to their results, in 

early stages of breast cancer, HER2 status is a predictor of responsiveness to adjuvant 

anthracycline therapy. The lack of observable effect of anthracyclines in HER2
-
 negative 

disease implies that such patients might be spared the unnecessary toxic effects of this class of 

agents.  

El Fatemi et al. (2013) carried out a case study of a patient with a rapidly growing nodule in 

the right breast. They confirmed that factors affecting survival are early stage diagnosis, 

conservative surgery, radiotherapy and combined modality treatment. Analysis showed that 

the node status is the best single predictor of survival. Improved molecular techniques together 

with classic histological diagnosis is necessary due to the breast lymphomas being rare and the 

problems associated with diagnosing it. In another study by Biggar et al. (2013) on Danish 

women with breast cancer, it was assumed that the use of digoxin might affect tumour 

characteristics and cause an increased relapse risk. It was concluded that breast cancers arising 

in digoxin-using women presented better prognostic features, overall breast cancer relapse risk 

in digoxin users showed no significant increase after adjustment for markers, however, in the 

first year subsequent to diagnosis recurrence hazards for ER positive tumours were higher. 
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Simsek (2000) examined major results for three main breast cancer treatment types in North 

Carolina. It showed that those treated with both Breast Conserving Surgery (BCS) and 

radiations have survival rates similar to patients who had done a mastectomy. The results 

imply that survival rates are similar for all three standard treatments and that BCS and 

radiation (for stages I and IIA) can safely substitute for mastectomy. 

Psychological response to breast cancer was studied by Watson et al. (1999) in 578 women. 

Hazard ratios for psychological response were obtained using Cox regression. A high 

helplessness/ hopelessness score was found to have a moderately detrimental impact for 5 year 

event-free survival. Thus, a high score for depression was linked to a more significantly 

reduced chance of survival. In contrast, a high “fighting spirit” score in those women had no 

significant effect on prognosis. The authors do point out, however, that these conclusions are 

based on a small number of patients and should, for that reason, be interpreted with caution.  

Renard et al. (2010) noted the incidence rate of breast cancers in Belgian women was as high 

as 152.7 per 100,000 in 2003 and estimated the effects of HRT (hormone replacement 

therapy) on incidences of breast cancer between 1999 and 2005 in women in Flanders between 

50 and 69 years of age. The proportion of women aged 50-69 years and using HRT in 

Flanders was seen to have increased since 1992, peaking in 2001 at 20%, and from then on 

decreasing to 8% in 2008. In parallel, the diagnoses of breast cancer per 100,000 women aged 

50-69 years in the same region rose from 332.8 in 1999 to 407.9 in 2003, then in 2005 

numbers fell to 366.0. The number of HRT attributed breast cancers peaked at 11% in 2001, 

decreasing thereafter. Since participation in mammography screening by 50-69 year old 

Flemish women was still on the rise in 2003 and never surpassed 62%, they attribute the 

noticeable decrease in breast cancer incidence to the decrease in HRT use rather than to the 

level of screening carried out (Renard et al. 2010). 

Holleczek and Brenner (2012) on the other hand, looked at the most recent 5-year relative 

survival rates in women with breast cancer and compared them with preceding trends in the 

U.S.A. and Germany. Life tables were calculated for intervals of 5 years from 1990 using 

period analysis to derive the 5-year relative survival and previous survival trends according to 

age and stage. Poisson regression models were also used for relative survival that fitted 

modelling of the logarithm of excess deaths with a linear predictor of follow-up year, age 

group and calendar period. Age standardized relative survival has progressively become better 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Holleczek%20B%5Bauth%5D
http://www.ncbi.nlm.nih.gov/pubmed/?term=Brenner%20H%5Bauth%5D
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both in Germany and the U.S.A since 1993 to 83% and 88% respectively. Relative survival of 

localized cancer was over 97% in both countries, and 79% or 83%, respectively, for more 

advanced stages of breast cancer between the years 2005–08 (Holleczek and Brenner 2012). 

Metastasized disease prognosis is reported to have remained poor generally, with real 

improvement only to be found in younger patients. Patients being diagnosed with localized 

breast cancer was proportionally consistently higher in the U.S.A. When adjusted for stage, 

the differences in relative survival rates between the countries diminished over time and now 

effectively cease to exist.  

2.5 Breast cancer research in developing countries 

It has recently been estimated that worldwide there are over 25 million people living with 

cancer within five years of diagnosis (International Union against Cancer, 2010). In developed 

countries, breast cancer is an established health priority whereas in middle-income countries 

there is still insufficient attention paid. In developing countries recent evidence has shown 

breast cancer to be a leading cause of death and disability among women (Mathers et al., 

2006). Although research has produced many new treatment options, most are prohibitively 

expensive. Therefore, modern breast cancer should be considered a significant challenge for 

health system funding.  

Porter reported in 2008 that the risks of both breast cancer and death due to it are without a 

doubt rising worldwide. Most rises occur in low- and middle-income countries such that they 

account for 45% of more than a million new cases of breast cancer diagnosed each year, and 

more than 55% of breast-cancer–related deaths (Porter, 2008). 

 
Figure 2-2 Percentage of DALYs lost from breast, cervical and prostate cancer as a proportion of all 

cancers, by world bank region, Source: Brown, M. L., Goldie, S. J., Draisma, G., Harford, J. and 

Lipscomb, J. (2006). Chapter 29. Health service interventions for cancer control in developing countries.  

http://www.ncbi.nlm.nih.gov/pubmed/?term=Holleczek%20B%5Bauth%5D
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Recent analysis of mortality and morbidity trends by Brown et al. (2006) show the full extent 

of the disease in developing countries. Breast cancer surpasses cervical and prostate cancer in 

all regions of the developing world apart from sub-Saharan Africa and South Asia when using 

DALYs (Disability Adjusted Life Years) lost to cancer. It is the top cause of lost DALYs due 

to cancer at 9% in Latin America and the Caribbean. The differences are even more marked in 

other regions. In the Middle East and North Africa, as well as Europe and Central Asia, three 

to four times more DALYs are attributed to breast cancer than to cervical or prostate cancers, 

and in East Asia and the Pacific twice as many (Figure 2.2). 

According to the National Cancer Center (2009) the five-year relative survival rate of all 

cancers was reported at 52.2% in 2005 for all cancers and is likely to continuously increase in 

the near future. Health professionals have begun to focus on other long-term health issues as 

well because the number of cancer survivors continues to rise. The risk of contracting a 

secondary cancer or other diseases such as heart disease and diabetes, is higher in cancer 

survivors, than the general population. They also more frequently present physical and 

psychological symptoms than healthy people (Bower et al., 2006; Helgeson and Tomich, 

2005; National Cancer Center, 2009). This is illustrated by a Korean study that reported breast 

cancer survivors did worse than controls in terms of their performance in physical, emotional 

and social functioning (National Cancer Center, 2009). 

About 1 out of 100 people in Korea can be found living with cancer within five years of 

diagnosis (National Cancer Information Center, 2009). This is due to improving survival rates 

of cancer sufferers as well as increasing incidence rates. Estimations are that new cases will 

increase from 152,600 in 2007 to 235,100 in 2015 which is 50% in eight years (National 

Cancer Center, 2009). Cases in Vietnam have also been increasing steadily over the last 

decade from, roughly 13.8 per 100,000 women in 2000 to 28.1% in 2010 (Lan et al., 2013). 

One way to encourage healthy lifestyles is to understand the behaviour influencing variables 

and therefore create effective involvement allowing survivors to be proactive and pursue this 

health-benefiting lifestyle. This was examined by Yi and Kim (2013) who studied the 

relationships among the internal health locus of control, depression, social support, and health-

promoting behaviours in Korean breast cancer survivors with a view to identifying the factors 

that influence health-promoting behaviour. They used a predictive design and data was 

collected by means of questionnaires from a sample of 258 breast cancer survivors in Korea 

http://www.ncbi.nlm.nih.gov/pubmed?term=Yi%20M%5BAuthor%5D&cauthor=true&cauthor_uid=22687200
http://www.ncbi.nlm.nih.gov/pubmed?term=Kim%20J%5BAuthor%5D&cauthor=true&cauthor_uid=22687200
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from a single year (2007). Apart from those receiving chemotherapy, significant differences in 

health-promoting lifestyle based on demographic and illness-related characteristics were not 

found. The internal health locus of control, depression, and social support correlated 

significantly with a health-promoting lifestyle on the other hand. Using stepwise multiple 

regression analysis, it was determined that social support, depression, and chemotherapy 

accounted for almost 40% of the variance in health-promoting lifestyle. The level of social 

support was found to most affect a health-promoting lifestyle, followed by that of 

chemotherapy and depression. The study results conclusively demonstrate the value of social 

support and the importance of depression in explaining the incidence of health-promoting 

lifestyle among Korean breast cancer survivors (Yi and Kim, 2013). 

In Saudi Arabia, Rudat et al., (2013)  considered the fact that obesity is increasing in a number 

of low-income and middle-income countries. Indeed to date more than 1.3 billion people 

globally are believed to be overweight or obese. It is commonly recognized to be a risk factor 

linked to cardiovascular disease, metabolic syndrome, certain types of diabetes and cancers 

including breast cancer. It has been estimated that the risk of developing postmenopausal 

breast cancer rises by as much as 30% - 50% in overweight or obese women. Furthermore, it 

has been directly linked with a poorer prognosis, regardless of menopausal status of the 

patient. A recent systematic review of both breast cancer-specific death and death from all 

causes indicated an increased risk of 33% in obesity as compared to lean women. This is 

especially pertinent in Saudi Arabia where breast cancer is the most common cancer, 

accounting for over 25% of all newly diagnosed cancers in women and for almost 14% in both 

genders combined (National Cancer Institute, 2012 and H. Al-Eid, 2012).  

Huo et al. (2009) in Nigeria investigated the fact that black women experience a 

disproportionately heavy burden of aggressive breast cancer as compared to white women, 

since reasons for this phenomenon were to-date either unknown or understudied. This was the 

first study to determine the distribution of molecular subtypes of invasive breast tumours in 

indigenous black women in West Africa. The overall conclusion is that there is an urgent need 

for research into the ethiology and treatment of the aggressive molecular subtypes 

disproportionately affecting young African women worldwide in order to close the gap in the 

difference across populations. 

http://www.ncbi.nlm.nih.gov/pubmed?term=Yi%20M%5BAuthor%5D&cauthor=true&cauthor_uid=22687200
http://www.ncbi.nlm.nih.gov/pubmed?term=Kim%20J%5BAuthor%5D&cauthor=true&cauthor_uid=22687200
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The study by Rosmawati (2010) was the first to note low survival rates were related to later 

stages in Malaysian women of all ages and origin even though breast self-examination (BSE) 

can reliably be used for early detection. In addition, a questionnaire was formulated for 

systematic random sampling to be applied in a cross-sectional study and information was 

compiled through a guided interview. The results were assessed to determine the knowledge, 

attitude to and practice of BSE among women at least 15 years old and above. The average 

age of the 86 respondents was 40.5 years (SD: 15.51) of which a majority (80%) are educated 

to secondary or tertiary educational level. The total scores tabulated were as follows: 16.9 

(total mean percent: 60.4%) for knowledge: 37.1 (77.3%) for attitude and 9.56 (34.1%) for 

practice. The respondents scored 38.4%, 73.3% and 7.0% for respondents for knowledge, 

attitude and practice respectively. The population studied was seen to have poor knowledge of 

the disease and there was a wide gap between attitude and practice. The factors related to poor 

practices were being unaware of the correct BSE method, not having knowledge of signs of 

cancer and not having support from parents, husband or friends. Thus measures that would 

have a significant positive impact on BSE among young Malaysian women are improved 

breast cancer awareness programs and health care workers recognising religious and social 

hurdles that include spouse, family and community.  

There will be over 50.000 breast cancer cases by 2012 in Turkey based on recent 

documentations of breast cancer incidence rates (Özmen, 2008). They point out that while 

breast cancer is becoming more prevalent, it is characterized by a slow growth rate and early 

diagnosis can achieve positive treatment outcomes. Early diagnosis and early treatment of 

breast cancer is the most valuable in increasing life expectancy, reducing mortality rate, 

improving quality of life, and reducing physical pain and psychosocial problems in women 

(İğci and Asoğlu, 2003 and Özkan et al., 2010) describe basic attitudes to health issues and the 

BSE practices of Turkish female nursing and midwifery students and evaluate the benefit of 

educating their mothers, sisters, and other female relatives in BSE. They employed descriptive 

statistics and determined that better knowledge about breast cancer and BSE continual training 

programs should be planned for nursing and midwifery students. With improved access to 

facts, belief and attitudes would be enhanced and medical motivation with BSE should also 

increase accordingly. 

http://www.ncbi.nlm.nih.gov/pubmed?term=Rosmawati%20NH%5BAuthor%5D&cauthor=true&cauthor_uid=21338188
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Mandana et al., (2002) conducted a case-control study in Tehran, Iran between April 1997 and 

April 1998, in which 249 control women and 286 suffering from breast cancer were 

interviewed. With a multivariate and logistic regression method of analysis to derive Ors (odd 

ratio) and 95% CIs (confidence intervals), they examined the relationship between 

reproductive status and other risk factors in breast cancer occurrence in Iranian women. The 

results showed that family history and marital status could be associated with the incidence of 

breast cancer in Iranian women. It was unexpected that there was a lack of significant 

correlation between breast cancer and the other variables studied and the authors acknowledge 

that this may be explained by the limited capability of the study to estimate these risk 

variables.  

Another study relating to breast cancer in Iran was done by Montazeri et al. (2003) who 

examined the extent of delay in patients seeking medical advice among Iranian breast cancer 

patients. A group of 190 diagnosed breast cancer patients were interviewed and subsequently 

completed questionnaires either at a university hospital or a breast clinic. Information 

regarding the time-lapse from first recognition of symptoms to first medical consultation was 

collected, which was used to calculate degree of patient delay. Their study findings confirm 

that patient delay is an important health problem, and must be reduced by educating women 

who are at higher risk. Examining the extent of patient delay and associated factors is only the 

first step. The next step is to establish interventions to reduce delays in seeking help and 

improve outcomes in all breast cancer cases. 

Rezaianzadeh et al. (2009) set out to determine risk factors and breast cancer survival as 

related to socio-demographic and pathologic factors in Southern Iran, for which they noted 

there had been no previous study conducted. The main purpose of their study was to examine 

the effect of a wide range of variables on breast cancer survival, and for that reason the only 

outcome considered was that of survival. All 44 variables recorded at the cancer registry (from 

inauguration 01/01/2000 up until 31/12/2005) were used. These explanatory variables divide 

naturally into three groups: socioeconomic or demographic, clinical/pathological factors, and 

distant metastases. The association between survival, socio-demographic and pathological 

factors, and distant metastasis at diagnosis was investigated, and Cox regression was used to 

assess treatment options. The results demonstrate that the survival rate was relatively poor and 

this can be attributed to late stage diagnosis of the disease (patient delay). They assume that 
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this was because of cultural inhibitions, low level of awareness, lack of access to screening 

programs and subsequent late access to treatment. 

Harirchi et al. (2011) stated that breast cancer is the most regularly occurring cancer 

(estimated as 23% of all cancers) and fatal form of tumour among women that accounts for 

16% of deaths. According to the Iranian Centre for the Prevention and Control of Disease 

(Ministry of Health and Medical Education, 2000, Iran), it is the most prevalent cancer among 

Iranian women that accounts for 21.4% of all tumours. In Europe and the USA it is estimated 

that the incidence rate is 8-10%. The lowest rates are found in some Asian countries (roughly 

1%). In Iran the incidence rate was 6.7/100,000 in 2002, much lower than other countries 

(Rezaianzadeh et al., 2009). Later, it ranked as the number one tumour in Iranian women, 

accounting for 24.4% of all tumours and an age standardized incidence rate (ASR) of 23.65 in 

the year 2006. However, due to the lack of studies describing the clinicopathologic features, 

stages, and age distributions of breast cancer, the prediction of present and future patterns is 

difficult as is carrying out appropriate defensive and therapeutic actions to decrease its effect 

(Harirchi et al., 2011). It appears that most studies agree that the survival rate in Iranian breast 

cancer patients is lower than Europe and the USA (Vahdaninia et al. 2004).  

By comparing data from other cities and countries, Ziaei et al.( 2013) investigated the survival 

rates in Tabriz (Northwest Iran). The sample consisted of 271 breast cancer patients who 

visited a university clinic between 1997 and 2008. The survival rates for one, three, five, seven 

and ten years were taken. The sample had a lower survival rate compared to western countries, 

in particular, the survival rate of around 60% is significantly lower than those in European 

countries and the United States (e.g. 64% in Oman, 65% in Greece, 71% in Germany, 78% in 

Belgium, 84% in the United Kingdom and 89% in the United States (Mousavi  et al., 2011). 

However, a larger sample size is required to conduct a better survival analysis, particularly for 

those under 40 years of age. 

In twin studies in Tunisia, Hsairi et al. (2002) estimated the national incidence of main 

cancerous sites for the period 1993-1997. They first determined the relationship between 

cancer incidence and life expectancy at birth, Evo, in certain countries, and then calculated the 

level of regional incidence with data from local registers and compared them by using 

similarity of average (Evo) level as a basis. Their results indicated the significance of tobacco 
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control, screening for breast cancer and cervix-uterine cancer, as components fundamental in 

reducing the number of cancers.  

Abdelkrim et al. (2010) studied ER, PR Her-2 (estrogen receptor, progesterone receptor and 

the human epidermal growth factor receptor-2 respectively) according to which breast cancer 

can be categorised into four molecular subtypes (luminal A, luminal B, Her-2, and basal-like) 

and the possible correlations between these subtypes and clinico-pathological features. 

Univariate and multivariate analyses were used to analyse the data from their pathology 

department and used in the study. Their analysis showed that the Her-2 and basal-like 

subcategories could be associated with factors such as tumour size associated with a poor 

prognosis. Because the luminal A subtype was the commonest found in Tunisian women (just 

over 50% of all patients), they suggested that this showed that breast cancer in this country 

had no aggressive phenotype. 

Maher et al. (2006) set out to evaluate the prevalence of ER, PR and HER2/neu among 

Jordanian women who have breast cancer of ductal and lobular types by retrospectively 

analyzing data of 267 cases from June 2003 to June 2004 at the King Hussein Cancer Center 

Hospital. To evaluate the two hormone receptors and HER2/neu, they used the standard 

Immunohistochemical test (IHC) and further evaluation of HER2/neu was carried out by the 

Fluorescence In Situ Hybridization (FISH) test in certain cases. Despite the limited extent of 

the sample group, results revealed that when compared to white American females, Jordanian 

breast cancer patients have lower hormone receptor positivity rates, which is more similar to 

results seen in black Americans and Chinese women in the States. This study may help 

provide further insight into breast cancer ethiology among different ethnic populations.  

Breast cancer is the most widespread tumour diagnosed in Saudi Arabia. It amounts to 26% of 

all newly diagnosed women. With an age-standardized rate of 21.6/100,000 of the female 

population, the incidence is considerably lower than in the United States (124/100,000) 

(National Cancer Institute, 2012). About a quarter are younger than 40 years of age while the 

mean age at diagnosis is 47 (Al-Eid, 2012). The higher percentage of younger victims may 

partially be due to the demographics, since 50% of the females are younger than 20 years of 

age. By contrast, in the United States only about 7% of breast cancer patients are below 40, 

and the median age at diagnosis is 61 years of age (Rudat et al., 2013).  
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After diagnosis of cancer, weight gain has been frequently reported. Ethnic differences in the 

pattern of weight gain after the onset of breast cancer treatment are possible because of the 

differences in the epidemiology of breast cancer and obesity when comparing Asian and 

Western regions. There is no available data for Malaysian women on weight changes before 

and after adjuvant (of therapy) treatment with breast cancer (Yaw et al. 2010). 

2.6 Methods used by researches in breast cancer 

The Bayesian approach is used in the analysis of survival breast cancer data. Kalbfleisch 

(1978) modelled the cumulative base-line hazard by a gamma process within a proportional 

hazards setting. Clayton (1991) and Gelfand and Mallick (1995) considered extensions to 

multivariate survival data. Other examples include Dey et al. (1998) and Ibrahim et al. (2001). 

Many, although not all, such models applying Bayesian methods, concentrate on proportional 

hazard models. Gamerman (1991) for example, developed a Bayesian survival model with 

time-dependent effects, making use of a correlated prior process that Leonard (1978) had first 

introduced, where the true underlying course is estimated by a piecewise constant process. 

Evolution from interval to interval was plotted in a non-parametrical way, although some 

other conjugate assumptions had to be imposed so as to obtain an estimation using the linear 

Bayesian methods. Similar models were also produced by others, for example, (Arjas and 

Gasbarra, 1994, Arjas and Heikkinen, 1997, Sargent, 1997 and Sinha et al., 1999). These 

developments principally concentrated on parametric evolution, using Monte Carlo Markov 

chain (MCMC) methods for estimation. Arjas and Gasbarra (1994) also developed a Bayesian 

alternative to the frequentist non-parametric approach, by way of modelling the hazard by a 

piecewise constant process, relating parameters between intervals (using the gamma 

distribution) and treating the amount of smoothing as a fixed value. In addition, the times at 

which the values of the dynamic parameter changes were modelled as a random process. 

Mostert et al. (1998) also investigated Bayesian analysis of survival data using the Linex Loss 

and Rayleigh model. Ahmed et al. (2005) investigated robust weighted likelihood estimation 

in the specific case of the Weibull distribution. Among others, Wang and Li (2005) used 

estimators for survival function with known censoring times. Saleem and Aslam (2008b) again 

worked on type I right-censored data with fixed censoring time. On the other hand, Abu-Taleb 

et al. (2007) examined exponentially distributed survival times with an exponentially 

distributed censoring time. Some interesting expressions were presented on computational 
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aspects and Ali et al. (2005) in turn, presented Bayes estimation of exponential parameters. 

Subsequently, Saleem and Aslam (2008a, 2008b) produced a study using ordinary type I right-

censored data for Bayesian analysis of a Rayleigh mixture. Rayleigh survival times that 

assumed random censoring time was considered by Saleem and Aslam (2009). Whereas 

Saleem et al. (2010) made use of ordinary type I right-censored data for Bayesian analysis of 

power function mixtures. This paper extended the work carried out by Abu-Taleb et al. (2007) 

adding algebraic expressions, numerical results and a simulation study used to compare and 

investigate the properties of the estimators. A posterior predictive distribution was derived and 

the equations required for the construction of predictive intervals were presented. The HPD 

(Highest Posterior Density) interval was formulated analytically and numerically in Saleem 

and Raza (2011). Maximum likelihood estimators and Bayes estimators assuming Squared 

Root Inverted Gamm (SRIG) were used by Saleem and Aslam (2009). 

In Miecznikowski et al. (2010), model fitting for each gene expression profile was calculated 

using each gene individually, and then combined with ER status and tumour size, then with 

best model resulting from minimizing the AIC (Akaike Information Criterion), and finally 

minimizing the BIC (Bayesian Information Criterion). Statistical significance was ascertained 

for individual genes by means of controlling the FDR (false discovery rate) for testing 

multiple genes at 0.2 using the Benjamini and Hochberg scheme for the p-values obtained 

from log-rank tests in each gene model. 

Hemming and Shaw (2002) made use of Bayesian methodology and Monte Carlo Markov 

chain (MCMC) estimation methods. For some of the predictive indicators it was indicated that 

the estimated effects evolve with increasing follow-up time. In general, those predictive 

indicators which were regarded as representative of the most hazardous groups had a declining 

effect. 

Cox (1972, 1975) proposed a partial likelihood function for the estimation of parameters as 

well as for the discrete time logistic model. If m failure times are tied at time t and n 

individuals are at risk just prior to t then the partial likelihood contribution involves a 

summation over all possible subsets of size m from the n at risk. With large data sets 

calculations like this are no longer feasible. The 'marginal' likelihood of Kalbfleisch and 

Prentice (1973) is simpler because the contribution at time t involves only the m! Permutations 

among the m individuals with failure time t. Categorical data regression models were 
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considered for data analysis. Cox (1972) proposed a model for discrete survival time which is 

closely related to the Mantel-Haenszel approach (e.g. Mantel, 1966) to survival analysis.  

Clark et al. (2003) published a series of four articles where the basic concepts of survival 

analysis were introduced and explained. The first article presented basic concepts, including 

how to develop and interpret survival curves and how to assess, quantify and test survival 

differences between two or more groups of patients with the aid of Cox’s proportional hazard, 

Kaplan-Meier log-rank test and accelerated failure time. The other papers dealt with 

multivariate analysis and the last one introduced some more advanced concepts in the form of 

brief questions and answers. 

An alternative approach to regression modelling involves stratification of nuisance variables. 

Inferences on primary factors then proceeded within strata, and summary inferences were 

made by combining test statistics and estimators across strata (see e.g. Mantel 1966; Hankey 

and Myers 1971; Godwin and Brown 1975). What became apparent were the constraints of 

such a procedure in terms of sample sizes. The stratification approach is conceptually simple 

and provided a solution to the possibility of high order interaction effects of nuisance variables 

on survival time.  

Tabatabai et al. (2012) studied the survival of breast cancer patients in the Netherlands 

through the exploration of the role of a metastasis variable in conjunction with both clinical 

and gene expression variables. The Netherlands Cancer Institute provided data for a hyper 

tabastic model, which uses a two parameter probability distribution, for an in-depth analysis of 

295 breast cancer patients. In comparison to Cox regression model assumptions, the increased 

accuracy was complemented by their subsequent ability to analyze the time course of the 

disease by means of progression hazard and survival curves, which were described in detail. 

Deciles were also computed for survival and probability of survival to a given time. Their 

primary aim was the introduction of a variable representing the existence of metastasis and its 

effects on other gene expression and clinical variables. 

In the Czech Republic, Horov´a et al. (2007) built a model to study the survival rate of cancer 

patients. A parametric form of hazard function was used based on a model of cancer cell 

population dynamics (Kozusko and Bajzer, 2003) that is dependent on several parameters. A 

detailed method is outlined to estimate such parameters. For survival data the nonparametric 
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methods seem more suitable, which include methods of kernel estimation of hazard functions, 

though there was a serious difficulty on deciding a smoothing parameter. An alternative 

method for the bandwidth selection was proposed.  

Parmar et al. (1998) summarized studies addressing similar matter using Meta-analyses. They 

extracted estimates of these statistics using various methods which included the log hazard 

ratio. This improved the accuracy and reliability of their meta-analyses. For the sample size of 

2152 black women and 25968 white women in the USA, Prentice and Gloeckler (1978) 

suggested the grouped data version of the proportional hazards model function. A 

generalization of the log-rank test for the comparison of survival curves as given for testing 

the hypothesis of a zero regression coefficient. Its application to breast cancer data from the 

National Cancer Institute indicated that race differences in breast cancer survival times is 

because of differences in the phase of disease and demographic features when diagnosed. This 

method is free from the length of the survival time grouping. 

Using the West Midlands Cancer Intelligence Unit, Hemming and Shaw (2002) studied time-

dependent effects of prognostic indicators on breast cancer survival times. While noting that  

the greater part of analysis of the cancer registry data uses the semi-parametric proportional 

hazards Cox model, estimation methods used were Monte Carlo Markov chain and Bayesian 

methodology. This model is similar to that developed by Sinha et al. (1991) and Gamerman 

(1999) amongst others. It was shown that the estimated effects change with more follow-up 

time (Hemming and Shaw, 2002).  

In Melbourne, Australia, (Baglietto et al., 2005) evaluated the effect of vitamin B9, the dietary 

folate, on the relation between alcohol consumption and breast cancer risk. Hazard ratios were 

estimated using Cox regression with age being used as the time metric. Polynomial relations 

were compared with log hazard rate using fraction polynomials for alcohol consumption and 

folate intake. Interaction between alcohol consumption and dietary folate intake was compared 

in non-nested models with the Akaike information criterion. It showed that sufficient dietary 

intake of folate may defend against increased risk of breast cancer that is related to alcohol 

consumption. 

The applications of parametric survival models were extended by Abadi et al. (2012) to 

include cases where the AFT (accelerated failure time) assumption is not satisfied, and looked 
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at parametric and semi-parametric models according to different proportional hazards (PH) 

and AFT assumptions. In the specific 1990–1999 study that they used, 12,531 women 

diagnosed with breast cancer in British Columbia, Canada, were categorized into eight groups 

according to age and disease stage. It was assumed that each group had different AFT and PH 

criterias. The saturated generalized gamma (GG) distribution was fitted for parametric models, 

and then compared with the straight AFT model. A likelihood ratio statistic was applied to 

compare both models to the simpler forms which included Weibull and lognormal. Cox's PH 

model or the stratified Cox model was fitted for semi-parametric models according to the PH 

assumption and Schoenfeld residuals were used to test them. The GG family was compared to 

the log-logistic model by means of the Akaike information criterion and the Baysian 

information criterion. When PH and AFT assumptions were satisfied, semi-parametric and 

parametric models both gave valid descriptions of breast cancer patient survival. In the case 

that the AFT condition held when the PH assumption failed, the parametric models were more 

reliable than the stratified Cox model. When neither AFT nor PH assumptions were met, the 

log normal distribution provided a reasonable fit. Both parametric and semi-parametric models 

were found appropriate when both PH and AFT assumptions were satisfied. When the PH 

assumption is not satisfied, then parametric models should be considered, whether the AFT 

assumption is met or not (Abadi et al., 2012). 

Jeong (2006) pointed out that an approach that is based on the Kaplan-Meier estimator 

(Kaplan and Meier, 1958) may overestimate the proportion of occurrence of local or regional 

events (Korn and Dorey, 1992; Pepe and Mori, 1993; Gay-nor et al., 1993; Lin, 1997) whereas 

the cumulative incidence function (Kalbfleisch and Prentice, 1980) affords correct estimates 

for the cumulative probability of local or regional recurrences in the presence of other 

competing events without the assumption of interdependence of event times. Gray (1988) used 

a nonparametric inference procedure to compare the cumulative incidence estimates of 

different samples. However, a semi-parametric regression model on the cumulative incidence 

function was also examined by Fine and Gray (1999). To assess the full parameterization of 

the cumulative incidence, Benichou and Gail (1990) used piecewise exponential or simple 

exponential distributions.  

In survival analysis the simple exponential distribution and existing Weibull distribution 

families may prove to be too restrictive. Also, a conclusive estimate may not be possible 
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because the piecewise exponential distribution involves too many parameters. Due to this, a 

new distribution family to parameterize the cumulative incidence function was proposed by 

Jeong (2006) that included the three-parameter generalized Weibull distribution (Mudholkar et 

al., 1996; Jeong et al., 2003). To evaluate the increased efficiency for the parametric estimates 

as a function of time, a comparison was made between the mean-square errors of the 

parametric estimates of the cumulative incidence function to the same quantities of the 

nonparametric estimates. To compare the cumulative incidence functions at a particular time, 

a simple parametric two-sample test statistic was created that can be applied to data sets on 

breast cancer treatment from phase III National Surgical Adjuvant Breast and Bowel Project 

clinical trials.  

Gray (1992) investigate applying fixed knot splines to model the progress of breast cancer 

tumours, and then the parameters were estimated using the penalized partial likelihood. These 

methods give a useful understanding of how prognosis diverges as a function of continuous 

covariates and shows how the covariate effect changes with respect to follow-up time. This 

may be achieved by using penalized likelihood. For example Verweij and van Houwelingen 

(1995) used a finite sequence for the dynamic effects. In contrast, Hastie and Tibshirani 

(1986) used cubic splines (piece-wise polynomial functions) with knots at unique failure 

times, and Gray (1992) used both quadratic and piecewise constant splines, but with fewer 

knots. (Grambsch and Therneau 1994) showed how plots of rescaled Schoenfield residuals 

against time can be used to both show the extent of non-proportionality and to test a null 

hypothesis of proportional hazards. 

In Islamabad, Pakistan, Saleem and Aslam (2009) looked at lifetime data analysis and 

considered the suitability of Rayleigh distribution survival times to derive maximum 

likelihood in conjunction with Bayes estimates for unknown parameters. The Rayleigh 

distribution is particularly useful in the analysis of lifetimes of objects that age with time, 

which may be modeled by a monotonically increasing hazard function. Lifetimes with 

constant hazard rates are studied using the exponential distribution, given its memoryless 

property. In the same area there have been a number of breast cancer studies initiated by 

Raqab and Ahsanullah (2001) who focused on ordered generalized exponential distribution 

(GED).   
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Carey et al. (2006) in the U.S.A analyzed population-based distributions and clinical 

associations for breast cancer subtypes. Data was presented stratified by four different patient 

groups. Differences between breast cancer subtypes were investigated regarding clinico-

pathologic characteristics using one-way analysis of variance (ANOVA) for age, and χ
2
 tests 

for the remaining variables. The Fisher test was used when expected cell counts were less than 

5.  

From Switzerland, Spitale et al. (2008) did a large European population-based study which 

investigated prevalence, clinicopathologic features and overall survival (OS) of molecular 

subtypes of cancers. These molecular subtypes were defined by IHC (immunohistochemical) 

markers and were evaluated using (ANOVA one-way analysis of variance) for patient age and 

size (diameter) of tumour. The Bonferroni method was used to calculate pair-wise differences 

in the molecular subtypes so as to control the overall significance level by adjusting the p 

value. The χ
2 

test assessed the relationship between the different subtypes and main 

clinicopathologic characteristics believed to be of prognostic importance, for example 

histologic grade (well\moderate vs poorly differentiated), menopausal state according to age, 

laterality (right vs left), multifocal or not, metastasis status at time of diagnosis etc. The Fisher 

exact test was used for expected cell counts under five using the Monte Carlo method. For 

verification of correct IHC subtype definition, the distribution of cases according to HER2 

expression, PR status and ER status were made available.  

Strati et al. (2013), compare different analytical methodologies for circulating tumour cell 

(CTC) discovery and molecular characterization and conclude that standardization of 

investigative procedures is urgently needed and essential before such methodologies are 

implemented in clinical practice. For statistical analysis, the chi-square test was used to 

evaluate concordance in early breast cancer, while in a smaller group presenting verified 

metastasis, the Fisher exact test was preferred. The Kappa test was utilized in all cases in order 

to calculate the degree of agreement between the three different CTC molecular methods.  

Resulting data indicated the importance of the heterogeneity of circulating tumour cells (CTC) 

to detect different analytical procedures.  

Sinha et al. (1999) looked at the class of models in which both the log-base-line hazard and 

the covariate effects are modelled by piecewise constant functions, with parametric 

distributions controlling evolution. Such models do not lose much in the way of flexibility 
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compared with piecewise linear or other spline models, but do gain much in terms of ease of 

communication with health professionals and clinicians, and further avoid approximation 

methods, by providing the flexibility to estimate model parameters with the aid of Monte 

Carlo Markov chain (MCMC) methods. Furthermore, in contrast to all the aforementioned 

approaches, a simple reparameterization must be introduced to improve the convergence of the 

Gibbs sampler, thus giving a set of parameters that is to a much lesser extent highly correlated. 

Arjas and Heikkinen (1997) subsequently generalized this work to include spatial intensities. 

Sargent (1997) in turn combined a partial likelihood approach with dynamic effects modelled 

by a piecewise constant process and included the smoothing parameter as a hyperparameter. 

He then noticed slow convergence within the Gibbs sampler (Gilks et al., 1996) due to high 

correlation of neighbouring parameters. A new parametric survival model was applied to 

cancer prevention studies by Sinha et al. (2002). The model was formulated along the lines of 

a stochastic modelling of the occurrence of tumours throughout two stages, namely the 

initiation of an undetected tumour and development of the tumour to a cancer that is 

detectable.  

Siddiqui et al. (2001) studied the survival rate of patients with Metastatic breast cancer (MBC) 

from a particular care institution in Pakistan. Univariate (descriptive) statistics and median 

survival time were used. Important factors identified causing MBC to progress were emotional 

energy and financial resources, race and ethnic origin.  

2.7 Breast cancer research in Iraq and Kurdistan region 

Therapeutic response and prognosis of breast cancer can be predicted according to hormone 

receptor (HR) and HER2 expression. Breast cancer is diagnosed at a comparatively young age 

in the Middle-East and Arabic women show a low occurrence of HR positive tumours. In Iraq 

breast cancer is the most widespread cancer and is the most important cancer-related mortality 

among women (Majid et al., 2009: Al Tamimi et al., 2010). Arabic women in Saudi Arabia 

and Jordan have a high percentage of ER- and PR- breast cancers which arise mostly before 

menopause (Sughayer et al., 2006: Al Tamimi et al., 2010). In the Middle-East breast cancer is 

typically a relatively aggressive form with a negative diagnosis for individual patients 

(Sughayer et al., 2006; Al Tamimi et al., 2010). Even though the Kurds are ethnically different 

from the Arab population in Southern Iraq, the incidence rates for age specific breast cancer in 

Kurdish females was documented to be comparable to that of Egypt and Jordan (Majid et al., 
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2009; Rennert., 2006). Studies in the Middle-East on HR and HER2 are not general and their 

conclusions differ (Dey et al., 2010; al-Alwan et al., 2000).  

Breast cancer subtypes are indicators of both the options of and possible reactions to 

treatment. Nichols (2010) refers to epidemiological studies in Iraq that considers the risk 

factors of the cancers, in particular the uniqueness and behaviours of cancer in patients present 

in different geographic at regions. Even though 90% of women who examine themselves 

identify a lump, only 32% seek medical advice within a month’s time. As a result, almost half 

presented at an advanced stage of breast cancer. ER positive tumours accounted for 65% of 

the cases and PR positive tumours were noted in 45% of the total. The statistical analysis is 

not mentioned and demographic and clinico-pathological presentations have yet to appear. 

There is no data available for the incidence rate of breast cancer in the region of Suleimani, 

Southern Iraq prior to 2006.  

Hussaion and Aziz (2009) were interested in collating statistical data on the incidence rate of 

breast cancer in Suleimaniyah in 2006 as well as collecting demographical data, and detecting 

some risk factors associated with breast cancer. Results showed that the incidence rate in 

females is 10.1 per 100000 adults for the specific year 2006. A hypothesis test was carried out 

using a Chi-Square test at 95% confidence level to investigate the difference between the 

study individuals and a control group; the study involved 61 Kurds (60 females and 1 male)  . 

The group displaying highest occurrence was between the ages of 45 and 54. Most of the 

females were housewives, married, fertile, living in city or urban areas, with no family 

histories of breast carcinoma, nonsmokers, had breast fed, with a BMI index above normal, 

and mammography or U/S screening test for breast mass was done for only a small minority 

prior to diagnosis. Results revealed invasive ductal carcinoma of breast is the most frequent 

tumour in the cohort. Of the patients, 11 (18.0%) of them had been exposed to chemical 

weapons in 1988.  

Majid et al. (2009) studied breast cancer incidence in the Kurdish region of northern Iraq, 

investigating age specific cancer rates in the province of Suleimaniyah. The risks associated 

both with reproductive history and family history of breast cancer were evaluated in an age-

matched case-control study. The relationships between clinical stage and patient age were 

studied as well to investigate whether this is a way to evaluate tumour development in younger 

and older women. The objective was to compare incidence rates, severity, and risk linked to 
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reproductive and family history with published research from other Middle-Eastern countries 

and United States. Groups were compared by t-tests if data met normality assumptions and 

equal variance tests and by Mann-Whitney rank-sum tests if not. Kolmogorov-Smirnov tests 

were employed to resolve whether data were normally distributed. Conditional logistic 

regression was used for age grouped patients and controls so as to analyze the observed risk of 

breast cancer with respect to marital status and number of children. The connection between 

patient age and tumour stage was tested through linear regression and differences between 

groups for categorical values by chi-square tests. Values of P < 0.05 were considered 

statistically significant in all tests.  

In Kurdish Iraq breast cancer is mainly a disease of pre-menopausal women with several 

pregnancies according to Majid et al. (2009). Incidence rates for younger patients were 

comparable to Western statistics. However, they were higher than most Middle-Eastern 

countries which noticeably declined with age, unlike in the West. The genetic breast cancer 

risk for both older and younger women was within the general population risk seen in Western 

countries. Delays in diagnosis were unrelated to patient age and led to clinical stages being 

more advanced. Better preventative projects were recommended since screening programs for 

breast cancer in the Kurdish region of Iraq were established.  

To identify possible risks of cancer, Othman et al. (2011) studied cancer incidence in this 

same region for which data was provided by cancer registries from 9 hospitals located in three 

Kurdistan cities. Information was examined to verify that it was not duplicated, place of 

residence was correct and to check for other possible errors. The overall total of registered 

cases in 2007, 2008 and 2009 were 1444, 2081, 2356 respectively, 49% of cases were males 

and 51% females. A direct adjustment method was used for computing age-standardized rate 

(ASR) and was found to be 89.83/100 000 among males and 83.93/100 000 among females. 

Among the three Kurdish Governorates, there were considerable differences in incidence rates 

of the different types of cancer according to the results. In addition to this, there was an 

indication of increased risk of cancer in these regions. Among male cases hematological 

malignancies (blood cancer: leukemia) were the most widespread (21.13% of all cancer in 

males) and the second most widespread in female (18.8% of all female cancers), only breast 

cancer was higher.  
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Majid et al. (2012) investigated the expression of hormones HR and HER2 among Kurdish 

and Arabic women. The Suleimaniyah Directorate of Health recorded 514 Suleimaniyah 

Kurdish women, 227 Kurdish women of other Governorates, and 83 Arabic women with a 

primary diagnosis of breast cancer between 2008 and 2010. Of these, the breast cancers of 432 

women were tested using an immunohistochemistry test (IHC) for estrogen and progesterone 

receptors (ER and PR) and HER2 and age specific and age standardized incidence rates were 

calculated for Suleimaniyah Kurds. These results were compared with Egypt and with United 

States (US) for which SEER data had been used. For proportional distribution of patients 

among different groups analysis Chi square tests were used. Dunn’s variance on ranks analysis 

(this test helps analyse the specific sample pairs for stochastic dominance: Kruskal-Wallis one 

way anova) was used to compare the age of individuals in the three populations. Logistic 

regression was used to compare the relationships between HER2 status (dependent variable) 

and age, tumour grade, and ER status (independent variables). For all statistical procedures 

P<0.05 was considered significant. Lower age standardized and age specific breast cancer 

incidence rates were found in Kurdish women in comparison to US rates. However, the 

proportional HR and HER2 expression for both Kurds and Arabs was comparable to American 

Caucasian females. The vast majority of breast cancers are ER+/HER2- and responsive to 

anti-estrogen therapy. However the comparison is not to be considered entirely dependable 

due to the nature of society and other environmental factors. 

Shabila et al. (2012) investigated primary care providers’ perspectives as to the foremost 

concerns in the provision of primary care services and potential opportunities to expand the 

present system. Discussions were held and scripts fully transcribed and translated and 

analysed qualitatively by content analysis, followed by a thematic analysis. To improve the 

system it was suggested to include the application of a family approach and ensure effective 

planning and monitoring. The qualitative study was based on participants separated into four 

focus groups involving 40 primary care providers from 12 primary health care centers in the 

Erbil Governorate in the Iraqi Kurdistan region between July and October 2010. To guide 

discussions, there was a list of topics that included questions on both positive aspects of 

existing problems with the current primary care system as well as prioritizing needs for 

improvement.  
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Throughout reviewing the literature on breast cancer in different countries, so far no specific 

studies have been carried out that explicitly consider survival analysis for breast cancer in the 

Kurdistan region of Iraq. This thesis addresses this important topic.  

2.8 Summary  

Breast cancer is the most common type of cancer in women in both developed and developing 

countries. The incidence of breast cancer is increasing in developing countries due to 

increased life expectancy, increased urbanization and wider adoption of western lifestyles. 

Although some risk reduction might be achieved with prevention, these strategies cannot 

eliminate the majority of breast cancers that develop especially in low and middle-income 

countries where breast cancer is diagnosed in very late stages. Early detection is therefore 

required to improve the outcome of breast cancer and survival remains the cornerstone of 

breast cancer control.  

The World Health Organization promotes breast cancer control within the context of national 

cancer control programs integrated with non-communicable disease control and prevention. At 

present, WHO together with support from the Komen Foundation is conducting a 5-year 

breast cancer cost-effectiveness study in 10 low and middle-income countries. The project 

includes a program-costing tool to assess affordability. It is hoped that the results of this 

project will contribute to providing evidence for the formulation of adequate breast cancer 

policies in less developed countries (WHO, 2013). 
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3 CHAPTER 3: The survival analysis concept 

3.1 Introduction  

Survival analysis is primarily concerned with modelling and analysing time-to-event data, 

which are generally referred to as “failures.” Some examples are time until an electrical 

component fails, time to first recurrence of a tumour (i.e., length of remission) after initial 

treatment (Tableman and Kim 2004).  

It is possible that a “failure” time will not be observed due to deliberate design or random 

censoring. In this study this would occur if a patient is still alive at the end of a clinical trial 

period or has moved away. The primary reason for developing specialized models and 

procedures for failure time data is brought on by the necessity of obtaining methods of 

analysis that accommodate censoring. Survival analysis can then be thought of as a collection 

of statistical procedures that accommodate time-to-event censored data. Previously, 

incomplete data were treated as missing data and omitted. This loss of information introduced 

bias in estimated quantities. The procedures discussed here avoid bias and are more powerful 

as they utilize the partial information available on a subject or item (Tableman and Kim, 

2004). Survival analysis is the study of the occurrence and timing of events. Covariates are 

studied to determine their effect on survival duration. Censoring and time-dependent 

covariates (time-varying explanatory variables) are unique to survival analysis (Cox and 

Oakes, 1984).  

Leung. et al. (1997) highlighted three common methods of survival analysis: the life-table 

method, the Kaplan Meier method, and the Cox proportional hazards method. Survival curves 

are used in the preliminary examination of data and visual inspection tells us whether there are 

obvious differences between the two groups. In general, survival analysis is used to follow-up 

patients under treatment by various experimental therapies, evaluate survival after diagnosis 

with specific diseases, summarize and evaluate mortality in different groups (Cleves et al., 

2002).  
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3.2 The concepts of survival analysis  

Miller (1980) considered a random variable T > 0, which can be thought as the lifetime or the 

survival time of a patient. If T has a density function f(t) and distribution function F(t) then the 

survival function of T (see e.g. Crowder, 2012), is defined as the following:  
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Continuity will be assumed but concepts and formulae can be modified to include jumps in the 

density function when it is important (Miller, 1980). 
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Figure 3-1 Illustration of the survival data where (.) is a censored observation and (X) is an event (death), 

Source: Originated by the researcher based on Hosmer and Lemeshow (1999)  

The illustration of survival data in Figure 3.1 shows several features which are typically 

encountered in the analysis of survival data: 

- Staggered entry: Individuals enter the study at different times, e.g. individual 3 enters the 

study at time t3 and the 5
th

 individual was censored between time 0 and t2 and died from t2 

onwards. 

- Not all individuals have had the event (death) when the study ends. 

- Other individuals drop out or get lost in the middle of the study. 

 The last two relate to “censoring” of the failure time events (Cox and Oakes, 1984). 

3.3 The problem of censoring 

According to Leung et al. (1997) censoring occurs when an individual is not followed up until 

occurrence of the event of interest. There is loss of information due to this incomplete 

observation because their different experience would lead to bias in the study. It is caused by 

failure to follow-up, withdrawal from the study, study termination when subjects had different 

dates of enrolment, or death due to a competing risk. They contribute to the analysis until the 

time of censoring. It is assumed by Leung et al., (1997) that censored subjects would have had 

the same rates of outcomes as those not censored at that time if they had been followed 

beyond the point in time at which they were censored. Existence of similar censoring patterns 

between different treatment groups suggests that the censoring assumptions hold (Leung et al., 

1997). The situation is further complicated by effects we summarize as “hidden censoring”: 

Due to inconsistency in follow-up checks, multiple transfers between hospitals and the general 

difficulty of contacting and keeping track of patients without comprehensive records, 
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censoring may in some cases go unnoticed; when censoring is noticed we shall (see chapter 5) 

refer to it as “overt” censoring.  

Kleinbaum and Klein (2005) consider three types of censored observations: right-censored, 

left-censored, and interval-censored. In order to analyze such data John and Melvin (1997) 

defined iC  as an element of the set }0,1{ , where 

1 means that the ith data point is not censored (death),  

0 means that the ith data point is censored. 

The likelihood function is a statistical methodology, which provides a way of estimating the 

unknown parameters of a probability distribution (or density) based on a given data sample by 

way of maximum likelihood estimation. The likelihood function of an estimator based on 

censored data looks like the usual likelihood function. However, the information given by 

censored data has to be added, (John and Melvin, 1997; Lawless, 2003). For right-censored 

data, we have: 
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is the survival function and )( itf

 
is the probability density 

function, ti + is the time at the end of the interval and ti - is the time at the start of the interval. 

The same can be done for left-censored data: 
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For interval censored data, this becomes: 
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An example of each one of these is shown in Figure 3.2 which illustrates three forms of 

censoring; Right-censored: suppose a subject is lost to follow-up after 10 years of observation 

and the time of event (death) is not observed because it happened after the 10
th

 year (i.e., t > 

10). A subject is Left-censored if the event (death) happens before the 10
th

 year but the exact 

time is unknown, hence the subject is left-censored at 10 years (i.e., t < 10). Lastly, Interval-

censoring represents the subject having the event (death) with exact time unknown but 

occurring between the 8
th

 and 10
th

 year. This subject is interval censored (i.e., 8 < t < 10). 
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Figure 3-2 Forms of censoring data: the right, left and interval censoring 

 

3.4 Survival analysis techniques  

Techniques used for dealing with censored data can be broadly classified into non-parametric 

(Kaplan Meier, product limit method and Life tables), parametric (exponential, log-logistic, 

Gompertz and Weibull methods) and semi-parametric (Cox-proportional hazards method). 

The latter two can also be applied as regression-based models.  

3.4.1 Non parametric survival analysis  

Non-parametric analysis estimates probabilities associated with dependent variables without 

making assumptions about shape of the distribution (Cleves et. al., 2002). 

3.4.1.1 Kaplan Meier (Product limit methods) 

Let time be partitioned into a fixed sequence of intervals T0, T1, T2, …, TK. These intervals are 

almost always, but not necessarily, of equal lengths. The survival function of the Kaplan-

Meier method is formed as follows: 
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where: 

tc  is the number of censored (withdrawing) observations at time point t, 

td  is the number of deaths at time point t, 
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tttt cdnn 1 (for censored data), 

ttt dnn 1          (for uncensored data, 0tc ), 

tn is the number of individuals (entering) at risk, 

tt nd /  represents the probability of dying at time t+1 conditional to being at risk (alive) at 

time t. 

The censored individuals are excluded from the denominator of ‘at risk’ individuals at the 

point when they are censored, however, they are included at each preceding point.  

The Kaplan-Meier method computes the probability of dying at a certain point in time 

conditional on survival up to that point. Meier (1958) and Crowder (2012) utilize the 

information of censored individuals up to the point where the patient is censored in order to 

maximize the use of the information available from the study sample. 

Tables 3.1 and 3.2 illustrate a theoretical dataset and computation of survival probability using 

the Kaplan Meier estimator, respectively. Note in Table 3.1 columns 6-8 represent a rewarding 

of the data in columns 1-5. 

 Table 3-1 Theoretical data to illustrate survival analysis 

1 2 3 4 5=3-2 6 7 8 

Patient 

number 

(nt) 

Time of 

operation 

(in week) 

Time 

observation 

ended (in 

week) 

Reason 

observation 

ended 

(death=1, 

censoring=0) 

 

Time 

under 

observation 

Ordered 

patient 

number 

(nt) 

Time 

under 

observation 

 

Reason 

observation 

ended 

(death=1, 

censoring=0) 

 

1 0 120 0 120 6 30 1 

2 0 68 1 68 12 30 1 

3 0 40 1 40 5 30 0 

4 4 120 0 116 10 35 1 

5 5 35 0 30 3 40 1 

6 10 40 1 30 9 40 0 

7 20 120 0 100 11 50 1 

8 44 115 1 71 2 68 1 

9 50 90 1 40 8 71 1 

10 63 98 1 35 7 100 0 

11 70 120 1 50 4 116 0 

12 80 110 1 30 1 120 0 

  

        

 

 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2940174/table/T0001/
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         Table 3-2 Theoretical illustration of estimating probability of survival, S(t+1), using the Kaplan Meier estimator 

Time period  (t) Time weeks Patient number (nt) Death (dt) Censored (ct) 
t

t

n

d
1  )1( tS  

0 0 12 0 0 1 1 

1 30 12 2 1 0.83 0.83 

2 35 9 1 0 0.89 0.74 

3 40 8 1 1 0.88 0.65 

4 50 6 1 0 0.83 0.54 

5 68 5 1 0 0.80 0.43 

6 71 4 1 3 0.75 0.32 

 

A large number of individuals censored at a single point of time affect the shape of the 

survival curve leading to sudden spurious large jumps or large flat sections. Machin et al., 

(2006) stated other factors leading to such spurious jumps such as an extremely low number of 

individuals at risk especially toward the end of the study or pre-arranged clinic visit schedule.  

The reliability of the different portions of the survival curve is dependent on the number of 

individuals at risk at that stage as shown in Prinja et al. (2010). The majority of studies are 

likely to have some individuals for which the outcome event is not recorded. This can be due 

to limited resources to carry forward the study until outcomes are recorded for each and every 

study individual. A measure of the maturity of the data then shows the quality of data in terms 

of the frequency of individuals for which the outcome event (death) is recorded. A simple 

measure of this is the average (median) follow-up period and a more robust graphical 

technique involves constructing a survival curve by reversing censoring (Machin et al. 2006). 

3.4.1.2 The life tables method 

A life table subdivides the period of observation into shorter time intervals. All people who 

fall in that interval are used to calculate the probability of the event occurring in that interval. 

These probabilities are then used to estimate the overall probability of the event occurring at 

different time points. As per Lawless (2003), the classical method of estimating life table, 

ST(t), and the actuarial method used in epidemiology and actuarial science are discussed 

below. The life table estimates are calculated by counting the number of events and censored 

observations that occur in the time intervals ),( 1tt TT  for t=0,1,2,...,k-1, where 00 t , and tn  

is the number of units entering the time intervals ),( 1tt TT . We now needed to adjust for 

censoring.  
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Individuals lost during time interval ),( 1tt TT  are assumed to be at risk for half the interval on 

average. 

The effective sample size tN of the number of individuals during the interval exposed to risk 

is then defined as 
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t
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c
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where:-   

tn  is the number of individuals entering in the study during time interval ),( 1tt TT , 

 tc  is the number of withdrawing observations during time interval ),( 1tt TT , 

td is the number of deaths during time interval ),( 1tt TT . 

The probability of failure tq  conditional on the proportion of deaths between the time interval 
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where tp  is the proportion surviving in the time interval ),( 1tt TT . 

The hazard rate, a life table estimator which is evaluated at the midpoint of the interval, is  
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The estimated survival function )(tS , which is another life table estimate, is as follows: 
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The equation used to derive survival probability at time t is the same as the life table rule 

above. 

The term “life tables” refers to any of a number of statistical tools used to assess the 

probability of an event occurring in a given time interval and its dependence on additional 

factors. The expression originated in actuarial science, where the probability of a person dying 

in the next year is modelled as a function of age, smoking and drinking habits, previous 
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illnesses etc. Using a nonparametric method. Generally speaking, these approaches produce a 

table with rows labeled by time intervals, columns labeled by the variables whose effect is 

being studied and cells containing the probability (measured or predicted) of the event in 

question.  

By contrast, Kaplan-Meier survival analysis (KMSA) is a technique of (again, non 

parametrically) associating a survival or, complementarily, hazard function to a given event 

history dataset. For instance, measurements of the incubation period of a virus may be cast 

into the form of a function which associates the cumulated probability of outbreak in a 

specimen to the time elapsed since infection, which in turn can be plotted. KMSA is most 

commonly used when the impact of factors other than time are considered insignificant. 

3.4.2 Log rank test method 

The log-rank test is a large sample chi-squared test which uses as its test criterion a statistic 

that provides an overall comparison of the Kaplan Meier curves. This log-rank statistic makes 

use of observed versus expected cell counts over categories of outcomes.  The categories for 

the log-rank statistics are defined by each of the ordered failure times for the entire set of data 

being analysed.  It is expressed as follows: 
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where: 

je1  is the expected number of individual events in group one, 

je2  is the expected number of individual events in group two, 

jn1  is the number at risk in group one, 

jn2  is the number at risk in group two, 

jm1  is the number of failures in group one, 

jm2  is the number of failures in group two. 

 Here the data is divided into J  categories, labelled j= 1, 2, ..., J. 

Further the difference between the observed and expected number of failures in each group is 

given by 
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Here: 
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1   is the expected number of all events in the first group, 

E2=


J

j
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1

2
  is the expected number of all events in the second group, 

O1 is the number of observations in the first group, 

O2 is the number of observations in the second group, 

and J is end time of the study. 

Basically, the log-rank test is a hypothesis test with the null hypothesis: there is no difference 

between the two survival curves. With this hypothesis the log-rank statistic is approximately 

chi-square with one degree of freedom. The p-value for the log-rank test is determined from 

tables of the chi-square distribution. The alternative hypothesis is simply that there is a 

difference between the two survival curves. 

Based on the equations 3.16a, 3.16b, 3.17 and 3.18 then the log-rank test method gives: 
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The log-rank test is used to test whether the difference in survival times between two groups is 

statistically significant or not, but it does not test the effect of the other independent variables.  

3.4.3 Parametric survival analysis:  

The parametric approach derives estimates of failure time statistics while accounting for the 

presence of censoring in the data as in the non-parametric approach. The main difference is to 

derive estimates using a parametric model, which make specific assumptions about the 

distribution of failure times by assuming a particular functional form for the hazard rate. This 

functional form can specify the hazard rate as a function of time. Alternatively, it can 

incorporate covariate information so that the hazard rate is specified as a function of time and 
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specific covariates. Failure time is then related to a set of covariates thus leading to a 

regression approach (Machin et al., 2006). 

Parametric methods of survival analysis assume distribution of hazard rates as a function of 

time with the assumption of independent censoring. The hazard rate is defined as an 

instantaneous probability of dying in the next short interval conditional upon having survived 

until time t . The functional form of the event times for parametric methods is constructed 

using various statistical distributions. Commonly used statistical distributions are: 

Exponential, Weibull, Log-Logistic and Gompertz. These distributions are useful for survival 

analysis data. While the exponential distribution is used to model processes with a constant 

hazard rate, the other three are more flexible two parameter distributions which allow for the 

modelling of a wide variety of shapes.  They are possible candidate because their parameters 

have positive values.   

                         Table 3-3 Example probability density functions, in each case valid on the region [0,∞ ) 

Distribution function Probability density function )(tf  

Exponential )exp( t   where 0  

Weibull ])(exp[)( 1   tt 
 where 1,0    

Log-Logistic 
21 ])(1[     tt  where 1,0    

Gompertz )exp( tt eee   
 
where 0,   

 

They generally involve two parameters: the scale (δ) and shape (λ) parameters, where:  

(λ) The shape is generally assumed to be constant across individuals, 

 (δ) The scale parameter is estimated by using a regression model (Crowder, 2012). 

Theoretically this is the same as in a linear regression model but the Normal distribution is 

replaced by the exponential distribution. It is implemented in a regression framework, with 

estimates found by maximizing the likelihood of the data for patients observed to have an 

event (death) at time t . The likelihood contribution is represented by )()( tftTpr   which 

is the density function at time t  and pr represent a probability. For patients censored at time t , 

their likelihood is represented by )()( tStTpp r  . 

Generally the functions which characterize parametric distributions are as follows: 

- Density Function: )()( tTptf r   

- Cumulative Incidence: )()( tTptF r   
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- Survival Distribution: )()( tTptS r   

- Hazard Function: 
)(

)(
)(

tS

tf
th   , see also Lambert and Royston (2009). 

3.4.4 Semi parametric survival analysis method  

Semi-parametric regression models are used to describe survival time in a comparative sense, 

for example, if we are interested in how a new treatment affects survival compared to an old 

treatment.  A functional form for the hazard over time need not be specified. The commonly 

adopted approach is the Cox-proportional hazards model. 

Cox-proportional hazard does not assume any functional form of the distribution of hazard 

rate but assumes that the hazard functions of any two individuals are proportional with the 

ratio being determined by the covariates. If one is unsure of the functional form of the hazard 

function then adopting a semi-parametric approach would be the preferred alternative rather 

than imposing specific parametric assumptions (Cox, 1972: Breslow, 1972). The basic Cox 

PH hazard function regression model is formulated as follows: 

)20.3(.)exp()()exp()(),(
1

00 i

p

i

iT xthxthxth 


    

where xi represents the value of the ith variable,   represents the coefficient parameter 

measure of the risk of variable i and )(0 th  is the baseline hazard function. 

By letting )exp()(
1

i

p

i

i xx 


  ,                                                    

we obtain        

  )21.3(.)()(),( 0 xthxthT     

The formula for the Cox PH survival function is expressed as follows: 

  )22.3(.)(),(
)(

0

x

T tSxtS


      

Here, ))((exp)( 00 tHtS  , and 
t

duuhtH
0

00 )()(  

where, 

)(0 tS  is the baseline survival function, 

and 

)(0 tH  is the baseline cumulative hazard rate, 

By taking logs in equation (3.22), 
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  )23.3(.)(ln*)(),(ln 0 tSxxtST     

Since 1),(0  xtST , ),(ln xtST and )(ln 0 tS  are negative. Thus equation (3.23) should be 

multiplied by (-1) and taking the logarithm again for it as follows (Newby, 2010) yields 

)24.3(.)]](ln[ln[)](ln[)],(lnln[ 0 tSxxtST       

3.5 Advantages and disadvantages of survival analysis 

Survival analysis accounts for both censored observations and time to event because the t-test 

and linear regression can be used to compare the mean time to event between two groups. 

Logistic regression can be used to compare proportions of events whilst ignoring the time. The 

non-parametric method uses the smallest number of assumptions but can only compare a 

limited number of groups. It cannot deal with continuous variables nor control for other 

variables. The parametric technique deals with both discrete and continuous explanatory 

variables and allows for a large number of explanatory variables. However, assumptions on 

time dependence and how the explanatory variables influence the risk of death need to be 

made.  

The semi-parametric technique requires the last assumption only. However, the estimated 

parameters will be less precise and hypotheses about time dependence can no longer be tested 

(Cleves et al., 2002). 
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4 CHAPTER 4: Basic features of the data 

4.1 Introduction 

Building on the previous one, this chapter deals with the analytical part, methods and 

procedures of the study. To determine the breast cancer incidence rate among women in Iraqi 

Kurdistan and to identify the factors contributing to it, survival analysis and univariate 

statistics were used. Subsequently we assembled, classified and tabulated the data and codified 

the variables. Descriptive and survival analyses were employed to fit the data with the help of 

the Statistical Package for Social Sciences (SPSS) version 22, Statgraphics version 16 and 

Wolfram Mathematica 10 software packages.  

In order to plan and perform a data analysis of this type we need to specify three things: the 

data type needed, the data collection method to be used, and the data processing mechanism. 

The questions we want to answer are as follows: 

1. What are the factors that have a high impact on breast cancer in the region?         

2. How can we produce an appropriate survival functions for the data?  

This chapter studies the concerns regarding the selection of research methods in order to 

answer these questions, methodology for the analysis of quantitative indicators, and 

justifications of the tools used. 

4.1.1 The required data 

We will be dealing with descriptive statistics, in particular, demographic data which was 

obtained from official sources in the Kurdistan region. The demographic data includes the 

patients’ general information. Since the data was obtained from official sources it is of better 

quality than data obtained from other sources such as interview, public news paper and survey.   

We will focus on right censored data which we can divide into two different groups:  

1. Social data which includes age, marital status, education, occupation, religion, ethnicity, 

weight, height, body mass index (BMI), residency, smoking, family income, family history, 

alcohol, menstrual cycles, number of children, the first pregnancy age,  breast feeding, 

moderate levels of exercises and obesity.  

2.  Information on hormones: ER, PR, tumour size, tumour grade and lymph nodes.  
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4.1.2 Data collection procedures 

This research uses secondary data based on laboratory investigation including hematology, 

biochemical study and/or radiology. This data is supplied by two main hospitals in the 

Kurdistan Region of Iraq, which are: Hewa Hospital in Suleimaniaha, and Nanakaly Hospital 

for Leukemia in Erbil (from 1991 until 1 June 2014). The data was collected from existing 

databases with no access to the names of the individuals and therefore there will be no direct 

involvement of participants in the study. 

Prior to the actual start of the study, approval by the Research Ethics Committees at City 

University had to be obtained by means of the standard application process. In addition, in 

order to facilitate the actual data collection in Kurdistan hospitals, official permission by the 

Kurdish Ministry of Higher Education and Scientific Research was required. Following 

preliminary approval by the Post Graduate Research Office at City University and the 

Kurdistan Regional Government Representative to the United Kingdom, the ministry issued a 

formal letter of concession to Professor Mark Broom and myself in May 2013. This in turn 

enabled us to propose our work to the Kurdish Ministry of Health, which, under the condition 

of confidentiality, instructed the hospital administration to provide the required datasets. 

The actual process of data acquisition in the Hewa and Nankaly hospitals in Suleimaniah and 

Erbil, respectively, took place in the summer of 2013. The respective Departments of Statistics 

provided the data in the form of extensive Excel sheets, which for further processing were 

later transferred to SPSS. 

As was specified in the confidentiality agreements with the Ministry of Health and City 

University, the data was only stored and made available electronically and will be destroyed 

after the end of the study; access was limited to Professor Broom and myself.  

In summary, this is the first analysis of this kind carried out for this region and the only one 

based on this specific dataset. However, given that the collection of the relevant data is a 

simple process and the quality of the data may be improved further as outlined in the final 

remarks of this dissertation, we are hopeful that this will not remain the only study of this type 

and the systematic analysis of breast cancer data will prove beneficial for public health in 

Northern Iraq.   
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4.1.3 The data processing 

The data collected is analysed using a generic framework that best suits this data. The 

framework involves processing data through three stages: 

1. Univariate statistics. 

2. Adjusting the basic Markov chains model for both Nanakaly and Hewa data with and 

without censoring. 

3. Classical survival analysis which includes the semi-parametric method; Cox regression, and 

non-parametric methods such as Kaplan-Meier and log-rank test model estimates of the 

survivor function.  

4.2 Univariate statistics  

In our initial analysis, we look at descriptive statistics which are used to describe the basic 

features of the data. We provide simple summaries of the data and its measurements. We stall 

look at the Nanakaly and Hewa data in turn. 

4.2.1 Univariate statistics for Nanakaly data 

To begin with, a table of descriptive statistics is obtained to give a general idea about the 

variables used. Here we have two variables, age of patients and survival time for them. 

                          Table 4-1 Univariate statistics for Nanakaly data 

 Age (years) 
Survival Time 

(days) 

N 713 713 

Missing 0 0 

Mean 48.96 862.62 

Std. Error of Mean .435 26.626 

Median 48.00 624.00 

Std. Deviation 11.608 710.969 

Variance 134.74 505477.03 

Range 71 2601 

Minimum 18 1 

Maximum 89 2602 

                     

In Table 4.1 age and survival time are non categorical variables, and simply represent the age 

in years of the patients and the survival time of the patients in days. Where N is the number of 

patients.  
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4.2.2 Univariate statistics for Hewa data 

There are two types of variables in Table 4.2, categorical and non categorical variables. The 

non categorical variables include age, weight, height, BMI, estrogen and progesterone. They 

represent the status of the patients, for instance the age variable is the age in years of the 

patients, weight is measured in kilograms (kg) while height is measured in meters (m). The 

BMI is the standard measurement for the patients based on the formula weigh/(height)
2
. 

Estrogen and progesterone are the main female hormones which are measured by pg/ml 

(picograms/ milligram) and ng/ml (nanogram/milligram). One nanogram of progesterone is  

1000 picograms. This section is an exploration of the data and that without additional 

information on the general population, no information can be extracted about the risk factors 

associated with breast cancer from the data.  

We discuss below each of the categorical variables (marital status, religion, occupation, 

income, menopause, hormone, tumour grade, exercise, smoking, drinking alcohol, family 

history and breastfeeding) which may have an effect on the likelihood of contracting breast 

cancer. The marital status is the patient’s situation with regard to whether she is single, 

married, divorced or widowed which are categorized by 1,2,3, and 4 respectively. The religion 

variable refer to a patient’s belief in and worship of God or gods and they are classified as 

Muslim (1), Christian (2), other (3). While occupation defines a patient’s regular work or 

profession; job or principal activity and this includes 12 categories; housewife (1), business 

manager (2), doctor (3), educator (high school graduate, self employed ) (4), lawyer (5), police 

officer (6), retired (7), student (8), teacher (9), university teacher (10), worker (11) and other 

(12). The family income variable is the monetary payment received for goods or services, or 

from other sources, as rents or investments and they are labelled as very good (1), good (2), 

medium (3) and poor (4). The possibility of contracting breast cancer is affected by the 

number of menstrual periods of women (Abuelghar et al., 2013). Those who have had less 

menstrual cycles because they started menstruating late or stopped menstruating at an early 

age or because of pregnancy, have a slightly lower risk of breast cancer. Women are 

categorized as either post or pre menopausal with "Yes" meaning post menopausal category 

(1) and "No" meaning pre menopausal category (2) as referred to in Table 4.4. The hormone 

category means that either the patients have hormone problems related to breast cancer or not.  

The hormone problem is identified when the clinical practice tests the hormone levels for the 

patients.  
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A hormone balance of cortisol, DHEA, estrogen, progesterone and testosterone are essential to 

good health for women of all ages especially two main hormones estrogen and progesterone 

connected to breast cancer. There are three types of tests that can be used to determine 

hormone levels. There is a Saliva test, Serum or blood test and Follicle-stimulating hormone 

(FISH) test. FISH is the most common test and it is frequently used to determine the hormone 

status of premenopausal women who may complain of hot flushes, mood changes or other 

symptoms. When a hormone imbalance is detected early and steps are taken to correct it, 

symptoms can be relieved and progression to disease states may be prevented. Here, in Table 

4.5 the "Yes" category (1) refer to the patients who have an imbalance in estrogen and 

progesterone hormone and the "No" category (2) means that the patients do not have a 

hormone imbalance.  

The two primary female sex hormones are estrogen and progesterone. The activity of the 

receptors associated to these hormones is strongly linked to the growth of typical breast cancer 

cells and plays a role in many cases. Cancer cells respond to these hormones through the 

estrogen receptors ER and progesterone receptors PR. ER and PR are cells receiving these 

hormones circulating in the blood. The tumour is tested for these receptors in a test called a 

hormone receptor assay. If a cancer does not have these receptors, it is referred to as hormone 

receptor negative, in particular, ER negative and/ or PR negative. On the other hand, if the 

cancer has these receptors then it is referred to as hormone receptor positive, that is ER 

positive and/ or PR positive. These receptors are important because cancer cells that are ER or 

PR positive often stop growing when drugs that either block the effect of ER and PR or 

decrease the body’s levels of ER are taken. These drugs lower the chance of the cancer 

recurring, thereby improving the chances of living longer. They form part of the treatment in 

patients whose breast cancer is ER or PR positive. However, these hormone active drugs are 

not effective when the cancer does not contain these receptors. All types of breast cancer 

should be tested for hormone receptors except for lobular carcinoma in situ because it is a very 

advanced stage of cancer, with the cancer cells spread almost all over the breast. Women 

should ask their doctor for these test results so that they can determine whether hormone 

treatment active drugs can form part of their treatment. The ''Yes'' category in Table 4.5 

indicates that 39.7% of the patients have hormone problems; while ''No'' means that 60.3% of 

the patients do not have this problem (note all patients are tested for hormone problems).  
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Tumour size describes the size of the original tumour and is measured in millimetres (mm) 

(see Table 4.3). For example, if the diameter of the tumour is smaller than 2 cm then the 

tumour size will be classified as T1, which means that it is in the initial stage out of the four 

grades from Table 4.3. Note that these T classifications are not used in our data. Lymph nodes 

are small glands located through system. They act as filters, removing waste fluid from the 

body American community survey (ACS 2006). Lymph nodes can be measured along the 

short or long axis (Hoang et al., 2013). In this study the lymph node values of 1 to 44 refers to 

the number of cancerous nodes, with median equal to 4. It is medically graded by numbers 

from N0 to N3, i.e. for N0 the cancer is not separated under the breast tissue, N1 represents 1 

to 3 lymph nodes under the arm, N2 denotes that the cancer are separated to 4 to 9 lymph 

nodes under the arm finally N3 refers to 10 or more lymph nodes existing under the arm or 

including extra lymph nodes around the breast. See Table 4.3 for more details, although again 

the N classification is not used in our data. 
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Table 4-2 Univariate statistics for Hewa data 
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Table 4-3 Illustrates information for tumour size and lymph nodes 

Tumour 

Size 

T 

The diameter 

of the tumour is 

less than 2 cm 

 

 
 

The diameter of 

the tumour is more 

than 2 cm and less 

than 5 cm 

 
 

The diameter of the 

tumour is more than 

5 cm 

 

 
 
 

The tumour 

penetrates the skin 

or the rib cage 

 

 

Lymph 

Nodes 

N 

N 0 

There are no 

cancerous cells 

in the lymph 

nodes 

N 1 

The cancer spreads 

to non-adjacent 

lymph nodes under 

the armpit from 

the same side of 

the infected breast 

N 2 

The cancer spreads to 

adjacent lymph nodes 

under the armpit 

from the same side of 

the infected breast or 

metastasis of breast 

internal lymph nodes 

N 3 

The cancer spreads 

to lymph nodes 

under or above the 

clavicle or breast 

internal lymph 

nodes and under 

the armpit. 
Cited from http://www.thebestoncologist.com/Arabic/breast_cancer_stages.html 

  

Generally there are three stages for tumour grade based on 3 cm measurements; small which is 

about 3 cm, medium is greater than 3 cm but it is not spread in the chest and large tumour grad 

is greater than 3 cm and it is the advanced stage of the cancer cells. These grades depend on 

the number of the combined tumour sizes. Pathologists look at breast cancer tissue under a 

microscope to determine the grade of the tumour, which depends upon how much it looks like 

normal breast tissue. Cancers that closely resemble normal breast tissue tends to grow and 

spread more slowly, and get a smaller grade. In general, it indicates a cancer that is less likely 

to spread, and a larger grade indicates a cancer that is more likely to spread. Tumour grade is 

based on the arrangement of the cells in relation to each other, whether they form tubules 

(small tumour about 1cm or less), how closely they resemble normal breast cells (nuclear 

grade), and how many of the cancer cells are in the process of dividing (mitotic count). A 

small tumour grade cancer may also be called “well differentiated” because it more closely 

resembles normal breast cells. Similarly a large tumour grade may also be called “poorly 

differentiated” since the cells have lost their resemblance to normal breast cells. In Table 4.6 

the small tumour grade is categorized by (1), the medium tumour grade by category (2) and 

category (3) refers to the large tumour grade. 

http://www.thebestoncologist.com/Arabic/breast_cancer_stages.html
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Physical activity in the form of exercise reduces breast cancer hazard with "Yes" indicating 

that the patient is doing exercises such as running, swimming, or any other sports at least three 

times a week and ''No'' that they are not (Calle, et al., 2003). In Table 4.8, the ''Yes'' category 

indicates that 33% of patients are exercising. Meanwhile, 67% of patients are not doing the 

mentioned activities. Unfortunately the numbers of patients who are doing exercise are less 

than those not doing it.  

Family history plays a significant role in causing breast cancer. The possibility of infection 

with breast cancer increases between 1.5-3 times in those with a first degree relative (mother, 

sister or daughter) who suffer from breast cancer, and there are mutations in genes which lead 

to an increase of the possibility of the disease. Here disease often appears in the patients at a 

younger age. These are reflected by category (1) ''Yes'' that they have a family history of 

breast cancer and the ''No'' category (2) that they do not, as shown in Table 4.9. The risk rates 

for patients who smoke more than three cigarettes per day on average are more than for non 

smokers, the ''Yes'' category (1) in Table 4.13 refers to the fact that 16.9% of patients smoke at 

or above this level while the ''No'' category (2) that 83.1%  of patients do not. 

Furthermore, the risk for patients who drink alcohol generally more than three times per week 

is higher than for the patients that do not drink. Table 4.14 shows that 14.7% of patients drink 

alcohol as represented by category (1) ''Yes'', and 85.3% of them do not drink alcohol, 

represented by category (2) ''No''. Finally, breastfeeding may slightly decrease risk, and the 

possibility of breast cancer during the breastfeeding period is lowered. Table 4.15 illustrated 

categories (1) ''Yes'' meaning that the patients are breastfeeding and the ''No'' category (2) that 

they are not. Table 4.3 shows the general information about 21 variables included in the Hewa 

data. 

                                     
                                           Table 4-4 Frequency table for menopause 

 Frequency Percent 

Menopause 

Yes 558 48.0 

No 605 52.0 

Total 1163 100.0 

  Table 4.4, shows Menopause Status for Hewa Hospital patients. Out of 1163 women with 

breast cancer, 48% are menopausal while 52% of them are not. In general, the age of 

menopause in the Kurdistan Region is around 50-52 years old. 
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                                             Table 4-5 Frequency table for hormone 

 Frequency Percent 

Hormone 

Yes 462 39.7 

No 701 60.3 

Total 1163 100.0 

Table 4.5 illustrates that 39.7% of women are suffering from a hormone-related anomaly, 

whilst 60.3% are not. It is a clinically established fact that, in the case of receptor positive 

breast cancer cells, hormonal therapy can be employed to counter the effect of hormones on 

the cells’ growth and overall functioning.   

                         
                               Table 4-6 Frequency table for tumour grade 

 Frequency Percent 

Tumour Grade 

Small(I) 397 34.1 

Middle(II) 637 54.8 

Large(III) 129 11.1 

Total 1163 100.0 

 

Table 4.6 is the frequency table for the tumour grade; an indicator of how quickly a tumour is 

likely to grow and spread in the breast. It shows that 54.8% of patients have the intermediate 

degree tumour grade. Cancer cells do not look like normal cell and they grow faster than 

normal. Even though 11.1% are diagnosed late, their treatment is easier than the middle grade 

because the cancer cells can be eradicated. With regards to the small tumour grade, which 

represents 34.15% of patients in Hewa hospital, diagnosis at the early stages is better when 

controlling the cancer because they are usually growing more slowly.  

Table 4.7, shows that out of 1163 patients 50.7% are married, 5% are single and 39.2% are 

widows.  
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                          Table 4-7 Frequency table for marital status 

 Frequency Percent 

Marital Status 

Single 58 5.0 

Married 590 50.7 

Divorced 59 5.1 

Widow 456 39.2 

Total 1163 100.0 

                                  
                             
                              Table 4-8 Frequency table for exercise 

 Frequency Percent 

Exercise 

Yes 384 33.0 

No 779 67.0 

Total 1163 100.0 

   

Women whose close blood relatives have breast cancer have a higher risk of this disease. Table 

4.9 illustrates the frequency table for patients who have a family history of breast cancer. The 

risk is doubled if the women have a first-degree relative (mother, sister or daughter). Having 

one first-degree relative (mother, sister, or daughter) or two second degree relatives with 

breast cancer increases the risk approximately threefold. Women also have increased risk of 

breast cancer if their father or brother has breast cancer but the exact effect on the risk is not 

known.  

                         
                             Table 4-9 Frequency table for family history 

 Frequency Percent 

Family History 

Yes 125 10.7 

No 1038 89.3 

Total 1163 100.0 

  Overall more than 10% of women have a family member that has breast cancer, but a majority 

of the women (over 89%) do not have a family history of breast cancer. 
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                      Table 4-10 Frequency table for occupation 

 Frequency Percent 

Occupation 

Housewife 933 80.2 

Business 2 .2 

Doctor 3 .3 

Educator (Self Employed) 3 .3 

Lawyer  1 .1 

Officer 102 8.8 

Retired 24 2.1 

Student 1 .1 

Teacher 89 7.7 

University Teacher 1 .1 

Worker 3 .3 

Other 1 .1 

Total 1163 100.0 

 

Table 4.11 is the exploration of the family income level of breast cancer patients. It shows that 

57.2% are middle income women, whilst this figure is only 6% for those with a very good 

income. This reflects the larger number of middle income women in the general population, 

and is not an indicator of risk. 

                                 

                             Table 4-11 Frequency table for family income 

 Frequency Percent 

Income 

Very Good 70 6.0 

Good 295 25.4 

Medium 665 57.2 

Poor 133 11.4 

Total 1163 100.0 

 

Table 4.12 shows that 85.7% of patients in Hewa hospital were Muslims and 10.7% were 

Christian, while the remaining patients 3.5% were from other religions. 

                          
                               Table 4-12 Frequency table for religion 

 Frequency Percent 

Religion 

Muslim 997 85.7 

Christian 125 10.7 

Others 41 3.5 

Total 1163 100.0 
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                           Table 4-13 Frequency table for smoking 

 Frequency Percent 

Smoking 

Yes 196 16.9 

No 967 83.1 

Total 1163 100.0 

                          

                      
                          Table 4-14 Frequency table for drinking alcohol 

 Frequency Percent 

Drinking Alcohol 

Yes 171 14.7 

No 992 85.3 

Total 1163 100.0 

                         
                          

                       

                       Table 4-15 Frequency table for breastfeeding 

 Frequency Percent 

Breastfeeding 

Yes 371 31.9 

No 792 68.1 

Total 1163 100.0 

   

 Table 4.13, 4.14 and 4.15 reflect the frequency percentage for three variables smoking, 

drinking alcohol and breast feeding respectively. 

4.3 Timing data 

In general, the process of collecting data in the health sector or any other sector in a 

developing country such as Iraq is not easy, because there is no accurate database system. The 

most dependable data are available in the official records but not obtainable readily. One 

inevitably has to refer to numerous government agencies to obtain relevant information from 

official sources such as the Ministry of Health, especially for information regarding the time 

of death.  

The nature of this study requires the collection of primary data in two main hospitals in the 

Region. The Hewa data includes general information about the breast cancer patients, 

including their age, religion, tumour size, tumour grade, lymph nodes, exercise, the 

educational level, family history, breast feeding, smoking, drinking alcohol, occupation, 



69 
 

progesterone, estrogen, menopause, marital status and income. In addition there are three 

times involved in this data, time of admission, time of diagnosis and time of death.  

In studying survival analysis, it is necessary to have all of the relevant information about time 

of diagnosis and the time of death. The time of admission refers to the first time when the 

patient visits the hospital and the staff of the hospital administration register general 

information about her. The diagnosis time means the time when the doctor diagnoses the 

patient and refers them to the laboratory to make necessary required tests based on the 

symptoms that they are suffering  from. Finally there is the actual time of death of the patient.  

In initial analysis later in this study we use z as an intermediate measurement for the rate of 

real death (which is not given) from the time of diagnosis. This serves to account for the 

missing reports on times of death of a number of patients who did not return for the follow up 

appointments, a phenomenon which is indicative of a larger problem with the patients’ 

reaction toward this particular diagnosis which may be due to poor health education and 

general lack of awareness of the importance of keeping detailed and complete hospital 

records. The reason may include a general fear of disease or death and the hope of receiving 

better treatment elsewhere. Hospital record consistencies and general compliance appears to 

be correlated to economic status and doctor-patient interaction, and also the apparent 

termination of a patient's follow up treatment may simply be due to bad bookkeeping. In 

particular it is clear that actual death records are almost entirely absent in the data that was 

obtained.    

That is the basic problem leading to not having the real time of death, which is reflected in the 

results of the survival curve when we applied the SPSS program at the first step, because we 

used the time of admission instead of the time of death. Clearly there are differences between 

the time of admission and the time of death, and this leads to significant problems with the 

analysis. That is why we extend the analysis of the survival curve using a Markov process. 

This is the most natural and simple extension to the model to try to deal with the absence to 

the actual time of death.  Here when we applied the Markov process we considered two 

modifications which are without censoring and with censoring.   

We used Markov processes because of some problems regarding the applications of the 

survival function curve due to the lack of knowledge of the time of deaths and hidden 

censoring. Nevertheless there are some serious limitations to this model. For example if 

individuals do not get censored at constant rate, the censoring time will follow another 
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distribution rather than an exponential distribution and we will obtain a different picture to 

that obtained from a Markov process.  

 Potentially more significant problems result from the lack of knowledge of the times of death. 

Deaths are assumed to follow a Markov process from the time of diagnosis category (see 

Section 4.5.1) and there are two main source of error.  Firstly the rate z of this process is 

unknown and had to be estimated and we have thus considered a range of values. Secondly, 

again this may not be a Markov process, which would also affect the shape of the survival 

function.  

Finally the following table is general information and descriptions for medicine treatment.  
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Table 4-16 General information about specific medical terms and descriptions 

Medical terms Descriptions 

Mammography 
A type of medical examination used for early detection and 

diagnosis of breast lumps. 

BSE Breast self examination. 

Lymphatic 
A breast network of blood that brings in nourishment and 

remove waste products. 

Mastectomy Remove entire breast including the nipple. 

Metastasis A tumour which has spread beyond its original domain. 

BRCA1 & BRCA2 
Breast cancer gene (1 and 2) are two genes which are linked to 

breast cancer risk. 

Protein 53 (P53) 

The Li-Fraumeni Syndrome is a genetic disease which is 

caused by a mutation of the P53 gene and whose symptoms 

include the occurrence of soft tissue disease caused at a young 

age. 

Estrogen (ER) and 

Progesterone Receptors(PR) 

A high rate of activity of the receptors associated to the female 

sex hormones estrogen and progesterone in breast cancer cells 

may stimulate tumour growth. 

Tamoxifen Anti Estrogen drug used most often. 

CK56 

Cytokeratin 5/6 is an indicator commonly used replacement  

immunohistochemical for tumours with the basal-like gene 

expression profile. 

Test (Ki-67) The Ki-67 test measures the speed at which a tumour grows. 

BMI Body mass index. 

Immunohistochemical 

(IHC) 

The IHC test is used to determine the HER2-receptor protein 

in a tumour. 

Letrozole A type of  medication. 

HER2 

Human epidermal growth factor receptor in the tumours of the 

breasts fall into two categories: The HER2- positive type 

exhibits multiple HER2-genes and receptor overexpression 

while the HER-negative type shows no anomalies in HER2-

gene expression. Tumours of the first type generally grow 

faster and more aggressively.   

Ductal Carcinoma In Situ 

(DCIS)  

DCIS is a type of cancer which does not spread beyond the 

milk ducts and is therefore called Non-Invasive. 

Lobular Carcinoma In Situ 

(LCIS) 

LCIS is a type of tumour characterized by regions of 

uncontrolled growth of lobular tissue. While it is non-invasive 

and is generally not considered cancer itself, it indicates 

increased risk of developing invasive breast cancer. 

Invasive Ductal Carcinoma 

(IDC) 

A tumour of the milk ducts which has advanced into the 

surrounding tissue is called IDC. 

CTC Circulating tumour cell. 

Anthracycline Type of chemotherapy. 

Fluorescence In Situ 

Hybridization (FISH)  

The FISH test is designed to detect additional copies of the 

HER2 gene in cells. 

EVO The time of birth. 

HRT Hormone receptor therapy. 
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Medical terms Descriptions 

Hormone Receptor (HR) 
Hormone receptor are proteins in the membrane which 

facilitate the signal transfer into the cell.  

S-Phase Fraction 

The S-Phase Fraction of a given cell sample is defined as the 

percentage of cells which currently undergo DNA replication. 

For tumours of the breast anything above 10% is considered a 

high S-Phase Fraction value. 

PCR and LH (Female hormone profile). 

Cortisol 
A stress  hormone produced in the outer layers of the adrenal 

gland. 

DHEA 

(Dehydroepiandrosterone) 

 A hormone created in the adrenal gland which is an 

intermediate stage in the synthesis of sex hormones such as 

estrogen and testosterone. 

Luminal A & Luminal B 

Tumour 

A hormone receptor positive tumour is said to be of the 

Luminal type. One further distinguishes between Luminal A 

tumours which are HER2-negative and Luminal B ones which 

are HER2-positive. 

Basal-like Breast Cancer 

The basal-like breast cancer type is  both hormone receptor 

and HER2-negative (and therefore sometimes called triple-

negative). 

Digoxin 
A drug which by inhibiting sodium-potassium pumps in the 

cell membrane reduces atrial flutter. 

BCL-2 

Beta-cell lymphoma leukemia 2; it is a mitochondrial protein 

known to inhibit apoptosis triggered by chemotherapy and 

radiation therapy. 

DALYs Disability adjusted life years. 

ASRs Age standardized rates. 

NHS National health service  
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5 CHAPTER 5: Markov chain models for breast cancer 

5.1 Introduction and application of survival analysis to Nanakaly Kurdish data 

 

There are well-established survival analysis methodologies for data sets which are complete, 

with accurate information on censoring as discussed in chapter 3. But what if they are not 

complete? In this chapter we consider how to analyse cases where “hidden censoring” occurs, 

where individuals have left the study but the hospital is unaware of this. We develop a new 

Markov chain-based methodology for generating survival curves and hazard functions, and 

demonstrate this using our breast cancer datasets from the Kurdistan region of Iraq. 

This section studies the status of breast cancer in two main hospitals in the Kurdistan Region. 

The work in this section has been published in Raza and Broom (2016). Firstly we try to 

determine the survival time for breast cancer patients in the Nanakaly data (see Figure 5.2) in 

general, where the Kaplan-Meier curve for the original data (713 patients) has been used,. 

Here the vertical axis represents the number of individuals and the horizontal axis is survival 

time.  

 
Figure 5-1 The plot including censoring for the Kurdish data from Nanakaly hospital 
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Figure 5-2 The original survival curve for the Kurdish data from Nanakaly hospital 

Detailed times of death were provided, with censoring at the end of the study period on 1st 

June 2014, where C represents of end of period censoring, (RD) is recorded death, and (L) is 

hidden censoring. i.e. individuals unknowingly lost to the study, (see Figure 5.1 and the 

explanation below). Analysing the above data using SPSS, provided the Kaplan-Meier 

survival curve in Figure 5.2. This is clearly not a realistic survival curve. The problem with the 

survival curve from Figure 5.2 is that we calculated it on the assumption that all individuals 

other than those who died (or were censored by reaching the end of the study period) were still 

active in the study, but in fact individuals often did not return to the hospital after initial 

treatment, and there are no clear records of when the deaths of these individuals occur, or of 

which individuals these are. Thus there is some secret censoring that we do not have 

knowledge about. In other words, whilst the values of td  are accurate, the values of tn  are not, 

where dt and nt are as defined in section (3.4.1.1) and we are (after some time, greatly) 

overestimating them. 

The survival function flattening out to effectively a horizontal line, indicates a hazard rate 

tending to zero, suggesting some problems with the data. This shows a need for adjustment, 

which we carry out using a Markov chain model. The properties of Markov chains fit well 

with the study. For instance both cases (Nanakaly and Hewa) can be modelling assuming that 

they depend continuously on time with constant transition rate represented by:  

)1.5(PQ
dt

dP
P           

for a given transition matrix )( isqQ  , where isq is the rate of flow from ( si  ), which is a 

|P| * |P| matrix of transition rates if it fulfils the following two conditions: 
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a) Q  has no negative off-diagonal entries, i.e. 0isq  for all si  . 

b) Q  has row sums equal to zero, or  
s isq 0  for all i . 
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 The solution of 5.1 identifies the following equation for P:  

)2.5(0

tQePP            

subject to initial conditions 0)0( PPI  . 

5.1.1 Markov model without censoring (Nanakaly data) 

We shall first introduce a Markov model without overt censoring. In our data the only 

observed censoring was caused by the end of the study period, although as patients were being 

recruited all the time during the period, the censoring time could be small, and such censoring 

could occur for any time less than 2602 days, the time from the earliest record considered to 

the end of the study period. 

The following Figure 5.3 represents the Markov survival model with no censoring.  

 
Figure 5-3 The markov survival model with no censoring 

Consider a population of individuals in three categories; either at risk I, died RD or who have 

left the study (without our knowledge), which we shall call “lost” L. Individuals simply move 

from state I to the other two states at constant rates l to L and p to RD. We thus have a 

Individual 

(I) 

Recorded Death 

(RD) 

Lost  

(L) 

p Ɩ

  Ɩ 
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population as described by Figure 5.3. Denoting the proportion of individuals in states I, L and 

RD at time t by )(tPI , )(tPL and )(tPRD  respectively, we have 

],,[ RDLI , 

so   is a 1*3 vector of i  terms representing the state i at time t. Hence, states 1, 2, 3 

representing I, L and RD respectively, and then  )()()( tPtPtPP RDLI . 

The transition rate matrix Q , which consists of all transition rates between states, is 

represented as:  

                         










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Equation 5.1 then becomes: 
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The transitions from state I is represented as follows: flow in is equal to zero and flow out is 

equal to )()( tPpl I , giving  

)3.5()()()(0)( )()(

1

tpltpl

III eektPtPpltP
dt

d               

where 1k  is a constant, which must equal 1 due to the fact that 1)0( IP , (since at time zero all 

individuals are in category I).  

 

The transition rate from state I to state L is represented as follows: 

The flow in is equal to )(tPl I  and flow out is equal to zero, then using the expression from 

equation 5.3 for )(tPI we get  0)()( tPltP
dt

d
IL   

)4.5(.)( 2

)( ke
pl

l
tP tpl

L 



   

To find the value of k2, consider time zero; i.e. 
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 .0)0(0  LPt Thus 
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Then substituting equation 5.5 into equation 5.4 we get equation 5.6 below: 
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Furthermore, the rate of moving from states I to state RD is as follows: 

The flow in is equal to )(tPp I  and flow out is equal to zero. Then substituting equation 5.3 

into equation 5.7, we obtain 

   0)()( tPptP
dt

d
IRD  
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The same procedure as above is repeated to find the value of 3k  using time zero; i.e. 

 ,0)0(0  RDPt i.e. 
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Now substituting equation 5.8 into equation 5.7 we will have the following equation 5.9: 
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Table 5.1 is the summary of all the above mentioned steps: 

Table 5-1 Summary of all state transitions for model I Nanakaly data 

State In flow Out flow Equation for state probabilities  Probabilities values 

I 0 )()( tPpl I  )()(0)( tPpltP
dt
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We denote by l/p the ratio of probabilities for an individual to be lost to the study or die, 

respectively, to account for the right-censoring in this population caused by the end of the 

study period. Thus we can use the number of recorded deaths to estimate the number of lost 

individuals provided we can estimate l/p, which we alternatively denote by  . Suppose that, 



78 
 

as in the original survival plot, we consider the data without realizing that the category L 

exists. We can see from equations 5.6 and 5.9 that 
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We will choose a time   sufficiently large that (essentially) all of the important events have 

occurred. As previously noted (see Figure 5.2), the numbers of deaths are very few after t = 

1000; thus we consider 1000 , Based on the original data we can estimate the total number 

of lost individuals by l̂ n1000 (where n1000 is the number of remaining individuals at time 

1000), because after this time we have a very small number of deaths indicating a small 

number of remaining individuals in total and the total of recorded deaths is given as 



1000

0

ˆ
t

tdp

. This yields   
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For every recorded death, we have on average   lost individuals, so we lose   extra 

individuals for each death. 

Denoting; 
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Using equation 5.12 we get 
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where ô  is the proportion of observed deaths in the study and an estimate of o  from the data. 

Let tn~  represent the estimated remaining population size at time t; if t = 0 then 

11
~ nn   ; because at that time we have neither censored nor dead individuals. 

Then tn~  can be expressed as: 
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where ct represents the number of censored patients. By substituting equation 5.15 into 

equation 5.16, considering equation 5.16 at times t and t+1, we get 
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Then we adjust our estimates of the hazard and survival functions (and denote these using the 

subscript a) from chapter 3 equations 3.8, 3.9 and 3.10 to take account our estimates of the 

true number of individuals at risk to get 
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For our data for 1000 , 




1

0

i

t

td = 240 and n =232, which gives ô = 0.50850 as the 

proportion of observed deaths before the end of the period, and from equation 5.11 give 

96670.0ˆ   
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Figure 5-4 Adjusted survival curve for the Nanakaly data using the method without censoring 

Our method applied without censoring gives the adjusted survival curve in Figure 5.4. This 

figure says that the cumulative survival probability up to 245 days is 0.902 and up to 315 days 

is 0.852; between these periods there were 20 deaths and 24 censored patients. However, 

between 363 to 481 days, which has cumulative survival probability 0.799 and 0.699 at the 

start and end of the interval respectively, 44 patients died and 23 patients survived. Finally, the 

values of the cumulative survival functions at 772 and 1000 days were 0.496 and 0.334 

respectively.   

Figures, 5.5 and 5.6 illustrate the adjusted hazard function (without censoring) and their 

smoothing based on a five days average for the Nanakaly data. The spikes in the first figure 

are due to the discrete nature of the hazard function, taking distinct values at every point. 

Averaging over a period of time as in equation 5.18 yields a scaled hazard function and a 

smoothed graph as seen in the second figure.  

 

Figure 5-5 Adjusted hazard function curve for the Nanakaly data using the method without censoring 
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Figure 5-6 Adjusted smoothed hazard function curve for the Nanakaly data using the method without 

censoring 

5.1.2 Markov model with censoring (Nanakaly data) 

More generally we would like to allow for observed censoring as well as hidden censoring 

within our model. Thus we now add an extra “censored” category C to our model, where 

individuals move from I to C at rate q. Importantly, individuals also move from the lost 

category L to C at the same rate q. This is clearly appropriate for our dataset, since the only 

overt censoring is due to the end of the study, and thus any individual will reach this at the 

same time, whether in category I or L. We thus now have a population as described by Figure 

5.7. We note that for individuals censored because we know that they have dropped out of the 

study prior to the end time, it would seem reasonable to assume that these and the “lost” 

individuals would be entirely separate, and so that the transition rate q from state L to state C 

would be absent.  

 
Figure 5-7 The markov survival model with censoring 
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The transition rate matrix Q , which consists of all the transition rates between states, is 

represented as follows:  
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Equation 5.1 now becomes  
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The transitions from state I is represented as follows: flow in is equal to zero and flow out is 

equal to IPqpl )(  , giving  
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where 1k  is a constant, which again must equal 1 due to 1)0( IP , since at time zero all 

individuals are in category I.  

 

The transitions from state I to state L are represented as follows: 

The flow in is equal to )(tPl I  and flow out is equal to )(tPq L , then using the expression from 

equation 5.21 for )(tPI we get  
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Multiplying both side of this equation by qte we get  
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setting qtetf )(  and )()( tPtg L  we obtain 
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Using the Integrating factor qtqdt

ee   we have 
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To find the value of 2k consider time zero; i.e. 
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Then substituting equation 5.23 into equation 5.22 we get equation 5.24 below: 
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Furthermore, the rate of moving from state I to state RD is as follows: 

The flow in is equal to )(tPp I  and flow out is equal to zero. Then substituting equation 5.21 

into equation 5.26, we obtain   
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The same procedure above is repeated to find the value of 3k by considering time 0; 
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Now substituting equation 5.27 into equation 5.26 we will have the following equation 5.28: 
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The rate of transition from state I to state C is as follows:   

The value of flow in is equal to ))()(( tPtPq LI   and flow out is equal to zero. Thus 

0))()(()(  tPtPqtP
dt

d
LIC

. 

In general; 1)()()()(  tPtPtPtP CRDLI , and so  
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Then substituting equations 5.21, 5.24 and 5.28 into equation 5.29 we get: 
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Rearranging the above equation we get equation 5.30, below: 
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Note that equation 5.24 is equivalent to   
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Table 5.2 is the summary of the second model for all of the above mentioned steps. 

Table 5-2 Summary of all state transitions for model II Nanakaly data 

State In flow Out flow Equations for state probabilities Probabilities values 
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Note that in our data we cannot observe which individuals are in state I and L separately, only their 

sum. We only observed in the study whether an individual had died, been censored or neither. The 

real death rate is equal to p while the apparent (i.e. the observed) death rate equals the following: 




 p
tPtP

tP
th

LI

I

)()(

)(
)(  
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 Multiplying the top and bottom of the above equation by tqplelp )()(  , we get equation 

5.33 below: 
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We first consider the apparent survival function, given by equation 5.34: 
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   Integrating the adjusted hazard function in equation 5.34, we get; 
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Substituting equation 5.36 into equation 5.34 and rearranging we get the apparent survival 

function, equation 5.37 below: 
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When time t is equal to zero then the partial survival function equals 1 (a necessary condition 

for survival functions). On the other hand, when time t equals infinity then the apparent 

survival function takes the value )()( pllS  . Recall that pl  from Section 5.1.1. 

For this case we do not use the previous estimate of (̂ ) because there is overt censoring in 

this population caused by the end of the study period. This creates a potentially significant 

problem, because even the “lost” individuals are censored in this way, and so without 
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adjustment the number of individuals at risk can be underestimated due to double counting 

(effectively the same individual being lost and then censored can be removed twice). This in 

turn leads to a lower estimate of ̂  than would otherwise be the case (in the alternative model 

below we shall see a different, higher, estimate of ~ ). In general when overt censoring occurs, 

̂  will be smaller than ~  because the first model neglects the influence of censoring in the 

estimation procedure. 

We will use the following method to find ~ . Multiplying top and bottom in equation 5.37 by 

p and substituting l/p by α  we obtain 
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 tSe
tS c

pt

     

where pt

c etS )(  represents the real survival function (since the hazard rate for all I 

individuals is p). We can then find the true survival function as a function of the apparent 

survival function, 

)39.5(.]~)()~1[()(
~1

1

  tStSc
   

Figure 5.2 shows the apparent function )(tS  for our data. From this we obtain 

4807.1~59688.0)~1(~   . Thus using equation 5.39 we obtained )(tS c  in Figure 

5.8, below.  

 
Figure 5-8 Adjusted survival curve for the Nanakaly data using the method with censoring 
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We can see that in Figures 5-4 and 5-8 that the two alternative survival curves generated by 

our methods now resemble classical survival curves for example that of the German data, 

which can be obtained from Hosmer et al. (2008) and which we discuss in chapter 6.  

Comparing the two curves from Figures 5.4 and 5.8, we see that initially the two curves are 

roughly the same, but for later times, the curve in 5.4 is clearly above that in 5.8. We should 

also note that our methods are likely not to be very accurate near the end of the curves, i.e. 

when the last of their recorded deaths occur. Thus in the case of the Nanakaly data, the curves 

beyond about 1000 days are likely to be inaccurate; indeed they would be reliable for a 

considerably shorter time e.g. 500 days. We should also note that the above methodology 

might be applied to advance healthcare communication in various respects, specifically the 

collection of data, or for patients.  

Adjusted hazard functions (with censoring) and their smoothing also based on a five day 

average for the Nanakaly data, are shown in Figures 5.9 and 5.10. As mentioned above, the 

sharp spikes in the first figure can be remedied by introducing a scaled hazard function to 

smoothen the plot. 

 
Figure 5-9 Adjusted hazard function curve for the Nanakaly data using the method with censoring 
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Figure 5-10 Adjusted smoothed hazard function curve for the Nanakaly data using the method with 

censoring 

 

5.2 Application of survival analysis to Hewa Kurdish hospital data 

In general to find a good model for Hewa Hospital data we began by plotting the survival 

curve using the Kaplan Meier method and it shows that, the curve is not reliable when 

compared to the Kaplan Meier curve for the German data model. 

 
Figure 5-11 Survival curve including censoring for the Kurdish data from Hewa hospital 

 

Figure 5.11 shows that the probability of death appears very small after 700 days as the curve 

flatters out around this time. As in the Nanakaly data, this is likely because only a small 

number of patients remain in the study after a this time. Since we see a small number of 

patients remaining for several thousand days, the data after this period was removed as shown 

in Figure 5.12.  
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Figure 5-12 Survival curve including censoring for the Kurdish data from Hewa hospital data for 700 days 

 

5.2.1 Markov model without censoring for Hewa data 

A major issue for the Hewa data is the lack of recording of the true times of death as we 

discussed in Section 4.3. We addressed this problem through estimating these numbers by 

constructing two new models; each with and without censoring using Markov chains and 

estimating the number at risk n~  and deaths d
~

.  

Figure 5.13, shows the first model for the Hewa data; here we have four stages, three of them 

are the same as for the first model of the Nanakaly data plus on extra stage from recorded 

death (where we use the admission time as a proxy for recorded death) to death z. Here the 

same conditions and protocol will be required for the continuous-time Markov chain as applies 

in the Nanakaly data Model I, but for the different sample space; 

],,,[ DRDLI . 

The Markov Chain structure for Model I in the Hewa data is represented in Figure 5.13 below: 
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Figure 5-13 The markov survival model without censoring 

 

The state probabilities at time t, are represented by the following below: 

  )()()()( tPtPtPtPP DRDLI . 

The transition rate matrix Q  is given by: 
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The derivations from equation 5.1 are represented by: 
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The transition rate out of state I is the same as in Model I for the Nanakaly data, i.e. as in 

equation 5.3.  

For state I we thus have the same equation and initial conditions and so the same solution as 

for the Nanakaly model I, i.e. .)( )( tpl

I etP   Similarly the equation, initial condition and 

solution for L are identical to before, i.e. .)1()( )( tpl

L e
pl

l
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
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However, for the Hewa model we add the rate of transition from state RD to state D of 

patients, given by z. 

For state RD the flow in equals )(tPp I and flow out equals )(tPz RD . 
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dt

d
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Dividing both sides of equation 5.40 by zte  we get the following equation 5.41. 
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To find the value of constant 5k  we use the fact that at time zero 0)0( RDP  and so 
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Then substituting equation 5.42 in equation 5.41 we get equation 5.43: 
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As already mentioned the transition rate from state RD to state D is z, and so the flow in to 

state D is equal to )(tPz RD and the flow out is equal to zero. Thus 

0)()(  tPztP
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By substituting equation 5.43 into the above formula we get  
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equation 5.44 below: 
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Substituting equation 5.45 into equation 5.44 we get 
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The following Table 5.3 is the summary of all the above mentioned solutions: 

 Table 5-3 Summary of all state transitions for model I Hewa data 

State In flow Out flow Equations for state probabilities Probabilities values 
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The results in Table 5.3 are helpful in setting up the second Hewa model (now including 

censoring), but these should be applied using the same mathematical formalism as for the first 

model (which does not account for censoring). Note that PI(t) and PL(t) are the same as for the 

first Nankaly model.    

We can derive, from the Markov process (see Figure 5.13), estimates of the number of 

individuals moving from state I to RD and then D. In the calculation below we shall use the 

following terms:  

td
~

 is the estimated number of real deaths, while dt  is the number of recorded deaths, and xt is 

the probability of death of an individual in the RD category, all within the t th time interval 

starting at Tt and ending at Tt+1. 

In time interval Tt to Tt+1, dt individuals move from I to RD, which are assumed to happen at 

the start of the interval. Individuals in RD can then move to D, at the start of the subsequent 

time interval, which they do with probability xt .Thus the number of individuals remaining in 
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state RD at the end of the time interval is  
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and, so to estimate the number of 

deaths for Hewa patients, the following equations have been used: 
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z is the rate of death (recorded death to death) as shown in Figure 5.19. Thus the number of 

individuals dying in the t th period is the sum of all the probabilities of the death of individuals 

whose deaths were recorded before this. To estimate the number at risk ( 1
~

tn ) we use a similar 

method to in the first Nanakaly model and so need the value of ô  as in the following equation: 
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The equation of the total number of patients n  is 
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Recall that due to only a small number of events occurring later in the study, we cut off the 

data at time 659 just after one of the death events thus letting 659  63887.569n and 
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The adjusted hazard function )(ˆ tha  and the adjusted survival function )(ˆ tSa  are given by: 
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Figure 5.14 shows the survival function, the Kaplan-Meier curve, based on the estimated data, 

supposing that z =0.005.  

 
Figure 5-14 Adjusted survival curve for the Hewa data using the method without censoring (z=0.005) 

 

From the Hewa data, the value obtained for S(∞) (the limiting value of the survival curve) is 

0.87607, which gives an estimate of ~  = 7.07029 individuals lost per death event. Our 

method applied without censoring gives the adjusted survival curve in Figure 5.14. This figure 

says that the probability of surviving up to 50 days is 0.990 and up to 100 days is 0.971, 

during these periods (i.e. up to 100 days) there were 113 death and 51 censored patients. 

Finally, up to 700 days, there is probability of survival 0.707, where an additional 20 patients 

died and 383 patients were censored.  

Figure 5.15 is the survival curve when z =0.05, which shows a different shape of survival 

curve for the same period compared to Figure 5.14 when z =0.005. For the first period of 50 

days the survival probability is 0.941 and for the second period up to 100 days it is 0.889, 

while for the period up to 700 days the probability is 0.744.  
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Figure 5-15 Adjusted survival curve for the Hewa data using the method without censoring (z=0.05) 

The following Figure 5.16 when 0005.0z  shows different survival probabilities again for 

the same period respectively. For up to 50 and up to 100 days the survival probabilities are 

0.999 and 0.997 respectively, while the survival probability between up to 700 days is 0.929. 

 
Figure 5-16 Adjusted survival curve for the Hewa data using the method without censoring (z=0.0005) 

Since z depends upon an intuitive estimate using little evidence, we considered z to be 10 

times bigger and 10 times smaller than 0.005. As above, we took the times of death to be 

given by the Markov process starting at the time of diagnosis which we discussed in Section 

4.3.  

Figures 5.17 and 5.18 demonstrate the adjusted hazard function (without censoring) and the 

smoothed hazard function based on a five days average for the Hewa data. Again, the spikes in 

Figure 5.17 may be removed by passing from the original to an appropriately scaled hazard 

function and thereby smoothing the graph, the scale of this smoothing is 5 days.    
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Figure 5-17 Adjusted hazard function curve for the Hewa data using the method without censoring 

 

 
Figure 5-18 Adjusted smoothed hazard function curve for the Hewa data using the method without 

censoring 

 

5.2.2  Markov model with censoring for Hewa data 

The second Markov Chain structure model for the Hewa data is represented in Figure 5.19 

below: 
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Figure 5-19 The markov survival model with censoring 

The probabilities at time t of being in state I, L,C, RD and D respectively are represented by 

the following vector: 
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The transition rates out of the I state are the same as in the second model for the Nanakaly 

data, but for the Hewa model we add the rate of transition from state I to state RD (as opposed 

to state D) given by p. Thus the equation, initial condition and probability for state I are the 

same as before, i.e.  

.)( )( tpl
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Similarly the equation, initial condition and probability for states L and C are identical to in 

the previous model and so 
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For the state RD the flow in equals )(tPp I and the flow out is )(tPz RD . Thus 
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Thus as in the previous Hewa model (see equation 5.43) we get  
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Dividing both side of equation 5.56 by zte  we get  

)57.5(.)( )(

5

tpqlzt

RD e
pqlz

P
ektP 


      

To find the value of constant 5k  we consider time zero, so that  
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Then substituting equation 5.57 into equation 5.58 we get equation 5.59: 

)59.5(.][)( )( tpqlzt

RD ee
zpql

p
tP  


  



99 
 

Now the last transition from state RD to state D has rate z. The value of flow in is equal to 

)(tPz RD and flow out is equal to zero. Thus 

.0)(  RDD PzP
dt

d
 

By substituting equation 5.59 into the above formula we get  
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we obtain equation 5.60 below: 
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Substituting equation 5.61 into equation 5.60 we get  

)62.5(.])1(
)(

)1[()( )( tpqlzt

D e
pql

z
e

zpql

p
tP  





    

 

The following Table 5.4 is the summary of all the above mentioned steps: 

Table 5-4 Summary of all state transitions for model II Hewa data 

State In flow Out flow Equations for state probabilities Probability values 
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Using equations 5.21 and 5.59 we will estimate the second model for Hewa data to determine 

the survival curve in the Hospital. We consider the estimated hazard function )(ˆ thc , 

represented below: 
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This is the ratio of the rate of deaths in the population among the risk individuals (in 

categories RD and I) and the number of at risk individuals.      

Firstly we use the real hazard function to find the real survival function as shown below:  
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After multiplying top and bottom by  tqplezqpl )()(   the real hazard function takes the 

following form: 
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The real survival function is given by: 
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Using partial fractions we have  
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and  
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Substituting A and B into equation 5.67 and equating it into equation 5.66, we get the 

following equation:  
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Using equation 5.70 the real survival function )(ˆ tSc
 takes the following form: 
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5.2.3  Estimating the p , , l  , q  and z values ; 

We estimate the rate of recorded death p using the unadjusted survival function )(tS  as in the 

following equation 

)72.5()
)(

)0(
(ln

1
ˆ

tS

S

t
p         



102 
 

where; 

p is the rate of recorded death, t  is the time of death, )0(S is the survival probability at time 

zero, ( 1)0( S ), )(tS  is the survival probability of an individual at time t , i.e. the probability 

of not entering category RD.  

At low t ,  ptetS ~)( , so that pte
tS

S
~

)(

)0(
 and p

tS

S

t
~)

)(

)0(
(ln

1
 , leading to equation 5.72. 

We tested different values of time t for equation 5.72. In principle the lower the t  value, the 

better, except that for very small t , there is little data to use to estimate the value of p . There 

was sufficient data at time t =10, where there had been 29 recorded deaths. Here 

9790.0)10( tS  and so we obtain the following estimate of p , 

00212.0~)
9790.0

1
(ln
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1
ˆ p . 

To estimate  we apply the same methods as in Section 5.1.2 using equation 5.38 as repeated 

below: 
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where )(S  is the limiting apparent survival probability for the data. In practice, in contrast to 

the Nanakaly data, a small number of individuals remained in the study indefinitely, and so we 

had to choose a practical cut-off value. We selected the value associated with time t =750, 

which led to an estimated value of 07029.7~  . We selected this value because it was close 

to the equivalent cut off value from Figure 5.12 and it gives us an estimated survival curve 

very close to the survival curve from the real data except for when there are few individuals 

left in the study. We see this in Figures 5.20 and 5.21. 

 
Figure 5-20 Kaplan Meier method for apparent and estimated survival functions at time 3715 days 
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Figure 5-21 Kaplan Meier method for apparent and estimated survival function at time 700 days 

To find the rate of loss of individuals, denoted by l , we use the definition of , 

pl
p

l
  . Thus we have 

01499.0ˆ l . 

The rate of censoring individuals q  at time t  can be estimated using equation 5.30, repeated 

below. 
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where )(tPc is the proportion of censored individuals at time t . 

After testing different value of t  we conclude that a small value of t  has not enough censored 

individuals. In practice censoring here is not a homogeneous Markov process (as implicit in 

the model); note for the models in Section 5.1 we saw that this was not important for that 

model, but here it is. A large number of censored individuals between t =700 to t =750 also 

made these values unreliable. A sensible choice is t = 1000 because the variations in q̂  are 

larger below t = 1000. Then the estimated q  value is 00160.0ˆ q . The discussion above is 

illustrated by Table 5.5. 

Table 5-5 The estimated rate of censored individuals ( q̂  ) at different time (t ) 

t  200 500 700 750 875 1000 2000 

q̂  0.00093 0.00078 0.00085 0.00211 0.00182 0.00160 0.00159 
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The last component we need to estimate is the rate of recorded death to death z . For this case 

we depend on the previous z value of the first model without censoring, which was chosen to 

be equal to 0.005. We see this in Figure 5.22. 

 
Figure 5-22 Adjusted survival curve for the Hewa data using the method with censoring (z=0.005) 

 

Below we show some other figures for survival with the same estimated p, l and q with 

different z values. For the same reason as mentioned in the first model above, the  following 

Figures 5.23 and 5.24 use z equal to 0.05 and 0.0005. 

 
Figure 5-23 Adjusted survival curve for the Hewa data using the method with censoring (z =0.05) 
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Figure 5-24 Adjusted survival curve for the Hewa data using the method with censoring ( z=0.0005) 

 

For the second model we used the Markov Chain to estimate the rate of recorded deaths, the 

rate of censoring, the rate of losing individuals and the rate of death ( lqp ,, and z ). The 

survival curves arising from the two models are considerably different (see Figures 5.14 and 

5.22), partly because of non-homogeneous censoring in the data. Observe that while the 

survival curve corresponding to z = 0.005 appears to be approaching zero, setting z = 0.05 

yields a curve decreasing more slowly. Finally, for z = 0.0005, we obtain an even slower drop 

of the survival function, which does not appear to be approaching zero in the observed 

timeframe, casting doubt on the reliability of this estimate. To sum up, the time of death for 

which no data is available unlike for the time of diagnosis, has to be modelled by a Markov 

chain, leading to further uncertainties (see Section 4.3).  
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6 CHAPTER 6: Survival analysis for the breast cancer data 

6.1 Survival analysis for the Nanakaly data 

The next step is to determine major factors which impact breast cancer among women in the 

Kurdistan Region of Iraq. This is performed by finding the survival curves for the selected 

unadjusted variables, beginning with the use of the Kaplan Meier method and comparison of 

the variables by using tests including the log-rank test. For Nanakaly hospital, we have only 

one variable which is age. Applying Cox regression gives the results as show in Table 6.1. 

Age is highly statistically significant, with a p-value under 0.005. 

 Table 6-1 Significant variable in the Cox regression model for Nanakaly data 

 B SE Wald Df p. value Exp(B) 
95.0% CI for Exp(B) 

Lower Upper 

Age .032 .005 33.258 1 .001 1.032 1.021 1.043 

     

Based on the above table, the hazard ratio, )exp()(
1

i

p

i

i xx 


  , can be written as the following 

equation: 

032.0exp()( x Age) . 

 The positive value of the hazard ratio indicates that there is a greater risk with higher age. For 

example 2)66.21*032.0exp(   means that an age difference of 22 years doubles the risk. To 

determine which age group has a longer survival time, the age variable between the 

individuals in the group is compared by dividing them into two groups based on their median, 

48. The chi-square value when comparing two age groups, less and equal to the median and 

greater than it, is equal to 11.483 with p-value 0.001. Figure 6.1 and Figure 6.2 show the 

Kaplan Meier survival curve and hazard function curve for the patients for the different age 

groups. It is clear that the patients who are aged less than and equal to their median, 48, years 

old have more chance to survive from breast cancer disease than those of age greater than 48 

years old.  
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Figure 6-1 Survival function curves (Kaplan Meier method) for the age variable (Nanakaly data) 

 
 

 

Figure 6-2 Hazard function curves for the age variable (Nanakaly data) 

The survival function up to 200 days for the both age classes are equal to 0.9, while up to 400 

days the survival curve for the age class greater than 48 years is 0.7 and less than equal to 48 it 

is 0.8. Correspondingly, in Figure 6.2, which shows the cumulative hazard function curve 

(h(t)= 1- cumulative survival functions), the case where up to 200 days is 0.1 for both age 

classes, while after 400 days the cumulative hazard for age class less than or equal to 48 is 

increased to 0.2, but for age class greater than 48 it is 0.3. 

 

6.2 Survival analysis for Hewa data 

As for the Nanakaly Hospital data, we use the SPSS program package to carry out the survival 

analysis for the unadjusted Hewa data. Then Cox-regression is used to determine the 

significant variables among the 20 used in the study. Based on the largest p-value, we delete 

sequentially the variables repeating the process until we get all significant variables with p-

value less than 0.05. This is shown in the following Tables 6.2 and 6.3: 

 

Survival Time 

Survival Time 

The survival function graphs 

for ages above and below 48 

years are shown in green and 

blue, respectively. The data 

(+) points represent individual 

censored observations. 
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 Table 6-2 All variables in the Cox regression model for Hewa data 

 B SE Wald df p.value Exp(B) 
95.0% CI for Exp(B) 

Lower Upper 

Age .001 .013 .007 1 .935 1.001 .976 1.027 

Prog.recp -.001 .001 3.442 1 .064 .999 .997 1.000 

Estr.rec -.002 .001 3.099 1 .078 .998 .995 1.000 

Menopause .264 .274 .931 1 .335 1.303 .761 2.229 

Hormone -.422 .238 3.130 1 .077 .656 .411 1.047 

Tumour size -.004 .006 .486 1 .486 .996 .985 1.007 

Lymph nodes -.012 .013 .912 1 .340 .988 .964 1.013 

Religion.co   2.749 2 .253    

Religion.co(1) .911 .817 1.244 1 .265 2.487 .502 12.331 

Religion.co(2) -.353 .425 .689 1 .407 .703 .305 1.617 

Smoking.co .486 .295 2.701 1 .100 1.625 .911 2.899 

Drinking.co 1.183 .795 2.218 1 .136 3.266 .688 15.502 

Weight .002 .002 1.030 1 .310 1.002 .998 1.006 

Height -.009 .012 .499 1 .480 .991 .968 1.016 

BMI -.001 .002 .151 1 .698 .999 .995 1.003 

Family.His.co -.325 .312 1.080 1 .299 .723 .392 1.333 

Occupa.co   5.550 11 .902    

Occupa.co(1) 6.461 65.274 .010 1 .921 639.891 .000 2331 

Occupa.co(2) .586 78.756 .000 1 .994 1.797 .000 1957 

Occupa.co(3) .333 76.014 .000 1 .997 1.396 .000 7044 

Occupa.co(4) 8.071 65.282 .015 1 .902 3201.189 .000 1185 

Occupa.co(5) -.056 102.523 .000 1 1.000 .945 .000 1751 

Occupa.co(6) 6.790 65.274 .011 1 .917 888.600 .000 3238 

Occupa.co(7) 6.590 65.277 .010 1 .920 727.510 .000 2663 

Occupa.co(8) .188 91.636 .000 1 .998 1.206 .000 1208 

Occupa.co(9) 6.030 65.275 .009 1 .926 415.647 .000 1516 

Occupa.co(10) .002 89.998 .000 1 1.000 1.002 .000 4047 

Occupa.co(11) 7.139 65.282 .012 1 .913 1260.748 .000 4667 

Family 

Income.co 
  4.527 3 .210    

Income.co(1) -.687 .500 1.889 1 .169 .503 .189 1.340 

Income.co(2) -.390 .314 1.535 1 .215 .677 .366 1.254 

Income.co(3) -.515 .255 4.081 1 .043 .597 .362 .985 

Martial.st.co   5.696 3 .127    

Martial.st.co(1) .021 .491 .002 1 .965 1.021 .390 2.676 

Martial.st.co(2) .557 .239 5.449 1 .020 1.745 1.093 2.786 

Martial.st.co(3) .073 .452 .026 1 .872 1.075 .443 2.608 

Exercise.co -.065 .198 .109 1 .741 .937 .635 1.382 

Breast.Fee.co -.196 .266 .540 1 .462 .822 .488 1.386 

Tumour grade   7.530 2 .023    

Tumour grade1 -.637 .309 4.259 1 .039 .529 .289 .968 

Tumour grade2 -.078 .264 .088 1 .767 .925 .551 1.551 
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By applying Cox-regression we see that Age is the variable with the largest p-value. We thus 

remove it and repeat the analysis without the age code variable, getting Table 6.3. We can see from 

these table the occupation categories will be the next to be removed.  

     Table 6-3 Variables in the Cox regression model for Hewa data 

 B SE Wald df p.value Exp(B) 

95.0% CI for Exp(B) 

Low

er 
Upper 

Progesterone Receptor -.001 .001 3.500 1 .061 .999 .997 1.000 

Estrogen Receptor -.002 .001 3.129 1 .077 .998 .996 1.000 

Menopause .254 .244 1.088 1 .297 1.289 .800 2.079 

Hormone -.426 .232 3.366 1 .067 .653 .414 1.030 

Tumour Size -.004 .006 .481 1 .488 .996 .985 1.007 

Lymph Nodes -.012 .012 .966 1 .326 .988 .964 1.012 

Religion co.   2.761 2 .251    

Religion co. (1) .910 .817 1.241 1 .265 2.484 .501 12.312 

Religion co. (2) -.348 .421 .684 1 .408 .706 .310 1.610 

Smoking co. .488 .294 2.746 1 .098 1.628 .915 2.899 

Drinking co. 1.180 .793 2.211 1 .137 3.253 .687 15.399 

Weight .002 .002 1.027 1 .311 1.002 .998 1.006 

Height -.009 .012 .497 1 .481 .991 .968 1.016 

BMI -.001 .002 .151 1 .698 .999 .995 1.003 

Family History co. -.325 .312 1.083 1 .298 .723 .392 1.333 

Occupation co.   5.568 11 .901    

Occupation co. (1) 6.467 65.275 .010 1 .921 643.772 .000 2350 

Occupation co. (2) .596 78.760 .000 1 .994 1.814 .000 1992 

Occupation co. (3) .338 76.022 .000 1 .996 1.402 .000 7194 

Occupation co. (4) 8.065 65.283 .015 1 .902 3181.584 .000 1180 

Occupation co. (5) -.052 102.525 .000 1 1.000 .950 .000 1764 

Occupation co. (6) 6.794 65.275 .011 1 .917 892.089 .000 3258 

Occupation co. (7) 6.601 65.278 .010 1 .919 736.143 .000 2700 

Occupation co. (8) .181 91.637 .000 1 .998 1.199 .000 1204 

Occupation co. (9) 6.034 65.276 .009 1 .926 417.488 .000 1526 

Occupation co. (10) .004 89.999 .000 1 1.000 1.004 .000 4067 

Occupation co. (11) 7.145 65.283 .012 1 .913 1267.830 .000 4703 

Family Income co.   4.537 3 .209    

Income co. (1) -.687 .500 1.891 1 .169 .503 .189 1.339 

Income co. (2) -.390 .314 1.539 1 .215 .677 .365 1.254 

Income co. (3) -.516 .255 4.092 1 .043 .597 .362 .984 

Marital Status co.   5.694 3 .127    

Marital Status co. (1) .010 .472 .000 1 .983 1.010 .400 2.550 

Marital Status co. (2) .556 .238 5.447 1 .020 1.743 
1.09

3 
2.780 

Marital Status  (3) .066 .445 .022 1 .882 1.068 .447 2.553 

Exercise co. -.065 .198 .107 1 .743 .937 .635 1.382 

Breast Feeding co. -.201 .259 .602 1 .438 .818 .493 1.358 

Tumour Grade   7.675 2 .022    

Tumour Grade (1) -.635 .307 4.277 1 .039 .530 .291 .967 

Tumour Grade (2) -.078 .264 .088 1 .767 .925 .551 1.551 
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The above steps are continued as illustrated in Appendix A Tables A1.1 to A1.16, until we get 

Table 6.4. which shows that there are three significant variables with p-value under 0.05. 

 

 

 
 Table 6-4 Significant variables in the Cox regression model for Hewa data 

 B SE Wald df p.value Exp(B) 
95.0% CI for Exp(B) 

Lower Upper 

Estrogen Receptor -.003 .001 5.339 1 .021 
.997 

 
. 995 1.000 

Smoking Code .540 .197 7.490 1 .006 
1.716 

 
1.166 2.527 

Tumour Grade   9.000 2 .011    

Tumour Grade(1) -.578 .294 3.869 1 .049 
.561 

 
.315 .998 

Tumour Grade(2) .022 .258 .007 1 .933 
1.022 

 
.616 1.696 

        

In the above table the hazard ratio, )exp()(
1

i

p

i

i xx 


  , is represented as the following 

equation: 

)1.6()]2(022.0

))1(578.0(540.0)003.0exp[()(


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The estrogen is the main female hormone because it plays an important role in women’s 

menstrual cycle, sexual development, pregnancy, and childbirth. It can also cause cancer to 

grow. Here the value of estrogen receptor equals 0.997 and since it is less than one its 

influence appears to lower the risk of breast cancer. The hormonal therapy may help to slow 

or stop the growth of hormone receptor positive breast cancer by lowering the body’s estrogen 

levels or blocking the effects of estrogen.  

There are two groups of estrogen receptors based on the median value such that in group 1 the 

estrogen receptor is less than or equal to 63, whilst for group 2 it is greater than 63. The 

difference between these two groups is not significant since the value of Chi-Square for the 

estrogen receptor equals 2.768 and the p-value equals to 0.096. 

This conclusion is supported by the Kaplan-Meier survival curve as shown in Figure 6.3 

where the survival curve for the group 2 is very close to that of group 1. 

p-value, hazard rates and CI 

for each variable 
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Figure 6-3 Survival function curve (Kaplan Meier method) for estrogen receptor Hewa data 

Figure 6.4 the classical cumulative hazard curve showing how it increases with difference 

time, while the estrogen receptor for the age less than or equal 63 which is group 1 is more 

risky than group 2. 

 

Figure 6-4 Hazard function for estrogen receptor Hewa data 

Using the log-rank test, smoking is statistically significant because the Chi-Square is equal to 

5.368 and giving a p-value less than 0.005. The  survival curve illustrates that the non smokers 

have better opportunity to live longer than smokers, and the accoutres for smokers is more 

than for non smokers. See, Figure 6.5 and 6.6 below. 

The cumulative survival 

before 3000 days=78% 

Every + represents a data 

point censored  

Number of the individuals at 

risk for death. Survival curve 

before 500 days= 90%. 

Survival Time 

Survival Time 
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Figure 6-5 Survival function curve (Kaplan-Meier method) for smoking (Hewa data) 

 

 
Figure 6-6 Hazard function for smoking (Hewa data) 

In Table 6.4 above, tumour grade 1 has 0.561 the risk of tumour grade 3 so the death rate of tumour 

grade 1 is 0.561 times the death rate of tumour grade 3. Whilst for tumour grade 2 death rate is 

marginally larger than tumour grade 3 because its death rate is equal to 1.022.  

Table 6.5, states the results of the log-rank test for the last significant variable in the study, which is 

the tumour grade.  It shows that the difference between individuals where small and medium are 

stronger than that of small and large. 

Table 6-5 log-rank test for the tumour grade variable for the Hewa data 

Tumour Grade 

Small(I) Medium(II) Large(III) 

Chi-

Square 
p. value 

Chi-

Square 
p. value 

Chi-

Square 
p. value 

Log Rank (Mantel 

Cox) 

Small(I)   9.404 .002 3.467 .063 

Medium(II) 9.404 .002   .069 .793 

Large(III) 3.467 .063 .069 .793   
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Figure 6.7 the survival curves, demonstrate that the patients with a small tumour grade have a better 

survival rate than those with medium and large tumours, while for the tumour grade medium the 

cumulative survival function is higher than that for the tumour grade large. Similarly in Figure 6.8, 

the cumulative hazard functions for the tumour grade medium and large are higher than tumour 

grade small. 

 
Figure 6-7 Survival function curve (Kaplan-Meier method) for tumour grade (Hewa data) 

 

 
Figure 6-8 Hazard function curves for tumour grade (Hewa data) 
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6.3 Survival analysis for the German data 

Following the analysis on breast cancer among women in the Kurdistan region of Iraq, we 

would like to assume survival analysis for the German data then compared our results.  

First of all, the Cox regression equation is used to determine the significant variables among 

all eight variables used in the study. Similarly the analysis for the Kurdish data, Hewa and 

Nanakaly, we depend on the largest p-value and delete the variables each time and repeat the 

process until we get the significant variables with p-value less than 0.05. This is shown in the 

following Tables 6.6 and 6.7: 

Table 6-6 All variables in the Cox regression model for German data 

 B SE Wald df p.value Exp(B) 
95.0% CI for Exp(B) 

Lower Upper 

Age .007 .012 .317 1 .573 1.007 .983 1.031 

Menopause -.091 .253 .130 1 .718 .913 .556 1.498 

Hormone .269 .169 2.543 1 .111 1.308 .940 1.821 

Tumour Size .013 .005 7.460 1 .006 1.013 1.004 1.023 

Tumour Grade   8.501 2 .014    

Tumour Grade(1) -1.127 .442 6.501 1 .011 .324 .136 .770 

Tumour Grade(2) -.352 .169 4.343 1 .037 .703 .505 .979 

Lymph Nodes  .052 .010 30.239 1 .000 1.054 1.034 1.074 

Progesterone Receptor -.005 .001 20.188 1 .000 .995 .992 .997 

Estrogen Receptor .000 .001 .216 1 .642 1.000 .999 1.001 

 

We see that Menopause has the highest p-value, and so remove it. By applying the Cox 

regression method again without the menopause variable, we get Table 6.8: 

Table 6-7 Variables in the Cox regression model for German data 

 B SE Wald df p.value Exp(B) 
95.0% CI for Exp(B) 

Lower Upper 

Age .010 .008 1.663 1 .197 1.010 .995 1.026 

Hormone .264 .168 2.464 1 .116 1.302 .937 1.810 

Tumour Size .013 .005 7.410 1 .006 1.013 1.004 1.023 

Tumour Grade   8.524 2 .014    

Tumour Grade(1) -1.131 .442 6.550 1 .010 .323 .136 .767 

Tumour Grade(2) -.351 .169 4.319 1 .038 .704 .506 .980 

Lymph Nodes  .052 .010 30.070 1 .000 1.054 1.034 1.074 

Progesterone Receptor -.005 .001 20.560 1 .000 .995 .992 .997 

Estrogen Receptor .000 .001 .224 1 .636 1.000 .999 1.001 
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The above steps are continued as shown in Tables A2.1 to A2.3 in the Appendix A2 until we get 

Table 6.8, which shows that there are four significant variables with p-values under 0.05. 

 Table 6-8 Significant variables in the Cox regression model for German data 

 B SE Wald df p.value Exp(B) 
95.0% CI for Exp(B) 

Lower Upper 

Tumour Size .013 .005 8.130 1 .004 1.014 1.004 1.023 

Lymph Nodes .051 .009 29.193 1 .000 1.053 1.033 1.072 

Progesterone Receptor -.005 .001 21.566 1 .000 .995 .992 .997 

Tumour Grade   8.958 2 .011    

Tumour Grade (1) -1.150 .441 6.798 1 .009 .317 .133 .752 

Tumour Grade (2) -.359 .167 4.605 1 .032 .698 .503 .969 

     

          In the above table the hazard ratio, )exp()(
1

i

p

i

i xx 


  , is represented as the following equation: 

))].2(359.0())1(150.1(

)RePr005.0()051.0()013.0[(exp)(
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The positive value 0.013 means that larger tumours carry greater risk, while the negative value 

(-0.005) means that higher progesterone receptor levels mean lower risk. In addition the highly 

negative value (-1.15) of tumour grade 1, means that a small tumour is a much lower risk than 

large grade tumours and (-0.359) of tumour grade 2, means that an intermediate tumour is a 

significantly lower risk than large grade tumours. Figure 6.9 shows the survival curve for the 

German data. 

 
Figure 6-9 Cumulative survival function curve for German data 
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We compare between two groups of tumour size, divided by their median 25. The Chi-Square 

value from using the log rank test is equal to 12.089 which indicates a significant difference 

between the groups as expected. We denote these as groups 1 and 2, group 1 is for tumour size 

which is less or equal to 25 and group 2 is for tumour size greater than 25. Here we see that 

there is a significance relationship between the two groups. This conclusion was supported by 

Figure 6.10 where the survival curve for group 1 is better than for group 2.  

 
Figure 6-10 Survival function for tumour size (German data) 

Naturally, Figure 6.11 shows that the corresponding cumulative hazard function for group 2 is 

higher than for group 1.  

 
Figure 6-11Hazard function for the tumour size (German data) 

Here, the individuals are divided into two groups divided by their median lymph node value 3. 

Group 1 represents the number of Lymph nodes less or equal to 3 and group 2 if it is greater 

than 3. There is a significant difference between the two Lymph Nodes categories of 

individuals, as the value of Chi-Square for the Lymph Nodes equals to 50.649 giving a p-value 
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near 0.001. The cumulative survival curve and cumulative hazard functions for group 1 and 2, 

as shown below, indicate that group 1 has better survival rates than group 2. 

 
Figure 6-12 Survival function for the lymph nodes (German data) 

 
Figure 6-13 Hazard function for the lymph nodes (German data) 

Figure 6.14, represents the cumulative survival curve for individuals in two progesterone 

receptor categories 1 and 2, chosen so that group 1 represents a level under the median value 

of 33, and group 2 represents a level above this value, and we see that survival for group 2 is 

greater than for group 1. The Chi-Square value of progesterone receptors equals 36.241; this 

result shows that the group 1 and 2 are also statistically significant based on their p-value of 

under 0.001. 
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Figure 6-14 Survival function for the progesterone receptor (German data) 

Naturally, the hazard for group 2 is less than for group 1 as shown in Figure 6.15 below: 

 

 
Figure 6-15 function for the progesterone receptor (German data) 

Table 6.9, illustrates the log-rank test for the tumour grade. The results show the relation 

sheep between its individuals; the difference between small and large are stronger than that of 

small and medium.  

Table 6-9 Log-rank test for the tumour grade variable for German data 

Tumour Grade 

Small Medium Large 

Chi-Square p.value 
Chi-

Square 
p.value 

Chi-

Square 
p.value 

Log Rank (Mantel-

Cox) 

Small   10.060 .002 23.286 .001 

Medium 10.060 .002   14.813 .001 

Large 23.286 .001 14.813 .001   
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 The survival curves in Figure 6.16, demonstrates that survival for individuals with small 

tumours is better than for those with medium and large tumours and the survival curve for 

intermediate tumours is higher than that for the largest. See also Figure 6.17 for the 

corresponding hazard functions. 

 

 
Figure 6-16 Survival function for the tumour grade (German data) 

 

 
Figure 6-17 Hazard function for the tumour grade (German data) 
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6.3.1 Simulations 

In this section we consider simulations to investigate the validity of our modeling procedure. 

We consider the example German data from Figure 6.9, as we have an accurate survival 

function for this because of the accurate data. For each simulation, we chose a distribution and 

simulated each individual from the German data being “lost” following this distribution. Thus 

if death happens before the individual is lost, we observe the death, but if the individual is lost 

first we assume that they are still in the study, and do not observe their death, if it occurs. This 

thus replicates what happens in the Nanakaly data, and the situation that we are modelling. 

The models that we have considered are Markov with constant rate of lost individuals, which 

would yield an exponentially distributed time of loss. We considered various values of this 

distribution.  

One set of simulations considered a mean loss time of 2000 days. Given the length of the 

German study, this accounted for quite a significant loss of data. This is shown in Figure 6.18 

where the apparent survival probability after 2000 days has only fallen to approximately 0.764 

instead of the true value of just over 0.612 as a result. The survival curves generated for our 

two models with and without censoring are shown in Figures 6.19 and 6.20. The values of 

cumulative survival function up to 500 days are equal to 0.967 and 0.961 and again up to 1000 

days are equal to 0.874 and 0.848 respectively. Finally, after 2000 days their cumulative 

survival rates for Figures 6.19 and 6.20 are 0.711 and 0.560 respectively. We can see that in 

both cases, the models significantly correct the survival function from the apparent survival 

function shown in Figure 6.18. The first model for this group gives a somewhat conservative 

correction, which is higher than the true survival function in Figure 6.9. i.e. we lose less 

individuals for the second model. As explained in Section 5.1.1, this is because of the double 

counting of lost and censored individuals.  
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Figure 6-18 First simulation: the survival curve for a sample simulation of loss from the German data, 

where loss of individuals occurs following an exponential time with mean 2000 days 

 
Figure 6-19 First simulation: an adjusted survival curve for the German data with simulated loss following 

an exponential distribution with mean 2000 days, using the method without censoring from Section 5.1.1 

 
Figure 6-20 First simulation: an adjusted survival curve for the German data with simulated loss following 

an exponential distribution with mean 2000 using the method with censoring from Section 5.1.2 

The second simulation with mean equal to 1000 is shown in Figure 6.21 where the apparent 

survival probability after 2000 days has only fallen to approximately 0.875 instead of the true 

value of just over 0.612 as a result. The survival curves for model one without censoring and 
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the second model with censoring are shown in Figures 6.22 and 6.23. Furthermore, the 

survival rate after 2000 days is 0.756 and 0.709 respectively.  

 
Figure 6-21Second simulation: the survival curve for a sample simulation of loss from the German data, 

where loss of individuals occurs following an exponential time with mean 1000 days 

 
Figure 6-22 Second simulation: an adjusted survival curve for the German data with simulated loss 

following an exponential distribution with mean 1000 days, using the method without censoring from 

Section 5.1.1 

 
Figure 6-23 Second simulation: an adjusted survival curve for the German data with simulated loss 

following an exponential distribution with mean 1000 using the method with censoring from Section 5.1.2 
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An example set of simulations with mean 500 is shown in Figure 6.24. After 2000 days the 

apparent survival probability is approximately equal to 0.939 instead of the actual value of 

0.612. The survival curves generated for both models are shown in Figures 6.25 and 6.26 and 

after 1500 days instead of 2000 days because there are a few numbers of individuals at risk 

toward the end of the study as we discussed in section 3.4.1.1, and the survival rates are 0.915 

and 0.839 respectively. 

 
Figure 6-24 Third simulation: the survival curve for a sample simulation of loss from the German data, 

where loss of individuals occurs following an exponential time with mean 500 days 

 
Figure 6-25 Third simulation: an adjusted survival curve for the German data with simulated loss 

following an exponential distribution with mean 500 days, using the method without censoring from 

Section 5.1.1 
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Figure 6-26 Third simulation: an adjusted survival curve for the German data with simulated loss 

following an exponential distribution with mean 500 days, using the method with censoring from Section 

5.1.2 

As shown in Figure 6.27, after 2000 days the apparent survival probability is equal to 0.854 

instead of the actual value of 0.612. The survival curves generated for both models are shown 

in Figures 6.28 and 6.28 and after 1500 days instead of 2000 days (again because of the small 

number of remaining individuals as we mentioned in section 3.4.1.1), the survival rates are 

0.827 and 0.625 respectively. 

 
Figure 6-27 Fourth simulation: the survival curve for a sample simulation of loss from the German data, 

where loss of individuals occurs following Gamma (3,θ) time with mean 1000 days 
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Figure 6-28 Fourth simulation: an adjusted survival curve for the German data with simulated loss 

following Gamma (3,θ) distribution with mean 1000 days, using the method without censoring from 

Section 5.1.1 

 
Figure 6-29 Fourth simulation: an adjusted survival curve for the German data with simulated loss 

following Gamma (3,θ) distribution with mean 1000 days, using the method with censoring from Section 

5.1.1 

We also considered the non-exponential distribution, e.g. gamma (3, 3/1000). When this led to 

a large number of lost individuals (for sufficiently high means this did not, and thus as above 

the corrections were not large and were accurate) we would expect our model to perform 

worse in such circumstances, as this would indicate that the underlying Markov assumption 

was not correct. This was indeed the case, although the models still corrected the false 

apparent curves to significant effect, and as for exponential distributions with small means, the 

effect was generally to produce slightly conservative survival functions, which overestimated 

the true survival curve. 
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Thus we see that our first simulation models perform well in many circumstances, and even 

when less accurate, are always an improvement on considering the apparent survival curves 

from the unadjusted data. 

In the appendix A3 we consider sets of simulations to match the four above; simulating 

German data for the first and second models (with and without censoring) with different 

means 2000, 1000, 500 as well as Gamma distribution (3, 3/1000) with mean 1000 days. For 

each case we did ten simulations; the aim was to verify that the single simulations that we give 

above are truly representative and that results do not vary greatly from simulation to 

simulation. In general the cumulative survival functions were consistent for the unadjusted and 

adjusted first and second model data. The same situations were repeated when we took 

different simulations as shown in Appendix A3. 

In Figure 6.18 for the unadjusted German data for the exponential distribution with a mean of 

2000, the cumulative survival function curve after 2000 days is equal to 0.784 whereas in 

Figures A3.1, A3.4, A3.7, A3.10, A3.13, A3.16, A3.19, A3.22, A3.25 and A3.28 with the 

same distribution, the mean cumulative survival curve after 2000 days is 0.756 and the 

standard error is 0.021. This indicates that the results are very close to the observations as in 

Figure 6.18. When comparing the cumulative survival function of the first model in Figure 

6.19, with 10 simulations for the same period, Figures A3.2, A3.5, A3.8, A3.11, A3.14, A3.17, 

A3.20, A3.23, A3.26 and A3.29, they both have a similar value of the cumulative survival 

function of 0.711 and 0.683, on average, respectively with the standard deviation 0.032. On 

the other hand,  the adjusted cumulative survival function for the second model, Figure 6.20, is 

0.560 in comparison to the simulations, Figures A3.3, A3.6, A3.9, A3.12, A3.15, A3.18, 

A3.21, A3.24, A3.27 and A3.30, that, on average, have value 0.502. This gives a difference of 

0.058. Here the value of the standard deviation is 0.055, so that the results in this case are a 

little less reliable.  

We now calculate the cumulative survival up to 2000 days for a mean of 1000. For the 

unadjusted model, Figure 6.21 and simulations, Figures A3.31, A3.34, A3.37, A3.40, A3.43, 

A3.46, A3.49, A3.52, A3.55 and A3.58, we have 0.875 and, on average, 0.843, respectively, 

which constitutes a deviation slightly above the standard error of 0.029. Meanwhile, for the 

first adjusted model, Figure 6.22 we have a value of 0.756 whereas simulations, Figures 

A3.32, A3.35, A3.38, A3.41, A3.44, A3.47, A3.50, A3.53, A3.56 and A3.59 give an average 

of 0.777 indicating a slight difference between them within the bounds of the standard 
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deviation of 0.067. For the second adjusted model Figure 6.23  it is 0.709 and the simulations, 

Figures A3.33, A3.36, A3.39, A3.42, A3.45, A3.48, A3.51, A3.54, A3.57 and A3.60 average 

to 0.654 with a standard deviation of 0.035.  

The cumulative survival function for the unadjusted model, Figure 6.24 at 1500 days (instead 

of 2000 days because there are few patients at risk) for a mean of 500 is 0.939 which is in 

agreement with the simulation average of 0.933 Figures A3.61, A3.64, A3.67, A3.70, A3.73, 

A3.76, A3.79, A3.82, A385 and A3.88, and the standard deviation of 0.006. On the other 

hand, the cumulative survival function for the adjusted first model over the same period in 

Figure 6.25 is 0.915 which exceeds the mean from the 10 simulations, Figures A3.62, A3.65, 

A3.68, A3.71, A3.74, A3.77, A3.80, A3.83, A3.86 and A3.89 of 0.871 and standard deviation 

0.032. Again, when comparing the cumulative survival curve of the second model adjusted for 

the same period, Figure 6.26 with 10 simulations in Figures A3.63, A3.66, A3.69, A3.72, 

A3.75, A3.78, A3.81, A3.84, A3.87 and A3.90, they both give similar values of 0.839 and 

0.821, respectively, with a standard deviation 0.025.  

To check the accuracy of the suggested model we fitted the gamma distribution with 

parameters 3 and 1000/3, and so a mean of 1000, to our data (see Figure 6.27) and compare it 

to the respective simulations (see Figures A3.91, A3.94, A3.97, A3.100, A3.103, A3.106, 

A3.109, A3.112, A3.115 and A3.118). As a result, the cumulative survival for up to 2000 days 

is equal to 0.854 which agrees with the average value of the ten simulations of 0.842 which 

had a standard deviation of 0.009. From Figure 6.28 the cumulative survival function for the 

adjusted first model up to 1500 days is equal to 0.739, for the simulations (Figures A3.92, 

A3.95, A3.98, A3.101, A3.104, A3.107, A3.110, A3.113, A3.116 and A3.119), on average we 

find 0.746 with a standard deviation of 0.054, which again shows agreement. 

Finally we compare the cumulative survival function for the second adjusted model with ten 

simulations (Figures A3.93, A3.96, A3.99, A3.102, A3.105, A3.108, A3.111, A3.114, A3.117 

and A3.120). Figure 6.29 shows that after 1500 days the cumulative survival curve is equal to 

0.625, which overestimates the simulated value of 0.590. The associated standard deviation 

from the ten simulations is 0.029. In general the results show good agreement. In summary we 

can conclude that the results from the simulation procedures are consistent from simulation to 

simulation.   
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6.3.2 Connections between German and Nanakaly data for survival analysis 

For the purpose of comparison, we do additional analysis of the data after finding the survival 

analysis and apply it on both Kurdish Hospitals; Hewa and Nanakaly, and German patients. 

We follow the same procedures after combining the data from the three hospitals.  This will be 

done firstly by comparing Nanakaly and German patients then Hewa and German and finally 

comparing Nanakaly, Hewa and German patients all together. Combining German patients 

with Nanakaly patients is done by combining the common variables in both of them. There are 

686 patients in the German data and 713 patients in Nanakaly hospital.  

Figures 6.30 illustrate the cumulative survival functions for the German and unadjusted 

Nanakaly data.  

 
Figure 6-30 Cumulative survival function curves for German and Nanakaly data: the Nanakaly curve is 

for the unadjusted data 

When comparing the blue line from Figure 6.30, the cumulative survival function for the 

German data and Figure 6.31, the adjusted cumulative survival curve for the Nanakaly data 

from the first model as shown in section 5.1.1, it is clear that the cumulative survival curve for 

the German data is higher than that for the Nanakaly data, largely due to the superior health 

care system. For German data the value of the cumulative survival function up to 100 days 

inclusive is equal to 0.999 while for the adjusted Nanakaly data it is equal to 0.965. 

Specifically in the German data there were 15 censored individuals and 1 death during the 

aforementioned period whereas for the adjusted Nanakaly data there are 20 censored 

individuals and 24 deaths. The cumulative survival function on day 500 is 0.956 and the 

adjusted Nanakaly counterpart is 0.679. The number of censoring events and deaths of patients 

in Germany from day 101 to day 500 inclusive is 21 and 28 patients while in the adjusted 

Nanakaly data for the same period there are 104 censored individuals and 152 deaths. For the 
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last section, the cumulative survival function on day 1000 is 0.841 for German and 0.333 for 

the adjusted Nanakaly data. There were further 105 censored and 70 deaths and 109 censored 

and 63 deaths in the adjusted Nanakaly data from day 501 to day 1000.  

 

 

Figure 6-31Cumulative survival function curve for the adjusted Nanakaly data from the first model 

Figure 6.32 shows the cumulative survival function for the unadjusted Nanakaly data for the 

age classes less than or equal to 48 years old and greater than 48 years old. We split the data at 

48 based on the median age of all patients. 

 
Figure 6-32 Cumulative survival function for age less than equal and greater than 48 years for the 

unadjusted Nanakaly data 

The following Figures 6.33 and 6.34 illustrate the cumulative survival functions for the age 

class less than or equal to 48 years old and greater than 48 years old for the patients in the 

adjusted Nanakaly and German data respectively. For the age class of less than or equal to 48 

years old, the difference between German and adjusted Nanakaly cumulative survival 

functions is 0.074. On day 600, the German survival function is higher than the adjusted 
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Nanakaly function by 0.297 for the same age class. Finally, up to 800 days, the cumulative 

survival function for the German data exceeds its adjusted Nanakaly counterpart by 0.333. 

Whilst when comparing the age class greater than 48 years old, for the same time points, the 

difference between German data and the adjusted Nanakaly data is 0.088 0.409 and 0.497 

respectively, with the Germans on the higher side.   

                                                                                                                                       Survival Functions 

 
Survival Time 

Figure 6-33 Cumulative survival function for age less than or equal to and greater than 48 years for the 

adjusted Nanakaly data 

                                                                                                                                                                                     Survival Functions 

 
Figure 6-34 Cumulative survival function for age less than or equal to and greater than 48 years for the 

German data 
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6.3.3 Connections between German and Hewa data for survival analysis 

Now we compare the German and Hewa data, which will be done by selecting the common 

variables in both of them. There are 686 and 1163 patients in the German and Hewa data sets, 

respectively. Figure 6.35 shows the cumulative survival functions for the German and the 

unadjusted Hewa data. 

 
Figure 6-35 Cumulative survival function curve for German and Hewa data: the Hewa curve is for the 

unadjusted data 

 
Figure 6-36 Cumulative survival function curve for German data (this is a copy of figure 6.30) 
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Figure 6-37 Cumulative survival function curve for the adjusted Hewa data from the first model of Section 

5.2.1 

In general the cumulative survival function for the Hewa data is lower than for the German 

data as illustrated in Figures 6.36 and 6.37. The value of the cumulative survival function up 

to 100 days for the German data is equal to 0.999 while for the adjusted Hewa data it is equal 

to 0.971. At day 500 the cumulative survival function value is 0.956 for the German data and 

0.866 for the adjusted Hewa data.  Lastly the cumulative survival rate at day 700 is 0.902 for 

the German data and 0.707 for the adjusted Hewa data. The first adjusted survival curve model 

for the Hewa data is discussed in Section 5.2.1.   

The following Figures 6.38 and 6.39 are the cumulative survival functions for tumour grade in 

the German and unadjusted Hewa data. There are three grades for both data sets small; 

medium and large. 

 
Figure 6-38 Cumulative survival function for the tumour grade variable for the German data 
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Figure 6-39 Cumulative survival function for tumour grade for the unadjusted Hewa data 

The cumulative survival functions for the small tumour grade in the German and Hewa data 

are shown in Figures 6.40 and 6.41 respectively. In the German figure the cumulative survival 

probabilities up to 50, 100 and 700 days are to 0.999, 0.999 and 0.986 respectively. For the 

same period for the adjusted Hewa data these are 0.990, 0.975 and 0.803.  

 

 
Figure 6-40 Cumulative survival function for the small tumour grade in the German data 

 
Figure 6-41Cumulative survival function for the small tumour grade in the adjusted Hewa data 
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The following Figures 6.42 and 6.43 show the cumulative survival functions for the medium 

tumour grade for the German and adjusted Hewa data. In the German figure the cumulative 

survival probabilities up to 50, 100 and 700 days are 0.999, 0.998 and 0.916 respectively. For 

the same period for the adjusted Hewa data these are 0.989, 0.969 and 0.657.  

 

 
Figure 6-42 Cumulative survival function for the medium tumour grade in the German data 

 
Figure 6-43 Cumulative survival function for medium tumour grade in the adjusted Hewa data 

 

Survival for the large tumour grade between the German and adjusted Hewa data is shown in 

Figures 6.44 and 6.45 below. For the German data the cumulative survival curves for tumour 

grade large up to 50, 100 and 700 days are equal to 0.997, 0.995 and 0.811 respectively. 

Whilst for the adjusted Hewa data tumour grade large the cumulative survival probabilities are  

0.988, 0.969 and 0.664, respectively.  
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Figure 6-44 Cumulative survival function for the large tumour grade in the German data 

 
Figure 6-45 Cumulative survival function for the large tumour grade in the adjusted Hewa data 

 

6.3.4 Connections between German, Nanakaly and Hewa data for survival analysis 

Finally we consider a comparison between the three sets of data German, Nanakaly and Hewa. 

There were 686, 713 and 1163 patients in the German, Nanakaly and Hewa hospitals, 

respectively. The age variable is the only common variable amongst them. Figure 6.43 

illustrates the cumulative survival function for three data sets, where the Nanakaly and Hewa 

data are unadjusted.   
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Figure 6-46 Cumulative survival function curves for the German, Nanakaly and Hewa data: the Nanakaly 

and Hewa data are unadjusted 

Figures 6.47, 6.48 and 6.49 represent the cumulative survival function for the German data 

with the adjusted Nanakaly data and the adjusted Hewa data. The value of the cumulative 

survival function at 100 days for the German data is equal to 0.999 while for the adjusted 

Nanakaly data it is equal to 0.965 and for the adjusted Hewa data it is equal to 0.971. At day 

500 the cumulative survival function value is 0.956 for the German data, 0.680 for the 

adjusted Nanakaly data and 0.866 for the adjusted Hewa data. Finally the cumulative survival 

probability on day 700 is 0.902 for the German, 0.524 for the adjusted Nanakaly data and 

0.707 for the adjusted Hewa data. In general the survival curve for the German data is higher 

than for both the adjusted Nanakaly and Hewa data. On the other hand the survival function 

curve for Hewa data is higher than that for the Nanakaly data. This is likely to be because the 

data from Hewa is not reliable, due to the fact that we do not have the real time of death rather 

than representing a real large difference. Specifically the first adjusted survival curve model 

for the Nanakaly data are discussed in Section 5.1.1 and the model for the Hewa data is 

discussed in Section 5.2.1.  
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Figure 6-47 Cumulative survival function curve for the German data (this is a copy for Figure 6.9) 

 

 
Figure 6-48 Cumulative survival function curve for the adjusted Nanakaly data from the first model (this 

is a copy of Figure 5.4) 

 
Figure 6-49 Cumulative survival function curve for the adjusted Hewa data from the first model (this is a 

copy of Figure 5.15) 
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The cumulative survival function for the unadjusted Hewa data for the two age classes is 

shown in Figure 6.50. The data is split into two parts at 48 based on the median age of all 

patients from the Nanakaly data into less than or equal to 48 years old and greater than 48 

years old. 

 

 
Figure 6-50 Cumulative survival function for age less than or equal to and greater than 48 years for the 

Hewa data for the unadjusted data 

Figures 6.51, 6.52 and 6.53 display the cumulative survival functions for the age class less 

than or equal to 48 years old and greater than 48 years old for the patients in the German, 

adjusted Nanakaly and Hewa data respectively. For the age class of less than or equal to 48 

years old, the cumulative survival probabilities for the German, and both the adjusted 

Nanakaly and Hewa data are given for three different periods and they are; at 250 days where 

there are equal to 0.996, 0.871 and 0.921 for German, Nanakaly and Hewa data respectively. 

At 500 days the corresponding values are equal to 0.961, 0.693 and 0.853. Finally at 700 days 

the cumulative survival probabilities are 0.908, 0.592 and 0.691 respectively. Comparing the 

age class greater than 48 years old, for the same time points the cumulative survival 

probability for 250 days shows 0.993, 0.865 and 0.938 respectively. The values for 500 days 

are 0.953, 0.626 and 0.878 respectively and the final values for 700 days are 0.896, 0.427 and 

0.645 respectively. 
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Figure 6-51Cumulative survival function for age less than or equal to 48 years and greater than 48 years 

for the German data 

                                                                                                                                      Survival Functions 

 
                                                                                    Survival Time 

Figure 6-52 Cumulative survival function for age less than or equal to 48 years and greater than 48 years 

for the Nanakaly data: The curves are for the adjusted data 

                                                                                                                          
                                                                                                                                    Survival Functions 

 
                                                                      Survival Time 
Figure 6-53 Cumulative survival function for age less than or equal to 48 years and greater than 48 years 

for the Hewa data: The curves are for the adjusted data 
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6.3.5 Comparison  to previous studies on age in different countries 

Age is considered one of the main factors when we are applying survival analysis, so a 

number of studies in various countries have been done. For example, in southern Iran, 

(Heydari et al., 2009) recorded that the survival probabilities of breast cancer were 0.970, 

0.671, 0.453 and 0.253 for one, 5, 10 and 15 years. The five-year survival probability was 

similarly 0.751 in other areas of Iran as reported by Mousavi et al. (2006). While, Ghavam-

Nasiri (2005) stated that in Mashhad, North-east of Iran, in general a five-year survival rate 

was 0.477. He also reported that the survival rate was not affected by age. Ueno et al. (2007) 

found the five-year survival probability of 0.803 and 0.670 between the periods 1982-1989 

and 1990-2003 which was related to age at the time of diagnosis. For the purpose of 

comparison, Taylor et al. (2003) indicated that the five-year survival rate in New South Wales 

was 0.750, whereas in Western Sydney, Australia the probability was 0.791 (Clayforth et al. 

2007).  Also, Vahidian and Montazeri (2004) recorded that the survival rate of 0.62 of Iranian 

patients with breast cancer was lower than Western but higher than eastern European 

countries. The survival rate for Ugandans, Algerian and Gambian women are 0.462, 0.391 and 

0.122 respectively (American Cancer Society, 2011) This indicates that the Iranian survival 

ratio is higher than them. 

Using data from other cities and countries, Ziaei et al. (2013) investigated the survival rates in 

Tabriz (Northwest Iran) by a sample consisted of 271 breast cancer patients who visited a 

university clinic between 1997 and 2008. The survival rates for one three, five, seven and ten 

years were taken and they are significantly lower than cities in Europe and United States. This 

sample, however, is too small for a reliable survival analysis, in particular for the age group of 

less than 40 years old. From comparing our results with the previous studies, we see that the 

survival rate from breast cancer for South Iranian women is higher than for our patients from 

the Kurdistan Region of Iraq, whose survival rates appear closer to the African rates above.   
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6.3.6 Connection between unadjusted and adjusted data for Nanakaly and Hewa 

hospitals 

In Section 6.1 we applied the SPSS program package for the datasets from Nanakaly and 

Hewa hospitals.  We started with the unadjusted Nanakaly data and finding the survival curve 

(Kaplan Meier), and applying the Cox regression model, we found that age is a statistically 

significant variable in breast cancer risk.   

The proportional hazard function is represented by the following equation (6.3) as described in 

Section 3.4.4, 

)3.6(.)exp()(
1

0 i
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i

i xx 


                                                

For the Nanakaly data there is only one variable, age. The relative risk is thus given by 

)exp( 1 Age . In particular we found that 032.01  , i.e. )032.0exp()( Agex  , and that its 

inclusion in the model was statistically significant. In Section 5.2.1 we have seen that the 

original model as stated was not adequate because of the problems of “lost” individuals 

associated with the data. Can we adapt this analysis to use the above result? 

Recall that we adjusted the data by using two models. The first model was based on estimating 

the hazard rate using tt nd ~  instead of tt nd , where tn~  is the adjusted measure of the number 

of individuals at risk, taking “lost” individuals into account. Here we can see that, considering 

subclasses of individuals, all risks are multiplied by a constant tt nn ~ at each time point. Thus 

if age has a higher risk in the original model it also has higher risk in the adjusted model. 

Moreover this increased hazard will be unchanged, and so we argue that our parameter 

estimate of 0.032 is still valid, assuming that lost individuals are equally likely across all ages. 

Note that in model two we needed to use the Markov Chain process to estimate the value of 

the rate of recorded death and the rate of losing individuals (p and l respectively).  

However, the results for the second model cannot be adjusted in a simple way to preserve the 

hazard ratios. Thus in principle the second model cannot be used in the same way. We saw 

that the two models produced very similar results, however, as we can see in the survival 

function curves in Figures 5.4 and 5.8. Thus we can conclude that the proportional hazard 

coefficient of 0.032 for age is still valid. 

For the Hewa dataset there were two problems with the data, the problem of “lost” individuals 

as mentioned above, but also the problem of the absence of definitive times of death. We 
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developed two models that tried to overcome these issues. From the original SPSS analysis, 

the Cox regression model showed that estrogen receptor, smoking and tumour grade were the 

significant risk factors for breast cancer as indicated in the following hazard function:  





))2(022.0exp(*

))1(578.0exp(*)540.0exp(*)Re003.0exp()( 0

GradeTumor

GradeTumorCodeSmokingceptorEstogenx 
 

Our interpretation of the above risk factors is that the death rates for those individuals who are 

smokers are higher than for non-smokers, while the individuals with tumour grade 1 have a 

lower risk than for tumour grade 2 and tumour grade 3, whose risks are approximately the 

same. The estrogen receptor has a negative risk factor, which means that breast cancer appears 

to be hormonal-receptor-negative.  

The first of our two models adjusted the true number of individuals at risk tn~  and the 

estimated number of deaths 
td

~
, which depends upon the rate of transition from the Recorded 

Death class to the Death class (z). The estimated hazard rate was then adjusted from that using 

the original data tt nd  to 
tt nd ~~

. As for the Nakakaly data there is a consistent scaling which 

preserves the order of the risk factors, though not in quite as straightforward a manner, as 
td

~
 is 

a weighting of a number of recorded deaths from different time periods. Thus the conclusions 

of the SPSS analysis might be considered to be valid, except that the uncertainty about the 

interpretation of the Recorded Death category means that this is still questionable. For the 

second model we used the Markov Chain to estimate the rate of recorded death, the rate of 

censoring, the rate of losing individuals and the rate of death ( zandlqp ,, ) in our model. As 

for the Nanakaly data, the hazard ratios are not preserved using this method. Further, we saw 

that the survival curves arising from the two models were considerably different (see Figures 

5.14 and 5.20), partly at least as a consequence of the non-homogeneous censoring in the data. 

Thus the conclusions from our analysis of the risk factors in the Hewa data are not robust. We 

believe that it is not possible to obtain such robust conclusions from the current data.   
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7 CHAPTER 7: A proposed data collection methodology 

7.1 Introduction 

In this chapter we discuss the problems related to the data used in this study. To apply survival 

analysis methodology on breast cancer patients between women in the Kurdistan Region of 

Iraq, data was collected from the official database of the two main hospitals located in 

Nanakaly and Hewa.   

The problems stem from an incomplete database due to various reasons based on what the 

Region has gone through in the past.  As mentioned earlier in the problem statement of chapter 

one, the Region separated from the central Government in 1991 causing an internal conflict 

after that era. Every sector has been affected by this abnormal environment including the 

health sector. In comparison to various other diseases, the rate of breast cancer among women 

in the Region has risen dramatically. This is why we chose this disease to study in Kurdish 

society. The research involves the application of survival analysis in order to find new tools 

and ways to illustrate the importance of knowing the survival rate. When we first started 

collecting the data, we found that some data was missing which may be due to either those 

recording the data not realising the importance of the details or the patients not returning to the 

hospitals for a follow-up check. We have therefore made some adjustments to the data by 

proposing the use of a new model developed using  mathematical methods. 

7.2 Nanakaly hospital data 

Nanakaly Hospital for Hematology and Oncology is a government hospital located in Azady- 

Hawler, Kurdistan Region of Iraq. It treats patients with blood disease, leukaemia & 

hemophilia. It was built by Hajji Ahmad Ismail Nanakaly and opened on 16 May 2004.  

Nanakaly hospital announced in its annual cancer conference on Wednesday February 4, 

2015, that the hospital contained three main departments which are blood diseases, cancer and 

child care. The first department deals with all blood problems, the second one deals with all 

types of cancer and the third one covers all diseases related to blood problems in children and 

all types of cancer in children.  

Doctor Sami Ahmed, the director of the Nanakaly hospital talked about how the medical staff 

are distributed between the three department and how the medical services are provided to the 

patients. The hospital publicises that it is a charity and does not charge patients for 
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chemotherapy or medication. All treatments, whether it be chemical or medicines, are 

available to patients for free. 

The hospital also announced that the number of patients coming to the hospital that had 

benefited from the services provided to them in the year 2014 was more than 51,500 patients. 

During that year 1,839 new patients were recorded of which 855 were having blood problems 

and hemophilia. It was also stated that 40,790 patients visited the Hematologic, Chemistry, 

Bacteriology, Viruses, Serology and Parasite units. While 3,180 patients visited the ultrasound 

unit, 2,698 patients visited the X-ray unit and 537 patients visited the blood donation unit. 

Finally, 2,882 patients had been subjected to a bone marrow examination. The current member 

of staff serving as senior doctors and specialists comprised about 32 physicians, whilst there 

are only 48 medical assistants working three shifts. The shifts start and end at the following 

times: first shift from 8:15am to 1:15pm, second shift from 1:15pm to 7:15pm, and the third 

shift from 7:15pm to 8:15am the following morning. Work continues on Fridays and public 

holidays. The main problem at this point is that it is difficult for 48 nurses and their assistants 

to provide medical and therapeutic services to more than 5000 patients of the hospital which 

receives between 180 to 190 patients daily.  

The data has been collected from the patients through direct contact between the specialist 

doctor and the patients. During this consultation the doctor will ask the patient some basic 

questions about age, weight, height, residency, marital status, and when she had realised that 

she had symptoms. After the consultation, the doctor will send her to the lab in order to take a 

specific blood test. After a couple of weeks the results of the test will come back from the lab. 

If the result is positive the doctor will suggest her to do a scan or mimeograph scan test to 

make sure the results are correct. The doctor will then advise the patients to come for follow-

up tests. The patients are sent home if the blood tests are negative. During this process, the 

nurse will record all information which the doctor has requested from the patients, which 

includes extra information such as about breast feeding and number of births before 

transferring it to the computer database. During the process of recording the information and 

transferring the data to computer databases a lot of data is lost. 
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7.3 Hewa hospital data 

The Hewa hospital in Sulaimaniyah, whose name (Kurdish for “hope”) recalls the agenda of 

the humanitarian services, specialises in oncology and haematology. 

To identify the nature of work at Hewa hospital and how the medical services are provided to 

patients, the Union News Paper visited Hewa hospital in Suleimaniyah and met with its 

director Dr.Tawfiq Tarq and explained the following. The Hewa hospital of oncology and 

Haematology, established in 2007, was part of the public hospital in Suleimaniyah where the 

number of patients with cancerous diseases was around 500. The capacity was insufficient so 

the Ministry of health of the Kurdistan Regional Government in coordination with the Health 

Office in Suleimaniyah customised buildings belonging to the Health Office in Suleimaniyah 

to be a temporary building for Hewa hospital. However, they are still having problems with 

capacity for patients because this building was established to be a department of Health Office 

not a hospital (Al-Riad al Sharif, 2012). 

Dr. Tawfiq talked about the capacity of the hospital and its sections saying that the hospital 

has 70 beds for patients who require special care, need necessary chemical treatments 

frequently and who have difficulty to come for a follow-up, especially those who live in areas 

far from the centre of Suleimaniyah or who are from other Governorates of Iraq. Patients who 

do not need to be in the hospital for control purposes undergo a 21 day treatment course. He 

added that, since 2007, there are over 10,000 patients who have benefited from the services 

provided by the hospital where 6,000 of them are from the Governorate of Kurdistan and 

4,000 from other Governorates of Iraq. The hospital receives between 1,500 to 2,000 patients 

per year. 

About the medical staffs who work at the hospital and its departments, he adds that there are 

15 doctors and specialists. Ten of them specialize in oncology and haematology, and five 

physicians specialize in laboratory analysis of blood and bone marrow. There are also 60 

health members working as doctor’s assistants, associate pharmacists or radiologist and others. 

In addition to that, there are 20 undergraduate nurses. 

On the chemotherapy or medication, Dr.Tawfiq explained that the hospital does not charge 

patients. All treatments, whether chemical or medicinal, are available to patients free of 

charge. The cost for a course of treatment that takes 21 days is 3,000 US dollars and is paid for 

by the Ministry of Health with the support of the Kurdistan Regional Government. A large 
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proportion of patients are from a low-income background. The support provided treats all 

patients equally and includes those from other parts of Iraq. 

Dr. Tawfiq indicated that most doctors are specialists who have decided to continue to work at 

the hospital in the evening and not go to their private clinics. This allows them to provide 

medical and therapeutic services for patients who require continuous direct supervision. 

In reply to a question on whether there are foreign medical experts in the hospital, he said that 

in general all doctors and other members in the hospital are Kurdish doctors, who are 

graduates of Iraqi Universities and Kurdistan Region Universities. Specifically, there are two 

Arab doctors, Dr. Basil and Dr. Sarmad, working in the hospital and there is no other foreign 

experience at the hospital.  

There are currently about 25 physicians serving as senior doctors, specialists and senior 

evaluators. There are 100 medical assistants continuously working two shifts in the morning 

and the evening on a daily basis. This results in unforeseen pressure and stress for them as the 

hospital continually receives patients on a daily basis including Fridays and public holidays. It 

is therefore difficult for 100 nurses and their assistants to provide medical and therapeutic 

services for the cancer patients.  

With regards to collecting the data from the patients, it is essentially the same process as 

Nanakaly Hospital which is described in the section above. Data is collected through direct 

contact between the doctors and their patients and is recorded in the same way but there are 

additional problems regarding the registration unit in this case. The regular employees in this 

unit are not aware of the importance of every detail about patients. This is partly due to the 

small size of the hospital and the large number of patients. Meanwhile their database includes 

many more details about breast cancer; time of diagnosis, time of death, smoking, drinking, 

exercise, family history, tumour size, tumour grade, lymph nodes, menopause, estrogens, 

progesterone, ethnicity, religion, hormone, income, occupation, BMI and blood type. 

However, when the time comes for a researcher to collect the data the basic problem still 

exists regarding the patients follow up as reflected from the survival function curve (see 

Figure 5.8). 
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7.4 General  procedures to collect the data 

The ability of information technology to deliver information in the health care system depends 

on the accuracy of recorded data and its accessibility for both patients and doctors. However, 

there is considerable evidence that the quality of current data is far from perfect, limiting the 

credibility of the data routinely collected for clinical use. The lack of information will affect 

the validity of the analysis adversely. Nevertheless, access to the clinical databases will be 

useful for patients’ care at the national health services as it will keep doctors and nurses up to 

date on the current state of research and the development of new treatments.  

One of the more challenging but nonetheless important tasks is going to be the setup of a 

centralized system for collecting, storing and sharing patients’ records among the Kurdish 

hospitals. That can be achieved through development and use of electronic health records 

(EHR), which is constantly recording the data in all contexts. Applying this system for clinical 

structure will help to manage the information between patients and doctors. This system 

should be unified and strongly established to record clinical information in a way that can be 

shared and secured. Also it has to reflect the way that patients and doctors are working 

together to achieve the best health care.  

It is necessary for electronic health records to protect the safety of patients and the good 

quality of care. In addition to keep all clinical records protected, such as management, 

planning, policy, commissioning, and research, for all uses, data must be appropriate for this 

purpose.    

The best way to collect data that we can depend on is the use electronic health records (EHR) 

which is recognized by the Academy of Medical Royal College in 2008 

(www.aomrc.org.uk/publications/ statements/doc_view/217-academy-statement-the-case-and-

vision-for-patient-focusedrecords.html). The most important thing we must look at is the list 

of clinical record headers, each with a description of what should be logged under each 

header. In addition to the clinical categories, the full set of record headers should include 

admission, handover, discharge, outpatient, referrals, communications, and space for special 

remarks. Presently, the recorded data in Kurdish hospitals Nanakaly and Hewa do not meet 

these standards, as mentioned in section 7.2 and 7.3. In detail, the records in question must 

include the following: 

1. Admission record: Standardised headers for the clinical situation to be recorded under when 

a patient is admitted. Not all headings are necessary in all care setting and situations. The 

http://www.aomrc.org.uk/publications/
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order they are listed in EHR applications, communications and letters can also be arranged by 

system providers and users. 

2. Handover record: Standardised headers for the clinical data to be recorded under when a 

patient is being transferred from one professional team or the other, including in-hospital 

transfers at nights, weekends, or between consultants. 

3. Discharge records: Standardised headers for the clinical data that should be held in the 

discharge record and included in the discharge summary from hospital to patient or their GP’s. 

4. Outpatient record: Standardised headers include the initial visit and follow up, this 

information should be included in the outpatient letter to GP and patient. This section should 

also include administrative information for the attributes of outpatient and ambulatory care 

sessions. 

5. Referral record: Standardised headers are intended to log the clinical data in referrals 

between Gps and hospitals, with a copy to the patient. It should also be suitable after 

adaptation for specialist referral. 

6. Core clinical record. They are priorities to be included in EHRs as they are in most 

countries.  

The complete (EHR) record could include all the sections listed above for data recording, 

reviewing and communicating, their order adapted in context, all (EHR) logs should have the 

date time and the person’s identity automatically registered. Finally, after preparing these 

standard records they will be reviewed and signed by a number of trusted organizations before 

making them available for use, for example Royal College of Anaesthetists, Royal College of 

General Practitioners, Royal College of Midwives, Royal College of Nursing and Royal 

College of Obstetricians and Gynaecologists (HSCIC, 2013). 
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7.5 Data required for survival analysis 

Survival analysis describes the analysis of data that corresponds to the time from when an 

individual enters a study until the occurrence of some particular event or end-point. It is 

concerned with the comparison of survival curves for different combinations of risk factors. 

Analysis of survival data is complicated by the presence of censoring (patients leaving the 

study) (see e.g. Marmdan and Garibaldi, 2009). 

Collecting data in western countries, for survival analysis and to follow up patients, there are 

different procedures that contain general guidelines to specific research questions, in order to 

make it more research focused. 

In the study of cancer and other diseases, it is important to measure the time between response 

to treatment and recurrence or disease-free survival time, rather than just time to death (Clark 

et al., 2003). The recording of the type of event and when the period of observation starts and 

ends is necessary in survival analysis. All individuals with cancer cannot be observed for the 

same length of time, because some individuals are diagnosed at the beginning of the period 

under study, some near the end and others may be diagnosed at any time during the study. 

Basically, survival data contains uncensored and censored observations. Uncensored 

observations involve patients who are observed until they reach the end of the study. On the 

other hand, censored observations involve patients who survive beyond the end or who are lost 

to follow up at some point. 

There are two major reasons for modelling survival data. First, we want to determine which 

combination of potential explanatory variables affects the form of the hazard function and, 

second, we want to estimate the hazard function for an individual in addition to their survival 

function (Collet, 1994). The methods used in survival analysis are semi-parametric, non-

parametric and parametric methods, where each needs the same types of data. In western 

nations like Germany, the United Kingdom and the United States of America patients have 

rights and expectations, for example, as described in the NHS Constitution. These include 

“convenient and easy access to health services, free of charge and within maximum waiting 

times; a good quality of care and environment based on best practice; not to be discriminated 

against on the grounds of gender, race, religion and belief, sexual orientation, disability or age; 

to receive drugs and treatment as recommended by the National Institute for Health and 

Clinical Excellence (NICE) for use in the NHS if a specialist feels it is clinically appropriate 

for the patients; decisions made in a clear and transparent way so the patients can understand 
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how services are planned and delivered; to be treated with dignity and respect in accordance 

with patients human rights; the right to privacy and confidentiality,” (Collet 1994).  

With respect to the above mentioned responsibilities of patients and hospitals, a lot of data is 

collected about patients that can be analysed. According to the International Agency for 

Research on Cancer (IARC) based in the United Kingdom there are some basic variables 

which are important in the statistical analysis of breast cancer such as date of diagnosis, 

recovery, death date, age, menopause, hormone treatment, survival time, tumour size, tumour 

grade, lymph node, estrogen, progesterone and time of censoring. Secondary variables of 

interest include tobacco use, alcohol use, infections, radiation exposures, occupational 

exposures, and medications (IARC, 2014). The World Cancer Research Fund/American 

Institute for Cancer Research (WCRF/AICR) identified additional factors such as diet, weight, 

and physical exercise (WCRF/AICR, 2007).  IARC and WCRF/AICR evaluations set the 

standard in cancer epidemiology. 

We collected the data to apply survival analysis from Kurdish hospitals in Nanakaly and 

Hewa. The variables in the Nanakaly hospital was time of diagnosis, time of death, residency 

and age of the patients only. The data contained many missing variables such as the variables 

related to the type of hormone treatment, and specific time of follow up. Also the data 

regarding social activity life for the patients, i.e., smoking, drinking, breast feeding, number of 

birth, abortion, life statues, habits of eating, doing exercises and etc was not available. 

However, in Hewa hospital there were a good number of variables but, crucially, the time of 

death was missing from their data. As a result it can be said that the best recorded data that can 

be relied on is the Nanakaly data from the Governorate of Hawler. 

For each set of data we tried to compensate for the problems using a Markov chain model. The 

Nanakaly data structure of the random process uses, four states and its structure is shown in 

Figure 5.7, and the Hewa model structure uses five states (see Figure 5.19). Whilst these 

models and the associated methods described in sections 5.1 and 5.2 can be used to adjust for 

problems in the data, it would clearly be better to rectify those problems at source by 

collecting the data in a more efficient and complete way. 

 

 

http://www.cancerresearchuk.org/cancer-info/healthyliving/smokingandtobacco/
http://www.cancerresearchuk.org/cancer-info/healthyliving/alcohol/
http://www.cancerresearchuk.org/cancer-info/healthyliving/hpv/
http://www.cancerresearchuk.org/cancer-info/healthyliving/SunandUV/
http://www.cancerresearchuk.org/cancer-info/healthyliving/harmfulsubstances/chemicalsintheworkplace/
http://www.cancerresearchuk.org/cancer-info/healthyliving/harmfulsubstances/chemicalsintheworkplace/
http://www.cancerresearchuk.org/cancer-info/healthyliving/exerciseandactivity/
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7.6 Solving problems in the Nanakaly and Hewa data 

There are basic common issues for both hospitals which directly affect the quality of data 

causing problems in the analysis. Generally the hospitals are responsible for encouraging the 

patients to understand the necessity of follow-up checks and consider it as part of their 

treatment process. However, the problem concerns weak interaction between the patients and 

the doctors, between the doctors and the nurses, or both. Another problem is associated with 

the staff responsible for recording data, who must establish a strong, easy, understandable and 

multidimensional database of the patients. The basic problem in the data is that they were not 

recorded by the doctors themselves but by the nurses who have difficulty understanding the 

importance of each specific detail supplied by the patients. This is because they are not trained 

for such kinds of tasks. The reality is that when one comes to collect the data for research or 

any other academic purposes they are not helped to do so by the hospitals and need to depend 

on many other sources such as good personal relations with the nursing staff to obtain it. 

However, when the data is made available to the researchers, it contains a lot of missing 

information.  

7.7 Description and justification of data requirements 

Major reasons for the bad quality of the available data include a lack of awareness of the 

importance of keeping records on the doctors’ side and a lack of trust in the health services on 

the patients’ side. The latter may be linked to poor health education in some areas of the 

country or an insufficient degree of understanding between doctors and patients. In any case, 

not all the apparent deaths can be taken at face value since many of them likely arise from 

incomplete hospital records or simply a patient not showing up for their follow up treatment.  

It is important for the doctors and patients to make the hospitals be a place of trust between 

them. In addition they are responsible to recommend to the patients about the necessity for 

follow up and encouraging them to think rationally not emotionally and they have to make 

more effort to help the patients understand the importance of giving correct information and 

they have to record each question in detail and take the responsibility of providing a correct 

answer. On the other hand I suggest that the doctors have to put a specific schedule based on 

weekly or monthly support to control patient’s follow up. The important thing is that the 

policy makers support and encourage the hospitals in the Kurdistan Region to build a strong, 

accurate database between all the Governorates of the Region. Since the main issue in Hewa 

Hospital is building (as published in Al-Riad al Sharif, 2012), the Government should build a 
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sizable hospital and prepare a desirable place for them. Also we suggest it is better for the 

Kurdish Government to send their candidate nurses to receive international training abroad to 

learn how to establish a strong database or following some developed country's database, for 

example the German hospital database which is strongly established and includes all types of 

cancer.  

7.8 Plan of a data collection methodology 

In Western countries it is standard academic protocol to extensively plan data collection 

beforehand; in particular that involves clear specification of who will be responsible for 

collecting, and recording the data. Generally, the doctors in western countries who are 

working in the general practitioner (GP) surgeries  are responsible for collecting the data from 

the patients. The accuracy of these data may be related to the awareness of these doctors who 

are highly trained to provide health information to the patients. The process of gathering data 

starts when the patients visit the general practitioner surgeries for the first time. Here the nurse 

asks the patients to fill an application form, which contains all information about the patients 

as well as examples and guides on how to complete it, before making an appointment with the 

doctor for them. After that this form will be checked and stored by the administration. These 

data should be stored in a clear way which will be easily accessible to the user. For instance it 

is important to clarify whether it is collected by questionnaires, emails, recorded interviews, 

copies of official documents and stating the name and location of this information (Royal 

College of General Practitioners, 2011). The reliability of these data should be checked 

through their consistency and finding ways and methods for dealing with any suspect or 

wrong data (Royal College of General Practitioners, 2011).         

The Royal College of General Practitioners (2011) stated that the data collected on general 

practitioner surgeries in the United Kingdom indicates very high standards of patient 

diagnosis, treatment, care, and support. The most important thing is that, if necessary, they 

may refer the patients to the specialists or to the community services. The doctors share 

patients situation information and recording all necessary information involved in patients 

treatment.   

Hospitals in the Kurdistan Region can follow exactly the same methods as Community Health 

Centres (CHCs) in the United Kingdom in order to have accurate data about the patients. 

Because of the great diversity of patients seen at CHCs and it is important to have their boards 

of directors representing their communities; CHCs appear to be ahead of the curve in 
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collecting different information on each patient. Perhaps the most practical approach for the 

hospitals in the Kurdistan Region is to follow the Health and Social Care Information Center 

(HSCIC) method to collect the data. Also it would be helpful for the Kurdish hospitals to 

adapt one of the following ways to get access to the data: by using a Secure File Transfer 

Mechanism or by accessing the hospital episode (period) statistics (HES) data using 

the hospital episode statistics (HES) data interrogation system. 

7.9 General flow chart for breast cancer 

When establishing a design to collect the data on breast cancer it is necessary to take all 

related factors, causing it which are specified by the physicians, into consideration. The 

following graphs represent two subjective flow charts for that reason. The first flow chart 

contains general information to use for collecting the data. The second flow chart includes 

information about the individual in more detail. In the general data collection design flow 

chart, the data from the patient will be collected and recorded in a computer database. If we 

use the first choice then we have to think of the historical background of the patients or 

making questionnaire forms to collect the data. In the second case, we only have to make a 

database request, taking into account the typical structure of the data associated to a patient. 

For instance, in the UK a breast cancer patient’s file is typically subdivided into five 

categories, namely breast cancer health history, physical examination, case management, risk 

assessment and referral and treatment. After collection by either method the data will be ready 

to use in a specific model and to apply it for breast cancer patients (see Figure 7.1). 
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Figure 7-1 General flow chart for data collection design 

7.9.1 Specific flow chart for breast cancer patients 

When collecting the data using the form designed for patients individually, the information 

will be recorded in much more detail than the general flow chart. For first time patients when 

arriving at hospital answer to the most common questions about the date, name, age and 

address will be recorded. Then the person will he asked about the eleven main factors which 

are considered to be the basic cause of breast cancer, after which the individual will be asked 

about Gender, Smoking, Drinking alcohol, Age, Genetic risk, Marital status, Menopause, 

Number of children, Occupation and if they have undergone any surgery in addition to 

recording other health problems. Individuals undergo a number of processes, starting with a 

hormone test for Estrogen (+/-), Progesterone(+/-), HER2(+/-), FISH, LH, Thyroid Function 

and Prolacting. In the case of a positive diagnosis, the current stage of illness will be recorded. 

After the type, size and grade of the tumour have been specified the patients will go through to 

the treatment stage; there are four kinds of treatment; surgery, chemotherapy, radiotherapy and 

hormone therapy. It is crucial at this stage that the treatment is well-recorded in terms of dates 

and dosages. If the patient recovers then the patient will be sent home, the date and the time of 



155 
 

recovery will recorded and they will be asked for a follow up every 6 months. But if the 

specific treatment is not successful, the dosage or type of treatment has to be changed and any 

alteration needs to be documented. If the patient recovers after this new action the date and 

time of recovery will be recorded and the patient will be asked for follow up every 6 months. 

If this process is not successful, the treatment will again be changed and the process continues. 

Finally this processes will continue until the patient either survives or dies (see Figure 7.2).    

 

 

Figure 7-2 Specific flow chart for data collection design patient (individual) 
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7.9.2 Explanation of the flow charts 

In UK hospitals, they follow electronic health records (EHRs), developing and using data that 

are recorded consistently and electronically across all contexts within a national standard. The 

implementation of a national standard can help facilitate shared care regardless of location and 

context, and give comparable data to support nationwide management and monitoring of 

health services. This in turn will benefit patients, clinicians, professions and the health service 

in general. In Kurdish hospitals, the traditional way (which is still widely adhered to) does not 

involve obtaining inclusive information about the patient’s status. For instance, while in 

Nanakally hospital the patient’s form features boxes for circumstantial information (such as 

age, gender, weight, height, allergy, diagnosis, stage of tumour, chemotherapy protocol, 

number of cycles) and treatment details (chemotherapeutic agent given, dose, way of 

delivery); frequently this information is not transferred into the database or is simply left 

empty altogether. We chose our flow chart of data collection design based on the UK hospitals 

method for collecting data, because it is very comprehensive. However, while in the UK the 

data is collected on five separate forms specialized to different areas, we would like to apply 

this design for Kurdish hospitals using only a single form while remaining thorough and 

applicable to the Kurdistan environment and culture, in order to make data collection easier 

for future researchers. 

7.10 Feasibility (achievability) of the plan 

It is practical for Hospitals in the Kurdistan Region to follow the Health and Social Care 

Information Centre (HSCIC) in the United Kingdom as they have launched a programme to 

look at other ways in which data can be securely accessed. The Data Access Request Service 

(DARS) provides customers with a single point of access for all new data applications. The 

information control panel has been created to provide greater visibility of the type and volume 

of requested data that are needed. The control panel shows the level of requested data that are 

necessary for its application and the displayed information is updated regularly. 

Furthermore the policy of accessing the data in HSCIC is supported by the following 

principles: 

1. Share information to support the provision of health and social care and the promotion of 

health. 
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2. Audit the data receiver to ensure loyalty to the terms of their contracts and agreements; 

ensure that any data are deleted at the end of the data sharing agreement under which it was 

released. 

3. Provide a clear, simple, efficient, and transparent service for access to data delivered to 

publicly-stated service levels. 

4. Use the latest technologies to create interconnected records as a means to providing safe 

and secure access to data. 

5. Listen to feedback from customers, patients, and the public and involve them in the 

continuous improvement of the HSCIC system. 

Following this plan is well-suited to create a strong health system and easy access to the 

accurate data if it is properly implemented in the Kurdistan Hospitals. Still, there are many 

more aspects to contemplate before putting this plan into action. The main problem might be 

the lack of awareness of the importance of this plan among authorities responsible for the 

funding. Another problem this plan could face is a lack of compliance by the doctors 

themselves; since many of them are using the most basic techniques to record patient’s 

information it might take some time to effectively popularize the use of computers and 

databases when it comes to collecting and storing data. Other obstacles include the ignorance 

of patient’s histories, furthermore it is sometimes regarded as a violation of trust to get correct 

information from the patients. The main point here is that a lack of trust or collaboration 

between doctor and patient may discourage objective bookkeeping. That in itself causes many 

of the problems we face when dealing with patients’ records. Since a GP employed at a 

government hospital is generally paid relatively little, many of them work in private clinics in 

the afternoons, which only few people can afford to visit. On the other hand there is some 

competition between the doctors as a significant number of them came to the region only 

recently from the other parts of Iraq. The aforementioned obstacles are not the only ones. Even 

in the case of extensive government support, there is still a need for experts in statistics and 

software who are trained in the use of the equipment and the analysis of the resulting data.  

In addition to that, the hospitals in the region generally do not meet the standards of modern 

healthcare. While many hospital buildings themselves may be neat and tidy, the patient’s 

rooms are often damp and dark as opposed to light and airy, especially the waiting rooms.  
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The achievability of the suggested general flow chart for data collection relies heavily on the 

method of data collection; gathering information through personal interviews seems much 

more promising than through questionnaires, which might be answered incompletely or 

incorrectly. At the same time, choosing a database structure when collecting the data might be 

straightforward to do for some categories such as breast health history, case management, risk 

assessment while many patients may be unable to give the exact date of their last physical 

examinations or referrals, or the precise type of medication and dosage they have been given. 

Focus on the interviewing stage of the data collection process is indispensable in order to gain 

accurate data at the end.  

In the following, we address some of the challenges which may arise during the initial phase 

of data collection, i.e. when the patient arrives at the hospital for the first time. Here, the first 

two steps (regarding recording basic information or the time of death, respectively) may be 

straightforward, while in step three, when it comes to assessing various factors causing breast 

cancer, the patient, for cultural reasons or lack of medical understanding, might take issue with 

the questions about smoking habits, alcohol consumption, age, genetic risk, menopause and so 

on, and choose to give inaccurate answers or entirely refuse to answer them. When we move 

on to more medical recording issues, starting with hormone tests, it may not be easy to get all 

the information because the doctors may not request all the tests to diagnose the breast cancer. 

In the case when breast cancer is diagnosed, there will be no problem in recording the 

information about the tumour size, tumour grade, lymph nodes and metastasis. Unfortunately, 

it may be difficult to actually treat the breast cancer because as soon as the patients are made 

aware of their illness, many of them go abroad looking for treatments, which means that the 

records will remain blank. Because of limited availability of expensive specific treatments to 

poor patients, they might serve as a comparison group. Finally, we also might face problems 

in recording the date and time of change of treatment type and dosages.   
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8 CHAPTER 8: Conclusion and future work 

8.1 Conclusion 

All over the world, especially in the developing regions, the rates of breast cancer, the most 

common malignancy in women, constituting just under one fifth of cancers in females, are on 

the rise. Kurdistan-Iraq is no exception, with an age-adjusted incidence rate of 68.9 per 

100,000 year; in fact, breast cancer is the most prevalent cancer among the population 

(affecting about one third of female cancer patients), with particularly alarming rates among 

the younger demographic, according to the Kurdistan-Iraqi Cancer Registry. In order to tackle 

this problem, a precise understanding of the survival rate is essential. In order to do so, in this 

work we adopt the Cox regression and the Kaplan-Meier methods.   

The main conclusion is that we have developed a new method for performing a survival 

analysis on a set of data where there are important unknown factors; namely hidden censoring 

of the data, so that the number of individuals apparently at risk is greater than those actually at 

risk. In particular we have shown how to adjust a Kaplan-Meier analysis to find a survival 

curve in such circumstances, and also shown how to estimate a true hazard (survivor) function 

from the biased one obtained directly from the data. For Nanakaly and Hewa data we 

generated a new model in two cases; with and without censoring. For without censoring in 

Nanakaly data we estimate a number of observations while for Hewa data we estimate the 

number of observation and the number of deaths. Examining the results for our data, we 

conclude that the survival rate of breast cancer in Erbil and Suleimania are lower at age 48 and 

above years. The findings of the present study suggest that age, smoking, estrogen receptors 

and tumour grade have an effect on breast cancer survival.  

In order to ascertain the validity of the models we constructed, we considered different 

simulation techniques applied to the Nanakaly data. Because of the availability of a good 

survival function, we chose to work with a German data set. For each different simulation 

method, a distribution was chosen and the 'lost' patients were subsequently simulated from this 

distribution. Thus, death is only observed if the individual has not been 'lost', otherwise it is 

not. We see that our models perform well in many circumstances, and even when less 

accurate, are always an improvement on considering the apparent survival curves from the 

unadjusted data. For the Hewa data we need to estimate crucial parameter values. For some 



160 
 

estimates we get realistic survival function curves. However, estimates are made with little 

information. Thus while survival curves are plausible we cannot rely on them.  

As mentioned above, the data we work with, provided by the Nanakaly and Hewa hospitals, 

generally does not meet the standard of comprehensive data collection adopted e.g. in the UK. 

While in Britain, five different forms are in use in order to capture every accessible piece of 

information, we attempted to condense this into one form intended for use in Kurdistan-Iraq 

while keeping it as detailed as possible. The intention is to adopt the system which is in use in 

western countries, where the recording of data is the responsibility of the GP’s, who generally 

are already well-versed in health education. The process of data collection is intended to start 

at a patient’s first visit to a practitioner’s surgery. Further details can be found in Figures 7.1 

and 7.2 (chapter 7).  

While the models from chapter 5 (with and without censoring) in question are easily 

implemented and don’t constitute a substantial workload increase for the doctors, they still are 

well-suited to the task of keeping track of a patient’s health records, including dealing with 

hidden or censored data. However, it is necessary to obtain government funding, a highly 

trained staff and the statistical expertise in order to fully implement the proposed models.  

8.2 Future research 

This study provided an understanding of the factors identified by primary care providers that 

negatively affect the primary care system in the Kurdistan region of Iraq. Primary care 

providers have a major role to play as shown by experience in distributing information in the 

community and in informing governing bodies about the main problems affecting the system. 

Obviously, recommendations for improvements to the health care system in general must be 

taken to a national level for a more comprehensive strategy for improving primary health care 

in Iraq. Therefore future validation of the suggested models may be conducted using cross 

validation or by using new data. Applying the recommended flow charts could provide more 

relevant information on breast cancer, thus providing a more comprehensive understanding of 

breast cancer. With the increased number of variables and need to identified attributable 

variables, taking into account the extensive use of the accelerated death model in research and 

literature, future versions of statistical analysis software such as SPSS or R may implement the 

needed models.  
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In this report a new method for performing a survival analysis on a dataset with important 

unknown factors is developed. Specifically, the system of data collection we are dealing with 

exhibits hidden censoring, making the number of individuals at risk appears greater than it 

actually is. To validate our methods, we applied them to data provided by German health 

services, for which an accurate survival function is known. For each simulation, we chose a 

distribution and artificially implemented censoring of individuals from the comparison dataset 

according to it. Subsequent research might include the systematic investigation of such models 

and how they react to censoring of the input data. Extensions might include the use of Cure 

models which model the survival time taking into account the nonzero probability of a 

patient’s total recovery, which can be assumed to account for some of the missing records. 
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Appendix 

A1: SPSS Hewa data analysis: these are intermediate tables for the analysis from Chapter 6, 

Section 6.2. 

 
 Table A1.1 Variables in the Cox regression model for the Hewa data 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Where the column headers represent the following:     

B: Parameter Coefficient, SE: Standard Error, Wald: Statistics Test, df: Degree of Freedom,  

p-value: Significant Value, Exp(B): Exponential Parameter, CI: Confidence Interval.  

 

 

 

  B SE Wald df p. value Exp(B) 
95.0% CI for Exp(B) 

Lower Upper 

Progesterone Receptor -.001 .001 3.571 1 .059 .999 .997 1.000 

Estrogen Receptor -.002 .001 3.181 1 .075 .998 .996 1.000 

Menopause -.217 .243 .802 1 .371 .805 .500 1.295 

Hormone .421 .232 3.301 1 .069 1.524 .967 2.401 

Tumour size -.004 .006 .589 1 .443 .996 .985 1.007 

Lymph Nodes -.012 .012 .952 1 .329 .988 .964 1.012 

Religion Code 
  

2.572 2 .276 
   

Religion Code(1) .922 .819 1.265 1 .261 2.513 .504 12.521 

Religion Code(2) -.309 .419 .542 1 .462 .735 .323 1.670 

Smoking Code -.541 .293 3.414 1 .065 .582 .328 1.033 

Drinking Code 
-

1.119 
.795 1.980 1 .159 .327 .069 1.552 

Weight .002 .002 .973 1 .324 1.002 .998 1.006 

Height -.007 .012 .301 1 .583 .993 .969 1.018 

BMI -.001 .002 .119 1 .730 .999 .995 1.004 

Family History Code .270 .307 .776 1 .378 1.310 .718 2.391 

Income Code 
  

4.922 3 .178 
   

Income Code(1) -.765 .447 2.927 1 .087 .465 .194 1.118 

Income Code(2) -.341 .281 1.479 1 .224 .711 .410 1.232 

Income Code(3) -.505 .255 3.921 1 .048 .604 .366 .995 

Marital Status Code 
  

4.964 3 .174 
   

Marital Status Code(1) .077 .467 .027 1 .869 1.080 .432 2.700 

Marital Status Code(2) .524 .238 4.849 1 .028 1.689 1.059 2.693 

Marital Status Code(3) .097 .445 .048 1 .827 1.102 .461 2.637 

Exercise Code .075 .197 .146 1 .703 1.078 .732 1.588 

Breast Feeding Code .155 .258 .363 1 .547 1.168 .705 1.935 

Tumour Grade Code 
  

8.489 2 .014 
   

Tumour Grade Code(1) -.641 .306 4.391 1 .036 .527 .289 .959 

Tumour Grade Code(2) -.053 .263 .041 1 .839 .948 .566 1.587 
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           Table A1.2 Variables in the Cox regression model for the Hewa data 

 

 

 

 

 

 

 

 

 

 

 

 

 

  B SE Wald df p. value Exp(B) 
95.0% CI for Exp(B) 

Lower Upper 

Progesterone Receptor -.001 .001 3.570 1 .059 .999 .997 1.000 

Estrogen Receptor -.002 .001 3.199 1 .074 .998 .996 1.000 

Menopause -.217 .243 .797 1 .372 .805 .500 1.296 

Hormone .423 .232 3.318 1 .069 1.526 .968 2.405 

Tumour Size -.004 .006 .608 1 .435 .996 .985 1.007 

Lymph  Nodes -.012 .012 .962 1 .327 .988 .964 1.012 

Religion Code 
  

2.545 2 .280 
   

Religion Code(1) .913 .819 1.242 1 .265 2.492 .500 12.410 

Religion Code(2) -.309 .419 .544 1 .461 .734 .323 1.669 

Smoking Code -.540 .293 3.391 1 .066 .583 .328 1.035 

Drinking Code -1.113 .795 1.958 1 .162 .329 .069 1.562 

Weight .002 .002 .848 1 .357 1.002 .998 1.006 

Height -.004 .008 .245 1 .621 .996 .981 1.012 

Family History Code .265 .306 .751 1 .386 1.304 .716 2.376 

Income Code 
  

5.010 3 .171 
   

Income Code(1) -.771 .447 2.977 1 .084 .462 .193 1.111 

Income Code(2) -.344 .280 1.506 1 .220 .709 .409 1.228 

Income Code(3) -.509 .255 3.990 1 .046 .601 .365 .990 

Marital Status Code 
  

4.984 3 .173 
   

Marital Status Code(1) .066 .467 .020 1 .888 1.068 .427 2.670 

Marital Status Code(2) .524 .238 4.859 1 .027 1.689 1.060 2.693 

Marital Status Code(3) .100 .445 .051 1 .822 1.106 .462 2.644 

Exercise Code .071 .197 .130 1 .718 1.074 .730 1.580 

Breast Feeding Code .155 .258 .361 1 .548 1.167 .705 1.934 

Tumour Grade Code 
  

8.568 2 .014 
   

Tumour Grade Code(1) -.642 .306 4.409 1 .036 .526 .289 .958 

Tumour Grade Code(2) -.051 .263 .038 1 .846 .950 .568 1.590 
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     Table A1.3 Variables in the Cox regression model for the Hewa data 

  B SE Wald df p. value Exp(B) 
95.0% CI for Exp(B) 

Lower Upper 

Progesterone Receptor -.001 .001 3.555 1 .059 .999 .997 1.000 

Estrogen Receptor -.002 .001 3.136 1 .077 .998 .996 1.000 

Menopause -.214 .242 .783 1 .376 .807 .502 1.297 

Hormone .440 .226 3.791 1 .052 1.553 .997 2.420 

Tumour Size -.005 .006 .629 1 .428 .996 .984 1.007 

Lymph Nodes -.013 .012 1.017 1 .313 .988 .964 1.012 

Religion Code 
  

2.459 2 .292 
   

Religion Code(1) .895 .817 1.199 1 .274 2.447 .493 12.143 

Religion Code(2) -.301 .418 .517 1 .472 .740 .326 1.681 

Smoking Code -.546 .293 3.458 1 .063 .580 .326 1.030 

Drinking Code -1.085 .792 1.879 1 .170 .338 .072 1.594 

Weight .002 .002 .801 1 .371 1.002 .998 1.006 

Height -.004 .008 .244 1 .622 .996 .981 1.011 

Family History Code .259 .306 .720 1 .396 1.296 .712 2.360 

Income Code 
  

5.470 3 .140 
   

Income Code(1) -.792 .444 3.186 1 .074 .453 .190 1.081 

Income Code(2) -.362 .276 1.722 1 .189 .696 .405 1.196 

Income Code(3) -.526 .250 4.425 1 .035 .591 .362 .965 

Marital Status Code 
  

4.907 3 .179 
   

Marital Status Code(1) .077 .466 .028 1 .868 1.081 .433 2.695 

Marital Status Code(2) .520 .238 4.793 1 .029 1.683 1.056 2.681 

Marital Status Code(3) .107 .444 .058 1 .809 1.113 .466 2.660 

Breast Feeding Code .145 .256 .320 1 .572 1.156 .700 1.907 

Tumour Grade Code 
  

8.556 2 .014 
   

Tumour Grade Code(1) -.642 .306 4.407 1 .036 .526 .289 .958 

Tumour Grade Code(2) -.052 .263 .038 1 .845 .950 .568 1.589 
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    Table A1.4 Variables in the Cox regression model for the Hewa data 

  B SE Wald df p. value Exp(B) 
95.0% CI for Exp(B) 

Lower Upper 

Progesterone Receptor -.001 .001 3.744 1 .053 .999 .997 1.000 

Estrogen Receptor -.002 .001 3.067 1 .080 .998 .996 1.000 

Menopause -.212 .242 .770 1 .380 .809 .504 1.299 

Hormone .434 .226 3.682 1 .055 1.544 .991 2.405 

Tumour Size -.004 .006 .598 1 .439 .996 .985 1.007 

Lymph Nodes -.012 .012 .982 1 .322 .988 .964 1.012 

Religion Code 
  

2.499 2 .287 
   

Religion Code(1) .884 .818 1.169 1 .280 2.421 .487 12.024 

Religion Code(2) -.315 .418 .567 1 .452 .730 .321 1.657 

Smoking Code -.544 .295 3.415 1 .065 .580 .326 1.034 

Drinking Code -1.081 .792 1.860 1 .173 .339 .072 1.604 

Weight .002 .002 .787 1 .375 1.002 .998 1.005 

Family History Code .254 .305 .691 1 .406 1.289 .708 2.344 

Income Code 
  

5.472 3 .140 
   

Income Code(1) -.791 .444 3.180 1 .075 .453 .190 1.082 

Income Code(2) -.360 .276 1.698 1 .193 .698 .406 1.199 

Income Code(3) -.526 .250 4.418 1 .036 .591 .362 .965 

Marital Status Code 
  

4.954 3 .175 
   

Marital Status Code(1) .090 .466 .038 1 .846 1.095 .439 2.728 

Marital Status Code(2) .524 .238 4.855 1 .028 1.688 1.060 2.690 

Marital Status Code(3) .116 .444 .068 1 .795 1.122 .470 2.682 

Breast Feeding Code .149 .255 .339 1 .560 1.160 .704 1.912 

Tumour Grade Code 
  

8.528 2 .014 
   

Tumour Grade Code(1) -.643 .305 4.443 1 .035 .526 .289 .956 

Tumour Grade Code(2) -.055 .262 .045 1 .833 .946 .566 1.582 
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  Table A1.5 Variables in the Cox regression model for the Hewa data 

  B SE Wald df p. value Exp(B) 
95.0% CI for Exp(B) 

Lower Upper 

Progesterone Receptor -.001 .001 3.862 1 .049 .999 .997 1.000 

Estrogen Receptor -.002 .001 2.936 1 .087 .998 .996 1.000 

Menopause -.164 .227 .521 1 .470 .849 .544 1.325 

Hormone .423 .226 3.516 1 .061 1.527 .981 2.376 

Tumour Size -.004 .006 .612 1 .434 .996 .985 1.007 

Lymph Nodes -.011 .012 .827 1 .363 .989 .965 1.013 

Religion Code 
  

2.388 2 .303 
   

Religion Code(1) .861 .816 1.112 1 .292 2.365 .477 11.715 

Religion Code(2) -.308 .418 .542 1 .462 .735 .324 1.668 

Smoking Code -.537 .294 3.343 1 .067 .585 .329 1.039 

Drinking Code -1.057 .791 1.789 1 .181 .347 .074 1.636 

Weight .002 .002 .767 1 .381 1.002 .998 1.005 

Family History Code .252 .305 .681 1 .409 1.286 .707 2.340 

Income Code 
  

5.363 3 .147 
   

Income Code(1) -.788 .443 3.158 1 .076 .455 .191 1.085 

Income Code(2) -.353 .276 1.635 1 .201 .703 .409 1.207 

Income Code(3) -.517 .250 4.289 1 .038 .596 .366 .973 

Marital Status Code 
  

5.636 3 .131 
   

Marital Status Code(1) .122 .463 .070 1 .792 1.130 .456 2.802 

Marital Status Code(2) .442 .195 5.140 1 .023 1.556 1.062 2.281 

Marital Status Code(3) .147 .441 .110 1 .740 1.158 .488 2.750 

Tumour Grade Code 
  

8.372 2 .015 
   

Tumour Grade Code(1) -.639 .305 4.386 1 .036 .528 .290 .960 

Tumour Grade Code(2) -.058 .263 .048 1 .826 .944 .564 1.579 

 

   Table A1.6 Variables in the Cox regression model for the Hewa data 

  B SE Wald df p. value Exp(B) 
95.0% CI for Exp(B) 

Lower Upper 

Progesterone Receptor -.001 .001 3.620 1 .057 .999 .997 1.000 

Estrogen Receptor -.002 .001 3.326 1 .068 .998 .996 1.000 

Hormone .336 .192 3.068 1 .080 1.399 .961 2.036 

Tumour Size -.004 .006 .521 1 .470 .996 .985 1.007 

Lymph Nodes -.013 .012 1.121 1 .290 .987 .964 1.011 

Religion Code 
  

2.486 2 .288 
   

Religion Code(1) .883 .819 1.162 1 .281 2.418 .486 12.042 

Religion Code(2) -.313 .418 .561 1 .454 .731 .322 1.659 

Smoking Code -.526 .292 3.248 1 .071 .591 .333 1.047 

Drinking Code -1.085 .792 1.875 1 .171 .338 .072 1.597 

Weight .002 .002 .759 1 .384 1.002 .998 1.005 

Family History Code .262 .305 .740 1 .390 1.300 .715 2.362 

Income Code 
  

5.260 3 .154 
   

Income Code(1) -.779 .444 3.085 1 .079 .459 .192 1.094 

Income Code(2) -.354 .276 1.642 1 .200 .702 .409 1.206 

Income Code(3) -.514 .250 4.233 1 .040 .598 .367 .976 

Marital Status Code 
  

6.376 3 .095 
   

Marital Status Code(1) .167 .459 .132 1 .716 1.182 .480 2.909 

Marital Status Code(2) .470 .192 6.011 1 .014 1.599 1.099 2.328 

Marital Status Code(3) .183 .440 .173 1 .677 1.201 .507 2.847 

Tumour Grade Code 
  

8.720 2 .013 
   

Tumour Grade Code(1) -.655 .304 4.636 1 .031 .519 .286 .943 

Tumour Grade Code(2) -.064 .262 .060 1 .806 .938 .561 1.568 
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        Table A1.7 Variables in the Cox regression model for the Hewa data 

  B SE Wald df 
p. 

value 
Exp(B) 

95.0% CI for Exp(B) 

Lower Upper 

Progesterone Receptor -.001 .001 3.797 1 .051 .999 .997 1.000 

Estrogen Receptor -.002 .001 3.279 1 .070 .998 .996 1.000 

Hormone .328 .191 2.937 1 .087 1.388 .954 2.019 

Lymph  Nodes -.012 .012 .990 1 .320 .988 .965 1.012 

Religion Code     2.635 2 .268       

Religion Code(1) .899 .819 1.205 1 .272 2.457 .494 12.235 

Religion Code(2) -.327 .418 .613 1 .434 .721 .318 1.635 

Smoking Code -.515 .291 3.139 1 .076 .598 .338 1.056 

Drinking Code -1.117 .791 1.994 1 .158 .327 .069 1.542 

Weight .002 .002 .640 1 .424 1.002 .998 1.005 

Family History Code .261 .305 .736 1 .391 1.299 .715 2.360 

Income Code     5.181 3 .159       

Income Code(1) -.761 .443 2.957 1 .085 .467 .196 1.112 

Income Code(2) -.352 .276 1.629 1 .202 .703 .409 1.208 

Income Code(3) -.513 .250 4.229 1 .040 .598 .367 .976 

Marital Status Code     6.162 3 .104       

Marital Status Code(1) .171 .459 .139 1 .709 1.187 .483 2.918 

Marital Status Code(2) .460 .191 5.810 1 .016 1.585 1.090 2.304 

Marital Status Code(3) .171 .440 .151 1 .697 1.187 .501 2.808 

Tumour Grade Code     9.066 2 .011       

Tumour Grade Code(1) -.673 .303 4.917 1 .027 .510 .282 .925 

Tumour Grade Code(2) -.074 .262 .079 1 .779 .929 .556 1.553 

 

       Table A1.8 Variables in the Cox regression model for the Hewa data 

  B SE Wald df 
p. 

value 
Exp(B) 

95.0% CI for Exp(B) 

Lower Upper 

Progesterone Receptor -.001 .001 3.873 1 .049 .999 .997 1.000 

Estrogen Receptor -.002 .001 3.249 1 .071 .998 .996 1.000 

Hormone .325 .191 2.903 1 .088 1.385 .952 2.013 

Lymph Nodes -.012 .012 .975 1 .324 .988 .965 1.012 

Religion Code     2.636 2 .268       

Religion Code(1) .901 .819 1.210 1 .271 2.462 .495 12.257 

Religion Code(2) -.327 .418 .610 1 .435 .721 .318 1.637 

Smoking Code -.515 .291 3.140 1 .076 .598 .338 1.056 

Drinking Code -1.113 .791 1.981 1 .159 .329 .070 1.548 

Family History Code .263 .305 .748 1 .387 1.301 .716 2.364 

Income Code     5.010 3 .171       

Income Code(1) -.752 .442 2.886 1 .089 .472 .198 1.122 

Income Code(2) -.350 .276 1.606 1 .205 .705 .411 1.211 

Income Code(3) -.503 .249 4.082 1 .043 .605 .371 .985 

Marital Status Code     6.089 3 .107       

Marital Status Code(1) .160 .459 .122 1 .727 1.174 .478 2.883 

Marital Status Code(2) .457 .191 5.722 1 .017 1.579 1.086 2.295 

Marital Status Code(3) .166 .439 .143 1 .705 1.181 .499 2.794 

Tumour Grade Code     9.200 2 .010       

Tumour Grade Code(1) -.673 .303 4.928 1 .026 .510 .281 .924 

Tumour Grade Code(2) -.069 .262 .070 1 .791 .933 .558 1.559 
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         Table A1.9 Variables in the Cox regression model for the Hewa data 

  B SE Wald df 
p. 

value 
Exp(B) 

95.0% CI for Exp(B) 

Lower Upper 

Progesterone Receptor -.001 .001 3.947 1 .047 .999 .997 1.000 

Estrogen Receptor -.002 .001 3.207 1 .073 .998 .996 1.000 

Hormone .321 .191 2.823 1 .093 1.379 .948 2.007 

Lymph Nodes -.012 .012 1.022 1 .312 .988 .965 1.011 

Religion Code     2.686 2 .261       

Religion Code(1) .912 .819 1.241 1 .265 2.489 .500 12.389 

Religion Code(2) -.328 .418 .615 1 .433 .721 .318 1.635 

Smoking Code -.513 .290 3.134 1 .077 .599 .339 1.056 

Drinking Code -1.131 .789 2.054 1 .152 .323 .069 1.515 

Income Code     5.222 3 .156       

Income Code(1) -.769 .442 3.030 1 .082 .463 .195 1.102 

Income Code(2) -.379 .274 1.909 1 .167 .685 .400 1.172 

Income Code(3) -.518 .249 4.331 1 .037 .596 .366 .970 

Marital Status Code     6.126 3 .106       

Marital Status Code(1) .151 .459 .109 1 .741 1.163 .474 2.858 

Marital Status Code(2) .457 .191 5.740 1 .017 1.580 1.087 2.296 

Marital Status Code(3) .166 .440 .143 1 .705 1.181 .499 2.796 

Tumour Grade Code     9.499 2 .009       

Tumour Grade Code(1) -.679 .304 5.003 1 .025 .507 .280 .919 

Tumour Grade Code(2) -.064 .262 .060 1 .806 .938 .561 1.567 

 

         Table A1.10 Variables in the Cox regression model for the Hewa data 

  B SE Wald df 
p. 

value 
Exp(B) 

95.0% CI for Exp(B) 

Lower Upper 

Progesterone Receptor -.001 .001 3.878 1 .049 .999 .997 1.000 

Estrogen Receptor -.002 .001 3.727 1 .054 .998 .995 1.000 

Hormone .294 .190 2.404 1 .121 1.342 .925 1.947 

Religion Code     2.734 2 .255       

Religion Code(1) .877 .820 1.144 1 .285 2.404 .482 11.995 

Religion Code(2) -.359 .417 .738 1 .390 .699 .308 1.583 

Smoking Code -.533 .290 3.380 1 .066 .587 .332 1.036 

Drinking Code -1.101 .791 1.936 1 .164 .333 .071 1.568 

Income Code     5.280 3 .152       

Income Code(1) -.781 .442 3.122 1 .077 .458 .193 1.089 

Income Code(2) -.388 .274 2.003 1 .157 .678 .396 1.161 

Income Code(3) -.520 .249 4.362 1 .037 .595 .365 .969 

Marital Status Code     6.002 3 .112       

Marital Status Code(1) .171 .459 .139 1 .709 1.187 .483 2.915 

Marital Status Code(2) .454 .191 5.664 1 .017 1.575 1.083 2.290 

Marital Status Code(3) .171 .441 .150 1 .698 1.187 .500 2.817 

Tumour Grade Code     9.857 2 .007       

Tumour Grade Code(1) -.709 .302 5.496 1 .019 .492 .272 .890 

Tumour Grade Code(2) -.089 .261 .115 1 .735 .915 .549 1.527 
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      Table A1.11 Variables in the Cox regression model for the Hewa data 

  B SE Wald df p. value Exp(B) 
95.0% CI for Exp(B) 

Lower Upper 

Progesterone Receptor -.001 .001 3.758 1 .053 .999 .997 1.000 

Estrogen Receptor -.002 .001 3.770 1 .052 .998 .995 1.000 

Hormone .299 .190 2.475 1 .116 1.348 .929 1.955 

Smoking Code -.538 .289 3.460 1 .063 .584 .331 1.029 

Drinking Code -.021 .307 .005 1 .945 .979 .536 1.788 

Income Code     4.964 3 .174       

Income Code(1) -.780 .441 3.126 1 .077 .458 .193 1.088 

Income Code(2) -.394 .274 2.067 1 .151 .674 .394 1.154 

Income Code(3) -.496 .248 4.006 1 .045 .609 .374 .990 

Marital Status Code     6.524 3 .089       

Marital Status Code(1) .196 .458 .182 1 .669 1.216 .495 2.985 

Marital Status Code(2) .479 .190 6.353 1 .012 1.615 1.112 2.344 

Marital Status Code(3) .323 .420 .594 1 .441 1.382 .607 3.146 

Tumour Grade Code     9.722 2 .008       

Tumour Grade Code(1) -.698 .302 5.336 1 .021 .498 .275 .900 

Tumour Grade Code(2) -.080 .261 .093 1 .760 .923 .554 1.540 

 

         Table A1.12 Variables in the Cox regression model for the Hewa data 

  B SE Wald df p. value Exp(B) 
95.0% CI for Exp(B) 

Lower Upper 

Progesterone Receptor -.001 .001 3.756 1 .053 .999 .997 1.000 

Estrogen Receptor -.002 .001 3.790 1 .052 .998 .995 1.000 

Hormone .298 .190 2.470 1 .116 1.347 .929 1.954 

Smoking Code -.552 .199 7.661 1 .006 .576 .389 .851 

Income Code     4.963 3 .175       

Income Code(1) -.781 .441 3.128 1 .077 .458 .193 1.088 

Income Code(2) -.394 .274 2.066 1 .151 .674 .394 1.154 

Income Code(3) -.496 .248 4.004 1 .045 .609 .374 .990 

Marital Status Code     6.525 3 .089       

Marital Status Code(1) .197 .458 .184 1 .668 1.217 .496 2.987 

Mairtal Status Code(2) .479 .190 6.356 1 .012 1.615 1.113 2.345 

Mairtal Status Code(3) .323 .420 .593 1 .441 1.382 .607 3.146 

Tumour Grade Code     9.721 2 .008       

Tumour Grade Code(1) -.697 .302 5.331 1 .021 .498 .276 .900 

Tumour Grade Code(2) -.080 .261 .093 1 .760 .923 .553 1.540 

 

           Table A1.13 Variables in the Cox regression model for the Hewa data 

  B SE Wald df p. value Exp(B) 
95.0% CI for Exp(B) 

Lower Upper 

Progesterone Receptor -.001 .001 3.267 1 .071 .999 .997 1.000 

Estrogen Receptor -.002 .001 3.606 1 .058 .998 .995 1.000 

Hormone .290 .190 2.332 1 .127 1.336 .921 1.937 

Smoking Code -.543 .199 7.424 1 .006 .581 .393 .859 

Marital Status Code     5.704 3 .127       

Marital Status Code(1) .148 .457 .105 1 .746 1.160 .474 2.838 

Marital Status Code(2) .444 .189 5.502 1 .019 1.558 1.076 2.257 

Marital Status Code(3) .295 .419 .496 1 .481 1.343 .591 3.051 

Tumour Grade Code     9.318 2 .009       

Tumour Grade Code(1) -.664 .300 4.907 1 .027 .515 .286 .926 

Tumour Grade Code(2) -.058 .260 .050 1 .823 .944 .567 1.571 
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          Table A1.14 Variables in the Cox regression model for the Hewa data 

  B SE Wald df p. value Exp(B) 
95.0% CI for Exp(B) 

Lower Upper 

Progesterone Receptor -.001 .001 2.763 1 .096 .999 .998 1.000 

Estrogen Receptor -.002 .001 4.159 1 .041 .998 .995 1.000 

Hormone .229 .179 1.631 1 .202 1.257 .885 1.785 

Smoking Code -.507 .199 6.523 1 .011 .602 .408 .889 

Tumour Grade Code     10.821 2 .004       

Tumour Grade Code(1) -.702 .300 5.496 1 .019 .495 .275 .891 

Tumour Grade Code(2) -.049 .260 .035 1 .852 .952 .572 1.587 

 

         Table A1.15 Variables in the Cox regression model for the Hewa data 

  B SE Wald df p. value Exp(B) 
95.0% CI for Exp(B) 

Lower Upper 

Progesterone 

Receptor 
-.001 .001 2.657 1 .103 .999 .998 1.000 

Estrogen Receptor -.002 .001 3.639 1 .056 .998 .995 1.000 

Smoking Code -.534 .198 7.317 1 .007 .586 .398 .863 

Tumour Grade Code     10.130 2 .006       

Tumour Grade 

Code(1) 
-.666 .299 4.965 1 .026 .514 .286 .923 

Tumour Grade 

Code(2) 
-.033 .260 .016 1 .899 .967 .581 1.612 

 

         Table A1.16 Variables in the Cox regression model for the Hewa data 

  B SE Wald df p. value Exp(B) 
95.0% CI for Exp(B) 

Lower Upper 

Estrogen Receptor -.003 .001 5.339 1 .021 .997 .995 1.000 

Smoking Code -.540 .197 7.490 1 .006 .583 .396 .858 

Tumour Grade Code     9.000 2 .011       

Tumour Grade Code(1) -.578 .294 3.869 1 .049 .561 .315 .998 

Tumour Grade Code(2) .022 .258 .007 1 .933 1.022 .616 1.696 
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A2: SPSS German data analysis: these are intermediate tables for the analysis from Chapter 6, 

section 6.3. 

Table A2.1 Variables in the Cox regression model for the German data 

  B SE Wald df p. value Exp(B) 
95.0% CI for Exp(B) 

Lower Upper 

Age .009 .008 1.438 1 .230 1.009 .994 1.024 

Hormone .270 .168 2.579 1 .108 1.309 .942 1.819 

Tumour Size .013 .005 7.890 1 .005 1.014 1.004 1.023 

Tumour Grade Code     8.403 2 .015       

Tumour Grade Code (1) -1.130 .442 6.537 1 .011 .323 .136 .768 

Tumour Grade Code(2) -.344 .168 4.175 1 .041 .709 .510 .986 

Lymph Nodes .051 .009 30.106 1 .000 1.053 1.034 1.072 

Progesterone Receptor -.005 .001 21.894 1 .000 .995 .992 .997 

 

Table A2.2 Variables in the Cox regression model for the German data 

  B SE Wald df p. value Exp(B) 
95.0% CI for Exp(B) 

Lower Upper 

Hormone .230 .165 1.951 1 .162 1.259 .911 1.739 

Tumour Size .013 .005 7.714 1 .005 1.013 1.004 1.023 

Tumour Grade Code     8.090 2 .018       

Tumour Grade Code(1) -1.115 .442 6.360 1 .012 .328 .138 .780 

Tumour Grade Code(2) -.334 .168 3.937 1 .047 .716 .515 .996 

Lymph Nodes .052 .009 30.151 1 .000 1.053 1.034 1.073 

Progesterone Receptor -.005 .001 21.660 1 .000 .995 .992 .997 

 

Table A2.3 Variables in the Cox regression model for the German data 

  B SE Wald df p. value Exp(B) 
95.0% CI for Exp(B) 

Lower Upper 

Tumour Size .013 .005 8.130 1 .004 1.014 1.004 1.023 

Tumour Grade Code     8.958 2 .011       

Tumour Grade Code(1) -1.150 .441 6.798 1 .009 .317 .133 .752 

Tumour Grade Code(2) -.359 .167 4.605 1 .032 .698 .503 .969 

Lymph Nodes .051 .009 29.193 1 .000 1.053 1.033 1.072 

Progesterone Receptor -.005 .001 21.566 1 .000 .995 .992 .997 
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A3: The following figures represent simulations of various difference loss distribution there 

are ten simulations for an exponential distribution with means equal to 2000, 1000 and 500, 

respectively and ten for a gamma distribution with mean 1000 (parameters 3,3/1000).    

 
Figure A3.1 Uncorrected cumulative survival for exponential loss distribution using mean 2000 simulation 

a1 

 
Figure A3.2 Cumulated survival for exponential loss distribution using mean 2000:  corrected using the 

first model simulation a1 

 
Figure A3.3 Cumulated survival for exponential loss distribution using mean 2000: corrected using the 

second model simulation a1 
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Figure A3.4 Uncorrected cumulative survival for exponential loss distribution using mean 2000 simulation 

a2 

 
Figure A3.5 Cumulated survival for exponential loss distribution using mean 2000: corrected using the 

first model simulation a2 

 
Figure A3.6 Cumulated survival for exponential loss distribution using mean 2000: corrected the second 

model simulation a2 
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Figure A3.7 Uncorrected cumulative survival for exponential loss distribution using mean 2000 simulation 

a3 

 
Figure A3.8 Cumulated survival for exponential loss distribution using mean 2000: corrected the first 

model simulation a3 

 
Figure A3.9 Cumulated survival for exponential loss distribution using mean 2000: corrected the second 

model simulation a3 
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Figure A3.10 Uncorrected cumulative survival for exponential loss distribution using mean 2000 

simulation a4 

 
Figure A3.11 Cumulated survival for exponential loss distribution using mean 2000: corrected the first 

model simulation a4 

 
Figure A3.12 Cumulated survival for exponential loss distribution using mean 2000: corrected the second 

model simulation a4 
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Figure A3.13 Uncorrected cumulative survival for exponential loss distribution using mean 2000 

simulation a5 

 
Figure A3.14 Cumulated survival for exponential loss distribution using mean 2000: corrected the first 

model simulation a5 

 
Figure A3.15 Cumulated survival for exponential loss distribution using mean 2000: corrected the second 

model simulation a5 
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Figure A3.16 Uncorrected cumulative survival for exponential loss distribution using mean 2000 

simulation a6 

 
Figure A3.17 Cumulated survival for exponential loss distribution using mean 2000: corrected the first 

model simulation a6 

 
Figure A3.18 Cumulated survival for exponential loss distribution using mean 2000: corrected the second 

model simulation a6 
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Figure A3.19 Uncorrected cumulative survival for exponential loss distribution using mean 2000 

simulation a7 

 
Figure A3.20 Cumulated survival for exponential loss distribution using mean 2000: corrected the first 

model simulation a7 

 
Figure A3.21 Cumulated survival for exponential loss distribution using mean 2000: corrected the second 

model simulation a7 
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Figure A3.22 Uncorrected cumulative survival for exponential loss distribution using mean 2000 

simulation a8 

 
Figure A3.23 Cumulated survival for exponential loss distribution using mean 2000: corrected the first 

model simulation a8 

 
Figure A3.24 Cumulated survival for exponential loss distribution using mean 2000: corrected the second 

model simulation a8 
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Figure A3.25 Uncorrected cumulative survival for exponential loss distribution using mean 2000 

simulation a9. 

 
Figure A3.26 Cumulated survival for exponential loss distribution using mean 2000: corrected the first 

model simulation a9 

 
Figure A3.27 Cumulated survival for exponential loss distribution using mean 2000: corrected the second 

model simulation a9 
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Figure A3.28 Uncorrected cumulative survival for exponential loss distribution using mean 2000 

simulation a10 

 
Figure A3.29 Cumulated survival for exponential loss distribution using mean 2000: corrected the first 

model simulation a10 

 
Figure A3.30 Cumulated survival for exponential loss distribution using mean 2000: corrected the second 

model simulation a10 
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Figure A3.31 Uncorrected cumulative survival for exponential loss distribution using mean 1000 

simulation b1 

 
Figure A3.32 Cumulated survival for exponential loss distribution using mean 1000: corrected the first 

model simulation b1 

 
Figure A3.33 Cumulated survival for exponential loss distribution using mean 1000: corrected the second 

model simulation b1 
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Figure A3.34 Uncorrected cumulative survival for exponential loss distribution using mean 1000 

simulation b2 

 
Figure A3.35 Cumulated survival for exponential loss distribution using mean 1000: corrected the first 

model simulation b2 

 
Figure A3.36 Cumulated survival for exponential loss distribution using mean 1000: corrected the second 

model simulation b2 
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Figure A3.37 Uncorrected cumulative survival for exponential loss distribution using mean 1000 

simulation b3 

 
Figure A3.38 Cumulated survival for exponential loss distribution using mean 1000: corrected the first 

model simulation b3 

 
Figure A3.39 Cumulated survival for exponential loss distribution using mean 1000: corrected the second 

model simulation b3 
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Figure A3.40 Uncorrected cumulative survival for exponential loss distribution using mean 1000 

simulation b4 

 
Figure A3.41 Cumulated survival for exponential loss distribution using mean 1000: corrected the first 

model simulation b4 

 
Figure A3.42 Cumulated survival for exponential loss distribution using mean 1000: corrected the second 

model simulation b4 



186 
 

 
Figure A3.43 Uncorrected cumulative survival for exponential loss distribution using mean 1000 

simulation b5 

 

 
Figure A3.44 Cumulated survival for exponential loss distribution using mean 1000: corrected the first 

model simulation b5 

 
Figure A3.45 Cumulated survival for exponential loss distribution using mean 1000: corrected the second 

model simulation b5 
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Figure A3.46 Uncorrected cumulative survival for exponential loss distribution using mean 1000 

simulation b6 

 
Figure A3.47 Cumulated survival for exponential loss distribution using mean 1000: corrected the first 

model simulation b6  

 
Figure A3.48 Cumulated survival for exponential loss distribution using mean 1000: corrected the second 

model simulation b6 
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Figure A3.49 Uncorrected cumulative survival for exponential loss distribution using mean 1000 

simulation b7 

 
Figure A3.50 Cumulated survival for exponential loss distribution using mean 1000: corrected the first 

model simulation b7 

 
Figure A3.51 Cumulated survival for exponential loss distribution using mean 1000: corrected the second 

model simulation b7  
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Figure A3.52 Uncorrected cumulative survival for exponential loss distribution using mean 1000 

simulation b8  

 
Figure A3.53 Cumulated survival for exponential loss distribution using mean 1000: corrected the first 

model simulation b8 

 
Figure A3.54 Cumulated survival for exponential loss distribution using mean 1000: corrected the second 

model simulation b8 
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Figure A3.55 Uncorrected cumulative survival for exponential loss distribution using mean 1000 

simulation b9 

 
Figure A3.56 Cumulated survival for exponential loss distribution using mean 1000: corrected the first 

model simulation b9 

 

  
Figure A3.57 Cumulated survival for exponential loss distribution using mean 1000: corrected the second 

model simulation b9 
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Figure A3.58 Uncorrected cumulative survival for exponential loss distribution using mean 1000 

simulation b10  

 

 
Figure A3.59 Cumulated survival for exponential loss distribution using mean 1000: corrected the first 

model simulation b10 

 

 
Figure A3.60 Cumulated survival for exponential loss distribution using mean 1000: corrected the second 

model simulation b10 
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Figure A3.61 Uncorrected cumulative survival for exponential loss distribution using mean 500 simulation 

c1 

 
Figure A3.62 Cumulated survival for exponential loss distribution using mean 500: corrected the first 

model simulation c1 

 
Figure A3.63 Cumulated survival for exponential loss distribution using mean 500: corrected the second 

model simulation c1 
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Figure A3.64 Uncorrected cumulative survival for exponential loss distribution using mean 500 simulation 

c2 

 
Figure A3.65 Cumulated survival for exponential loss distribution using mean 500: corrected the first 

model simulation c2 

 
Figure A3.66 Cumulated survival for exponential loss distribution using mean 500: corrected the second 

model simulation c2 
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Figure A3.67 Uncorrected cumulative survival for exponential loss distribution using mean 500 simulation 

c3 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A3.68 Cumulated survival for exponential loss distribution using mean 500: corrected the first 

model simulation c3 
 

 
Figure A3.69 Cumulated survival for exponential loss distribution using mean 500: corrected the second 

model simulation c3 
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Figure A3.70 Uncorrected cumulative survival for exponential loss distribution using mean 500 simulation 

c4 

 
Figure A3.71 Cumulated survival for exponential loss distribution using mean 500: corrected the first 

model simulation c4 

 
Figure A3.72 Cumulated survival for exponential loss distribution using mean 500: corrected the second 

model simulation c4 

 



196 
 

 
Figure A3.73 Uncorrected cumulative survival for exponential loss distribution using mean 500 simulation 

c5 

 
Figure A3.74 Cumulated survival for exponential loss distribution using mean 500: corrected the first 

model simulation c5 

 

 
Figure A3.75 Cumulated survival for exponential loss distribution using mean 500: corrected the second 

model simulation c5 
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Figure A3.76 Uncorrected cumulative survival for exponential loss distribution using mean 500 simulation 

c6 

 
Figure A3.77 Cumulated survival for exponential loss distribution using mean 500: corrected the first 

model simulation c6 

 
Figure A3.78 Cumulated survival for exponential loss distribution using mean 500: corrected the second 

model simulation c6 
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Figure A3.79 Uncorrected cumulative survival for exponential loss distribution using mean 500 simulation 

c7 

 
Figure A3.80 Cumulated survival for exponential loss distribution using mean 500: corrected the first 

model simulation c7 

 
Figure A3.81 Cumulated survival for exponential loss distribution using mean 500: corrected the second 

model simulation c7 
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Figure A3.82 Uncorrected cumulative survival for exponential loss distribution using mean 500 simulation 

c8 

 
Figure A3.83 Cumulated survival for exponential loss distribution using mean 500: corrected the first 

model simulation c8 

 
Figure A3.84 Cumulated survival for exponential loss distribution using mean 500: corrected the second 

model simulation c8 
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Figure A3.85 Uncorrected cumulative survival for exponential loss distribution using mean 500 simulation 

c9 

 
Figure A3.86 Cumulated survival for exponential loss distribution using mean 500: corrected the first 

model simulation c9 

 
Figure A3.87 Cumulated survival for exponential loss distribution using mean 500: corrected the second 

model simulation c9 
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Figure A3.88 Uncorrected cumulative survival for exponential loss distribution using mean 500 simulation 

c10 

 
Figure A3.89 Cumulated survival for exponential loss distribution using mean 500: corrected the second 

model simulation c10 

 
Figure A3.90 Cumulated survival for exponential loss distribution using mean 500: corrected the second 

model simulation c10 
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Figure A3.91 Uncorrected cumulative survival for gamma (3, 3/1000) loss distribution i.e. with mean 1000 

simulation d1 

 
Figure A3.92 Cumulated survival for gamma (3, 3/1000) loss distribution i.e. with mean 1000: corrected 

the first model simulation d1 

 
Figure A3.93 Uncorrected cumulative survival for gamma (3, 3/1000) loss distribution i.e. with mean 1000 

The second model simulation d1 
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Figure A3.94 Uncorrected cumulative survival for gamma (3, 3/1000) loss distribution i.e. with mean 1000 

simulation d2 

 
Figure A3.95 Cumulated survival for gamma (3, 3/1000) loss distribution i.e. with mean 1000: corrected 

the first model simulation d2 

 
Figure A3.96 Cumulated survival for gamma (3, 3/1000) loss distribution i.e. with mean 1000: corrected 

the second model simulation d2 
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Figure A3.97 Uncorrected cumulative survival for gamma (3, 3/1000) loss distribution i.e. with mean 1000 

simulation d3 

 
Figure A3.98 Cumulated survival for gamma (3, 3/1000) loss distribution i.e. with mean 1000: corrected 

the first model simulation d3 

 
Figure A3.99 Cumulated survival for gamma (3, 3/1000) loss distribution i.e. with mean 1000: corrected 

the second model simulation d3 
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Figure A3.100 Uncorrected cumulative survival for gamma (3, 3/1000) loss distribution i.e. with mean 1000 

simulation d4 

 
Figure A3.101 Cumulated survival for gamma (3, 3/1000) loss distribution i.e. with mean 1000: corrected 

the first model simulation d4 

 
Figure A3.102 Cumulated survival for gamma (3, 3/1000) loss distribution i.e. with mean 1000: corrected 

the second model simulation d4 
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Figure A3.103 Uncorrected cumulative survival for gamma (3, 3/1000) loss distribution i.e. with mean 1000 

simulation d5 

 
Figure A3.104 cumulative survival for gamma (3, 3/1000) loss distribution i.e. with mean 1000: corrected 

the first model simulation d5 

 
Figure A3.105 Cumulated survival for gamma (3, 3/1000) loss distribution i.e. with mean 1000: corrected 

the second model simulation d5 
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Figure A3.106 Uncorrected cumulative survival for gamma (3, 3/1000) loss distribution i.e. with mean 1000 

simulation d6 

 
Figure A3.107 Cumulated survival for gamma (3, 3/1000) loss distribution i.e. with mean 1000: corrected 

the first model simulation d6 

 
Figure A3.108 Cumulated survival for gamma (3, 3/1000) loss distribution i.e. with mean 1000: corrected 

the second model simulation d6 
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Figure A3.109 Uncorrected cumulative survival for gamma (3, 3/1000) loss distribution i.e. with mean 1000 

simulation d7 

 
Figure A3.110 Cumulated survival for gamma (3, 3/1000) loss distribution i.e. with mean 1000: corrected 

the first model simulation d7 

 
Figure A3.111 Cumulated survival for gamma (3, 3/1000) loss distribution i.e. with mean 1000: corrected 

the second model simulation d7 
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Figure A3.112 Uncorrected cumulative survival for gamma (3, 3/1000) loss distribution i.e. with mean 1000 

simulation d8 

 
Figure A3.113 Cumulated survival for gamma (3, 3/1000) loss distribution i.e. with mean 1000: corrected 

the first model simulation d8 

 
Figure A3.114 Cumulated survival for gamma (3, 3/1000) loss distribution i.e. with mean 1000: corrected 

the second model simulation d8 
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Figure A3.115 Uncorrected cumulative survival for gamma (3, 3/1000) loss distribution i.e. with mean 1000 

simulation d9 

 
Figure A3.116 Cumulated survival for gamma (3, 3/1000) loss distribution i.e. with mean 1000: corrected 

the first model simulation d9 

 
Figure A3.117 Cumulated survival for gamma (3, 3/1000) loss distribution i.e. with mean 1000: corrected 

the second model simulation d9 
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Figure A3.118 Uncorrected cumulative survival for gamma (3, 3/1000) loss distribution i.e. with mean 1000 

simulation d10 

 
Figure A3.119 Cumulated survival for gamma (3, 3/1000) loss distribution i.e. with mean 1000: corrected 

the first model simulation d10 

 
Figure A3.120 Cumulated survival for gamma (3, 3/1000) loss distribution i.e. with mean 1000: corrected 

the second model simulation d10 
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